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Chapter 1

Introduction

This work is about the observable effects of the interactions of the electroweak vector-
bosons among each other, which are expected to manifest themselves in experiments at
the Large Hadron Collider (LHC) at the CERN.

The determination of the self-interactions of the electroweak vector-bosons is one of
the important remaining experimental tasks in the verification of the predictions of the
standard model of the electroweak interactions [1]. Definite values of the coupling con-
stants for vector-boson self-interactions are predicted in the standard model. These values
are the consequence of an assumed local gauge symmetry principle. This symmetry prin-
ciple could also explain the origin of the masses of the vector-bosons and their coupling
constants to the known fermions. The masses would occur as a consequence of a sponta-
neous breakdown of the symmetry caused by a non-zero vacuum-expectation value of a
so far undiscovered particle, the scalar Higgs boson [2].

The standard model has so far stood all experimental tests and its predictions have
been succesively verified. The weak vector-bosons, the mediators of the weak force, have
been discovered by the CERN UA2 and UA1 collaborations [3, 4] in 1983. Since then,
many experiments have been carried out in order to further test the theory. Particularly
remarkable were the recent precision measurements of the LEP 1 collaborations at CERN
and the SLD collaboration at SLAC (recent reviews are [5, 6]). With these measurements,
the theory was tested at the level of radiative corrections and some parameters of the
theory were determined with an unprecedented accuracy. The predictions of the standard
model concerning the couplings of the vector-bosons to fermions were confirmed. Recently,
evidence for the existence of a sixth quark, the top quark, which is predicted by the theory,
has been reported by the CDF collaboration at FNAL [7].

Largely untested so far remained the self-couplings of the electroweak vector-bosons.
Also, there is so far no experimental evidence for the existence of a Higgs particle. Re-
cently, first direct experimental limits on the magnitudes of vector-boson self-couplings
were obtained [8, 9]. These limits are in agreement with the standard predictions, but a
more precise determination of the couplings is necessary in order to draw firm conclusions.
In the near future, an inprovement of the limits can be obtained from measurements of
the LEP 2 experiment at the CERN [10, 11]. A still more precise determination could
come from measurements of vector-boson—pair production in the CERN LHC-experiment
[12] of colliding protons. In this work we investigate to what extent possible deviations
from the standard model can be ruled out in future measurements, assuming that the
measurements will be actually in agreement with the standard model predictions.

We will first have to discuss how to parametrize anomalous (= non-standard-model)
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vector-boson self-interactions with minimal model-assumptions. The parametrization of
vector-boson self-interactions has been the subject of a number of publications. Let us
consider for the moment only the interactions of three vector-bosons with each other
(trilinear interactions). Let us restrict ourselves to interactions which do not violate the
charge-conjugation-symmetry (C) or the parity-symmetry (P). There are two different
interactions (vertices), which exist already in the standard model, namely the vertex of
a photon () with two charged vector-bosons (W* und W~) and the vertex of a Z-
boson with two charged vector-bosons. For each of these vertices there are three different
interaction-terms, which are invariant under transformations of the Lorentz group. Two
of these terms are already present in the standard model. In the yW+W —_vertex, the
coefficient of one of these terms is determined by the requirement of electromagnetic gauge
invariance. Symmetry considerations lead to the omission of two further free parameters
{cf. Chapter 2). With a minimal set of theoretical assumptions, the trilinear interactions
can therefore be described by three free parameters (to be called anomalous couplings in,
the following). The couplings can be chosen as coefficients of gauge-invariant terms of
mass~dimension six and will be called ew, ey and egg here.

Concerning the phenomenology of anomalous vector-boson self-couplings, it was noted
that anomalous couplings would manifest themselves in hadron-hadron collisions at large
scattering energies. The manifestation would be a modified production rate for pairs
of electroweak vector-bosons. This signature will be especially manifest for large in-
variant masses of those pairs or for large transverse momenta of the produced vector-
bosons. Of the possible types of vector-boson pairs with at least one massive vector-
boson, WHW—, W*Z, Wy, ZZ und Zv, not all pairs are equally relevant for the
investigation of anomalous couplings. The production of ZZ- or Z-pairs, proceeding via
the dominant g§'-annihilation process, does not receive a contribution from vector-boson
self-interactions. The production of these pairs will therefore not be considered here.
The experimental analysis to identify W+W ~-pairs is problematic, because in the purely
leptonic decay of this pair two (not detectable) neutrinos appear, while the hadronic de-
cay modes must be seperated from QCD-background-processes [13] and top-quark-pair
production-processes {(with a subsequent decay of the top-quarks into a W-boson and a
b-quark) [14]. Both background-processes have higher event rates than the signal from
vector-boson pair-production, unless one applies sophisticated kinematical cuts. We wili
therefore not consider W+W -production here. In contrast, the analysis of produced
W*Z- and W*~y-pairs will allow for an unbiased test of vector-boson self-interactions at
the LHC [15]. With W*Z-pairs, one tests the ZW*W ~-vertex, while through an analysis
of W*y-pairs, the YW W ~-vertex is investigated. An analysis of the YW*W~ Vertex
will give a bound on the sum ews + e and on the parameter ey, while an analysis of
the ZW W ~-vertex will allow one to derive bounds on all three anomalous couplings. In
this work, we will investigate W* Z-production in the process pp — WZX, W = W or
W~, at a scattering-energy of \/s = 14 TeV. This is the scattering-energy for the planned
LHC-experiment. Results of similar relevance could be obtained from an investigation of
the process pp — W+ X.

The production of vector-boson-pairs, V3V4, in future multi-TeV proton-proton col-
lisions (i.e. for LHC or SSC energies, /35 > 10 TeV) has been investigated by many
authors. Cross-sections for pp — V3V, X in the standard model have already been given
in {16, 17]. It was assumed that the V3Vy-pairs are produced in the quark-antiquark an-
nihilation processes ¢§ — V3V4. In analogy to the production-processes of lepton pairs,
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g7 — 1™, these processes have been called Drell-Yan processes in the recent literature.
'The Drell-Yan process is the one which receives contributions of lowest order, O(a?) in
the cross-section, in an expansion in powers of the coupling-constant o. The influence of
anomalous couplings on the cross-sections was investigated in the following and upper and
lower values (sensitivity limits) for the anomalous couplings were derived, which would,
in view of the expected experimental errors, still be consistent with a measurement which
is in agreement with the standard predictions [18]-[24]. The initially made simplification,
that only one parameter at a time is allowed to deviate from its standard value, was later
improved. Sensitivity limits were derived, which made no assumption on the magnitudes
of the respective other couplings. Further, O(c,) radiative corrections were calculated
and included in the analysis of anomalous couplings [25]-[29].

Vector-boson pair production was also investigated in model-scenarios, in which lon-
gitudinally polarized W*- and Z-bosons interact strongly [30]. In these models, another
type of reaction for vector-boson—pair production had to be considered in addition to
the Drell-Yan processes. In these processes, two quarks ¢; and g, (they might also be
antiquarks) react with each other and produce two other quarks ¢/ and ¢, as well as
two vector-bosons Vi and Vi, q1g2 — ¢jgiVsVa. The cross-sections for these reactions
are formally of higher order, O(a?), in an expansion in powers of the coupling constant.
The calculation of these cross-sections was done at first in the framework of an effective
vector-boson aproximation (EVBA) [31, 32, 33]. Such an approximation is based on the
observation, that fermions of a high energy (here the quarks ¢; and ¢») can be considered
as the source of vector-bosons (V3 and V), which are radiated off in the forward direc-
tion. These vector-bosons then initiate a scattering process, in which e.g. a V3V -pair is
produced. The approximation is in close analogy to the effective photon approximation
(EPA) (Weizsicker-Williams-approximation) of QED [34].

The concept of the EPA is plausible, since the emission in the forward direction of
an on-shell massless vector-boson from a fermion is kinematically enhanced if the mass
of the fermion is very small against the energy of the fermion. High-energy fermions
can therefore indeed be considered as a source of on-shell photons. In the EVBA, the
cross-section for a process ¢192 — ¢}g5VsVi can be determined from the cross-sections
for vector-boson scattering into V3V, and emission probabilities of vector-bosons from
fermions. The emission probabilities of a pair of vector-bosons from a pair of fermions,
as it is the case here, have been called luminosities, L{;%, . The step from the photon
approximation to the vector-boson approximation consists of the additional requirement
that also the vector-boson masses have to be very small against the fermion-fermion
scattering energy.

Returning to the consideration of the processes g0 — ¢'14',V3Vs in proton-proton
collisions, we note that the vector-boson-vector-boson scattering processes ViV, — V2V
appear as a subprocess to the subprocess. The vector-boson scattering processes can have
very large cross-sections in a strongly-interacting scenario and therefore had to be taken
into account. Corresponding investigations have been made in [35, 36, 37, 38]. The appli-
cation of the EVBA to the W Z-production process ¢1gs — ¢',¢',W Z was at first restricted
[35] to the calculation of the difference of a cross-section in which a heavy Higgs particle
Mp ~= 1 TeV is assumed and a cross-section in which a light Higgs-particle My =~ 100
GeV is assumed (This difference shows an interesting behavior in a strongly-interacting
scenario and was therefore considered as a signal for strongly interacting vector-bosons.).
Only scattering-processes with longitudinally polarized vector-bosons contribute to this




quantity. This is because the dependence of polarized cross-sections on the mass of the
Higgs particle is small for cross-sections with at least one transversely polarized particle.
In contrast, the dependence is very large if all external particles are in the longitudinal
polarization state. Thus, the EVBA was only applied to longitudinally polarized vector-
bosons. In [36] the application of the EVBA was extended to the entire cross-section.
Thus, the contributions from all polarization states of the intermediate vector-bosons
were calculated within the EVBA. Following this calculation, the rate of W Z-production
in pp-collisions at the LHC through the processes ¢;g2 — ¢';¢'sWZ would amount to
about 57% of the rate from the Drell-Yan processes!. A complete perturbative calcula-
tion to lowest order (O(a?)) [37], however, led to a different result, namely that the rate
via the ;igo — ¢'1¢',W Z production processes is only 17% of the Drell-Yan rate?. The
discrepancy between the two calculations thus amounts to a factor of 3. We will see that
this discrepancy can be traced back to deficiencies in the conventional formulation of the
EVBA. The discrepancy almost disappears if one uses an improved verison of the EVBA.
This version will be introduced here. It will become manifest that the conventional ver-
sion is based on an approximation which overestimates the contribution from transversely
polarized intermediate vector-bosons.

The EVBA in its conventional form was also applied in investigations about the observ-
ability of anomalous couplings. In the framework of chiral perturbation theory, anomalous
couplings were investigated in [39]. This theory amounts to the introduction of anomalous
couplings in the strongly-interacting scenario.

A simultaneous investigation of Drell-Yan production and of the g190 — ¢'14'5V3Vs-
processes for an SU(2);, x U(1)-invariant dimension-6 extension of the standard model,
as we consider it here, has been made in [40, 41]. The effects of the coupling e have
been discussed there. The calculations were based on the conventional EVBA, however.
Since the authors of [40, 41] were mainly interested in the investigation of ratios of cross-
sections for the production processes of different vector-boson pairs, this treatment does
not necessarily lead to inconclusive results. Concerning the ratio of g1¢0 — ¢'1¢';W Z-
processes to Drell-Yan processes, however, the treatment of [40, 41] again leads to a value
which is similarly large as the one of [36], namely 52%3. This large value is again not in
agreement with the result of the exact calculation in [37].

Concerning the V1V — W Z processes, it is known that the ratios are considerably
affected by the presence of anomalous couplings. Similarly, the Drell-Yan rate is also
affected. An investigation remaining to be done therefore concerns a more quantitative

1The calculation [36] was for pp-collisions at 1/3 = 16 TeV and the cross-section for the production
of W Z-pairs with invariant masses in the interval 0.5 TeV < Mwz < 10 TeV was computed. Cuts were
applied to the rapidities y and the transvere momenta py of both produced bosons, |y| < 1.5 and pr > 10
GeV.

*In the calculation [37), the cross-section for W+ Z-production at /5 = 16 TeV was calculated. The
cross-section was integrated for transverse masses My > 0.5 TeV of the W+ Z pair. Differents cuts than
in [36] were applied, namely a rapidity-cut on the decay-products of the vector-bosons, jy(l)| < 2.5, and
cuts to remove small transverse momenta of the decay products. The exact choice of the cuts, however,
does not very much affect the ratio of the rates. As an example I note that the calculation of [36] was
also carried out for the case |y| < 2.5. Although the Drell-Yan rate increases by a factor of 5.9 with this
choice of the cut, the rotio of the rates does only change from 57% to 64%.

3In [41), the cross-section for W Z-production in pp-collisions at /5 = 14 TeV has been calculated. A
rapidity-cut of Y = 2 was applied to the produced vector-bosons. The ratio of the rates was not explicitly
computed. I have repeated the calculation of [41] and have established agreement with the results of [41].
After that, I carried out the same calculation for W Z-production and used a cut of n = 1.5. I find that
the ratio of the rates is 52% if the cross-section is integrated over the region 0.5 TeV < My z < 2 TeV.
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comparison of the rates of the V1Vo — W Z-processes and the ¢ — W Z-processes,
including the presence of anomalous couplings. Such an investigation will be carried out
here. A necessary ingredient of the investigation is a more precise determination of the
rate of the gigo — ¢'1¢"sW Z-processes.

Exposition

This work is organized as follows: In Chapter 2 the parametrization of self-interactions of
electroweak vector-bosons is introduced. Chapter 3 contains a discussion of the different
mechanisms, by which a vector-boson pair can be produced in hadron-hadron collisions.
In Chapter 4 the improved formulation of the effective vector-boson approximation is
derived. Also, existing formulations of the method are discussed and compared to the
improved treatment. The formalism of the improved EVBA for hadron-hadron collisions
is introduced in Chapter 5. Comparisons with exact calculations for pp — ZZX are
presented. In Chapter 6, the cross-sections for the process pp — WZX and for its
sub-processes are discussed. Chapter 7 contains the analysis of anomalous couplings
in pp - WZX at the LHC. Confidence intervals for anomalous couplings are derived
and compared to the current experimental limits. Appendix A contains details of the
derivation presented in Chapter 4. Approximate analytical formulae for vector-boson
scattering cross-gections can be found in Appendix B.




Chapter 2

Parametrization of Vector-Boson
Self-Interactions

Vector-boson self-interactions have been parametrized by a number of authors [19],[42}-
[52]. The parametrizations differ concerning the theoretical assumptions which have been
made. We will follow the treatments of [52].

2.1 Self-Interactions in the Standard Model

We briefly review the bosonic part of the standard model and fix the notation to be used.
The part of the Lagrangian of the standard model, which describes the propagation of
the free vector-bosons W=, Z, v, the free (postulated) scalar boson H (Higgs boson) and
the triplet of the scalar fields ¢;,4 = 1, 2,3 (Goldstone fields), as well as the interactions
of these particles among each other, is given by the expression,

Lsm,bosonic = Lww + Las + Loo, (2.1)
with
CWW = — }z-tr[W'un“y] .
1
Lpp = "‘Etr[B'WB#v]:
1 u? 1 2
_ i = ie) _ = ¥
Los = Ftr [(D*®){(D,®)] 5 (®18] — 22 (tr[@t®)) . (2.2)
In (2.2),
W = BRWY — FWH +ig W),

B® = @“BY—@"B, (2.3)

are the field strength tensors for the vector-bosons (written in matrix form) and the
expression

1
¢ = _ﬁ ((‘U + H)l + iqb,-'r,-) (24)
contains the scalar fields. The expression
DFP = P +igWHhD — ig'®B* (2.5)

9
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is the covariant derivative for these fields. The fields W}, ¢ = 1,2, 3, represent the gauge
fields of the weak isospin and are described by the matrix W# = W#r,/2. The matrix
B* = Bi13/2 contains the field Bf, which is the gauge field of the weak hypercharge Y.
Further, g is the coupling constant for the fields of the weak isospin and ¢ is the coupling
constant for the field of the weak hypercharge. The quantities u and X are constants,
which describe the masses and the self-interactions of the scalar fields. It is assumed that
2 is less than zero, so that the Higgs boson acquires a non-zero vacuum-expectation value

o=y (26)

"The gauge-bosons acquire their masses as a result of this non-zero value. I point out that
the Goldstone fields are unphysical states, i.e., they do not appear in external states, but
only as virtual quanta. In the unitary gauge, they disappear completely. The symbols
Ti,t = 1,2, 3 denote the Pauli matrices, 1 is the unity matrix in two dimensions, and 7 is
the imaginary unit. The Lagrangian (2.2) does not change its form under local transfor-
mations belonging to the combined group of the weak isospin and the weak hypercharge,
SU(2)wr x U(L)y. Under such a transformation, the fields transform according to

WE — SWHSt - gsaﬂsf, (2.7)
with .
S =exp (z’gaié) , o =oy(x), i=1,2,3, (2.8)
and T
B'— B" - 0", B=p(2), (2.9)

where a;,1 = 1,2, 3, are the parameters of the SU(2)w; gauge transformation and 3 is
the parameter of the U(1)y gauge transformation. Under the symmetry transformations
(2.7) the field strength tensors transform according to

we > SWH St

B¥ — B*, (2.10)

and the scalar fields according to
® — SPo, o=exp (—ig'ﬁ%) ,
D*® — S(DF®)o. (2.11)

In the unitary gauge, in which the Goldstone fields disappear, ¢; = 0, and by resolving
the matrix notation, the first and the third term in (2.2) take on the forms

1 = - - - - - - 2
Lww = —7 [(W“")A (Wi)a =29 - (Wu x Wo) + ¢ (W x W) ] , (2.12)

and

1 Mp 2, 1o 2pa7 a7~
Lop = ia“HauH——z-—H +Zg (’U‘f‘H)W‘uW”

1 2 —aa 3
+= (v -+ H) (WE, Bl ( g 99)( Vi )
8( ) ( 3 0) __ggr gr2 (Bo)u
M? 3 5 Mfl H4+2MEIM3V.

H
_ - 1
Yo "9 Mg 92 (2:13)
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In (2.13), W is the vector composed of the fields W;,i = 1,2,3, and (W"‘W )4 is the
Abelian part of the vector of field strength tensors, W#”. The Abelian and non-Abelian
field strength tensors are related through

WH = (W), — gWH* x W, (2.14)

The connection to the matrix-valued field strength tensors is given by the relation W# =
W} r; /2. The quantity My = gv/2 is the mass of the charged vector-bosons W=#, which
are defined by

Wk = _15 (WEF i Wh), (2.15)

and My = v/2Av is the mass of the Higgs boson. The first two terms in (2.13) describe
the free Higgs field, the following two terms the masses of the electroweak vector-bosons as
well as interactions of the vector-bosons with the Higgs boson, the fifth and the sixth terms
describe self-interactions of Higgs bosons and the last term is a physically meaningless
constant. ‘

The removal of the non-diagonal mass-terms in (2.13) is achieved by the transition
to the physical, neutral vector-boson fields A* (the photon) and Z*, which are linear
combinations of By and W§',

A* = Cng + Swwg,

Zhr = —-Sng + wa;;‘. (2.16)
In these relations, sw = e¢/g and cw = e/¢’ are the sine and the cosine of the weak mixing
angle (Weinberg angle). They are related to each other by s, + ¢&, = 1. The quantity
e > 0 is the unit of charge. We also note that ey = My /M.

The self-interactions of the vector-bosons are contaired in the term Lww, (2.12), and
the trilinear interactions containd therein are given by

1 — — ah
Lavpsu = 59 (WHh4 - (W_u X W,,)

= —ie [A (W) AW = (W) AWy ) + (F) AW W]
—ie 2L [Z,((W )W, — (WH)aW;) + (2) AW W] (217)

The quantities
(W:I:,u.u)A = auW:tu _ auwi.u,
(Z")a oHzZY — 9¥ZH,
(F*)a = 8*AY ~ 9" A*, (2.18)

i

in (2.17) are the Abelian field strength tensors for the physical fields. Concerning trilinear
interactions, the standard model thus contains a yW*W~ and a ZW*+W~ interaction,
given by (2.17).

2.2 Parametrization of Anomalous Self-Interactions

Anomalous vector-boson self-interactions can be represented as additional terms to the
Lagrangian of the standard model. To parametrize such terms, we consider the general
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form of a Lorentz-, C- and P- invariant interaction without higher derivatives! between
a neutral vector-boson V and the charged vector-bosons W*. This interaction can be
expressed with the help of three free parameters, gv, kv and yv, [42],

Lyww = —iegy [Vy((W""”),qu — (W) W) + Ky (V“”)AWJ‘IJ/;]
+z'eﬂy4—%(Vu”)A(W,j")A(Wf“)A. (2.19)

The general VW W ~-vertices (2.19) for the vector-bosons V = « or V = Z contain
the interaction-terms of mass-dimension-6 (2.17) of the standard model, however with
arbitrary coupling constants gy and xy. In addition, they contain a dimension-6 inter-
action with the coupling strength yy. The parametrization (2.19), applied to yW+W~-
and ZW W ~-interactions, thus contains the six free parameters g., oy, ¥y, 9z, 6z and yz.
The coupling g, must not deviate from its standard value g, = 1. This follows from the
demand of electromagnetic gauge invariance. To see this we note that the kinetic term
for the charged vector-bosons contained in (2.12) ,

__% Z (MW)A(W:;,,)A _ —%(W"'“”)A(W};)A (2.20)

18 not gauge invariant by itself. Only the sum

1 . - v -
—§(W+“”)A(WL)A—16AM((W AW, — (WH) W)
—SPAFAW YW, — AFAW I (2.21)

exhibits this symmetry.

Another parametrization, equivalent to the one of (2.19), has been given in [47]. The
parameters introduced in this reference will be denoted here by gZ, k7, k%, X7 and A%,
They are related to the parameters of (2.19) by

z _ Sw
5 = E“—gz,
' = Ky,
K‘Z = S_"KQZK:Z?
cw
AT = oy,
A = g-?vf-—yz. (2.22)

To clarify the discussion to follow, we elaborate on electromagnetic gauge transforma-
tions. These transformations are a special case of the SU(2)w s x U(1)y-transformations
(2.7), defined through the following choice of the parameters: oy = a3 = 0, a3 = g X, =
ﬁx. Under electromagnetic gauge transformations, the physical fields transform according

!Terms with a second or even higher derivative with respect to the space-time coordinates on the fields
are not considered. These terms imply higher divergences in loop-graphs and are therefore theoretically
and phenomenologically disfavored. In addition, these terms can be eliminated in the context of an
effective Lagrangian theory with the help of the equations of motion [53] if one assumes that the anomalous
couplings are small.
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to
W*k  —  exp(diex) W*+
WwEw exp (1 )W*”"’
¢ o Z*
Zw sz
(Z")a = (2")a
A¥ 5 A¥ - PPy
F#o .
(F¥)a — (F*)4, (2.23)

where y = x() is the parameter of the electromagnetic gauge transformation. In (2.23),

1

W = \—E(vaq:m”):(W*W)A:m'g(wg*vvﬂ—W;W*ﬂ),,
29 = —swBY +ewW3Y = ()4 +ie s (WHW™ ~WHW™),
P = cyBl +swWi* = (F™), +ze(W+”W"" WEW ), (2.24)

are the non-Abelian field strength tensors. In (2.24), By” = 8*By — 0" By.
The difference of the general Lagrangian, obtained from the parametrizations (2.19)
with the restriction g, = 1, and the standard Lagrangian, (2.17), is given by the expression

£3VB,anom = —1ie m’r(Fuy)AW:W; —ie xZ(ZHV)AW;W;
—-z‘e&z [z (W) AW = (W) W) + (Z9) W W |

(F ") alW ) a(Wi*)a

—l—ze (Z NaWo M) a(WiH) a. (2.25)

The Lagrangian (2.25) contains five free parameters,

zz = gz(kz —1),
§z = gz— -, (2.26)
Sw

as well as y, und yz, which each take on the value zero in the standard model. Alter-
natively, small deviations from the standard values of the couplings in (2.22) have been
defined [20] by

Agf = gl -1= _523
AT = —-1= x.,,,
AkZ = kP -1= f-"Y-(Iltz +dz),
AT = Yy
o= W, (2.27)
cw
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where also the relations to the parameters of (2.25) have been given in (2.27).

We modify the Lagrangian (2.25) by using the non-Abelian field strength tensors W+
instead of the Abelian ones, (W*#¥) 4. This brings (2.25) into a manifestly electromagnet-
ically gauge invariant form. If one also uses the non-Abelian forms F#* and Z* instead of
the Abelian forms, one obtains from (2.25), after a transformation back to the W;B-basis,
the Lagrangian

ﬁint,anom — _'231% {V'['/—,uu ' (Wu X Wu) +2‘iZ_VWV'(-BO)ﬂ(W—#VWj - W+FVW;)]
—i—czB{,"’W: W,
+es W WIW;
3 C4 — A
—Em(Wa);WV Wi
Cs A P +
M (Bo) YW, AWiHe, (2.28)
with the coefficients
c1 = iecwlz
ez = —telcwsy — swZz — swlz)
cz = —ie{ewzz + Sw:lt,r)
2.
Cqg = —Eze(cwyz—l—swy'y)
cs = ie(swyz — cwyy). (2.29)

"The parameters in (2.29) are imaginary quantities. The Lagrangian (2.28) describes the
trilinear interactions (2.25) and in addition self-interactions of four or more vector-bosons.
These latter interactions have been introduced by the use of the non-Abelian field strength
tensors. The terms described by ¢, ¢z and ¢; are of dimension-4, while the ¢, and c¢5 terms
are of dimension-6. In matrix notation the Lagrangian (2.28) takes on the form

2¢;tr { (W" - %Bﬂ) W, (W" - %B")]

2¢otr[ B W, W, ]
catr[sWH tr[rs W, V,)]

C4

e[ W YW, AW,

Eint ,anom

+ o+ o+ o+

25 tr[BYW, W, H). (2.30)

Symmetry arguments make the existence of some of the interactions in (2.30) appear less
likely to be realized in nature than others. For the case ¢; = 0 there exists a global
SU(2)w; weak isospin invariance which is only broken by the presence of the B-field
[19, 46]. The corresponding symmetry transformation is given by

W SU@%obal SW“Si, (2.31)
with

S =exp (igw,--;i) , i=1,2,3, (2.32)
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where the w; are parameters which are no functions of the space-time coordinates. Such
a symmetry is being respected by all the known interactions. If one admits, in addition,
only those of the dimension-6 terms, which respect the SU(2)w invariance in an unbroken
form, [45], one obtains the restriction ¢5 = 0. Thus, SU(2)w; symmetry considerations
lead to

C3 = Cg = 0. (233)

We can bring the Lagrangian (2.30) into a gauge-invariant form by re-introducing the
scalar fields. In a first step, the Goldstone fields are introduced into (2.30) in a non-linear
form,

U =exp (:—)gb{r,) , (2.34)

by means of a Stueckelberg transformation [54],

WE = UfWﬂ-U—-;-U*a“U,
B* - B- (2.35)

This transformation brings the Lagrangian (2.30) into an SU(2)w; xU(1)y invariant form.
In contrast to the SU(2)wr x U(1l)y-symmetry of the standard model, this symmetry is
realized in a non-linear way. The corresponding symmetry transformations are given by
(2.7) and {2.10) for the vector-bosons and

U~ SUc (2.36)

for the scalar fields. The introduction of the Higgs boson into the anomalous interaction
terms is achieved by the transformation [55]

U— ?@, (2.37)

where @ is the quantity defined in (2.4). The transformation (2.37) implies that instead of
the complete polynomial of the exponential function in (2.34) only the constant term and
the term linear in the Goldstone fields is kept. After the change of normalization from U
to ®, given by (2.37), the constant term of ® becomes the vacuum-expectation-value of
the Higgs field. To this term, the field of the physical Higgs particle, H, is added.

The application of the combined transformations (2.35) followed by (2.37) can be
described in a single step by the transformation prescriptions

gl
L _2_npe
w gB — 2M2
pv g’
WwH — CTYER
B* — BH*,
B¥ — B¥, (2.38)

PN (DHe) = im-tr (D“<I>)T<I>

The transformation of W*# was only given in the combination W# — ¢'/gB* in (2.38).
The reason for this is that the terms (2.30) de facto only contain this combination. To
see this, we note that the c,- and ¢z-terms in (2.30) are invariant under the substitution
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WEWY — (WH — -"giB“)(W” - %’-B”). The application of the transformation (2.38) to the
Lagrangian {2.30) leads to the Lagrangian

'
*Cint,a.nom,gauge = M2 —Lwe + ZMW Lps — mﬁ we

4ol Lw (2.39)

2 M2,

Lw +ig" 2M4

where the expressions
Lwe = itr[(D*®)'W,,(D"®)],
Lpe = ztr[(D“@)B A DD )]
[

Lwe = itr Z(D’*‘@) (D"(I))]tr[ Z2otw,, ),
2 ,
Ly = —gztr[Wu W, W, ",
L'w = —2itr[B/®'W, W, ®] : (2.40)

are SU(2)z x U(1)y-invariant interaction terms. The Lagramgian (2.39) exhibits a local
SU(2)wrxU(1)y symmetry with a linearly realized scalar sector. The corresponding sym-
metry transformations are (2.7), (2.10) and (2.11). The interaction-terms (2.40) have been
discussed by various authors in connection with anomalous vector-boson self-interactions
[48, 49, 50, 51, 52].

The Lagrangian (2.39) contains the interactions of the Lagrangian (2.30) and, in ad-
dition, interactions of one or more Higgs bosons with the electroweak vector-bosons. Not
for all terms in (2.40) the dimensions are the same as the dimensions of the corresponding
terms in (2.30); the ¢3- and cs-terms in (2.40) are of dimension-8, while the ¢;, ¢~ and
cq~-terms are of dimension-6.

In summary, the Lagrangian {2.39) is a general extension of the trilinear self-interactions
of the standard model if one does not allow for C- or P-violating interactions.

2.3 Small Deviations from the Standard Model

One expects that the magnitudes of the coefficients c3 and ¢; in (2.39) are small against
the one of the coefficients ¢,,cs and c4 if one assumes the approximate validity of the
standard model. This validity is assumed to be broken only through effects of virtual
particles with masses which are very large compared to the masses of the known particles.
We assume that the validity of the standard model is given below a certain energy scale,
represented by the quantity A. An estimate about the magnitudes of the couplings follows
from a general consideration about effective Lagrangians [44].

One assumes the validity of a self-consistent, in particular renormalizable, theory, T,
below the scale A. The paramter A can be the scattering energy of a scattering process
to be considered. Connected with the theory T is a certain symmetry group and the
Lagrangian Ly. Fields, which appear as free fields only above the energy A, can, due to
their quantum nature, already lead to observable effects below the scale A. These effects
can be described by interaction-terms £ 7,3 =1,2,..., which have to be added to the
Lagrangian Ly,

Ly
Lo = Lo+ &7 (2.41)
g
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In (2.41), d; is the dimension of the term £j", M is a mass scale which is typical for
the theory T (e.g. the mass of one of the particles of the theory) and the quantities &;
are coefficients for the interaction-terms. We can estimate the order of magnitude of the
coefficients if we refine our assumption about the approximate validity of T by demanding
that the Lagrangian (2.41) reduces to the Lagrangian £y in the limit A — oo. In this case
it is possible to identify the effective Lagrangian (2.41) with an expansion of the effects
of an underlying (unknown) Lagrangian with higher symmetries and additional particles.
The expansion is carried out in powers of the parameter M/A. The Lagrangian (2.41) is
thus of the general form

Lg=Lo+ Y %Ljf) + ¥ %ﬁ}ﬁ) e (2.42)
j Kj

where § is a coupling constant which is typical for the fields contained in ﬁj" (for the
standard model, § can be g,9' or e). By comparison of (2.41) with (2.42) an order of
magnitude estimate for the coefficients &; can be given,

;=0 [g ("]]‘({) dj"4] . | (2.43)

Further, since the terms ﬁj" are to contain only the particles of the theory T, we assume
the same symmetry for these terms as for the Lagrangian L.

Applying now this discussion to the standard model for vector-bosons and their in-
teractions, taken as the model T, one can take for M the masses of the charged vector
bosons?, M = M. If the sum in (2.41) is identified with the Lagrangian (2.39), one
concludes that the coupling strengths g?c; and g2cs in (2.39) are smaller by a factor of
the order O (MZ,/A?) than the couplings ¢, ¢; und ¢4 in (2.29)%. The couplings ¢;, ¢, and
¢4 are of the order of magnitude

2
C1,€C2,C4 = o (A._]l_ip?v_) . (244)

If A is in the range 1 TeV < A < 2 TeV, the suppression of ¢; and ¢s5 with respect to

c1, ¢z and ¢4 is of the order of magnitude O(10~%). One should not forget that the above

considerations assume the approximate validity of the standard model below a certain

energy scale A. The assumption in turn requires that a Higgs boson with a mass My < A

exists.

The neglect of the ¢3- and cs-terms in (2.39) leads to the relations

Z = CWIC
2 ] swr Z
w
y’)’ = Yz, (2.45)
cw

among the parameters in (2.25). We see that we obtain the same two restrictions, ¢z = 0
and ¢5 = 0, as we did previously from SU(2)w-symmetry considerations, Eq. (2.33). For

%In this context, the difference between the mass of the neutral vector-boson and the one of the charged
vector-bosons is not significant.
3Note that g2 ~ 0.4.
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the non-suppressed terms in (2.39) we introduce the parameters ¢, éwe and €ge (instead
of ¢1,¢; and ¢4) and obtain the Lagrangian
I

Ling = GWQ“A'ZQ“%;EWQ -+ €B¢m£3¢ + ew—5- Mz ——Lw. (2.46)

The relations between the parameters ¢;,7 = W, W®, B®, and the parameters in (2.25)
with the restrictions (2.45) are given by

Sw
fw = % % = ayz,
EWwe = -—‘Z%L = Swewdz,
) c
€ps =12 = —L(zz+ 5%6z). (2.47)
g Sw

The expected order of magnitude of the parameters ew, ews, ege in (2.46), following from
(2.44), is given by

O My 2
ew,ewe, €pe = O | —5- |- (2.48)
For 1 TeV < A < 2 TeV the expected order of magnitude is

0(10—3) S €W, EWd, EBD S 0(10_2) (249)

I note that effective interaction-teris are also generated by radiative corrections already
in the standard model. The coefficients for such terms are of the order of magnitude
O(e/x). They are thus of similar magnitude as the couplings in (2.49).

The independent parameters dz,zz and yz, with z, and y, following from (2.45),
might be used instead of the parameters ey, ews and eps. These parameters are given in
terms. of the ¢; by

5, = fwe
z o )
Tz = ""‘W‘(GW& +€pa),
Cw
cw
Yz = —¢w,
Sw
Ty = €two +€Bs,
Yy = ew. (2.50)
Equivalently, the parameters (2.27) with the restrictions
¥ s z z
Aﬁ} = '—"'Z—'(AE —-Agl ),
Sw
X o= A% (2.51)

which are equivalent to (2.45), might be used. The relations between the parameters
(2.27) and the ¢; are given by

€
z _ W
Agl - C2 H
W
AgY = ewe + €po,
Z sy
Ar® = ews — —<-€Ba,
Cw
AT = €W,

M = ew. (2.52)
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For W Z-production via ¢g’-anihilation, only the three parameters of the ZWW-coupling,
gz (or 6z), zz and yz, or, equivalently, AgZ, Ax? and AZ, contribute. As another set
of three independent parameters for the ZWW-coupling we might choose the parame-
ters ew, €we, €pa. From (2.47) one obtains, taking into account the relations (2.45), the
relations

[#
gz = _W(l'}'m)a

Sw C%V
Sw
zz = ——(ewas + €Ba),
ew”
Yz = —¢€w, (2.53)
Sw

which have in part already been given in (2.50). We will refer to (2.53) later. Similarly,
following from (2.52), one obtains the relations

tw = /\Z,

twe — C%VAglzf
Az Caz

tpyp = TAgl ——'é-AKJ ’ (254)
S Sw

which we will also use later. Likewise, in Wy-production via ¢g'-annihilation, only two
independent parameters contribute. These parameters might be taken as x, and y, or
AxY and A7 or, equivalently, ews + €go and ew. '

We note that the Lagrangian {2.46) is a general parametrization of C'— and P-
conserving self-interactions of vector-bosons (excluding higher derivatives and modifi-
cations of the interactions between fermions and vector-bosons) in the framework of an
extension of the standard model by gauge invariant dimension-6 terms. This has been
discussed in [52, 56]. Due to their gauge invariant forms, the interaction-terms in (2.46)
contain various additional interactions, in particular those of four vector-bosons among
each other and interactions of vector-bosons with Higgs particles. These interactions, if
relevant to vector-boson scattering, have been discussed in [56].

In summary, the vector-boson self-interactions can be parametrized by three indepen-
dent parameters, ew, €we and €gp, without making very restrictive theoretical assump-
tions. These parameters are the coefficients of gauge-invariant dimension-6 interactions.
The calculations of this work are based on the Lagrangian (2.46).




Chapter 3

Mechanisms for Vector-Boson
Pair-Production in Hadron-Hadron
Collisions

In this chapter we will briefly discuss the mechanisms by means of which a vector-boson
pair can be produced in hadron-hadron collisions. We will describe hadron-hadron colli-
sions in the quark-parton model {57]. The different parton-processes by means of which a
vector-boson pair can be produced are then discussed. The calculational tools employed
to evaluate the cross-sections for the parton- and hadron-processes and the results for the
cross-sections themselves will be discussed in the following chapters.

3.1 Description of Hadron-Collisions in the Quark-
Parton Model

In the quark-parton model, the cross-section for a scattering-process of two hadrons of high
energies, p; and p,, (e.g. protons or antiprotons), in which a final state W is produced,
is given by a two-dimensional integral over a product of parton distribution-functions in
the hadrons and the cross-section for parton-parton scattering processes,

o(pip2 = WX, s5) = 3 f 1, QF)dzy f 2 (22, QF)dzs

41:92
a(qgs = WX, 844 (3.1)

In (3.1), the symbols X and X’ represent additional particles in the final state and s,
is the square of the invariant mass of the hadron-pair. The sum in (3.1) extends over
all partons {quarks, antiquarks and gluons) ¢; in the hadron p; and ¢, in the hadron
pa2. The quantity x;,¢ = 1,2 is the ratio of the magnitude of the spacelike momentum of
the parton ¢; and the one of the hadron p;. In writing down (3.1), we assumed that the
partons have no transverse momentum. We will also neglect the masses of the hadrons
and partons. Thus, the scale variable z; is also the ratio of the energies of the parton and
the hadron. The quantity fP(z;, @%)dz;, 1 = 1,2 represents the probability that a parton
g; with momentum fraction in the interval [a;,z; + d;] is found inside the hadron p;.

Further, 1/Q? is an energy which is of the order of magnitude of a characteristic energy

20
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of the process which is initiated by the parton g;. It is called a factorization scale. The
quantity o(g1g2 = WX') in (3.1} is the cross-section for the parton-parton subprocess.
‘The quantity sy, is the square of the invariant mass of the parton-pair. It is connected to
Spp by the relation s4q = 21298pp.

Expressed in terms of the ratio of the invariant masses squared, 7 = Sqq/ Spp, and
the rapidity y of the motion of the center-of-mass of the parton-pair in the center-of-
mass system of the hadrons, taken along the direction of motion of the hadron p,, the
cross-section (3.1) takes on the form

1 =3k
oo WX,5) = 3 [dr [ dy s (vV7er,QF) 22 (Ve ™, Q3)
QI:QZO l[l.'l(T)
2

o(qiqy = WX/, 509 = T5pp). - (3.2)

The relations between the variables z1, z, in (3.1) and 7,y in (3.2) are given by 7 = x,2,,
y = 1/2In(21/z,) or, equivalently, z; = /7€ and z, = \/7e 7.

3.2 Parton-Processes for Vector-Boson Pair Produc-
tion

There are different mechanisms for the production of a vector-boson pair V3V in
parton-parton collisions.

In lowest order of perturbation theory, the vector-boson pair is produced via the Drell-
Yan process, ¢gf' — V3Vy, where ¢ is a quark and § is an antiquark. This is the dominant
process. The three different possible Feynman graphs for the generic process {we did not
specify the type of particles) are shown in Figure 3.1a. The parton-parton cross-section
in lowest order of perturbation theory is proportional to the square of the fine-structure-
constant, o = O(a?).

In addition to the lowest order contribution, one might consider the electroweak radia-
tive corrections to the Drell-Yan process. The corrections are o = O(ca?) (in their lowest
order) and consist of virtual corrections and real corrections. The virtual corrections are
also indicated in Figure 3.1a. Figure 3.1b shows some diagrams for the real corrections.
These latter corrections are due to the process g1go — V3Vyy. They are represented by
bremsstrahlung-diagrams with a photon being emitted. The real corrections are usually
divided into a contribution from soft photons and a contribution from hard photons. Soft
photons have such a small energy that they can not be experimentally detected, while
hard photons have larger energies. The contribution from hard photons is to be consid-
ered only if these photons can not be detected. This is the case if they are produced
with their directions of motion near the hadron beam-direction. The contribution from
photons produced in these directions, although an O(e)-correction, is in general enhanced
by logarithmic factors of In(sg,/m2), where my is a quark mass. These logarithmic factors
can be partially absorbed into the definition of the parton distribution-functions fFin
(3.1) [60]. The partial absorption of the factor only leads to a negligible change of the
values of the parton distributions [60]. The remaining enhancement of the cross-section
for g1go — V3Vyy is due to a factor of In(sg,/u?), where p2 is a reference scale used in
the definition of the parton distribution-function. Typical numerical values for p2 are
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2
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a + + + loop
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Figure 3.1: Feynman diagrams for the lowest order electroweak processes, in which a V3V;-
pair is produced in the collision of a parton ¢; with a parton gs. a: Drell-Yan process with
virtual corrections, b: Photon-bremsstrahiung to the Drell-Yan process, q:g2 = VsV, c:
The process g1¢; = VzV4V, where V=W orV = Z.
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p2 = 5 GeV?:. We do not attempt to calculate the contribution from Q192 — VaVyy here.
Its effects could be considered in a more refined calculation.

Concerning the numerical values of electroweak radiative corrections, the corrections
for g¢' — W Z have not been calculated yet to my knowledge. To give an example of the
order of magnitude which electroweak radiative corrections can have, I briefly discuss the
corrections for the process ete™ — W+W~. This process is an example of the generic
process ¢ — V3Vy. The radiative corrections have been presented and discussed in
[58]. For LEP 2 energies, \/sc+.- =~ 200 GeV, the magnitude of the corrections is of
the order of 10% of the lowest order cross-section. The value depends on the scattering
angle. At ,/s.v.~ = 1 TeV, the corrections amount ‘to about —30% of the Born cross-
section if the W-bosons are produced at right angle to the ete™ beam direction. The
exact value of the corrections depends on a cut-off for the maximum energy of the photon
(a soft-photon cut-off). For larger energies \/3q+.-, simple approximate formilae for the
radiative corrections have been given in [59]. These formulae were obtained by performing
a high-energy expansion to the exact expressions. We will perform an approximation of
the same kind to the lowest order cross-sections for the parton-processes to be considered
here. This will be discussed in later chapters. Returning to the radiative corrections for
ete™ — WTW ™, a maximum value for the soft-photon cut-off was chosen for a numerical
evaluation in [59]. The cut-off was chosen to be equal to the energy of one of the incoming
leptons'. With this choice, it was found that the radiative corrections amount to only
2.2% of the Born cross-section at VSete— = 1 TeV. An integration over the scattering
angle was performed in deriving this result. Similarly, for |/sere- = 2 TeV, it was found
that the corrections amount to —11% of the Born cross-section. For \/Sero~ = 3 TeV they
amount to —21%.

At large scattering energies also the emission of a massive real vector-boson, W or Z,
is possible. These are the processes q1qz = V3V4V, V = W, Z, shown in Figure 3.1c. They
also give, like the 190 — V3Vyy processes, a 0 = O(a®) contribution which can become
large if the vector-boson V is emitted near the hadron-beam pipe, where it cannot be
detected. However, the large logarithms which can appear will only contain the smaller
ratio s,,/M7 instead of s4e/u5. We do not include the contribution of these processes
here, either.

Further, the QCD radiative corrections to the Drell-Yan process contribute. They are
formally of the order O(a?a;) but they are enhanced by logarithmic factors. The correc-
tions contain contributions from virtual corrections, real corrections with the emission of
a gluon, q7' — V3V,g, and from the gluon-quark scattering processes gg — V3V,g' and
79 — Va3Vag. For W Z-production these corrections have been calculated and discussed in
[25, 27]. The contribution of these corrections to the total cross-section for pp — WZX
at the LHC amounts to between 50% and 70% of the contribution from the lowest-order
Drell-Yan processes (in the standard model). In spite of the magnitude of this contribu-
tion, we will not consider it here since it has already been discussed in detail in [25, 27].
The discussion has been given for the standard model and for anomalous couplings. In a.
more refined treatment, this contribution could be added to the cross-sections caleulated
here. The expected sensitivity of the experiment to anomalous couplings is slightly re-
duced if this contribution is taken into account. Quantitatively, the sensitivity limits for
anomalous couplings grow by 30% or less in magnitude if the corrections are taken into

!For a correct treatment of high-energy photons, the contribution from hard photons has to be added
and a smaller value for the cut-off has to be chosen.
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account [27].

Finally, to order O(a*) there are the processes g1gs — VaViVsVs and q1¢2 — ¢'14',Va V4,
where Vi, V5 are also vector-bosons. The four-vector-boson production processes can
ounly play a role for the V3V production-rate if both additional vector-bosons are not
experimentally detected. We will not consider it here. The ¢1g0 — ¢’,¢';V3Vy processes
will be the subject of following investigations. They obtain contributions from the vector-
boson scattering processes, V;Vs — V3V,. These processes appear as sub-processes. Due
to the appearance of the vector-bosons V; V5, the rate for the processes q1g2 — ¢'1¢'3 V3V
is enhanced by logarithmic factors of In(Q?/M32), where Q2 is of the order of magnitude
of 5.

We included the formal discussion of contributions, classified in terms of powers of
coupling constants, only for completeness here. It is clear that the contribution from
the processes ¢1¢2 — ¢',4',VaV} is not the dominating one and that there are other con-
tributions which might also contribute. Our interest here, however, is in the vector-
boson self-couplings. It is through the vector-boson—vector-boson scattering processes,
ViVa — V3V, appearing as sub-processes to the processes ¢14. — ¢'1¢'5V3 V4, that anoma-
lous self-couplings might manifest themselves. It has been shown that for a resonant heavy
Higgs boson, for example, the cross-section for VjVs-scattering is dramatically increased
so that the cross-section for the processes q192 — ¢'14’,VaVy can exceed the one for the
Drell-Yan processes [35]. The natural question which arises, and which will be addressed
here, is whether a similar increase of the cross-section can also be caused by anomalous
interactions of the vector-bosons. We know about these interactions that they lead to a
dramatic increase of the cross-sections for vector-boson scattering. The increase in the
cross-section for ¢1g2 — ¢';¢'5V3V; must be compared to an increase in the Drell-Yan rate
caused by the anomalous interactions. The other processes might be added later in a
more sophisticated analysis if this point has been clarified.

Thus, we will consider here the lowest order contribuition from the Drell-Yan processes
and from the processes ¢1¢2 — ¢',¢'5V3Vy. The cross-section for a parton-parton scattering
process will be approximated by the sum of the cross-section for these two processes,

o{qga — V3VeX') = 0(qf — V3Va) + olque — ¢'19'2V3Va). (3.3)

The cross-section for hadron-hadron scattering will also be calculated as a sum of the two
contributions,

o{prpa = VaVuX) = o(pips = ¢ — VaVa) + o(pipe = quae — ¢'1¢5VaVa). (3.4)




Chapter 4

Effective Vector-Boson
Approximation for Fermion-Fermion
Scattering Processes

4.1 Introduction

In this chapter an improved approximative method to calculate the cross-sections for the
processes g1g> — ¢'1¢'>sW, where W is an arbitrary final state, is derived. This method
is applicable if the scattering energy +/s of the fermions ¢;¢» is very large compared to
the masses of the electroweak vector-bosons. Parts of this chapter have been published
in [61].

4.1.1 Effective Photon Approximation

The method of the effective vector-boson approximation is similar to the Weizsacker-
Williams-approximation of QED (effective photon approximation, EPA) [34], in which
the cross-section for a fermion-fermion scattering process is written as a product of the
probability for the emission of a photon-pair from the fermion-pair and a cross-section for
photon-photon scattering. With the help of Feynman diagrams the content of the EPA
can be explained. For illustration, we choose the final state W as two massless particles
V3V4i. The method is, however, applicable to arbitrary final states. We will also neglect the
masses of the involved fermions in the following, i.e., we will assume that the scattering
energy /s is much larger than these masses. This is a necessary assumption for the EPA.
Figure 4.1 shows some of the diagrams, which contribute to a process ¢1¢» — ¢',¢,V3V)
in lowest order of perturbation theory. The particles V1, V3, as well as V and V' are also
photons (since we are dealing with a QED problem). The diagram in the top right corner
is proportional to the product of the propagator for the photons Vi and V;. We will call
this diagram the vector-boson scattering diagram. The mentioned propagators become
singular if the squared four momenta, k? and k2, of the photons Vi and V, approach the
value zero. This is the case if the photons go on their mass-shell. They are then produced
in the foreward direction with respect to the fermions. The mentioned singularities are
only removed if the finite masses of the fermions, which increase the lower limits for the
integration variables |k3] and |k2|, are taken into account. The magnitude of the vector-
boson scattering diagram is therefore very large compared to the other diagrams. One

25
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9

Figure 4.1: Feynman diagrams for a process g1gs — ¢’,¢',V3V} in a complete perturbative
calculation. To the top right is the diagram for vector-boson scattering, which is the only
diagram which is considered in the effective vector-boson approximation. The lower row
shows diagrams of bremsstrahlung-type.




4.1. INTRODUCTION ' ' 27

should note that this is not anymore the case if the particles V3 or Vj are produced in the
forward direction. In this case the contribution from the bremsstrahlung-type diagrams,
shown in the lower row of Figure 4.1, can also be very large, because then the squared
four-momentum of one or two of the virtual fermions also tends to zero. The propagator-
function for such a fermion is then of the same order of magnitude as the propagators for
the photons Vi, V5. However, small angles of the directions of motion of the partilces V3
and V; with respect to the directions of motion of the fermions can be avoided by applying
suitable cuts. In fact, such cuts have to be employed anyway, because a particle near the
beam pipe can not be detected.

Thus, in the effective photon approximation, a restriction to the vector-boson scat-
tering diagrams is made. For the calculation of these diagrams, two basic ingredients are
required: the known couplings of the photons V3, V2 to the quarks and an expression for
the cross-section for photon-photon scattering, V1V, — W. This cross-section must be
evaluated for arbitrary values of the four-momenta squared k2 and k2. We must thus
have an expression for a cross-section with incoming particles which can be off-shell. If
the dependence of the cross-section on k2, k3 is not known, we can make a suitable as-
sumption about this dependence. This assumption must be made in such a way that
the cross-section is a smooth function of &2, k% and that it becomes equal to the on-shell
cross-section if k2 = kZ = 0 is chosen. We note that the magnitude of the vector-boson
scattering diagram, however, will not depend very much on such an assumption, since the
main contribution to the diagram comes from the region of the ¢i, g5-phase space, where
k2 k3 ~ 0, because the propagators are very large there. In this region, the cross-section
is very well approximated by the (known) on-shell cross-section.

It should be noted that only the squared amplitude, |M,q|? for photon-photon scat-
tering enters into the expression for the cross-section of the fermion-fermion process. The
squared amplitude is related to the cross-section 6,4 for photon-photon scattering by a
flux-factor, &,

\Mpa(k2, K5)IP ~ (K3, k3)5 (K, k2)pots (41)

where we have explicitly written down the dependence of all quantities on the squared
four-momenta of the photons. It is thus the product of the cross-section and the flux-
factor, for which an assumption about the continuation to off-shell photons must be made.

Carrying out the integration over the phase-space of the fermions ¢ and ¢3, the ex-
pression for the g;q, cross-section is written as a product of a function, which describes
the emission of a photon-pair from the fermions q) ¢, and the cross-sections for on-shell
ViV, = W-scattering. The mentioned function is called a luminosity for photon-photon
emission. It describes the probability that a photon-pair is emitted from the fermion-pair.
We note that the exact form of this function will depend on the dependence of the photon-
photon cross-sections on k2, k2, or, respectively, on the assumption which has been made
about this dependence.

In summary, the EPA consists of evaluating only the vector-boson scattering diagrams
and possibly of an assumption about the photon-photon cross-sections for off-shell pho-
tons, if this latter quantity is not known. Finally, we note that the number, the masses
and the types of the particles in the final state can be arbitrary. This generalization does
not affect the validity of the approximations we discussed above.
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qa W) > W
a(p

Figure 4.2: Feynman diagram in the effective vector-boson approximation for the reaction
of a fermion ¢ with a particle a at a scattering energy \/Sge in which a final state W with
the invariant mass squared W? is produced. The particle V is the exchanged vector-boson.
The quantities I, ', k,p and p' denote the four-momenta of the involved particles.

4.1.2 Effective Vector-Boson Approximation

We now turn to the effective vector-boson approximation. The generaliziation of the EPA
to electroweak processes is straightforward. If the vector-bosons Vi and V, are massive
particles, the approximations of the EPA can still be made as long as the scattering energy
is very large compared to the vector-boson masses, s > M7, M?Z. The assumptions leading
to the effective vector-boson approximation (EVBA) are otherwise the same as the ones
of the EPA. The possibility to extend the method of the EPA to the case of massive
vector-bosons was first noted in [62] and explicitly formulated in [31, 32, 33].

The effective-vector boson approximation was first applied to processes, which proceed
via the exchange of only one vector-boson, as shown in Figure 4.2. In the EVBA, the
fermion is considered to be the source of a vector-boson V, the momentum of which is
to be integrated over. The vector-boson in turn initiates a scattering process with the
particle a, in which the final state W is produced, Va — W. The cross-section 0go for the
entire process can be calculated with the help of distribution-functions of vector-bosons
in fermions, f (z}, and the cross-sections oy, for the scattering of vector-bosons V with
the particle a. The expression for the cross-section Oge i given by

f M2
(o) = [ 4SS s (5,522 ) vt W), (42
0 a

V' pol

In (4.2), z is the scaling variable for the vector-boson distribution functions. By definition
of the distribution functions, this variable connects, at least approximately, the invariant
mass squared of the produced final state W, W2, to the invariant mass squared S4a,

W? = 54. (4.3)

A summation over the helicity states pol = +,0 of the vector-boson V is carried out in
(4.2). The distribution function f{ ,(z) is the probability density that a vector-boson
V with helicity pol is emitted from the fermion ¢. The distribution function fi depends
on a second quantity, which is the ratio of the vector-boson mass squared, M2, and the
scattering energy squared, s,,. The quantity S4e In this ratio might be expressed in terms
of other quantities, like energies or transverse momenta of the involved particles defined in
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certain reference frames. Some of the distribution functions f7 ,,(x} which can be found
in the literature have been expressed in terms of such quantities. Apart from this subtle
point, equation (4.2) is the general EVBA expression for the cross-section of processes
proceeding via the exchange of one vector-boson.

For the transverse helicity eigenstates, pol = &, the summation in (4.2) is usually
re-expressed in terms of linear combinations of these helicites,

Z: f Tq},paEUVG-,POl = Z f Xq/r,pozUVa,pola (44)
pol=+,— pol=TT
with
Rr=fl+ . flm= iy Fl 45)
and ) .
Ve, T = "Q'(UVa,+ + Ova,-) Oy T = §(UV0.,+ - UVa,-)- (4.6)
The distribution ff}f only exists if the interaction between the fermion a and the vector-

boson V is parity v’iola,ting. Thus, this distribution is absent for photon interactions.

In the application of the EVBA to processes with two intermediate vector-bosons, V3
and V5, as shown in Figure 4.3, it was assumed that convolutions of the distributions of
single vector-bosons can describe the luminosities for vector-boson pairs,

1
dz
— a2
ﬁq‘}l?:a'!l ‘lzrp"!i’ - f Z %.poll (z)fvé.palz (:I:/z). (4‘7)

Zmin

In (4.7) the symbols ¢, and g» denote the fermions in the initial state. With the help of
the luminosities (4.7) the cross-section for the scattering of two fermions was expressed
in the following way,

1
o(q1ge = W, 5) = f dr >, Y, Lh® (VA oty Vapoi; = W, z8). (4.8)

Vl,pollxv2,p012
Tmin ‘VI ,Vz poxl :P052
In (4.8) zs is the invariant mass squared of the final state W. Non-diagonal terms in the
helicity indices pol; and pol, were not considered. It has been noticed, however, for the
specific example of Higgs boson procuction that such terms can be important [63].

4.1.3 Exposition

In this work an improved formulation of the EVBA is presented, which is applicable to the
case of two intermediate massive vector-bosons. It will be shown that the simple formalism
of convolutions does not treat the phase-space for the two vector-bosons correctly. In
fact, in a correct treatment, the emission probability of one vector-boson depends on the
kinematical variables of the other vector-boson. Among these variables is the squared
- four-momentum of this vector-boson. In the formalism of convolutions the dependence of
the emission probability on this squared four-momentum has not been taken into account.
Rather, a specific value, k% = 0, has been inserted for this squared four-momentum.

The present work combines the exact treatment of the two-boson kinematics, presented
for photons in [64], with the exact definition of vector-boson distributions, presented for
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single vector-bosons in [65]. In the derivation we will not use any kinematic approxima-
tions. We will give expressions for improved luminosities. It turns out that non-diagonal
terms in the helicity combinations of the intermediate bosons are present. We will identify
in detail the approximations which lead to the previously given formalism of convolutions.

In Section 4.2 we review the formulations and the use of the EVBA in the literature.
In Section 4.3 we derive the improved luminosities. The Sections 4.4 and 4.5 contain
approximative treatments.

4.2 Effective Vector-Boson Approximation: Formu-
lations in the Literature

4.2.1 The Different Existing Versions of the EVBA

We will discuss in some detail the differences between the various versions of the effective
vector-boson method which can be found in the literature.

The distribution-functions in the literature differ as a result of different approxima-
tions. They can be classified into three groups:

1. In the derivation of the distribution-function f¥ in [32, 66], terms proportional to the
transverse momentum squared, k%, of the vector-boson with respect to the fermion
g have been neglected. Only the leading terms for k2 — 0 have been retained.
The scaling variable z of the distribution-function was defined as the ratio of the
longitudinal component k% of the vector-boson’s momentum and the energy F, of
the fermion ¢, © = k*/E,. The subprocess energy W? is, in the approximation
k3 — 0, proportional to the scaling variable z, W2 = zs + O(k3). This is true if ¢
and %3 are evaluated in a frame in which ¢ and @ move in opposite directions and
their masses can be neglected in this frame. Instead of s, in (4.2) the maximum
transverse momentum squared of the emitted vector boson, P?, was used. In the
center-of-mass frame of the fermion ¢ and the particle ¢ the relation between 840
and P? is given by .

P} = (2E — My)* — E*(1 — x)*. (4.9)

In (4.9), z is the scaling variable for the fZ-distributions, F is related to Sqa Via
E = ,/5.2/2, and M, is the sum of the masses of the particles in the final state W.

2. The distribution-functions [31, 67, 68] were derived without approximations in the
integration over the vector-boson’s momentum. The scaling variable z was defined
as the ratio of the vector-boson’s energy, &°, and the energy E, of the fermion g¢.
The energies E, and k® were defined in the rest-frame of the particle a.

I argue here that the definition of the energies in this frame is not viable and that
the distributions [31, 67, 68] can only be used in a slightly modified form, which
will be defined in the following. In the rest-frame of the particle a, the relation
x =W?/s,, is violated by terms of the order

Sqa. 2
o(357):
‘where M, is the mass of the particle ¢ and & is the angle between the direction of
motion of the particle ¢ and the vector-boson V. Clearly, for Sqa > M2, already for
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very small values of 6 the relation z = W?/s is completely disturbed. We conclude
that E, and k° must not be defined in the rest-frame of a.

One can convince oneself, however, that the expressions fi{z, F,, My), i.e., the
functional dependence of fi on the variables z, £, and My given in [31, 67, 68], is
hardly affected by the choice of the reference-frame for the definition of z and E,.
This functional form is only affected via the ratio r; of the on-shell flux-factor for
the Va-process and the one for the ga-process,

rr =l = B PP = P = 2/ P — K s (410)

In (4.10), the four-momenta k,p and [ are as specified in Figure 4.2 and must be
evaluated on mass-shell. In the rest-frame of a, one finds ry = :c\/ 1— M/ (z*E}).
The ratio r; appears only as a multiplicative constant to the distribution-functions.
The distribution-functions f{(z, Eq, My )|am., in which 2 and E; might be defined
in an arbitrary reference frame, are therefore related to the distribution-functions
3z, Eyy My )|rest given in [31, 67, 68] by

8, Boy My, = "2 80 B M) s (4.11)

T #|rest

In the cms-frame of ¢ and a, the relation W? = zs holds exactly. In this frame,
75 =xz(1 — M{;/(4zE?)) and 4E? = s4,. One might therefore define the variables z
and FE, in this frame and use the distribution functions [31, 67, 68] in the form

M2
. 1- Z;E‘ﬁg .
fV(xa Eq:MV) > M2 fV(:c EQa MV) (412)
(-5

where fi(z, Ey, My) are the functions listed in the references and 4E7 = s,. We
will use the form on the right hand side of (4.12) in our later numerical examples.

We note that an obvious error (or misprint) in [68] has to be corrected. To be
specific, the correct expressions for the integrals Iy, I, and I3 in the appendix of [68]
are given by

2’ B} e M*E} 11
L = 2 In{ =55 | + =72 7 T 3 (>
(22Bf — M?)? Qe 2B - M? | QY i
1 4 Q% 2052 2 2 QM
I, = (z2E,2—M2)2{ E,ln( )—M(22E ~ M*)In &
___M ! 1
2EF - M2\ Q% &)’
Q2 ) M2 M2
IL = In + - . 4.13
’ ( Qi b (.13)
In (4.13), the definition of all variables is as in [68]. We further remark that for the
function f in [31], an approximation M7 < E? has been made.

Concerning the continuation of the sub-process cross-sections to off-shell values of
the vector-boson’s four-momentum, k% # M7, the most simple assumption, namely
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that the product of the flux-factor and the cross-section does not depend on &2 at
all,
m(kz)&pol(kz) = 5(M12f)&pol(M12f)a (4-14)

has been made in [31, 32, 66, 67]. In [68], different assumptions have been made.
These assumptions were made on the k2-dependence of Lorentz-invariant structure
functions W;(%?%) describing the interaction of the fermions with the vector-bosons.
They amount to the same simple relation, (4.14), for the transverse polarization T,
but, however, for different relations for the polarizations T and L. This is the reason
why the T- and L-distributions of [67] and [68] differ.

3. All distributions discussed so far are only approximative in the definition of the
helicity of the vector-boson V. Terms of the order k3 were not treated exactly. In
contrast, the functions given in [33, 85] are exact in the definition of the vector-boson
helicity. '

As already mentioned, an integration over the momentum of the outgoing fermion,
q', is carried out in the derivation of the distribution-functions. The subprocess
-€cross-section oy, poi(28), however, must be evaluated for definite values of the com-
ponents of the momenta %k and p, i.e. values, which do not depend on the inte-
gration variables. Of course, for a given set of integration variables, a Lorentz-
transformation into a frame, in which k& and p have given components, can be
applied. However, this transformation in general changes the helicity of the vectos-
boson V since the helicity of a massive vector-boson is not a Lorentz-invariant
quantity. Only in frames, which are related to each other by a boost in the direc-
tion of motion of the vector-boson, the helicity is the same. Therefore, in the frame
in which the helicity is defined, the transverse components of p with respect to &
must be the same for all values of the integration variables. For the distributions
[31, 67, 68], the helicity was specified in the same frame in which z and E, were
defined. As we identified this frame with the ga-cms-frame, the transverse compo-
nents of p with respect to & are equal to the transverse components of k with respect
to . The square of these components we denoted by 43. The variable k&, however,
changes its value in the course of the integration. Therefore, for the distributions
[31, 67, 68], mixing between the transverse and the longitudinal components of V
appears at the order O(k3?).

In [33, 65], in contrast, the helicity (i.e. the polarization vector for V) was specified
in a frame in which the three-momenta & and 7 are parallel independently of the
values of the integration variables. In [65], e.g., the polarization-vectors for V were
specified in a system, in which k& has no time-like momentum and points in the
positive z-direction (Breit-system), whereas p points in the negative z-direction,

k= (0;0,0,vV—k2), p=+v—-k2/2(1 - W?/E>0,0, W?/k* — 1),
and
P =vV-k2/2(1 = W?/k%0,0,1+ W?/E?).
The helicity of V was thus well-defined for all values of the integration variables.

In addition, the scale variable « in {33, 65] was directly defined in terms of Lorentz-
invariant quantities, x = W?/s.
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Thus, in [33, 65], exact expressions for vector-boson distributions in fermions were
derived. The only remaining necessary assumption concerned the continuation of
the cross-sections into the off-shell-region. In [33], the specific assumption that the
final-state W couples like a fermion to the intermediate vector-boson has been made,

K(kz)&ml(kz) = ’i(kz)a'poi(k2)lferm.- ]

In [65], the off-shell behavior was described in terms of the k2-dependence of the
vector-boson polarization-vectors. In addition, the flux-factor was evaluated at &> =
0. This leads to

K;(kz)a'pal(kz) = E(O)&pol(M]?f): p0l=TsTa
2

S)0u(F) = TR0 (). (4.15)

Replacing the approximate choice «(0) in {4.15) by the precise choice x(MZ)? is
equivalent to multiplying the distributions of [65} with a factor

K(M3)

fﬁ(m’ Sqa’M%/) — “T{}'(_O—)—fg(xvsqaa M12/) = (1 -

%

ga

) Iy (z, Sgas M\%’)- (4.16)
We will use this form in our later numerical examples.

Concerning the allowed values for z, the distributions [32, 66] are defined for all values
of z in the range 0 < z < 1. For the distributions [31, 67, 68], the variable z is restricted
to values of

x> Mv/Eq = QMV/\/Sqa-

The distributions vanish for smaller values of z. The distributions [33, 65] are defined for
all values of z in the range

M /s <z < 1.

The lower limit arises because the real flux-factor for the subprocess Va — WX, which
has been included in the definition, vanishes if z is smaller than Mg /s,.. Note that the
definition of the variable z is different for the different distributions. It should also be
noted that in any application, z will anyway be greater than the value z = MZ/ 84a, Where
M, is the sum of the particles in the final state W.

All distributions reduce to the same analytical forms if a crude approximation is made.
This approximation is obtained by retaining only the leading terms in the limit of van-
ishing vector-boson masses, My < zs,, and MZ < (1 — x)z54,. This approximation has
been frequently used in the literature and is called the leading logarithmic approximation
(LLA)2. We will give the expressions for the luminosities and distributions in the LLA in
Chapter 4.5. They can also be found e.g. in [68, 69, 70].

Table 4.1 summarizes the differences between the existing sets of vector-boson distri-
butions.

'The expressions (4.15) must reduce to the on-shell expressions for k2 = M3Z.
21t should be noted that not all leading terms are of logarithmic type.
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Abbasabadi [66]

Dawson [31]

Godbole [67]

E(Ma)a'pol (M?/)

Capdequi [68]

structure funct. =
<(M3)0r (M),
# K(M})or (M)

Lindfors [33]

coupling like fermion:
n(kz)&pol (kz) lferm.

Johnson [65]

from pol.-vectors:
"5(0)&T,T(MI%') E
M /|k?|k(0)61 (M)

Author(s) Kinematic Definition
(only one Definition of z Approximations of
named) T | T | L helicities
Kane [32] .z o 2 M < ki < E? 2
Abbasabadi [66] | © = ¢ /Pw W =3zs+ OkY) < B2 kL0
Dawson [31] ex. | N/JA'| My < E,
Godbole [67] |
z=k°/E, W?:=azs k2 ~0
Capdequi [68] exact
Lindfors [33] — A2
Johnson (65 x=W:s exact exact
Assumptions about
Author(s) off-shell behavior,
K (k) 0o (K?) =
Kane [32]

Table 4.1: Differences of the various existing versions of vector-boson distribution-
functions in the literature. The variables are defined in the text.
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4.2.2 Applications of the EVBA and Comparisons with Exact
Calculations

We review the use of the EVBA in the literature. The formulation of the EVBA in terms of
convolutions of vector-boson distributions was applied to the production of Higgs bosons
[36, 68, 71], of heavy fermions and for vector-boson scattering. The study of the latter
processes was carried out in models in which W=*- and Z-bosons interact strongly with
each other [35, 36, 72], in models with anomalous vector-boson self-couplings [40, 70], in
models, which exhibit both of these features [39] and in the standard model [73].

Concerning the production of heavy fermions, comparisons with exact calculations
with EVBA calculations showed that the EVBA is in good agreement with exact results
[31, 65, 68, 74]. Comparisons were also carried out for the production of Higgs bosons,
where the Higgs boson decays into two vector-bosons [31, 66, 67, 75, 76, 77). On the
Higgs boson resonance and for large values of the Higgs boson mass, My > 600 GeV, the
EVBA could reproduce the exact results. In these cases, the contribution from longitudi-
nally polarized intermediate vector-bosons dominates. The contribution from transversely
polarized intermediate vector-bosons, which becomes important off the Higgs resonance
and which is the dominant contribution if the Higgs boson mass is small against the
vector-boson scattering energy, could not be predicted by the EVBA reliably. The EVBA
overestimated the exact results and the discrepancy grew if the Higgs boson mass was de-
creased. In the region 300 GeV < My < 600 GeV the discrepancy could reach a factor of
2 or 3. This weakness of the EVBA could be reduced by the use of the exact vector-boson
distributions {65, 78].

The EVBA in this form was still realized by convolutions of single vector-boson dis-
tributions. Also, it was not discussed whether off-diagonal terms in the helicities of the
vector-bosons might play a role. From early works about the effective photon approxi-
mation it was known [64, 79] that non-diagonal terms exist. In an effort to improve the
formalism of convolutions numerical results for luminosities were given [68]. Here, we will
present an exact derivation of vector-boson-vector-boson luminosities which has not been
given in the literature before. We will see that only approximately these luminosities can
be cast into the form of convolutions of single vector-boson~distributions.

4.3 Formulation of an Improved Effective Vector Bo-
son Approximation

4.3.1 Derivation of the Improved Luminosities

We derive expressions for improved luminosities for a vector-boson pair in a fermion-pair
and present numerical results.

We consider the production of an arbitrary state W in the scattering process of two
fermions ¢; and g, in which also the two fermions ¢ and g} are produced, see Figure 4.3,

91(h) + a(l) = (1) + (&) + Wpw). (4.17)

‘The four-momenta of the incoming and outgoing fermions are denoted by Uy, Iz and 14, I},
respectively, and the total center-of-mass energy squared is given by s = ({; + )%, The
final state W, which may contain any number of particles, has four-momentum pyw and
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qi(l)

W(pW)a w

g5(15)

Figure 4.3: The contribution of vector-boson scattering to the scattering process gi1g; —
HBW.

its invariant mass squared will be denoted by W? = p2,. The cross-section for the process
(4.17) is given by

1 1 d?’l'i dslfz TAq 125(4) ' ’
%0 = 52(27?)2] 21’1"[ 215 / dow Mug S5+~ = b~ pw)- (4.18)

In (4.18), ].qulz is the squared amplitude for the two-fermion initiated process, averaged
and summed over helicities and dpyw is the phase space element for the state W.

For high energies /s one can neglect the masses of the fermions®. With the help of
the momentum transfers k; = [; ~ I;, j = 1,2 and using the dimensionless variables

z=—, z=-%, with M% = (pw +15)?, (4.19)
as well as )
K} = —— K, (4.20)
1— ﬁg

one can parametrize the phase space by
1 i 0 1] 27 27
1 dz 5 o [ dips [ ds
Ta T 323[d$/_z— fdkl /dK2sz?r' o
To T —s{1-2) -—sz(l—=zfz) O 0
- [ Ao My P8O (@ + 1 — 1 = 1 — pw) (4.21)
Here, zp = WE/s is the minimal value of the invariant mass squared of the final state W

normalized to the total center-of-mass energy. In case of an n-particle final state, W, is
equal to the sum of the masses of these particles. ¢ and ¢, are azimuthal angles for the

*This is not possible in the case of photons as vector-bosons. Photons will be treated approximately
below (see Chapters 5 and 7).
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momenta I} and I, respectively, defined in the Breit systems B; and B; in which either
the four-momentum k; or k; has only a non-vanishing z-component. The definition of the
Breit systems is given in Appendix A.l.

The process is assumed to proceed via the vector-boson scattering mechanism, as
shown in Figure 4.3. We write down the cross-section for the production of fermions ¢}
and g5 of unspecified type, i.e. a sum over all possible fermion types g; and g5 is taken.
This cross-section can be expressed alternatively as a sum over ¥, and V5,

S olme > GeuW) = Y olnge = dep(ViVe = W)), (4.22)
195 W, W

where the sum runs over all vector-bosons V;, which can couple to the fermions ¢;. On
the right hand side of Eq. (4.22) the type of the fermions g is determined by the type
of g; and V;. Our treatment neglects interference-terms which appear if the fermion-pair
i, ¢, is the same one for different types of the vector-boson—pair V1, V;. There are two
types of those interference terms,

1. The fermion-pair is identical in the same order, i.e. ¢} — ¢} and ¢ — ¢4 if V] —
and V3 — V3. In this case, interference-terms between exchanged - and Z-bosons
appear. These terms are small, although not always very small (see e.g. [68] for a
discussion). We will not treat these terms here.

2. The particles are identical if their order is exchanged, i.e. g <> ¢5. These terms
are very small, because the two interfering diagrams have sharp maxima in different
regions of the g}, gb-phase-space. This has been discussed in [77].

We note that our formalism can be easily extended to include the interference terms.
If the process proceeds via a particular vector-boson pair V;, V, according to Figure
4.3, the expression for the amplitude M, in (4.21) is given by

1

— 2 _ m+nj1 (ll’ 1'1) ) 6I(m’) j2(l2v l'z) i 65('”')

mn=—1

where the ¢;{m) are polarization vectors for the vector-boson V; with mass M; and helicity
m = 0, £1 in the center-of-mass system ' of the vector-bosons. The j;(l;, I’} are fermionic
current four-vectors and M (m,n) is the amplitude for the production of the final state
W in the scattering process of the vector-bosons Vi and V, with helicities m and n,
respectively. The amplitudes M(m, n) must be evaluated at off-shell values of k2 and k2.
The polarization vectors are normalized according to

e.f(m) ’ e;(m!) = 6m,m’(_1)mi i=12, (424)

and they satisfy the completeness relation

L %l A
> e{m)e’(m) = —g* + JJ\/I'; (no sum on j) . (4.25)
m=~1 i

The right hand side of this equation is identical with the numerator of the propagator for
a vector-boson in the unitary gauge.
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The expression for the squared amplitude, averaged over the spin states of the initial
state fermions and summed over the spins of the final state fermions is

1

— ‘ taman Ti(m, M) Ty(n,n')
2 _ 4 _1ymtmintn’ L1V, 3
Mal® = 4t 2 D (6 — MY 6 — M3

mym’ nn=—1
-M(m,n)M*(m/, ), (4.26)

with the fermionic tensors,

’f' ZJJ (i 83) - €5(m)j; (1, 55) - €5(m). (4.27)

pal

The tensor Tj(m, m') can be decomposed into two parts with different combinations of
the vector and axial-vector coupling constants v; and a; of the vector bosons V; by the
relation

Ti(m,m’) = (v? + 62)C;(m, m') + 2v;a;8;(m, m'). (4.28)
The tensors C;(m, m') and §;(m,m') are given by
éj(m,m’) = (m)ly - e5(m) + 15 - e5(m)l; - ej(m) — I - Lk (m) - ¢;(m) (4.29)
and
Si(m, m') = ieagysly®e] (m)Jel(m), (4.30)

with €p123 = 1. They are tensors in helicity space.

The p-dependence of the temsor components of C;(m,m’) and &;(m,m') appears
in terms of simple exponential functions. Factorizing these functions, we define (-
independent tensors C;(m, m’) and S;(m, m"):

Cufm,m) = Cy(m,m)elm)2,
Sim,m’) = Si(m, m’)ef(m‘m Yoz,
Ca(n,n') = Cz(n’nf)e—:'(n—n’)m’
Sy(n,n) = Sy(n,n)eHr")ez, (4.31)
for which the following relations hold:
Ci(mlym) = Ci(m,m),
Si(m',m) = &;(m,m'),
Cj(—m’, -m) = (—1)m+m'C-(m,m'),
Sj(~m/,—m) = —(-1)"*"S;(m,m’). (4.32)
The last relation in (4.32) implies
Si(+—) = 0 and
S§;(00) = 0. (4.33)

Consequently, C;(++), C;(00), C;(+—) and C;(+0) can be chosen as the 2 x4 independent
components of C 5(m, m') and the S;(m, m') have the 2x 2 independent components S;(++)
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and S;(+0). We illustrate this situation by writing down Ci(m,m’) and Si(m,m) in
matrix form:

i Ci(++) CH{+0)e%2 Ci(+—)e %2
Ci(m,m') = | C1(+0)e**  C1(00) —C}{+0)e %2 (4.34)
Cr(+—)e¥2 —Ci(+0)e**z  Cy(++)
and )
Si(++)  Sf{+0)e7*? 0
Si(m,m) = (‘S‘l(—!-O)ei‘f’2 0 S{(—!—O)e"""z) (4.35)
’ 0 81 (+O)6iw2 —81 (++)

where the columns from left to right correspond to m = +,0, — and the rows from top
to bottom to m’ = +,0, —. Expressions for the independent components in terms of the
integration variables in (4.21) are given in Appendix A. Similar decompositions can be
obtained for Cy(m,m’) and S;(m,m’). The corresponding expressions are also given in
Appendix A. The quantities Ca(m, m') and Sz(m,m') turn out to be real.

Carrying out the integration over ,, altogether 19 terms in the m, m', n, n’ helicity
space remain, out of which nine have h = m — m' = n — n’ = 0 (they are diagonal in the
helicities of V; and V5), four have h = 1, four have h = —1 and the other two have h = 2
and h = —2, resp. For the case of two-photon interactions this classification has been
given in [64]. Using this decomposition, one can write the expression in Eq. (4.26) in the
following way:

1 27 1

o [Cdp 3 ()™ G, ) Fa(n, ) M, m) M ()

mmf nn'=-1

= (v + a}) (v} + a3) (KrrMrr + KroMrp + KirMpr + Kpi My,
+KrrriMrorr + KrrroMrrrr — Kiggr MFpr — %?TLMZI”TTL) (4.36)
+(20101)(20202) (KM + Kppy Mz, — K, Mir, )
+(v} + a])(2v202) (KTTMTT + K7Myz + Kpprp Mrprg, — Kppp My

TLTL
+(20101)(v] + 0f) (K My + Ky Myy, + Ky My, — Kfr My, )
ol 1)
= 2 %) Cantvs) Kvat Maat, | (4.37)

pol

where the last line defines the notation to be used below, with pol being labels for the
polarizations, pel = TT', TT, etc. The quantities cf;"(lv y contain the fermionic coupling
constants and can take on the values c’;f(lvi) = (v + a?) or czf(‘m = (2v;a;), depending
on the index pol. The quantities Kpq, which are five-fold differential luminosities—they
depend on W2, k2, k2, M} and ¢;—are defined by

Kpp = 4C(++)Co(++),
Koz = AS;(++)Sa(++),

Kz = 2C{++)C2(00),
Kir = 2C,(00)Co(++),
Kpp = €1(00)C(00),
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Krirr = 8RelCi(+0)]Co(+0),
Kgprr = 8Re[8(+0)]52(+0),
KTTTT = ZRB[Cl(-f“-)]Cz("I‘“—“),
K = AC(++)8(++),
Kz = A4S (+4)Co(++),
KTL = 281(++)Cg(00),
Kz = 2C:1(00)Sz(++),
Kpir, = 8Re[Ci(+0)]Sy(+0),
e = 8Re[S1(+0)]C2(+0),
KgETL = 8Im[C1(+0)]52(+0),
K. = 8Im[Si(+0)]Cz(+0),
K., = 8Im[C1(+0}]Co(+0),
Kz, = 8Im[S:1(+0)]S:(+0),
Kifpr = 2Im[Ci{+=)]Ca(+-), (4.38)

with C;(m,m') and S;(m, m’) from (4.31). The averaged sums of products of amplitudes
for the vector-boson scattering processes, M1, to be simply called squared amplitudes in
the following, are defined through

Mrr = Z(MEHE + IM=)P + M) + IM—0)P)
Mrp = LIMERF + M) = M=) — M=),
M, = S(MEOE +M-0)P),
Mir = S(MOH)P+|M0-)P)
My, = |1M(00)|2=
Mryrr = ZRe[M(++)M*(OO)+M(—-—)M*(00)
IM(+O)M*(O—) — M(~0)M*(0+)],
Mrgzy, = FRelM(++)M"(00) + M(~—)M"(00)
+M{+0)M*(0—) + M(—0)M*(0+)],
Mrrrr = Re[M(++)M*(—=)],

= JIMEDP = M=) = IME-)P + M=),
Mrp = ZMEE = M=) + MO = M=),
M, = S(MEOF - [M(-0)P),
Mz = S(MOH)E~ MO-)D),
Myg, = FRe[M(++)M"(00) = M(~=)M"(00)
+M(+0)M*(0—-) — M(=0)M*(0+)],
Mpsze = ZRe[M(++)M'(00) — M(=-)M*(00)
—M({+0)M*(0—} + M(—0)M*(0+)],
M, = ZIn[M(+-+)M°(00) + M(~-)M* (00)
+M(+O)M*(0—) + M(—0)M*(0+)],
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l

Ml = FImM+-+)M (00) + M(=—)M"(00)
= M{+0) M*(0~) — M(=0)M*(0+)],

My = ZIn[M(++)M*(00) — M(==)AM*(00)
~M{+0)M*(0-) + M(—=0)M*(0+)],

Ml = MM (00) — M(==)M*(00)
+M(+0)M*(0~) — M(—0)M*(0+)],
Mifrr = ImM(++)M*(—-)]. (4.39)

The squared amplitudes

Mo, Mg, Mgy, Mg, My, Mg, M sy, My (4.40)

vanish if both the interaction responsible for the transition V;V, ~» W is parity conserving
and a summation over the polarization states of the final state W is performed. Thus
they vanish if M(m,n) = M(—m,—n). The luminosities K} vanish after integrating
over the azimuthal angle ¢;. We also note that the squared ampl1tudes M3 Im are zero if all
amplitudes M(m,n) can be chosen as real numbers. Therefore we restnct the following
discussion to the remaining eight luminosities

Kyr, Kzr, K, Kr, Kpy, Krprr, Kgpry, Krrrr. (4.41)

The expression Eq. (4.37) shows explicitly the trivial factorization of the cross-section
into parts describing the vector-boson emission from the incoming fermions and parts
pertaining to the vector-boson vector-boson scattering. These latter pieces, combined
with the phase space integral for the final state W, can be interpreted as cross-sections
and correlations for virtual vector-boson scattering processes:

, 1
In Eq. {4.42) we included a ’flux-factor’ . Its presence ensures that for on-shell vector-

boson scattering, opq in Eq. (4.42) is indeed a cross-section. In this case one has £ — o
with

= /Wt + Mf + M} — 2W2M?E — 2W2MZ — 2M2EM3E, (4.43)

where W* = (W?)2. The specific form of x for off-shell bosons in {4.42) is irrelevant
since only the combination « o, appears in the expression for the fermion-fermion cross-
section.

In terms of the cross-sections {4.42) for virtual vector-boson scattering, the cross-
section (4.21) for the two-fermion initiated process is given by

0 0
dz 1 1
o = (21r) f dz | K I U = M)

-s(l—z) —zs(1- %)

d% :
) f 2 Z cgt (Vl)cp (%) Kpol Tpal (Wz; k%? k%): (4.44)
0 pol

where o is the fine structure constant.
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Up to this point, the calculation has been an exact evaluation of a given Feynman di-
agram. The basic assumption of the equivalent vector boson method concerns the depen-
dence of the off-shell cross-sections op(W?; k2, k2) on the off-shell masses k2. For trans-
verse polarization it is certainly a good approximation to identify orr(W?; k2, k3) with its
on-shell value opr (W?; M2, MZ). However, for longitudinal polarizations, o,a(W?; k%, k3)
contains kinematic singularities at k% = 0 and kZ = 0, as can be seen from the explicit
form of the polarization vectors given in Appendix A.2. Therefore, for longitudinal po-
larization, the resulting factors M?/k? should be taken into account explicitly.

For the extrapolation to virtual masses we introduce simple proportionality factors,

Poo{W? K2, k2) with Pu(W?% M2, M2) =1, (4.45)

and write
K Tt (W2 k2, k3) = ko Pot(WP; k2, E2) 0pa{ WE; M2, M2), (4.46)

where 0,0 (W?; M#, M2) are the cross-sections for on-shell vector-boson scattering evalu-
ated at the rescaled energy squared W? = (k;+k3)? = zs of the vector-boson vector-boson
scattering process.

'To describe the kj?—dependence of the off-shell cross-sections, we will consider the
following specific forms of the proportionality factors P,y which take into account the
k2-dependence of the longitudinal polarization vectors ¢;{0):

Prp = Py = Prrer =1,

M2
Pry __—I:'zg',
M2
PLT——‘—Elf,
—h
_ M M

: My
NE N
We now introduce luminosities £,, () which are differential in the variable z, writing
the differential cross-section in the form

do
— = E%?Vg,po!(m) Opol (563, Ml s M2) (448)
dx ol
with the luminosities,
04 250 ! ! dZ M2 M
L3N pot(@) = (g) < Caw%n | T | Tn ) (4.49)
In (4.49) the quantities
M2 M2 r ¢ 1 1 F i
c e = fdk2 A2 ] L Py Ko 4.50
’ (” N ) P iy (k3 — M7)? pot Kpol(4:50)

—3(1-z) -sz(1-%)

are “amputated” differential luminosities, which do not anymore contain the fermionic
coupling constants. They depend on the variables z and 2, and, since they are dimen-
sionless, on the masses of the vector-bosons via the ratios M?/s und M2 /s. The quantity
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LE%, ooi(x) dz is the probability that a vector-boson-pair Vi, V, with specified polariza-
tion and with center-of-mass energy in the interval [zs, (z + dz)s] is emitted from the
fermion pair ¢, and g, where V; is emitted from ¢; and V. from g,.

We evaluate the expressions (4.49) adopting the forms (4.47) for the behavior of the
virtual cross-sections. No other assumptions are made. We rewrite the phase space
integral in (4.49) in the following way,

[ dz / dwl r dux fdpr
! [ar? j dK? f di? f dk3 f f (4.51)

—s(1-z) -—sz(l—=z/z) O —s4 W} —s+WE £

where we have introduced the variables

w2 = W2
2 — 2
Wy = W s+ k%’
T = (v+KW)/s,

In the definition of £ in (4.52), we introduced the variables

1
v = kicky= 5OV - k- K,
K = x&/(2W), (4.53)
and we used the variable W = +/W?2. The variable K in (4.53) is the magnitude of the

three-momentum of the vector-bosons V;, V; in their center-of-mass frame and & is defined
by

k= W+ B+ kb — 2W2kE — Q2K — 2K3K3. (4.54)

The integration limits for k% and &3 in (4.51) follow from the requirement (k3-+s)(k3+s) >
W25 with k? < 0 and k2 < O The luminosities vanish for z < (M; + Ms)?/s..
Using Eq. (4.51), the expressions (4.49) for the luminosities become

LY pa(2) = (5,,;) RAAAA / dk; / dk, Mf)2 (7 = Mgy oot Joets
—s+W§  —s+W2 2
(4.55)
with the triple-differential luminosities—they are functions of z, k% and kZ—

du rd
Pol I‘Szkz ] X (pl pols (4 56)

and K, were defined in (4.38). The integrations over z and ¢, in (4.56) can be performed
analytically and the results are given in (4.59). We will discuss later which limiting cases
will lead to results already obtained in the literature.
The singularities of the integrands in Eq. (4.55) at k
to mass singular terms. In the high-energy limit s > M;

= M7 lead, after integration,
they appear either as familiar

%

logarithms In(s/M 2), or as a pole singularity 1 /M 2 The latter happens, e.g., for both
masses for the LL-term, or in one of the masses for the TL and LT-luminosities. Since
we will evaluate the two-dimensional integration over k% and k2 in (4.55) numerically,
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specific care has to be taken of these singularities. This is done by introducing new
integration variables z;, y;, and 2; (j = 1,2) depending on the type of the singularity.
The new variables are chosen such that the integration region becomes the unit cube in
two dimensions. The relations of the new variables to the ng are given by:

M? 45— wW2\"i
- (0

_ el M} +s— W} ]
I (s WHA —y) + M?
= (—s+W})z, =12, (4.57)

and the luminosities (4.55) take on the final form

2 2 2\ L 1
0142 _ (@ 2 ove 2, Ko, [Mi+s-W
1:V1V2,T1"($) = (2,”) (vy + a7)(v; + a3) s In( IY%; b/dﬂ?lo/dﬂ?z
In M2+ s — W2 k? k2 J
M3 K- MR- MZTTD

a)? Ko (MP4+s—W2\ |
£5re® = (57) Cootoman i (M) far, [ o
0 0

In MZ+s— W k2 k32 I
M3 ki — M7 k3 — M3™TT

Il

a2 Ko, (M24s—W2\ | . |
LED, 7 (z) ("2‘;;) (v? + ad) (v} + a%)*sglﬂ (——_————1 A 1) f dxy f dyo
i} 0
M B
MZ+s—WE§) k2 - M2

o

2 2 L 1
g102 — 2 4 2y(n2 a2y M; f
L%, 1r(7) (zw) (v + a)(v; + a3) ; (1 M12+3_w12) J dy10/d$2

MZ+s—W2\ K2
n (M5 g

f

1 1
a\? Ko M2
L3%,,1.(z) (2—7;) (v + af) (v + ag)"s“ (1 - m) ofdylo/dy2
M3
(1 - M22+3—W22) JeLs

1 1
£ — o 2 2 24¢,.2 2y Ko M12+3—"W% d
Vi rorn(z) = - (vi + a7)(v5 + a3) S My M; In p) Ty | dxy
i 0

M
M3 +s—W; K k3 JriTe
In 3 2 3 7.2 5 )
Ms ki — M k3 — M3 \/—-kg\/—kg

a2 Kg M? +5— W]? h h
Loe i (®) = (-2-;) (2v1a1)(2v2a2)—§- M My In (T Of dz, J dzy
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In (M22 + 85— WE) k3 k3 JrpTL

1
M3 k% — MZE K% — M? [Zk2 k2
1 1
a\? K
L% arrr@ = (5=) @ +a)E3+ad) (- Wh) fan [ da

ki kj Jrrrr

w2
MM C R LR A (%)
and the J,, are given by
r 1
Jprp = % (20%(s + v)? + k2K2(s® + 8sv + k2K2)) In (5) — 6522 —4s® + 0t
+EkE (—85% + dsv + 612 + k2k2)
+KW(3s%v + 851 + 2° + k2k3(4s + v))] ,
Jop = ;42- (2sv + v + kik2) In (%) — 4sv + 2% + 2kTkE + 2K W(s + V)] :
[ 1
Jrp = :4-; (4812 + 8s1® + 2&2k3 (s + 8sv + 31%)) In (5) — 135%% — 451/°

-f-zzﬁ + E2k2 (=55 + dsv + 1302 + 3k2k2)
F2EW(3V + 8512 + V° + 2K K3 (25 + v))]
Jir = Jri,
Jip = -’% [(232112 + 4s0® + K3k5(s* + 8sv + 20% + kik2)) In G;) — 78472

~

+E2 kS (—28% + TP + 2k7k2) + KW(3s%v + 8s1? + kika(4s + 31/))] ,
32 ] 1y (s+v)
Jrirpy = ;ﬁ—‘;\/ —k%\/‘ —k% (3821/ +9sv? + Vs + k%k%(Ss -+ 21/)) In (:’E) _—

T
—85%v + 3% 4 k2kZ(s + 6v) + KW(2s® + 11sv 4 20% + kfkg)] ,

[ 1
JrppL = ;85\/‘]6%\/ —k2 .(3 +v)In (-a‘;) — % +2v— s+ KW] ,

4 5 5 2,2 1\ v® Bsv+ 4t
Jrrre = Hk%k% [(38 + 12sv + 2v° 4 klkz) In (E) + 2T
~55” + dsv + 61° + 3k7k3 + KW(8s + 3v)| . (4.59)

For the case of two-photon processes initiated by electron-electron scattering, analogous
expressions have been derived in [64]. Our results are related to the corresponding jpog
from [64] by Joor = Jpa/2? for pol = TT, TL and LL, Jrprr = Ji& /2% and Jpprr =
2J¢. /%2 (note that we have neglected the fermion masses). We finally remark that, for
M, = Ms, we have Lrr(z) = Lrr(x).

The integrals in Eq. (4.58) are well-suited for numerical evaluation. Their integrands
contain no singularities; instead, the poles of order one show up as logarithms of the form
In ((MJ2 +5— WJ?)/MJ?), while the poles of order two (which would by themselves lead

to a factor Mj"") have been canceled by corresponding factors M?. These factors were
included in our assumptions for the behaviour of the P,u(W?; k2, k2), Eq. (4.47).

Since the expressions Eq. (4.58) involve two-dimensional numerical integrations of
the momentum transfers k? and &2, it would be straightforward to replace the model
assumptions of Eq. (4.47) by better ones if required. The contribution from the leading
singularities would not change then; however, subleading terms (non-logarithmic contribu-
tions for transverse polarization, logarithmic contributions for longitudinal polarization)




46 CHAPTER 4. IMPROVED EFFECTIVE VECTOR-BOSON APPROXIMATION

are model-dependent. For the cases of Higgs production and heavy quark production,
modifications of single vector-boson boson distributions following from the exact off-shell
behaviour of the corresponding hard cross-sections have been studied in [80].

4.3.2 Discussion of Numerical Results

In presenting numerical results for luminosities of vector-boson pairs, we restrict ourselves
to the representative case of ete~ annihilation. In our numerical examples we use o =
1/137, Mw = 80.17 GeV and Mz = 91.19 GeV. The fermion vector-boson couplings are
determined using the weak mixing angle as given by cos &y = My /Mz. We will always
use these electroweak parameters also in later numerical examples of this work if not
explicitly stated otherwise.

In Figs. 4.4 and 4.5 we show the exact luminosities (4.58) for finding a W+W = pair
in an e*e™ pair of /s = 2 TeV. The luminosity Ly for transversely polarized W¥ is the
largest one, followed by L7z and L. From Fig. 3 one concludes that the non-diagonal
luminosities Lrrrr and Lpppr are smaller than the diagonal ones, however they are of
the same order of magnitude. The parity violating luminosity Lpr varies comparatively
little with z at not too high z, and at higher z it becomes equal to the T7' luminosity.
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Luminosities of a W*W~ pair
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Figure 4.4: The luminosities Eﬁ;ﬂv_,pd(a:), (4.58), for the diagonal helicity combinations
at \/s = 2 TeV.
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Luminosities of a W*W~ pair

in e*te™ collisions at \/s =2 TeV
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Fiigure 4.5: The luminosities L?;i;‘,_’pol(a:), (4.58), for the non-diagonal helicity combina-
tions at /s = 2 TeV.
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4.4 Convolutions of Vector-Boson Distributions as
an Approxmation to the Improved Luminosities

4.4.1 Factorization into Vector-Boson Distributions

The luminosities (4.58) can be approximately written as a convolution of single vector-
boson distributions. The approximations which lead to this formulation are identified in
the following,.

Since helicities of inassive particles are no Lorentz-invariant quantities, the polarization
vectors have to be defined in a definite reference frame, which we chose to be the center-of-
mass system of the two vector bosons. Therefore, the C; and &; depend on both momentum
transfers k? and k2 at the same time. This means that the emission of a vector boson ¥}
with definite helicity from the fermion g, is not independent from the off-shell mass of the
second vector boson V5, and the two-boson luminosities do not factorize into single-boson
densities. However, since at high energies the process is dominated by small momentum
transfers, one can neglect this mutual dependence on k? as an approximation. Then the
expressions (4.49) for the two-vector-boson luminosities reduce to convolutions of single-
vector-boson densities. These single-vector-boson distributions have been reported in
[65].

To be specific, we consider the following simplifications:

1. Set k2 = 0 in C;(m, m') and S;{m,m');

2. Set k¥ =0 in Co(n,n'} and Sa(n,n');

3. Set K2 = kZ in Eq. (4.50), i.e. omit the factor (1 — ¥¥/M%)~! in the definition Eq.
(4.20) of K2.

Note that with the simplifications 1 and 2, the luminosities for the non-diagonal squared
amplitudes, Lrirr (), L7 (2) and Lyppr(x) vanish.

With the above simplifications the integrals over k? and K2 in (4.49) can be carried
out independently and the luminosities (4.49) take on the factorized form

. 14z z M2
%QMW Ag (-’17) ] ;".f{%,)u ( ) ng,A2 (z 2’3) (460)
For the amputated differential luminosities, (4.50), one obtains the forms
M? M3 M} z M.
fﬂh.\z (m?zi -gl—a '?2') = h’.«\l ( s ) hAz (Z Z;) (461)
where A; = T, T, L. The functions fV 1 fy 7 and 7 vz in (4.60),
fK,)\,( ) Zf—z C;\:(Vi)hz\, (Z, ,U,), (462)

are the distribution-functions of single vector-bosons in fermions from [65] and the funec-
tions hr, hy and hy, in (4.61) and (4.62) are the amputated distributions of single vector-
bosons. They are of the explicit form

1 f d(k?) (—k2)(c3 + 1)

i) =3 A=

—14z
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0
d(k?) (—K?) co
hz(z, 1) —
IL 0 (k? — )
1 d(k?) s3
= 2 4.63
hL(z'.~ ]14) 2 ] (kz _ #)21 ( )
—14z
with
. k;2 1 _ kz
2 _ A 2+ =
co = ——-—2%2—3— and s = 2————-k2—. (4.64)
Z = = Z =5
The integrals in (4.63) can be carrled out analytically [65] with the result
hT(Z,,U) = hl(zuu’)_!"hZ(zhu’):
hT(Z, .u’) = h2 (Z, .lu) - hl (z5 IL): (4‘65)
with
1-2)2-w) (-w){-w’), (1
hiz,p) = — "> + 3 In 7
__§ — szw In 1 ’
w
_ (- - w) z
h’?(znu’) = ( w2()1 - ) + l ,uv ’
_l-2)E 22— w) %
hp(z,p) = 5, 3 In ,u,’ . (4.66)

In (4.66),w=2—-p, {=z+pand ' = p/(1 -w).

We note that a flux-factor xo/WW? appears in (4.60). This factor makes the luminosities
vanish at < (M3 + M2)/s. This is similar to the vanishing of the distribution-functions
of single vector-bosons, [33, 65} with the correction (4.16), which vanish at at z < M?/s.

Concerning the meaning of the variables in (4.60) and (4.61), z is the ratio of the
energy of the vector-boson V] and the energy of the fermion ¢, if k2 = 0. For k2 = 0 and
k3 = 0, z/z is the ratio of the energy of the vector-boson Vs and the one of the fermion
g2. This holds in any reference frame.

4.4.2 Symmetrization of the Convolutions

The form of the luminosities (4.61) is not invariant under the simultanecus exchange
of the vector-bosons V; and V5 (i.e. their masses, fermionic couplings and helicities A,
and Az) and the fermions ¢; and ¢y, but it should be. The exact luminosities obey this
symmetry, as can be seen from their form (4.55). The symmetry is thus broken by the
simplifications introduced in 4.4.1.

The breaking of the symmetry is connected to keeping z as an integration variable
in (4.61). This variable describes not only, in the case k¥ = 0, the ratio of the energy
of the vector-boson V) and of the fermion gq, but also, through the relation M% = zs,
the reduced energy M% available for the scattering process, in which the fermion g, is
involved, after V1 has been already emitted. It thus describes a reduction of the available
scattering energy for the fermions due to the emission of a vector-boson from the other
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fermion. This reduction has not been taken into account in previous calculations of the
luminosities as convolutions. Instead, at both vertices the full energy, /s, was admitted.
This led to the expression [65]

M2 Mz 2 2
fr)u)\z (m z, —S—, T) = h,)\l (z’ -A-i-l-) h)\2 (E,%) (467)
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instead of (4.61). The expression (4.67) does not violate the above symmetry. A numerical
comparison of the convolutions (4.67), however, with the exact amputated luminosities
(4.50), and, compared to this, a comparison of the convolutions (4.61) with (4.50) shows
that the deviation of the convolutions (4.67) from the exact luminosities is much larger
than for the convolutions (4.61). This is not surprising and shows the non-negligible effect
of the reduction of the available energy.

We would like to obtain a symmetrized form of convolutions, derived as an approxima-
tion to the forms (4.61), which takes into account the reduction of the scattering energy.
We introduce such a symmetrization by the form

o . ) (3]0 ().

The available energies for the fermion ¢; and the fermion ¢ in the form (4.68) are 1/zs
and /T /+/Zs, respectively. The product of these energies is 1/Zs®>. This product must be
compared to the corresponding product in (4.61), which is zs?. It should be noted in this
connection that z = \/z is a mean value for the integration variable z in (4.60).

The luminosities, using (4.68), are of the form

2
qll}lqil,vz Az( ) = —_/ fvi,)\l ( ) sz,Az (1’. M ) ? (469)

8

instead of (4.60), with the vector-boson distributions

: M. Mg
fq:,A‘- ( SV) Y. ch (V;)h'lz (Z, \/—S) (470)

We will use the expression (4.70) in the following as the distribution-function of vector-
bosons in a fermion. The quantity fy} . (z, M?/s) is the probability density for the emis-
sion of a vector-boson V; with the mass M; and helicity A; from a fermion f; with the
couplings v; and a;. The scale variable z describes the square of the invariant mass, which
remains after the emission of the vector-boson and s is the square of the invariant mass
of the fermion (before the emission) and another particle (e.g. another fermion), which
interacts with the fermion via the exchange of the vector-boson.

It should be noted that the distribution (4.70) is to be used only to describe pro-
cesses which proceed via two intermediate vector-bosons. Processes proceeding via one
intermediate vector-boson are described by the forms (4.62) with u = M2 /s.

We have chosen the value /zs for the scattering energy to be inserted for a single
vector-boson distribution function, where z is the energy of the vector-boson relative to
the fermion from which it was emitted. A numerical comparison shows that the deviation
of the convolutions (4.61) from the exact luminosities is even improved by the choice of
(4.68) instead of (4.61)%.

4The deviation for the TL and LT distributions does not decrease for all values of s and z.
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We make a remark on the reference frame in which the helicities of the vector-bosons
have been defined. Since k% has been neglected in describing the emission of V;, the
center-of-mass system of the two vector-bosons and the center-of-mass system of the
vector-boson V; and the fermion ¢, are connected by a Lorentz-boost along the direction
of motion of the fermion gs. The helicities of the vector-boson Vi, originally defined in the
~ center-of-mass system C, are therefore identical in both reference frames. The same line
of thought can be applied to the emission of V5 from ¢, and the center-of-mass system of
V, and ¢;.

Numerical Results

Figure 4.6 shows the ratio of the convolutions in the conventional formalism, (4.49) with
(4.67), and the improved luminosities for a W+W ~-pair in an ete™-pair of /5 = 2 TeV.
The ratios grow with decreasing z. At £ = 107! the ratio amounts to approximately a
factor of two for the T'T, TT and T'L = LT luminosities. At z = 1072, the deviation for
the T'T-luminosity amounts to a factor of four. For the LL-luminosity, the ratio is closer
to the value one than for any other luminosity. Figure 4.7 shows the same ratios for a
scattering energy of 1/s = 4 TeV. This is a typical scattering energy for g,g,-collisions in
pp collisions at 14 TeV. The ratios are smaller in this case.

Figure 4.8 shows the ratios of the improved convolutions (4.69) and the improved lumi-
nosities for a W ~-pair in an e*e~-pair of \/s = 2 TeV. Compared to the convolutions
(4.67), the ratios are closer to the value one. This is especially true for the luminosities
TT and TT. The ratio is largest for the TL(LT) helicities, for which it reaches a factor
of 1.75 at x = 0.01. The same ratios are shown in Figure 4.9 for a scattering energy of
v/s =4 TeV. The deviation of the T'T" luminosity is never greater than 36% in this case.

Concluding this section, the luminosities {4.58) can be approximated by convolutions
(4.69) of distributions of single vector-bosons (4.70) if certain kinematical approximations
are made. The luminosities for the non-diagonal helicity combinations vanish in this case.
The numerical agreement of the convolutions (4.69) with the improved luminosities (4.58)
is better than for the conventional convolutions, (4.49) with (4.67).
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Figure 4.6: Ratios of the conventional convolutions [65] of single vector-bosons, (4.49)
with (4.67), and the improved luminosities for helicities pol =TT, TT, LT and LL for a
W+W=-pair in ete™ collisions at /5 = 2 TeV.
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Ratios of Luminosities
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Figure 4.7: Ratios of the conventional convolutions [65] of single vector-bosons, (4.49)
with (4.67), and the improved luminosities for helicities pol = TT, TT, LT and LL for a
W+W —-pair in e*e~ collisions at /s = 4 TeV.
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Figure 4.8: Ratios of the improved convolutions of single vector-bosons, (4.49) with (4.68),
and the improved luminosities for helicities pol = TT, TT, LT and LL for a W*+W —-pair
in ete~ collisions at /5 = 2 TeV.
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Ratios of Luminosities
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Figure 4.9: Ratios of the improved convolutions of single vector-bosons, (4.49) with (4.68),

and the improved luminosities for helicities pol = TT, TT, LT and LL for a W+W ~-pair
in ete™ collisions at /s = 4 TeV.
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4.5 Leading Logarithmic Approximation

Further approximations in Eqgs. (4.58) allow one to derive simplified expressions which
have often been used in the literature and are referred to as the leading logarithmic
approximation (LLA). The approximation consists of neglecting the off-shell masses &2 in
the Jyo and performing a high-energy limit, s > MJ?. To be precise, with the following

substitutions in (4.58),
M2 —- W2
ln (—-—-———-————-—-—-’ +ﬂj[; “”) - In (hj\%) ,
j
2

1 M; -1
ME+s—W? ’

Koy — W2, (471)

one obtains

8@~ (2) 0t + i+ ahl[erorm (L) —20 -9 +a)].
T (i)
(%)2 (20101 (2v202) [(4 +z)hn (%) —4(1- x)] In ( M2) In ( > 2)

L)~ (5) G+aei+a)s[10+a)m(2) - - +a)m ( M2)
( (o4

5) 6+ )i+ ) [0+ o (1) - @ -0+ o (537).

L3211 (@) — (%)2 (0 + a2 + D)= [ +a)in (2] —21 - 9)] (4.72)

The expressions for L7, L7 and Lz have been given already in [69] and the complete
set of luminosities including Lz7, L7, and L7 can be found in [40].

In a similar way, LL:A expressions for single-vector-boson distributions can be obtained
from the exact ones. These distributions are obtained by taking the limits M3 < xs and
M < (1 - z)s in Eq. (4.62). One obtains

2 _ 2
fVT( ‘ni) — %(U2+a2)1+(]:z Z) in(ﬂjz)a

q1q
Vivs, 7T (E)

E%%,LT (z) —

vV
2
It (z i‘é_) ~ 2%(2@@)(2—-@1;1 (Mig)
va( M;) = Jot+a)y 2t (473)

The same distributions are obtained from the distributions [31, 32, 33, 66, 67, 68] by
taking the same limits. Before taking the limit, one has to connect P} of [32, 66} and 4E;
of [31, 67, 68] to the variable s, as discussed in 4.2.

We conclude that a simple approximation exists in which all versions of the distribution-
functions fy reduce to the same expressions, (4.73). The convolutions of the LLA-
distributions (4.73) again lead to the luminosities (4.72). The LLA formulae are obtained
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from the exact ones by taking into account only the contributions from the singularities
at k2 — 0 to the k2-integrals and neglecting the contribution from other regions in the
k2, kZ integration.

We discuss modifications of the LLA. Instead of s/M7? as the argument of the loga-
rithms in (4.72) one can also take zs/M?, because in the limit M2 < zs & s/M? > 1/z,
one has In(s/M?) ~ In(s/M?) — In(1/z) = In(zs/M?). This choice is further motivated
by considering the first line of (4.71), which tells us that the argument of one of the
logarithms is really (s — W2)/M? (in the limit M? — 0), which varies within the whole
interval [0, s] as k% varies within its limits. Equivalently, one might use zs/M{ instead
of /M in the argument of the logarithms in (4.73). This choice was indeed used in
[33, 69]. A numerical comparison shows that the LLA with this choice of the logarithms
deviates less from the improved luminosities than if the choice s/M? is made. Similarly,
since we assumed s/MZ2 > 1/(1 — z), we may also choose £(1 — z)s/M? as arguments of
the logarithms in (4.72) and analogously 2(1 — 2)s/MZ in (4.73). This choice is further
motivated by considering again the first line of (4.71), which tells us that the argument of
the other one of the logarithms is s — W? = (1 — z)s. The inclusion of the factors (1 — z)
and (1 — 2z} only modifies the luminosities and distributions in the regions z — 1 and
z — 1, respectively, where they are very small anyway. A numerical comparison shows
that the inclusion of these factors greatly reduces the deviations of the LLA from the
improved luminosities in the region z — 1. We will use this latter form, z(1 — z)s, in the
following numerical example.

Numerical Results

Fig. 4.10 shows the ratio of the LLA version of the luminosities, Eq. (4.72), and the
improved luminosities for a W*W —-pair in ete -collisions at 2 TeV. The LLA always
overestimates the exact result by far and only for the LL luminosity at not too small
values of z the LLA might be useful. For the dominating TT-luminosity the disagreement
amounts to a factor of 3 to 4.5. Figure 4.11 shows the same ratios for a scattering energy
of /s = 4 TeV. The deviation for the TT-luminosity amounts to a factor of between 2
and 3.5.
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Ratios of Luminosities
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Figure 4.10: Ratios of the luminosities_i_g the leading logarithmic approximation and the
improved luminosities for pol = TT, TT, TL = LT and LL for a WHW~ pair in ete™
collisions at /s = 2 TeV.
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Ratios of Luminosities
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Figure 4.11: Ratios of the luminosities in the leading logarithmic approximation and the
improved luminosities for pol = TT, TT, TL = LT and LL for a WTW~ pair in ete™
collisions at /s = 4 TeV.
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4.6 Conclusion

We have derived improved luminosities for a pair of vector-bosons inside a pair of fermions.
In contrast to previously used approximations, our luminosities take into account the full
phase space of one vector-boson in the calculation of the emission probability of the other
vector-boson.

The commonly used leading logarithmic approximation and a convolution of exact
distribution functions for single vector-bosons inside fermions are obtained as an approx-
imation to the improved luminosities if one neglects regions in phase space in which the

virtual vector-bosons have four-momenta squared much larger than their squared masses.
A numerical comparison of the improved luminosities and the luminosities in the
leading logarithmic approximation shows that the latter approximation can not reproduce
the exact calculation for transverse helicities. Quly the luminosities for longitudinally
polarized vector-bosons in the region of large /5 and not too small = can be described
by the LLA. We derived convolutions of vector-boson distributions, which deviate by at
most 36% from the improved luminosities for the dominant TT helicity if /s < 4 TeV.

One should keep in mind that the question, whether the vector-boson scattering di-
agrams are indeed the very dominant ones, is not touched by the improved formulation
of the EVBA. Further, it was argued that the extrapolation to off-shell masses might not
always be guaranteed [81]. However, for the example of heavy Higgs-boson production it
was shown in that same reference that the extrapolation to off-shell masses is indeed a
smooth one.

Our final explicit expressions for the two-vector-boson luminosities were obtained with
specific simple assumptions for the off-shell behavior of the vector-boson scattering cross-
sections. However, we keep a clean separation of exactly calculable parts and model
dependent assumptions. Our expressions are written in a form which allows for an easy
accomodation of an improved off-shell dependence, as soon as the corresponding informa-
tion will be available. Apart from these caveats, our luminosities are exact results of a
calculation of a subset of Feynman diagrams.

We did not attempt to take into account any kind of experimental cuts on kinematical
variables for final state particles, like transverse momenta or rapidities. As long as those
cuts only imply restrictions on the momentum transfers kf and the scale variable z,
taking into account those cuts in the improved luminosities (4.58) is a straightforward
task. For the approximative formula, the convolution (4.68), a kinematic situation of the
kind &} = k% = 0, thus massless intermediate vector-bosons W1, V2 moving in the direction
of the fermions, might be assumed as an approximation. Cuts of all kind can then be
applied. We will discuss such cuts in Chapter 5.3.




Chapter 5

Luminosities for Vector-Boson Pairs
in a Hadron-Pair

The method described in Chapter 4 to calculate the cross-sections for the parton-parton
processes q1g2 — ¢}g5V3V, is now applied to the corresponding hadron-hadron processes.
Improved luminosities for vector-boson—pairs in a hadron-pair are derived. With the help
of these luminosities, cross-sections for hadron-hadron collision processes proceeding via
intermediate vector-bosons can be calculated. We discuss an approximation which again
leads to the formalism of vector-boson distributions. We will also give various comparisons
with results which have been obtained in the literature.

5.1 Derivation of Improved Luminosities

We derive improved luminosities for finding a vector-boson pair in a hadron-pair. The
luminosities describe the process shown in Figure 5.1.

The cross-section for the process giga — ¢,g5VaVa in (3.3) is given in the framework of
the EVBA, (4.22) und (4.48), by the expression

o(q192 = ¢'1¢'s(ViVa — VaV4), 54¢)

1
= 55 [ db £8%, pu(@)oAVe > VaVa, WP = seg). (5.1)

Vi ,V’z pO[ 1]

In (5.1), 4 is the ratio of the invariant mass squared of the vector-boson pair and the
one of the parton-pair }. According to (4.49), the luminosities for vector-boson pairs in a
parton-pair appearing in (5.1) can be written as

1
a\? Ko { 1 dz " m M 2 M22
g = () 2t cion [ o (8250 02 (5.2)
1,¥2:P0 2 Sqq a(V) qz(Vz):ﬁ 5P Sqq Sqq ,
where 2 is identical to the variable z defined in {4.19). It is the ratio of the squared

invariant mass of a system consisting of ¥} and the parton ¢, and the squared invariant
mass of the parton-pair, 4. If the momentum of W; is light-like, k% = 0, the directions

1The variable 2 of Chapter 4 is replaced in this Chapter by the variable £. The same is true for the
variables 7 and z. The variables z and z used in this Chapter will obtain a new meaning in the context
of hadron-collisions.
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Figure 5.1: Diagram for the hadron-hadron scattering process proceeding via two inter-
mediate vector-bosons, pips =+ q1g2 — ¢/, ViVe, ViVo - W.

of motion of V] and ¢; are parallel. In this case, 2 is the ratio of the energy of V; and the
energy of ¢;. Inserting (5.1) into (3.2) yields an expression for the hadron-hadron cross-
section for vector-boson pair-production, o(p1p: — 142 — ¢'1¢'sVaV4), derived within the
EVBA,

o(ppz = Q192 — ¢1¢ - (Vive — VaVa))
= o(pp2 = ViVa — V3Vy, spp)
-—-;—]n('r)

> 22 fl dr f dy i (Vre!, @) ey (VTe™, QF)

91,92 V1,Va pol éln('r)

f dit LGT, pa(B)0(ViVe = VaVi, WP = 7is,,). (5.3)

In (5.3), v is the rapidity of the quark-quark pair in the p;p; center-of-mass system, taken
along the direction of motion of the hadron which emits V4.

The expression (5.3) allows one to define luminosities £53%, ,,; of ordered vector-boson
pairs in a hadron-pair,

a(pips = ViVe = VoV, 55)
3

= ¥ [zl @ (Vive - VaVi, WP = asy), (54)

W !Ilepoz D

where
z=W?/s,, (5.5)

is the ratio of the squares of the invariant masses of the vector-boson pair and of the
hadron-pair. The summations in (5.4) are extended over all vector-bosons V4 and Vs,
which can produce the pair 3V}, and the luminosities are given by the expression

-;— In{7}

(@) = 3% f [ dyimre, @ (/re, @)

n(Vi) e2(2) z Lin(r)
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x
LYt (2) (556)

The summations in (5.6) are extended over all quarks ¢; and g», which can couple to the
vector-bosons Vi and V5, respectively. In (5.4), V; is emitted from p; and V5 from p..

A notation as a sum over all different, un-ordered vector-boson pairs (V4V2) instead
of the two independent summations over single vector-bosons is convenient,

o(pips = 1V = WAV, Spp)

1
3, j dw LB7% (0)pa(ViVs = VaVa, W2 = zs,), (5.7)

(V1V2)pol 0 -

I

where the luminosities for unordered pairs are defined by the expression
£r (@) = N (L5, () + L0 — 7)) (5.8)

In (5.8), pol is the index of helicity, which is obtained from pol by the exchange of V; and
Vo (e.g. TT > TT,TL — LT), and

_ 1 if Vi#Vs
Nc={1/2  E VoV (5.9)

ist a combinatorial factor.
The expression for the luminosities, (5.8) with (5.6) and (5.2), can be brought into a
more comprehensible form, if the integral over the rapidity y is parametrized as a function

IPF5(r) of the remaining integration variable 7,

o2 —ln(m)dl 1
Bt = n(2)'s [ L () 4 )

2 T
—gln(ff")
. M? M2
j G Lot (x \/:Eey,ﬂi,ﬂ--?-), (5.10)
Lin(a) Sqq  Sqq
2

with

In{7)}
gﬁ(?’) f (Z QI(VI) 91 \/‘ey QZ) (Z Q2(V2} (\/—er Q?)) . (5.11)

%ln(f) a1(V1) g2(Va)

In (5.10}, the variable

. M? MZ2\* M2 M} M2 M?
rT=x Jl-}-(wz) +(VV_§) —2w2-—2w2-—2w2w2, (512)

contains the flux-factor and the variable

§= %1 (£z) (5.13)
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has been introduced. In the case of light-like momenta of the vector-bosons V; and Va,
the variable § is the rapidity of the (V{5) center-of-mass motion in the quark-quark
center-of-mass sytem, taken along the direction of motion of the quark from which Vi
was emitted. Further, in the derivation of (5.10), (5.11) we made use of the symmetry
property of luminosities for vector-boson pairs in quark-pairs,

2 g2 2 aq2
/ ALt (z \/Eeﬁ,-ﬂ—"fl,%) - ] diLsg (:z: \/Eeﬂ,—ﬂf"&,ﬂ). (5.14)
Sqq  Sqq Sqq Sqq

The functions I7'%%(7) contain all dependence on the type of the partons %:(V7), i.e., on the

distribution-functions of the partons in the hadrons and on their couplings to the vector-

bosons. The remaining part of the r-integral in (5.10) does only depend on kinematical
variables.

An equivalent expression for (5.10) is

1 1 1
B = N(2)'s [ 42 [ [ L
f’(Vle)po!(x) Ne (27r a:x zZJ T Ty BTz

X [( > cﬁffvl)fril(thf)) : (Z cgﬁf%)fé’f(xz,QE)) + m szJ
q

1{V1) g 422(1/2)
M.
Ly (= —— 3= 2 2L A—’I%) . (5.15)

We will use this expression later to derive vector-boson distribution functions in hadrons.
In (5.15), z; and z, are the variables from (3.1); z, = \/Te? is the ratio of the energy
of the quark, from which V) was emitted, and the energy of the hadron, from which this
quark was emitted. Similarly, z; = \/Te~? is the ratio of the energy of the quark, from
which V, was emitted, and the other hadron. The variable

Z= .’L’lé (516)

introduced in (5.15) is the fraction of the energy of the vector-boson V; and the one of
the hadron, from which it was emitted, if V; has a light-like momentum. We further note
the relation sy, = z1728,.

We will write the luminosity to find a W Z-pair in a proton-pair, where the W can be
either a W+ ora W, as

E?FW++W— )Z)pol = E‘E’&""I'Z)pol + E?{:P,_‘Z)pol. (5°17)

5.1.1 Discussion of Numerical Results

The Figures 5.2 and 5.3 show the improved luminosities (5.10) of a W Z-pair in a proton-
pair of /5, = 14 TeV as a function of the invariant mass of the W Z pair. The MRSA(A)
parametrization [82] in the DIS-scheme was used for the parton-distributions FE (zi, Q%)
in a proton. For Q?, the invariant mass of the quark ¢; and the other proton, thus
Q? = z;s,p, was used. We will always use these distributions and this choice of @? in the
following if not explicitly stated otherwise. A contribution from top-quarks was not taken
into account. This contribution is small.
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Luminosities of (WH+W™)Z
in pp collisions at Vs = 14 TeV
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Figure 5.2: The improved luminosities for the diagonal helicity combinations of a (W +
W ~=)Z-pair in a proton-pair at an invariant mass of 14 TeV as a function of the invariant
mass of the W Z-pair.
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Luminosities of (WH+W™)Z
@ in pp collisions at Vs =14 TeV
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Figure 5.3: The improved luminosities for the non-diagonal helicity combirations of a
(W* + W™)Z-pair in a proton-pair at an invariant mass of 14 TeV as a function of the
invariant mass of the W Z-pair.
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5.2 Convolutions of Vector-Boson Distributions in a
Hadron as an Approximation to the Improved
Luminosities

We derive convolutions of single vector-boson distributions in a hadron as an approxima-
tion to the improved luminosities (5.10). The approximations which lead to the convolu-
tions are discussed.

5.2.1 Derivation of Convolutions and Distribution Functions

The improved lumiosities for a vector-boson pair in a proton pair, (5.10) can be written
approximately as convolutions of single vector-boson distributions fI, in a proton. To
see this, one uses the luminosities for a vector-boson pair in a quark-pair, E‘ﬁ‘f{‘émd, in
the approximative form of convolutions of vector-boson distributions f¢. In addition, a
further approximation, leading to a factorization into a product of distribution-functions,
has to be applied.

We start from Eq. (5.2) and use for the quantities £,, the symmetrical products of
amputated vector-boson distributions in quarks, (4.68),

2 2 2 ~ M2 =
£A1A2 (5; %, £, %) = hy, (“ ,ﬂﬁ/‘r_l_.) P, (fﬁj __%i—z_) . (5.18)

A
Sqq  Sqq ’ ‘/gsqq z \/“%Sqq

Inserting (5.18) into (5.10) gives an expression for luminosities for vector-boson pairs in
a hadron-pair,

o @ - N(g)%—lfn(x’d[ln(%)] [ (5,25 ), (2,202
(Vlvz)ux - “\or z / p S, PR !\/zsqq Az 5 \/Esqq

L) + BT} (519)
with the functions I7*%5(7) from (5.11). The transition to the variables 21,2 and z from

(5.15) brings (5.19) into the form

dz fdxy fdzs 1
PLP2 —
£(VIV2)H() - ( ) j ] /:1:2 Z1To

: {hM (ﬁ ]\f/—'\s/q_q_) Z cql(Vl) ‘11( 13Q1)

a(\)

r M32./Zz
.h)\z( , = 2) > c;‘ivz) 72 (22, Q) + Palz}

28y By q2(V%2)
_ r;,_/ldzjdxl di
B x

T m

1 d
) (ZaQ1)$2 d.’l: ( Qz) + P Pe (5.20)
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with 84y = 21225,,. The differential distribution-functions of a vector-boson V; in a hadron
P = p1 Or p = pp appearing in (5.20) are given by

fv o & - & M
- fz:Qz - A-' i -'L'i:Q%? h i (—i’ 7’ )
ECR q%;) i fale QO V& Ti T Spp
,j=1,2 i#7. (5.21)

In (5.21), & = 2 and & = z/z is, for light-like vector-bosons V;, the ratio of the energy
of the vector-boson and the energy of the hadron, from which it is emitted.

The integrations over z; and z» in (5.20) cannot be carried out independently because
of the z;-dependence, ¢ # 7, of the differential distributions (5.21). As an approximation,
however, we may replace z; in Eq. (5.21) by the variable z;. The approximation z; — z;
is to be briefly explained. Without the approximation one obtains the quantity z;, thus
the momentum of the other vector-boson, Vj, in units of the momentum of the hadron,
from which V; is emitted. Then, the z;- and z,-integrals in (5.21) can not be carried
out independently. An approximative value for z;, ;mqs i5 the one which maximizes
the integrand of the z;-integral. This integrand is one of the differential vector-boson
distributions in (5.20). We assume that the differential distributions (5.21) for the different
vector-bosons V; have essentially the same dependence on z;. In this case the value of
Zjmar 18 essentially identical to the value of a corresponding variable z; ., which is
defined as the value of z;, at which the distribution (5.21) gives the largest contribution
to the z;-integral. Keeping now, as an approximation, the relation z; = z; for all z; (it is
then valid in particular at Z; mes = Tjmaz), ONe obtains the replacement z; — «; in (5.21).
One has thus chosen-an extrapolated value for ;. A numerical investigation of the error
induced by this approximation will be given below. For the dominant TT-luminosity the
error is less than 7% for not too small values of  at /5, = 14 TeV.

With the replacement z; — z;, the x;- and zo-integrals in (5.20) can be carried out
independently from each other and the integrand in the z-integral in (5.20) becomes a
product of vector-boson distribution-functions in hadrons,

?;/f%)AIA (z)
—1In(z)
[ a1, (Voo om @) 122, (VEe Y 5m@3) + b1 pa) (5.22)

Lin(2)

= N,

8| 8

In (5.22), the variable
_1 2

is the rapidity of the V1V, center-of-mass motion, taken along the direction of motion of
the hadron which emitted V), if the vector-bosons Vi, V; are light-like. The functions

2
fVA(gb Spps Q2 f o0 Z: fp( ! Qz)fV)\ (_E— _‘M[_V) 3 (524)

17?
£ a(V}) T Sq

in (5.22) with £ = & or £ = & and sy = 3’7 s,,, are distribution-functions of a vector-
boson V' with the helicity A and the mass My in a hadron p of energy E, = ,/5,,/2. The
variable z” in (5.24) is the ratio of the momenta of the quark g and the hadron p. The
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variable £ is the ratio of the energy of the vector-boson and the energy of the hadron, if
the vector-boson is light-like. The distribution function (5.24) is only to be used for the
processes proceeding via two vector-bosons as shown in Figure 5.1. The functions f?},\ in

(5.24) are given by
‘ M2 o M?
o {2, L) ==—3cdnh z—L) 5.25
T ( sqq) 2" 4V A( V' 844 (5:25)

They are the distributions of vector-bosons V' with the helicity A and the mass My in
the quark ¢, given already in (4.70). The quantity s,, is the invariant mass squared of a
parton-pair from which a vector-boson pair is emitted. The functions hy (z, u) were given
in (4.66).

The approximation we carried out here means that an estimated {mean) value is taken
for the quark-quark scattering energy s,,, which has to be inserted into the differential
vector-boson distributions (5.21)%2. This estimated value does only depend on the energy
Tir/Spp, /2 of one of the quarks®, namely that one, which emits the vector-boson, while the
same energy is taken for the (unknown) energy of the other quark. Thus, s, = 27 sp,
has been chosen for the quark-quark scattering energy. Without an approximation of this
kind the formalism of vector-boson distributions in a hadron can not be obtained.

Concerning again the meaning of the variables in (5.24), we note that the variable
¢ represents the momentum fraction of the vector-boson and the hadron only in certain
regions of the k%, k2 phase-space in (4.49), namely for k¥ = 0 in the case £ = & and for
k% = k2 = 0 in the case £ = &. In particular, for on-shell massive vector-bosons V, &; is
never exactly this quantity. However, the interpretation of the & as momentum fractions
is in analogy to the corresponding quantities z; in (3.1) for the (massless) quarks and
gluons. We finally note that the relation £;&; = z holds without any approximation.

~ In summary, the formulae (5.22) and (5.24) have been derived with only the mentioned
approximations (using the factorized forms (4.68) and choosing an estimated value for
Sqq) from the improved luminosities for a vector-boson pair in a proton-pair, (5.10) with
(5.11). The formulation of vector-boson distributions is recovered if these approximations
are made.

5.2.2 Discussion of Numerical Results

Figure 5.4 shows the luminosities (5.22) for Wy-pairs in a /s, = 14 TeV proton pair
as a function of the invariant mass of the W+-pair. The luminosities were calculated as
a convolution of the vector-boson distributions (5.24) and the photon distribution f2(z)
in a proton of M. Gliick et.al. [83]. For the scale @ of the quark-distributions in (5.24)
again the invariant mass of the quark and the particle, which reacts with the quark, was
chosen. For pp-collisions in the pp-cms, this particle is a proton of energy F, = 7 TeV and
direction of motion opposite to the quark. From this, one obtains @ = z' s, where =’ is

2The dependence of the distributions (5.21) on s,, becomes explicit, if one rewrites the distributions
in the form

d o & N & JETMEN . .
wz"&;:f";_.'h (& QH = Tn o %;)qu(mfﬁ(mi,Qf)hxi (E,m y L, =12, i# .

il Fi

3The energy has been evaluated in the hadron-hadron center-of-mass system.
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variable in (5.24). For the scale Q2 of the distribution-function f2 the choice Q* = z s,
was made, where z is the scale variable of f2(z).

Figures 5.5, 5.6 and 5.7 show the distribution-functions (5.24) of W*, W~ and Z-
bosons, respectively, in a proton of energy E, = /5552 = 7 TeV. We will give a com-
parison of these distribution functions with distribution functions from the literature in
the next section. We note that the dependence on the precise choice of Q2 is small. One
finds that the distributions change by 13% or less, for z > 1074, if Q% = max(z"s,,, M)
is chosen instead of Q% = z's,,.

Figure 5.8 shows the photon distribution fZ(z) of [83] in a proton of B, = 7 TeV,
where Q% = zs,, has been chosen. This distribution takes into account higher-order
corrections of QCD. The figure also shows a photon distribution which has been calculated
according to Eq. (5.24). Instead of a vector-boson mass, masses for the quarks have
been inserted. By this prescription one obtains the photon distribution in the leading
logarithmic approximation. The values m, = 5 MeV, my = 10 MeV, m, = 200 MeV
(current masses for the light quarks) and m, = 1.3 GeV, mpy = 4.3 GeV were used.
The approximate distribution is greater than the distribution [83) at small values of z,
z 5 1071, and smaller at greater values of z. This observation has also been made in [83].
The deviations amount to +21% at z = 1073, +28% at z = 10~2, —2% at z = 10~* and
—33% at = 0.3.

We discuss the quality of the approximations we made in deriving the convolutions.
Figure 5.9 shows the ratios of the approximate luminosities for W Z-pairs, (5.22), and
the improved luminosities, (5.10). The deviation of the approximation is for none of
the helicity combinations greater than 25% of the improved luminosity, if the invariant
mass W of the produced vector-boson pair is greater than 0.5 TeV. For the dominant
luminosity, TT, the deviation is less than 7%. At W > 0.8 TeV we have the following
deviations: TT < 7%, TT < 6%, T'L < 19%, LT < 21%, LL < 2%.

We discuss the quality of the approximations in terms of the cross-section for pp —
Z£X. This cross-section will be discussed in Section 5.4. Figure 5.10 shows the ratio of an
approximation to the cross-section do/dMzz and the cross-section in the improved EVBA
(the sum over all helicities was taken). Different approximations, finally leading to the
convolution of vector-boson distributions, are shown. As the first of the approximations,
the asymmetrical products, (4.61), instead of the exact expressions, (4.50), were used
in Eq. (5.10)%. This leads to a deviation of 12% at Mz; = 2 TeV, which grows to
28% at Mzz = 0.5 TeV (we do not consider the effect of the Higgs-resonance in this
discussion). If one uses the symmetrical products, (4.68), instead of the asymmetrical
ones, the deviation does not change much. It grows by only a further 2% in the region
0.5 TeV < Mzz < 2 TeV. If one now uses the extrapolated value sy = z?s,, instead
of the exact value sgy = #1725y, of 54 in the differential distributions in (5.21), the
deviation is diminished to 10% at Mzz = 2 TeV and it is always less than 18% for
smaller values of Mzz. So far, Q* = s,,/4 was used in the quark-distributions. If we
choose Q? = z's,, instead, where ' is the variable used in Eq. (5.24), the cross-section is
virtually unchanged. The calculation is now equivalent to a calculation with vector-boson
distributions in protons from (5.24). _

In summary, the formalism of convolutions leads to a (positive) deviation of 10% at
W = Mzz = 2 TeV compared to the improved EVBA. The deviation grows to 18% at
Mzz ~ 0.5 TeV. This result was obtained for pp — ZZX at VS = 16 TeV. For the pro-

4We used a rapidity-cut. This will be discussed in Section 5.3.
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duction of other vector-boson pairs we expect a similar result because the approximations
we made did not refer to any particular type of vector-boson.

Concluding this section, we described a formalism to calculate luminosities for vector-
boson pairs in a hadron-pair approximately as convolutions of vector-boson distributions.
We discussed the errors induced by this approximation.
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Luminosities of (WH+W~)y
. in pp collisions at Vs = 14 TeV
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Figure 5.4: The luminosities of a (W+ +W=)v-pair in a proton pair of invariant mass 14
TeV as a function of the invariant mass of the W+y-pair.
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W+ distribution functions
in a proton of Ep =7 Tev
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Figure 5.5: The distribution-functions (5.24) of a W*-boson in a proton of the energy

E, =7 TeV as a function of the scale variable z.
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W~ distribution functions
in a proton of Ep =7 TeV
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Figure 5.6: The distribution-functions (5.24) of a W~-boson in a proton of the energy
E, =T TeV as a function of the scale variable z.
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Z distribution functions
in a proton of Ep =7 TeV
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Figure 5.7: The distribution-functions (5.24) of a Z-boson in a proton of the energy
E, =7 TeV as a function of the scale variable x.
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v distribution function
in a proton of Ep =7 TeV
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Figure 5.8: The distribution-function of a photon in a proton of the energy E, = 7 TeV

as a function of the scale variable z. Shown is the distribution of [83] and an approximate
distribution calculated from Eq. (5.24).
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Ratios of Luminosities £5>
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Figure 5.9: The ratio of the luminosities £, as convolutions of vector-boson distributions
and the improved luminosities as a function of the invariant mass of the W Z-pair.
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Approximations to improved EVBA
Ratios of cross—sections
pp > 77 X at Vs = 16 TeV, Y=25, My, = 0.5 TeV
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Figure 5.10: Ratios of cross-sections for pp — ZZX via vector-boson scattering as a
function of Mzz. The ratios are for different approximations on the improved EVBA (see
the text) and a calculation with the improved luminosities. A rapidity-cut of ¥ = 2.5 was
chosen.




80 CHAPTER 5. LUMINOSITIES FOR VECTOR-BOSONS IN A HADRON-PAIR

w

Figure 5.11: Schematical diagram for the scattering of a proton p with a particle a pro-
ceeding via the exchange of a vector-boson V. A final state W is produced.

5.2.3 Comparison with Vector-boson Distributions in a Proton
from the Literature |

We give a comparison of the distribution functions (5.24) with (5.25) and (4.63), with
existing versions of distribution functions in the literature.

The distribution functions (5.24) were derived for the process shown in Figure 5.1. We
now consider the process shown in Figure 5.11 in which a proton p reacts with a particle
a. The reaction proceeds via the exchange of a single vector-boson. In this process, a
final state W is produced and in addition one is left with the remnants of the proton, X,
pa — WX. The particle a can be of arbitrary type. The invariant mass squared of the
pa initial state will be denoted by sp,.

In the EVBA, the reaction happens as a two-step process. First, in the quark-parton
model, the proton interacts via a quark ¢q. We assume again that the quark has no
transverse momentum with respect to the proton. The fraction of the quark momentum
and the proton momentum will be called z. The cross-section for the reaction is described
with the help of the quark-distributions in the proton, fF(z),

1
Opa(Spa) = fdsz;’(z, Q)0 4a(54a)- : (5.26)
0 q

In (5.26), 044(54a) is the cross-section for the reaction of the quark ¢ with the particle a
which happens at a reduced center-of-mass energy squared sg,. We need an expression
for sg. If we treat the proton and the quark as massless particles, the fraction of their
momenta, z, is the same in any reference frame. We can thus choose any reference frame
in which the proton- and quark-energies are large as compared to their respective masses,
in order to evaluate sg,. In the pa cms-frame one finds

Sga = ZSpa- (5.27)
Inserting the expression for the quark cross-section, (4.2), into (5.26) one obtains the

cross-section pa — WX in the effective vector-boson approximation,

1

L 2
omls) = [ d2 [ a0 S G (122 ) valyzs). (5.28)

b 0 oV
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Introducing the variable £ = yz, which connects the squared invariant masses W? and
Spa Dy the relation
W? = zs,,, (5.29)

we write the cross-section (5.28) differential in the variable z and obtain the expression

1
dope _ dz . o pq (& M
Ze =3 [ PRHCTACE

= f\g(zvﬁspﬂ)

In (5.30) we defined the vector-boson distribution function f{(z, s,,) describing the emis-
sion of a vector-boson V from the proton p.

The expression (5.30) is of the same form as is Eq. (5.24), with the formal difference
that the type of the particle ¢ is unspecified in (5.30).

It should be noted, however, that the two expressions describe different quantities.
The distribution (5.24) with (5.25) is to be used in the luminosities (5.22) to describe the
pp-processes proceeding via two virtual vector-bosons, shown in Figure 5.1. In contrast,
the distribution-functions (5.30) describe the process shown in Fig. 5.11, which proceeds
via only one vector-boson, and are to be used in Eq. (5.30). We note that the distribu-
tions (5.24) with (5.25) contain the variable s,; = x'%s,,, while the distributions (5.30)
contain the variable s4, = zs,, instead. It is instructive to numerically compare the two
distributions.

We numerically compare f§ from (5.24), (5.25) with f% from (5.30), using the various
distributions f{ discussed in Section 4.2 as well as the LLA distributions (4.73). For the
distributions [32, 66], we use My = My + Mz as the sum of the masses in the final state.
We also compare with the LLA distributions using zs,,(1 — 2) instead of s¢, as argument
of the logarithms. These are the LLA distributions of [33], apart from the factor 1 — z,
which is only of marginal relevance.

Our numerical example is for pp-reactions at /55, = 14 TeV. We will only plot the
W*-distributions as an example. The qualitative behavior of the W~- and Z-distributions
is the same. Figures 5.12, 5.13 and 5.14 show the T-, T- and I-distribution-fanctions®.
We see that the distribution function (5.24) is smaller than the other functions®. This
smallness of the distribution function clearly reflects the effects of the mutual boson-boson
phase-space which was taken into account. Expressed in another way, if one would use
one of the other distribution-functions to calculate the luminosity (5.22), one would get a
too large result. This is true for any calculation with transverse bosons. The deviation to
smaller values appears only at very small values of z in the longitudinal case. Thus, only
for the LL-polarization, the use of the distributions (5.30) in (5.22) can lead to a reliable
result.

) Ova{ZSpa). (5.30)

_—

qo

%1 note that the deviation to positive values at small z observed for the distribution-function WE’ of
[68] in Figure 5.14 is due to a specific model assumption.
The T-distribution of [33] is an exception. It becomes negative for small values of 2.
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Figure 5.12: The distribution function of W-bosons with polarization T in a proton
of energy E, = 7 TeV. Calculated from (5.30), with different choices for fi from the
literature. Also shown is the distribution function (5.24) derived in this work, applicable
to processes proceeding via two intermediate vector-bosons.
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W1 distribution function
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Figure 5.13: The distribution function of W+-bosons with polarization T in a proton
of energy E, = 7 TeV. Calculated from (5.30), with different choices for f& from the
literature. Also shown is the distribution function (5.24) derived in this work, applicable
to processes proceeding via two intermediate vector-bosons.
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W{ distribution function
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Figure 5.14: The distribution function of W¥-bosons with polarization L in a proton
of energy E, = 7 TeV. Calculated from (56.30), with different choices for f¢ from the
literature. Also shown is the distribution function (5.24) derived in this work, applicable
to processes proceeding via two intermediate vector-bosons.
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5.3 Application of Kinematical Cuts

In the following sections, we will have to apply kinematical cuts on the produced vector-
bosons. This is already required considering that the detection of a particle with its
direction of flight near the (hadron-) beam-pipe is not possible. In addition, the applica-
tion of kinematical cuts allows to filter out the signal from anomalous couplings. If the
energies of the produced vector-bosons are large compared to their masses, a rapidity-cut
can be applied. Otherwise, a pseudorapidity-cut can be used. We will discuss both types
of cuts in the following.

5.3.1 Application of a Rapidity Cut

We discuss the application of a rapidity-cut on the produced vector-bosons V3 and V.
The cut will be applied in the hadron-hadron center-of-mass system.

The rapidity y of a particle with four-momentum p = (E; ) along a certain direction in
space, in which a unity vector #; may point, is given by y = tanh™'(3), where 8 = 2;-p/E.

In order to apply rapidity-cuts to the produced vector-bosons V3 and Vj, strictly the
knowledge of all kinematical variables, which describe the intermdiate vector-bosons V;
and V, in the parton-parton system, thus the variables z, z, k?, k2, ¢; and @, in (4.21), as
well as a scattering angle 6 for the process V1V> — V3V, is required. The rapidities y;
and y4 of the vector-bosons V3 and V; in the hadron-hadron system are then functions of
all these variables and of the rapidity y of the parton-parton system. The application of a
rapidity cut then implies restrictions on the integration regions of all these eight variables.

A principal simplification can be achieved if one treats the intermediate vector-bosons
Vi and V5 as moving parallel to the hadron beam direction, as is the case for k2 = 0.
In this way, approximate expressions for the rapidities y3 and y4 are obtamed This
approximation does not mean, that the 4%- and k2-integrals are not anymore carried out
over the entire phase-space. It means that one neglects the dependece of the rapidities
on k% and k2.

With thls approximation one can obtain an expression for the ra.p1d1ty y' of the motion
of the (V1V;)-center-of-mass in the p1p, center-of-mass system, taken along the direction
of motion of the hadron, from which Vi was emitted, by adding the rapidities y and §
which appear in (5.3) and (5.10), respectively,

¥ =y+4. (5.31)

The rapidity of the vector-boson V; in the (V1 V,) center-of-mass system, taken along the
direction of motion of the hadron, from which V; was emitted, is given by the expression

P— (_q_f’) | (5.32)

In (5.32), @ is the angle between the directions of motion of V; and Vi, evaluated in the
(V1V2) center-of-mass system. The variable g is the magnitude of the space-like momentum
of the vector-boson V3 in this system,

1
W\/ 1 - ——(M3 + M}) + 557 (MF = M. (5.33)




86 CHAPTER 5. LUMINOSITIES FOR VECTOR-BOSONS IN A HADRON-PAIR

The rapidity of the vector-boson Vj in the (V4 Vs) center-of-mass system, taken along the
direction of motion of the same hadron, is given by the expression

yt = tanh™? (:ﬁ—cﬂ?ﬁ—) .  (5.34)

Va® + M

The rapidities ys, ¥4 of the vector-bosons V3, V4 in the (p;p2) center-of-mass system, taken
along the direction of motion of the hadron, from which Vi was emitted, are obtained by
addition: y3 =% +y; and yy =¥ +¥5.

We now demand that the rapidities of both produced vetor-bosons in the (p;p;)-cms
do not exceed an upper limit Y,

lys] <Y and, in the same event, |yi| <Y. (5.35)

Events, which do not satisfy the above restriction, are to be cut away. The quantity Y is
a rapidity-cut.

The cross-section for pipe — Vilh — VaVi, (5.7) with (5.10) and (5. 11) with the
rapidity-cut (5.35), is given by the expression,

(p1p2 - ‘/].V‘Q - 1/3‘/:4: 3pp)|Cut.

1

9 ymax n(;)dln (1) mln[2 1]:1 -:-'_- 5 )+y}

do
dz
MONENE— / W 2 NeE

~Yhox 0 max] —-—ln( ,-—%ln( ) +v'] ("1ve) pol
[ ( E (\/—6 ,Q2 ql(Vl)) ( Z ) qz(sz))
a(V) g2 (Va) .
. [F ., M} M?
Lpa(Z, \/:eyl 1,2y + pep l
T Seq Sqq
Zmax(y’) do
deos b2 ((ViVe)pa = VsV, Ww?), (5.36)
Zmin (%)
where the integration limits are determined by the rapidity-cut,
' . [,171
Ymax — N _Y—, 5 (E?}]}a ’) (Y ’)
' —tanh(Y +¢') —tanh(Y —y
i = - g in| »
me(y) ma.x_l: ﬁ(Msz, Mz‘) 3 (ﬁ(Mg, 1;4-3?) P cOs min
. [tanh(Y — ¢) tanh(Y + ¢’ ]
zm ! = muna ] 1 gmln 3 5-37
=) B3, 0E)  BOME, M) (5:37)
with
1— 2 (M2 + M?) + L (M2 — M7?)2
ﬁ(M‘Z’ Mﬂ) = \/ wz( ) ’2 ( )
1+ M
= e (5.38)

VE I

and ¢os i = 1. In the vicinity of the threshold for the production of the pair V3Vy, the
rapidity-cut has no effect anymore, i.e. zmax(y') and 2y (y') are determined by cos fpmin =
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1. In order to have a cut also at small energies, one can insert an absolute upper limit on
| cos 6, cos fmin < 1, instead of the value cos O, = 1. Here, 8,,;, must be an angle, which
is greater than or equal to the minimal angle with respect to the beam-direction, under
which an event can still be detected. A reasonable choice is cos @y, = tanh(Y). This
approximative treatment for small energies can be avoided if one uses a pseudorapidity-cut
instead of a rapidity-cut (see 5.3.2).
If the masses of the vector-bosons V3 and Vj are equal or only shghtly different, M2 ~

M2, or if the momenta of the bosons are large against their masses, ¢2 > max(Mg, M 2)

the expressions (5.37) for Zmin and Zyax simplify t0 give Zmay = —Zmin = 20, Where
tanh(Y — [/
Zp = min [ ( ly D,cos Omin| » (5.39)
ﬁmax
With Bmax = g - Pmax is the greater one of the two values S(MZ, M?) and

/a2 +min(MZ ,M7)
B(ME, M2). One could have also chosen the smaller one of the two values. By choosing
the greater value, slightly more, by choosing the smaller value, slightly less events are cut
away as in the exact treatment of the cut given by (5.37).

5.3.2 Application of a Pseudorapidity-Cut

Near the threshold for the production of massive particles it is not anymore possible to use
a rapidity-cut in order to cut away events near the beam-pipe. Particles whose magnitude
of the space-like momentum is small against their energy are not cut away near the beam-
direction by a rapidity-cut, as we saw above. A pseudorapidity-cut always excludes these
events.

The pseudorapditity  along a certain direction in space for some particle is defined
in terms of the angle ¥ between the direction of motion of the particle and that direction
in space, = tanh™!(cos ¥). For massless particles, the rapidity and the pseudorapidity
are identical quantities, while for massive particles y < . If a cut on the psendorapidity
is applied, there are therefore more events of massive particles being cut away than for a
rapidity-cut of the same magnitude.

The application of a pseudorapidity-cut, |ns] < 7 and, for the same event, |} < 7,
leads to the same formula, (5.36), as for a rapidity-cut, if the collinear approximation for
the motion of V] and V; relative to the hadron-hadron beam-direction is made. However,
the limits of integration ¥} .., Zmin(%') and zmax(y") in (5.36) are given by the expressions

1
\1+ Eix-(—n:z—éﬂ—) sin® Omin
~t*y* B2 Bs — /(1 + £29?) — 29223

|1 1 -
Ymax = min -2—ln (E),tanh !

zmin(y’) = maxl:

q(1 +29?) ’
BBy = (L + £292) — 29202}
g(1+#29*)
, [P Es + /(1 + £292) ~ 2922 E}
Zmax(y') = min ,
g(1 +29%)
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24232 F, + \/q2(1 + 1242) — 1242 322

q(1+1242) ’ (5.40)

instead of (5.37). Before using (5.40) on has to make sure that zmin < Zmax; if this is not the
case the contribution from the given ' is zero. In (5.40), t2 = tan? dyy;p and the quantity
B = tanh(y') is the boost-parameter for a transformation from the (p1p2) cms-system into

the (V1V3) cms-system. Further, 2 = 1/(1 — #?%). The quantities F5 = {/¢* + M$ and

Es = +/q% + M? are the energies of V3 and V. The quantity Jpn is the smallest allowed
angle in the (p;ps) cms-system between the direction of motion of a produced vector-boson
and the hadron-beam direction. It is related to the cut f by tanh(n) = cot Fmin-

For equal or nearly equal masses of the produced vector-bosons, M =~ M2, or, equiv-
alently, for large energies of the produced vector-bosons, ¢° > max(M3, M2), the limits
of integration in (5.40) take on the simplified forms

! = min {tanh* L —l-ln (—1-)
Ymaz = 1+ tan? ﬁmin%‘l 2 \g/ |

; 2 — min(M2, M7) sin® 9in 8272 — tan® O y?| 6| F
zo(y') — cosﬁmin\/q mln( 3 4) ) minB%Y minY |ﬁ| ’ (5_41)
g(1 + tan® 9piny?) ‘

where F = \/q2 + min{ M2, M2) is the energy of the lighter one of the produced vector-
bosons.

5.3.3 Application of Cuts to Convolutions

If one applies a rapidity- or pseudorapidity-cut to the expression for convolutions of vector-
boson distributions, (5.7) with (5.22), one obtains the expression

do
-;(Ihpz — ViVo = VaVi)lcu

~ Ymaz
T ot
= Y rE Y [ wm, (EE oD, (VEeY.Q)) + o]
(vive) pol=/\11\2_y;naz
0 (20(y")y Vi, Vo, = VaVa), (5.42)

with ¢/ and 2y (y") from (5.37) or (5.40), respectively. If the V3, Va-particles are produced
via g§'-annihilation, instead, one obtains a formula similar to (5.42),

do

3}(?1?2 — g7 = VaVa)low

'
Ymaz

= [ &3 [2(E DEET,Q) + pe ]
—n (¢7')

-o{z(y'), ¢ — VaVa), (5.43)

with 3!, and z9(y’) also from (5.37) or (5.40), respectively. The formula (5.43) follows
from (3.2). In deriving (5.43), the masses of the quarks ¢ and §' were neglected.
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T ow

Figure 5.15: The Feynman diagrams for ZZ — ZZ in the Born approximation.

5.4 Comparison with a Complete Perturbative Cal-
culation for the example pp — ZZX

We are now going to present numerical comparisons of improved EVBA results with results
of complete perturbative calculations. The complete perturbative calculation includes
the contribution from bremsstrahlung diagrams. As an example, we choose the process
pp = ZZX, for which complete results are available. To my knowledge, a calculation
for pp = WZX has never been performed. We will also compare with conventional
formulations of the EVBA.

A complete perturbative treatment (to lowest order in the coupling «) of the process
on the quark-level, g1g2 — ¢19,ZZ, can be found in [76] and [77]. In [84], also the O(a)
radiative corrections for this process have been considered.

In the EVBA, the process proceeds via the vector-boson scattering-processes W1W— —
ZZ and ZZ — ZZ. The amplitudes for W*W~ = ZZ are obtained from those for
. W*Z — W*Z by exchanging the kinematical variables s and ¢ as well as the helicities
A; of the particles according to

M (Wwy, - ZrsZn) (5, t,u) = M (Wi 25, — W, 2Z) (t, 5, u). (5.44)

The process W*Z — W+Z will be discussed in Chapter 7.

For the process ZZ — ZZ there are three Feynman diagrams in the Born approxi-
mation, each of which describes the exchange of a Higgs particle, see Figure 5.15. The
amplitude for the process is given in the SM by

_OMy ((a-e)(ged) | (a-e)e ) | (- ele-e)
M(ZZ ~ 22) = = Py Ry e ) 649)

where €;,2 = 1, 2, 3, 4 are polarization vectors and $,t,u are the Mandelstam variables.
Following the calculation in [84], we calculate the differential cross-section

do/dMzz(pp — (WIW~ + ZZ) = ZZ, spp)|cue
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at /55, = 16 TeV for a rapidity cut of Y = 2.5. We use Eq. (5.36) and choose all
parameters and the parametrizations for vector-boson- and quark-distributions as in [84].
Thus, for the differential vector-boson luminosities in a quark-pair the product of vector-
boson distributions f{,(x) from [66] is inserted. However, in an attempt to obtain an
improvement for the use of the distributions in processes proceeding via two vector-bosons
the distributions [66] have been modified in [84]. This modification was obtained by the
replacement P? — Q2. Different choices for Q? were made. We will specify them below.
For definiteness, we first give the expressions for the amputated luminosities used in [84],

2 2 iy
Ly (sc , -st %’j—) S (2, -ﬂé%) by (3;- %%2) , (5.46)
where the functions Bp,,; are the amputated distributions,
hT(x ;\_4_2) _ 1+(-ap [IH(Q2+M2(1-3:))_ @ ]
: ) sz ] 22 L\ J;fi(l)m— z) gz + M?*(1 —1x)
| hq_"(m,%;) = 2 xx [IH(Q ﬂ—;z(l(_x)ﬂi ) - Q2+M2(1-—x)]
hi (:z: g—j) = 21;2“’@2 —1\?:(1—9;)' (5.47)

In [84], Q% = M3%, was chosen and the calculation was repeated for Q?* = M%,/4. For
the quark-distributions fg’(:t:,Q2) the parametrisations of Duke and Owens [85], set 1,
with Q2 = s,,/4 were used. The remaining parameters were o = 1 /128, Mz = 91.1 GeV,
2, = 0.23, My = 500 GeV and T'y = 62 GeV for the width of the Higgs particle.

We repeat the calculation of [84] in order to later discuss the improvement obtained
by using the improved EVBA instead. For the same purpose, we will also show a result
obtained by using the convolutions of the vector-boson distributions of [65]. This result is
thus obtained by using (4.67) instead of (5.46). We will then compare all three calculations
with the complete calculation.

The cross-sections obatined by using (4.67) and (5.46) are shown in Figure 5.16. The
contributions from two longitudinally polarized intermediate vector-bosons, LL, and the
one from the remaining helicity combinations are shown separately. The contribution from
the longitudinal degrees of freedom is almost identical in all calculations and only shows
a very weak dependence on the choice of @? in (5.47). It is the dominating contribution
in the vicinity of the Higgs resonance but becomes negligibly small if one is far away from
the Higgs resonance, especially at MZ; > MZ,. The contribution from the transverse
degrees of freedor, in contrast, depends principally on the exact choice of the distribution
functions. It is very different for the two choices of Q. This contribution determines the
cross-section at large Mzz, M%, > M3,

The same calculation is now conducted with the improved differential luminosities,
(4.50), instead of (4.67) or (5.46). The result is shown in Figure 5.17, where again the
contributions from different helicity combinations are shown separately. The figure also
shows the sum of the non-diagonal helicity combinations, TLT'L, TLTL and TTTT,
which is negative and only plays a subordinate role here.

Figure 5.18, finally, shows again the results of the above calculations (only the result
for Q2 = M%,/4 is shown) together with the complete (or exact) result from [84]. The
sum of all intermediate helicities has been taken. The improved EVBA lies nearest to
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the exact result. The deviation to the exact curve is, however, as large as a factor of two
at Mzz = 1 TeV. We will give a possible explanation for this deviation further down.
Also shown in Figure 5.18 is once again the contribution from longitudinally polarized
intermediate vector-bosons. This contribution reproduces the cross-section on the Higgs-
resonance very well. It was because of this observation that the EVBA could be used to
calculate the cross-section for vector-boson pair production in strongly-interacting models
of longitudinal vector-bosons. In these models, as on the Higgs-resonance, the longitudinal
helicities give the dominant contribution.

We make another comparison of the EVBA with an exact calculation. This time also
the result for a lower value of the cut, ¥ = 1.5, will be considered. Numerical results of the
exact calculation are only available for /s = 40 TeV and can be found in [77] and [66, 86).
Only the production via W+W ~-pairs, pp — W+W~ — ZZ, was considered”. We again
calculate the differential cross-section do/dMjzz from Eq. (5.36) with the luminosities of
the improved EVBA. As in [66], the quark-distributions of EHLQ), [17], set 2, are used
and the electroweak parameters are o = 1/128, 5%, = 0.22, My = 80 GeV, My = 0.5 TeV
and I'y = 51.5 GeV. For the scale Q? in the quark-distributions, Q% = s,,/4 is chosen.
We also carry out a calculation with the convolutions of vector-boson distributions from
Eq. (5.42) 8. Figure 5.19 shows the result of these calculations together with the exact
result from [66]. A rapidity cut of ¥ = 2.5 was applied. The cross-section of the improved
EVBA again deviates by a factor of two from the exact result at Mzz = 1 TeV. The result
obtained with the convolutions deviates by 10% (Mzz = 2 TeV) and 18% (Mzz = 0.8
TeV) from the improved EVBA result.

Figure 5.20, finally, shows the same comparison for ¥ = 1.5. For this value of the
rapidity-cut, a good agreement between the improved EVBA and the exact calculation is
found. The EVBA deviates by less than 10% from the exact result for My z > 0.4 TeV.

A possible explanation for the different results for ¥ = 2.5 and ¥ = 1.5 is that the
bremsstrahlung-type diagrams in Fig. 4.1 begin to play a role if the angle between the
produced vector-boson and the hadron beam-direction is small. This would be the case
for Y = 2.5. In contrast, the bremsstrahlung-diagrams can be neglected if only large
angles are involved. For a cut of ¥ = 2.5 angles down to 8nin = 9.4° are allowed, while
the smallest angle for Y = 1.5 is O = 25.2°.

Summarizing this section, we have seen that the improved EVBA deviates by only
10% from the result of a complete perturbative calculation for a cut of ¥ = 1.5. This
result was found for pp — ZZX at /&, = 14 TeV and invariant masses of W > 0.4
TeV. The use of convolutions instead of the improved EVBA leads to an additional error
of 10% at W = 2 TeV. The error grows as W becomes smaller, but is stays below 18% if
W > 0.5 TeV. We have made an attempt to understand the observed failure of the EVBA
for larger values of the cut in terms of the contribution from bremsstrahlung diagrams.

There is no reason that a similar conclusion could not also be drawn for the general
process pp — VaVaX. We expect this because the EVBA only pertains to the process-

TA separation into a contribution from intermediate W+ W ~-pairs and a contribution from intermedi-
ate Z Z-pairs is also possible in the exact calculation (in a very good approximation) [77]. The diagrams
of the exact calculation can be grouped into two classes. One class contains the W W ~-diagrams of the
EVBA and additional bremsstrahlung-type diagrams, the other class contains the ZZ-diagrams and also
additional bremsstrahlung-diagrams. Both classes are a gauge-invariant subset. The interference term
between the two classes, which arises when the amplitude is squared, is very small. The reason for this
is the same one as for the neglect of the interference terms in the EVBA, see 4.3.1.

®The value of Q? in fP(z,Q?) was Q° = zspp.
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independent vector-boson luminosities.
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pp-ZZ X at Vs =18 TeV, Y = 2.5
M, = 0.5 TeV
f3(x) of Johnson and Baur
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Figure 5.16: Contributions of different helicity combinations to the cross-section pp —
ZZX via WtW™- and ZZ-scattering as a function of Mzz, calculated according to [84]
with the convolutions (5.46) and according to [65] with the convolutions (4.67).




94 CHAPTER 5. LUMINOSITIES FOR VECTOR-BOSONS IN A HADRON-PAIR

pp>ZZ X at Vs =168 TeV, Y = 2.5
My = 0.5 TeV
improved EVBA
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Figure 5.17: Contributions of different helicity combinations to the cross-section pp —
ZZ X via WHW - and Z Z-scattering as a function of My, calculated with the improved
EVBA.
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pp-ZZ X at Vs =16 TeV, Y =25
MH = 0.5 TeV
EVBAs versus exact calculation
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Figure 5.18: The cross-section for pp — ZZX via WTW~- and ZZ-scattering as a
function of Mzz. Shown is the result of an exact calculation and different formulations
of the EVBA (see text).
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pp > WW > 7ZZ X at Ve =40 TeV, Y = 2.5
My = 0.5 TeV
EVBA versus exact calculation
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Figure 5.19: The cross-section for pp — ZZX via WtW ~-scattering as a function of Mzz
at /s = 40 TeV and Y = 2.5. Shown is the result of a complete perturbative (exact)
calculation, of the improved EVBA and of the convolutions of vector-boson distributions.
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pp > WW > Z7Z X at Vs = 40 TeV, Y = 1.5

MH=O.5 TeV
EVBA versus exact calculation
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Figure 5.20: The cross-section for pp — ZZX via W+W —-scattering as a function of Mzz
at /s = 40 TeV and ¥ = 1.5. Shown is the result of a complete perturbative (exact)
calculation, of the improved EVBA and of the convolutions of vector-boson distributions.




Chapter 6

Cross-Sections for W Z-Production
Processes

This chapter contains a discussion of the cross-sections for the production of W Z-pairs.
We apply the treatments given in Chapters 3 and 5 to the production of W Z-pairs. We
will first discuss the cross-sections for the parton-processes ¢f — WZ and WV - WZ,
V =, Z. A discussion of the effects of anomalous couplings and of the variation of the
Higgs boson mass will be included. The cross-section for pp — W ZX is then calculated
according to Eq. (3.4) with (5.43) and (5.36) or (5.42). The contributions from the
different parton-processes to the proton-proton cross-section will be compared. We will
consider the differential cross-section do/dMy z for the proton-proton process.

6.1 Cross-Sections for the Parton Processes

We discuss the cross-sections for g7 — WZ and WV — WZ including the effects of
anomalous couplings.

6.1.1 Cross-Section for qg' —» W Z

For quark-antiquark annihilation into a W Z-pair, W = W or W, there are the processes
ud ~ W*Z and 4d — W~ Z, where u is a quark of the up-type (up, charm or top) and
d is a quark of the down-type (down, strange or bottom). We denote both processes
generically by g¢ — W Z. In the Born approximation there are three diagrams, as shown
in Figure 6.1. The cross-section in the standard model for such a process has been first
given in [16]. In {40] one finds an expression for the cross-section for arbitrary values of
ew. I calculated the cross-section for arbitrary anomalous couplings €w, €éws and €pg.
The cross-section, averaged over the helicities and colors of the incoming particles and
summed over the helicities of the outgoing particles, is given by the expression

do , 1 g
Z = — 4 =
deosa Wl 7 W2) = 3139 'V‘*‘fl{
2
1 Sw 9 9 Yz
5 (.S‘ _ M‘?V) [gzs AO +gz$zAI+gz—ﬂ4—2“-;Ay

2
Yz Yz
+$ZWV~Amy + 3322sz -+ ("M-a/—) Ayz:l

98




6.1. CROSS-SECTIONS FOR THE PARTON PROCESSES 99

U

u W+
Wt
u w+
s
>\/\_/< t | d "
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Figure 6.1: Feynman diagrams for ud — W+Z in the Born approximation.

S

+—~————S jv;ﬁv [Cd (gzsfu(s, t,u) +xzl (s, t,u) + %Iy(s, ¢ u))

—Cy (gzsIo(s, u,t) +xz1(s,u,t) + }—J—Z—Iy(s,u, t))}

M,
tuw — M2, M2 tu — Mg M?
+(c‘u, . Cd)2E0 + 263-3&_._—_——.2—‘/1..—£ + 2c3i_tz_vv_z.
s(Mg, + M%)}
Cq————52 5,

+4de,
fu

(6.1)

The relation between the parameters gz, zz and yz in {(6.1) and the parameters ew, ews, €8s
has been given in (2.53). In (6.1), # is the angle between the direction of motion of the
W -particle and the u- or %-quark, the quantity S is given by

_ [, Ma MG (M =~ MR
p=y1- o2, O o

, (6.2)

and g = e/sw is the weak coupling constant. The quantity V,y is the corresponding
element of the CKM matrix. The quantities s,¢ and u are the Mandelstam variables,
given by

s = (pq+P§')2 )
t = (pfi—pw+) = (pz — pw-)*

-3 (3(1 — Bcosf) — M3 — Mﬁ) ,
U = (pu— Pz)2 = (pg ~ PZ)2

“é (3(1 + B cosB) — My, — M%) . (6.3)

The quantities cq and ¢, are the sums of the vector- and axial-vector-coupling (thus the
lefthanded couplings), ¢; = v; + a;, 1 = u,d, for the coupling —igv*(v; — a;ys) of the
Z*-boson to the d- and u-quark, respectively. They are given by

1 4,
Ca = QCW (1 - §3W)
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1
— + = ) 6.4
“u 2cw ( L 35W) (6.4)

The functions of the Mandelstam variables in (6.1) are given by,

_ tu ) MZ M2 MZL + M,
2 2 2 2 ar2 57 a2
= — _— —_ —_ 2._,_,__
Ag e (s - 5MF, — M3) (M3 MG — tu) + Mﬁvﬁ
A, = 45°6% Agy =25 (tu — Mﬁ,Mé) + 5352
ME ML —tu 5 5 $

3
Ap = s (tu— M§M3) (25 — Miy — M) + S (Mg, + MZ) 5°
2 2 2 M2
Io(sﬁt’u) = (—Lg_’l) (1_MW+MZ _4MW Z)

s st

M}, + M3 M3, M}
2 W Z _M‘Z _ 2 ) W=tz
-+ M%;M% (S w Mz+ "“"—“"'—t 2
1 M
L(s,t,u) = W[St+82+t2~M§-(s+t)]—u—M$V+2TZ(s+M5V)
W
IL(s,t,u) = 2s (s - Mg, — M%) + 4M,;°‘VM%1§—
1 tu M2, + M2
By = - | ——/————1 Wz 6.5
: 2(M3VM§ )“ M3, 03 (65)

The connection to the functions A(s,t,u), (s, t,u) and E(s,t,u) in [16] is given by
Ao = 4A(s,t,u), Io(s,t,u) =4I(s,t,u), Ey=2F(s,t,u).

High-Energy Approximation

For large scattering-energies, s > M3, simple approximative formulae for the cross-
section can be obtained. We assume that the couplings ¢; are small, ¢, = O (33,/s).
Equivalently, we define the parameters

€, (66)

W = S
‘= G

and assume that they are of the order a; = O(1) or smaller. The leading terms in an
asymptotic expansion of (6.1) in powers of MZ,/s are given by

do gt B ({1 (l+cosf 1—cosh ) s
- Ll g+ W
dcos@ 32ms 12 \ 2¢d, \ 1 — cos@ T cosg) \ WS+
-
+4sin® 8¢t a2, + E%-—g- (1- 4aw¢,)2) . (6.7)

The expansion has been carried out at a fixed scattering-angle 8. Concerning the validity
of the high-energy approximation, it should be noted that not only MZ, /s, but also MZ, /t
and Mg, /u play the role of an expansion parameter. These variables are smaller than a
parameter 4,
IM{ﬁ, 2MZ,
b
U

Miy
A 8(1 - Zo)’

<6, with 6= (6.8)
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where zg is the largest possible value of |cos8]. An upper limit for z is given in terms of
the rapidity-cut 7 in the pp-system, 2y < tanh(7). The equality in this last relation holds
if the pp- and the W Z-cms-systems coincide. The parameter & must not exceed a certain
small value . The parameter € is a measure for the relative error which is introduced by
the high-energy approximation. For a given ¢ one obtains, via the requirement § < ¢, an
upper limit on the rapidity cut, above which the high-energy approximation should not
be used, namely '
2M$V)

8¢

N < Nmaz = tanh™ (1 (6.9)
At /s =1 TeV one obtains: € = 0.1 = 7o = 1.34, e = 0.2 => Nmaz = 1.70.

The expression (6.7) does not depend on agg, i.e. there are no effects enhanced by
powers of s/MZ, concerning this parameter. There are linear and quadratic effects.of the
parameter aw ¢ and quadratic effects of ayy .

One obtains the same expression, (6.7), by squaring and summing the high-energy
expressions for the helicity amplitudes u(o = —$)d(o = 1) = WH(\)Z(Az), dw, Az =
+1,0, where o are the helicities of the fermions and Ay and Az the helicities of the
vector-bosons. These expressions for the helicity amplitudes are given by

sinf?c .
\/5 wow

2 o 2
g° sinf 1 (, Siy
= —_— g L
MEF) = F 5T cosbom (CWCOS 3 )
2

M(00) = —Egﬁsinea—amw). (6.10)

The cross-section is obtained in terms of the amplitudes by the relation

do 1 _[i
dcos®  327s 12,

M(x+) = —24°

> IMOw, Az (6.11)
WsAZ

The expressions for M(++) and M(+F) can be found in [20, 41]. The expression for
M(00) has been calculated by myself. An approximate expression can be found in [20].

In the high-energy approximation, a simple expression also exists for the integrated
cross-section,

7 do
o(z) = fdcosﬂ

kA dcosf
g' B (1+z0) 2 ty > tw\ _ %
£z Wy _o W '}
3275 12 [21’1 T—z) W(1tg) 2w ((2+9)+3
3 _ 2
+ (zo — 2—0) (SG%VC%V + (_l__T__‘LVL)_)] . (6.12)

Discussion of Numerical Results

Figure 6.2 shows the differential cross-section (6.1) as a function of cos# at a scattering-
energy of /s = 1.5 TeV in the standard model and for various values of the anomalous
couplings. The energy /s = 1.5 TeV has been chosen as an example. The standard
cross-section is very small at cosf = (¢, + cg)/(c, ~ cz) = —1t8, o —0.1. This smallness
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has been called an approximate amplitude zero {87]. For cosé — =1 the cross-section
becomes very large. This is due to the exchange of two very light particles in the t- and
u~channel and it is reflected by the logarithm in (6.12). If the anomalous couplings are
different from zero, the cross-section becomes larger especially at large scattering-angles
8. The parameter ege has to be much greater than the parameters ew, ¢we in order to
lead to comparable effects. For the cases epg = 0, Figure 6.2 also shows the high-energy
approximation (6.7). This approximation is very good at /s = 1.5 TeV.

Figure 6.3 shows the integrated cross-section as a function of the scattering energy
/s for various values of the anomalous couplings. A pseudorapidity-cut of n = 1.3
has been applied, which correspnds to an integration region for the scattering-angle of
25° < @ < 155°. Also shown is the high-energy approximation, (6.12), if epe = 0. A
positive value of eys leads to a decrease of the cross-section at small scattering-energies
and to an increase at large energies. A negative value of ey always leads to an increase.
At large energies the increase due to a negative value of eyq is similarly large as the
increase due to a comparable value of jey|, while for small energies the increase due to 2
negative ewe is larger. This latter feature can be understood from the fact that a linear
coefficient of aw is absent in (6.12). The deviation of the high-energy approximation
(6.12) from the integrated cross-section (6.1) is —16% in the SM at /5 = 0.5 TeV, ~7%
at 0.8 TeV, —5% at 1 TeV and —1.3% at 2 TeV.

Figure 6.4 shows the dependence of the standard cross-section on the choice of the
cut 7. A scattering energy of /3 = 0.5 TeV has been chosen as an example. Due to the
mentioned singularities at extreme values of the scattering angle there is a steep increase
of the cross-section with increasing 1. The high-energy approximation does not become
Wworse as 17 increases.
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Figure 6.2: The differential cross-section for ¢gf — WZ as a function of cos# at /5 =
1.5 TeV for various values of the anomalous couplings. Also shown is the high-energy
approximadtion.
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Figure 6.3: The integrated cross-section for ¢ — W Z as a function of the scattering-
energy /s for = 1.5 and various values of the anomalous couplings. Also shown is the
high-energy approximation.
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Figure 6.4: The integrated cross-section for ¢§' — WZ as a function of the cut 7 at
v/ =10.5 TeV. Also shown is the high-energy approximation.
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Figure 6.5: Feynman diagrams for WV — W*Z, V' = v, Z, in the Born approximation.

6.1.2 Cross-Sections for Wy — WZ and WZ —» WZ

We are going to discuss the cross-sections for the processes WV — WZ, W =W+ or W~
and V = vy or Z. In the Born approximation there are four diagrams which contribute to
each of the processes, as shown in Figure 6.5. The diagrams with vector-boson— or Higgs-
boson-exchange in general contain contributions from the anomalos couplings which are
quadratic and linear in the couplings, while the diagram with the four-particle interaction
contains only linear terms. The Higgs-particle appears non-resonant in the t-channel. For
the process Wy — WZ the Higgs-diagram is completely non-standard. An analytical
expression for the helicity amplitudes M,y in terms of polarization vectors has been
given for WZ — WZ in [56]. The corresponding expression for Wy — WZ can be
obtained by a straightforward modification of this expression. The vertices needed for
this modification have also been given in [56].

The cross-section for a given helicity combination of the WV -pair is defined in terms
of a sum of squared helicity amplitudes, M,,, as defined in (4.39). We consider the
integrated cross-sections with a pseudorapidity-cut n on both particles in the final state
and sum over the helicities of the final state particles. The expression for the cross-sections
is given by

tanh(n)

g dcos 8 My, (6.13)

Opol = oo~
3273 p_ o)
In (6.13), p and ¢ are the magnitudes of the space-like momenta of the particles in the
initial state and in the final state, respectively, evaluated in the W Z cms-system, and @ is
the angle between the directions of motion of the two W-particles evaluated in the same
system. The quantity s is the square of the scattering energy. For the process WZ — W2Z
one has g/p = 1. The expressions for p and ¢ for the process Wy — WZ are given in
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Appendix B.

The quantities oy of (6.13) are the same for W*V — W*Z and WV — W-2,
since also the amplitudes are the same. A further analytical manipulation of the expres-
sions for the amplitudes given in [56] does not lead to useful results. I have evaluated
the cross-sections numerically. I obtained, however, analytical results in 3, high-energy
approximation.

High-Energy Approximation

For large scattering-energies, s = MZ,, > MZ,, simple approximative forms for the cross-
sections can be found. They are obtained by an asymptotic expansion of the scattering
amplitudes in powers of M7, /s [41, 56, 88]. In this way, cancellations between different
diagrams are explicitly carried out. The cancellations appear in the standard term and also
in the anomalous terms [56]. For terms which remain after the cancellations have been
performed simple analytical expressions can be given. The asymptotic amplitudes are
then squared and the integration over the scattering-angle cos 8 is carried out analytically.
Formulae for the resulting cross-sections are given in Appendix B.

We elaborate on the nature of the high-energy approximation. In the standard model,
the leading terms of an amplitude is of the order of magnitude O(s/M2)?, i.e. they
approach a constant value for large scattering-energies. To obtain this result, one has to
assume that the mass of the Higgs-particle is small against the scattering-energy, M: <« s.
This assumption has been made in deriving the expressions in Appendix B. I have also
derived approximative forms applicable for arbitrary masses of the Higgs particle, but
refrain from giving them here since they are very lenghty. Numeical results obtained with
these forms will be given below.

Of the non-standard terms we are going to take into account those which are enhanced
by powers of the scattering-energy, as we did previously for the process gf — WZ.
For this purpose, we use the parameters ¢; defined in (6.6) instead of the ¢;. We take
into account ail powers of the a;, which are not suppressed by negative powers of the
the scattering-energy. The latter restriction is equivalent to the assumption, that the
couplings are small, ; = O(4M},/s), or, expressed in another way, that the parameters
a; are not much greater than ¢; = O(1).

If certain powers of the anomalous couplings do not appear, non-leading terms can
become important. This is the case for the cross-sections opp = 3041 +04.) and oy =
3(0++ — 04_), which are multiplied by the dominating (at large My z) luminosities Lrr
and Lzr. The reason that the non-leading terms are important is that the cross-sections
o4+ and o4 in the standard model are virtually determined by a single amplitude,
Myi4p and My __ ., respectively!, which receives non-standard contributions from only
a single anomalous coupling, namely ey in quadratic form, and no contribution from
the other couplings nor contributions linear in ey,. We therefore calculate the non-leading
anomalous terms, O (Mjy/s(as, af)), of the amplitudes M, ;. and M____ and take into
account the terms 2 M standard M non—leading, Which arise when the amplitudes are squared.
It is mainly these terms, which describe the effects linear in the €5, since such effects are
not present in leading order in any of the amplitudes contributing to o, and o__.

'In the high-energy approximation of the standard model, o4.4 is completely determined by the
amplitude M ;4., while the contribution of the amplitude My __, to ¢;_ amounts to 97%. This is
true for both processes WZ — WZ and Wy — WZ. An angular cut 2 = tanh(1.5), equivalent to a
rapidity-cut of y = 1.5 on the produced vector-bosons in the W Z center-of-mass system, was assumed.
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The approximation was so far confined to small anomalous couplings, a; = O(1) or
smaller. By taking into account certain further, non-leading terms the applicability of the
approximation can be extended into the region of larger anomalous couplings, a; > 0(1) 2
The effects of larger but not too large a; manifest themselves most strongly in terms which
are quartic in the couplings. These terms, to the first non-leading order, are proportional
to M% /s-a;a;axa, i, j, k1 = W, W®, B®. Therefore, we also calculate those terms. They
only appear in amplitudes which receive no leading order contribution at all, neither in
the standard model nor for anomalous couplings®. These terms become important for the
cross-sections ory, and o (only for large a;). For these cross-sections amplitudes with
the corresponding leading terms are missing.

All terms we have discussed are listed in Appendix B.

Discussion of Numerical Results

The Figures 6.6 to 6.14 show numerical results for the cross-sections for WV — WZ.

Figure 6.6 shows the cross-sections for the process WZ — W Z in the standard model
for the diagonal helicity combinations as a function of the scattering energy Vs, A
pseudorapidity-cut 77 = 1.5 has been chosen, further My = 100 GeV. The largest cross-
section is for Wy Zp, which is also to be multplied with the largest luminosity, £}, . .
The other WZ — W Z cross-sections are, in the order of decreasing magnitude, TL = LT,
TT and LL. Figure 6.7 shows the same cross-sections for the process Wy — W Z. These
cross-sections vanish at the production threshold for a W Z-pair. They show the same
order in their magnitudes as do the cross-sections for WZ — W Z. The cross-section for
W~ — WZ for a given helicity combination is smaller by a factor of 3 to 4 than the
corresponding cross-section for the process WZ — W Z.

The cross-section for the non-diagonal terms in the helicity combinations for WZ —
WZ and W — W Z are shown in Figure 6.8. At large scattering-energies these cross-
sections are negligibly small against all cross-sections for the diagonal terms. I note
that the terms with contributions from longitudinal polarization states give a negative
contribution.

Figure 6.9 shows the dependence of the cross-sections on the cut 7. Only the cross-
sections for WpZr — WZ and WpZp — WZ are shown as an example. A scattering-
energy of \/s = 1 TeV was chosen as well as My = 100 GeV. The dependence on the
cut is very strong. The reason for this is the exchange of a W-particle in the u-channel,
which causes a significant rise of the cross-section at large scattering-angles, cos — —1
(similar to the Coulomb pole for the exchange of a photon). This is reflected by the terms
~ 1/(1 — z2), which appear in the high-energy approximation in Appendix B. The rise
is only halted by the finite values of the boson masses, an effect which is, however, not
reproduced by the high-energy approximation. This approximation is also shown in the
figure. It becomes worse with increasing 7. The high-energy approximation deviates by
10% to 15% from the exact calculation at 5 = 1.5, depending on the considered process.

The effects of the variation of the Higgs boson mass, Mg, on the W Z; — W Z cross-
section are shown in Figure 6.10 for a cut of n = 1.5. For large Higgs boson masses the
cross-section becomes very large. For My = 800 GeV and at large energies it is even much

2 Again the extension is only necessary, because certain terms do not appear in the leading order. If
leading-order terms were present for all powers of the couplings, the high energy approximation would
be a good approximation for arbitrary values of the a;.

3These are the amplitudes with an odd number of longitudinally polarized external vector-bosons.
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larger than the otherwise dominating cross-section for Wy Zz. Above a value of My =~ 800
GeV a perturbative treatment (at least to lowest order) is not anymore possible. I note
that the increase of the cross-section for W;Z; — WZ at large values of My is almost
entirely due to the amplitude W;Z;, — W, Z,. Further, the variation of the Higgs boson
mass has almost no effect on the cross-sections with one or more transversely polarized
bosons. Figure 6.10 also shows the high-energy approximation for arbitrary values of Mj.

The Figures 6.11 to 6.14 show the effects of anomalous couplings on the cross-sections.
Figure 6.11 shows cross-sections for WrZr — WZ and Wypy — W Z as a function of the
scattering energy for various values of the coupling parameters (My = 100 GeV was
chosen). The parameter ey has the greatest influence. The effect of ewe is clearly
smaller, still smaller is the effect of ¢gg. For the WirZp cross-section the effect of €B3
is even negligible. For the cross-sections with anomalous couplings also the high-energy
approximation is shown in Figure 6.11.

The terms non-diagonal in the helicity combinations and for purely transverse helic-
ities, TTTT, show a drastic dependence on the coupling parameters, as can be seen in
Figure 6.12. The effect is so large, that already for moderate choices of the anomalous
couplings the terms are of the same order of magnitude as the cross-sections for the di-
agional helicity combinations. The terms, however, do not exceed the cross-section for
WrZr — WZ. The contributions of some of the helicity combinations can be negative,
depending on the values of the anomalous couplings.

Figures 6.13 and 6.14 show the effects of anomalous couplings on the cross-sections with
contributions from longitudinal helicities. A non-zero parameter ews leads to a strong
increase of the cross-section for W Z; — W Z at high energies (Figure 6.13, My = 100
GeV was chosen). The cross-section for Wi Z;, is in this case even significantly larger
than the cross-section for WrZr. The effect of the couplings €ps and ey on the cross-
section for W, Z;, — WZ is small. Also shown in Figure 6.13 are the cross-sections in
the high-energy approximation. Figure 6.14 shows the effect of anomalous couplings on
the cross-section for Wiy — WZ. The effect of ewg is small compared to the effect of
this parameter on the cross-section for Wy Z;, — WZ. The effect of €y is of comparable

"magnitude as the effect of €. The effect of ¢p4 is very small.

Finally, Figures 6.15 and 6.16 show investigations about the validity of the high-energy
approximation. Figure 6.15 shows the ratio of the approximation and the exact cross-
section as a function of the scattering-energy for all helicities (n = 1.5 was chosen.). At
Vs =1 TeV the deviations amount to between 12% and 18% of the exact cross-section;
for the TT cross-sections the deviation is 14%. At /s = 1.5 TeV the deviations are
between 5% and 8%, depending on the helicity combination (T'T : 6%).

Figure 6.16 shows an investigation about the validity of the high-energy approximation
for the non-standard terms. Plotted is the error (Ao®P™* — Ag) /g, expressed in percent,
as a function of one of the anomalous couplings, . For the other couplings the value
zero was chosen. The quantity Ao = ¢ — ogy is the deviation of the cross-section from
its standard model value. The plotted error is thus induced in the cross-sections, if one
uses the high-energy approximation to calculate the deviations from the standard model.
It does not include the error induced to the standard cross-sections. This error has
been discussed in Figure 6.15. One sees that the eyy-dependence of the WpZr and Wy
cross-sections is correctly reproduced by the approximation because the curves take on
a horizontal shape for increasing couplings, with a small error, 2% to 3%. The same is
true for the ey g-dependence of the W, Z, cross-section. The large, negative error in this
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cross-section with an extreme value at ews ~ —0.03 appears in a region, in which the
cross-section is very small (o ~ 1 pb). The dependence of the TT and T7 cross-sections
on ey and €pg 15 not reproduced exactly, as can be seen from the shape of the curves
at large values of the couplings. For values of |¢;| < 0.05, however, the error does not
exceed 10%. The shape of the curve describing the eyg-dependence of the error in the
Wy cross-section hints to the existence of a non-leading cubic term. Such terms have
not been calculated, since they only become relevant for large anomalous couplings. The
dependence of the error induced to the Wj,Zy cross-section on the parameter ey also
leads one to the conclusion that non-leading terms have an influence at larger values of
cw-
In summary, the leading effects (e in TT,TT, ¢ps in LL) are reproduced by the
high-energy approximation with an accuarcy of 3%; for the relevant non-leading effects
(ews,epe in TT, TT) the error is also below 3% if the couplings are not too large, |e;| <
0.03. One expects that the errors become smaller for larger scattering-energies. For
smaller scattering-energies the magnitude of the non-standard terms becomes smaller on
the whole.

Summarizing our discussion of the (W Z)ps — WZ and (W) pa — W Z cross-sections,
we have investigated the impact of anomalous couplings on these cross-sections. The
largest cross-section for each process is the one with the helicity combination 7T in the
initial state, WorZp — W Z and Wy — WZ. Of the anomalous coupling parameters, the
parameter ey has the largest impact on these cross-sections. The parameters ews and
€pe manifest themselves only through sub-leading terms in a high-energy approximation,
as far as the TT (and T7T) cross-sections are concerned. The parameter e has a large
impact on the cross-section for W2y — WZ. Varying the mass of the Higgs boson
between My = 80 GeV and My = 800 GeV also has a large impact on the cross-section
WpZ, — WZ. This cross-section is, however, much smaller in magnitude than the
WaoZr — W Z cross-section if we consider the standard model.
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Figure 6.6: The cross-sections for the diagonal helicity combinations for WZ — W Z in
the standard model as a function of the scattering energy.
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Figure 6.7: The cross-sections for the diagonal helicity combinations for Wy — WZ in
the standard model as a function of the scattering energy.
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Dependence of cross sections on the cut
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Figure 6.9: The cross-sections for WrZp — WZ and W Zp — W Z as a function of the

pseudorapidity-cut . Also shown is the high-energy approximation.
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Figure 6.10: The cross-section for W, Z;, — W Z as a function of the scattering-energy
for various values of the mass of the Higgs boson. Also shown is the high-energy approx-
imation.
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cross sections with anomalous couplings
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Figure 6.11: The cross-sections for WpZr — W Z and for Wry — WZ as a function of
the scattering energy for various values of the anomalous couplings. Also shown is the
high-energy approximation.
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cross sections with anomalous couplings
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Figure 6.12: The cross-sections for the non-diagonal helicity combinations W Zyprr —
WZ and Woyprrrr — W Z as a function of the scattering-energy for various values.of the
anomalous couplings.
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cross sections with anomalous couplings
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Figure 6.13: The cross-section for W Z;, — W Z as a function of the scattering-energy for
various values of the anomalous couplings. Also shown is the high-energy approximation.
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cross sections with anomalous couplings
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Figure 6.14: The cross-section for Wy —+ WZ as a function of the scattering-energy for
various values of the anomalous couplings.
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Validity of high energy approximation
Ratios of cross sections in SM
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Figure 6.15: The ratio of the cross-sections for WZ — W Z and for Wy — WZ in the

high-energy approximation and without an approximation as a function of the scattering-
energy.
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6.2 Cross-Sections for pp > WZX

We are now going to combine our treatments of parton-parton luminosities and parton-
parton cross-sections to obtain predictions for the cross-section for pp — WZX. Ac-
cording to (3.4), the cross-section will be approximated by the sum of the lowest order
contributions from g#'-annihilation and vector-boson scattering. This will be sufficient for
our subsequent analysis of anomalous couplings.

In recent treatments, a dependence of the magnitudes of the couplings on the scattering-
energy of the parton-process, Mz, has been assumed [11, 20, 21, 27, 29]. This dependence
has been parametrized by a form-factor which depends on two unknown parameters. It
was argued that such a dependence must necessarily be present in order not to violate
the unitarity bounds for the parton cross-sections. In fact, however, the introduction of
a form-factor is not necessary for small values of the anomalous couplings, €; < 01072,
as we consider them here.

6.2.1 Remark about Unitarity Limits and the Use of a Form-
Factor

In order not to violate the unitarity of the S-matrix, it was proposed (20} that the anoma-
lous couplings would depend via form-factors on the scattering-energy of the sub-process,
§= MW Z,

0
=5 (6.14)

€ = - [
1+ 55-)
(45

In (6.14), the ¢; are the couplings which enter the expressions for the cross-sections ¢§' —»
WZ and WV — WZ, while the parameters ¢ are constant parameters which appear in
the Lagrangian (2.46) instead of the ¢;. App is the scale of new physics (cf. Chapter 2.3)
and 7 is a positive number. The effect of the form-factor is a reduction of the effective
anomalous coupling, ¢;, with growing . Lacking a better knowledge, the parameters App
and n must be chosen by hand. :

I will argue here, that the introduction of a form-factor is not necessary for small
anomalous couplings, ¢; < 1072, since the unitarity limits are not even reached at large
scattering energies, § ~ 2 TeV, for these small values of the couplings. The unitarity
limits derived from ¢ — W Z are {20]

N 2

sep; < 2v/3s%, ~124
§€W<I> 2\/3‘8%1/
— | <« ~1 6.15
Mg |~ o 09, (6.15)

so that unitarity at § = 2 TeV is not violated by couplings strengths of the magnitude
lew| < 0.20 and |ews| < 0.17. The restriction on epy is even lower.

Stronger restrictions are obtained from the unitarity principle applied to the ampli-
tudes for WZ — WZ and Wy — WZ [88, 89,

§€W

W <
M| S 19,
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Sewe
Mz < 15.5,
Sepo
< . .
i3, I < 49 (6.16)

The restrictions from WV — WZ are stronger than those from ¢g§f — WZ, because
the amplitudes grow quadratically with the couplings. For § = 2 TeV one obtains the
unitarity bounds,

|ew| < 0.031, lews| < 0.025, lesa| < 0.079. (6.17)

In the search for small deviations from the standard model, ; = O (M3,/A%), A > 1 TeV,
is it therefore not necessary to use a form-factor. Further, we will see that already fairly
smaller values than the unitarity bounds for ey and ey will lead to observable effects in
pp — WZX. An exception is the parameter ¢pg which only has marginal effects in this
process and can not be further constrained below its unitarity limits.

6.2.2 Discussion of Numerical Results

We are first going to numerically compare the contributions from W.2Z and W+« vector-
boson scattering and from gg-annihilation to the differential cross-section for do(pp —
WZX)/dMwz. The calculation of the ¢g'-contributions was carried out according to Eq.
(5.43) with the MRS(A) parton-distributions in the DIS-scheme and Q? = Q% = MZ,,

Figure 6.17 shows the cross-section as a function of Mz at /5, = 14 TeV in the
standard model. A pseudorapidity-cut of n = 1.5 was applied. The contribution from
pp = WZ — WZ was calculated in two different ways. First, it was calculated without
approximations according to Eq. (5.36). My = 80 GeV was chosen, as well as Q? = z's,
and Q3 = z'sp,, where 2’ is the argument of f?(z'). Secondly, it was calculated with the
convolutions of vector-boson distributions, Eq. (5.42). The approximative calculation
yields a value which is 22% greater than the exact one at Mz = 0.5 TeV, and 7.2%
greater at Mwz = 2 TeV. The contribution from W-y-scattering was calculated according
to Eq. (5.42) with the photon distribution [83] and the choice @ = zs,, for f2(z, Q?).

The contributions from Wy and W Z scattering are of the same order of magnitude.
Integrated over the region 0.5 TeV < Mwz < 2 TeV, the cross-section amounts to o =
(.157 pb for ¢gg'-annihilation and o = 0.019 pb for WV -scattering. Thus, the contribution
from WV -scattering amounts to 12% of the one from g¢’-annihilation. In the low energy
region, Mwz < 0.5 TeV, the integrated g§' cross-section amounts to o = 2.24 pb.

Figure 6.18 shows the influence of a variation of the Higgs boson mass. The contribu-
tions from Wry-scattering and W Z-scattering have been added. The convolutions (5.42)
were used. For My = 800 GeV, the WV cross-section lies between 9% (M 2z = 0.5 TeV)
and 13% (Mwz = 2 TeV) above its value for My = 80 GeV. The dependence on the
value of the Higgs mass is thus small. We will always use My = 80 GeV in the following
if not explicitly stated otherwise.

Figure 6.19 shows the ¢¢’ and WV cross-sections for a cut of n = 2.5. Integrated over
the region 0.5 TeV < Mwz < 2 TeV, the ¢§' cross-section amounts to ¢ = (.68 pb, the
WV cross-section to o = 0.099 pb. The ratio of the cross-sections is thus 15%. This value
is close to the value of 17% found in [37] which was obtained for a similar choice of cuts
in an exact calculation.
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Before we proceed, we will compare our results with results obtained in the literature.
Numerical results for the cross-section pp — W*ZX can be found e.g. in [20, 25, 27,
40, 41]. As examples, we compare with results in [41] and [27]. In [41] a plot of the
cross-section do/dMwz(pp — W*ZX) as a function of Myz at /5 = 14 TeV and
Y = 2 can be found. The contributions from WV -scattering and ¢§'-annihilation are
shown separately. We calculate these contributions according to the formulae (5.42) and
(5.43) with y!,,. from (5.37) and 2 (y') from (5.39), where we choose ¢0s Opin = tanh(Y).
We choose all parameters and the quark- and vector-boson—distributions as in [41]: for the
quark-distributions f?(z, @*) we use the parametrization [90] with Ny = 5 as the number
of quark flavors and Q? = M32,,. For the vector-boson distributions in a proton, fi{z, E,),
we choose the parametrizations from [68], LEWA forms, with E, = ,/5,,/2. These are
distributions in the leading logarithmic approximation. The electroweak parameters are
chosen as Mz = 91 GeV, s%, = 0.23, a = 1/128 and My = My,. We use the high-energy
approximations for the cross-sections for ¢f — WZ and WV — WZ, where we omit
the non-leading terms in Appendix B. As in [41}, we do not use a form-factor. Figure
6.20 shows the result of our calculation. The agreement with the figure in [41] is given.
We repeat the calculation for a pseudorapidity cut of n = 1.5 and include the production
of W~ Z-pairs. In addition, we calculate the cross-sections exactly instead of using the
high-energy approximation. The result is shown in Figure 6.21. It can be compared
to our result of Figure 6.18. The difference in the qg'-contributions is due to the use
of the different quark-distributions and the different parameters. The difference in the
contributions from WV -scattering is mainly due to the use of the LLA version of the
EVBA instead of the improved vector-boson distributions. The ratio of the ¢¢’ and WV
contributions as shown in Figure 6.21, integrated over the region 0.5 TeV < Myz < 2
TeV, amounts to 52%. This value can be compared to the value of 57% obtained in [36).
It is larger by more than a factor of four than the value of 12% which we obtained by
using the improved vector-boson distributions.

We compare our calculations with a result in [27]. Like in that reference, we only
calculate the contribution from ¢g'-annihilation. Instead of the various cuts applied in
[27] on the decay products of the W- and Z-particles, we only apply a rapidity-cut directly
on the vector-bosons and multiply the pp — WZX cross-section with the decay rate for
W Z-decays. This procedure should yield approximately the same results as for the more
sophisticated cuts in [27] if M3 ; > M2, The reason why we expect this is that the
decay products of a vector-boson have approximately the same direction of motion as the
decaying vector-boson if the energy of the vector-boson is large compared to its mass.
In this case a cut on the rapidities of the decay products can be approximated by a
rapidity-cut on the decaying particle. In addition to these cuts, also cuts on the absolute
value of the transverse momentum of the decay products, pr > prmia, were applied in
[27). These cuts can only play a role if the vector-bosons are produced under a small
angle with respect to the beam-direction. In addition, these cuts become more and more
unimportant if the energy of the vector-boson becomes larger. This is because in this case
events with a small transverse momentum are excluded by the rapidity cut, anyway. In
summary, the cuts in [27] can be approximated by a rapidity-cut on the vector-bosons if
MZ,, > MZ, and if the vector-bosons are not produced under small angles with respect to
the beam-direction. The larger My z is, the less important the latter restriction becomes.
We will discuss the differences of the two treatments further down by comparing numerical
results.




6.2. CROSS-SECTION FOR PP - WZX 125

We take into account decays into fermions of the first and second generation, W*Z —
v, 1™, I = e, y. For the decay rate we take B, = 0.014 (see Chapter 7.3.1). We use Eg.
(5.43) with y,,,, from (5.37) with Y = 3 and %(y’) from (5.39) with cos O, = tanh(Y).
The cross-section for ¢ — W Z is calculated according to Eq. (6.1). As in [27], we use
Q% = M, ; for the factorization scale, the quark-distributions [91], S0’-distributions in the
DIS-scheme, and the parameters Mz = 91.17 GeV, My = 80.22 GeV and o = 1/128. As
in {27], we use a form-factor according to Eq. (6.14) with § = M2, ,, Apr =1 TeV and n =
2. Similarly to €}y, €%, €35 in (6.14), one defines the quantities AgZP®, AgZ0 A28 A0
and A"? instead of the parameters (2.27). As in [27], we will express the cross-section in
terms of these parameters.

The result of our calculation for pp — W*ZX at /s = 14 TeV is shown in Figure
6.22. Shown is the result in the standard model and for various values of the anomalous
couplings as a function of the invariant mass Mz, where only one of the parameters
AkZ0 AgF® and A% at a time has been chosen unequal to zero. A comparison with the
corresponding figure in [27] shows that the results of the two calculations do indeed agree
at large My z if the couplings are different from zero. For Mwz > 0.8 TeV our results
deviate by less than 30% from the results in [27]. At Mz = 2 TeV, the deviations are
less than 15%. This is true for all three curves with anomalous couplings which are shown
in the figure. The deviation for the standard model prediction, however, is larger and
amounts to a factor of two at My z = 0.8 TeV. At My z = 2 TeV or result is larger by
30% than the result in [27]. Our calculation thus yields a higher value for the cross-section.
An explanation is that the anomalous effects occur mainly at large transverse momenta
of the produced W- and Z-particles so that the simplified treatment with a rapidity-cut
is possible for them. The standard events, however, also take place at small transverse
momenta with a large rate, so that the transverse momenta cuts are important for them.
Since these cuts have not been applied in our calculation, our calculation can only give
an upper bound on the result in [27]. In summary, our calculation has been confirmed by
the comparison with [27].

We discuss the effects of anomalous couplings on the cross-sections. The cross-sections
have been calculated as in Figure 6.18 using My = 80 GeV.

Figures 6.23 and 6.24 show the g7 cross-section as a function of Myyz for various
values of the anomalous couplings. The values have been chosen in such a way that they
are of the order of magnitude of the 2¢ observability limits at the LHC, to be derived in
7.4. The effect of ey is largest and virtually independent of the sign of this parameter.
Positive values of ews lead to a reduction of the cross-section at small energies, and only
at energies greater than Mwz ~ 1 TeV (for ews =~ 0.01) they lead to an increase of the
cross-section. Negative values of eye lead to similarly large deviations than comparable
values of ey. The influence of eps is very small.

Figures 6.25 and 6.26 show the cross-section proceeding via WV -scattering, Eq. (5.41),
for various values of the anomalous couplings. The effects of ey are largest, the effects of
ewe and egg are of comparable magnitude and altogether smaller than the effects of ey .

The change in percent of the cross-section, caused by anomalous couplings, is for ey
slightly and for eys a lot smaller as is the case for gg'-annihilation.

Conclusion

We conclude that the rate of vector-boson scattering events in pp — WZX amounts to
12% of the onc for ¢g’-annihilation processes for a cut of = 1.5. This is in contrast




126 CHAPTER 6. CROSS-SECTIONS FOR W Z-PRODUCTION PROCESSES

to some results obtained in the literature, in which an unimproved version of the EVBA
was used. The result is, however, in agreement with a complete perturbative calculation.
Varying the Higgs mass in the region 80 GeV < My < 800 GeV has only a negligible
effect on the cross-section. It amounts to an increase of the contribution from vector-boson
scattering by less than 13%

Concerning the effects of anomalous couplings, already small values of the anomalous
couplings, €w,ews = O(107%), lead to a pronounced increase of the cross section for
pp = WZX at My z 2 1 TeV. The rate of vector-boson scattering events, however, is
less affected by anomalous couplings as is the rate of ¢g'-annihilation events. This last
statement is with the exception of the parameter €gs, which, however, has only a very
small effect on the cross-section.
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Figure 6.17: Contributions from ¢¢’-annihilation, W Z- and W+-fusion to the cross-section
for pp = WZX in the standard model as a function of My 5.
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pp->WZ X at Vs = 14 TeV, n =195
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Figure 6.18: The contribution from WV -scattering to the cross-section for pp - WZX
in the standard model for various values of My. Also shown is the contribution from
gq’-annihilation. A pseudorapidity-cut of = 1.5 has been chosen.
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Figure 6.19: The contributions from WV -scattering and from g¢’-annihilation to the cross-
section for pp — W ZX in the standard model as a function of My z. A pseudorapidity-cut
of 7 = 2.5 has been chosen.
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pp-~W+*Z X, Vs = 14 TeV, Y =2
Parameters, Quark— and Vectorboson—
Distributions as in G. J. Gounaris et. al.
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Figure 6.20: The cross-section do/dMw z{pp — W*ZX) as a function of My z at /s = 14
TeV and Y = 2. All parameters have been chosen as in [41]. The high-energy approxi-
mation has been used.
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pp-WZ X at Vs = 14 TeV, 5 = 1.5, SM
Parameters, Quark— and Vectorboson—
Distributions as in Gounaris et. al.
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Figure 6.21: The cross-section do/dMyw z(pp — W ZX) as a function of My z at /5 = 14
TeV and n = 1.5. All parameters have been chosen as in [41].
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pp~W*Z X ~leptons+X
via qq’ anihilation
Vs =14 TeV, Y = 3
as in U. Baur et. al.

10’
AT
PR R SN |
10 = :
= -
S RO o
- =
\\ SRS AN
m l"'. \\
Q 10°° \ B T D
O = §E
™ —— i - _ = =
Eg " S B
,-d _ " \ R ~.
> 10° L =
"O‘__a -
10°* —
10°°
< o o (] <o — —t —i — — — =t ~— — — o
My, [TeV]
2,0 — _
SM _Apt¥ = —0.25_
AxgZ0 = —1 A0 = 025

Figure 6.22: The cross-section for do/dMwz(pp — W*ZX) as a function of Myz at
/5 =14 TeV and Y = 3. All parameters have been chosen as in {27].
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Figure 6.23: The cross-section for pp — W ZX via ¢g-annihilation for various positive
values of the anomalous couplings as a function of My .
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pp~WZ X via qq’
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Figure 6.24: The cross-section for pp — WZX via g¢-annihilation for various negative

values of the anomalous couplings as a function of My z.
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ppWZ X via WV
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Figure 6.25: The cross-section for pp - WZX via WV -scattering for various positive
values of the anomalous couplings as a function of My .
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pp—~W7Z X via WV
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Figure 6.26: The cross-section for pp — WZX via WV -scattering for various negative
values of the anomalous couplings as a function of My z.




Chapter 7

Deriving Limits on Anomalous
Couplings in an LHC Analysis

In this chapter we will derive observability limits for anomalous couplings in an LHC
analysis of pp — WZX. We will first discuss current experimental limits and then
describe in some detail the method to derive sensitivity limits for the LHC experiment.
The results will be compared with results obtained in the literature.

7.1 Current and Near-Future Experimental Limits

We discuss the current direct experimental limits on anomalous couplings and the limits
which can be obtained in a near-future LEP 2 analysis.

Direct experimental limits have been so far obtained by the the CDF [8] and the D0
[9] collaborations. A review can be found in [11]. The clearest, most model-independent
bound was obtained from a measurement of W+y-production in pj-collisions at Vs =18
TeV. It concerns the two parameters Ax™? and A7?. This measurement is independent of
the parameters of the ZW W -coupling. The D0-collaboration [9] presents a two-parameter
fit of these couplings to data, assuming a form-factor with Apr = 1.5 TeV and n = 2.
From this fit I read off the 95% CL limits for the couplings, allowing an arbitrary value
for the respective other coupling,

-2.0 < A" < 2.3,
—0.8 < A" <0.7. (7.1)

These experimental bounds have heen obtained without any assumption on the respective
other four parameters in (2.27). They translate into model-independent bounds for the
parameters ejy4 + €54 and €y,

—20< f%v;p + COBcp < 2.3 ;
-08 <€ <0.7. (7.2)

I note that, considering the small collision energy of /s = 1.8 TeV, one would obtain
nearly identical bounds for ews + €ps and ey, since the form factor is not much different
from the value one. To give an example, one has ey = 0.81¢Y, for My, = 0.5 TeV, which
is already a rather large invariant mass for the W~-pair in /s = 1.8 TeV collisions. Thus,
we can write

—-2.0 5 ews + €54 <23 )

137
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—0.8 S ew 0.7, (7.3)

Bounds on any other parameter have so far been obtained only with specific assump-
tions concerning the parameters which were not subjected to the fit. In [8], the data for
W+W - and W Z-production in pp-collisions at /s = 1.8 TeV were analyzed. Assum-
ing that the quadrupole couplings are zero, A7® = A%? = 0, and, in addition, assuming
A =0, a two-parameter fit with Apr = 1 TeV and n = 2 was performed, leading to
the 95% CL limits,

~13< Mg’ <15,
~15 < As%P < 16. (7.4)

The bound on one of the parameters in (7.4) makes no assumption on the respective
other parameter. Equivalently, expressed in terms of the parameters in (2.25), this fit
assumed ¢ = y% = 0 and 2% = 0. Redrawing the two-dimensional confidence region in
the 63-z%-space I obtain the 95% CL bounds,

~25 <63 <27,

—4.0 < 2% <41, (7.5)
where the respective other parameter is aribtrary. Expressed in terms of the parameters
ew, €ws, €Bo, the same fit amounts to the assumption e?,v = 0,55 = —€lye. One is left
with one free parameter, whlch can be taken to be qu, This parameter is related to
the fitted parameters by AgE® = €)yq/chy and AxZP = €4/ ¢k, respectwely Therefore,
the line Ag?® = Ax%? in the two-dimensional confidence reglon of AgZ® and AgZ0

represents the one-parameter model with ews # 0. A bound on %5 can be obtained by
reading off the value of AgZ® = Ax%® at the intersections of this line with the border of
the confidence region. In this way I obtain,

~0.7 < ¥y < 0.8 (3p = —€o, cw =0) (7.6)
at 95% CL. Again, we can also write
0.7 S ews S 08. (7.7)
Equivalently, for ¢}, we obtained the bound
—0.8 < €%y < 0.7 (s = —€bs, €y =0). (7.8)

We present the results of another fit. Assuming M'° = A0, Ax™® = Ax%" and
Ag?® = 0, bounds on A% and Axk?? have been obtained from the WW- and W Z-data
in {8]. Assuming Arr =1 TeV and n = 2 these bounds are given by

—0.81 < A%% < 0.84
—1.1< Ax®% < 1.3. (7.9)

The two parameters show no correlation, i.e. they do not depend on the ma,gmtude of
the respective other parameter. From the bound on A%°, another bound on €9, can be
obtained,

—081 <), <08 & -08l%Zew S0.84, (7.10)
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and the relations above imply ¢iwe = ¢ge = 0 for this bound.

In summary, the current direct experimental bounds imply |€?] < 1, where, however,
only for €J, a model-independent bound has been derived, while the bounds on €%,5 and
¢Ls assume certain relations among the anomalous couplings. Clearly, a confrontation
of the general three-parameter model (2.46) with current data would give more model-
independent bounds.

Dropping the form-factor assumption, the bounds on €w, éwes, €ps, which could be
obtained from present data, are nearly identical to those of the ), and are thus given by

|€il 5 1.

In the near future, an improvement of the bounds can be obtained by measurements
at the CERN LEP 2 experiment [10, 11]. In this experiment, one plans to measure the
cross section for ete™ — WHW ™ at scattering-energies of up to /s = 190 GeV. Fits to
fictitious standard-model data have been performed and expected limits on the anomalous
couplings have been derived. I quote the results of the first reference of [10], in which a
fit to the three-parameter model (2.46) has been performed. The 95% CL limits for the
parameters dz, z, and y, have been derived assuming a luminosity of £ = 500 pb~! and
a scattering-energy of /s = 190 GeV. These limits translate into the following limits for
éw, ewe and €pg,

~0.20 < ew < 0.24,
-0.19 < ews < 0.13, LEP 2, 95% CL
—0.35 < egs < 1.05. (7.11)

In deriving the limits (7.11), all three parameters were allowed to take on arbitrary values.

7.2 Analysis of Fictitious Data

We give a theoretical treatment on deriving observability limits. We want to determine
to what extent fictitious data, which will be taken here equal to the standard model
prediction, are consistent with theories which have non-zero anomalous couplings. This
will lead us to determine upper and lower limits for the coupling parameters, in the range
of which the true values for the coupling parameters lie with a given probability. The
discussion here follows [92] and references therein.

For an analysis of this kind we have to define a quantity which describes a deviation
from the standard model as a function of the anomalous couplings. We assume that
there are M measured quantities z;,¢ = 1...M,. In our case the z; will be the number
of WZ events predicted in the standard model occuring in different kinematical regions,
z; = N;(SM). The kinematical regions will be defined by dividing the distribution of
the number of events over a certain kinematical variable, e.g. the invariant mass of the
W Z-pair, into several intervals (bins). Then, M is the number of intervals, M = N,. We
further assume that the quantity z; is the outcome of a measurement of a random variable
with a Gaussian distribution, specified by a mean value £; and a standard deviation o;.
The mean value Z; is the true value of the measured quantity x;, which in our case is
the prediction of the theory as a function of the coupling parameters, &; = N;(€), where
€ = ew, €wa, €pa. We further assume that the number of events are Poisson-distributed
so that their standard error is given by o; = \/N;.




140 CHAPTER 7. DERIVING LIMITS ON ANOMALOUS COUPLINGS

The parameter %2, defined by

X2 — f(mz _257@')2

quantifies the deviation of the measurement from the theory, assuming that the theory is
correct. Here, the measurement is to be understood as being the combined measurement
of all M quantities, thus, in our case, the measurement of the complete distribution of
the number of events over the chosen kinematical variable, discretized by means of bins.
The value of x? directly tells us the number of standard dev1a.t10ns, ng, by which the
measurement deviates from the theory,

= x*(e)

x2 = nl. (7.13)

The equations (7.12) and (7.13) give us the value of n, for any theory, represented by a
point in the space of the parameters, and define for each value of n, a class of theories,
represented by a (not necessarily continuous) region in this space (confidence region),
in which the deviations from the measured values are less than n,. A subspace of the
complete space can be defined by choosing a smaller number of anomalous couplings or
even choosing only a single coupling parameter, whithout making assumptions on the
magnitudes of the other parameters. One obtains the confidence region in the subspace
by the (geometrical) projection of the complete confidence region on the subspace. The
meaning of the projection is that the parameters which have been removed can take one
arbitrary values.

The probability that the true values € lie inside the confidence region is given by the
confindence level, CL(n,, k) = 1 — a(n,, k), with

a(ng, k) = jf(z;k)dz,
;k/2-le—z/2
2k/21 (K /2)°

where k is the dimension of the space or subspace. In projecting the confidence region onto
a subspace the confidence level increases, since now one makes no statement about the
magnitudes of the removed parameters anymore. Before the projection, these parameters
were required to lie within the confidence region. Instead of the projection one can also
consider the section (or cut) of the confidence region which is cut out by a particular
subspace. The section is in general smaller than the projection and is the confidence
region of a subclass of the general theory, namely of all those theories, in which the cut-
away parameters have been fixed to a particular value. The confidence level for the section
is the same as for the projection.

The form of the confidence region reveals information about the mutual influences of
the effects of anomalous couplings, thus compensations or amplifications. Bulges in the
hyper-area limiting a confidence region hint to compensations, inlets to amplifications.

The projection onto a two-dimensional subspace can be represented graphically (con-
fidence area). We will make plots of such projections as well as of the corresponding

i

f(z k) (7.14)
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sections, in which one of the parameters has been set to its standard value. This we will
do for n, = 1 and n, = 2. The probability that the true values of the parameters lie
within the confidence area are CL(1,2) = 39.35% for n, = 1 and CL(2,2) = 86.47% for
ns = 2. From the projection of the area on the parameter axes one obtains the limits for
the single anomalous couplings (confidence interval). By this procedure, no assumptions
are made about the magnitudes of the other couplings. The probability that a parameter
lies within the confidence interval belonging to n, = 1 is CL(1,1) = 68.27%, while the
probability that it lies within the 20 interval is CL(2,1) = 95.45%.

7.3 Choice of Proper Kinematical Event-Regions for
the Data-Analysis

More information can be obtained from the data if the data are appropriately devided
into several event-regions. We discuss a suitable choice of event-regions for the detection
of anomalous couplings in pp - WZX.

7.3.1 Choice of Intervals in Mz

We want to divide the WZ phase-space into kinematical regions, which are appropriate
for the analysis of the data concerning the search for anomalous couplings. As already
mentioned, we expect that anomalous couplings manifest themselves particularly strongly
at large invariant masses My z of the W Z-pair. Therefore we investigate the sensitivity
to anomalous couplings in different intervals of My z. We note that the distribution over
more than one variable, thus a multi-differential cross-section, is not a useful quantity to
be considered here. The reason is that the number of expected events is too low for a
corresponding analysis.

In the further discussion we will consider numbers of events instead of cross-sections.
For the detection of a W- and Z-particle we are only going to count the leptonic decays,
in which at least one charged lepton is among the decay products of each vector-boson.
However, we are not going to consider decays into 7-leptons. We thus consider the decay
channels W% — e*v,, W* — u#u, (decay probability 10.7% each [92]) and Z — ete™,
Z — p*p~ (decay probability 3.37% each [92]). The probability of a W Z-pair decaying
via these channels is thus B; = (2-10.7%)-(2-3.37%) = 1.44%. We note that the hadronic
decay channels are swamped by QCD background processes [15].

The number of events which one expects for a given cross-section ¢ is given by

N = LBg, (7.15)

where L is the integrated luminosity of the experiment. For the LHC we will assume
L = 10° pb~! [15].

We restrict ourselves in the discussion of this section to the parton-processes g7 —
W Z. These yield both in the standard model and for anomalous couplings the dominant
contribution to the cross-section for pp — WZX. At first we are going to divide the events
in such a way into intervals of My, z that there is a statistically significant number of events
in each interval. In doing so we will take the standard predictions for our orientation. For
a cut of 7 = 1.5 one expects less than one event above My z = 2 TeV. The variation of
the cut will be discussed in the next section. In the region 1 TeV < Mwz < 2 TeV one
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Table 7.1: Division of the phase space of the final state into Myy z-intervals for the process
pp — WZX via qF-annihilation at ,/5,; = 14 TeV assuming an integrated luminosity of
L =10°% pb~%.

Interval- | Interval Limits | Number of SM events
Number Mwz [TeV] | n=1|n=1.5 n=3
1 1-2 6.1 19.8 127
2 0.8-1 7.9 25.8 175
3 0.7-0.8 841 274 188
4 0.6-0.7 154 50.4 348
5 0.5-0.6 31.5 | 102.2 698
6 04-0.5 74.5 | 237.4 1555

expects 20 events. We choose this region as the first interval. Until down to an invariant
mass of Mz = 0.4 TeV we choose five more intervals, as shown in Table 7.1.

The intervals contain each more than 20 standard events at 7 = 1.5, where the number
of events per interval increases with decreasing energy. In spite of the higher statistical
significance of the lower-energy intervals, these intervals nevertheless exhibit a smaller
sensitivity to anomalous couplings.

We note that it is expedient to discuss the sensitivity by means of sections at epy =
0 instead of projections. This is because €gs has only small effects and is eventually
restricted in magnitude by its unitarity limits. To compare the sensitivity of different
intervals it is therefore sufficient to discuss sections at egg = 0.

Figure 7.1 shows the sections of 2¢ confidence regions with the plane egg = 0 for a
pseudorapidity-cut of = 1.5. Only a single interval at a time was used for the calculation
of x*. The boundaries of the sections for the intervals 4,5 and 6 are not coherent and
consist of an outer and an inner boundary. In the region beyond the outer boundary the
number of events predicted in the anomalous model is more than two standard deviations
greater than the number predicted in the standard model. In the region inside the inner
boundary, in contrast, the anomalous model is by more than 2¢ below the standard model.
The reason for the deviation of the model to smaller values is the large, negative coefficient
linear in ews. With growing, positive e or a growing magnitude of ey one leaves the
inner region, since then the quadratic effects of ee and ew increase the cross-section
again.

Had one considered projections instead of sections of confidence regions, there would
be no inner region, since by choosing a sufficiently large value of eps one can always
achieve that the cross-section in the inner region approaches the standard value. The
inner regions therefore appear as cavities in the three-dimensional confidence region.

For the high-energy intervals 1, 2 and 3 an inner area does not exist, since the effects of
the quadratic terms in ey 4 are of the same order of magnitude as the linear ones already
for small values of ews.

Altogether one concludes from Figure 7.1 that the interval 1 alone already provides
the bulk of the available information about anomalous couplings. By including further
intervals, however, one can, via the linear effects of €4, achieve a lowering of the upper
bound for ews. This is shown in Figure 7.2. We have now calculated x? according to
{7.12) as a sum over N, > 1 intervals. The inner regions in Figure 7.1 manifest themselves
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as inlets at positive €ye in Figure 7.2. One recognizes that the bulk of the available
sensitivity is seized if one restricts to the intervals 1 to 5, thus to the high-energy region
of Mwz > 0.5 TeV. In these intervals, there are altogether 226 events via ¢g'-scattering
in the standard model. In summary, the choice of the intervals 1 to 5 is reasonable.

7.3.2 Choice of the Cut n

An enlargement of the cut 7 leads to a worsening of the sensitivity. This is shown in
Figure 7.3 for the cut » = 3. The figure is to be compared to Figure 7.2, for which
7 = 1.5 was chosen. Compared to 7 = 1.5 the confidence area considerably expanded.
The reason for this is that the number of anomalous events is larger at greater transverse
momenta. Choosing = 1, the sensitivity can theoretically even be enlarged as compared
to n = 1.5. This is shown in Figure 7.4. However, for 7 = 1 the number of events in
the high-energy interval has decreased to N = 6, so that a statistical analysis becomes
doubtful. In summary, the choice of 7 = 1.5 is reasonable. ‘
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Sections at £g, = 0 through x*?*=4 confidence region
pp » WZ X viaqq',n=15
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Figure 7.1: Sensitivity of different intervals of Myu-z. Shown are the boundaries of the
sections, which are obtained by the analysis of the data of a single interval at a time. The
intervals have been defined in Table 7.1.
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Sections at £p, = 0 through x*=4 confidence region
pp -~ WZXviaqqg',n=15
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Figure 7.2: The sections of the 20 confidence region with the plane €gp = 0 for a

pseudorapidity-cut of = 1.5. Different numbers of intervals over My, have been taken
into account in the calculation of 2.
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Sections at €, = O through x*=4 confidence region
pp > WZ X viaqq',nn=3
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Figure 7.3: The sections of the 20 confidence region with the plane ege = 0 for a
pseudorapidity-cut of n = 3. Different numbers of intervals over My z have been taken

into account in the calculation of x2.
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Sections at €g, = 0 through x*=4 confidence region
pp > WZXviaqq',n=1
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Figure 7.4: The sections of the 20 confidence region with the plane egg = 0 for a
pseudorapidity-cut of 5 = 1. Different numbers of intervals over My, have been taken

- into account for the calculation of x2.
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Coefficients IN; for number of events via ¢’
Interval < < - % =y — —— — )
SM w W €po € € EweEwed | EWeEBe | EWEERD %3
1 19.8 )| -0.76 | -21.1 | 0.011 || 44.2 | 30.00 1.76 { -0.153 | -0.206 | 0.0096
2 25.8 || -0.97 | -14.2 | 0.014 || 11.7 | 8.47 1.09 | -0.095 -0.123 | 0.0059
3 274 || -1.01 |-11.0 | 0.014 § 6.09 | 4.56 0.79 | -0.069 { -0.094 | 0.0044
4 50.4 || -1.79 | -15.6 j 0.025 || 6.10 | 4.78 1.05 | -0.092 | -0.125 | 0.0058
) 102.2 || -3.42 | -23.2{ 0.048 || 5.97 | 4.99 1.42 | -0.124 | -0.171 | 0.0080

Table 7.2: Coefficients V; for anomalous couplings for pp — WZX via ¢7-annihilation
in the 5 intervals defined in Table 7.1. The number of events in a given interval is
obtained by multiplying the coefficient with the corresponding product of the couplings
and subsequently summing over all terms. A rapidity-cut of 7 = 1.5 was applied.

7.4 Determination of Confidence Regions for Anoma-
lous Couplings

We are now going to determine the confidence regions for anomalous couplings. This
will establish the main result of our work. The true values of the parameters lie within
these regions with definite probabilities. We assume that standard values will be actually
measured.

The entire information about anomalous couplings can be expressed in terms of coef-
ficients N, for the anomalous couplings. To define the coeflicients, the number of events
N{€) in each interval is written as a power series in the coupling parameters. For the
production via g¢'-annihilation there are 9 coefficients plus the standard term. This is be-
cause the cross-section is quadratic in the couplings. We define the coefficients by writing
the number of events as

N(&) = Ny+ Nié&w + Naéwas + Niéps
+N &%, + Ngél p + Noéwéws + Neéwéps + Noéwalps + Noésg. (7.16)

In (7.186),
€w = 100 - ey, éwe =100 ewe, €ps = 100-€ps, (7.17)

are the coupling parameters and N;,j = 1...9 are the coeflicients for these couplings.
The normalization of the couplings has been changed such that the coefficients for the
parameters in (7.17) are of the order of magnitude O(10) or smaller. Table 7.2 shows the
coefficients for the 5 intervals. The N; have been calculated according to (5.43), (6.1) and
(7.15).

Concerning the linear effects, those of éy¢ are dominant. As to the quadratic effects,
the coefficients of €%, and é%,; become large at large scattering energies. The effects of
€pe are very small.

For the production via WV -scattering there are 34 coefficients for the anomalous cou-
plings, as the amplitude itself is already quadratic in the couplings. Tables 7.3 and 7.4
show the coefficients N;, multiplied with the factor 10%, for the WZ- and Wy-processes
for the intervall 1 as an example. As already discussed, the effects of anomalous couplings
are largest in this interval. A Higgs boson mass of My = 80 GeV was chosen. The sum of
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the two production mechanisms only amounts to 3 standard events in this interval: Con-
cerning the anomalous terms, the coefficients are largest for the powers in which only éy
appears. An exception is the coefficient linear in éy ¢, which is the largest linear coefficient.
Another large coefficient is the one of é%,&%,4. If &y is small, the effects of éye and épe
can manifest themselves. In this case, also the coefficients of é2,, and é%,éw s become im-
portant. For the Wy-scattering process, also the coefficients of éps, éwatps, €5y, twédye
and éwéwgéps are non-negligible in this case. All other coefficients are negligibly small.

The same coefficients, calculated within the high-energy approximation, are shown in
the Tables 7.5 and 7.6. The large coefficients, those for éwe, €%, €, &, €4,6%, 4, and the
standard term deviate by less than 9% from the exact calculation. The coefficients which
become important for small values of ey deviate by less than 25% from the exact value.
An exception is the coefficient of ége for the Wy-process, which deviates by 48%. This
coefficient is determined by non-leading terms in the high-energy approximation.

The Table to the left shows the number

Number of SM Events of standard events via W Z-scattering and
Interval | via WZ | via W via Wy-scattering in all intervals (no high-
1 1.3 1.6 energy approximation). In the region 0.5

2 1.6 2.1 TeV < Mwz < 2 TeV there are 27.6 SM

3 1.6 2.1 events via WV scattering, consisting of 11.7

4 2.6 3.6 events via W Z-scattering and 15.9 events via

5 4.5 8.5 - Wry-scattering, opposing 226 events via gg'-

annihilation.

The projections on the coordinate planes and the sections of the regions of constant
X2, given by (7.12), can now be found. The Figures 7.5, 7.6 and 7.7 constitute the
main result of our work. They show the projections of the x? = 4 (CL=86.5 %) and
x* = 1 (CL=39.4 %) confidence regions onto the three coordinate planes in the space of
anomalous couplings (egs = 0,6 = 0,ews = 0). They also show the sections of the
confidence regions with the planes. The sections are always inside the projections and are
therefore not separately marked. Also shown are the unitarity limits for epg, as given in
6.2.1. The analysis was based on the cross-section calculated as the sum of the ¢7- and
WV-processes in the intervals 1 to 5. A cut of n = 1.5 was chosen and My = 80 GeV
was taken. The figures show that the linear effects of €jy¢ manifest themselves in an inlet
of the section of the confidence region on the positive ey g-axis. This leads to a bean-like
form of the section. The effect is not present for the projections. Also, a correlation
between the couplings ews and ege can be observed. The correlation between ey and
Ews OF € and €gg is small.

‘The two-dimensional projection can be further projected onto the coordinate axes,
from which one obtains the confidence intervals for the anomalous couplings. We only
project, the region which is inside the unitarity limits for egs. This necessary restriction,
however, only affects the upper bound on ¢ws. The confidence intervals are shown in
Table 7.7. The table also shows the unitarity bound for ez4. The parameters lie with the
given probability within the confidence intervals, if standard model values are measured.
The respective other parameters can take on arbitrary values. Comparing with the current
experimental limits discussed in 7.1 we conclude that an LHC analysis will allow to shrink
the current confidence intervals by a factor of more than 100 for the couplings ¢y and
€ws. The parameter egg can not be further constrained below its unitarity limits.
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Coefficients N; - 10° for number of events via WZ in interval 1
SM Ew Ewe €po
1300 5 70 -8
&y Eve éwéwe | €wépe | €welns €he
236 19.2 -4.77 -1.20 1.35 1.68
B ime | ewiva | e | Sise | owimeine | Syotse | ewide
-95.6 27.8 -2.60 4.35 -0.84 -4.52 -0.32 -0.066
éweeps | €
0.040 | 0.009
&y | Erés Eva | Evéwa | Eweye &,épe | Eéwetne | eweiwatne
166 79.7 8.16 3.81 1.28 -0.0014 -0.486 -0.038
Evolne | Eyéhe | Ewewalho | Grofhe | Ewihe |  éwalpe ¢ba
-0.010 | 0.023 0.014 | 0.0027 | 4.9-107% | -1.7-10"*| -2.5-107°

Table 7.3: Coefficients NN; for anomalous couplings for the number of events for pp —
W Z X via the W Z-scattering mechanism in the interval 1, multiplied with the factor 10°.
A rapidity-cut of n = 1.5 and a Higgs boson mass of My = 80 GeV were chosen.

Coefficients N; - 10° for number of events via W+ in interval 1
SM éw Ewae €Bd
1600 -1 55 14
&y o Ewéws | €wéps | €wofpo €0
357 23.7 2.8 2.8 34.0 16.0
&y | & éws B by ée | Ehéps | Ewbwalne & péns Ewény
-111 20.1 14.6 0.26 1.93 11.2 0.82 0.31
éwehs | B
.12 ] -0.095
& Taa., A T Eima | twia | Eoine | Sbtwaine | emiatse
227 70.6 0.0064 2.6 0.13 -0.64 0.12 0.084
Evelns | Eéhs | Ewéwaths | Gralas | wlhe |  éwalhe €ba
-0.0054 0.57 -0.040 | 0.0085 | -2.2-10™* -0.0011 | -3.3.107%
Table 7.4: Coeflicients NN, for anomalous couplings for the number of events for pp —

W ZX via the Wry-scattering mechanism in the interval 1, multiplied with the factor 10°.
A rapidity-cut of 7 = 1.5 and a Higgs boson mass of My = 80 GeV were chosen.
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High-energy approximation: Coefficients Nj - 10° for events via W Z in interval 1
SM w Ewa €Bo
1390 7.3 66.4 -6.7
&, Ere | Ewéwe | éwépe Ewolpe | €5e
243 18.8 1 -4.69| -2.60 1.39 | 1.46
é?ﬁ/ glzzvéWCD éwéqu, é%;q, éwéwq>€3¢
-97.9 25.7 -5.13 5.58 -5.13
. ~
Cw | Cwewe wa
169.3 78.3 7.97

Table 7.5: Coefficients N; for anomalous couplings for the number of events for pp —
W ZX via the W Z-scattering mechanism in the interval 1, multiplied by the factor 10°.
The high-energy approximation has been used to calculate the vector-boson scattering
cross-section. A rapidity cut of 7 = 1.5 and a Higgs boson mass of M 7 = 80 GeV were
chosen.

High-energy approximation: Coefficients N; - 10° for events via W+ in interval 1

SM EW éwq; éBd)
1740 5.8 52.2 20.7

s, &e | Ewéwa €wépe | éwaéps | €54
362 24.9 5.88 7.00 28.9 | 14.8
é%y @%Vé\wq; €W€%V¢ €W€W¢-€B<I>

-113.5 15.1 13.3 13.3
é | Evélys

230.7 69.1

Table 7.6: Coefficients N; for anomalous couplings for the number of events for o =
WZX via the Wy-scattering mechanism in the interval 1, multiplied by the factor 103.
The high-energy approximation has been used to calculate the vector-boson scattering
cross-section. A rapidity cut of 5 = 1.5 and a Higgs boson mass of M u = 80 GeV were
chosen.

~0.0058< ey <0.0057 , 95% CL | -0.0042< ew <0.0042 , 68% CL
-0.0031<ew5<0.0078 , 95% CL | -0.0017<ew¢<0.0050 , 68% CIL,
-0.079 < egg < 0.079

Table 7.7: Confidence intervals for ey and éwe from the LHC analysis of pp — WZX at
v/s = 14 TeV assuming a luminosity of £ = 10° pb~! and that standard model predictions
are actually measured. Also shown is the unitarity bound for egg for invariant masses of
MW z S 2 TeV.
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-0.037< €}, <0.037
-0.015<€;,5<0.072
-15<el, < 1.3

Table 7.8: Confidence intervals for the anomalous couplings at 95% CL from the LHC
analysis of pp = W+ZX at /s = 14 TeV assuming a luminosity of £ = 10° pb™! and
that standard model predictions are actually measured. A form-factor with Apr =1 TeV
and n = 2 was used.

Before drawing final conclusions, we compare our results with a calculation in [27].
In this calculation, a form-factor was used. We therefore repeat our derivation of the
sensitivity limits with the following changes:

o A form-factor according to Eq. (6.14) with App =1 TeV and n = 2 is used.
e Only the gF-processes are taken into account.
¢ Only W+ Z-production is taken into account.

The same choices have been made in [27]. The remaining difference to the calculation
of [27] is that there the pr-distribution of the cross-section was used, while we are using
the My z-distribution. The choice of the cuts in the two calculations is also different.
The Figures 7.8, 7.9 and 7.10 show the result of our modified calculation. They show
the projections and sections of the x* = 4 and x? = 1 confidence regions in the different
coordinate planes. The sections with x? = 4 in the e}, = 0- and in the €}, = O-plane have
an inner and an outer boundary. These sections thus have the form of a disc with a hole
or of a ring. Apart from this new feature, the shape of the confidence regions is similar
to the one of Figures 7.5, 7.6 and 7.7. Due to the use of a form-factor, the allowed region
for the anomalous couplings has become larger. We note that the sections at ¥ = 1 in
Figures 7.8 and 7.9 develop from the rings for x> = 4 in a way that the ring disconnects
on the positive ewg-axis. The result is a sickle-shaped object. This shape is similar to
the bean-like shape which one sees in Figures 7.5 and 7.6.

The confidence intervals are again obtained by projecting on the coordinate axis. The
95% CL (x* = 4) confidence intervals are shown in Table 7.8.

To compare with the results obtained in [27), we note that the confidence intervals for
the parameters A and AgZ® of (2.27) are directly and by multiplication with the factor
1/¢2,, respectively, given by the intervals for e}y, und €}, The confidence interval for the
parameter AxZ? from (2.27) can be obtained by projecting the confidence region in the
¢%, = 0-plane onto the AxZ®-axis. This axis is also shown in Figure 7.9. The axis is at
right angle to the line eXg + 10 = 1/(10%,)ely 4 - 100, on which Ax® is equal to zero. The
axes deviates only by a small angle from the e%4-axis, so that we see that the limits on
AxZ® are essentially determined by those of €},. Approximately, the limits on AKZ0 are
those of €}y, multiplied with the factor —tj;.

The 95% CL confidence intervals for the parameters in (2.27) are shown in Table 7.9.
The limits obtained in [27] are also shown in that table. Comparing the results, we see
that the limits do not significantly deviate from each other, except for the upper limit on
ArZ0,
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confidence interval, 95% CL [ for comparison [27]:
-0.019<Agf"<0.093 -0.014<A g0 <0.082
-0.34<Ar%0<0.47 -0.34<Ax%0<0.17
-0.037< A%Y <0.037 -0.036< A% <0.038

Table 7.9: Confidence intervals for the Z WW -couplings at 95% CL from the LHC analysis
of pp - W+ZX at /s = 14 TeV assuming a luminosity of of £ = 10° pb™! and that
standard predictions are actually measured. A form-factor of App=1TeVandn =2
was used. Also shown are the results of [27).

A possible explanation for this deviation is the following. As we have seen, the effects
from Ax?? are essentially those of €%;. The effects of €35, however, are sub-leading terms
in a high-energy approximation. They do not grow strongly with the energy, in contrast to
the effects of the other couplings. Thus, one expects that the effects of %4, in contrast to
the other couplings, can best be seen near the threshold, where the experimental relative
error, 1/ \/]7:,-, Nj being the number of events in a particular interval, is small. In contrast
to [27], we did not include this kinematical region in our analysis. Thus, our analysis can
only give a less stringent bound on the parameter Ax20 1,

We conclude that one obtains only slightly different bounds on the couplings if either
the My z-distribution or the pp-distribution is used. On the whole, the results we obtained
have been confirmed by the comparison with [27].

Concluding this section, an LHC analysis of pp — WZX will allow to shrink the
current experimental limits by a factor of more than 100 for ew and €y, while the
sensitivity to €ps can not be improved beyond its unitarity bound. Further, anomalous
couplings of an order of magnitude O(107%) < ¢; < O(10-2), which one derives from a
dimensional analysis in the framework of an effective field theory, enter the domain of
observability at the LHC.

'It has been recently noticed [29] that a more stringent bound on Ax”? and Ak%° can be obtained
from a measurement of the cross-section for pp = W*HW-X at the LHC. This is possible if a suitable cut
or a jet veto is imposed in order to reduce the background from top quark pair production. In the process
gd = WHW~, the effects of AxY? are enhanced by a factor of §/M2,, where § is the gq scattering-energy.
This is in contrast to the corresponding production processes for W Z considered here or for W+ pairs
where such an enhancement is not present.
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Projection of y?-surface and section at &g, =U.

3-parameter model for qq' and WV processes
M, =80 GeV

Ew *100

~ -

-
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Figure 7.5: The projection of the x? = 4 and x* = 1 confidence regions on the plane
€ps = 0 and the section of the regions with this plane.
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Projection of y*-surface and section at ey =0.
3-parameter model for qq' and WV processes

M =80 GeV
254 &p, *10
//O~ /.':jf’l unitarity limits
8W§a *100
U

2:2:4
=1

Figure 7.6: The projection of the x* = 4 and x*® = 1 confidence regions on the plane
ew = 0 and the sections of the regions with this plane.
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Projection of y*~surface and section at ey, =0.
3-parameter mode! for qq' and WV processes
My =80 GeV
ey ¥100 0.6+

|

Figure 7.7: The projection of the x* = 4 and x* = 1 confidence regions on the plane
ews = 0 and the sections of the regions with this plane.
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Projection of and section through
surface of constant y?
pp » W*Z X via qQ@' at Vs = 14 TeV
using a form factor

47 £4*100

X% = 1 (projection and section)

Figure 7.8: The projection of the x* = 4 and x? = 1 confidence regions on the plane

¢3¢ = 0 and the sections of the regions with this plane. As in [27], a form-factor was
used.
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Projection of and section through
surface of constant x®
pp - W+Z X via q@' at Vs = 14 TeV
using a form factor

£8510

__________

Figure 7.9: The projection of the x> = 4 and x? = 1 confidence regions on the plane
e}y = 0 and the sections of the regions with this plane. As in [27], a form-factor was used.
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Projection of and section through
surface of constant x?
pp = WtZ X via qq' at Vs = 14 TeV
using a form factor

g4 *¥100 47

-

ik PRSPPI E

Figure 7.10: The projection of the x2 = 4 and x? = 1 confidence regions on the plane
%5 = 0 and the sections of the regions with this plane. As in [27], a form-factor was
used.
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7.5 Discussion of Errors

The calculated cross-sections and, as a consequence, to a smaller extent also the derived
confidence intervals are subject to various theoretical errors, which will be briefly discussed
in the following.

We first investigate the uncertainty due to the in principle unknown scale Q? of the
parton-distributions. Figure 7.11 shows ratios of cross-sections for pp — ZZ X proceeding
via W*W~-scattering as a function of Mzz. The quark-distributions of EHLQ [17] have
been used. Three different curves are shown. The cross-section in the denominator
always has Q* = s,,. The cross-sections in the numerator have Q2 = s5,,/4, Q? = 4s,,
and Q% = M}, ,, respectively. In the high-energy region, Mzz > 0.5 TeV, the deviations
of the ratios from the value one is less than 5% for all curves. Figure 7.12 shows ratios
of cross-sections for pp — ¢ — WZ as a function of Mwz. The quark-distributions
MRS(A) [82] were used. The cross-section in the denominator always has Q* = s,,. In
the numerator, @* = s4,/4 and Q? = 4s,, has been chosen for the two curves. The
cross-section changes by less than 8%, if Q* is varied between Q2 = s,,/4 and Q? = 4s,,.
The maximum allowed value for Q2 for the MRS(A) distributions is Q2 = 1.31 TeV?. If
(? becomes greater than this value, the maximum value was used, which leads to the
discontinuities in the slope of the ratios. In summary, the uncertainty due to the choice
of @? induced to the cross section for pp — W ZX is smaller than 5% for Myyz > 0.5 TeV
at /s = 14 TeV.

The use of different parametrizations of quark-distributions in the proton also leads to
differing numerical results for the cross-sections. I have examined a number of available
parton distribution functions differing in experimental input data and theoretical assump-
tions. These assumptions concern for example the choice of the renormalization scheme.
Among the distributions I have examined were those of [82, 85, 90, 91], distributions of
the package [93] and others. I find that the luminosities for finding a ¢§'-pair in a proton
pair vary by less than +25% about a mean value at /Spp = 14 TeV. This applies to the
region 0.5 TeV < /54, < 2.5 TeV and all quark types. The same error will be induced to
the cross-sections pp — V3V, X. The uncertainty due to the parton distribution functions
will improve with future measurements of structure functions at HERA.

The error due to the neglect of quark flavor-mixing is smaller than 1%.

As already mentioned in Chapter 3, O(w;) radiative corrections are to be added to
the cross-sections. These corrections can amount to up to 70% of the Born cross-section
[27]. As another consequence, the confidence intervals grow wider, as was also discussed
in [27]. The interval limits grow by 30% or less in magnitude.

Higher order electroweak corrections have not yet been examined and might also give
a non-negligible contribution.

Further, there are also other processes, in particular three- or four boson-production,
which have not been considered here.
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Ratios of cross sections with different Q%
pp > WW 772 Xat Vs =40TeV,Y =15
My = 0.5 TeV, improved EVA
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Figure 7.11: Ratios of cross-sections for do(pp — ZZX) via W+W ~-scattering with

different values for Q* in the quark-distributions as a function of Mzz. A scattering
energy of ,/5,, = 40 TeV and a rapidity-cut of Y = 1.5 was chosen.
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Ratios of cross sections with different Q~
pp—~qq' - WZXat vVs=14TeV,n =15
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Figure 7.12: The ratio of differential cross-sections do/dMy z for pp — qf — WZ for
various values of Q2 as a function of the invariant mass My z. In all cases, Q? = S4q has
been chosen in the denominator.




Chapter 8

Conclusion

The observability of anomalous vector-boson self-couplings in high-energy proton-proton
collisions has been examined.

A model with anomalous couplings was confronted to fictitious standard-model data
for the process pp — W Z + X at a scattering-energy of VSpp = 14 TeV and an integrated
luminosity of £ = 10% pb™!, corresponding to one year of running of the planned LHC
machine. As a result of the analysis, the following 10~ and 20-confidence intervals have
been derived

-0.0058< ew <0.0057 , 95% CL | -0.0042< ey <0.0042 , 68% CL
-0.0031 <ew$<0.0078 , 95% CL | -0.0017<ew6<0.0050 , 68% CL.

These bounds are smaller by a factor of more than 100 than the present direct experimental
bounds on ew and €yg. The parameter egg, in contrast, cannot be further constrained
below its unitarity limits. Anomalous couplings of the order of magnitude ¢; < 0(10-2),
which one derives from a dimensional analysis in the framework of an effective field theory,
will enter the domain of observability at the LHC.

Of the different parton-subprocesses contributing to the cross-section for pp—>WZ+
X, we included here the processes of quark-antiquark annihilation, gqd — WZ, and of
01g2 = 133 W Z, where g;,q; are quarks or antiquarks. The latter processes contain the
vector-boson scattering processes, WZ — WZ and Wy — WZ, as sub-processes. Previ-
ous derivations of observability limits did only include the contribution from qfd - WZ.
It was known, however, that the cross-sections for the vector-boson scattering processes
are significantly affected by the presence of anomalous couplings. We calculated the con-
tribution from the processes ¢,g2 — ¢} ¢5W Z within an effective vector-boson approxima-
tion (EVBA). This approximation is similar to the Weizsicker-Williams approximation of
photon-photon processes. In this approximation only the dominant diagrams containing
vector-boson scattering are calculated while bremsstrahlung diagrams are neglected. The
method of the EVBA is much easier to handle and physically more transparent than a
complete perturbative calculation including all diagrams. We have presented an improved
formulation of the effective vector-boson approximation applying to the generic processes
of vector-boson scattering. Previous formulations of the EVBA were only applicable to
processes in which longitudinally polarized intermediate vector-bosons play a dominant
role. Using the improved formulation of the EVBA we have found that the contribution
from the processes q1g2 — ¢igyW Z to the cross-section for pp — WZ + X amounts to
15% of the contribution from the ¢ — WZ processes. This result has been obtained in
the standard model, using a rapidity cut of Y = 2.5 on the produced vector-bosons and
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restricting to invariant masses of Mz > 0.5 TeV. In contrast, it was found in previous
works in which existing formulations of the EVBA were used that the ratio of these con-
tributions would be greater than 50%. Our result of 15%, however, is close to the result
of a complete perturbative calculation, which includes the bremsstrablung diagrams, in
which the ratio was found to be 17%.

We have given an analytical expression for the cross-section for ¢ — W Z including
the dependence on anomalous couplings. For the cross-sections for WZ — WZ and
W+ — WZ we have given numerical results in the standard model and for anomalous
couplings. We have further given approximate analytical forms for the cross-sections for all
these processes including the effects of anomalous couplings. These forms are applicable
if the scattering energy is large compared to the vector-boson masses. The validity of
these approximations has been examined.

Concerning the sensitivity of the different subprocesses to anomalous couplings, we
have found, in contrast to a naive expectation, that the anomalous couplings do not man-
ifest themselves particularly strongly through the vector-boson scattering sub-processes.
In fact, the g -annihilation rate is affected more strongly by the presence of these cou-
plings.

As far as the dependence of the cross-section for pp — W Z+X on the mass of the Higgs
boson is concerned, we have evidenced that this cross-section is essentially unaffected if
the mass of the Higgs boson is varied between My = 100 GeV and My = 1 TeV. This
result is in contrast to the results for certain other processes pp — V3V, + X, where V3V,
is a different vector-boson pair.

Concerning our improved treatment of the effective vector-boson approximation, the
approximations leading to this formulation have been discussed in detail and the im-
proved formulation has been compared to existing ones. In the existing formulations,
the cross-sections were described in terms of convolutions of vector-boson distribution-
functions. In the improved formulation, expressions for vector-boson luminosities have to
be used instead. Approximately, however, the vector-boson luminosities of the improved
formulation can again be expressed as convolutions of vector-boson distribution-functions.
The approximations which must be made on the improved formulation in order to obtain
the formalism of convolutions result in an error of 10% to 20% in the cross-sections for
pp - WZ + X, depending on the invariant mass of the W Z-pair. We have thus extended
the physically apparent formalism of vector-boson distribution-functions to the processes
of vector-boson scattering. The distribution-functions derived in the approximation to the
improved formulation are different from the distribution-functions derived in the existing
formulations. We have compared the two versions of distribution-functions and discussed
the observed failure of the existing version of the EVBA for the process pp =+ WZ + X in
terms of the differences of the distribution-functions. Further, we have seen that the new
feature, which plays a role in the vector-boson scattering processes but did not appear
in previous applications of the EVBA (as far as these led to correct results), lies in the
relative importance of the distribution-functions for transversely and longitudinally polar-
ized intermediate vector-bosons. We have found that the transverse distribution-functions
differ considerably in the existing formulations and in the improved formulation.

The improved EVBA has been further compared with results of complete perturbative
calculations including bremsstrahlung diagrams. We have presented comparisons for the
process pp — ZZ + X. It was found that the two calculations deviate by only 10% if a
rapidity-cut on the produced vector-bosons of ¥ < 1.5 is chosen.
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As to the tasks which have not been attempted here we did not calculate v, Z-
interference terms. These terms are small but might not be completely negligible. They
could be calculated with a straightforward extension of our formalism. Further, a more
refined treatment of kinematical cuts could give a better simulation of an actual experi-
mental situation. We also note that our prediction for the cross-section for pp — WZ+ X
could be improved by including radiative corrections and further processes on the quark-
level. Tt is clear, however, that most of the mentioned improvements would result in a
considerable complication of calculational techniques.

One advantage of this work is that fairly involved quantities have been calculated
with a good degree of accuracy with easy-to-handle approximative formulae, which have
been derived from compléte expressions and passed the tests of comparison with complete
calculations. These approximations (high-energy forms for cross-sections, vector-boson-
distributions in hadrons, approximative treatment of cuts) can be used to quickly obtain
reliable numerical estimates. Another useful result of this work is that it provides a careful
examination of several calculations presented previously in the literature.




Appendix A

Expressions for Fivefold-Differential
Luminosities for Vector-Boson Pairs

We derive expressions, in terms of which the five-fold differential luminosities, Ky, Eq.
(4.38), can be determined. These have been defined in terms of the helicity-tensors
C;(m, m’) and S;(m, m'), defined in Egs. (4.29) and (4.30). The helicity-tensors have been
written in terms of the four-momenta I;, I of the fermions and the polarization-vectors
¢;(m) of the vector-bosons. We evaluate the four-momenta and polarization-vectors in
the Breit systems of the vector-bosons, to be defined in the following.

A.1 Definition of Reference Frames

The four-momenta, of the vector-boson V; in their center-of-mass system, C, are given by

() = (k;0,0,K), (k)" = (2;0,0,-K), (A1)

with kg = W + k2 — k2)/2W and g = (W? — k¥ + %2)/2W. K has been defined in
(4.53). For simplicity, we assume that the final state W produced via the two-boson
process allows to specify the z- and y-axes of a coordinate system. If the state W decays
into n particles with momenta w;, we choose this system such that the y-component of
one specific four-momentum, say ws, of the set of the w; vanishes and its z-component is
non-negative.

We define two Breit systems, a system B; in which %k, has only a non-vanishing 2-
component and [z points in the negative z-direction, and a system B, in which k; has only
a non-zero z-component and £, points in the negative z-direction. The four-momenta in
B are

2
B —ki

= ) (Ch; —8n COS 1, —8p SiN 1, 1),

)

(I'Bl)y = \/:i?(ch, —Sp, COStp1, —8p, sinpy, —1),
)
)

= (0 0 0,/ -k
(1)0:0)—"1):

2\/:@
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1
LR A — . M2 k2
r —‘pW+l2 2\/—_)'{;%(“}(’0,0’ MX kl): (A.2)
with
2
Cp = -i—l,
Ux
s = (2 —1= L@\/s—ux, (A.3)
X

and px as in (4.52). The overall azimuth of the system is defined by choosing the y-
component of k2! to be zero and its z-component non-negative, so that

(k8)" = (QB; @,0, —L) : (A.4)
X

__ki‘?

with

y 1 ( k%k%)
o \/___k%' px )’

B = \uk—2uux + K, (A5)

and v is defined as in (4.53).
The four-momenta in B, are given by

—k2
()" = Y52 (=5} cosion, s} sin o, 1),
= k2
(82)" = Yo (s ~sh cosipn, —s sing, ~1),
() = (0:0.0./7H),
1
(kfz)‘“ —===(x;0,0, —2v),
2/~K
By I 1 .
p (0,0, ~2W o), (A.6)
(v7) 2/~ k3
with
2
r = = -
¢, = m(#x v), .
o= Var-1== (&7)

and s has been defined in (4.54). The overall azimuth of the system B, is defined by
choosing the y-component of the same four-momentum w; as employed in defining the
system C equal to zero and its z-component non-negative.
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A.2 Expressions for Polarization Vectors

The polarization vectors for the helicity eigenstates of the vector bosons Vj in the system
C using the Jacob and Wick [94] phase conventions are given by

(€)' @) = 5©31.-i0),
(<) © = \/i—k?(K;O,O,ko),

1
—=(0; +1, —4,0),
73t )

oA Y ].
&) (0) = —
By applying an appropriate coordinate transformation, the polarization vectors for V) in
the system B; are found to be

—
oy
~—
®
us
I

(_K;OsOsQO)' (AS)

1 ., —kiq
(EIBI)H (:t) = Ee:’:upz (:F&:o:!:'———lq—o) —3)0) H]

(7)) = ‘/_( ‘/_ﬁ ,0, o) (A.9)

KW

with & = +/k#k28/(ux KW). Likewise, the polarization vectors for V; in B, are found to
be

() @ = S50,
()" (0) = (~1;0,0,0). (A.10)

A.3 Expressions for Helicity-Tensors

The epxressions for the helicity-tensors C;{m,m') and 8;(m,m’), given in Eqs. (4.29) and
(4.30), can now be found by using the expressions {(A.2) and (A.6) for the four-momenta
and the expressions (A.9) and (A.10) for the polarization-vectors. The results are:

Ci(++) = —-%% lc,?1 +1+ M(ch + 57 cos® )
+8 o Shﬁmﬁ(yﬂx — kk3) cos @1} :
C,(00) = k2 {sh —k?ﬁ(ch-l—shcos 1)
_8a sh\{;-_f;z\/—_kgﬁ(yﬂx _ K2K2) cos %} ,

cl(+") =

k2 [2k2k2 2 g

1
3 | s (c2 + 57 cos® ) + 52 (cos 01 — 5)
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EXPRESSIONS FOR HELICITY-TENSORS

C1{+0)

S1(++)

S (+0)

+4chsh\/:k_%\/—7%ﬁ

2 2
Hxk
. S / / .
-2 Zﬁﬁ((ﬁh ‘—k% —k% ﬁ + S (V)U»X - k%kg) cos 901) S1n (:01] y

KB {2\/—7%\/—7% g

(viex — kik3) cos

(vix — kik3)(ch + 57, cos® 1)

V2 [k

2¢c, 8
+ 2222 (wpy — K2K2)? + K2E2 %) cos ¢

i K2

-—z'lj;—hﬁ(ch(uux — k3k3) + sp o/ —k} y —k3 Bcos ) sin (Pl} )
k2 | vpx — k3K3 sny/—kiy -k

——= |2——Fcp+ 2

2 HxK Bxk

k2 |ea/—KiVk3B s 9,9 Sp
—1 -+ vix — kyk;)cosp, —i—sin s (A1l
V2 { pxk umn( Hx — kiks) cos ey g (A1

cos (Pl] :

2 2
Ca(+4) = —Z2(()* +1),
2
C2(00) = —%—(sk)z,
k% fy2
Co(+-) = Z“Sh)a
kg ! J
Co(+0) = /3 o
k2
So(++) = —~72 o
k2,
Sa(+0) = (A.12)
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Appendix B

High-Energy Formulae for
WZ > WZ and W~y - WZ

We give expressions for the cross-sections for WZ — WZ and W+ — WZ in the high-
energy approximation. For this purpose, we define the quantities Gp,, which are the
squared helicity amplitudes integrated over the scattering angle cos 9,

1 7
Gpol = E f | Mpa(cos 9)|2dcos a, (B.1)

o
where g = e/sy is the weak coupling constant and 2 is an integration limit for |cosd|.
The indices pol denote the helicities of the particles WV — WZ (in this order) and
Mo is the scattering-amplitude. We further define the sums over the transverse helicity

amplitudes,

Gittteading + G- + Grpoy + Gy,

Gy Gyt leading + Gompm + Gomps + G (B.2)

I 4

The cross-sections for WZ — W Z are obtained in terms of the G, by the expressions,

orr = ;(04s +o04-)

—po |

o = 5(0++ — 04, (B.3)
with
.9‘4 T
g4 = 397s (G++ + G4+ non—leading T G400
. +Gittr0 + Giy—o+ Grror + Gito)
g

- T
7= T 3%ms (G+‘ + G 4~ — 4 non-leading + G+~00

. +Gy o+ Gi0+ G0t +Gi0-),

g
orL = 3o {(Gro0+ + Goo— + Groro + Guoo
) +G 044 + Grog— + Groo— + Gio_1 + Gio00)
g

agrr = 3_27E (G0++0 + G0+__0 + G0+0+ + G"l3+0—

+Got++ + Gogt— + Gogey + Gog—— + Gogoo)
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4

grr, = 32971_3 (Goooo -+ 2G00++ -+ 2G00+_ + 2G000+ + 2G'00+0) y (B4)

where s is the square of the scattering energy. Similarly, the cross-sections for Wy ->WZ
are obtained in terms of the corresponding Gpa by the relations

o717 = (044 +04) (B.5)

o=

with
g ¢
3278 p
. +Git40 + Giyo+ Gyyop + Gigo)
_ 9 9rAT
Oy = 32#31—3 G4+ Gie—y non—teading + G4—00
] +Gyt0+ Greso+ Gigr + Gio)
g q
oLr = 327r85 (Gotso + Gos—o + Gosor + Goro-
+Gorst + Gopt— + Goymp + Gog—— + Goyoo) - (B.6)

T
(G++ + G++++,non—leading + G+-§-00

In (B.6), p and ¢ are the magnitudes of the three-momenta of the vector-bosons in the
initial and in the final state, respectively, evaluated in the center-of-mass system of the
vector-bosons. They are given by

m (128,
2 s
1
¢ = L2068, + 3+ Lo, -y ®7)

Note that a cross-section oz for the photon-process does not appear in our calcu-
lations. The reason is that the corresponding luminosity vanishes as the photon has no
axial-vector coupling.

B.1 Formulae for WZ — W2Z

For the process WZ — W Z there are 25 different helicity amplitudes M,,;, which can

not be related to each other by discrete symmetries. Of these amplitudes, 15 have leading
terms of the order O(s/4M3,)°, O(a;) or O(a;a;),

€5, | (B.8)

a; = 5
Ay VR

i, j =W, W, B®. Of these 15 terms, 6 only appear in the sums GT_ and GT_. In the
following, we use the abbreviations

1 _ 1+ 2z _ M3
fl = it':";g, 11’11 = ln( — 2,’0) s rg = —MT:,', (Bg)

and tw = sw/cw.
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For a Higgs boson mass which is small against the scattering energy, M3 < s, the
expressions for the integrated squared amplitudes are given by

T
Gyt

G¥_

G ++00

00+ +

G 1+-00

004~
Go+o+
Go4o-

G +oor
0++0

G +00-

0+-0

Gro40
Gro-0

Goooo

7
2ch [lﬁzofl — 8a%,(21ny —Tz — 25) — 8ady (320 — gzg)

46 . 7
+aty (920 + ?ZO + 50)}

2 5
2k [16z0f1 ~ 161n; +1820 + gzg + 2a%, (T2 + ng)’)

2 4
+ay (920 — gzo 42 )]
3
V4
Q(QW@ - GB@)2S%Vt€VZU -+ 26%1;&?4;(1 — 4awq>)2-§0-

2 42 3

Swiw 2
5 (ot 3t4, )
4

%(1 — %) 2

3
A
2(1 - 28%1;)2(awq; - t%Van,)Q(ZU + _Z))Q)

SC%VZQfl - 2(1 - 28%1;) ln1 +—E’g—(l — 23%‘;)2
2¢ciy
Gy 2 2
—2—29 ((awq> + G,Bcp)tw — 3aw — Gqu;.a.pV)
3

Zi ’ 2
+€OC%V [ ((awcp + GB@)t%,V +aw — 4awq)aw)
+4 ((GW@ -+ OIB@)t%V - 3aw — ﬁawéaw) aw¢aw]
5.2

+gzoawq>agvcgv
1

2
2034 (zo + Eﬂi)

3
220f1 — —In1(2 —rg)+ ;Zg(g Oy +1h) + 214
+(IW@(12 In; —1525 + 3rp 2o — zo)
+hg (——8 In; +432z9 + 3rgz + ——(25 - rH))
+adys (362 — 2820)

z
+aty (182 + 2025 + 22

o). (B.10)

The non-leading terms for G 4.4+ and G4__, are given by

G++++,non—leading = Bc%VP"W [aWtb (8Zof1 (2 - 3%1/) + t%v(l - 23%1/) 1111)

+ape (—820f18%,v + t%V(l - 28%[/) lnl)

+aw ((5 25%,) In; —22(3 — s%v))

+s% by (awe + aps)?Iny

+aW(1n1 —22.’0) ( (3 e SW) - 2awq>(2 — SW) -+ QGBQSW)]
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3
Z
G- tnon-leading = 2Coyiw {2(1620f1 —161n; +17z + 30) lowe (2 — 8%) — apesiy]

2
‘—(8 1111 —1429 hant gzg)

1 1 1
. [ZGWQ((LW@ + t%VaBQ) + EGW@ (1 4 %) + Et‘z,vagq;] } y (B.ll)

where we introduced the variable
4M3,
Hw = P (B12)
Concerning the amplitudes which receive no leading contributions, the terms which
are quartic in the couplings are given by

3

2
Giravo = Apw et ad, (20we + aw)? (zg — "3g
8 23
GIE}":E = “Wclz/va%tf(awtb + GW)z (9z0 — -é-zg — EO)
2 2
G por = Ay ary, (c%v(awq> — thape) + aws + C%vaw) . (20 — EO)
8 23
Givo- = #WG%V(GW‘I:. + C%Vaw)2 (on — —;;g _zo
O—— 3 5
Gi-v0 = ,uwc2 a2 (0,2 + az,) 2y — z_g_
Tor waw [(Gwe T Oy 5
2 z0
—2aweaw | 20 — gzg' + —59)]
Gi-—0 =
+0-+
Gior = 0
O+t g
2
GO"'_"_*_?; = UWG%V [40?4; (awq> - t%va,B.;.)z (ZO — _é—
2 2 zf;’
+(awe + ciyaw)* | 20 — =
2 2 2 zg
_4CW(GW¢ - tWan,)(aW(;. + cWa,W) 20 — _3.__)]
8 P
Ggg’fg = pwayg(aw + aws)” (920 - gzg - -52
Goson = e _l_a2 (a'W‘I) + C2 aw)2 Qzn — §z3 _.?E (B 13)
0004 Wc% W W ¢} 3 Q 5 . .

B.2 Formulae for W~ —» WZ

For W+ — WZ there are 27 different amplitudes, out of which 14 have terms of the
leading order O(s/ME,)°. Of these amplitudes, 8 only appear in the sums of the trans-
verse amplitudes G, and GT_. Expressions for GT, and GT_ are obtained from the
corresponding expressions for WZ — W Z by multiplication with the factor ¢%,. For the
remaining polarizations, the integrated squared amplitudes are given by the expressions,

z3
G++00 = 23‘24; (CL%V(I - 4&%,@)30- + (G.Wq:. =+ an;)?'Zg)
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G = W (547
-0 = 3
Goror = 286 (1—2s3) "%
2 1 N %
Gg+o_ = 2tW [awq>(§ - QSW) + an;(§ - QSW)] 2y + ?

Go++0 = 28%1/ (420f1 -2 11’11 +Zg)
sty 2 z5 2 2
Gop—o = 5 (aws + apse)’ { 20 + 3 +ay | 92 + 3
2
+(qu> -+ an;)G,W (62.‘0 — 52’3)
+2awq>a,w(awq> + G',Bq>) (620 + gzg)
10
+2awq>a%‘, (1820 —- -§-z§
4 2
+2aty 50l (1820 - gzg + gzg’)] : (B.14)
The non-leading terms for G4+ und G4 have the following expressions,

G++++,non-—leading 1
= 88t pw [awq, (4z0f1 (3 —2s%,) - 1Imy (5 - 23124,))

1
+aps (420]'1(1 -253) —Im (5 — 23%,))

"
+aw (m1 (5 - 2s$4,) — 92 - s%‘,))

—5%, In; (aws + aps)’

+(11’11 "QZO)G'W (aw(2 - S%V) - aw¢,(3 - QS%V) — G.Bq>(1 - 283‘;)) ]

G+— ~,non—leading

= zsa,pw{aw [16z0 f(3—2s%) — 1n1(50 — 32s%,)
2 (109 - 68s},) + A (7 4s W)]
+agg |:32ZBfICW —In, (22 — 323%/)

20 ar ooy 4 B0y ]
+5 (35— 68s}y) + (1 4%,

2
+awq,(aw¢. + agq,) (8 In; —14z — §z3) } (B.15)
The amplitudes without leading contributions have the terms quartic in the couplings,
2 2 2 zg’
Girzo = dsypway(2ows — aw)” (20 — 3
2 2 8 3 38
G++-—0 = swy,waw(aw@ + aw) 92y — E);Z - g
2 23
Giror = 4typwaly [awq> + cyaw + ¢y (aws — tﬁzam)] Zp — 30

8 23
Goree = pwdd, lca,aev (on gzg_-sa)
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3
2
+12c¢4 0w (awe — aps) | 20 — —0)

3
2 zg
+4(aws — o) (20 — =

3
3 3 5
Giopo = S%VUWGIZV [alzilf (20 - 2—0) — 2awawe (Zo - %Q) + a%m- (20 - %0)]
Gyp =
G+ = 0
2 2 2 | 2 2 z
Gio0- = SyCyhwary |ady {20 — == daw (aws + aps) | 20 — 3
2 2
+4(awq> + CLB@) 29 — -L_;)-
3
Gorrr = 4syclyuwaly(awe +aps + aw)’ (z - ;—0)
Gory—- = 0 )
Z
Gosmr = pwliyaly [(avm + cyaw)? (zo — 30)
z3

—4(awe + c&aw)c (awe — taps) | 2 — -39
3
+4C%V (awcp - t%VaB@)2 (20 - _0)]

23
Gor—— = pwitiyaly [4(%@ + cyaw)® (ZO - go)
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8 2
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