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In behavioural and evolutionary ecology, there are often
large phenotypic differences between individuals in, for
example, body size or large variation in abiotic conditions
such as temperature, between measurements. This often
inevitable source of variation may mask any effect of
experimental treatment as it can have a large impact on
the dependent variable of interest. In such cases, conven-
tional statistical comparisons may have much lower
power than desired. The inclusion of covariates in statis-
tical analyses has proven a powerful method to control for
such nonrandom differences between individual data
points that cannot be controlled experimentally (Huitema
1980). To make correct conclusions, it is important to
understand the basic assumptions underlying such a co-
variate analysis. In this paper I argue that this has
evidently not been completely acknowledged in the
scientific community. Sophisticated models relating re-
sponses to both one or more continuous covariates and
one or more factors can be problematic. Factor is here used
in the meaning of a categorical independent variable and
its value divides individuals into discrete groups or
categories, for instance experimental treatments. In the
following, I use a simple one-factor ANCOVA design as an
example, but the same general problem outlined here
applies to all linear models with one or more covariates,
including generalized linear models (GLIM) such as
logistic regressions and even survival analysis.

The basic design of a one-factor fixed effect ANCOVA
can be written as:

Y,~,=u+oci+B(Xi,~ —X) +€i/

where Yj; denotes the values for the dependent response
variable of the jth subject in the ith category of the factor, pn
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is the mean intercept (the average value of the response
parameter when the value of the covariate equals zero), «;is
the response to the ith category of the factor, X;; the value
for the covariate of the jth subject in the ith category of the
factor, X is the mean value of the covariate for all
individuals, B is the overall pooled regression coefficient
(slope) within groups and e the normally distributed
error variance (cf. Huitema 1980). When performing an
ANCOVA, we thus assume equivalent slopes among treat-
ment groups (B). The test of homogeneity among slopes is
therefore a key prerequisite to proceed to the ANCOVA
itself. The easiest way to test this assumption is to include
the interaction term between the covariate and the factorin
the model. If the interaction term is nonsignificant, we can
conclude that the slopes are homogeneous and then pro-
ceed to test whether the response differs between groups.
This is formally done by testing for differences between
treatment groups in the Y intercept for the regressions of
the covariate on the response variable Y. This test is carried
out by re-running the model, excluding the interaction
term. Differences in the Y intercept (i.e. differences be-
tween groups when the value for the covariate equals zero)
are generally of minor importance. However, since we
assume homogeneity of slopes this difference can be
inferred over the whole range of covariate values.

A significant interaction effect, on the other hand,
indicates that the relation between the covariate and the
response variable Y differs between groups. In such a case
with heterogeneous slopes, the difference between groups
will depend on the value of the covariate. To continue and
perform an ANCOVA is therefore inappropriate in these
cases. However, this first full model will of course also
perform a significance test for the response to the factor.
This test is not a test of the average response to the factor:
it is solely a test for differences in the Y intercept. The
effect of the factor is not fixed but conditional and will
depend on the value of the covariate. Instead, after we
have established that the slope coefficients are nonhomo-
geneous, we can continue in several different ways. We
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can for instance (1) conclude that the response to the
covariate is different between groups, which in a broader
sense means that there are significant differences between
groups (Cochran 1957), (2) perform a separate analysis for
each group (which is rational only if the main interest is
the response to the covariate and not the response to the
factor), and (3) determine the regions of significance using
the Johnson-Neyman procedure (Johnson & Neyman
1936; Huitema 1980).

Similarly, if we choose to include a nonsignificant
interaction term in our final model, this would mean that
we none the less assumed different slopes. A test for

differences in Y intercepts between groups (treatment
effect) would thus give us information not on the overall
or average difference between groups, but only at one
point in the covariate dimension, namely when the
covariate equals zero.

The inclusion of a nonsignificant interaction term,
however, not only limits the possibility of generalizing
intercept differences; in most analyses it also eliminates
the possibility of detecting even substantial differences in
Y intercepts between groups. As the mean value of the
covariate in most cases differs considerably from zero,
random deviations of slopes within the confidence in-
terval will be amplified by the extrapolation back to the Y
intercept. This will amplify the standard errors of the
intercepts (Fig. 1a). The effect will be smaller the steeper
the slope and the larger the covariate’s coefficient of
variation. In contrast, analyses including a significant
interaction term can also generate significant differences
in intercept, because the nonrandom differences in slopes
will be amplified, often generating a negative correlation
between slope and intercept (Fig. 1b).

This obviously also means that analyses including
covariate interaction terms, significant or not, are sensi-
tive to different scaling of the covariate. For instance, if
the covariate is temperature, an analysis including the
interaction term will consequently present different F and
P values for the effect of the factor depending on whether
temperature was measured in degrees Celsius or Kelvin.
This is, of course, not the case in an ANCOVA without an
interaction term.

To conclude this brief review, which can be extracted
from almost any statistical textbook (e.g. Huitema 1980;
Sokal & Rohlf 1995; Pedhazur 1997; Goldberg & Scheiner

Figure 1. lllustrations of the problems with covariate analyses
assuming different slopes. (a) Arandom sample from two populations
(m = nz = 100) with hypothetically equal slopes (b; = b, = 1) and
a hypothetical difference in response (Y) of 1 unit. Hypothetical
mean + SD of covariate Xwas 10 + 1 units and residual SD was 0.4 in
this and in the following examples. Lines refer to the mean and 95%
confidence limits to the regression estimates of each group. An
ANCOVA on these data not assuming equal slopes failed to show
significant differences between groups (group: Fy 196 = 2.85,
P =0.1; slope: Fy,196 = 439.6, P <0.0001; interaction:
F1,196 = 0.105, P = 0.7), whereas the difference is highly significant
assuming (correctly) equal slopes (group: Fi 197 = 174.2,
P < 0.0001; slopes: F1,197 = 829.4, P < 0.0001). An analysis assum-
ing homogeneous slopes has a power of >99.9% (« = 0.05) to refute
the null hypothesis of no difference between groups (all 1000 random
samples). In contrast, an analysis including the interaction term has an
approximate power of 0.056. (b) A random sample from two
populations with hypothetically different slopes (b; = 1, b, = 1.5)
and a hypothetical response difference of 0 units at the mean value of
the covariate X = 10. An analysis including the interaction correctly
revealed a significant difference in the Y intercept between groups
(group: Fq,196 = 63.5, P < 0.0001; slope: Fy,196 = 624.5,
P < 0.0001; interaction: Fy 196 = 66.5, P < 0.0001). (c) A random
sample from two populations with hypothetically different slopes
(b = 0.5, b, = 1) and a hypothetical response difference of 5 units at
the mean value of the covariate X = 10. An analysis including the
interaction correctly revealed no significant difference in the Y
intercept between groups (group: Fi 196 = 0.974, P = 0.3; slope:
F1,196 = 118.8, P < 00001,' interaction: F1,196 = 97.1, P < 0.0001 ).



2001; Quinn & Keough 2002): (1) nonsignificant covariate
interaction terms must be removed before re-running the
final analysis; (2) when there are significant interaction
terms, which should not be removed, it is incorrect to
interpret the response to the factor as an overall or average
main effect.

None the less, these violations of the ANCOVA assump-
tions are recurrently seen in the literature. My aim in this
paper was to find out if these are occasional mistakes or
a more general problem. I chose to analyse research
literature on behavioural and evolutionary ecology simply
because this is the focus of my own research.

Methods

I scanned all papers in Animal Behaviour, Behavioral
Ecology and Journal of Evolutionary Biology published
between July 2003 and June 2004. I disregarded reviews,
comments and theoretical models. Special emphasis was
placed on the Material and Methods sections in search of
a description of the statistical analyses used. I scrutinized
the Results sections looking for words or test statistics
indicating that a statistical model with at least one
covariate and at least one factor was used. I also inspected
all tables and figures. I classified two potential mistakes:
(1) nonsignificant interaction terms between a covariate
and a factor indicating homogeneity of slope were not
removed before the final analysis; and (2) the results of
models including significant interaction terms were in-
adequately interpreted with regard to the factor (usually
the experimental treatment).

In papers reporting significant interaction terms, I
therefore looked in more detail, searching for an interpre-
tation of the test. Formulations such as ‘[...] overall,
treatments differed significantly [...]’, ‘[...] when control-
ling for body size, treatment had a significant effect [...]’,
‘[...] treatment had an effect, furthermore slopes differed
significantly [...]’, or with similar wording was classified as
misinterpretations. If used in context with the interaction
test only, statements such as ‘treatment had an effect’
were classified as acceptable, because different slopes
between treatments can be viewed as a treatment effect
(Cochran 1957): the response to the covariate is signifi-
cantly different between treatments.

The inclusion of a nonsignificant interaction term in
analyses was, if not explicitly stated in the text, generally
deduced from the df of the residual deviance. In the
simplest case, both the interaction term df and the factor
df were given. Alternatively, I compared the factor df with
the sample size. I made the conservative assumption that
the analysis was correct if it was not possible to reconstruct
which model was used in the final analysis, because either
the factor df or the sample size was not stated.

Results

I investigated 457 empirical papers in Animal Behaviour
(231), Behavioral Ecology (115) and Journal of Evolutionary
Biology (111) published between July 2003 and June 2004.
In total I found erroneous analyses in 28 of them (6.1%).

COMMENTARY

Eighty papers (17.5% of all papers) used at least one
analysis including a continuous covariate and a categorical
factor. Thus, 35% of all covariate-type analyses were either
misinterpreted or misapplied.

Thirteen articles comprised misinterpretations of the
significance tests for the response to the factor in analyses
with a significant covariate/factor interaction term, and in
21 articles I found analyses with an inadequate inclusion
of a nonsignificant interaction term in the final model. In
six articles both mistakes were made. Thus, in relation to
total number of articles, these mistakes were approximately
equally frequent but for different reasons. Whereas rela-
tively few articles with covariate analyses had to handle
significant interactions (28), these analyses were often
misinterpreted (46.4%). On the other hand, most articles
with covariate analyses involved nonsignificant interac-
tions (67). Hence, in roughly one-third (31.3%) of these
articles analyses were mistreated, as the interaction term
was not removed in the final model.

To illustrate and underline that this is a nontrivial
problem, I compared the different articles regarding the
number reporting a significant response to the factor (e.g.
treatment). Articles that neglected to remove a nonsignif-
icant interaction term attained considerably fewer signif-
icant results than studies in which these terms were
removed before the final analysis (see Fig. 2 for more
details and cf. also Fig. 1a).

Covariate interaction terms can be mistreated in differ-
ent kinds of statistical methods. I did not attempt to
compare quantitatively between methods, because the
sample size was rather small. However, I found mistakes in
all forms of analyses, including the simplest form of
ANCOVA and more complex GLM, repeated measures
ANCOVA, logistic regressions and other GLIM and also
survival analyses.

Discussion

Statistical analyses incorporating covariates can be
a powerful tool when comparing groups with large
within-group variance (Fisher 1932; Huitema 1980). Espe-
cially in ecological studies, where we often experience
large phenotypic variance in traits potentially influencing
the study variable, and time-consuming sampling often
prevents us obtaining adequate sample sizes, this tech-
nique is often indispensable to eliminate irrelevant vari-
ance and achieve satisfactory statistical power. My aim in
this short review was not to challenge this view. The use of
covariate analyses, such as ANCOVA, GLM and GLIM, is
increasing in behavioural and evolutionary ecology stud-
ies, and basically this is a positive development. However,
it is worrying that so many analyses are flawed because of
fairly simple mistakes. Of 80 studies using covariate
analysis and published recently in three journals with
large impact, at least 28 were inadequately analysed or
interpreted. This is a substantial quantity and it is
probably an underestimate. In seven additional studies,
which I classified as correctly analysed, as there were no
obvious inaccuracies, it was not possible to conclude
from the article whether nonsignificant interactions were
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Figure 2. Comparison of different covariate models with respect to the relative frequency of significant differences between categorical groups
(X£SE). To avoid potential pseudoreplication, only the first analysis in an article was considered. Overall, groups differed significantly
regarding frequency of establishing a statistically significant response to categorical factors (log likelihood ratio: x5=12.1, P = 0.002; post hoc
analysis: nonsignificant interaction term included versus correct analysis: xy=6.58, P = 0.01; significant interaction term versus correct
analysis x2=1.66, P = 0.22). The lack of difference between the correct analyses and analyses with a significant interaction term does not
mean that the conclusions in the latter are appropriate, because nonhomogeneity of slopes can both generate an apparent response

(cf. Fig. 1b) and conceal apparent differences (cf. Fig. 1c).

removed or not. Furthermore, I focused only on one
problematic aspect of covariate analyses. For instance, in
another seven articles it was not stated whether homoge-
neity of slopes was tested at all. The significance level of
the homogeneity test, which is not self-evidently 0.05,
was also recurrently left out. A P value lower than, for
instance, 0.1 still indicates that the slopes are likely to
differ. One of the ramifications of assuming slopes are
homogeneous when they are in fact not is a conservative
effect on the ANCOVA F test on main effects (see Huitema
1980, pp. 102-103). Therefore, if a plot reveals that slopes
look heterogeneous, it may be safer to continue with
methods appropriate for such cases, which are discussed
below. The frequent use of covariates to correct for initial
differences (caused by, for instance, nonrandom assign-
ment or pre-existing differences), and thus statistically to
‘equate’ comparison groups, is also inappropriate (see also
Pedhazur & Schmelkin 1991; Quinn & Keough 2002). This
clearly violates the assumption of no collinearity, that is,
independence, between predictor variables.

The assumption of equivalent slopes among treatment
groups is a key prerequisite to any analysis incorporating
covariates to remove error variance. However, I have
shown that many analyses unfortunately do not sub-
sequently exclude the covariate interaction term, and thus
actually assume different slopes between groups. From
these analyses it is not possible to make a straightforward
estimate of differences between groups. I found that about
every fourth study carrying out a covariate analysis with
equal slopes failed to remove the nonsignificant interac-
tion term before the final analysis. This is a figure to be
concerned about. The remedy, however, is simple: always
remove the interaction terms from the model, when
slopes for all groups can be assumed to be equal.

When slopes do differ, one cannot remove the in-
teraction term. In these analyses it is incorrect to interpret

the test for significant differences between groups as an
‘average effect’, as almost 50% of the studies in this review,
facing this problem, erroneously did. The response, for
example, treatment effect, will more exactly be dependent
on the value of the covariate. This is comparable to the
analogous situations with significant interactions in other
models. In a two-factorial ANOVA, for instance, the
response to one factor will depend on the value of the
other. In such cases, when higher order interactions are
significant, it is always inappropriate to draw conclusions
on ‘overall effects’ from the test of lower order main
effects. This has been pointed out by several authors over
the years (e.g. Aiken & West 1991; Sokal & Rohlf 1995;
Quinn & Keough 2002; Ruxton & Colegrave 2003), but
seems to continue to be a problem in the behavioural
sciences.

In a linear model, such as an ANCOVA, with heteroge-
neous slopes, the significance test for the treatment effect
will test only for differences at the Y intercept, which is
usually only of minor interest. Heterogeneous slopes thus
present a problem in that it is not possible to test for
significance using standard techniques. None the less,
such a finding does imply that there are significant
treatment effects (Cochran 1957). However, simply stating
that the slopes are different is unsatisfactory, because in
most cases the elevations and not the slopes are relevant.
Most studies that were included in this survey made
statements similar to: ‘the effect increased with increasing
body size’ (if body size was used as covariate). However, it
will often be of relevance to test post hoc for what values
of the covariate there are significant group differences.
Modifications of the Johnson-Neyman procedure (John-
son & Neyman 1936) suggested by Huitema (1980) and
Wilcox (1987) provide solutions in this situation and are
thus a generalization of an ANCOVA, relaxing the as-
sumption of homogeneous slopes across treatments (see



also Quinn & Keough 2002). By means of this technique it
is possible to identify regions of significance, or rather
nonsignificance, throughout the range of the covariate.
However, no study in this survey made use of this
procedure. In many analyses that I encountered, I do
not doubt that there actually were significant ‘overall’
treatment effects. However, with heterogeneous slopes it
is not possible to conclude this from the initial ANCOVA
without additional analyses. In these cases, using the
Johnson-Neyman procedure would have made it possible
to make statements such as ‘there were significant differ-
ences between treatments over the whole range of the
covariate and treatment effects increased with increasing
value of the covariate’ or possibly ‘treatment effects
increased with increasing value of the covariate, and
groups were significantly different for values of the
covariate above’. These statements give a much more
detailed and substantial description than for instance ‘the
effect increased with increasing value of the covariate’.
The use of the Johnson-Neyman technique is hampered
by its absence as a standard feature in most commercially
available statistical packages (but see Hunka & Leighton
1997; D’Alonzo 2004). However, the calculations for the
simple, but very common, one covariate-one category
with two groups-case are not so demanding and can be
obtained in for instance Huitema (1980), White (2003)
and D’Alonzo (2004).

In this short survey I wanted to draw attention to some
mistakes related to interaction terms in linear models.
I have focused on interactions between covariates and
categorical factors in ANCOVA-type analyses, as these seem
unsettlingly common. The same problem of course applies
to first-order effects in multiple regression when higher
order interactions are included (see Aiken & West 1991).

Klaus Reinhold encouraged me to perform this study. He,
Jutta Schneider and two anonymous referees also
gave helpful criticism on the manuscript. I also thank
Deutsche Forschungsgemeinschaft for financial support
(LE 469-1/1).
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