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Chapter 1IntroductionTodays understanding of physics classi�es the fundamental forces that determinethe behaviour of matter and its constituents into four classes, the gravitation, theelectromagnetism, the weak and the strong force. From these, the weak and thestrong force are of central meaning for the interaction between quarks and gluons.The theoretical description of the interaction between elementary particles is knownin principle for about 30 years. Based on the outstanding works from Glashow [1],Weinberg [2] and Salam [3] the standard model (SM) of strong and electroweakinteractions was formulated. Because of the complex structure of the SM it wasuntil now only possible to study a few aspects of the SM, most of them withinthe framework of perturbation theory. In the energy ranges investigated so far theexperimental observations agree very precisely with the predictions of the SM. As aconsequence, the SM has established as the description of the strong and electroweakinteractions.The SM includes several non-perturbative ideas, for instance con�nement, sponta-neous symmetry breaking or the Higgs mechanism (for an overview, see e.g. [4]).They lead to phenomena that can not be described by perturbative methods. Rem-edy is provided by the lattice discretized version of the theory which was proposedby Wilson in his famous work [5]. Based on this, computer simulations of aspectsthe SM became a very powerful tool to investigate the SM beyond perturbationtheory [6].It is expected that, at very high temperature (and/or pressure), phase transitionsoccur which lead into a regime in which the behaviour between elementary particleschanges qualitatively. The non-perturbative aspects of the SM at low temperaturelike con�nement vanish at the critical temperature. On the other hand, additional,7



8 CHAPTER 1. INTRODUCTIONnon-perturbative features like the creation of thermal masses, their screening be-haviour and the interaction based on excitations of quasi-particles occur in the hightemperature phase. This phase is widely unexplored until now. Therefore a de-tailed theoretical understanding of the temperature dependent features of the SMis essential to estimate conditions for new experiments.Experimentally, high temperatures (and/or pressures) correspond to high energies.As a consequence, thermodynamic studies o�er the possibility to investigate therange of validity of the SM.So far, the decon�nement phase transition was investigated very intensively. Itseparates the low temperature phase, in which the quarks and gluons can only existin bounded, colourless states, from the high temperature phase, in which quarks andgluons decouple and form a quark gluon plasma.An investigation of the electroweak phase transition with parameter values close tothe physical weak coupling regime, however, started only recently at the beginningof the nineties (see e.g. [7]). The SU(2) Lagrangian of the SM is broken for low tem-peratures, so that the quarks, leptons,W�{bosons and the Z{boson become massiveparticles. For temperatures above the critical temperature of the electroweak phasetransition the SU(2){symmetry is restored. In the theory this becomes obvious bythe vanishing vacuum expectation value of the Higgs �eld. If and how several ob-servables might change at the electroweak phase transition is widely unexplored sofar. It is expected, for example, that the baryon surplus in the universe can beexplained by non-equilibrium processes at the electroweak phase transition if thelatter is strong enough of �rst order.A fundamental concept within the description of the behaviour of particles in a ther-mal medium is the temperature dependent mass or screening mass. It is generatedby the interaction of a particle with the medium. A detailed understanding of thescreening masses of the fundamental constituents of the SM (quarks, gluons, leptons,W�{bosons, Z{boson, Higgs-boson) is of essential meaning both for a discussion ofthe physics of the high temperature phase of the SM and for a discussion of possibleexperimental observable consequences.One possibility to determine screening masses and to compare the results withperturbative calculations is the direct computation of the propagators of the con-stituents. As these objects are gauge dependent one has to work in a �xed gauge.In this work we have chosen the Landau gauge.As noted above, screening masses occur in several energy ranges of the SM. In theenergy region dominated by the strong interaction thermal masses occur both inthe electric (temporal) and in the magnetic (spatial) sector of the theory. It was



9shown [8] that the gluonic screening masses inuence strongly the infrared sectorof the theory. The electric screening mass is known in lowest order perturbationtheory for a long time, me = qNc=3 +Nf=6 g(T )T . This temperature dependenceis su�cient to cure infrared divergences of O(gT ). The situation for the magneticmass is more di�cult. As all orders of perturbation theory would contribute equally,a perturbative expression for the magnetic mass does not exist. However, a depen-dence of the form mm � g2T is widely believed as this would cure higher orderinfrared divergences of O(g2T ). Moreover, if the magnetic mass indeed does notvanish it contributes in next-to-leading order to me [9, 10]. Therefore also me hasto be treated non-perturbatively beyond leading order.In the electroweak sector of the theory the screening behaviour of the W -boson isof special interest. Like in the case of gluonic screening masses, the leading orderbehaviour in the electric sector is O(gT ). Equally, the magnetic W -boson screeningmass is entirely of non-perturbative origin and expected to be O(g2T ). However, anon-vanishing magnetic mass is not only interesting for a better understanding ofthe infrared behaviour of the theory. It is furthermore expected that the magnitudeof a thermal magnetic W -boson mass determines the strength of the electroweakphase transition [11, 12].To summarize the above, thermal screening masses play an important role in the hightemperature phase of the standard model of strong and electroweak interactions. Aninvestigation of these masses requires non-perturbative methods. In this work wepresent results obtained from Monte Carlo simulations of the lattice regularizedversion of the standard model.For a qualitative overview of the temperature dependence of the screening masses itis su�cient to investigate not the full standard model but simpli�ed models of thetwo energy ranges of interest. The full theory of the strong interaction is Quantum-chromodynamics (QCD). It is a gauge theory based on the group SU(Nc) with Nc=3being the number of colours. As computer simulations of full QCD are very time con-suming, we have investigated pure SU(2) lattice gauge theory. This model neglectsdynamical fermions, Nf = 0, and the number of colours is reduced to two. SU(2) isthe smallest, non-abelian, unitary group and yields qualitatively the same propertiesas SU(3), i.e. asymptotic freedom, con�nement etc. A simpli�ed description of theelectroweak sector of the standard model is given by the SU(2)-gauge-Higgs model.Again, dynamical fermions are not taken into account. Furthermore, the abeliansubgroup of the full SU(2)
U(1) symmetry is neglected.This dissertation summarizes the work that was done in collaboration with U.M.Hel-ler and F. Karsch [13]-[15] and with F. Karsch, T. Neuhaus and A. Patk�os [16]-[18],respectively. In the next chapter we discuss the basic concepts and conceptual dif-�culties of thermal screening masses. We summarize results for the gluon screening



10 CHAPTER 1. INTRODUCTIONmasses, known from perturbation theory, and results for the W -boson screeningmass, based on gap equations. Furthermore we present the correlation functionsthat we have used to determine the screening masses. In Chap. 3 we deal withpure SU(2) lattice gauge theory. After a general discussion we summarize sometechnical aspects, i.e. the Wilson action and a tree-level Symanzik improved actionand the procedure followed to �x the relation between bare gauge couplings andthe temperature. Finally we shortly discuss the decon�nement phase transition.Chap. 4 is concerned with the SU(2)-gauge-Higgs model. In this context we pointout the basic concepts of dimensional reduction and present an action for the e�ec-tive 3-dimensional theory. We discuss the electroweak phase transition and presentthe method of measuring Lee-Yang zeros to estimate the critical Higgs mass atwhich the phase transition looses its �rst order character. Our numerical results arepresented and discussed in Chap. 5. At last, we give our conclusions in Chap. 6.The appendix covers two topics. Part A is about the determination of screeningmasses on the lattice. As it is of more technical nature, we have separated it fromthe remaining thesis. In App. B we discuss lattice gauge �xing methods. At �rstwe recall how to �x the Landau gauge on the lattice. Finally, a method of �xing amore general gauge { the covariant gauge { on the lattice is presented.



Chapter 2Screening Masses - TheoreticalBackgroundThe main purpose of this dissertation is an investigation of thermal gauge bosonscreening masses. In the context of pure SU(2) gauge theory and the SU(2)-gauge-Higgs model we want to obtain a better understanding of the temperature behaviourof these masses. Especially for the electric screening mass we want to check ifwe get in contact with perturbative predictions in the temperature regime underconsideration. For a systematic discussion of these points we present in this chapterthe theoretical background of screening masses only. Our numerical results aresummarized separately in Chap. 5.The next section deals with the basic concepts of screening masses. We point out thedi�culties that arise already in �nding a meaningful de�nition of a screening massand summarize the work that was done to solve this problem. In Sec. 2.2 we presentgauge dependent and alternatively gauge independent correlation functions thatcan be used to extract screening masses from a lattice calculation. Some analyticalcalculations for the screening masses are presented in Sec. 2.3. We discuss the gluonscreening masses within perturbation theory and give, for the electric screeningmass, the lowest order and next-to-leading order perturbative results. Furthermorewe quote results for the magnetic screening mass in the SU(2)-gauge-Higgs model,based on gap equations.2.1 Basic Concepts and Conceptual Di�cultiesThe high temperature decon�ned phase of QCD, in which the quarks and the gluonsdecouple and form a quark gluon plasma, is characterized by the occurrence of11



12 CHAPTER 2. SCREENING MASSES - THEORETICAL BACKGROUNDchromo-electric and -magnetic screening masses which control the infrared behaviourof the theory. The electric screening mass,me , is responsible for the Debye screeningof the heavy quark potential. Its temperature dependence is known for a long timein lowest order perturbation theory, me � gT [19]. It was shown in [8] that this issu�cient to cure infrared divergences of the theory of momentum scales of O(gT ).However, it is pointed out in various articles (see for instance [20]-[22] and [23, 24])that in the usual temperature range of investigation, i.e. slightly above the criticaltemperature of the decon�nement phase transition, me deviates strongly from itslowest order perturbative prediction. On the other hand, the magnitude of meinuences strongly the existence or non-existence of hadronic bound states in thehigh temperature phase. It is therefore essential for any further analysis of thequasi-particle excitation spectrum in the QCD plasma phase to understand thetemperature dependence of the electric screening mass quantitatively.The discussion of the magnetic mass, mm , is much more di�cult. It was shown in[25] that it vanishes at lowest order perturbation theory. Furthermore one can showthat a non-vanishing magnetic mass has to be entirely of non-perturbative origin asevery order in perturbation theory would contribute equally [8]. As a consequence,only little is known about the temperature dependence of mm so far, even on a qual-itative level. Following the discussion in [8], a magnetic mass of the form mm � g2Tis su�cient to cure the remaining infrared divergences of the theory of O(g2T ).Very recently, however, a mechanism was suggested which is able to cure these di-vergences also without the dynamic generation of a magnetic mass [26]. Despite thispossibility it is widely believed that the magnetic mass obeys a non-vanishing valueat high temperature. This assumption is strengthened by investigations through theanalysis of gap equations [11, 12], [27]-[29] and several non-perturbative approaches[30, 31], even if the latter yield other functional dependencies than the expectedg2T -behaviour. Finally, the assumption of a non-vanishing magnetic mass also in-uences the perturbative calculation of the electric mass. If one indeed should �ndmm � g2T , than the next-to-leading order correction to me is of O(g2 ln g) [9, 10].We have seen that screening masses are essentially of non-perturbative origin. How-ever, one can use them to remove some problems that arise in the perturbativetreatment of the thermodynamics of the plasma phase [32]. For instance, the equa-tion of state for SU(3) gauge theory is quite well known from lattice calculations.One �nds that the energy density and the pressure are, even at rather high temper-atures (T ' 5Tc), about 10 - 15 % below the ideal gas limit [33]. One might expectthat these deviations become smaller by taking higher order perturbative correctionsinto account. However, the situation is getting worse, as the coe�cients of the weakcoupling expansion of the free energy density are of alternating sign and increasingmagnitude (see [32] and references therein). Remedy might be provided by so-calledscreened perturbation theory [32]. The idea is not to expand around the masslessideal gas limit but to perform the loop expansion starting from a massive ideal gas.



2.1. BASIC CONCEPTS AND CONCEPTUAL DIFFICULTIES 13For the simple case of the N component scalar �4-theory the power of this methodwas demonstrated in [32]. In Fig. 2.1 one can see the free energy density F , normal-
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14 CHAPTER 2. SCREENING MASSES - THEORETICAL BACKGROUNDthe Landau gauge, j@�A�(x)j2 = 0. This gauge has the advantage that it is covariantand easy to realize on the lattice. A detailed discussion on it is given in App. B.Let us return to the discussion of the pole mass de�nition of the screening masses.Another great advantage of it is given by the fact that the exponential decay of�nite temperature gauge boson correlation functions at large spatial separationsyields exactly these pole masses. Therefore they are well suited candidates for aninvestigation based on lattice Monte Carlo methods.An alternative way to de�ne screening masses is through the use of gauge invariantoperators. If one is interested in the electric screening mass only, typical candidatesare Polyakov loop correlation functions which are related to the heavy quark poten-tial at �nite temperature. But one may think also about other observables as long asthey project onto states with the correct quantum numbers. Some were introducedin [36] and used in the so-called SU(2) + adjoint Higgs theory [23, 24]. This model isbased on dimensional reduction and describes the high temperature phase of QCD.However, it is not clear in how far screening masses, de�ned through gauge invariantoperators, agree with the corresponding pole masses from the gauge boson propa-gator. For example, an investigation of gauge invariant glueball operators with thequantum numbers of the gluon within pure SU(2) gauge theory [37] yields screeningmasses which are much larger than the corresponding masses obtained directly fromthe gluon propagator in Landau gauge [22], [13]-[15]. However, this result is notsurprising as the gauge invariant correlation functions, which correspond to glueballstates at low temperature, describe \melted" glueball states, i.e. states of severaldecoupled gluons, at high temperature. These states have an e�ective thermal masswhich is, of course, much larger than the thermal screening mass of a single gluon.Similar observations have been made in a very recent study [29] of the electroweaksector of the theory, in which the screening masses of the Higgs boson and of theW -boson were investigated. It also opens the possibility that masses, extracted fromgauge invariant operators, project onto superpositions of several elementary gaugeboson excitations, i.e. onto quasi-particle states. This leads again to the discussionof the physical meaning of the screening masses. The central point is whether theQCD plasma phase has to be described by colourless excitations only, or if quarksand gluons are the basic degrees of freedom. For example, the latter is preferred bycalculations of the QCD equation of state.Let us now discuss the screening behaviour in the electroweak sector in which verysimilar phenomena and questions arise. One again de�nes screening masses in theelectric and magnetic sectors. Like in QCD, the leading order electric screeningmass is of O(gT ). Much more interesting than the electric screening mass is nowits magnetic counterpart. A non-vanishing magnetic screening mass { if existing {does not only control the infrared behaviour of the electroweak theory, its magnitudefurthermore inuences the existence or non-existence of the �rst order character of



2.2. MEASURING SCREENING MASSES ON THE LATTICE 15the electroweak phase transition [11, 12]. Again, the temperature dependence of themagnetic W -boson screening is not known, but similar considerations as made inQCD give rise to an expected behaviour of mW � g2T .Due to the lack of a perturbative treatment of the W -boson screening mass, alter-native approaches are needed. In [38]-[41] several Monte Carlo calculations con-cerning W -boson screening masses as well as Higgs masses are presented. Whereasthese results are obtained from gauge invariant correlation functions, the authors in[28, 29, 42] use, similar to the treatment of the magnetic mass in QCD, a coupled setof gap equations for the scalar and vector propagators on the mass shell. Based ontheir analysis one might assume that also in the high temperature phase the mag-neticW -boson screening mass is generated essentially by a Higgs-type phenomenon.The di�erence is that the vacuum expectation value of the Higgs �eld, which playsthe role of the order parameter of the theory, is much smaller at high temperature.This can be seen as the motivation for using the same gauge invariant operators forthe calculation of the magnetic W -boson mass and of the Higgs mass in the hightemperature phase as in the low temperature phase.To summarize the above discussion, a detailed knowledge of the temperature depen-dence of the various screening masses arising in QCD and the electroweak theorywould help to get insight into the non-perturbative nature of the high temperaturephases of quantum �eld theories and the regularization of infrared divergences ap-pearing in perturbative treatments. One of the central problems still is to give agauge invariant meaning to the screening masses. Therefore measurements of gaugedependent correlation functions in a �xed gauge should be compared with resultsfrom gauge invariant operators. This may provide an answer to the question aboutthe nature of fundamental excitations of the theory in the high temperature phase.2.2 Measuring Screening Masses on the Lattice2.2.1 Screening Masses from the Gauge Boson PropagatorAs the method of extracting the gluon screening masses from the gluon propagatorin SU(2) gauge theory is nearly identical to the one of measuring the W -bosonscreening masses from the W -boson propagator in the SU(2)-gauge-Higgs model wewill discuss in this section the case in general. In the SU(2)-gauge-Higgs model weanalyse only the dimensional reduced e�ective 3-dimensional theory. Therefore allcomments on the time direction refer in the following, of course, only to the SU(2)gauge theory. For the SU(2)-gauge-Higgs model one can simply neglect the termswith x4 or p4 in all formulas. As a consequence, we can investigate for this model the



16 CHAPTER 2. SCREENING MASSES - THEORETICAL BACKGROUNDscreening behaviour in the spatial directions only, i.e. we can not calculate electricW -boson screening masses.Let us start with the gauge �elds A�(~x; x4). From this, we de�ne momentum de-pendent gauge �elds,~A�(p?; x3) = Xx?;x4 ei x?p?A�(x?; x3; x4) � = 1; : : : ; 4 ; (2.1)and the corresponding correlation functions,~G�(p?; x3) = DTr ~A�(p?; x3) ~Ay�(p?; 0)E � = 1; : : : ; 4 ; (2.2)with x? = (x1; x2) and p? = (p1; p2). On a �nite lattice, the momenta are given bypi = 2�ki=(aNi), with ki = �12Ni+1; : : : ; 12Ni and Ni being the length of the latticein the i-th direction.The long-distance behaviour of ~G yields the energies in the electric and magneticsectors, i.e. Ge(p?; x3) � ~G4(p?; x3)� expf�Ee(p?)x3g for x3 � 1 ; (2.3)Gm(p?; x3) � 12 � ~G1(p?; x3) + ~G2(p?; x3)�� expf�Em(p?)x3g for x3 � 1 : (2.4)In (2.4) we explicitly use the fact that we want to measure the propagator in Landaugauge. Then ~G3(p?; x3) is independent of x3 and therefore does not have to betaken into account. For p? � (0; 0) the long-distance behaviour of these correlationfunctions thus de�nes electric and magnetic screening masses, which are related tothe static sector of the gauge boson polarization tensor,m2� = ���(~p 2 = �m2�; p4 = 0) : (2.5)We want to emphasize again that these pole masses are, within a wide class ofgauges, gauge invariant to arbitrary order in perturbation theory.We are left to discuss the relation of these formulas to physics on a lattice. As weare dealing with high temperature physics, the lattice distance a becomes very smalland the gauge �elds are smooth. Therefore we can use the general relation betweenthe gauge �elds and the link matrices,U�(x) = expfigaA�(x)g ; (2.6)to approximate A�(x) on the lattice,A�(x) ' 12iga[(U�(x)� Uy�(x))� Tr (U�(x)� Uy�(x))| {z }=0 for U�(x)2SU(2) ] : (2.7)Using this formula in (2.1) one can then measure the screening masses on the latticein the way discussed above, Eqs. (2.2) - (2.4).



2.2. MEASURING SCREENING MASSES ON THE LATTICE 172.2.2 The Electric Screening Mass from the SingletPotentialIn this subsection we present an alternative way how to extract the electric screeningmass (or Debye mass) me within QCD with Nc colour degrees of freedom.For temperatures above the critical temperature Tc the con�nement potential be-tween a quark and an anti-quark is replaced by the colour averaged potential [43],which, in lowest order perturbation theory, is of the formVav(R;T ) � 1TR2 e�2me(T )R for T > Tc : (2.8)As Vav decreases very fast, the numerical signal gets lost in statistical noise in thelong distance regime. On the other hand, (2.8) is only valid at large distances. Thissituation is improved for the colour singlet potential, which is controlled to leadingorder perturbation theory by 1-gluon exchange and therefore takes on the formV1(R;T ) = �g2 N2c � 18�Nc � e�me(T )RR for T > Tc : (2.9)The colour singlet potential, however, is gauge dependent and one again has to �xa gauge before it can be evaluated.On the lattice one can extract both potentials by measuring Polyakov loop1 corre-lation functions [43], e�Vav(R;T )=T = hTr L(~R)Tr Ly(~0)ihjLji2 ; (2.10)e�V1(R;T )=T = Nc hTr (L(~R)Ly(~0))ihjLji2 : (2.11)(2.9) and (2.11) are point-to-point correlation functions. In numerical simulationsit is, however, more e�cient to use plane-plane correlation functions to extract theelectric screening mass. This is done by replacing in (2.11) the expression for thePolyakov loop L(~R) by L(x3) � Px1;x2 L(x1; x2; x3). Then (2.9) and (2.11) transforminto V1;sum(x3; T ) � e�me(T )x3 for T > Tc (2.12)and e�V1;sum(x3;T )=T = Nc hTr (L(x3)Ly(0))ihjLji2 : (2.13)1For a de�nition of the Polyakov loop see Sec. 3.3.



18 CHAPTER 2. SCREENING MASSES - THEORETICAL BACKGROUND2.2.3 Vector Screening Masses from Gauge InvariantCorrelatorsIn Sec. 2.2.1 we have explained how to obtain theW -boson screening mass from theW -boson propagator. It is, of course, interesting to compare the masses calculatedin this way with masses extracted from gauge invariant vector correlation functions.For this purpose we de�ne, similar to Eq. (2.1), the zero momentum �eld2~Ov;i(x3) =Xx? �3�y(x?; x3)Ui(x?; x3)�((x?; x3) + î ) i = 1; 2 : (2.14)�(x) is a complex 2 � 2 matrix �eld. In terms of the real weak isosinglet-tripletdecomposition of the complex Higgs doublet it is given by�(~x) = �0(~x)11 + i�j(~x)�j : (2.15)�1; �2; �3 are the Pauli matrices. From (2.14) we have the correlation function~Gv;i(x3) = DTr ~Ov;i(x3) Tr ~Ov;i(0)E i = 1; 2 ; (2.16)and �nally (compare with (2.4))Gv(x3) � 12 � ~Gv;1(x3) + ~Gv;2(x3)� : (2.17)The operator Gv(x3) projects onto states with zero momentum. Its long distancebehaviour yields the mass of a vector particle with the quantum numbers of the W -boson [44]. This mass is a suitable candidate for comparing it with the propagatormass.2.2.4 The Higgs Boson Screening Mass from the�-PropagatorMeasuring the Higgs boson screening mass from the �-propagator is quite similarto the measurement of gauge boson screening masses from the gauge boson propa-gator, see Sec. 2.2.1. As we are only interested in zero momentum results and threedimensions, the equivalent expression to Eq. (2.1) is~�i(x3) =Xx? �i(x?; x3) i = 1; 2 : (2.18)2In the SU(2)-gauge-Higgs model we are only interested in the three dimensional theory. There-fore we have omitted in the following formulas the time direction.



2.3. ANALYTICAL RESULTS FOR SCREENING MASSES 19Next we de�ne the gauge dependent correlation function~G�;i(x3) = DTr ~�i(x3)~�yi (0)E i = 1; 2 : (2.19)and �nally G�(x3) � 12 � ~G�;1(x3) + ~G�;2(x3)� : (2.20)The exponential decay of G�(x3) at long distances yields the Higgs boson screeningmass m�.2.2.5 Scalar Screening Masses from Gauge InvariantCorrelatorsIn the previous section we have explained how to extract the Higgs boson screeningmass from the �-Propagator. Similar to the discussion of the W -boson screeningmass we want to compare this mass with masses obtained from gauge invariantscalar correlation functions. We start with~O�s (x3) = 2Xi=1Xx? �y(x?; x3)Ui(x?; x3)�((x?; x3) + î ) : (2.21)Then we de�ne ~G�s (x3) = DTr ~O�s (x3) Tr ~O�s (0)E and (2.22)~G�s (x3) = hdet�(x3) det �(0)i : (2.23)The long distance behaviour of both correlation functions (2.22) and (2.23) givesscreening masses in the scalar Higgs channel [45]. We will compare them with thescreening mass from the �-propagator.2.3 Analytical Results for Screening Masses2.3.1 Gluon Screening Masses in Pure SU(Nc) GaugeTheoryFor SU(Nc) gauge theory without dynamical fermions, the lowest order perturbationtheory result for the electric screening mass is [25]me;0(T ) = sNc3 g(T )T : (2.24)



20 CHAPTER 2. SCREENING MASSES - THEORETICAL BACKGROUNDIt was shown in lattice perturbation theory [46] that this result is strongly e�ectedby �nite cut-o� e�ects, similar to what has been found in [47] for the Stefan Boltz-mann law for an ideal gas. For the Wilson action the leading corrections to (2.24)are O((aT )2), i.e. O(N�2� ). For Nc = 2 this is shown in Fig. 2.2. For large N�
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sssssssFigure 2.2: The gluon polarization tensor �44 at in�nite Ns and various N� . Thesolid line shows the asymptotic result (2.25).these deviations are due to the O(a2) discretization errors introduced in the Wilsonformulation. On a spatially in�nite lattice we �nd for these cut-o� errors�44(N� !1; Ns =1)2=3 g2T 2 = 1 +N�2� 140�2 Z 10 dx x5 sinhxsinh4 x2 +O(N�4� )= 1 + 415 � �N� �2 +O(N�4� ) : (2.25)This is similar in magnitude to the cut-o� dependence of bulk thermodynamic ob-servables like the energy density [48]. Using an improved action these leading cut-o�errors are eliminated and corrections only start at O(N�4� ). In the case of the energydensity or the pressure these actions lead to a strong reduction of cut-o� e�ects inthe high temperature limit [48]. In Sec. 5.1 we will present our numerical data ofthe electric screening masses. They remain, however, unchanged within statisticalerrors under an improvement of the action. This suggests that the improvement ofthe ultraviolet sector does not inuence the screening masses much. This may betaken as an indication for the dominance of non-perturbative contributions to me .Using the pole mass de�nition (2.5), the leading correction to (2.24) can be calcu-lated in one-loop resummed perturbation theory. Based on the assumption that the



2.3. ANALYTICAL RESULTS FOR SCREENING MASSES 21infrared limit of the transverse gluon propagator is �nite, �12�ii(~p ! 0; p4 = 0) =m2m � g4T 2, one obtains the gauge invariant result [9, 10]m2e(T ) = m2e;0  1 + p62� g(T ) meme;0 �log 2memm � 12�+O(g2)! : (2.26)As the magnetic mass appearing here is expected to be of O(g2T ), the next-to-leading order correction is O(g ln g).2.3.2 The W-Mass in the SU(2)-Gauge-Higgs ModelIn the symmetric phase of the SU(2)-gauge-Higgs model the vacuum expectationvalue of the Higgs �eld vanishes, v = 0. As a consequence, the tree-level mass ofthe W -boson, m2W;0 = g24 v2, is also zero. On the other hand it is generally believedthat in the symmetric phase a W -boson mass of the order O(g2T ) is generatednon-perturbatively.A solution to this problem was proposed in [28] for the e�ective 3-dimensional model.The starting point is a coupled set of gap equations for the W -boson mass and theHiggs boson mass,m2W;0 = m2W � �m2W ; m2H;0 = m2H � �m2H : (2.27)mW and mH are the masses that enter the propagators of the loop expansion, �m2Wand �m2H are treated perturbatively as counter terms, and mW;0 and mH;0 are thetree-level masses given in (4.2).Using resummed PT at one-loop order, the authors in [28] derive from (2.27) forLandau gauge the following set of equations:v(�2 + �3v2) = 316� g3  4m2W + m3HmW ! ; (2.28)m2W = g234 v2 +mW g23f(z) ; (2.29)m2H = �2 + 3�3v2 +mH g23F (z) ; (2.30)with z = mW=mH . The functions f and F are de�ned byf(z) � 1� �6364 ln 3� 18 + 132 z3 � 132 z2 � 116 z�� 164 z4 � 116 z2 + 18� ln(1 + 2z)� ; (2.31)F (z) � 1� ��� 332 + 964 ln 3� 1z2 + 316 z � 38z��38z2 � 316 + 364 z2� ln 2 z + 12 z � 1� : (2.32)



22 CHAPTER 2. SCREENING MASSES - THEORETICAL BACKGROUNDBased on the parameterization of the lattice action used in [28], the relation betweenthe renormalized mass parameter � and the so-called hopping parameter � (seeChap. 4) is given by the following two-loop relation [49, 40],�2g43 = �238  12� � 3 + �(L) 3�3  1 + 4�3g23 !!+ 116�2 240@5116 + 9�3g23 � 12 �3g23 !21A ln 3�32 + 0:09! + 5:0 + 5:2�3g23 35 : (2.33)�(L) is a geometrical factor which depends slightly on the size of the lattice,�(N1; N2; N3) = 14N1N2N3 Ni�1Xni=00 �sin2 �n1N1 + sin2 �n2N2 + sin2 �n3N3 ��1 : (2.34)The prime at the sum indicates that the n1 = n2 = n3 = 0 point should be left out.For example, Eq. (2.34) yields for a lattice with in�nite volume �(1) = 0:252731.One can now solve the coupled set of equations (2.28) - (2.30) numerically to de-termine v=g3, mW=g23 and mH=g23 as functions of �2=g43 or, under consideration ofEq. (2.33), as functions of �. We have performed this analysis and discuss the re-sult in Sec. 5.2 where we compare it with the data that we have obtained from ournumerical simulation.



Chapter 3Pure SU(2) Gauge TheoryA Monte Carlo investigation of screening masses in full QCD is extremely time con-suming. As one has to extract the masses from the exponential decay of correlationfunctions at large spatial distance, lattices with a typical extend of Ns � 32 areneeded. To save computer time, it is possible to investigate the theory of stronginteraction in a �rst approximation without taking dynamical quarks into account.In this case one is dealing with pure SU(Nc) gauge theory.The second simpli�cation step is to reduce the number of colours from Nc = 3 to 2.This accelerates a numerical investigation a lot. Both the update of the gauge �eldand the gauge �xing algorithm need much less CPU time in this case. However,the cost of performing calculations only in pure SU(2) lattice gauge theory are theresults themselves. Strictly spoken, they do not have any physical meaning. ButSU(2) possesses, as the smallest, non-abelian, unitary group, qualitatively the sameproperties as SU(3), i.e. asymptotic freedom and con�nement. Therefore SU(2)studies are very important to get a quick insight into complex structures of stronginteractions. It is, of course, important to try to reproduce qualitatively resultsobtained from SU(2) gauge theory afterwards also in SU(3) gauge theory.But SU(2) gauge theory is not only a very simple model for studies concerningthe strong interaction. It can also be seen as a limiting case of the SU(2)-gauge-Higgs model which will be introduced in the next chapter. Tuning the hoppingparameter towards zero, �! 0, the gauge and the Higgs �elds decouple. Thereforethe corresponding action describes two independent �elds, i.e. the gauge �eld andthe �-�eld. In fact, we have used this feature in Sec. 5.2 where we compare theW -boson screening mass at � < �c with the magnetic screening mass from SU(2)gauge theory. 23



24 CHAPTER 3. PURE SU(2) GAUGE THEORYA lattice investigation of SU(2) gauge theory �rst of all requires a lattice regular-ized version of the continuum action. In general the Wilson action is used whichis presented in the next section. To get some control over discretization errors onecan in addition perform calculation with so-called improved actions. One of them, atree-level Symanzik improved action, is also listed. As we are interested in the tem-perature behaviour of the screening masses we need to have a precise determinationof the connection between the gauge coupling and the temperature. This is providedin Sec. 3.2. In the last section of this chapter we �nally discuss the decon�nementphase transition.3.1 Wilson and Symanzik Improved ActionsThe naive discretization of the continuum action of pure SU(2) gauge theory givesthe Wilson action, SW = �2 X1�1TrU1�1 with � = 4g2 ; (3.1)where the sum runs over all elementary 1 � 1 plaquettes U1�1 , see Fig. 3.1. Asrr rr- 6�? rr rr rr- - 6��?U1�1 U1�2Figure 3.1: The plaquette and the 1� 2 Wilson loop.already mentioned in the introduction to this chapter, we have also used a tree-level Symanzik improved action in order to get some control over the inuence ofdiscretization errors caused by the �nite lattice spacing a. A possibility to removesystematic O(a2) errors in the lattice Wilson action is to replace (3.1) withSI = �2 0@53X1�1TrU1�1 � 112X1�2TrU1�21A : (3.2)The second sum now runs over all planar 1 � 2 Wilson loops U1�2. To distinguishthe couplings we will denote in the following the Wilson action coupling by �W andthe coupling for the Symanzik improved case by �I.



3.2. DETERMINATION OF THE TEMPERATURE SCALE 25With these actions we now have two tools at hand to analyse cut-o� dependencesof our results. The �rst method is to use only one action and perform simulationson lattices with di�erent sizes. In this work, for example, we present Wilson actiondata from lattices of size 322 � 64 � 8 and 323 � 4. For the second method one hasto work with a �xed lattice size and compare the results obtained from the di�erentactions. To realize this idea, we simulated the Symanzik improved action also onthe N� = 4 lattice.In order to quantify the inuence of the non-zero cut-o� at �nite temperature oneshould, of course, compare calculations at the same physical temperature, T �1=(N�a). Furthermore, an accurate determination of the temperature scale is neededfor analyzing observables that are expected to depend on a running coupling, g(T ),like the screening masses. We thus present in the following section the determinationof temperature scales for both actions.3.2 Determination of the Temperature ScaleThe problem to relate the temperature T to the coupling � is equivalent to the taskof �nding the dependence of the lattice spacing a on the bare coupling g2. We followhere the approach outlined in [50]. In order to take into account the violations ofasymptotic scaling in the coupling regime of interest, we use the general ansatza�L = R(g2) � �(g2) with (3.3)R(g2) = exp "� b12 b20 ln(b0g2)� 12 b0g2# ; (3.4)b0 = 11Nc48�2 ; b1 = 343 � Nc16�2�2 : (3.5)The function �(g2) parameterizes the asymptotic scaling violations. For this we usean exponential ansatz�(g2) = exp " 12 b20 �d1g2 + d2g4 + d3g6 + : : :�# : (3.6)Using T = 1=(N�a) we obtain from Eq. (3.3)1N�R(g2c ) = �(g2c ) Tc�L : (3.7)Here g2c is the value of the bare coupling at the critical temperature Tc of the decon-�nement phase transition at given N� . Using results for g2c (N� ) [51, 52] the function�(g2c ) is obtained from a �t where Tc=�L is an additional free parameter.



26 CHAPTER 3. PURE SU(2) GAUGE THEORYBased on the Wilson action data for g2c summarized in [51], the best �t in [50] isgiven by the parameterization d1 = d2 = dn>3 = 0. Their �t results are d3 =5:529(63) � 10�4 and (Tc=�L)W = 21:45(14).For the Symanzik improved action we have performed a similar �t, using the criticalcouplings computed in [52] for N� � 4. Our best parameterization is given byd1 = dn>2 = 0, and our �t results are d2 = 5:12(18) � 10�4 and (Tc=�L)I = 4:94(11).The �t can also be seen in Fig. 3.2.
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Figure 3.2: The critical temperature 1=(N�R(g2)) vs. 4=g2 for N� = 2; : : : ; 8. Thedata for g�2c (N� ) are taken from [52]. The solid line is a spline interpolation of thedata, the dashed-dotted line is obtained from a �t for N� � 4.For the ratios of �-parameter we use the perturbatively calculated values, i.e.�L;I=�L;W = 4:13089(1) [53] and �MS=�L;W = 19:82314 [54]. Then we �nd forthe critical temperature a result which, within 5%, coincides with the previouslydetermined continuum extrapolation for the Wilson actionTc�MS = � 1:08� 0:01 standard Wilson action [50]1:03� 0:03 tree-level improved (1,2)-action : (3.8)In the following, we will use an averaged value of Tc=�MS = 1:06.We �nally need to extract the temperature in units of the critical temperature atgiven N� . This is given by TTc = R(g2c ) � �(g2c )R(g2) � �(g2) : (3.9)



3.3. THE DECONFINEMENT PHASE TRANSITION 27Using Eq. (3.9), the �t results for � and the critical couplings from [51, 52], wecan now relate the temperature T to the coupling � = 4=g2. The results for thecouplings used in our analysis are listed in Tab. 3.1. The good agreement foundN� = 4 N� = 8 N� = 4�W T=Tc �W T=Tc �I T=Tc2.512 2.004 2.74 2.007 1.92 1.9842.643 3.002 2.88 3.031 2.063 3.0312.74 4.013 2.97 3.929 2.152 3.9232.88 6.062 3.12 6.016 2.30 5.9792.955 7.527 3.20 7.530 2.382 7.5283.023 9.143 3.27 9.151 2.452 9.1493.219 15.88 3.47 15.89 2.652 15.883.743 66.78 4.00 66.71 3.183 66.684.24 253.5 4.50 253.3 3.684 253.24.738 953.1 5.00 953.9 4.185 954.05.238 3581 5.50 3578 4.685 35725.737 13383 6.00 13401 5.186 13393Table 3.1: Relations between the couplings and the temperatures.from this analysis for Tc=�MS calculated with two di�erent actions suggests that ourtemperature scale is of similar accuracy.3.3 The Decon�nement Phase TransitionOne of the characteristic features of QCD is the decon�nement phase transition.Below a critical temperature Tc quarks and gluons can only exist in colourless,bounded states. This situation changes dramatically in the high temperature range(and/or at very high pressure). In this phase one expects the existence of a quarkgluon plasma (see for example [55]). This is a medium in which both quarks andgluons behave like free, unbounded particles. It is known for a long time that pureSU(Nc) gauge theory also possesses this phase transition. Studies of the heavy quarkpotential, using Polyakov Loop correlation functions, have shown that quarks areasymptotic free (at small distances) and con�ned (at large separations) below Tc ,whereas they decouple above Tc , see Eq. (2.8). The order of the phase transition wasalso investigated in much detail. In [56] it was proposed that the phase transitionof pure SU(Nc) gauge theory lies in the same universality class as the correspondingtransitions of ZNc spin systems of the same spatial dimension. Therefore the decon-�nement phase transition is of second order for pure SU(2) gauge theory [57] (as for



28 CHAPTER 3. PURE SU(2) GAUGE THEORYthe Ising model) and of �rst order for Nc = 3 [58, 59] (as for the three-state Pottsmodel). In the case of Nc = 2 the critical exponents were veri�ed up to very highaccuracy in [60]. Within errors, they coincide with the corresponding exponentsfrom the 3-dimensional Ising model [61].The order parameter of the decon�nement phase transition is the Polyakov loop,L(~x) � N�Yx4=1U4(~x; x4) : (3.10)Let us consider the following global Z(Nc) rotation of all time like link variables at�xed x4 , U4(~x; x4)! U 04(~x; x4) = z U4(~x; x4) with z 2 Z(Nc) : (3.11)Whereas the actions (3.1) and (3.2) are invariant under the transformation (3.11),the Polyakov loop is not, L(~x)! zL(~x) : (3.12)Therefore the expectation value of the averaged Polyakov loop,hLi = 1N3s 1Nc *X~n Tr L(~n)+ ; (3.13)vanishes in the phase with the global Z(Nc) symmetry and acquires a �nite value inthe symmetry broken phase,hLi = 0 for T < Tc ; (3.14)hLi 6= 0 for T > Tc : (3.15)It was shown in [43] that hLi = 0 corresponds to a system with an isolated quarkwith in�nite free energy. Therefore the phase with hLi = 0 describes con�nement.On the other hand, the isolated quark system is of �nite free energy at hLi 6= 0, i.e.in the decon�nement phase.



Chapter 4The SU(2)-Gauge-Higgs Model4.1 The 4-dimensional ModelThe electroweak sector of the SM is described by a SU(2)
U(1) gauge theory. Let usdenote the coupling of the SU(2) gauge �eld by g and the one of the U(1) gauge �eldby g0, respectively. The relation between both couplings is given by the Weinbergangle, g0=g = tan �. By experiment, � is known to be relatively small, sin2 � ' 0:23.Therefore one can neglect in a �rst approximation the contribution of the U(1) gauge�eld.Furthermore, the quarks and leptons are coupled very weakly to the Higgs �eld,with the top quark coupling being a possible exception. As a consequence, one canalso neglect the contribution of dynamical fermions.Both simpli�cations result in the SU(2)-gauge-Higgs model [4]. It describes theinteraction of a complex scalar doublet �eld with the SU(2) gauge �eld and is aquite good approximation to the electroweak sector of the SM.We present now the lattice discretized action of the SU(2)-gauge-Higgs model, whichis originally formulated in three space and one time dimension:S4d = �2 P1�1TrU1�1 + 12 PxP4�=1 Tr�y(x)U�(x)�(x+ �̂)� 12�Px 12Tr�y(x)�(x)� �4 Px �12Tr�y(x)�(x)�2 : (4.1)As in the case of pure gauge theory, � = 4=g2 denotes the coupling of the SU(2) gauge�eld. It should, however, not be confused with the coupling used in Eq. (3.1). U1�1is again an elementary plaquette, and �(x) describes the complex Higgs doublet29



30 CHAPTER 4. THE SU(2)-GAUGE-HIGGS MODELaccording to Eq. (2.15). The coupling � is the hopping parameter. The quarticcoupling � is related to the T = 0 tree-level masses of the Higgs boson (mH;0) andof the W-bosons (mW;0) by� = 18m2H;0m2W;0 g2 with m2H;0 = 2�v2 and m2W;0 = g24 v2 : (4.2)At this point, the most straightforward way would be to perform calculations usingthe action (4.1). But this is not without problems [62]. As the 4d theory is notsuper-renormalizable it contains ultraviolet divergences in any order of PT. There-fore the scaling behaviour, which is needed to relate the lattice and the continuumparameters, becomes quite complicated. This problem disappears in the dimen-sional reduced 3d theory. Because of its super-renormalizable property only one-and two-loop graphs are divergent.In addition, the dimensional reduced theory has another advantage over the 4dtheory. After integrating out the heavy modes, i.e. the A0 �eld, the 3d theorycontains only one essential mass or energy scale, mQ � g2T . On the other hand,the unreduced theory contains two additional mass scales, the temperature T andthe Debye (or electric) screening mass mD � gT .4.2 Dimensional Reduction and the E�ective3-dimensional ModelIn this section we will briey outline the idea of dimensional reduction within theSU(2)-gauge-Higgs model and quote the most important results. For a detaileddiscussion of this topic we refer to [62, 63, 64] and references therein.The electroweak theory in the parameter space of interest is characterized by a weakcoupling, g2 � 1. Therefore the theory involves several mass scales,T � mD � gT � mQ � g2T : (4.3)As we are interested in infrared physics, the mass scale mQ � g2T plays a dominantrole.The next thing one has to take into account is the Euclidean path integral formula-tion of the �eld theory. Let us start with the continuum expression of the bosonic11As we are dealing only with bosonic �elds we will neglect anti-periodic fermionic �elds in thediscussion. Of course, dimensional reduction works also in this case.



4.2. DIMENSIONAL REDUCTION AND THE EFFECTIVE 3D MODEL 31partition function Z = ZperDA�D�D�y expn�S[A�;�;�y]o (4.4)with periodic boundary conditionsA�(~x; 0) = A�(~x; 1=T ) ; �(~x; 0) = �(~x; 1=T ) : (4.5)The action is given by an integral over the Lagrange density,S[A�;�;�y] = Z 1T0 d�ZV d~x L(A�;�;�y) : (4.6)From expression (4.6) one can see that at very high temperature the length of the� -integration becomes very narrow. For the lattice regularized version of (4.6) thishas the consequence that the extend of the � -direction of the lattice is small. Thissuggests that the important features of the theory might be described by an e�ectivetheory in three dimensions.Due to the �nite length of the � -integration and the condition (4.5), the �elds canbe expanded in Fourier series. The propagators of the Fourier or Matsubara modesare of the form [~k2 + m20 + (2n�T )2]�1, which means that the non-static modes(n = �1;�2; : : :) acquire a mass 2n�T . Because of relation (4.3) these masses areheavy compared to the infrared mass scale mQ. As a consequence, they can beintegrated out perturbatively, using mQ=(�T ) as an expansion parameter.At this point, the preliminary result is an e�ective 3-dimensional theory which con-sists of the SU(2) gauge �eld, the fundamental Higgs �eld and an adjoint Higgs�eld. The latter is the remnant of the temporal component of the 4-dimensionalgauge �eld and has a mass � gT . As this is larger than the infrared mass scalemQ, it can also be integrated out perturbatively. The remaining result is an actionwhich is very similar to its 4-dimensional counterpart (4.1). Of course, the sumover the directions is now restricted to the three spatial directions. The e�ective3-dimensional action isS3d = �32 P1�1TrU1�1 + 12 PxP3i=1 Tr�y(x)Ui(x)�(x+ î )� 12�Px 12Tr�y(x)�(x)� �34 Px �12Tr�y(x)�(x)�2 : (4.7)The relation of the three dimensionless lattice couplings �3; �3 and � to the couplingsof the original T = 0, SU(2)-gauge-Higgs model is given by the following sequenceof equations [16]:�3 = 4g23 � ; g23 = g20@1� g20� s56 1A ; (4.8)



32 CHAPTER 4. THE SU(2)-GAUGE-HIGGS MODEL�3 = 0@�� 9320� s56 g31A� ; (4.9)1� = m2a2 + 6 (4.10)+0@ 316g2 + 12� � 3g316�s56 1A�2 ���(L)0@32 g2 + 6� � 15 g332� s56 1A :We remark that Eq. (4.10) is based on our parameterization of the lattice action,Eq. (4.7). It corresponds to relation (2.33) for the parameterization used in [28].m represents the renormalizedmass parameter of the original theory. The parameter� � aT controls the temperature dependence and involves the lattice spacing whichhas to be chosen appropriately. One expects that � ' 1 works �ne.To summarize, the set of equations (4.7) - (2.34) presents a powerful tool to performnon-perturbative lattice calculations of the e�ective 3-dimensional SU(2)-gauge-Higgs model. They both give the action which has to be simulated and tell how torelate the results to the original, 4-dimensional T = 0 theory.4.3 The Electroweak Phase TransitionOne of the main features of the electroweak sector of the standard model is theoccurrence of the electroweak phase transition. In the low temperature phase (� >�c) one has an in�nite number of states with absolute minima in the potential whichare all lying on a circle. By choosing one particular state as the ground state oneexplicitly breaks this rotational symmetry (Higgs mechanism). At high temperatures(� < �c) the situation changes. The potential now has only one absolute minimumand therefore the symmetry is restored.The strength of this phase transition strongly depends on the couplings � and �.Let us assume a �xed value of � which resembles continuum physics, i.e. � = O(10).Then the phase transition is of �rst order for small values of �. This is indicatedin Fig. 4.1 by the solid line. It seperates the Higgs phase, in which the electroweaksymmetry is broken (� > �c resp. T < Tc), from the con�nement phase (� < �c resp.T > Tc). The strength of the �rst order nature decreases with increasing �. At aparticular �c the phase transition becomes too weak and we are left with a crossover,the �lled circle in Fig. 4.1 and the region to its right. We note that, using relation(4.2), the critical �-parameter can be transformed into a critical value of the T = 0Higgs mass, mH;c . Whereas the critical line can not be calculated analytically, thesituation is di�erent at � = 0. Here the system has a Gaussian �xed point, and thecritical hopping parameter is 1=(2�c) = 2 d.



4.3. THE ELECTROWEAK PHASE TRANSITION 33
2d

0 �c
12�

�
con�nement phase

Higgs phase crossoverregions
Figure 4.1: The phase structure of the d-dimensional SU(2)-gauge-Higgs model at� = O(10).For a better understanding of the SU(2)-gauge-Higgs model it is necessary to deter-mine �c . The \classical" methods are, for example, to calculate the �2-susceptibilityor the so-called Binder-cumulants. All these methods start in the phase with small� and determine if the phase transition is still of �rst order at the � under consid-eration. However, these ans�atze become unreliable in the region of interest, i.e. closeto �c .In this work we prefer an alternative way that investigates the theory in the crossoverregion, i.e. at large values of � resp. of �3 in the case of three dimensions. Asthe critical Higgs mass was roughly known to be mH;c ' 70 � 80 GeV, we haveinvestigated the SU(2)-gauge-Higgs model at �3 = 0:0485458, 0.0523100, 0.0668478and 0.0830965. Assuming a zero temperature W -mass of mW = 80:6 GeV, thesevalues correspond to mH ' 77 GeV, 80 GeV, 90 GeV and 100 GeV. In addition, wehave also performed one simulation at a value of �3 which is known to lie in regimewhere the phase transition is strongly of �rst order, �3 = 0:0283650, correspondingto mH ' 60 GeV. We will now present the method that we have used to determine�3;c . The idea is to continue the partition function Z analytically into the complexplane as a function of the complex hopping parameter �. Then one analyses theFisher or Lee-Yang zeros [65] of Z. To get an impression of the behaviour of Z in thecomplex �-plane, we show in Fig. 4.2 lines with Re(Z(�)) = 0 and Im(Z(�)) = 0,respectively. The intersections of these lines give, of course, Z(�) = 0.Let us denote the lowest zero of the partition function Z with z0, i.e. Z(z0) = 0 with
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4.3. THE ELECTROWEAK PHASE TRANSITION 35�3 =0.0283650 0.0485458 0.0523100 0.0668478 0.0830965Ns Im(z0)=10�4 Im(z0)=10�4 Im(z0)=10�4 Im(z0)=10�4 Im(z0)=10�48 4.390(52) { { { {10 2.691(27) { { { {12 1.774(40) { { { {16 0.787(11) 1.598(8) 1.744(17) 2.298(30) 2.874(38)20 0.426(4) 0.937(20) 1.033(10) 1.418(16) 1.906(30)22 { { { { 1.602(51)24 { 0.617(11) 0.712(13) 1.030(21) {28 { 0.430(8) 0.496(11) 0.784(16) 1.086(30)32 { 0.309(4) 0.377(7) 0.668(26) 0.940(22)36 { 0.240(8) 0.296(9) { {40 { 0.192(4) 0.248(12) 0.442(24) 0.811(101)48 { 0.124(7) 0.172(9) 0.414(61) 0.565(67)Table 4.1: Imaginary parts of the lowest zeroes of the partition function.�3 R0.0485458 0:97(84) � 10�60.0523100 0:56(9) � 10�50.0668478 0:25(2) � 10�40.0830965 0:47(3) � 10�4Table 4.2: Regular parts of the �t results acc. to (4.11).dependence on �3 and the �t results into �3;c = 0:04795(52) which corresponds to acritical Higgs-mass of approximately mH;c = 75:7(4) GeV. We note that this valueis slightly shifted by a very recent investigation [18]. The authors obtain there as apreliminary result �3;c = 0:04812(12) and mH;c = 75:8(1) GeV, respectively.
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Chapter 5Screening Masses - NumericalResults5.1 Gluon Screening Masses in Pure SU(2) GaugeTheory5.1.1 Screening Masses from the Gluon PropagatorIn [20] we performed a �rst analysis of the behaviour of the electric and magneticscreening masses in Landau gauge. The results are summarized in [21] and [22].Whereas in these works we had calculated the gluon propagator only at vanishingmomentum, we extended the analysis in [15] to �nite momenta. Furthermore weused in [13]-[15] temperatures very much higher than in [20]-[22] in order to possiblyget in closer contact with perturbation theory. Finally, we used in addition tothe Wilson action in [13]-[15] also the in Sec. 3.1 introduced tree-level Symanzikimproved action. In this section we summarize the results from [13]-[15].In Sec. 2.2.1 we have given the relations between the energies in the electric andmagnetic sectors and gluonic correlation functions, Eqs. (2.3) and (2.4). To extractthe screening masses we use the dispersion relation between energy, screening massand momentum, which on the lattice has the formsinh2 aEi2 = sinh2 ami2 + � 3Xj=1 sin2 apj2 ; i = e; m : (5.1)In (5.1) we have introduced a factor � which parameterizes deviations from a freeparticle dispersion relation (� � 1) introduced by a thermal medium.37



38 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSUsing T = 1=(N�a) we can now compute the screening masses in units of the tem-perature, mi=T with i = e; m. We have performed simulations using the Wilsonaction on lattices of sizes 323�4 and 322�64�8 and using the tree-level Symanzik im-proved action on a 323�4 lattice. At each value of the gauge coupling we performedmeasurements on at least 1000 con�gurations, see Tab. 5.1. Two consecutive con�g-323 � 4 322 � 64� 8 323 � 4�W # meas. �W # meas. �I # meas.2.512 2000 2.74 1220 1.92 20002.643 2000 2.88 1000 2.063 20002.74 2000 2.97 1000 2.152 20002.88 2000 3.12 1000 2.30 20002.955 2000 3.20 1000 2.382 20003.023 2000 3.27 1440 2.452 20003.219 2000 3.47 1140 2.652 20003.743 2000 4.00 1000 3.183 20004.24 2000 4.50 1160 3.684 20004.738 2000 5.00 1000 4.185 20005.238 2000 5.50 1000 4.685 20005.737 2000 6.00 1000 5.186 2000Table 5.1: Number of measurements (pure SU(2) gauge theory).urations were separated by at least 10 update iterations, and each update consistsof at least four overrelaxation sweeps, followed by one heatbath sweep.From the exponential decay of the gluon correlation functions Ge and Gm we extractthe screening masses. A rather technical problem is the procedure to select a reliable�t range in which Ge(p?; x3) and Gm(p?; x3) (see (2.3) and (2.4)) can be �ttedto extract the energies in the electric and magnetic sectors. This is described inApp. A.1.The results for the screening masses (from the ~p = 0 measurements) and the energies(~p 6= 0) are listed in Tabs. 5.2 and 5.3 respectively.Zero Momentum ResultsLet us �rst discuss the electric screening mass, extracted from the measurements atvanishing momentum ~p = 0. In Fig. 5.1 we show me=T for both types of actionsand the two di�erent lattices we have used. One can see at once that, within errors,me=T does not di�er signi�cantly for the three sets. Even the tree-level Symanzik



5.1. GLUON SCREENING MASSES IN PURE SU(2) GAUGE THEORY 39Wilson action, 322 � 64 � 8 lattice�W me(T )=T mm(T )=T �W me(T )=T mm(T )=T2.74 2.39(11) 2.01(29) 3.47 1.62(4) 0.92(7)2.88 1.95(4) 1.24(4) 4.00 1.62(8) 0.66(3)2.97 1.91(7) 1.15(4) 4.50 1.55(5) 0.61(2)3.12 1.92(9) 1.23(14) 5.00 1.41(3) 0.52(3)3.20 1.92(10) 1.09(10) 5.50 1.27(5) 0.42(2)3.27 1.93(6) 1.03(5) 6.00 1.26(5) 0.37(2)Table 5.2: Electric and magnetic screening masses from Ge(k1 = 0) and Gm(k1 = 0).improved action, which cures discretization errors of O(a2) in the action, does notshift the electric screening mass in any direction. This makes clear that ultravioletmodes do not contribute signi�cantly to the screening mass. As a consequence, wehave analysed all three data sets together.Fig. 5.1 shows that me=T only depends very weakly on the temperature for smallvalues of the coupling �, corresponding to temperatures less than about 10Tc. Aconstant �t in this temperature range yields me(T )=T = 1:938(15). This behaviouris qualitatively similar to what we have observed in [22]. For temperatures 1:3Tc <T < 16Tc we found in [22] me(T )=T = 2:484(52). The di�erence between thesevalues arises from di�erent methods of extracting the screening masses. Whereasin this work we performed correlated �ts of the gluon correlation functions overvariable �t ranges (see App. A.1), we obtained me and mm in [22] from uncorrelated�ts in the �xed range zT � 1. Our new method results in screening masses whichare up to 20% smaller. Since it accounts for possible correlations in the data, theresults should be more reliable.A constant behaviour of me=T is also observed in a very recent study of SU(2) gaugetheory in the axial gauge. Demanding magnetic stability of the theory, the authorsin [66] �nd in the temperature range from T = 4Tc up to T = 16Tc approximatelyme=T ' 0:84. A modi�cation of their perturbative calculation shifts this valueslightly higher, me=T ' 1:1. Even if this agrees on a qualitative level with ourresult, we want to point out that, similar to our �rst analysis [22], the temperaturerange under investigation is too narrow in [66] to rule out the expected gT -behaviourof me .In contrast to [22] we have calculated me now also at very high temperatures (upto T � 13400Tc ; see Tab. 3.1). From this analysis it becomes evident that me=Truns with T . Since this is expected from perturbation theory it is meaningful to testwhether perturbative predictions also work quantitatively.



40 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSWilson action, 323 � 4 latticeEe(~p; T )=T , extracted from�W Ge(k1=0) Ge(k1=1) Ge(k1=2)2.512 2.14(11) 2.71(18) 2.46(5)2.643 2.24(9) 2.28(8) 2.34(4)2.74 1.94(5) 2.13(5) 2.33(7)2.88 2.03(7) 2.03(4) 2.33(5)2.955 1.87(4) 1.94(4) 2.27(5)3.023 2.10(14) 2.12(13) 2.25(4)3.219 1.80(7) 1.93(5) 2.03(3)3.743 1.58(3) 1.78(7) 1.94(2)4.24 1.64(8) 1.55(3) 2.01(4)4.738 1.33(3) 1.51(4) 1.91(8)5.238 1.19(2) 1.40(3) 1.83(4)5.737 1.26(3) 1.35(4) 1.83(4)Symanzik action, 323 � 4 latticeEe(~p; T )=T , extracted from�I Ge(k1=0) Ge(k1=1) Ge(k1=2)1.92 2.10(6) 2.18(5) 2.36(4)2.063 1.96(5) 2.17(5) 2.36(4)2.152 2.08(8) 2.04(5) 2.23(5)2.30 1.76(3) 1.95(4) 2.91(26)2.382 2.01(11) 2.00(4) 2.54(9)2.452 1.70(5) 2.04(9) 2.21(5)2.652 1.72(6) 1.53(21) 2.05(3)3.183 1.69(8) 1.61(2) 2.13(11)3.684 1.44(8) 1.75(6) 1.94(2)4.185 1.50(6) 1.30(1) 1.85(4)4.685 1.19(6) 1.45(7) 1.74(2)5.186 1.31(8) 1.29(4) 1.77(5)Table 5.3: Energies from the electric sector of gluon correlation functions.
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42 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSparameter �ts we �x the �-parameter appearing in the temperature dependent run-ning coupling to �MS and therefore use the MC-result for Tc=�MS , i.e. Tc=�MS = 1:06(see page 26). In those cases where we parameterize the screening masses only by itsleading g2-dependence the e�ect of higher order corrections can be partially takeninto account in a modi�cation of the �-parameter. We, therefore, also performedtwo parameter �ts with a free ratio ��t=�MS.The �rst �t ansatz we use is me(T )T !2 = A�t g2(T ) : (5.4)The results obtained with this ansatz are summarized in Tab. 5.4. They again reect1-parameter �t 2-parameter �tA�t 1.69(2) A�t 1.92(9)��t=�MS 1 ��t=�MS 0.33(13)�2=dof 4.51 �2=dof 4.14Table 5.4: Fit results of (me(T )=T )2, extracted from gluon correlation functions atzero momentum, using the �t ansatz (5.4).that the lowest order perturbative result (2.24) does not describe the data very well.The �t parameter A�t is much bigger than the theoretical value 2=3. The solid lineshown in Fig. 5.1 is the result from the one parameter �t. It shows, as noted above,that at least the variation of me=T with the temperature is well described by ansatz(5.4). However, the temperatures we have used are apparently still too low to getin contact with lowest order perturbation theory.To test the next-to-leading order result (2.26) we also determined the ratio me=mmand especially the magnetic mass. We were only able to extract a reliable resultfor mm for the lattice with spatial extension N3 = 64. On the smaller lattice thelocal screening masses mm(x3; T ) do not reach a plateau (see App. A.1). Thereforethe �ts of the correlation function Gm were quite poor, i.e. had a large �2. As theelectric screening masses obtained from di�erent actions and lattice sizes do notshow any signi�cant di�erence, we expect that also the magnetic mass does notshow a signi�cant ultraviolet cut-o� dependence.In Fig. 5.2(a) we show the electric and magnetic screening masses, obtained fromthe Wilson action simulation on the 322 � 64 � 8 lattice. Fig. 5.2(b) gives thesquared ratio (me=mm)2. Our data strongly suggest a temperature dependence ofthe form (me=mm)2 � g�2(T ), which is in agreement with the general expectation
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Figure 5.2: Electric and magnetic screening masses in units of the temperature (a)and squared ratio of the masses (b) vs. T=Tc. Data are obtained from simulationson a 322�64�8 lattice using the Wilson action.



44 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSmm(T ) � g2(T )T . We therefore performed a �t according to me(T )mm(T )!2 = C�t g�2(T ) : (5.5)A two parameter �t in the range T � 2Tc yields C�t = 9:16(69), ��t=�MS = 2:42(64)with �2=dof = 0:79. Fixing the �-parameter to �MS , a one parameter �t results inC�t = 7:46(27) and �2=dof = 1:35. In Fig. 5.2(b) we have shown the two parameter�t.With these results at hand we are now able to check the next-to leading order resultfor me. The dashed-dotted line in Fig. 5.1 is a self consistent determination of me ,using (2.26). It lies about 20% above the lowest order prediction and therefore iscloser to our data. However, it is still too low to describe the data well. Thereforewe have performed additional �ts of the electric mass that take into account higherorder corrections. Based on (2.26) we use the ansatz me(T )T !2 = 23 g2(T )  1 + p62� g(T ) �log 2memm � 12�!+B�t g4(T ) : (5.6)As the g4-correction term leads to a temperature dependence which is too strongwithin the entire T -interval, we have restricted the �t to very high temperatures,T � 250Tc. A one parameter �t at �xed Tc=�MS = 1:06 gives B�t = 0:744(28) with�2=dof = 4:55 (dotted line in Fig. 5.1).Let us now return to the discussion of the magnetic mass. As noted above, theratio me=mm suggests a magnetic mass of the form mm(T ) � g2(T )T . Thereforewe �tted mm with the ansatz mm(T )T = D�t g2(T ) : (5.7)The two parameter �t of mm for T � 3Tc results in D�t = 0:478(17) and ��t=�MS =0:77(14) with �2=dof = 1:44. This is in good agreement with our result obtainedin [22] for T < 20Tc. With a �xed �-parameter, Tc=�MS = 1:06, we obtain D�t =0:456(6) and �2=dof = 1:53. In Fig. 5.2(a) the two parameter �t is shown. Thesmall deviation of the �tted curve from the measured data shows that the magneticmass indeed is well described by the functional form mm(T ) � g2(T )T .We next want to compare our numerical result with the perturbative calculationspresented in [66]. A criterion for the system to become magnetically stable yieldsas a lower bound for the magnetic massmm(T )T � 1112� g2(T ) ' 0:29 g2(T ) for T !1 : (5.8)



5.1. GLUON SCREENING MASSES IN PURE SU(2) GAUGE THEORY 45Result (5.8) is remarkable for several reasons. First, it coincides with the gen-eral expectation for the temperature dependence of the magnetic mass, which isstrengthened by our result mm(T ) = 0:456(6) g2(T )T . Second, it has the same or-der of magnitude as our result. And third, it is smaller than our result, which isnecessary for (5.8) to represent a lower bound.We �nally want to point out one more aspect of our analysis of mm=T and me=mm.It is, of course, consistent with our most straightforward �t to the electric mass,me(T ) = q1:69(2) g(T )T . In contrast to the �t based on ansatz (5.6) this �tdescribes the data well in the entire temperature range above Tc. This shows thatthe electric mass has a strong non-perturbative character in the temperature intervalwe have investigated.Results for Non-Zero MomentaLet us briey discuss the gluon correlation functions at non-zero momenta. As thenumerical signal gets lost in statistical noise for large momenta (see (2.3), (2.4)and (5.1)) we only could analyse the cases k1 = 1; 2, i.e. p1a = 2�=N1; 4�=N1.Furthermore, we only obtained a reliable result in the electric sector. From Eq. (5.1)we have sinh2 aEe(p1)2 = sinh2 ame2 + � sin2 ap12 : (5.9)For me we use the result from the calculation at zero momentum. In the limitT !1 one expects to �nd a free particle dispersion relation, i.e. �! 1. In Fig. 5.3we have plotted � vs. T=Tc . Obviously we do not have su�cient statistics to uncovera temperature dependence of �. Therefore we only quote a value averaged over thetemperature interval T � 9Tc. We �nd � = 0:37(10) for k1 = 1 and � = 0:65(3) fork1 = 2. This suggests a quite signi�cant modi�cation of the free particle dispersionrelation at low momenta.5.1.2 The Electric Screening Mass from the SingletPotentialIn Sec. 2.2.2 we presented another method to extract the electric screening mass,based on an investigation of the colour singlet potential. We are interested in thisanalysis for two reasons:� A comparison of the electric screening masses from the gauge boson propagatorand from the singlet potential provides a consistency check for me .
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Figure 5.3: � vs. T=Tc for k1 = 1; 2. Some data points have been displaced horizon-tally for better viewing.� The singlet potential is a suited candidate at which one can demonstrate theimprovement of rotational symmetry due to the use of an improved action.We will discuss the second point at �rst.Improvement of the Singlet PotentialFor the investigation of the improvement of the rotational symmetry of the singletpotential we use the point-to-point correlation functions (2.9) and (2.11). We havecalculated V1=T both along an axis, labeled with (1; 0; 0), and along three di�erento�-axis directions, (1; 1; 0), (1; 1; 1), and (2; 1; 0), on a lattice of size 323�4. To makethe results from simulations with unimproved and improved action comparable, onehas to choose couplings that both correspond to the same temperature. As anexample, we use in the following �W = 3:219 and �I = 2:652. As listed in Tab. 3.1,both couplings correspond to T ' 15:88Tc .Motivated by Eq. (2.9) and taking into account the periodic boundary conditions,we have performed a correlated �t of the (1; 0; 0) data in the interval R 2 [7; 12] (seeApp. A.1), using the �t functionV1;�t(R;T ) = A�t e�m�tRR + e�m�t(N3�R)N3 �R ! (5.10)



5.1. GLUON SCREENING MASSES IN PURE SU(2) GAUGE THEORY 47with N3 = 32. The �t results for both actions are listed in Tab. 5.5. As one can see�t parameters �W = 3:219 �I = 2:652A�t -1.49(16) -1.64(13)m�t 0.435(16) 0.416(11)goodness 0.380 0.452�2=dof 1.049 0.918normalized �2 deviation from the (1; 0; 0) �t(1; 1; 0) 2.019 1.457(1; 1; 1) 1.934 0.090(2; 1; 0) 1.316 0.243Table 5.5: Results from the �ts of V1=T at �W = 3:219 and �I = 2:652 (T '15:88Tc).from the upper part of the table, the �t itself is better for the improved data thanfor the Wilson data, i.e. the errors on the �t parameters are smaller, the goodness islarger and �nally the squared error from the correlated �t (�2=dof) is smaller. Thelower part of Tab. 5.5 shows the �2 deviation of the o�-axis data points from the(1; 0; 0) �t curves. For this comparison we used data in the interval 7 � R � 12 anddivided by the number of points taken into consideration. For all measured o�-axisdirections these data show that the violation of rotational symmetry is lowered bygoing from the Wilson to the tree-level Symanzik improved action. This behaviourbecomes also clear from Fig. 5.4, which shows the potential V1 (normalized by the�t function (5.10) with the parameters given in Tab. 5.5) vs. distance R .Numerical Results for meWe used point-to-point as well as plane-plane Polyakov loop correlation functions toextract the electric screening mass. In the former case we proceeded as mentionedon page 46, i.e. we used Eqs. (2.9) and (2.11) and performed a correlated �t of thenumerical data, using (5.10) and the �t criterion described in App. A.1. We did thisboth for the measurement along the (1,0,0) axis and for the three di�erent o�-axisdirections previously mentioned. In the second case we obtained me from V1;sum,Eqs. (2.12) and (2.13).Whereas we have calculated V1;sum on lattices of size 323�4 and 322�64�8 and forboth actions, we have calculated V1 only on the smaller lattice. The results for theelectric screening mass are listed in Tab. 5.6 and 5.7.Similar to the electric mass extracted from gluon correlation functions, the resultswe have now obtained with di�erent actions and on lattices of varying size again
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Figure 5.4: Singlet potential V1(R), normalized by the correlated �t of the (1; 0; 0)-data in the interval R 2 [7; 12]. The data have been calculated on a lattice of size323�4 using the Wilson action at �W = 3:219 (a) and the Symanzik action at�I = 2:652 (b). Both couplings correspond to a temperature of T ' 15:88Tc. Thedi�erent symbols refer to the (x1; x2; x3)�directions along which the measurementshave been performed.



5.1. GLUON SCREENING MASSES IN PURE SU(2) GAUGE THEORY 49Wilson action, 323 � 4 latticeme(T )=T , extracted from�W V1;sum V1;(1;0;0) V1;(1;1;0) V1;(1;1;1) V1;(2;1;0)2.512 2.03(2) 2.28(9) 2.22(4) 2.13(4) 2.38(11)2.643 2.30(9) 2.15(6) 2.12(5) 2.07(4) 2.25(9)2.74 2.13(9) 2.09(5) 2.04(5) 2.04(4) 2.14(7)2.88 2.04(6) 1.95(6) 1.91(3) 1.93(2) 1.96(7)2.955 1.94(7) 2.11(8) 1.97(5) 1.94(6) 2.06(5)3.023 2.16(7) 1.84(5) 2.01(4) 1.96(9) 1.98(6)3.219 1.88(9) 1.74(6) 1.80(4) 1.75(5) 1.83(4)3.743 1.85(15) 1.50(2) 1.50(1) 1.43(2) 1.61(3)4.24 1.63(7) 1.55(9) 1.53(7) 1.45(3) 1.44(2)4.738 1.33(4) 1.75(10) 1.32(5) 1.32(3) 1.29(2)5.238 1.30(7) 1.29(4) 1.25(4) 1.20(2) 1.19(2)5.737 1.34(5) 1.29(3) 1.24(4) 1.17(1) 1.15(2)Symanzik action, 323 � 4 latticeme(T )=T , extracted from�I V1;sum V1;(1;0;0) V1;(1;1;0) V1;(1;1;1) V1;(2;1;0)1.92 2.26(9) 2.04(4) 2.16(5) 2.12(5) 2.06(2)2.063 1.97(3) 1.98(3) 2.01(3) 2.03(4) 2.12(7)2.152 2.07(5) 2.16(8) 2.02(7) 2.04(4) 2.01(6)2.30 1.93(5) 1.83(2) 1.79(3) 1.70(3) 1.84(4)2.382 1.82(4) 1.83(3) 1.72(3) 1.70(2) 1.90(5)2.452 1.78(6) 2.14(12) 1.98(14) 1.76(7) 1.79(5)2.652 1.69(5) 1.66(4) 1.57(2) 1.54(2) 1.67(3)3.183 1.65(6) 1.58(6) 1.62(5) 1.51(3) 1.48(2)3.684 1.38(4) 1.71(12) 1.42(3) 1.36(3) 1.33(2)4.185 1.62(7) 1.66(15) 1.34(3) 1.19(2) 1.21(66)4.685 1.46(12) 1.22(3) 1.19(3) 1.10(2) 1.09(1)5.186 1.16(2) 1.22(5) 1.14(3) 1.05(2) 1.03(1)Table 5.6: Electric screening masses from Polyakov loop correlation functions.



50 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSWilson action, 322 � 64 � 8 lattice�W me(T )=T �W me(T )=T �W me(T )=T2.74 2.46(16) 3.20 1.76(4) 4.50 1.55(10)2.88 1.89(4) 3.27 1.93(5) 5.00 1.36(3)2.97 1.80(31) 3.47 1.65(3) 5.50 1.18(8)3.12 1.92(8) 4.00 1.61(4) 6.00 1.16(31)Table 5.7: Electric screening masses from V1;sum.do not di�er signi�cantly. Therefore we have also here analysed all three datasetstogether. The screening masses, extracted from V1;sum, are shown in Fig. 5.5.
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5.2. THE W-MASS IN THE SU(2)-GAUGE-HIGGS MODEL 51are summarized in Tab. 5.8. On the 322�64�8 lattice we obtain from V1;sum a �tvalue A�t = 1:72(4) with �2=dof = 4:60.Wilson action, 323 � 4 latticeFits of (me(T )=T )2, extracted fromV1;sum V1;(1;0;0) V1;(1;1;0) V1;(1;1;1) V1;(2;1;0)A�t 1.97(6) 1.70(3) 1.60(2) 1.53(2) 1.61(2)�2=dof 2.49 10.6 6.64 7.29 4.18Symanzik action, 323 � 4 latticeFits of (me(T )=T )2, extracted fromV1;sum V1;(1;0;0) V1;(1;1;0) V1;(1;1;1) V1;(2;1;0)A�t 1.67(4) 1.46(2) 1.46(2) 1.35(2) 1.36(2)�2=dof 7.10 15.0 10.8 4.51 5.72Table 5.8: Fit results of (me(T )=T )2, extracted from Polyakov loop correlation func-tions, using the �t ansatz (5.4).In general we �nd that the results extracted from V1;sum are in good agreement withthe zero momentum results from the gluon correlation functions. To make this clearalso quantitatively we have analysed all three datasets for V1;sum together, as in thecase of the gluon correlation functions. The one parameter �t for T � 9Tc yieldsA�t = 1:71(2) with �2=dof = 5:80. This can be compared with the result fromTab. 5.4, A�t = 1:69(2) with �2=dof = 4:51. We therefore conclude that the electricscreening mass is well described by me(T ) = q1:70(2) g(T )T in the temperaturerange T � 14000Tc .5.2 The W-Mass in the SU(2)-Gauge-HiggsModelWe have calculated theW -boson screening mass at �3 = 9:0 and two di�erent quarticcouplings, �3 = 0:0485458 and 0.0523100. At these values of �3, which correspondto zero temperature Higgs mases of mH ' 77 GeV and 80 GeV, the electroweakphase transition is no longer of �rst order but has turned into a smooth crossover,see Sec. 4.3. As mentioned in Sec. 2.2.1 we have extracted mW by measuring theW -boson propagator in Landau gauge. The determination of mW from the spatialcorrelation function GW (see Eq. (2.4)) is done according to the method proposedin App. A.2.



52 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSOur calculations have been performed on a 162�32 lattice with very high statistics,see Tab. 5.9. Two measurements, i.e. two consecutive con�gurations were seperatedby 10 update iterations. Each update consists of one heatbath sweep in the gauge�eld, followed by one heatbath and four overrelaxation sweeps in the Higgs �eld.Furthermore we use for each Higgs �eld update a Metropolis accept-reject decisionfor generating the quartic term in �.We now present our results for mW . In Figs. 5.6 and 5.7 and Tab. 5.10 we show mW
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Figure 5.6: W -boson screening mass, calculated on a 162 � 32 lattice at �3 = 9:0and �3 = 0:0485458. The full curves describe the �ts to the data in both phases.The dashed curve represents the result obtained from gap equations. The horizontaldotted lines are the errorband from pure SU(2) gauge theory.vs. � at �3 = 0:0485458 and �3 = 0:0523100, respectively. In the symmetric hightemperature phase the W -mass stays constant. A �t to the data for � < �c1, thefull triangles in both �gures, with a constant �tting function yieldsmW (� < �c) = 0:166(2) for �3 = 0:0485458 and (5.11)mW (� < �c) = 0:162(2) for �3 = 0:0523100 : (5.12)Theses values are shown as the horizontal full lines in the �gures. They are inexcellent agreement with the numerical value of the magnetic screening mass from1By calculating the maxima of the �2-susceptibility we determined in [18] the in�nite volumecritical couplings at �3 = 9:0 to be �c = 0:1744752(8) for �3 = 0:0485458 and �c = 0:1746769(9)for �3 = 0:0523100, respectively.



5.2. THE W-MASS IN THE SU(2)-GAUGE-HIGGS MODEL 53�3 = 0:0485458� # meas. � # meas. � # meas.0.1700 5000 0.1739 3000 0.1753 50000.1705 5000 0.1740 2000 0.1754 60000.1710 5000 0.1741 3000 0.1755 40000.1715 5000 0.1742 2000 0.1756 40000.1720 5000 0.1743 5000 0.1757 20000.1725 6000 0.1744 6000 0.1758 20000.1730 3000 0.174474 6000 0.1759 20000.1731 3000 0.1745 8000 0.1760 40000.1732 3000 0.1746 5000 0.1765 40000.1733 3000 0.1747 5000 0.1770 20000.1734 3000 0.1748 3000 0.1775 40000.1735 3000 0.1749 3000 0.1780 20000.1736 3000 0.1750 4000 0.1785 40000.1737 3000 0.1751 4000 0.1790 20000.1738 3000 0.1752 4000 0.1795 4000�3 = 0:0523100� # meas. � # meas. � # meas.0.1700 4000 0.1746 5000 0.1761 50000.1705 5000 0.17465 5000 0.1762 50000.1710 5000 0.1747 5000 0.1763 50000.1715 5000 0.17475 5000 0.1764 50000.1720 5000 0.1748 5000 0.1765 50000.1725 7000 0.17484 8000 0.1766 50000.1730 5000 0.1749 5000 0.1767 50000.1735 5000 0.1750 5000 0.1768 50000.1736 5000 0.1751 5000 0.1769 50000.1737 5000 0.1752 5000 0.1770 50000.1738 5000 0.1753 5000 0.1775 10000.1739 5000 0.1754 5000 0.1780 10000.1740 5000 0.1755 5000 0.1785 10000.1741 5000 0.1756 5000 0.1790 10000.1742 5000 0.1757 5000 0.1795 10000.1743 5000 0.1758 5000 0.1800 10000.1744 5000 0.1759 30000.1745 19000 0.1760 5000Table 5.9: Number of measurements (SU(2)-gauge-Higgs model on a 162�32 latticeat �3 = 9:0).



54 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTS�3 = 0:0485458� mW � mW � mW0.1700 0.165(6) 0.1739 0.152(10) 0.1753 0.433(8)0.1705 0.170(7) 0.1740 0.172(7) 0.1754 0.471(14)0.1710 0.154(7) 0.1741 0.150(7) 0.1755 0.455(15)0.1715 0.159(10) 0.1742 0.160(5) 0.1756 0.476(14)0.1720 0.147(6) 0.1743 0.149(12) 0.1757 0.488(8)0.1725 0.158(6) 0.1744 0.170(6) 0.1758 0.510(7)0.1730 0.162(7) 0.174474 0.200(6) 0.1759 0.512(11)0.1731 0.167(4) 0.1745 0.226(8) 0.1760 0.528(8)0.1732 0.156(9) 0.1746 0.308(10) 0.1765 0.573(11)0.1733 0.170(8) 0.1747 0.357(8) 0.1770 0.630(26)0.1734 0.164(11) 0.1748 0.354(12) 0.1775 0.628(8)0.1735 0.178(7) 0.1749 0.356(6) 0.1780 0.670(15)0.1736 0.184(8) 0.1750 0.413(7) 0.1785 0.719(5)0.1737 0.159(6) 0.1751 0.401(9) 0.1790 0.749(11)0.1738 0.173(8) 0.1752 0.406(6) 0.1795 0.767(7)�3 = 0:0523100� mW � mW � mW0.1700 0.167(7) 0.1746 0.169(9) 0.1761 0.508(4)0.1705 0.159(8) 0.17465 0.184(7) 0.1762 0.500(7)0.1710 0.157(8) 0.1747 0.212(10) 0.1763 0.526(4)0.1715 0.155(6) 0.17475 0.260(10) 0.1764 0.523(7)0.1720 0.164(5) 0.1748 0.295(10) 0.1765 0.529(2)0.1725 0.151(3) 0.17484 0.308(6) 0.1766 0.554(7)0.1730 0.171(6) 0.1749 0.318(7) 0.1767 0.541(8)0.1735 0.157(4) 0.1750 0.348(8) 0.1768 0.567(15)0.1736 0.166(5) 0.1751 0.366(6) 0.1769 0.570(4)0.1737 0.164(2) 0.1752 0.404(16) 0.1770 0.569(4)0.1738 0.141(5) 0.1753 0.389(9) 0.1775 0.603(31)0.1739 0.151(7) 0.1754 0.405(5) 0.1780 0.654(9)0.1740 0.160(5) 0.1755 0.446(10) 0.1785 0.676(8)0.1741 0.174(4) 0.1756 0.429(6) 0.1790 0.706(8)0.1742 0.145(7) 0.1757 0.442(6) 0.1795 0.713(9)0.1743 0.167(4) 0.1758 0.479(12) 0.1800 0.767(9)0.1744 0.173(5) 0.1759 0.453(10)0.1745 0.167(6) 0.1760 0.489(13)Table 5.10: W -boson screening masses, extracted from a 162�32 lattice at �3 = 9:0.
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Figure 5.7: Same as Fig. 5.6, now at �3 = 0:0523100.pure SU(2) gauge theory, mm(�3 = 9:0) = 0:165(12). Therefore we believe that, inthe symmetric phase, theW -boson screening mass is of fully thermal origin, withoutany high T resp. low � Higgs e�ect. The horizontal dotted lines in the �gures arethe error band corresponding to mm(�3 = 9:0).In the symmetrybroken low temperature phase (� > �c) theW -boson mass increasesrapidly. In this region the data are well described by the ansatzmW (� > �c) = mW (� < �c) + a (�� �c)� : (5.13)In order to be more sensitive to the critical behaviour near the crossover, we haveonly �tted data points close to �c with ansatz (5.13), the full circles in Figs. 5.6and 5.7. We obtaina = 2:8(5) ; � = 0:331(23) for �3 = 0:0485458 and (5.14)a = 3:5(6) ; � = 0:366(20) for �3 = 0:0523100 : (5.15)The exponent � is close to that of the O(4) spin model in three dimensions. In [67]this exponent has been found to be � = 0:3836(46) which is in agreement with resultsobtained from the (4 � �)-expansion. Through the Higgs-mechanism the W -bosonmass in the SU(2)-gauge-Higgs model is linked to the scalar �eld expectation value.It thus seems plausible that also the temperature dependence of the W -boson massclose to �c is controlled by the exponent �.Finally we want to compare our results of the W -mass with the predictions basedon gap equations [28, 29, 42], see Sec. 2.3.2. We have solved Eqs. (2.28) - (2.30)



56 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSnumerically for our set of parameters �3 (resp. g3) and �3. The results that we haveobtained are given by the dashed curves in Figs. 5.62 and 5.7. For large values of �the results from the gap equations agree well with our numerical data.In the symmetricphase, i.e. below �c , the gap equations predict a constant behaviourof mW . It was found in [28] that for large values of �3 the W -boson mass agreeswithin 10% with the mass obtained from the non-linear �-model, mSM = 0:28 g23 .Furthermore, the W -boson mass was found to be independent in the symmetricphase on �3 and � at large �3. This behaviour agrees qualitatively with our results.On a quantitative level, using g3 = 2=3, one has mSM = 0:124. This is in roughagreement with the results (5.11) and (5.12).Near the critical hopping parameter �c the results from the gap equations di�er fromour Monte Carlo data. This behaviour is not unexpected since correlation lengthsdiverge near �c. Therefore both methods only approximate the real W -mass in thisregion.So far, we have only discussed the W -boson mass obtained from the W -boson pro-pagator in Landau gauge. In Sec. 2.2.3 we have presented the gauge invariant cor-relation function Gv (see Eq. (2.17)) that yields the mass of a vector particle withthe quantum numbers of the W -boson. This is a suitable candidate that can becompared to the W -mass. However, a detailed analysis of Gv on our data sets failedbecause the signal disappeared already at rather short distances (x3 ' 4) in thestatistical noise. The construction of improved operators may help in this channel[41]. To extract some information from the unimproved operator already, we haveperformed for �3 = 0:0523100 at two �-values close to �c calculations with very highstatistics. At � = 0:1745 we have made 19000 measurements, at � = 0:17484 wehave made 8000 measurements, see Tab. 5.9. Fits to the correlation functions Gvfor x3 � 2 yield mv = � 0:557(87) ; � = 0:17450:356(28) ; � = 0:17484 : (5.16)In the symmetric phase at � = 0:1745 the mass in the vector channelmv is more thantwice as large as the mass extracted from theW -boson propagator (mW = 0:162(2)).The reason for this might be that the W -boson propagator projects on an one-particle state, whereas the correlation function (2.17) yields the mass from a boundedstate of several constituents. In the symmetry broken phase mW and mv are similar.For instance, we �nd from Tab. 5.10 at � = 0:17484 for the W -boson propagatormass mW = 0:308(6), which is compatible with the value given in (5.16) for mv.Our calculations of mW and mv in the two di�erent phases agree qualitatively withthe observations made in [29]. For the symmetry broken phase the authors in [29]2We note that Fig. 5.6 is a corrected version of Fig. 4 from [17] in which the gap equations havenot been solved correctly.



5.3. THE HIGGS-MASS IN THE SU(2)-GAUGE-HIGGS MODEL 57show that the uctuations of the Higgs �eld are small compared to the vacuumexpectation value. Therefore the gauge invariant correlation functions are approx-imately proportional to the corresponding gauge dependent correlation functions[68] and the screening masses, extracted from both types of correlation functions,do roughly agree. For the symmetric phase, however, these arguments do not hold.Therefore the possibility is discussed in [29] that screening masses from gauge in-variant correlation functions in this phase correspond to masses of multi-particlestates. Especially for the mass in the vector channel a mass formula of the formmv ' 2m� +mW (5.17)is suggested [29]. Using this relation, our results for m�, as presented in the nextsection, and mW would lead to a smaller value of mv (at � = 0:1745). This is notunexpected since (5.17) neglects any binding energies.5.3 The Higgs-Mass in the SU(2)-Gauge-HiggsModelIn this section we present our numerical data for the Higgs boson screening massin Landau gauge, obtained from simulations on a 162 � 32 lattice at �3 = 9:0and �3 = 0:0485458. As explained in Sec. 2.2.4 we have extracted m� from thecorrelation function G�(x3), Eq. (2.20). The results for m� are listed in Tab. 5.11and shown in Fig. 5.8.By comparing the Figs. 5.6 and 5.8 one can see that the behaviour of m� is oppositeto that of mW . In the high temperature phase (� < �c) m� drops to zero withincreasing �. This decay is well described bym�(� < �c) = a (�c � �)� : (5.18)Fitting the full triangles in Fig. 5.8 with ansatz (5.18) we obtain for the parametersa = 1:9(2) and � = 0:493(30).Slightly above �c the screening masses increase. However, our data do not suggestany functional dependence of this behaviour. A further increase of � seems to leavem� unchanged within statistical errors. A �t of the full circles in Fig. 5.8 results inm�(� > 0:1748) = 0:064(2).We present now the results for the screening masses obtained from the scalar corre-lation functions ~G�s (x3) and ~G�s (x3), Eqs. (2.22) and (2.23). As we have mentioned



58 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTS� m� � m� � m�0.1700 0.401(11) 0.1739 0.173(17) 0.1753 0.047(17)0.1705 0.415(21) 0.1740 0.147(11) 0.1754 0.055(10)0.1710 0.388(11) 0.1741 0.117(10) 0.1755 0.077(7)0.1715 0.343(13) 0.1742 0.133(9) 0.1756 0.077(6)0.1720 0.340(13) 0.1743 0.085(11) 0.1757 0.086(11)0.1725 0.289(10) 0.1744 0.017(3) 0.1758 0.060(13)0.1730 0.268(8) 0.174474 0.015(1) 0.1759 0.071(14)0.1731 0.259(11) 0.1745 0.017(9) 0.1760 0.072(11)0.1732 0.231(16) 0.1746 0.011(8) 0.1765 0.054(8)0.1733 0.239(10) 0.1747 0.023(11) 0.1770 0.055(14)0.1734 0.240(9) 0.1748 0.052(7) 0.1775 0.061(11)0.1735 0.197(10) 0.1749 0.054(9) 0.1780 0.089(9)0.1736 0.204(30) 0.1750 0.056(8) 0.1785 0.058(14)0.1737 0.202(14) 0.1751 0.041(11) 0.1790 0.064(13)0.1738 0.173(12) 0.1752 0.058(11) 0.1795 0.057(13)Table 5.11: Higgs-boson screening masses, extracted from a 162 � 32 lattice at�3 = 9:0 and �3 = 0:0485458.
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5.3. THE HIGGS-MASS IN THE SU(2)-GAUGE-HIGGS MODEL 59�3 = 0:0485458 �3 = 0:0523100� m�s m�s m�s m�s0.1700 1.08(16) 1.24(20) 1.29(10) 1.17(11)0.1705 1.12(15) 1.12(18) 0.96(15) 0.974(87)0.1710 0.94(14) 0.944(91) 0.95(14) 0.96(11)0.1715 0.924(90) 0.878(41) 0.921(70) 0.918(28)0.1720 0.797(43) 0.849(64) 0.849(84) 0.833(69)0.1725 0.641(87) 0.617(73) 0.84(10) 0.82(10)0.1730 0.684(53) 0.635(29) 0.615(67) 0.632(44)0.1731 0.634(55) 0.620(53) { {0.1732 0.517(41) 0.541(33) { {0.1733 0.594(45) 0.537(45) { {0.1734 0.594(31) 0.608(57) { {0.1735 0.491(37) 0.453(48) 0.724(89) 0.586(38)0.1736 0.583(31) 0.541(28) 0.475(55) 0.516(45)0.1737 0.425(32) 0.431(34) 0.545(30) 0.506(39)0.1738 0.382(40) 0.440(19) 0.479(26) 0.484(25)0.1739 0.422(29) 0.430(23) 0.477(20) 0.446(28)0.1740 0.399(66) 0.385(23) 0.432(39) 0.427(36)0.1741 0.321(25) 0.317(17) 0.430(19) 0.407(17)0.1742 0.292(25) 0.298(21) 0.319(22) 0.335(14)0.1743 0.211(12) 0.211(12) 0.322(17) 0.319(14)0.1744 0.123(11) 0.176(66) 0.274(22) 0.282(21)0.174474 0.109(9) 0.105(11) { {0.1745 0.129(10) 0.123(9) 0.210(9) 0.211(9)0.1746 0.169(8) 0.174(7) 0.161(11) 0.153(16)0.17465 { { 0.159(22) 0.086(5)0.1747 0.215(8) 0.210(9) 0.123(29) 0.100(7)0.17475 { { 0.171(6) 0.169(5)0.1748 0.236(18) 0.236(17) 0.183(23) 0.164(14)0.17484 { { 0.187(8) 0.187(9)0.1749 0.275(12) 0.277(12) 0.212(11) 0.211(10)0.1750 0.262(12) 0.263(13) 0.245(7) 0.244(7)0.1751 0.294(11) 0.293(11) 0.255(8) 0.253(8)0.1752 0.307(7) 0.307(7) 0.276(11) 0.274(10)0.1753 0.309(12) 0.307(13) 0.295(10) 0.295(10)0.1754 0.327(10) 0.327(10) 0.298(12) 0.297(11)0.1755 0.339(12) 0.340(10) 0.335(9) 0.333(9)0.1756 0.359(17) 0.357(17) 0.325(6) 0.326(5)0.1757 0.381(42) 0.377(19) 0.350(16) 0.348(15)0.1758 0.370(21) 0.367(13) 0.373(11) 0.373(7)0.1759 0.360(15) 0.363(16) 0.372(17) 0.369(17)0.1760 0.408(9) 0.405(10) 0.379(11) 0.380(11)0.1761 { { 0.396(13) 0.400(9)0.1762 { { 0.386(11) 0.390(16)0.1763 { { 0.392(9) 0.391(10)0.1764 { { 0.407(18) 0.405(19)0.1765 0.446(20) 0.446(19) 0.445(16) 0.443(10)0.1766 { { 0.429(11) 0.435(7)0.1767 { { 0.450(10) 0.449(10)0.1768 { { 0.426(19) 0.446(11)0.1769 { { 0.465(11) 0.460(9)0.1770 0.498(37) 0.475(16) 0.466(18) 0.472(11)0.1775 0.532(14) 0.529(15) 0.582(44) 0.583(38)0.1780 0.592(25) 0.588(24) 0.659(42) 0.600(19)0.1785 0.582(29) 0.576(14) 0.565(33) 0.573(31)0.1790 0.633(14) 0.629(17) 0.646(22) 0.639(23)0.1795 0.663(17) 0.662(17) 0.616(18) 0.609(15)0.1800 { { 0.590(31) 0.587(32)Table 5.12: Scalar masses, extracted from a 162 � 32 lattice at �3 = 9:0.



60 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSin Sec. 2.2.5 these masses are suited to be compared with the Higgs boson screeningmass from the �-propagator.Our data for �3 = 0:0485458 and �3 = 0:0523100 are listed in Tab. 5.12. Again, wehave used a 162 � 32 lattice for our simulations. In [16] we have shown that thislattice size is already large enough to avoid �nite size e�ects.At each �3-value, m�s and m�s are consistent within statistical errors. Therefore wehave analysed (at each �3-value) both data sets together. In Figs. 5.9 and 5.10 we
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62 CHAPTER 5. SCREENING MASSES - NUMERICAL RESULTSand for �3 = 0:0523100a� = 60(19) ;a+ = 6:3(9) ; �� = 0:710(45)�+ = 0:464(27)) with c = 0:087(11) : (5.25)These �t results (5.21) and (5.25) are shown as the solid curves in Figs. 5.9 and 5.10.For the smaller value of �3 , i.e. closer to the point where the electroweak phasetransition changes from a �rst order phase transition to a crossover, the additionalconstant is zero within errors. Therefore we believe that at this �3-value the scalarmass is best described by ansatz (5.20). At the larger value of �3 we observe a �niteconstant, in agreement with the predictions made in [28]. To get a more detailedknowledge about the dependence of the constant on �3 one would have to perform,of course, much more calculations at several values of �3.Let us make some remarks at this point about the results at �3 = 0:0485458: Whenapproaching �c from below (in the symmetric phase) we �nd that � is consistentwith the mean �eld value 1/2. This has also been observed in another simulationof the three dimensional model [40]. However, when approaching �c in the brokenphase we �nd a smaller value for the exponent �. Its numerical value seems to ruleout a rather large exponent, i.e. � > 1=2, like in the 3-d Ising model (� � 2=3) orthe O(4)-model (� ' 0:75 [67]).We conclude this section with the comparison of the Higgs boson screening mass,extracted from the �-propagator, and the scalar mass at �3 = 0:0485458. In thewhole range of �-values, m� is much smaller than ms. Similar to the W -boson masswe believe that this is due to the measurement of a single particle mass from the�-propagator, whereas we extract masses from composite states by measuring G�sand G�s .On a qualitative level, the behaviour of m� and ms is similar in the high temperaturephase. Both masses are well described by an ansatz m � (�c � �)� with � ' 1=2.The factor of proportionality is, of course, much larger for the scalar mass thanfor the propagator mass. In the low temperature phase the dependence of m� andms on � di�ers a lot. While m� seems to be independent of � , ms increases withincreasing � .



Chapter 6Summary and ConclusionsWe have studied thermal screening masses in the standard model of strong andelectroweak interactions. For the investigation of the strongly coupled sector ofthe theory we have chosen pure SU(2) gauge theory. Our results for the electroweaksector have been obtained from the dimensional reduced, e�ective SU(2)-gauge-Higgsmodel.Let us �rst summarize the results from pure SU(2) lattice gauge theory. Using thestandard Wilson action and a tree-level Symanzik improved action, we have investi-gated Polyakov loop and gluon correlation functions in a wide range of high temper-atures in the decon�ned phase. We have calculated chromo-electric and -magneticscreening masses in Landau gauge and have determined their dependence on thetemperature.The temperature dependence found for the magnetic mass is in accordance withthe expected g2T -dependence. We �nd mm(T ) = 0:456(6) g2(T )T , which is con-sistent with the lower bound found in [66], mm(T ) � 11=(12�) g2(T )T . For theratio of the electric and magnetic masses we calculate (me=mm)2 = 7:46(27) g�2(T ).Even if this suggests that the temperature dependence of me is well described byme � gT as expected by lowest order perturbation theory, the situation is morecomplicated. In the temperature range below 10Tc we observe a constant behaviourof the electric mass, me=T ' 2. At higher temperatures (up to 104 Tc), the tem-perature dependence of me is consistent with a logarithmic dependence, me � gT .However, our data do not agree with lowest order perturbation theory. Only littleimprovement is achieved by using next-to-leading order results from resummed PT.From an analysis of the gluon propagator as well as the colour singlet potential we�nd me(T ) = q1:70(2) g(T )T . This result shows that the screening mechanism ishighly non-perturbative even for temperatures as large as 14000Tc . This observationis in accordance with studies of screening in dimensionally reduced 3d-QCD [23, 24].63



64 CHAPTER 6. SUMMARY AND CONCLUSIONSOur simulation of the gluon correlation functions at �nite momenta still su�er frominsu�cient statistics. We �nd a modi�cation of the energy momentum dispersionrelation of a free particle, but we are not yet able to quantify its temperature de-pendence.The improvement of the action does not show, within statistical errors, any signif-icant modi�cation of the behaviour of the screening masses, although we can showthat the violation of the rotational symmetry of the singlet potential, which alsowas used to extract me , is weakened.In the three dimensional SU(2)-gauge-Higgs model we have calculated the thermalscreening masses of theW -boson and of the Higgs boson at couplings �3 = 0:0485458and 0.0523100, corresponding to zero temperature Higgs masses of mH ' 77 GeVand 80 GeV. To extract the screening masses, we have used in both cases the directmeasurements of the corresponding propagators in Landau gauge and investigationsof gauge invariant correlation functions.The magnetic screening mass of the W -boson propagator agrees qualitatively withpredictions based on gap equations [28]. It remains constant in the symmetric phaseand is, within statistical errors, independent on the quartic coupling �3. It agreeswell with the same quantity of the pure gauge system, mm = 0:165(12) (at � = 9:0).This suggests that the high temperature behaviour of the W -boson screening massis of fully thermal origin and is not inuenced by any Higgs type e�ect.This equality cannot be a coincidence and gets further support from the study ofthe gauge invariant excitation spectrum. It is reported in [41] that a 0++ statecomposed of gauge plaquettes does not mix with those operators having the samequantum numbers and also involving Higgs �elds. This decoupling phenomenon isactually expected at high temperature. It corresponds to the separation of the heavyscalar modes from the dynamics of the weakly screened magnetic uctuations whichare described by an e�ective theory both in the case of QCD and the gauge-Higgssystem [69].On the basis of this apparent decoupling we have argued that the magnetic vectoructuations do not receive any contribution to their screening mass from a Higgs-type mechanism in the high temperature phase. The onset of the additional massgeneration through the Higgs-mechanism can be observed as a well-localized increaseof the e�ective mass above �c . Our present calculations suggest the existence of asecond order phase transition at our sets of couplings. This agrees well with detailed�nite size studies of the endpoint of the �rst order electroweak phase transitions,using Lee-Yang zeros. This method determines the critical quartic coupling to be�3;c = 0:04795(52) (according to a critical Higgs-mass of mH;c = 75:7(4) GeV). Thecouplings we have used are larger than �3;c and therefore do not correspond to a�rst order phase transition.



65The propagator masses and the gauge invariant spectrum agree well in the symmetrybroken phase. An important issue is to clarify why the two kinds of operators,which yield the same mass in the symmetry broken phase, cease to couple to thesame state in the symmetric phase. Further investigations of gauge invariant andgauge dependent correlation functions should lead to progress on this question. Onepossibility would be, for instance, to construct also simple non-gauge invariant two-particle operators whose correlators in Landau gauge could reproduce the results ofthe gauge invariant spectroscopy.Opposite to the behaviour of the screening mass of the W -boson propagator is thebehaviour of the screening mass of the Higgs boson propagator. In the symmetricphase m� drops to zero with increasing � . Beyond �c it acquires a �nite valueand remains constant within statistical errors under further heightening of � . Acomparison with the corresponding masses from gauge invariant scalar correlationfunctions yields, in contrast to the W -boson mass, larger values for the masses inboth phases besides �c . We believe that one measures here again masses of manyparticle states. In addition, the functional form of ms is di�erent from the oneof m�. Near �c a good description of the scalar screening mass is given by ms =c+a�j���cj�� . Close to the endpoint (�3;c = 0:04795(52), i.e.mH;c = 75:7(4) GeV)of the �rst order electroweak phase transitions we �nd c = 0. For �� = �(� < �c)we obtain �� ' 1=2. This agrees with the behaviour of m� slightly below �c ,m�(� < �c) � (�c��)1=2. However, the factor of proportionality is much bigger forms than for m�. Above �c we �nd �+ ' 0:32. At large values of �3 (�3 = 0:0523100,i.e. mH ' 80 GeV) we calculate c ' 0:09. For the exponents �� we �nd in thisregime �� ' 0:71 and �+ ' 0:46.So far, we have only analysed the SU(2)-gauge-Higgs model in three dimensions.To check the reliability of dimensional reduction it would be, of course, interestingto perform similar calculations also in four dimensions. Furthermore, studies withimproved actions are of interest for getting a taste of the cut-o� dependence of thescreening masses in the electroweak sector. Work in these directions is in progress.As mentioned above, we have measured the gauge dependent W -boson and Higgsboson propagators in Landau gauge. The screening masses we have obtained fromthese correlation functions should be, of course, gauge independent. Therefore itwould be interesting to measure the propagators also in a di�erent gauge. A methodhow to �x the covariant gauge on the lattice was presented in [70]. We discuss thealgorithm in App. B.2 and show how to cure the failures made in [70]. Thereforeone has now a very powerful tool at hand to realize a whole class of gauges on thelattice which can be used to show the gauge independent character of the screeningmasses. However, it was until now not possible to �x the covariant gauge e�cientlywithin a numerical simulation. Further work in this direction is still needed.To conclude, the precise determination of thermal screening masses in this disser-



66 CHAPTER 6. SUMMARY AND CONCLUSIONStation delivers a quantitative description of the dependence of these masses on thetemperature. This is a very good basis for further theoretical investigations onthe nature of these masses. Especially our data might help in �nding a theoreti-cal solution which clari�es quantitatively the problem that masses, extracted fromgauge dependent correlation functions, acquire higher values than masses from thecorresponding gauge independent correlation functions.



Appendix ADetermination of ScreeningMasses from Correlation FunctionsIn the following we will discuss how to obtain screening masses (or energies) fromlattice correlation functions. We are interested in the case that the relation betweenthe screening mass and the corresponding correlation function is of the formGtheor.(x3) = A � cosh�m�x3 � N32 �� for x3 � 1 : (A.1)One has to �nd a way how to determine m from a given set of numerical dataG(x3=1); : : : ; G(x3=N3=2), using the function Gtheor.. However, there is no uniquerule how to do this.The most natural way to calculate m is to perform a two parameter �t of (A.1). Butone has to take several things into account. First of all we have to handle with therestriction x3 � 1. It arises already in the continuum and is needed to project onthe ground state with the lowest lying mass. Therefore a �t can not start at x3 = 1.But one has not only to determine the left hand side of the �t interval. Because ofnumerical noise the signal forG(x3) gets lost for large values of x3. As a consequence,also the upper bound of the �t range has to be chosen in an appropriate way. Inthe next section we describe in detail a criterion that automatically �nds the best�t range. We have used it to determine the screening masses from the correlationfunctions that we measured in the context of the SU(2) gauge theory.Especially on small lattices the criterion does not always work �ne in the sense thatthe chosen �t range is too small resp. the �t is e�ected with an insu�cient goodness.To avoid this, we present in Sec. A.2 an alternative method for measuring screeningmasses. It is based on a modi�cation of (A.1) which vanishes with increasing latticesize while leaving the masses unchanged within statistical errors. This method wasused to extract the screening masses within the SU(2)-gauge-Higgs model.67



68 APPENDIX A. DETERMINATION OF SCREENING MASSESA.1 Method IA �t is in general characterized by several properties, namely �2, goodness (Q),degrees of freedom (%) and relative errors of the �t parameters. As �2 enters directlyinto the calculation of Q, it is su�cient to consider only the last three quantities.It is desirable to �nd a �t with large Q, large % and small relative error on the�t parameter we are interested in, i.e. on m=T . As we want to weigh these threequantities, we are looking for a �t interval withQ� � %� � ��mm �� ! max : (A.2)We have chosen the coe�cients to be � = 9, � = 1 and  = 3. As we put the largestweight on Q, it sometimes happens that only a very small �t interval is selectedby this condition. To avoid this problem, we add the extra condition % � 3. For atwo parameter �t this is equivalent to demand that the �t interval should containat least 5 points. Finally we require that the �t only considers points G(x3) witherrors less than 50 % of their value. This is to reject points that are dominated bystatistical noise.To see how our �t criterion works we show in Fig. A.1 the electric correlation function
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Figure A.1: The electric correlation function Ge(x3) � Ge(p? = 0; x3) as a functionof x3. See text for details.Ge(p? = 0; x3) (see Eq. (2.3)) as a function of x3 for the case of pure SU(2) gaugetheory, calculated on a lattice of size 322�64�8 for an arbitrary coupling, �W = 3:47.



A.1. METHOD I 69The squares show points with an error less than 50% of the value, whereas the circlesdescribe points with a bigger error. The �lled points represent the �t interval, foundby our �t criterion. The solid line is the correlated �t found automatically by the�t criterion.To demonstrate the quality of the �t criterion, we have also studied local screeningmasses m(x3). They are de�ned by the relationG(x3)G(x3 + 1) = Gtheor.(x3)Gtheor.(x3 + 1) : (A.3)If x3 becomes large enough, m(x3) must reach a plateau. On the other hand, ifx3 becomes too large, the local masses have big statistical errors and do not carryvaluable information.In Fig. A.2 we show the local electric screening masses in units of the temperature,
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Figure A.2: Local electric screening masses, extracted from the electric correlationfunction Ge(x3) shown in Fig. A.1. The horizontal lines are the lower and upperbounds for me(T )=T , given by the correlated �t shown in Fig. A.1.me(x3; T )=T , extracted from Ge(x3) shown in Fig. A.1. As a consequence of theslower decay of Ge(x3) at short distances, which was also observed in [71], the localmasses approach a plateau from below at large distance (x3>� 5). The horizontallines in Fig. A.2 are the lower and upper bounds forme(T )=T , given by the correlated�t shown in Fig. A.1. Obviously, the �t criterion yields a reliable �t interval.



70 APPENDIX A. DETERMINATION OF SCREENING MASSESA.2 Method IIAs we have already mentioned, the criterion presented in Sec. A.1 does not alwayswork �ne on lattices of small size. Therefore we present now an alternative way howto extract a reliable result for a screening mass from a given correlation function.The basic idea is to allow in Eq. (A.1) an additional additive parameter,Gmod.(x3) = A � cosh�m�x3 � N32 �� +B for x3 � 1 ; (A.4)and to perform a three parameter �t of the numerical data. We will in the followingshow that, for the SU(2)-gauge-Higgs model1, this will minimize the �nite size e�ectsin the determination of the screening masses.To de�ne local screening masses that are independent of B we must modify Eq. (A.3)(which implies B = 0):G(x3 � 1) �G(x3)G(x3)�G(x3 + 1) = Gmod.(x3 � 1) �Gmod.(x3)Gmod.(x3)�Gmod.(x3 + 1) : (A.5)As we are interested in both regions of the electroweak phase transition we haveinvestigated two arbitrary couplings below and above the critical hopping parame-ter �c. At �3 = 0:0523100 and �3 = 9:0 (see action (4.7)) we have chosen � = 0:17450(symmetric phase) and � = 0:17484 (symmetry broken phase). For these couplingswe show in Fig. A.3 the correlation functionGw(x3) � Gm(p? = 0; x3) (see Eq. (2.4))for lattices of size 162 �N3, with N3 ranging from 32 to 128.For � = 0:17484 (Fig. A.3(b)) the datasets of the correlation functions agree wellwithin statistical errors. Therefore we do not measure any �nite size e�ects in thescreening masses. This can be seen in the lower part of Tab. A.1 where we showthe results of the three parameter �t according to ansatz (A.4). The additionalparameter B vanishes within errors, and the result for the screening mass (and alsofor the factor A) are the same as with ansatz (A.1).The situation is di�erent in the symmetric phase, Fig. A.3(a). Especially for smallN3 we have large deviations in Gw(x3). If we analyse the local screening massesaccording to ansatz (A.3) which impliesB = 0, the �nite size e�ects in Gw(x3) resultin strong �nite size e�ects in mw(x3), see Fig. A.4(a). This situation is improved alot by using the modi�ed ansatz (A.4). In Fig. A.4(b) we show the local screeningmasses based on Eq. (A.5). Within errors, the masses extracted from the di�erent1Although we have not checked it, the �nite size study and its inuence on the constant Bshould also be valid for the pure SU(2) gauge theory.
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Figure A.3: Gauge �eld correlation functions on 162 � N3 lattices with N3 = 32(squares), 40 (circles), 48 (upper triangles), 64 (lower triangles) and 128 (diamonds).Shown are correlation functions in the symmetric phase at � = 0:17450 (a) and thesymmetry broken phase at � = 0:17484 (b). The curves give �ts for x3 � 8. The�tting parameters are listed in Tab. A.1.lattice sizes are compatible and reach a plateau for distances x3>� 8. This behaviourcan also be seen in the upper part of Tab. A.1. The �nite size e�ects are absorbedinto the parameter B that drops rapidly to zero with increasing lattice size. We �ndthat this decrease is well described by B � exp (�0:1N3). On the other hand, the�tted values for the screening mass are within errors independent of the volume ofthe lattice.We have performed a similar analysis for the dependence of Gw(x3) on the transverselattice size. In that case simulations have been performed on lattices of size N2s �32with Ns ranging from 4 to 24. Together with the results from this investigationwe conclude that the screening masses can reliably be extracted from correlationfunctions already on lattices of size 162 � 32 using a �t of the form Eq. (A.4).



72 APPENDIX A. DETERMINATION OF SCREENING MASSES� = 0:17450N3 mw A B # iterations32 0.166(7) 10.3(2) -0.80(15) 190.00040 0.194(14) 10.9(6) -0.18(13) 40.00048 0.179(11) 10.1(9) -0.14(8) 40.00064 0.174(9) 9.3(8) -0.045(22) 90.000128 0.163(12) 8.6(9) -0.012(13) 60.000� = 0:17484N3 mw A B # iterations32 0.308(6) 3.4(1) -0.012(19) 80.00064 0.291(11) 3.2(2) -0.009(4) 40.000Table A.1: Results of �ts to the correlation functions shown in Fig. A.3.
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Figure A.4: Local masses calculated at � = 0:17450 from the correlation functionsshown in Fig. A.3(a). In (a) we show local masses extracted according to Eq. (A.3)while (b) gives the result according to Eq. (A.5). The �rst one does assume B = 0.The horizontal lines give the error band resulting from the �t on a 162� 128 lattice.



Appendix BLattice Gauge FixingA fundamental concept in gauge theories are global and local gauge symmetries.While the action and therefore the \physics" remain invariant under the correspond-ing gauge transformations, there exist several objects that depend on the gauge, e.g.the �elds themselves. Before one can work with these quantities it is therefore ne-cessary to �x a particular gauge.There exist several gauges in the literature. The gauge we are interested in is thecovariant gauge because of its covariant structure. In fact, these gauge correspondsto a whole class of gauges characterized by a continues real parameter � � 0. Thisis of great advantage especially if one wants to check the gauge dependence orindependence of an observable.In this work we have only used the Landau gauge � = 0 to extract the thermalscreening masses. Therefore a future project would be to �x also a general covariantgauge � 6= 0 on the lattice, perform the same measurements of the gauge dependentcorrelation functions and extract again the screening masses. If the concept ofscreening masses is indeed of real physical than the results obtained in di�erentgauges should be compatible.So far, however, there are only algorithms known that describe how to �x the Landaugauge on the lattice. They will be summarized in the next section. Very recentlythere was an article on �xing the covariant gauge on the lattice [70]. We will discussit in Sec. B.2, point out the failure of the algorithm proposed in [70] and presentseveral ways to cure this defect.Before we go into the detailed structure of the gauge �xing algorithms we make twogeneral remarks. As the covariant gauge concerns only the gauge �elds, its numerical73



74 APPENDIX B. LATTICE GAUGE FIXINGrealization is nearly identical both for pure SU(2) gauge theory and for the SU(2)-gauge-Higgs model. Of course, in the latter one has to gauge update also the Higgs�elds at every iteration step, even if this does not e�ect the gauge condition itself.Already in the continuum formulation the covariant gauge is not unique. There exista remaining gauge degree of freedom. This results in so-called Gribov-copies [72].Furthermore, a lattice gauge �xing algorithm will add more of this artifacts dueto numerical uncertainty. Until now it is not completely clari�ed in how far theseambiguities will e�ect calculations of gauge dependent objects. In [20] we haveinvestigated the inuence of these Gribov-copies on electric and magnetic screeningmasses in Landau gauge within pure SU(2) gauge theory using the Wilson action.Within statistical errors we did not see any signi�cant shift in the masses for di�erentcopies.B.1 Landau Gauge on the LatticeIn this section we describe how to �x the Landau gauge on the lattice. We followthe approach outlined in [73], [74], [20]-[22].The task is to �nd an e�cient numerical algorithm to realize the Landau gauge onthe lattice. From relation (2.7) we have@�A�(x) ' 12iag NdX�=1 �U�(x)� Uy�(x)� U�(x� �̂) + Uy�(x� �̂)� : (B.1)The gauge condition j@�A�(x)j2 = 0 is realized by maximizing the quantity� � 1V Tr Xx NdX�=1 �U�(x) + Uy�(x)� : (B.2)V is the lattice volume, Nd the number of dimensions.The most e�cient way to bring � ! max on each lattice con�guration, i.e. themethod that consumes the smallest amount of computer time, is to combine twodi�erent algorithms. We start with the overrelaxation algorithm [73] up to a numer-ical accuracy of j@�A�(x)j2 � 10�3 � 10�5, depending on the size of the lattice andthe gauge coupling. Due to critical slowing down we then switch to the Fourier ac-celerated algorithm [74]. We continue gauge �xing until we reach j@�A�(x)j2 � 10�9.In [20] we have shown that this accuracy is su�cient. Already for j@�A�(x)j2 � 10�5the screening masses remain una�ected from further gauge �xing.



B.2. COVARIANT GAUGE ON THE LATTICE 75Special care has to be taken for the SU(2) gauge theory at temperatures above thecritical temperature of the decon�nement phase transition. As already mentioned(see page 28), the system acquires a �nite value for the Polyakov loop, hLi 6= 0.Because of the approximation (2.7) one has to make sure that before starting thegauge �xing algorithm the system is in the phase with hLi > 0. Because of theglobal Z(2) symmetry this can be achieved by only one gauge update. Nevertheless,using the wrong phase (hLi < 0) will result in wrong values for the electric mass!B.2 Covariant Gauge on the LatticeA generalization of the Landau gauge is given by the covariant gauge, j@�A�(x) ��(x)j2 = 0. The �eld �(x) obeys the probability distributionP (�(x)) � exp�� 12�Tr�2(x)� : (B.3)� = 0 yields the Landau gauge, � = 1 is called Feynman gauge. In the following,we are interested in the case � 6= 0.The realization of the covariant gauge on the lattice will follow at �rst the ideasoutlined in [70]. We will come to the point where the approach in [70] fails andpresent a modi�cation so that covariant gauge �xing on the lattice should in principlebe possible.Inspired by (B.1), the most straightforward way to �x the covariant gauge on alattice is to bring the quantityH � 1V Tr Xx 24 12iag NdX�=1 �U�(x)� Uy�(x)� U�(x� �̂) + Uy�(x� �̂)�� �(x)352(B.4)towards zero [70].As U�(x) is an element of the Lie group SU(2) and �(x) is an element of the Liealgebra su(2), we can use the following parameterizations:U�(x) = a4�(x)11+ i~a�(x)~� with ja�(x)j2 = 1 ; (B.5)�(x) = ~b(x)~� : (B.6)From Eq. (B.4) we haveH = 1V Xx ������ 1ag NdX�=1 (~a�(x)� ~a�(x� �̂))~� �~b(x)~�������2 (B.7)



76 APPENDIX B. LATTICE GAUGE FIXING= 1V agXx ������ 3Xk=18<: NdX�=1 �ak�(x)� ak�(x� �̂)�� ag bk(x)9=;�k������2 (B.8)= 1V a2g2 Xx ����� 3Xk=1 ck(x)�k�����2 (B.9)= 4V a2g2 Xx �(c1(x))2 + (c2(x))2 + (c3(x))2� : (B.10)In (B.9) we de�nedck(x) � NdX�=1 �ak�(x)� ak�(x� �̂)�� ag bk(x) : (B.11)To obtain H = 0 one therefore needs to haveck(x) = 0 8x and k = 1; 2; 3 : (B.12)This is equivalent tobk(x) = 1ag NdX�=1 �ak�(x)� ak�(x� �̂)� 8x and k = 1; 2; 3 : (B.13)Using (B.5) we can estimate the right hand side of (B.13). It followsjbk(x)j � 2Ndag 8x and k = 1; 2; 3 : (B.14)However, condition (B.14) is in general not satis�ed. Using �k�l = �kl + i�klm�m,Eq. (B.6) yields �2(x) = b2(x)11 : (B.15)Inserting this result into (B.3), we obtain for the probability distribution of thelambda matricesP (�(x)) � exp�� 1� �(b1(x))2 + (b2(x))2 + (b3(x))2�� (B.16)= 3Yk=1 exp�� 1�(bk(x))2� : (B.17)This means that every bk(x) is Gauss distributed. Therefore one can not assumethat for each lattice side x and for each k = 1; 2; 3 the gauge condition (B.14)holds, which means that one can not �x the covariant gauge on a lattice withoutmodi�cation.Our �rst proposal to modify the covariant gauge is to create the bk's according toa \cutted" Gauss distribution. This means that the bk's will be distributed with



B.2. COVARIANT GAUGE ON THE LATTICE 77the Gaussian weight (B.17) and underlie the additional restriction (B.14) or an evenstronger restriction.A second possibility is to rede�ne the �-matrix on the lattice [75]. Inspired byrelation (2.6) we de�neU�(x) � 1iga (11� expf�iga�(x)g) : (B.18)Using U�(x) instead of �(x) in (B.4) it should (in principle) be possible to realizethe covariant gauge �xing procedure on the lattice.It remains to quote that in the continuum limit, i.e. for a! 0, both modi�ed gaugeproposals result again in the covariant gauge.
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