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Preface

This thesis is a compilation of results obtained from a research period starting 01.01.2009
at Bielefeld University in the Graduiertenkolleg “Quantum Fields and Strongly Interact-
ing Matter” in collaboration with and under supervision of Prof. Dr. Edwin Laermann,
Prof. Dr. Frithjof Karsch and Dr. Olaf Kaczmarek. The on-going main objective of this
research project is the reliable computation of spectral functions from Euclidean lattice
correlation functions as obtained from numerical calculations.

We were able to develop an approach to the resulting set of problems that improves
upon more standard methods. Subsequently we computed the phenomenologically in-
teresting spectral functions of QCD particle currents and continue to do so in ever more
relevant cases with unprecedented reliability.

Part of the content of this thesis is based on the following research articles [1], [2]:

• Continuum extrapolation of finite temperature meson correlation func-

tions in quenched lattice QCD

Anthony Francis, Frithjof Karsch (Bielefeld U. & Brookhaven)
PoS LATTICE2010 (2010) 191; arXiv:1101.5571 [hep-lat]

• Thermal dilepton rate and electrical conductivity: An analysis of vector

current correlation functions in quenched lattice QCD

H.-T. Ding (Bielefeld U. & Brookhaven), A. Francis, O. Kaczmarek (Bielefeld U.),
F. Karsch (Bielefeld U. & Brookhaven), E. Laermann, W. Söldner (Bielefeld U.)
Phys.Rev. D83 (2011) 034504; arXiv:1012.4963 [hep-lat]

Both publications focus on determining the spectral functions of QCD particle currents
from corresponding Euclidean correlation functions. To this extent the correlators have
been established to unprecedented precision in the quenched approximation enabling an
extrapolation to the continuum. The continuum results were then carefully analyzed,
employing also the notion of thermal moments of the correlation function. Consequences
for the spectral functions were drawn and the dilepton rate at T ≃ 1.45Tc could be es-
tablished.
Quite naturally the format of scientific publication limits the scope and detail of a discus-
sion. Therefore in this thesis we present the arguments and the discussion of [1] and [2]
in a broader and more detailed context. The published results are naturally embedded
in the following and can be seen to contribute a part of what has been researched in the
course of this PhD-phase.
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Preface

This thesis is organized in two parts comprising chapters 1 through 4 and 5 through 8.
Roughly speaking the first contains the theoretical groundwork while the second gives
the analysis and results.
To this extent chapter 1 sets the scene and introduces QCD and heavy-ion collisions. At
the same time the dilepton rate and its connection to the vector spectral function as the
main physics objective in this work is identified.
Chapter 2 goes on to give an introduction to finite temperature lattice QCD, with special
emphasis on the quenched approximation, Wilson-Clover fermions and the connection
of the resulting lattice theory to physics.
In chapter 3 the concept of spectral functions is presented. Continuing with a detailed
phenomenology of the spectral functions in the non-interacting case and highlighting
expectations in the interacting case derived in the Langevin and Boltzmann models as
well as Hard Thermal Loop perturbation theory and gauge-gravity duality.
The fourth chapter focuses on presenting the machinery, together with its drawbacks,
that is employed to compute the spectral function from a Euclidean correlation func-
tion. Additionally the notion of thermal moments of the correlation function as especially
sensitive observables is introduced. The now standard maximum entropy method is crit-
ically analyzed and finally a scheme is developed that improves over this approach.
Having concluded the first part the second begins in chapter 5 with the analysis of the
vector correlation function at vanishing momentum. Special emphasis is put on the re-
sults at T ≃ 1.45Tc, as here the data permits a continuum extrapolation. Subsequently
the computation of the vector spectral function and the dilepton rate in the continuum
of quenched lattice QCD is presented.
Additionally first results are shown on the temperature dependence of the vector corre-
lation function and the consequences for the spectral function are discussed.
In Chapter 6 the study is extended to finite momentum in the case of the vector correla-
tion function at T ≃ 1.45Tc. The consequences of different contributions in the spectral
function are discussed using a number of toy models. Finally a special emphasis is put
on the connection between the longitudinal and time-like spectral functions. As a con-
sequence a non-zero intercept linear in frequency of the former is excluded.
After the detailed analysis of the vector correlator and its spectral functions chapter 7
turns to the other particle channels, specifically the pseudo scalar. Afterwards the mid-
points of the correlators of different particle channels are used to quantify possible errors
due to renormalization constants, especially in the case of the pseudo scalar channel.
Finally chapter 8 summarizes the results of the presented analysis and gives an outlook
on the interesting questions that still remain to be answered.
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Chapter 1

Introduction and Motivation

What holds the nucleus of the atom together? - This is the question one needs to ask
to find the strong nuclear force. Given the positive electric charge of a proton and
a nucleus being made up of protons and charge neutral neutrons, one is led to this
question quite naturally, as the coulombic repulsion of the positively charged protons
should push the nucleus apart. This is decidedly not the case as the material world
is indeed made up of atoms. Consequently one needs a force that is strong enough to
negate the electromagnetic interaction and pulls the nucleons together, while at the same
time only has an effective range of the size of the nucleus. This is the strong interaction
or strong nuclear force.
There exist quite a number of strongly interacting particles, two of them, the proton
and neutron, we already mentioned. These two are examples of the class of baryons,
from the Greek “baryos” heavy, as at the time of their discovery they were considered
very heavy particles. The other class of strongly interacting particles are the mesons,
from Greek “mesos” meaning intermediate, examples of these particles are the pions.
Together they make up the family of hadrons and the study of strong interactions is
very much the study of hadrons [3].
By the late 1950’s a great number of seemingly unrelated hadrons had been found and the
study of strong interactions seemed to drift more into the realm of zoology. As in zoology
all particles were cataloged by certain properties they possessed, most importantly these
were electric charge, isospin and strangeness. In 1960 the ’eightfold way’ of Gell-Mann [4]
finally brought order to the chaos. The eightfold way implies that mesons and baryons
can be ordered and placed in a representation of SU(3). Two of these representations are
an octet and a decuplet, not only could Gell-Mann sort all known strongly interacting
particles into these representations but he could also predict the still unobserved Ω−

along with its strangeness, charge and approximate mass. The resulting scheme is shown
in Fig. 1.1. In 1964 the Ω− particle was found [5] and 1969 Gell-Mann was awarded the
Nobel prize for his achievement [6].

Bolstered by this success Gell-Mann went on to postulate that also the fundamental
group of SU(3) should be realized in nature, the corresponding particles would lay in a
triplet and he named these particles quarks [7]. However as all representations of a group
may be built up of the fundamental representation this postulation goes further than to
suggest three new particles, it also entails that all other particles should be composed of
different combinations of the three quarks.
At the time these quarks were the up, down and strange quarks, today we know there

1



Chapter 1 Introduction and Motivation

Quark Mass Charge

up 2.5(8)MeV 2/3
charm 1.27(-9)(+7)GeV 2/3
top 172.0(9)(13)GeV 2/3
down 4.95(85)MeV -1/3
strange 104(-21)(+29)MeV -1/3
bottom 4.19(-6)(+18)GeV -1/3

Figure 1.1: The eightfold way may be seen as the “periodic table” of QCD, the hadrons
may be arranged into the octet and decuplet representations of the SU(3)
non-abelian group according to their electric charge q and strangeness s (top:
baryons, bottom left: mesons). Bottom right: properties of the six quarks [3].

are in fact six quarks consisting of the afore mentioned three and the charm, bottom
and top quarks. Their properties are quickly listed in Fig. 1.1.

1.1 Quantum Chromodynamics and Yang-Mills Theory

At the point of its conception in the 1950’s Yang-Mills theory [8] was very much a theory
in search of a world it could describe, nowhere in nature did the exact local symmetry it
required seem to be realized. The theory of strong interaction at that time was instead
governed by the approximate symmetries of isospin and later the eightfold way. Three
fundamental ingredients were needed to put Yang-Mills theory into the limelight and
to make SU(3) Yang-Mills theory or quantum chromodynamics (QCD) the dominant
description of the strong nuclear force [9].
One obstacle was the persistent belief that Yang-Mills theories are non-renormalizable.
This belief was shattered with ’t Hooft and Veltman rigorously proving the opposite in
1972 [10]. The consequence was that suddenly these theories in fact could yield sensible
results on observables that could in turn be compared to experiment.
The other ingredient is asymptotic freedom [11]. With the strong interaction it became
quickly clear that the coupling constant of the theory is in fact large αs ∼ O(1). This is
in stark contrast to quantum electrodynamics (QED), where the coupling has the famous
value α = 1/137. However what if the coupling constant is not a constant after all? The
phenomenon that the strength of the coupling constant of a quantum field theory may in
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1.1 Quantum Chromodynamics and Yang-Mills Theory

fact vary with the energy scale the theory is probed at is called asymptotic freedom, and
it could be shown to be a property of QCD in 1973 Wilczek and Gross, and independently
Politzer, [11]. As such asymptotic freedom for QED meant that it had been tested only
at energy scales at which its change was so absolutely insignificantly small that it made
the coupling seem constant. For QCD it meant that at sufficiently high energies or short
distances the theory in fact could be handled by the advanced diagrammatic approach
proposed by Feynman for QED [12, 13]. As a consequence the successful search for an
asymptotically free quantum field theory could yield a theory of strong interactions.
Yang-Mills Theory is asymptotically free and recently it could be shown that it is in fact
the only asymptotically free theory in our space-time [14].
The running of the coupling can be seen as one of the reasons for confinement. On
the one hand the quarks behave effectively as free particles at short distances, as the
coupling is small. As the distance to the next quark increases however also does the
coupling strength and the quarks feel the strong force get stronger and stronger. In
effect, in the regime where the coupling grows large ∼ 1fm, it takes an absolutely large
effectively infinite amount of energy to separate two quarks from one another. This is
how the strong force is able to negate the electromagnetic repulsion and to subsequently
keep the nucleus from flying apart.
Even with these insights however we have not arrived at QCD, one part is still missing.
At the end of the 1960’s deep inelastic scattering experiments had given hints that
nucleons might be made up of partons and many were ready to believe in quarks but
the quarks could not satisfy the exact gauge symmetry needed for Yang-Mills theory to
work. The up, down and strange quarks might satisfy the approximate SU(3) symmetry
of the eightfold way, but they are certainly different particles, with e.g. different masses.
With hindsight we identify that a key observable is the ratio of the production of hadrons
from e+e−-collisions compared with that of muons:

R(E) ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
≈ Nc ·

∑

i

Q2
i θ(E −mi) , (1.1)

where the Qi are the charges of the different quark species and E = 2Ebeam =
√
s.

Without knowing what the extra Nc is or that it existed, physicists at the time were
puzzled as their calculation of this ratio was off by a constant equal to three [3]. From
the experiments it suddenly seemed as if there were three times as many quarks as was
believed. At the time the term color was introduced in order to handle this triplication,
consequently quarks now came not only in different flavors as in up, down, strange...
but also in three colors red, yellow and blue.
In view of Yang-Mills theory physicists soon realized the implications of this observation.
As mentioned above the quark flavors were certainly different, however the different
colored triplets of a given flavor were exactly identical modulo the color. Here the exact
gauge symmetry required by Yang-Mills revealed itself and with the number of colors
Nc = 3 it implied it to be SU(3)c.
Today the ratio in Eq. 1.1 has been measured very precisely [3] and Nc = 3 is firmly
established. To illustrate note the experimental world data results shown in Fig. 1.2
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Chapter 1 Introduction and Motivation

Figure 1.2: The ratio R(E) of the production of hadrons to muons from e+e−-
annihilation. Figure provided by [3]

match up nicely with the approximation to R(E) given the different quark content:

Ru,d,s ≈ Nc

[(2
3

)2
+
(
− 1

3

)2
+
(
− 1

3

)2]
=

2

3
Nc , Ru,d,s,c ≈ Nc

[2
3
+
(2
3

)2]
=

10

9
Nc

Ru,d,s,c,b ≈ Nc

[10
9

+
(
− 1

3

)2]
=

11

9
Nc , Ru,d,s,c,b,t ≈ Nc

[11
9

+
(2
3

)2]
=

5

3
Nc

(1.2)

The Lagrangian of QCD

Finally we have arrived at the possibility to define a theory of the strong interaction via
Yang-Mills theory [8] and to compute its observables via the diagrammatic approach,
as long as the energy scale is sufficiently high for the strong coupling to be small. As
Yang-Mills theory is a gauge theory there naturally also are gauge bosons in the theory.
In QCD these are called gluons and it is these particles that constitute the great differ-
ence of properties between QED or the electroweak theories and QCD.
Above it became clear that in QCD the color charge is associated with the non-Abelian
gauge group SU(3). Recapitulating the particle content of QCD there subsequently are
quarks and anti-quarks of three color charges and additionally the gluons, which trans-
form under the adjoint representation of SU(3), consequently they carry eight charges
(3x3 combinations of color and anti-color). This implies gluons may interact directly
via their own color charge and this is a prime reason for confinement. As the direct
gluon interaction contracts the lines of force between two color charges into a flux-tube
or color-string, the three-dimensional Poisson-equation that leads to the Coulomb po-
tential in non-relativistic QED, V ∼ 1/r, now becomes effectively one-dimensional with
the confining form V ∼ r [15].
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1.2 Heavy-Ion Collisions

The governing Lagrangian density of quantum chromodynamics derived in this way is
given by:

L = Lfermion + Lgluon (1.3)

where the fermionic part is

Lfermion =
∑

f

Ψ̄α
f

(
iδαβγ

µ∂µ − gT a
αβγ

µAa
µ

)
Ψβ

f , (1.4)

here Aa
µ denotes the gluon vector field of color a (a = 1, 2, ..., 8) and Ψα

f the quark spinor
field of color α (α = 1, 2, 3) with flavor f , T a

αβ is a matrix, fixed by the gauge group,
that connects the fundamental and anti-fundamental quark spinors to the adjoint gluon
representation. The gluon or pure Yang-Mills part on the other hand may be written as

Lgluon = −1

4
F a
µνF

µν
a (1.5)

with the field strength tensor:

Fµν = ∂µA
a
ν − ∂νAa

µ + g[Aµ, Aν ] = ∂µA
a
ν − ∂νAa

µ + gfabcA
b
µA

c
ν . (1.6)

The structure constants fabc are fixed by the gauge group and its generators λa:

[λa, λb] = ifabcλc . (1.7)

It is this term proportional to the coupling g that encodes the non-Abelian nature of
the theory and its greatest difference to QED. This term gives rise to a self-interaction
term of the gluons and corresponds to an additional pure glue vertex in the language of
Feynman diagrams.

The observables of QCD are the (conserved) currents of the action. In particular we
will be interested in meson operators that define the currents:

Jν ≡ q̄(τ, ~x)γνq(τ, ~x) , (1.8)

choosing the appropriate gamma matrix we obtain the particle channels according to
their transformation behavior under space-time, in our case these are the vector particle
channels (V) for γν = γµ where µ = 0, ..., 3, the pseudo scalar (PS) for γν = γ5, the
scalar (S) for γν = 1 and the axial vector (A) for γν = γµγ5.

1.2 Heavy-Ion Collisions

Quantum chromodynamics and ultimately confinement leads to the conclusion that sin-
gle free quarks or gluons cannot be studied or observed in the physical vacuum. Subse-
quently in our physical world all observables particles are colorless or color neutral.
However, in a regime with large enough particle densities that one can safely define a
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Chapter 1 Introduction and Motivation

Figure 1.3: Sketch of the standard interpretation of a relativistic heavy-ion collision [18].

temperature T and chemical potentials µ, the strong tie that binds quarks and gluons
may weaken and ultimately release them into a deconfined state, see e.g. [15].
These high particle densities may be created in heavy-ion collisions (HIC) and they have
been the experimental approach to studying the properties of QCD and extreme states
of matter since the 1970’s.

In a HIC-event nuclei are accelerated to ultra-relativistic speeds, i.e. near light-speed,
and then smashed into one another.
However, even if inside a heavy-ion collision two nucleons hit head-on, they do not simply
stop each other. As a nucleon is of the size of ∼ 1fm it takes a certain time τ0 before the
entire nucleon realizes it hit something [15, 16]. At the high collision energies typically
available at e.g. RHIC this time is much larger than the extent of the nucleus τ0 ≫ 1fm.
Hence instead of stopping, the two colliding nucleons pass through each other leaving
behind a ’vapour trail’ of deposited energy droplets [15].
In this fashion large amounts of energy are concentrated in a small reaction volume and
high particle densities are indeed reached, for example a proton-proton collision at beam
energies of

√
s = 20GeV leads to an energy density of ǫpp ∼ 0.36GeV/fm3, which is

roughly twice that of standard nuclear matter.
In the next step each droplet expands, thereby cools and eventually materializes by
forming a number of hadrons of different species.

Naturally the situation is much more complicated if nuclei composed of many nucle-
ons are collided, as is the case in gold-gold collisions e.g. at RHIC, however here one
may expect energy densities in region of ∼ 2.5GeV/fm3, which is a factor 14 larger than
standard nuclear matter.
In such a collision ∼ O(103) particles are produced and recorded by the detector. The
task is then to reconstruct the evolution of the extremely high temperature initial en-
ergy droplets through the thermal and freeze-out processes to the low temperature purely
hadronic state from the properties of this huge amount of produced particles.
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1.2 Heavy-Ion Collisions

The inner workings of such a HIC-event are naturally very complicated and the cur-
rent theoretical picture is quickly outlined in the following (see sketch in Fig. 1.3).
At the initial collision time the color fields are liberated from the wave functions of the
incoming nuclei and then pass through a phase of strongly interacting fields that create
quantum number of quarks and gluons. This is a prediction of perturbative QCD, as
pQCD implies that in the ’very hot’ phase of a heavy-ion collision the color charge is
transported by weakly interacting quasiparticles with quark and gluon quantum num-
bers. The corresponding state of matter in this phase is called a “glasma” [19] and most
of the energy is deposited in highly coherent field degrees of freedom, as opposed to
quarks and gluons.
In the next step the latter begin to interact and start to thermalize, as the initial energy
droplet further expands and cools. This process ultimately forms the so called “quark
gluon plasma” (QGP), see e.g. [15]. The quark gluon plasma is a phase where most
energy is deposited in the quarks and gluons however the color charges cannot yet be
associated with a single hadron, as such it is part of the deconfined regime of QCD.
With the system further cooling however the “mixed phase” is reached, theoretically it
is unclear what the degrees of freedom are in this region.
A simple picture however is to think of it as a “transition region” between the decon-
fined and confined regimes of QCD. In this case heavy hadrons begin to drop out of the
QGP as their production threshold is reached and a phase described both by the QGP
and hadrons emerges. Note here it could be shown using lattice QCD that charmonium
particles exist already at temperatures T ≃ (225−255)MeV [22] in support of the notion
of heavy hadrons coexisting with the QGP phase.
As the system further cools it reaches a critical temperature Tc and the QGP changes
into a confined hot hadron gas now containing also the light hadrons and especially pi-
ons. Studying the phase diagram in QCD in this region recent calculations using lattice
QCD found the transition to be a rapid crossover and the critical temperature to be
Tc ≃ (150− 170)MeV [21] at vanishing baryon density.
At temperatures below Tc the hadron gas first remains in an interacting state until the
system reaches the freeze-out temperature Tf ≃ 120MeV, see e.g. [15, 20], where they
stop interacting, the hadrons freeze-out and are eventually recorded by the detector.

Another powerful tool to understanding HIC-events is the study of spectral functions,
see e.g. the recent review [23]. As an example consider the QCD electromagnetic current
with vector transformation behavior at vanishing temperature T = 0:

jemµ (x) =
∑

f

Qf q̄
f (τ, ~x)γµq

f (τ, ~x) =
2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs... (1.9)

Note the correlation function of this current quantifies the polarization of the vacuum
by virtual particles induced by the passage of a photon [24]:

∫
d4x 〈jµ(x)jν(0)〉 eiq·x = (qµqν − q2gµν)Π(q2) . (1.10)
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Chapter 1 Introduction and Motivation

Figure 1.4: The spectral density from the cross section of the production of hadrons in
e+e−-annihilations from experiments (top) and the vacuum polarization as
computed in theory (bottom). Extracting the spectral function from the latter
is a difficult problem. Note the energy scales in the plots are not the same.
Figure taken from [23]

The spectral representation of the vacuum polarization in the Euclidean world of lattice
calculations may be shown to read [25]:

Π(0)−Π(q2) = q2
∫ ∞

0
ds

ρ(E)

E(E + q2)
, (1.11)

while via the optical theorem the spectral density ρ(E) is directly accessible to experi-
ments:

ρ(E) =
E

4π2α(E)
σtot(e

+e− → hadrons) :=
α(E)

3π2
Rhad(E) ≃ α(E)

3π2
R(E) . (1.12)

As such the spectral density is simultaneously connected to theory as well as experiment.
In Fig. 1.4 we show the spectral density ρ(s) (top) from experiments [3] and the vacuum
polarization Π(0)−Π(q2) := Π(Q2) (bottom) from lattice QCD [25] where Q2 = E2 = s.
Clearly the rich structure of the spectral density can be seen. Also the first problems
in case of the theory connection are revealed, as the Euclidean calculation leads to an
almost featureless result. Such issues pose major problems for theoretical calculations
especially from Euclidean lattice methods and tackling them is at the core of this thesis.
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1.2 Heavy-Ion Collisions

1.2.1 Production of Photons and Dileptons in Heavy-Ion Collisions

Figure 1.5: Evolution of a HIC event and
dilepton production [26].

From the above example of the QCD
electromagnetic current let us turn to the
main topic of this work. The QED cou-
pling constant is small, as mentioned be-
fore αem = 1/137, and thus photons and
dileptons (i.e. lepton pairs) produced in a
HIC-event essentially pass through to the
detector without further interactions.
However photons and dileptons are pro-
duced at every stage of the space-time evo-
lution of the HIC-event (see sketch). They
are produced from the first stage, as the
nuclei pass through another, through the
quark gluon plasma phase until the hadrons
freeze out, decouple and also move freely
to the detector. Consequently the produc-
tion rate of photons and dileptons carries
the full information of the full evolution
of the collision directly to the experimenter.

From the point of theory we are thus interested in the emission of on-shell photons
from the transition of some initial to final state and the similar process of a virtual
photon decaying into dileptons [27].

Figure 1.6: a.) Emission of an on-shell pho-
ton. b.) Emission of a virtual
photon decaying into dileptons.

To get an idea of these transition am-
plitudes and consequently the physics one
invokes the vector dominance model [27]
and the according processes for photon
and dilepton emission are sketched in a.)
and b.). This model implies that all elec-
tromagnetic interactions of hadrons are de-
scribed by the intermediate coupling of
hadrons to vector mesons. As such the
hadronic initial |i〉-state first forms a vec-
tor meson that decays and subsequently
emits the photons and lepton pairs. The
central observable is then the vector chan-
nel and consequently the vector spectral
function ρV (ω, T, ~p).

The production rate of real photons is defined as the number of photons per unit time
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Chapter 1 Introduction and Motivation

and volume [28,29]:

Rγ =
1

Ω

∫
d3p

2ω(2π)3
1

Z(T )

∑

f,i,λ

e−Ei/T |M (λ)
fi |2 , (1.13)

where Ω is the space-time volume where the interaction takes place, the factor 1/Z(T )
must be included as the production rate is given by a thermal expectation value. Note

here M
(λ)
fi is the transition amplitude from the hadronic initial state |i〉 to the final

hadronic state 〈f | and a single real photon with momentum pµ = (ω = |p|, ~p), polariza-
tion λ and the polarization vector ǫ

(λ)
µ

M
(λ)
fi = −ie

∫
d4x eipxǫ(λ)µ (p)〈f |jemµ |i 〉 . (1.14)

Similar expressions to Eq. 1.13 and Eq. 1.14 can be derived also in the case of dilepton
production [28,29], this time however the process is that of the hadronic initial state |i〉
to the final hadronic state 〈f | plus a pair of leptons:

Rl+l− =
1

Ω

∫
d3p1

2E1(2π)3

∫
d3p2

2E2(2π)3
1

Z(T )

∑

f,i

e−Ei/T |Mfi|2 , (1.15)

with the amplitude:

Mfi(p1, p2) = −i
e2

p2
[ū(p1)γµv(p2)]

∫
d4x eipx〈f |jemµ |i 〉 . (1.16)

here eū(p1)γµv(p2) is the electromagnetic current of the outgoing lepton pair.

Using direct relations between the amplitudes and the spectral functions, which we
will derive in a later chapter, the photon and dilepton rates may be written as [32, 33]:

ω
dRγ

d3p
= Cem

αem

4π2
ρT (ω = |~p|, T )
exp[ω/T ]− 1

(1.17)

and, introducing the total four momentum of the lepton pair ~p = p1 + p2, [32–35]

dRl+l−

dωd3p
= Cem

α2
em

6π3
2ρT (ω, ~p, T ) + ρL(ω, ~p, T )

(ω2 − ~p2)(exp[ω/T ]− 1)
, (1.18)

where Cem =
∑

f Q
2
f and ρT,L denotes the spectral function polarized in transversal

and longitudinal direction compared to the momentum ~p. In the limit of vanishing
momentum one may neglect the polarization and write

2ρT (ω, ~p, T ) + ρL(ω, ~p, T )
~p→0−−−→ ρii(ω) , (1.19)

subsequently the above relations reduce to [28–35]:

ω
dRγ

d3p

~p→0−−−→ 3αem

2π2
σ(T )T (1.20)
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and

dRl+l−

dωd3p

~p→0−−−→ Cem
α2
em

6π3
ρii(ω, T )

ω2(exp[ω/T ]− 1)
(1.21)

with the electrical conductivity:

σ(T ) =
Cem

6
lim
ω→0

ρii(ω)

ω
(1.22)

The important consequence of these relations is that the more detailed the knowledge
of the vector spectral function is, the better is our understanding of the experimental
data. This is our prime motivation in this thesis given that the experimental data is in
fact quite puzzling as we will illuminate in the next section. Note however that we will
restrict ourself to dilepton production in the following.

1.2.2 Status of Experimental Dilepton Production Data

Computing the production rate of dileptons in heavy-ion collisions via the spectral func-
tion is not the only possibility to handle the subject. One may also use approaches
based on perturbative computation and approximation. Indeed these more standard
methods have been able to describe most of the processes that contribute to the dilep-
ton rate [27–31].

Figure 1.7: Sketch of the dilepton spectrum,
taken from [28].

As such the production of lepton pairs
from the early initial hard collisions be-
tween the partons of the colliding nuclei
constitutes the best known part of the dilep-
ton spectrum as asymptotic freedom guar-
antees the validity of perturbative meth-
ods, these processes are part of the so called
Drell-Yan mechanism [36] (far right in the
sketch).
The invariant-mass spectrum of dileptons
contains also the peaks corresponding to
two-body decays of various mesons, as e.g.
ρ0 → e+e−, these peaks appear above the
background three-body Dalitz decays [37]
(far left in the sketch). Note the positions
and widths of these peaks reveal informa-
tion on the hadron properties at the later stages of the HIC-event. The main goal of
this thesis however is to quantify the contribution of the QGP in the low to intermediate
mass region [27].

In practice one tries to understand the production rate of dileptons from HIC ex-
periments by comparing it to a so called hadron cocktail. As such the hadron cocktail

11



Chapter 1 Introduction and Motivation

)2 (GeV/ceem
0 0.5 1 1.5 2 2.5 3 3.5 4

D
at

a/
C

oc
kt

ai
l 

0

0.5

1

1.5

/G
eV

) 
IN

 P
H

E
N

IX
 A

C
C

E
P

T
A

N
C

E
2

 (
c

ee
dN

/d
m

-910

-810

-710

-610

-510

-410

-310  = 200 GeVsp+p  eeγ → 0π

eeγ → η

eeγ →’ η
 ee→ ρ

ee0π ee & → ω
eeη ee & → φ

 ee→ ψJ/

 ee→’ ψ

 ee (PYTHIA)→ cc

 ee (PYTHIA)→ bb

 ee (PYTHIA)→DY 

sum

  DATA

|y| < 0.35
 > 0.2 GeV/ce

T
p

/G
eV

) 
IN

 P
H

E
N

IX
 A

C
C

E
P

T
A

N
C

E
2

 (
c

ee
dN

/d
m

-910

-810

-710

-610

-510

-410

-310

/G
eV

) 
IN

 P
H

E
N

IX
 A

C
C

E
P

T
A

N
C

E
2

 (
c

ee
dN

/d
m

-910

-810

-710

-610

-510

-410

-310

/G
eV

) 
IN

 P
H

E
N

IX
 A

C
C

E
P

T
A

N
C

E
2

 (
c

ee
dN

/d
m

-910

-810

-710

-610

-510

-410

-310

/G
eV

) 
IN

 P
H

E
N

IX
 A

C
C

E
P

T
A

N
C

E
2

 (
c

ee
dN

/d
m

-710

-610

-510

-410

-310

-210

-110  = 200 GeVNNsmin. bias Au+Au  
eeγ → 0π

eeγ → η
eeγ →’ η

 ee→ ρ

ee0π ee & → ω
eeη ee & → φ

 ee→ ψJ/
 ee→’ ψ
 ee (PYTHIA)→ cc

sum
 ee (random correlation)→ cc
 ee (PYTHIA)→ bb
 ee (PYTHIA)→DY 

  DATA

|y| < 0.35

 > 0.2 GeV/ce
T

p

)2 (GeV/ceem
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
at

a/
C

oc
kt

ai
l 

-110

1

10

Figure 1.8: Left: The experimental results of the dilepton spectrum from proton-proton
collisions as measured by PHENIX@RHIC. At the top of the figure the dilep-
ton rate over energy and the components of the hadron cocktail are shown,
while at the bottom the ratio of the data to hadron cocktail is given. Right:
The same as left except with gold-gold collisions. The hadron cocktail is un-
able to reproduce the measured data in the low-to-intermediate mass regime.
Figures provided by [38].

combines everything that is known of the processes that might contribute to the dilep-
ton rate. Whereby the information encoded in the hadron cocktail may be perturbative,
non-perturbative and even experimental. On the left of Fig. 1.8 the current dilepton rate
data of proton-proton collisions over invariant-mass retrieved by the PHENIX experi-
ment located at RHIC is shown [38]. In the bottom of the figure the data is once more
given as a ratio with the hadron cocktail. Clearly the provided model coincides with the
actual data very well. This situation however changes drastically in the case of gold-gold
collisions [38]. The corresponding data on the right of Fig. 1.8 show clear deviation in
the low-to-intermediate-mass region. As noted above this is exactly the region where
one expects the largest contribution from QGP effects.

Lattice QCD is an ideal tool to study the nature of the quark gluon plasma, and
using it we will explore the non-perturbatively dominated intermediate-mass region of
the dilepton rate in the deconfined phase of QCD. With the work presented in this thesis
we hope to give hints as to clarify the situation encountered in the gold-gold collisions
explained above. Even though lattice QCD is the only fully non-perturbative method
available, it is not suited to calculate the spectral function directly and tackling the
problems that this fact entails constitutes the bulk of the work, which will be presented
in the following.
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Chapter 2

Foundations of Lattice Quantum Field
Theory

The following work revolves around asking what happens to a system of elementary
particles described by a quantum field theory, in our case quantum chromodynamics, if
it is heated [29–31].
Clearly, given the Lagrangian density, as e.g. in Eq. 1.3, this requires computing the
grand canonical partition function Z(T, V, ...) generically written as:

Z = Tr[e−βH ] =
∑

n

〈n|e−βH |n〉 , (2.1)

where the Hamiltonian is derived from the Lagrangian density via Legendre transform
and β = 1/T is connected to the temperature of the system.

The Hamiltonian form of the partition function of Eq. 2.1 may be replaced by an
equivalent form in terms of a Euclidean path integral. Recall the standard derivation of
the path integral yields:

∑

φi

〈φt|e−iHt|φ0〉 =
∫

dφ exp[i

∫ t

0
dt

∫
d3xL(φ)] . (2.2)

To see that it is now possible to obtain an equivalent form for the partition function
given above, introduce imaginary time τ = it and identify it with the inverse temperature
direction. The above path integral then becomes

∑

φi

〈φβ |eβH |φ0〉 =
∫
dφ exp[−

∫ β

0
dτ

∫
d3xLE(φ)] . (2.3)

To respect the trace operation in Eq. 2.1 requires the boundary conditions of the path
integral to be fixed appropriately [29–31, 39]. For bosons and fermions these can be
shown to be:

φ(τ = 1/T ) = φ(0) for bosonic fields

ψ(τ = 1/T ) = −ψ(0) for fermionic fields . (2.4)

In principle the temporal direction in the Euclidean path integral at finite temperature is
compactified by the periodic boundary conditions and kept finite due to the integration
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Chapter 2 Foundations of Lattice Quantum Field Theory

from 0 to β. In effect finite temperature field theory lives on a torus whose radius in
time direction defines the inverse temperature via β = 1/T . Subsequently the vacuum
theory is retrieved in the limit of infinite radius in the temporal direction limβ→∞.

In total the partition function formulated as a Euclidean path integral reads:

Z =
∑

n

〈n|e−βH(φ)|n〉 =
∫

periodic
dφ exp[−

∫ β

0
dτ

∫
d3xLE(φ)]. (2.5)

Note from here onwards, if not stated otherwise, all expressions are assumed in Euclidean
space-time.

2.1 Lattice Quantum Field Theory

One possibility to rigorously define quantum field theory is to discretize it [40–47]. This
is achieved by introducing a hypercubic, Euclidean lattice as space-time background.

Figure 2.1: Lattice discretization of finite
temperature field theory in (1 +
1)-Dimensions, due to the peri-
odic boundary conditions space-
time is a torus.

Space now becomes a finite volume∗ and
the theory is effectively “put into a box”
while the finite number of points in each
direction induces a crystalline structure.
The fourth Euclidean direction is then as-
sociated with the imaginary time direc-
tion introduced above. Demanding also
periodic boundary conditions the system
temperature can be controlled by the num-
ber of points in the x4 = τ direction.

V = (aNσ)
3, β = T−1 = aNτ . (2.6)

In addition to introducing a lattice the
corresponding lattice spacing a is defined
as the distance between neighboring sites. It is in essence the only dimensionful unit of
the theory with [a] = length = 1/energy, as such it sets the scale of the lattice theory
and is consequently an important property for connecting to physics.

After replacing the continuous space-time of continuum theory with a hypercubic
Euclidean lattice†, the spinor fields Ψ and Ψ are defined on each of the N3

σNτ lattice
sites ni. While the gauge fields Aµ are defined on the links connecting two neighboring
sites in order to maintain gauge invariance. This is achieved by a change of variables,

∗In a numerical setup, as will be done here. This is not mandatory using analytical methods.
†In the following all continuum entities will be distinguished by a hat, e.g ’Ψ̂’
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2.1 Lattice Quantum Field Theory

replacing the individual gauge fields Aµ by a link matrix Uij between two neighboring
lattice sites ni and nj :

Û(xi, xj) = exp[−ig
∫ xj

xi

dx′µÂµ(x
′)]

l.o.
=⇒ U(ni, nj) = exp[−ig(ni − nj)µAµ(

ni − nj
2

)] . (2.7)

On the lattice the partial derivative of a fermion field Ψ(n) may be written as:

∂Ψ(n) = (Ψ(n+ a)−Ψ(n− a))/2a+O(a2) , (2.8)

whereby the discretization scheme is not unique and different discretizations may be
found and utilized [40–47]. Using these two relations it is straight forward to find the
discretized covariant derivative:

DΨ̂(x) = (∂µ + igAµ(x))Ψ(x)

⇒ DΨ(n) = (U(n, n+ aµ)Ψ(n+ aµ)− U(n, n− aµ)Ψ(n− aµ))/2a+O(a2) (2.9)

= ( s s- (n, n+ aµ)Ψ(n+ aµ)− s s� (n, n− aµ)Ψ(n− aµ))/2a+O(a2)

On a Euclidean lattice there is no principal distinction between space and time di-
rections, as long as we impose the same boundary conditions. This means that lattice
theories are effectively done at a finite temperature, which in turn is small if Nσ < Nτ .
To study high temperature systems however this implies the spatial extent must be
larger than that of the temporal direction Nσ > Nτ .
Additionally it should be emphasized that what the quantum fields on the lattice “feel”
as a temperature is in fact an effect of the boundary conditions and the finite size of
the temporal direction. Naturally these finite size effects are also present in the spatial
directions, however here they are unwanted. This entails the spatial direction must be
large enough for these effects to be negligible in the calculation.
Together the necessity that Nσ = large and Nσ > Nτ for high temperature systems,
while at the same time requiring Nτ = large in order to be able to reduce the lattice
spacing a, makes calculations in this regime computationally highly demanding.

Given the similarities of the vacuum and finite temperature path integrals it is appro-
priate to emphasize the fundamental difference of the two that becomes evident in the
Fourier expansion of bosonic (Aµ(τ, ~x)) and fermionic (Ψ(τ, ~x)) fields on a finite volume
V = L3:

Aµ(τ, ~x) = Cb ·
∑

n

∑

~p

exp[i(ωnτ + ~p~x)]Aµ,n(p), ωn = 2nπT, (2.10)

Ψ(τ, ~x) = Cf ·
∑

n

∑

~p

exp[i(ωnτ + ~p~x)]ψn(p), ωn = (2n+ 1)πT, (2.11)

here Cb and Cf are factors that ensure the Fourier modes or Matsubara frequencies
are dimensionless. The momenta are also discretized and their allowed values are
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Chapter 2 Foundations of Lattice Quantum Field Theory

pi = (2πki)/L. Notice that although the momenta become continuous in the so called
thermodynamic limit:

1

V

∑

n

V→∞−→
∫

d3p

(2π)3
, (2.12)

the Matsubara frequencies remain discrete, as they are connected to the time direction.
This leads to modified Feynman rules in the finite temperature theory and the four
momentum integrals in vacuum theory must be replaced by a three momentum integral
and a Matsubara sum:

∫
d4p

(2π)4
−→ T

∑

n

∫
d3p

(2π)3
. (2.13)

At the same time the regularizing capabilities of lattice theory become clear as the dis-
cretized momenta are limited to values between pmin = (2π)/aN and pmax = (2π)/a,
as such a cut-off scale proportional to the lattice spacing is introduced, all momentum
integrations are rendered finite and the theory is thus regularized.

Concluding this section and before moving to lattice QCD note that formally a con-
tinuum quantum field theory may be translated into a lattice quantum field theory using
the following dictionary:

∫ β

0
dτ

∫
d3x ←→ a4

∑

n∫
d4p

(2π)4
←→ T

∑

n

∫
d3p

(2π)3

∂Ψ̂(x) ←→ ∂Ψ(n) = (Ψ(n+ a)−Ψ(n− a))/2a+O(a2),

Û(xi, xj) ←→ U(ni, nj) = exp[−ig(ni − nj)µAµ(
ni − nj

2
)]

DΨ̂(x) ←→ DΨ(n) = (U(n, n+ a)Ψ(n+ a)− U(n, n− a)Ψ(n− a))/2a+O(a2)
Ψ̂(x) ←→ Ψ(n) = a3/2Ψ̂(an)

Âµ(x) ←→ Aµ(n) = aÂµ(an)

p̂i ←→ pi = 2πki/(aNσ)

xµ ←→ nµ = xµ/a

m̂ ←→ m = m̂a (2.14)

2.2 Lattice Quantum Chromodynamics

After having defined the tools needed to construct a lattice finite temperature quantum
field theory let us now turn to discretizing the strong interaction and its underlying
dynamics.
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2.2 Lattice Quantum Chromodynamics

2.2.1 SU(3) Pure Yang-Mills Theory

As was shown in Chp. 1.1 the gauge field dynamics of T = 0, vacuum QCD are described
by SU(3) Yang-Mills theory:

ŜG =
1

2

∫
d4xTr[F̂µνF̂

µν ] =
1

4

∫
d4xF̂ c

µνF̂
µν
c , (2.15)

where the field strength tensor is defined as the commutator of two covariant derivatives:

F̂µν(x) =
i

g
[D̂µ, D̂ν ] = ∂µÂν(x)− ∂νÂµ(x) + ig[Âµ(x), Âν(x)] . (2.16)

v -

6
�

?

x dx

dy
v v

v v

-

6
�

?

n n+ aµ

n+ aν

Figure 2.2: Infinitesimal parallelogram of
continuum theory (left) and the
elementary plaquette on the lat-
tice (right).

This object can be found to correspond
to the curvature tensor of general relativ-
ity [43] and its geometrical meaning can
be seen from a closed path of a “contin-
uum link” (Eq. 2.7) or parallel transporter
around an infinitesimal parallelogram spanned
by dx and dy:

Û(Cxx) = 1− F̂µν(x)dx
µdyν . (2.17)

In analogy to this relation define the
shortest length loop or plaquette on the
lattice:

Uµν(n) = Uµ(n)Uν(n+ µ)U †
µ(n+ ν)U †

ν (n) , (2.18)

where we have introduced the shorthand Uµ(n) = U(n, n + aµ). Taking the trace over
all colors Nc = 3 this object is gauge invariant, as

Uµ(n) −→ Λ(n)Uµ(n)Λ
−1(n+ aµ), where: Λ ∈ SU(3)

Pµν = Tr[Uµν(n)] −→ Pµν (2.19)

Exploiting the Baker-Hausdorff-formula to combine the links and expanding around the
center of the plaquette, one finds:

Uµν(n) = exp [ iga2
[
∂µAν − ∂νAµ + ig [Aµ, Aν ]

]
+O(ga3)

= 1+iga2Fµν −
g2a4

2
FµνFµν +O(ga3) +O(g2a5) (2.20)

Taking the trace over all colors the Wilson gauge action is obtained:

SG = β
∑

n,µ<ν

( 1

Nc
Re Tr[1− Uµν(n)]

)
, where β = 2Nc/g

2. (2.21)
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Chapter 2 Foundations of Lattice Quantum Field Theory

It is then straight forward to obtain the continuum SU(3) Yang-Mills action:

SG =
a4

4

[ ∑

n,µ<ν

Tr[Fµν(n)Fµν(n)] +O(a2) +O(g2a2)
]

a→0−→ 1

4

∫
d4xTr[F̂ c

µνF̂
µν
c ] . (2.22)

With the Wilson gauge action Eq. 2.21 the pure glue QCD partition function becomes:

Z(V, T ) =
∫ ∏

n,µ

dUµ exp[−SG(U)] =

∫
[dUµ] exp[−SG(U)] . (2.23)

This expression can be easily modified to obtain finite temperature quantum field theory
as outlined in Chp. 2. From a mathematical standpoint the integrals in Eq. 2.23 are now
well defined and furthermore amiable to numerical calculation. However the number of
integration variables is very large, for instance on a lattice of size N3

σNτ = 164 there are
∼ O(105) points each possessing another factor four degrees of freedom due to the link
directions

∏
n,µ dUµ(n = N3

σNτ , µ = 4). Consequently the only possibility to solve for
this large number of degrees of freedom is to use Monte Carlo integration schemes [41–47].

Trivially one would then randomly generate field configurations and integrate over
them for a very large number of statistics, but note that only a very few configurations
are actually statistically significant as exp[−SG(U)] << 1 for most possible field con-
figurations. Consequently one requires importance sampling of the field configuration
generation process given the weight We[U ] = exp[−SG(U)]. Without going into details
here in practice configurations are generated out of one another as a sequence of updat-
ing processes and it can be shown that the mentioned importance sampling is part of
the detailed balance condition of a Markov chain.
The Wilson gauge action Eq. 2.21 is ideally suited for such an updating process as it
only contains next neighbor interactions, is thus local and is additionally of a bosonic
nature, which entails standard integrals.

The SU(3) Yang-Mills or pure glue QCD partition function already incorporates a large
amount of non-trivial physics. As such a theory in the limit of infinitely heavy quarks
can be shown to be describable by pure Yang-Mills with Wilson loops as observables.
Additionally the theory possesses a rich phase structure, which can be explored using
exact order parameters like the Polyakov loop. As a consequence of the self coupling
of gluons the theory contains a gluonic spectrum, with glueballs as possibly observable
quantities. The existence of a mass gap in this spectrum plays a major part in why the
world is as we literally see it.

2.2.2 Quantum Chromodynamics

To arrive at full QCD and thus the full theory of strong interactions the quark sector
must be added to the gluon action. For two flavors of light quarks q the vacuum fermionic

18



2.2 Lattice Quantum Chromodynamics

action of QCD is given by:

ŜF =

∫
d4x

∑

q=u,d

Ψ̂
α

q (x)[(∂µ + igÂµ)γ
µ
αβ + m̂qδαβ ]Ψ̂

β
q (x)

=

∫
d4x

∑

q=u,d

Ψ̂
α

q (x)[D̂µγ
µ
αβ + m̂qδ

αβ ]Ψ̂β
q (x) , (2.24)

where α, β denote the Dirac spinor indexes. This expression is easily translated to
lattice field theory [40–47] using the dictionary of Eq. 2.14 and defining the fermion
matrix M = ( 6D +m) the lattice quark Lagrangian becomes:

LF =
∑

q=u,d

Ψq(n)[γµ
Uµ(n)Ψq(n+ µ)− U−µ(n)Ψq(n− µ)

2a
+ m̂qΨq(n)]

=
∑

q=u,d

Ψq(n)M [U ]Ψq(n) (2.25)

Due to the bilinear nature of Eq. 2.24 and Eq. 2.25 it is possible to integrate out the
fermion fields completely. To see this consider a general integration over Grassman
valued fields:

∫
dη1dη1...dηNdηN exp[−

∑

ij

ηiMijηj ] = det[M ] .

This is exactly the form of the lattice fermion action and the integration over the fields
dΨ and dΨ may be carried out directly. Thus the full QCD partition function may be
written as:

ZQCD(U,Ψ,Ψ) =

∫
dUdΨdΨexp[−(SF (U,Ψ,Ψ) + SG(U))]

⇒ZQCD(U) =

∫
dU det[M [U ]] exp[−SG(U)] . (2.26)

Numerically speaking the price one has to pay is the calculation of the intrinsically
non-local determinant of the fermion matrix. Fortunately having to handle the latter is
circumvented by realizing that bosonically:

∫
dz1dz

∗
1 ...dzNdz

∗
N exp[−

∑

ij

z∗iMijzj ] = 1/ det[M ]

⇒ det[M [U ]] = (1/ det[M−1[U ]]) , (2.27)

so by using this “pseudofermion-trick” [41–45] all variables become bosonic and thus
suited for numerical calculation.
However for the Monte Carlo methods described above to work the Boltzmann weight
in the partition function must be positive and real:

det[M [U ]] exp[−SG(U)]
!−→ positiv definite (2.28)
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Chapter 2 Foundations of Lattice Quantum Field Theory

At vanishing chemical potential µ = 0 this property can be fulfilled exploiting γ5-
hermicity of the Dirac operator:

( 6D +m)† = γ5( 6D +m)γ5

det[M ]† = det[γ5Mγ5] = det[M ]

det[M ]2 = det[M ] det[M ]† = det[MM †]

MM † = hermitian −→ positiv definite. (2.29)

This entails that the Boltzmann weight is positive definite and Monte Carlo methods
may be successfully applied, if the number of quark flavors is doubled, i.e. a single flavor
theory cannot be calculated directly.

2.2.3 Quenched QCD

As mentioned the determinant is a non-local object, furthermore the fermion matrix is a
matrix with N ×N entries where N = N3

σ ×Nτ for every spinor and flavor index. For a
numerical implementation this is an enormous number of d.o.f’s and requires an equally
enormous amount of computing capacity. This is the reason calculations are often done
in what is known as the quenched approximation [41–47].

The flavor of the quenched approximation can be appreciated when parametrically
rewriting the fermion matrix M [U ] into [43, 44]:

M [U ] = 1− κD[U ] with: κ ∼ 1/am̂, (2.30)

where κ is the so called hopping parameter. Note the details of Eq. 2.30 depend on the
chosen lattice discretization and will be shown below, still the fermion matrix can be
recast in this form for all discretization schemes.

The immediate advantage of this form can be seen by sending κ→ 0:

lim
κ→0

M [U ] = 1 ⇒ det[M [U ]] = 1 , (2.31)

in this limit the numerical updating procedure can thus be restricted to updating the
pure gauge action only.
From a numerical standpoint this is an absolutely enormous simplification, as the fermion
determinant may be neglected in the updating process.
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Figure 2.3: Vacuum polarization effects are
excluded in quenched QCD.

Physically speaking as κ ∼ 1/am the
situation is equivalent to am→∞ and as
a consequence only infinitely heavy static
quarks live in the Dirac sea.
Another angle on this situation is realizing
that in perturbation theory the fermion
determinant is given by the sum of Feyn-
man diagrams consisting of virtual fermion
loops and an arbitrary number of external
gluons. It is thus intimately connected to
vacuum polarization effects.
The quenched approximation then entails
these loops are explicitly removed from
the theory. In principle this is an uncon-
trollable systematic error in lattice calculations employing this approximation. Never-
theless the effect of neglecting these vacuum polarization effects is small and less than
< 5 − 10% in many interesting observables, one of these being the light hadron spec-
trum [48].
The statement that the virtual quark loops have only a little effect on certain observables
can also be argued phenomenologically by e.g. the OZI rule, which states that a QCD
process whose Feynman diagram can be split into two parts by cutting only internal
gluon lines is suppressed.

2.3 Fermion Discretization in Lattice QCD

After these more general statements on lattice quantum field theories and different flavors
of QCD we now turn to the details of discretizing the fermion action [40–47].
Recall the naively discretized fermion action Eq. 2.25 obtained via the lattice dictionary
Eq. 2.14:

SF = a4
∑

n

∑

q=u,d

Ψq(n)M [U ]Ψq(n)

= a4
∑

n,q

Ψq(n)
[∑

µ

γµ
Uµ(n)Ψ(n+ µ)− U−µ(n)Ψ(n− µ)

2a
+ m̂qΨq(n)

]
. (2.32)

The free fermion propagator is then given by the inverse Fourier transform of the fermion
matrix where Uµ(n) = 1:

S̃F = a4
∑

n

∑

p,p′

( 1

a4N4

)2
Ψq(p)e

−i(p−p′)n
[∑

µ

γµ
eipµa − e−ip′µa

2a
+ m̂

]
Ψq(p

′)

=
1

a4N4

∑

p

Ψq(p)
[∑

µ

γµ
i sin(apµ)

a
+ m̂

]

︸ ︷︷ ︸
G(p)

Ψq(p) , (2.33)
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using the following general relation for the inverse of linear combinations of γ-matrices:

(
a1+ i

∑

µ

γµbµ

)−1
=
a1− i∑µ γµbµ

a2 +
∑

µ b
2
µ

, (2.34)

the free fermion lattice propagator becomes:

G−1(p) =
m̂1− i∑µ γµpµ

m̂2 +
∑

µ p
2
µ

, where: pµ =
sin(apµ)

a
. (2.35)

pµ

sin(apµ)/a

1/a

π/aπ/a

Figure 2.4: Doublers appear at the corners
of the Brillouin zone.

The poles of the propagator correspond
to the fermion species described by the
Dirac operator, naturally in the contin-
uum this would be a single species. How-
ever it is easy to find that the pole struc-
ture of Eq. 2.35 is much more complex as
the sin(pµa)-function has additional zeros
at pµ = π/a. Thus instead of a single
Dirac fermion we find 16 doublers actu-
ally given by:

sinh(Ea)

a
= ±

√√√√m2 +

3∑

k=1

p2k (2.36)

The existence of these fermion doubler species follows from very general assumptions
on the fermion matrix [43, 49], as such let G(p) be the inverse fermion propagator of a
theory, then assume:

• Invariance under the cubic group:

G(p) = γµG
†(pν(1− 2δµν))γµ , where: µ = 1, 2, 3, 4 (2.37)

• Chiral invariance (m = 0):

G(p) = −γ5G(p)γ5  {γ5, G(p)} = 0 (2.38)

• Locality:

d

dp
G(p) = continuous . (2.39)

Taken together it follows that:

G(p) = −G(−p) . (2.40)
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As the lattice theory is defined with periodic or anti periodic boundary conditions, G(p)
must be a periodic function with period pµ → pµ+2π. Then Eq. 2.40 implies G(p) must
vanish for every pµ = 0,±π. Hence doublers enter the theory [43, 49].

For the naive discretization described above this manifests itself as the so called spec-
trum doubling symmetry [43, 49] of the action:

Ψ′
x = e−ixπhMhΨx and Ψ

′
x = eixπhMhΨx , (2.41)

where πh = {π, if: ph = π, h = 1, 2, 3, 4 || 0, else} and Mh =
∏

µ∈h iγ5γµ, i.e. it is
only defined on the corners of the Brillouin zone. In momentum space its effect is the
exchange of the latter:

Ψ′
p =MhΨp+πh

and Ψ
′
p = Ψp+πh

M †
h . (2.42)

Note projecting onto the left and right handed chirality states via PL,R respectively
one may write:

G(p) ∼ i
∑

µ

γµ(PL + PR), (2.43)

subsequently exploiting the spectrum doubling symmetry and the above equation it can
be shown that the spectrum doubling transformation changes the chirality of a fermion
for h =odd and preserves it for h =even, due to the relation:

M †
hiγµ(−1)δµ,hPLMh = iγµPR . (2.44)

Furthermore topological arguments provide the possibility to assign the index +1 to the
chirality preserving and −1 to chirality transforming case. For the hypertorus defined
by the Euclidean lattice the Poincaré-Hopf theorem implies the sum of all indices must
be equal to zero [49].

Thus under the general assumptions stated above a lattice theory always contains as
many left- as right-handed fermions in the propagator and a total of nd = 15 additional
fermion species located at the corners of the Brillouin zone.
In principle the famous Nielsen-Ninomya No-Go theorem [49] states that this result holds
unless one gives up part of the above assumptions.

2.3.1 Wilson-Clover Fermions

The philosophy of the Wilson fermion formulation is to break the spectrum doubling
symmetry explicitly with an additional chiral symmetry breaking term in the action [40].
It is clear that such a term must respect the symmetries of the action with the exception
of the spectrum doubling symmetry and vanish in the continuum limit a → 0 in order
to reproduce the continuum action.
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The simplest choice for a term respecting gauge invariance is proportional to a second
order derivative in the fermion fields:

S∂2 = a4
∑

n

r ·Ψ(n)
∑

µ

Ψ(n+ µ) + Ψ(n− µ)− 2Ψ(n)

2a
. (2.45)

To show this term indeed vanishes in the continuum limit perform a Taylor expansion:

S∂2 = a4
∑

n

r

2a
Ψ(n)

∑

µ

[
Ψ(n) + a∂µΨ(n) +

a2

2
∂2µΨ(n) + ...

+Ψ(n)− a∂µΨ(n) +
a2

2
∂2µΨ(n) + ...− 2Ψ(n)

]

= a4
∑

n

[r
2
a
∑

µ

Ψ(n)∂2µΨ(n) +O(a3)
]

a→0−→ 0 . (2.46)

Subsequently a term of this form indeed satisfies the demands of gauge invariance and
vanishing continuum limit.
The crucial question is now whether or not this term lifts the spectrum doubling sym-
metry. To see this consider its inverse Fourier transform as in Eq. 2.33:

S̃∂2 = a4
∑

n

∑

q,q′

( 1

a4N4

)2
Ψ(p)e−i(p−p′)n

[∑

µ

r · e
ipµa + e−ip′µa − 2

2a

]
Ψ(p)

=
1

a4N4

∑

p

Ψ(p)
[∑

µ

r · 2 cos(apµ)− 2

2a

]

︸ ︷︷ ︸
G(p)

Ψ(p) . (2.47)

As before the key is to look at the pole structure of Eq. 2.47, here one finds:

pµa = 0 ⇒ G(pµa) = 0 ,

pµa = π ⇒ G(pµa) ∼ −
2r

a
. (2.48)

This means subtracting S∂2 from the naive fermion action SF indeed removes the dou-
blers from the theory as they are given a mass proportional to the inverse lattice spacing
E ∼ 1/a, i.e. the fermion at pµa = 0 remains unmodified while the masses of the dou-
blers located at pµa = π are pushed up towards the lattice cut-off and thus effectively
removed from the theory.
Note the additional free parameter r controls the strength of the doubling removing
mass shift, as such to avoid “near doubling” in the propagator a sensible choice is to set
r = 1 and we will do so in this thesis.
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The fermion discretization based on the above results is the Wilson fermion action:

SW = SF − S∂2

= a4
∑

n

[∑

µ

Ψ(n)γµ∂µΨ(n) +mΨ(n)Ψ(n)− r

2
a
∑

µ

Ψ(n)∂2µΨ(n)
]

= a4
∑

n

Ψ(n)
[
mΨ(n)− 1

2a

∑

µ

[
(r − γµ)Ψ(n+ µ) + (r + γµ)Ψ(n− µ)− 2rΨ(n)

]]

= a4
∑

n

Ψ(n)
[
(m+

4r

a
)Ψ(n)− 1

2a

∑

µ

[
(r − γµ)Ψ(n+ µ) + (r + γµ)Ψ(n− µ)

]]

(2.49)

Transforming the fermion fields according to Ψ′ =
√
m+ 4r/aΨ the action Eq. 2.49 may

be rewritten as:

SW = a4
∑

n

[
Ψ

′
(n)Ψ′(n)− 1

2ma+ 8r

∑

µ

Ψ
′
(n)

[
(r − γµ)Ψ′(n+ µ) + (r + γµ)Ψ

′(n− µ)
]]

= a4
∑

n

[
Ψ

′
(n)Ψ′(n)− κ

∑

µ

Ψ
′
(n)

[
(r − γµ)Ψ′(n+ µ) + (r + γµ)Ψ

′(n− µ)
]]
,

(2.50)

with the hopping parameter κ = 1/(2ma+ 8r).

In the continuum limit this action reduces to:

SW = a4
∑

n

[∑

µ

Ψ(n)γµ∂µΨ(n) +mΨ(n)Ψ(n)− r

2
a
∑

µ

Ψ(n)∂2µΨ(n)
]

a→0−→ Scont
F +O(a) , (2.51)

as such it incorporates lattice discretization errors linear in the lattice spacing. However
following the Symanzik improvement scheme [50] other terms may be added to the action
and tuned to reduce the discretization errors order by order. Given the dimension of the
fermion fields to be dΨ = 3/2, dimensional analysis shows the Wilson term of S∂2 is of
dimension d = 5. In a next step it can be proven that there is only one more allowed
term of d = 5 that is not a mass term ∼ m2ΨΨ. This term is in fact proportional to
the imaginary part of the gauge plaquettes and corresponds to an anomalous magnetic
moment [51]:

SSW = a5
∑

n

cSW
2

Ψ(n)
∑

µν

σµνPµν(n)Ψ(n) , (2.52)
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Figure 2.5: The improvement term in the
plaquettes is seen to resemble
a four leaf clover, hence clover
term.

with

σµν =
i

2
[γµ, γν ] ,

Pµν(n) =
i

8

4∑

j=1

[
U j
µν(n)− U j†

µν(n)
]

∼ ga2Fµν +O(a3) , (2.53)

thus the so called clover term vanishes in
the continuum limit a→ 0 and in the limit
of vanishing coupling g → 0.

Adding this and the Wilson term to the
naive fermion discretization one obtains
theWilson-Clover or Sheikholeslami-Wohlert
action [51]:

SC = SF − S∂2 − SSW
= a4

∑

n

[
Ψ(n)Ψ(n)

− κ
∑

µ

Ψ(n)
[
(r − γµ)Ψ(n+ µ) + (r + γµ)Ψ(n− µ)

]]

− a5 cSW
2

∑

µν

Ψ(n)
∑

µν

σµνPµν(n)Ψ(n) (2.54)

Tuning the clover coefficient cSW one can then complete the Symanzik improvement
scheme to remove all discretization errors linear in the lattice spacing O(a):

SC = SF − S∂2 − SSW
a→0−→ Scont

F +O(a2) . (2.55)

Choosing the appropriate value for the clover coefficient cSW can be guided pertur-
batively and non-perturbatively by imposing the PCAC relation be correct to O(a2).
Without going into details the value of the clover coefficient for tree-level improvement
is cSW = 1 = r. The fully non-perturbative result in quenched QCD can be parametrized
as [52]:

cSW =
1− 0.656g2 − 0.152g4 − 0.054g6

1− 0.922g2
for: 0 ≤ g ≤ 1 (2.56)

In this work the clover coefficients are tuned according to the above expression Eq. 2.56.
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Not to spoil the O(a2) improvement also the pseudo scalar (PS), scalar (S), axial
vector (A) and vector (V) currents must be improved, one finds:

PSI = PS , SI = S

V I
µ = Vµ + acV ∂νTµν

AI
µ = Aµ + acA∂µPS , (2.57)

with the tensor current Tµν = Ψ̂σµνΨ. Note the axialvector current is now explicitly
coupled to the pseudoscalar and while the coefficient cV becomes negligible for β > 6.4,
the non-perturbatively determined coefficient cA reads [52, 53]:

cA = −0.00756 g2 1− 0.748g2

1− 0.977g2
. (2.58)

As a consequence we will restrict ourselves to using only the improved axialvector cur-
rents in the following.

2.4 Connecting to Physics

Even though all the integrals are well defined and calculations can be done in lattice
gauge theory, it is not real-world physics. The theory essentially lives in a box with
crystalline structure admitting only a finite number of discretized momenta. Conse-
quently it must be connected to physics and the procedure to do so requires taking
the thermodynamic limit (V → ∞), the continuum limit (a → 0) and renormalization
(Obare → Ophysics).

In the preceding chapters a complete definition of the lattice QCD partition function
Z(Nτ , Nσ, g, κ) was given. Here κ is the hopping parameter of the fermionic action, in
itself it acts like a fermion-gluon coupling and is subsequently itself dependent on g.
Thus to connect with the physical continuum partition function Zcont(T

−1, V ) we must
find a relation between the lattice spacing a and the coupling g2 = 2Nc/β = 6/β, as
then the lattice partition function is fixed and the relations V = (Nσa)

3 and T−1 = Nτa
give us Zcont(T

−1, V ) from Z(Nτ , Nσ, g(a), κ(g)).
To motivate a relation between the coupling and the lattice spacing postulate that the
results of our lattice theory should be independent of the specific lattice we used and in
particular should not depend on lattice size or lattice spacing. Such a postulation can be
assured to hold in renormalization group theory around g = 0, i.e. in the perturbative
regime, through the Callan-Symanzik equation (see e.g. [13, 15]):

a
dg(a)

da
= β(g) , (2.59)

where β(g) is the so called beta-function.

27



Chapter 2 Foundations of Lattice Quantum Field Theory

It can be shown that the first two orders of the β-function are independent of the
renormalization scheme and may be written as:

β(g) = β0g
3 + β1g

5 +O(g7)

=
1

(4π)2
(11− 2

3
Nf )g

3 +
1

(4π)4
(102− 38

3
Nf )g

5 +O(g7) , (2.60)

where Nf denotes the number of quark flavors. Inserting this result and solving the
differential equation Eq. 2.59 one obtains:

aΛ = R(g2) = (β0g
2)−β1/2β2

0 exp[− 1

2β0g2
] , (2.61)

note Λ is an integration constant of dimension Λ = [length−1]. Here this means that all
physical quantities calculated in the lattice theory are given in units corresponding to
this scale parameter Λ.
However, the continuum theory of QCD only contains one dimensionless coupling g and
cannot set a dimensionful scale for the theory. The scale of QCD is introduced only
during the renormalization process, where the coupling must be set according to the
invoked scheme. Before renormalization this means only ratios of actually experimen-
tally observable quantities can be predicted by the theory, e.g. hadron mass ratios or
hard scattering processes by perturbation theory. In our case the consequence is that
the lattice scale parameter Λ is arbitrary.
To nevertheless connect the lattice theory with experimentally observable quantities the
scale must be either canceled in dimensionless ratios of observables or fixed by a mea-
sured quantity such as the proton mass or the deconfinement temperature Tc.

In this thesis we set the scale by use of the square root of the string tension
√
σ. The

string tension can be calculated from the long distance behavior of infinitely heavy static
quarks in the vacuum case of pure gauge theory and describes the potential that keeps
the quarks confined: Vq̄q = −α/r + σr.
The chosen value for the string tension here is

√
σ = 428MeV [54], to obtain the physical

temperature in units of the deconfinement temperature we set:

T

Tc
= (

T√
σ
) · (
√
σ

Tc
) , (2.62)

which using Tc/
√
σ = 0.630(5) from [54] gives the deconfinement temperature Tc =

270MeV.
Strictly speaking the two-loop scaling function shown in Eq. 2.61 is only applicable in
the perturbative regime g ∼ 0, fortunately a non-perturbative calculation for the Wilson
gauge action exists and the string tension can be parameterized in terms of R(g2) with
β ∈ [5.6 : 6.5] as [55, 56]:

a
√
σ(g) = R(g2)

1 + c2r
2(g) + c4r

4(g) + c6r
6(g)

λ/
√
σ

,

r(g) =
R(g2)

R(g2(β = 6.0))
, (2.63)
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6.872 16 1.46 0.031
7.192 24 1.42 0.021
7.457 40 1.16 0.015
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16 2.98 0.015

7.793 48 1.43 0.010

Figure 2.6: The lattice spacing a(β)[fm] computed from Eq. 2.63. The black points labeled
“Current Work” represent the chosen values and are given in the table on
the right, while the magenta give those chosen by the Bielefeld lattice group
in the past.

the constants are given by c2 = 0.2731, c4 = −0.01545, c6 = 0.01975 and λ/
√
σ =

0.01364. In Fig. 2.6 we show the lattice spacing in physical units for Tc/
√
σ = 0.630(5)

from [54], Tc/
√
σ = 0.6463 from [57] and the perturbative first term. The values for β

as well as the estimated T/Tc and lattice spacings a[fm] chosen for our Nτ are shown on
the right of Fig. 2.6. For the finest lattice spacings our calculations are seen to be close
to the perturbative regime.

2.4.1 Renormalization

The renormalization of observables, i.e. the connection of Obare → Ophysics is particu-
larly difficult in the Wilson fermion formulation.
In general for QCD with only light quarks one would employ mass-independent renor-
malization schemes, the procedure generically can be written as:

g2R = g2Zg(g
2, aµ) , mR = mqZm(g2, aµ) , (2.64)

with the bare quark mass mq. As such the renormalization factors Z(g2, aµ) depend
only on the normalization mass scale µ and the bare coupling g, on its own this is
multiplicative renormalization. However Wilson fermions break chiral symmetry and
this leaves the mass unprotected from additive renormalization mq → mq = mo −mc.
To see this recall the hopping parameter of the Wilson action in the free case:

κ =
1

2ma+ 8r
⇒ ma =

1

2κ
− 4r ≡ 1

2κ
− 1

2κc
, (2.65)
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in the free case κc = 1/8 and as Uµ(n) = 1 there is no explicit dependence on the
coupling, this however changes in the interacting case where κc,free → κc(g). Note e.g.
in the strong coupling limit κc = 1/4. The renormalization of κc implies both multi-
plicative as well as additive renormalization.
To see the origin is indeed the Wilson term proportional to r recall that to satisfy chiral
symmetry implies {γ5, G} = 0, however in the Wilson case {γ5, (r · 1± γµ)GW } 6= 0, as
the unit matrix does not anti-commute with γ5.

In the improved theory of Wilson-Clover fermions the simple renormalization prescrip-
tion above must be recast into [46]:

g2R = g2(1 + bgamq)Zg(g
2(1 + bgamq), aµ)

mR = mb(1 + bmamq)Zm(g2(1 + bgamq), aµ) , (2.66)

where the additional coefficients bg and bm must be calculated ideally non-perturbatively.

Quark Masses and Wilson-Clover Fermions

Another consequence of the Wilson fermion formulation is that in a sense the quark
mass itself becomes an observable. Instead of being unambiguously fixed before a cal-
culation it must be checked a posteriori. This is apparent as the parameters needed to
tune the calculation are Z(Nτ , Nσ, g(a), κ(g)) where κ(g) is the hopping parameter in
the fully interacting theory. To nevertheless estimate the quark mass at the chiral point
mb = mR = 0 the critical hopping parameter κc must be calculated.
One possibility to achieve this for any given lattice spacing is to assume the chiral re-
lation M2

π ∼ mq, then compute the pion mass as a function of 1/2κ and extrapolate to
zero. The κ-value where the pion becomes massless is by definition κc.

For light quarks the bare quark massmq can be estimated for any given value of κ from
Eq. 2.65 once κc is known. With the bare quark mass in hand one can then define the
renormalized quark mass along the lines of Eq. 2.66. Here we invoke a definition of the
quark mass that does not depend on the renormalization scheme and the renormalization
scale. Such a definition leads to the renormalization group invariant (RGI) quark mass
and the O(a2) relation to the lattice bare quark mass is:

mRGI = ZmZ[1 + bmamq]mq . (2.67)

In this case the renormalization coefficients have been calculated non-perturbatively
[58, 59] and may be parameterized in terms of the bare coupling g as:

Zm(g2) = 1.752 + 0.321(6/g2 − 6)− 0.220(6/g2 − 6)2

Z(g2) = (1 + 0.090514g2)
1− 0.9678g2 + 0.04284g4 − 0.04373g6

1− 0.9678g2

bm(g2) = −(0.5 + 0.09423g2)
1− 0.6905g2 + 0.0685g4

1− 0.6905g2
. (2.68)
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Figure 2.7: The critical hopping parameter κc over bare lattice coupling β = 6/g2 as
obtained in [52] (red). Values used in the past by the Bielefeld lattice group
are given in blue, while the black points correspond to the values chosen in
this work.

Tuning κc via the pion mass is a procedure that naturally requires the pions to be
massless Goldstone bosons. As a result it breaks down in the high temperature phase
of QCD where chiral symmetry is restored and pions acquire a mass.
A temperature independent definition of the quark mass can be given by the axial Ward
identity (AWI) [61]:

ZA∂µA
I
µ = (mu +md)ZPSPS = 2mqZPSPS , (2.69)

here u and d denote the flavor indices, note the quark mass degeneracy mu = md =
mq due to the pseudofermion-trick in lattice calculations. This expression can be re-
expressed in terms of 2-point correlation functions and thus in terms of directly calculable
quantities as:

ZA〈∂µAI
µ(τ)PS(0)〉

ZPS〈PS(τ)PS(0)〉
= 2mAWI . (2.70)

This definition of a temperature independent quark mass subsequently enables the indi-
rect computation of the critical hopping parameter κc. To do so the hopping parameter
is adjusted in simulation until the AWI quark mass vanishes. This gives κc by the same
reasoning as mentioned above, such a procedure was followed in [52]. The results of this
computation are shown in Fig. 2.7 and were used in this thesis to estimate κc, addition-
ally the κc-values for our calculation and those chosen by the Bielefeld lattice group in
the past are shown.
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Figure 2.8: The temporal and spatial AWI quark masses as measured from the lattices
sized 1283 × 32 and 1283 × 48 at 1.5Tc.

The possibility to use the axial Ward identity in order to define the quark mass mAWI

independent of the temperature originates in the fact that it is an operator identity.
Thus it should be independent of the spatial and temporal extent of the lattice, as it
holds for all distances. As a direct consequence the spatial direction may be used to
compute the AWI quark mass, this is an advantage as in finite temperature calculations
the spatial extent of the lattice is much larger than the temporal. In Fig. 2.8 we show the
temporal and spatial AWI quark masses obtained from our lattices. Clearly the operator
identity holds as the temporal and spatial directions are indeed degenerate.

The renormalized AWI quark mass is given by:

mR = Z ′
m(1 + b′mamq)mq =

ZA(1 + bAamq)

ZPS(1 + bPSamq)
mAWI , (2.71)

expanding in powers of a the axial Ward identity mass becomes:

mAWI = Z(1 + [b′m + (bA − bPS)]amq)mq with: Z = Z ′
mZPS/ZA , (2.72)

where the improvement coefficients (bA − bPS) have been calculated non-perturbatively
[59]:

(bA − bP )(g2) = −0.00093 g2
1 + 23.3060g2 − 27.3712g4

1− 0.9833g2
. (2.73)

Given the AWI quark mass, which can be directly calculated on the lattice, we can
relate the relevant RGI mass via:

mRGI = Zm[1 + (bA − bPS)amq]mAWI . (2.74)
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In principle the renormalization procedure for the quark mass is complete at this point.However
it is customary to quote the quark mass in the MS-scheme at the scale µ = 2GeV for
light quarks. Consequently the RGI quark mass is recast in terms of the running quark
mass m(µ):

mRGI = lim
µ→∞

m(µ) (2β0g
2(µ))−d0/(2β0) , (2.75)

where d0 = 8/(4π2) and β0 is the first term of the β-function encountered before.

Given the RGI quark mass mRGI at the starting scale µ0 = 1/a and the coupling at
this scale in the MS-scheme g2

MS
(µ0), the evolution of mMS(µ) can be done via the per-

turbative renormalization group functions, which are known to four-loop accuracy [62]
and are implemented in the “RunDec.m” package [63].
This entails computing the coupling in the MS-scheme g2

MS
(µ0) and we will be returning

to this topic very shortly.

Concluding this section we outline the general flow of computing the quark mass of a
finite temperature lattice calculation:

1. Generate a small number of configurations and calculate the AWI quark mass
directly from the lattice using Eq. 2.70.

2. Use the results to compute the RGI quark mass via Eq. 2.74 and ...

3. ... do the evolution to mMS(µ = 2GeV) given the coupling g2
MS

(µ0) via the “Run-
Dec.m” package.

Renormalized Coupling and Renormalization Group Constants

Having elucidated the special situation of renormalizing the quark mass in lattice QCD
with Wilson fermions, we now turn to the renormalization of the coupling and the con-
served currents [64–68].

As noted above the key interest is to quote quark masses and couplings in the MS-
scheme, one possibility to do this for the coupling is to compute it in the so called
V-scheme. Whereby the V-scheme is defined by the potential:

V (µ) = −CF
g2V (µ)

µ2
, (2.76)

where CF = 4/3 denotes the value of the quadratic Casimir operator. The V-scheme
coupling g2V can be related to the plaquette expectation value on the lattice [64–66]:

u0 ≃
〈 1

Nc

∑

n

Re Tr[Uµν(n)]
〉1/4

(2.77)
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via Taylor expansion, in the quenched case the resulting expression is:

− ln(u40) =
CF g

2
V (µ

∗)

4

[
1− g2V (µ

∗)

4π

(11Nc

12π
ln
(6.7117

µ∗

)2)]
+O(g6V (µ∗)) , (2.78)

with µ∗ = 3.4018/a being the most accurate matching scale [65,68]. Given the plaquette
expectation value calculated on the lattice the rescaling of g2V (µ

∗ = 1/a) can be carried
out utilizing the two-loop renormalization group equation of Eq. 2.61, whereby the V-
and MS-scheme scales are related via: ΛMS = 0.6252ΛV .

Finally also the observable currents must be renormalized for the renormalization
program to be complete. Details on the currents will be given later, however generically
the renormalization is of the form:

Jren
H =

2κ

a3
ZHJH , (2.79)

here JH denotes the current, where H = PS, S,A, V as mentioned above. The renor-
malization group constant ZH in quenched QCD with improved Wilson fermions has
been computed in one-loop tadpole-improved perturbation theory and reads:

ZH = u0

(
1− g2

16π2
CF (γO ln(aµ) + CF∆H)

)
, (2.80)

where γO denotes the anomalous dimension and ∆H is a channel specific constant,
computed in [64]. Note here that tadpole-improvement is in fact used to cancel certain
unphysical diagrams in the gauge sector of the lattice theory.
Plugging in the renormalized coupling g = g2

MS
(µ = 2GeV) and inserting the channel

specific constants γO and ∆H , the perturbative renormalization group constants may be
calculated.
Naturally more reliable results can be achieved using a non-perturbative computation
of the renormalization constants. For the vector and axialvector currents close to the
chiral limit in the range of 6.0 ≤ β ≤ 24.0 such a computation is available [53] and the
resulting parameterization reads:

ZV =
1− 0.7663g20 + 0.0488g40

1− 0.6369g20

ZA =
1− 0.8496g20 + 0.0610g40

1− 0.7332g20
. (2.81)

In this work the non-perturbative results will be employed whenever possible and the
resulting renormalization constants, couplings and necessary plaquette values are given
in Tab. 2.4.1.

The procedure to compute the coupling g2
MS

, which is needed for determining the
quark mass, and the perturbative renormalization group constants may be outlined as
follows:
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β u0 g2
MS

(1/a) PTI STI ATI VTI ANP VNP

6.872 0.90263 1.70310 0.74 0.78 0.85 0.83 0.847 0.829
7.192 0.90890 1.54170 0.76 0.80 0.86 0.84 0.859 0.842
7.457 0.91345 1.43185 0.78 0.81 0.87 0.85 0.868 0.851
7.793 0.91854 1.31517 0.79 0.82 0.88 0.86 0.877 0.861

Table 2.1: Table of renormalization constants from non-perturbative (NP) and tadpole-
improved perturbative (TI) calculations in the case of vanishing mass at scale
µ = 1/a.

1. Compute the plaquette expectation value u0 on a number of configurations on the
lattice.

2. Use Eq. 2.78 to extract the coupling in the V-scheme g2V (µ
∗ = 1/a).

3. Rescale the coupling using the two-loop renormalization group equation and trans-
late to MS via ΛMS = 0.6252ΛV .

4. Insert the renormalized coupling g2
MS

and the channel specific constants into Eq. 2.80
to compute the renormalization group constants.

2.4.2 Continuum Limit

Renormalization, i.e. relating Obare → Ophysics is only part of the procedure needed to
connect lattice theories to physics.
To arrive at the continuum theory the lattice must be lifted and smoothly connected to
the continuous space-time of physics. To this end two extrapolations must be carried
out:

• Thermodynamic limit V →∞ .

• Continuum limit a→ 0 .

Naturally both limits are connected as shrinking the lattice spacing to zero implies
shrinking the space-time volume of the theory to zero. Ideally one would thus first take
the thermodynamic limit to eliminate all finite volume effects and then eliminate the
lattice by taking the continuum limit. In practice this is not possible and in general one
simultaneously decreases the lattice spacing while keeping the physical volume fixed.
Taking the thermodynamic and continuum limit then would imply Nσ →∞ and a→ 0.
As a practitioner one is faced with a three-fold group of problems:

• Scaling of the computation in the continuum limit.

• Finite volume effects due to the size of the physical volume.
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• Resolution effects due to the limited number of points available in a space-time
direction.

Of these the first is probably the most severe. Scaling of the computation in the
continuum limit in principle describes that decreasing the lattice spacing implies a de-
creasing physical volume, as mentioned above. On the lattice this implies the number
of lattice points N = N3

σ ×Nτ must be for example doubled in every direction for every
factor half in the lattice spacing.
The second and third are actually intertwined and are often referred to as the same
problem. To understand recall that the fields in the lattice theory “feel” the bound-
ary conditions of the lattice, thus the smaller the lattice the bigger the effect originating
from the boundaries. In the spatial direction these effects around the spatial torus can be
shown to lead to exponential corrections to the observable particle masses O(exp[−αL]).
For small volumes numerical studies indicate that the volume dependence of hadron
masses actually is proportional to ∼ 1/Ln where n ≈ 2 − 3. As a rule of thumb one
generally postulates the volume dependence in a high temperature system to be small
in physical volumes V ≥ 1.5fm.
However a similar effect may arise if the number of lattice points in a spatial direction
is too small. If this is the case the low resolution of the lattice leads to a systematic
over-estimation of the observed particle masses, as the employed analysis methods can-
not clearly distinguish the ground- and excited states.
Taking the ideal thermodynamic and continuum limit naturally cancels these effects.
However when doing the calculation in practice both effects enter.

Generally the continuum limit is taken via controlled extrapolation of lattice calcula-
tions at different lattice spacings. It is important to realize here, that all quantities in
a lattice calculation are including discretization errors, e.g. O(a2). Given the order of
these corrections the continuum extrapolation may be achieved quadratically (O(a2)) or
linearly O(a).

In this work we focus on the vector current-current correlation function calculated
using Wilson-Clover fermions, as these fermions are improved we thus expect the con-
tinuum to be approached quadratically in the lattice spacing.

Following the above statements realize the connection to physics can be achieved doing
either:

• a calculation of the observable in a fixed physical volume, sequentially increasing
the number of points and decreasing the lattice spacing. After analyzing for reso-
lution effects, by checking the dependence of the observed particle masses on the
number of points, a controlled extrapolation to the continuum can be made given
the discretization errors of the lattice theory.

• a calculation of the observable with fixed (large) number of lattice points in the
spatial direction, sequentially increasing the number of points in the temporal
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direction and decreasing the lattice spacing. To analyze for finite volume effects
the particle masses are checked at one fixed lattice spacing while volume is varied.
Subsequently a controlled extrapolation is possible exactly as above.

Taking the thermodynamic limit then implies repeating the procedure with ever larger
physical volumes or larger number of spatial lattice points.

Numerically speaking the second option is more attractive as the spatial volume ∼ N3
σ

remains fixed and must be varied only at one lattice spacing. Also one is enabled
to go to small lattice spacings while keeping the spatial extent manageable. This is
complementary to our aim and we will follow this procedure in the following.

2.5 Parameters and Systematics

Concluding this chapter we describe the numerical setup and parameters of the calcu-
lation presented in this thesis. As such all important background information of the
lattice calculation presented in the following may be found here.

All our numerical results are obtained from an analysis of quenched QCD gauge field
configurations generated with the standard SU(3) single plaquette Wilson gauge ac-
tion [40], defined in Eq. 2.21. On these gauge field configurations current-current cor-
relation functions as defined in Eq. 4.2 are calculated using a Wilson-Clover fermion
action [51](Eq. 2.54) with non-perturbatively determined clover coefficients cSW [52] fol-
lowing Eq. 2.56. The hopping parameter κ is chosen in a way that the quark masses are
approximately constant and light over all our calculations [52,53]. These basic parame-
ters are summarized in Tab. 2.2.

β Nσ Nτ T/Tc a[fm] a−1[GeV] Lσ[fm] κc cSW

6.872 128 16 1.46 0.031 6.432 3.93 0.13497 1.412488
64 16 1.46 0.031 6.432 1.96 0.13497 1.412488
48 16 1.46 0.031 6.432 1.47 0.13497 1.412488
32 16 1.46 0.031 6.432 0.98 0.13497 1.412488

7.192 128 24 1.42 0.021 9.435 2.69 0.13437 1.367261

7.457 128 40 1.16 0.015 12.864 1.96 0.13398 1.338927
128 32 1.49 0.015 12.864 1.96 0.13398 1.338927
128 16 2.98 0.015 12.864 1.96 0.13398 1.338927

7.793 128 48 1.43 0.010 18.974 1.33 0.13346 1.310381

Table 2.2: Overview of basic calculation parameters. The calculation of the parameters
has been outlined in the text. For reference we also give the spatial size of the
lattice Lσ in [fm] and the cut-off scale in [GeV].
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β κ mAWI/T (µ = 1/a) mRGI/T (µ = 1/a) mMS/T (µ = 2GeV)

6.872 0.13495 0.0182(4) 0.0340(8) 0.02429(5)
7.192 0.13440 0.0182(4) 0.0331(7) 0.02367(5)
7.192 0.13431 0.0816(2) 0.1487(2) 0.1062(2)
7.457 0.13390 0.0790(3) 0.1384(5) 0.0989(4)
7.793 0.13340 0.0964(2) 0.1562(3) 0.1117(2)

Table 2.3: The quark masses in MS as obtained from the AWI via the RGI quark masses.
All values are given in units of temperature T , as we are in quenched QCD
note Tc = 270MeV.

The gauge couplings used for calculations at four different values of the cutoff are
selected such that the temperature stays approximately constant at T ≃ 1.45Tc as the
cutoff is varied. Additionally the temperature is varied for one value of the coupling
by changing the number of points in Nτ direction. To tune the couplings we follow the
procedure outlined in Chp. 2.4, i.e. we use the Ansatz defined in [55], which is known
to give the variation of the lattice cutoff as a function of the gauge coupling to better
than 1% in the interval [5.6, 6.5] [56]. We add to this analysis new results for the critical
coupling βc(Nτ ) and the square root of the string tension

√
σ [57], then we extrapolate

the fit results to the regime of couplings relevant for our analysis β ∈ [6.8, 7.8]. The rele-
vant couplings, lattice spacings and lattice cut-off parameters are summarized in Tab. 2.2.

By tuning the hopping parameter κ we choose quark masses that are approximately
constant for our four values of the cutoff. We estimate the quark mass using the ax-
ial Ward identity and calculate the AWI current quark mass [61] (Eq. 2.70). This is
done using the improved axial vector current Eq. 2.57 with the non-perturbatively de-
termined improvement coefficient cA [52, 69] of Eq. 2.58. To compare the quark masses
at a common scale we first convert the AWI quark mass to the renormalization group in-
variant (RGI) quark mass [58] defined in Eq. 2.74 with the non-perturbative coefficients
of Eq. 2.73 [59, 60]. Then the RGI mass is rescaled in the MS-scheme to the common
scale µ = 2GeV using the four loop perturbative running coupling and the “RunDec.m”
package [63].
In both cases we calculate errors from a jackknife analysis on mAWI and do not include
systematic errors for the conversion to the MS-scheme. The mass parameters are listed
in Tab. 2.5 and Tab. 2.5.

Our central results are based on calculations performed with renormalized quark
masses mMS/T ≃ 0.1. Through calculations performed with a factor four smaller quark
mass, we check on lattices with temporal extent Nτ = 24 that results on the large
distance behavior of the correlation functions agree within errors (see Fig. 5.3), these
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β κ mMS/T (µ = 2GeV) mMS(µ = 2GeV)[MeV]

6.872 0.13495 0.02429(5) 9.5
7.192 0.13440 0.02367(5) 9.3
7.192 0.13431 0.1062(2) 41.6
7.457 0.13390 0.0989(4) 38.7
7.793 0.13340 0.1117(2) 43.7

Table 2.4: Table of quark masses in the MS-scheme in units of temperature at T ≃ 1.45Tc
and in [MeV].

Nτ Nσ β #conf

16 32 6.872 251
48 6.872 229
64 6.872 191
128 6.872 191

24(I) 128 7.192 340
24(II) 128 7.192 156
16 128 7.457 208
32 128 7.457 255
40 128 7.457 189
48 128 7.793 451

Table 2.5: Number of configurations analyzed on lattices sized N3
σ×Nτ . All configurations

are separated by 500 iterations of a combined Heatbath-Overrelaxation Monte
Carlo algorithm. Note at β = 7.192 two quark masses are available, where
the index (II) denotes the lighter case.

calculations are noted with the index (II) in the following. The smaller quark mass is
also used for calculations on our coarsest lattice with temporal lattice size Nτ = 16,
where we analyze the sensitivity of our results to finite volume effects. We expect from
the evaluation of Chp. 5 that quark mass effects play no role in all results presented here.

The gauge field configurations are generated using a standard over-relaxed heat bath
algorithm [70]. Configurations are stored every 500 trajectories, whereby we list these
numbers and the total statistics once more in Tab. 2.5. At several large temporal separa-
tions the correlation functions are checked to be statistically independent. Furthermore
we measure the plaquette for every trajectory and obtain an estimate for the integrated
autocorrelation time of order one.
For illustration the autocorrelation is shown in Fig. 2.9 both for the plaquette (left) and
the full vector channel (right) at different temporal separations. Clearly the autocorre-
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Figure 2.9: The autocorrelation of the plaquette (left) and the vector channel (right) for
several temporal separations, shown are the results for the lattice sized 1283×
48.

lation drops immediately and the data is subsequently uncorrelated.
Note also that topologically non-trivial configurations die out quickly in calculations
above the deconfinement temperature. This is mirrored by the observation that the
scalar and pseudoscalar correlation functions reveal less than 3% exceptional configu-
rations. The autocorrelation time of these configurations is seen to be of the order of
∼ 3000 trajectories.

For the computation of the quark propagators we use a plain conjugate gradient in-
verter [71]. The algorithm has a stable convergence behavior and we set the convergence
criterion for the squared norm of the residue to 10−23. This value was selected by mon-
itoring the nearly exponential decay of spatial correlation functions over many orders
of magnitude due to the large spatial extent of the lattices and screening masses of the
order of 2πT .

As noted in Chp. 2.4.1 the observable current operators have to be renormalized mul-
tiplicatively. Wherever required we thus employ the renormalized current as defined
in Eq. 2.79 with the non-perturbative renormalization group constants of Eq. 2.81 when
possible [53], if not we use the two-loop tadpole improved perturbative results of Eq. 2.80.
The corresponding constants are given in Tab. 2.4.1.
However note that many results presented in the following are given in terms of ratios
of correlation functions where the renormalization constants drop out.

Before concluding this section on the parameters and systematics, note that, if not
explicitly stated otherwise, all errors given in this thesis are obtained using suitable
jackknife methods [72].
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Chapter 3

The Phenomenology of Spectral
Functions

Practically all observables of interest in the following can be rewritten in terms of two-
point correlation functions of elementary or composite operators. The correlation func-
tions on the other hand appear in different versions be it in imaginary time, real time,
advanced or retarded. We will show in the following that all these versions depend on
a single spectral function ρ(ω), which in turn naturally becomes the key quantity to
compute. Note here we follow the derivations of [29–31].

The thermal ensemble is defined by the density matrix ρ̂ = 1
Z e

−βH , where Z is the
partition function and Tr[ρ̂] = 1. Then the two-point correlation functions in real time
may be defined as:

G>(t) = Tr[ρ̂φ(t)φ(0)] = 〈φ(t)φ(0)〉 (3.1)

G<(t) = Tr[ρ̂φ(0)φ(t)] = 〈φ(0)φ(t)〉 = G>(−t) , (3.2)

where φ(t) is an operator in the Heisenberg picture. Inserting a complete set of eigen-
vectors G>(t) may be re-expressed to read

G>(t) =
1

Z

∑

n,m

e−βEnei(En−Em)t|〈n|φ(0)|m〉|2 , (3.3)

if the convergence of this expression is controlled by the exponentials on sees

G>(t) is defined for − β ≤ Im(t) ≤ 0 (3.4)

G<(t) is defined for β ≥ Im(t) ≥ 0 (3.5)

As φ(t) is an operator in the Heisenberg picture one may write:

e−βHφ(t)eβH = φ(t+ iβ) , (3.6)

which in turn leads to the Kubo-Martin-Schwinger (KMS) relation [29–31]:

G>(t) = G<(t+ iβ) = G>(−t− iβ) . (3.7)
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It can be shown that the KMS relation uniquely characterizes the density matrix and
thus the thermal system. Defining the Euclidean correlator for τ = it ∈ [0, β] as

GE(τ) = G>(−iτ) (3.8)

one sees that the periodicity condition for the thermal system follows from the KMS
relation.
At this point look also at the expectation value of a commutator:

G(t) = iTr
[
ρ̂[φ(t), φ(0)]

]
= i〈[φ(t), φ(0)]〉 = i(G>(t)−G<(t)) , (3.9)

which satisfies the relations

G(−t) = −G(t) and G†(t) = G(t∗)∗ . (3.10)

Outside the light-cone this quantity vanishes and thus encodes the causality of the theory.

Relating Correlators and the Spectral Function

To find the connection with the spectral function ρ(ω) change into frequency space via
Fourier transform:

G>(ω) =

∫ ∞

−∞
dteiωtG>(t) (3.11)

G<(ω) =

∫ ∞

−∞
dteiωtG<(t) =

∫ ∞

−∞
dteiωtG>(t− iβ) (3.12)

⇒ G<(ω) = G>(−ω) = e−βωG>(ω) (3.13)

In the following we will be especially interested in the retarded correlation function,
which may now be defined as the integral transform over the positive half axis of the
commutator G(t):

GR(ω) =

∫ ∞

0
dteiωtG(t) . (3.14)

The spectral function ρ(ω) is given by the full Fourier transform of the expectation value
of the commutator:

ρ(ω) := G>(ω)−G<(ω) . (3.15)

An explicit expression for ρ(ω) may be found by using Eq. 3.3 and Eq. 3.13:

ρ(ω) =
1

Z

∑

n,m

e−βEn

[
δ(ω + En − Em)− δ(ω + Em − En)

]
|〈n|φ(0)|m〉|2 , (3.16)

this form of the spectral function explicitly shows that it is an odd, real function of
frequency ρ(ω) = −ρ(−ω) and that it obeys the positivity condition sgn(ω)ρ(ω) > 0.
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Using Eqs.3.10-3.14 immediately find the connection between the retarded correlator
and the spectral function:

ρ(ω) =
1

2πi
(GR(ω)−GR†(ω)) =

1

π
ImGR(ω) , (3.17)

while Eq. 3.13 gives the connection to the forward and backward correlation functions:

G>(ω) =
eβω

eβω − 1
ρ(ω) and G<(ω) =

1

eβω − 1
ρ(ω) . (3.18)

With Eq. 3.8 the connection of all four desired correlators with the spectral function is
obtained.

Connecting Euclidean and Retarded Correlation Functions

Next we are interested in the relation between the retarded and the Euclidean correlation
function. Ultimately the Euclidean correlator is the observable computed on the lattice
while the retarded correlator is accessible to perturbative techniques and especially plays
an important role in linear response theory.
To find the desired connection first write the retarded correlator of Eq. 3.14 in time:

GR(t) = i〈θ(t)[φ(t), φ(0)]〉 , (3.19)

then using the following representation of the θ-function

θ(t) = i

∫ ∞

−∞

dω′

2π

e−iω′t

ω′ + iδ
(3.20)

one finds the Fourier transform of GR(ω) in terms of the spectral function:

GR(ω) =

∫ ∞

−∞

dω′

2π

ρ(ω′)

ω − ω′ + iδ
. (3.21)

Now turn to the imaginary time correlator and using Eq. 3.8 with Eq. 3.11 write

GE(iωn) =

∫ β

0
dτeiωnτ

∫
dω

2π
e−ωτG>(ω) , (3.22)

introducing the spectral function via Eq. 3.18 one then obtains

GE(iωn) =

∫ ∞

−∞

dω′

2π

ρ(ω′)

iωn − ω′
. (3.23)

Comparing the two expressions for the retarded and imaginary time correlator one finds
they are indeed directly related via:

GR(ω) = GE(iωn → ω + iδ) . (3.24)

Thus the retarded and Euclidean correlation functions are directly connected via analytic
continuation, while they are both related to the spectral function as derived above.
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Chapter 3 The Phenomenology of Spectral Functions

Mixed Representation of the Euclidean Correlator

The main objective of this thesis is to compute the spectral function of hadronic states.
Correspondingly the interesting operators are the currents already defined in Eq. 1.8:

JH ≡ q̄(τ, ~x)ΓHq(τ, ~x) , (3.25)

note for clarity in the following we changed the notation slightly compared to Eq. 1.8 as
γν → ΓH where ΓH = {1, γ5, γµ, γµγ5}, the index H then corresponds to the particle
channels H = {S, PS, V,A} respectively.

The Euclidean temporal current-current correlation functions we are interested in
read:

GH(τ, ~p) =
∑

~x

GH(τ, ~x)ei~p·~x , (3.26)

where

GH(τ, ~x) = 〈JH(τ, ~x)J†
H(0,~0)〉 . (3.27)

This mixed representation correlation function (Gµν(τ, ~p) = G(τ, ~p)) can also be related
to the spectral function via

G(τ, ~p) =

∫
d3~xei~p·~xG>(−iτ, ~x)

=

∫
d3~x

∫
dω

2π

∫
d3~p′ ei(~p

′−~p)·~x−ωτG>(ω, ~p′)

=

∫
dω

2π
e−ωτG>(ω, ~p)

=

∫ ∞

0

dω

2π
e−ωτG>(ω, ~p) +

∫ 0

∞

dω

2π
e−ωτG>(ω, ~p)

=

∫ ∞

0

dω

2π
e−ωτG>(ω, ~p) + eωτG<(ω, ~p) , (3.28)

once more introducing the spectral function via Eq. 3.18 the above expression may be
rewritten to read

G(τ, ~p) =

∫ ∞

0

dω

2π

( eβω−ωτ

eβω − 1
+

eωτ

eβω − 1

)
ρ(ω, ~p)

=

∫ ∞

0

dω

2π

cosh(ω(τ − β/2))
sinh (ω · β/2) ρ(ω, ~p) (3.29)

=

∫ ∞

0

dω

2π
K(ω, τ) ρ(ω, ~p) . (3.30)

Mathematically speaking the quantity K(ω, τ) is an integration kernel, physically speak-
ing however it is the free boson propagator in Euclidean time τ with energy ω. The
spectral function ρ(ω) subsequently is a factor that denotes the spectral distribution as
a function of energy.

44



3.1 Spectral Functions in Non-Interacting Theory

3.1 Spectral Functions in Non-Interacting Theory

After having introduced the spectral function ρ(ω, ~p) and its basic relations to correlation
functions, a good starting point for reaching at least a qualitative understanding of its
properties can be gained by evaluating it in non-interacting theory. Due to asymptotic
freedom this situation is equivalent to a system at infinitely high temperature T →∞.
To this extent the free spectral functions will be explored in the continuum and lattice
environments [74].

3.1.1 Free Continuum Spectral Functions

The starting point of our calculation is the lowest order loop expansion Euclidean cor-
relation function in momentum space:

GH(iωn, ~p) = −T
∑

n

∫

~k
Tr

[
S(K)ΓHS(P +K)γ0Γ

†
Hγ0

]
, (3.31)

as before iωn with ωn = 2πnT are the Matsubara frequencies and we introduce the
shorthand

∫
~k
=

∫
d3k/(2π)3. Similarly to Eq. 3.23 the fermion propagators are given by:

S(K) = −
∫ ∞

−∞

dω

2π

ρF (ω,~k)

iω̃n − ω
, (3.32)

with the fermionic Matsubara frequency ω̃n = (2n+ 1)πT and the spectral function:

ρF (K) = ( 6K +m)ρ(K) = ( 6K +m)2π sgn(k0)δ(k
2
0 − ω2

k) , (3.33)

where K = (k0,~k) and ωk =
√
k2 +m2.

Plugging the propagators into Eq. 3.31 one soon arrives at the spectral function:

ρH(ω, ~p) = 2ImGH(iωn → ω + iδ, ~p)

= Nc

∫

~k,k0

Tr
[
( 6K +m)ΓH( 6R+m)γ0Γ

†
Hγ0ρ(K)ρ(R) · [nF (k0)− nF (r0)]

]
,

(3.34)

whereby we introduce the shorthand nF (ω) = (eω/T + 1)−1 for the Fermi distribution
along with R = P +K = (ω + k0, ~p+ ~k).
The particle channel specific modifications of the spectral function are encoded in the
traces of Tr[( 6K +m)ΓH( 6R +m)γ0Γ

†
Hγ0], so as to keep the computation as general as
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possible first compare the possible different cases, e.g. in the vector channel:

(V ) ΓH = γµ : Tr
[
( 6K +m)ΓH( 6R+m)γ0Γ

†
Hγ0

]

→ Tr
[
( 6K +m)γµ( 6R+m)γ0γ

†
µγ0

]

= Tr
[
( 6K +m)γµ( 6R+m)γµ

]

= Tr
[
6Kγµ 6Rγµ +m2γµγµ

]

= 4 (gνµgηµ − gνηgµµ + gνµgµη) KνRη + 4gµµm
2

= 4 (KµRµ −K ·Rgµµ +KµRµ) + 4gµµm
2

= 4 (2 ·KµRµ − gµµK ·R) + 4gµµm
2 (3.35)

(V00) ΓH = γ0 : 4 (2 ·K0R0 −K0R0 + ~K · ~R) + 4m2

= 4 (K0R0 + ~K · ~R+m2) (3.36)

(Vii) ΓH = γi : 4 (2 ·K0R0 + 3(K0R0 − ~K · ~R)) + 4 · 3m2

= 4 (3 ·K0R0 − ~K · ~R− 3m2) (3.37)

(Vµµ) ΓH = γµ : V = −V00 + Vii

= 4 (2 ·K0R0 − 2 ~K · ~R− 4m2) . (3.38)

The coefficients of V00, Vii and Vµµ then give the channel specific constants a
(1)
H , a

(2)
H and

a
(3)
H . Repeating this computation for the other channels one can derive these constants

for all particle channels, a summary of them is listed in Tab. 3.1.1.

Next the integration of k0 may be performed and the resulting expression can be
shown to read [74]:

ρH(ω, ~p) = 2πNc

∫

~k

(
a
(1)
H + a

(2)
H

~k · ~r
ωkωr

+ a
(3)
H

m2

ωkωr

)
[nF (ωk)− nF (ωr)]δ(ω + ωk − ωr)

+
(
a
(1)
H − a

(2)
H

~k · ~r
ωkωr

− a(3)H

m2

ωkωr

)
[1− nF (ωk)− nF (ωr)]δ(ω − ωk − ωr)

− (ω → −ω) . (3.39)

This equation may then be evaluated numerically or analytically to obtain the spectral
function. As the key observables in this thesis are massless current-current correlators
at finite and vanishing momentum the computation is shown in the massless limit in the
following. Immediately note that in this case all contributions from terms proportional

to a
(3)
H drop out.

Assuming the frequency to be positive ω > 0 three terms contribute to the spectral
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3.1 Spectral Functions in Non-Interacting Theory

ΓH a
(1)
H a

(2)
H a

(3)
H

ρS 1 1 -1 1
ρPS γ5 1 -1 -1

ρ00 γ0 1 1 1
ρii γi 3 -1 -3
ρV γµ 2 -2 -4

ρA,00 γ0γ5 1 1 -1
ρA,ii γiγ5 3 -1 3
ρA γµγ5 2 -2 4

Table 3.1: The trace operation yields the channel specific constants a
(1)
H , a

(2)
H and in case

of non-vanishing mass a
(3)
H .

function:

ρH(ω, ~p) = ρ
(1)
H (ω, ~p) + ρ

(2)
H (ω, ~p) + ρ

(3)
H (ω, ~p)

ρ
(1)
H (ω, ~p) = 2πNc

∫

~k

(
a
(1)
H − a

(2)
H

~k · ~r
ωkωr

)
[2nF (ωk)− 1]δ(ω − ωk − ωr)

ρ
(2)
H (ω, ~p) = 2πNc

∫

~k

(
a
(1)
H + a

(2)
H

~k · ~r
ωkωr

)
[nF (ωk)− nF (ωr)]δ(ω + ωk − ωr)

ρ
(3)
H (ω, ~p) = −2πNc

∫

~k

(
a
(1)
H + a

(2)
H

~k · ~r
ωkωr

)
[−nF (ωk) + nF (ωr)]δ(ω − ωk + ωr) . (3.40)

The radial integration over the momentum can then be taken care of by using the δ-
functions. To this extent introduce the shorthand k = |~k| and p = |~p| to write:

δ( ω − k −
√
k2 + p2 − 2pkx ) =

1

1 + px−k0
k1

· δ(k − k0)

δ( ω − k +
√
k2 + p2 − 2pkx ) =

1

1− px−k0
k1

· δ(k − k0)

δ( ω + k −
√
k2 + p2 − 2pkx ) =

1

1− px−k0
k1

· δ(k − k0) , (3.41)

here k0 = (ω2 − p2)/(2(ω − px)) and k1 =
√
k2 + p2 − 2pkx.

At this point also re-express

a
(1)
H ± a

(2)
H

~k · ~r
ωkωr

= a
(1)
H ± a

(2)
H

~p · ~k − k2
ωkωr

= a
(1)
H ± a

(2)
H

px− k
k1

(3.42)

Inserting Eq. 3.42 and Eqs.3.41 into Eqs.3.40 one can integrate numerically or analyti-
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cally. As an example for the full vector channel, defined by ρV (ω), Eqs.3.40 become:

ρ
(1)
V (ω, ~p) = 2πNc

∫

~k

(
2 + 2

px− k
k1

)
[2nF (k)− 1]

(
1 +

px− k0
k1

)−1
· δ(k − k0)

= 4πNc

∫ 1

−1
dx

∫
dkk2

(2π2)

f̃(k)

f̃(k0)
δ(k − k0)[2nF (k)− 1]Θ(ω − |p|)

=
Nc

π

∫ 1

−1
dx k20 [2nF (k0)− 1] Θ(ω − |p|) (3.43)

ρ
(2)
V (ω, ~p) = 4πNc

∫

~k

(
2− 2

px− k
k1

)
nF (k)

(
1− px− k0

k1

)−1
· δ(k − k0)

= 8πNc

∫ 1

ω/|p|
dx

∫
dkk2

(2π2)

f̃(k)

f̃(k0)
δ(k − k0) nF (k) Θ(|p| − ω)

=
2Nc

π

∫ 1

ω/|p|
dx k20 nF (k0) Θ(|p| − ω) (3.44)

ρ
(3)
V (ω, ~p) = ρ

(2)
V (ω, ~p, x→ −x, k0 → −k0)

= −2Nc

π

∫ ω/|p|

−1
dx k20 nF (−k0) Θ(|p| − ω) . (3.45)

The final expression in this case then may be found to read [74, 75]:

ρV (ω, ~p) = Θ(ω2 − p2) NcT

2π2|~p|
(
(ω2 − p2) ln

[cosh((ω + ~p)/4T )

cosh((ω − ~p)/4T )
] )

+Θ(p2 − ω2)
NcT

2π2|~p|
(
(ω2 − p2) ln

[cosh((ω + ~p)/4T )

cosh((ω − ~p)/4T ) −
ω

2T

] )
, (3.46)

note in this last expression we included also factors of temperature T that have been
omitted in the above derivation.
To obtain the spectral function at vanishing momentum ~p = 0 the calculation must be
redone from Eq. 3.39, in case of the full vector spectral function one arrives at:

ρV (ω, ~p = 0) =
2

3π2
ω2 tanh

( ω

4T

)
(3.47)

Even though we switched to computing the full vector spectral function as an example
in the end, it is clear that the procedure may be generalized. In the following these
more general results will be shown for the massive and massless cases both at finite
and vanishing momentum. Whereby all calculations may be done following the scheme
outlined above.
The procedure includes all necessary steps to compute the free spectral function in
general. As such very similar schemes may be used when working out the free lattice
spectral function and also the hard thermal loop result.
Consequently a general computation strategy may be outlined as:
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1. Write down the desired correlation function, e.g. in frequency space G(ω̃), where
ω̃ might be given in the imaginary time formalism or real time.

2. Insert the corresponding spectral representations of the propagators S(K).

3. Identify the appropriate connection to the spectral function, e.g. ρ(ω) = 2ImGH(iωn →
ω + iδ, ~p).

4. Calculate the required traces of γ-functions and do the integral over k0.

5. Use the appearing δ-functions and kinematics to solve the remaining momentum
integrals, either analytically or numerically.

6. Look at interesting limits, e.g. m→ 0 or ~p→ 0.

After these side remarks now turn once more to the free continuum spectral function
computed in the fully general case at finite mass and finite momentum.

Massive Free Spectral Functions

In the general case at |~p| = p with admitting also a finite mass one needs to define:

p± =
1

2

[
ω ± pβ(ω, ~p)

]
, β(ω, ~p) =

√
1− 4m2

s
and s = ω2 − p2 . (3.48)

Following the above outlined procedure with P = (ω, ~p) the final analytic expression can
be shown to read [74]

ρH(P ) =Θ(s− 4m2)
NcT

2

2π2

(

β(P )

24T 2

[
(3ω2 − p2β2(P ))a(1)H + (3p2 − (3ω2 − 2p2)β2(P ))a

(2)
H − 12m2a

(3)
H

]

+
1

4pT

[
(ω2 − p2β2(P ))a(1)H + (p2 − ω2β2(P ))a

(2)
H − 4m2a

(3)
H

]
ln
1 + e−p+/T

1 + e−p−/T

+ (a
(1)
H + a

(2)
H )

(
β(P )

[
Li2(−e−p+/T + Li2(−e−p−/T )

]

+
2T

p

[
Li3(−e−p+/T )− Li3(−e−p−/T )

]) )

+Θ(−s)NcT
2

2π2

(

1

4pT

[
(ω2 − p2β(P ))a(1)H + (p2 − ω2β2(P ))a

(2)
H − 4m2a

(3)
H

]
ln
1 + e−p+/T

1 + ep−/T

+ (a
(1)
H + a

(2)
H )

(
β(P )

[
Li2(−e−p+/T − Li2(−ep−/T )

]

+
2T

p

[
Li3(−e−p+/T )− Li3(−ep−/T )

]) )
, (3.49)
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where Lis(z) =
∑∞

k=1 z
k/kz is the polylogarithm function.

Taking the limit of vanishing momentum and recalculating from Eq. 3.39 the above
expression simplifies significantly and reduces to:

ρH(ω, 0) =
Nc

16π2
Θ(ω2 − 4m2)ω2 tanh

( ω

4T

)√
1−

(2m
ω

2)

×
[
(a

(1)
H − a

(2)
H ) +

(2m
ω

)2
(a

(1)
H − a

(3)
H )

]

+Nc

[
(a

(1)
H + a

(3)
H )I1 + (a

(2)
H − a

(3)
H )I2

]
ωδ(ω) , (3.50)

with

I1 = −2
∫

k

∂nF (ωk)

∂ωk
and I2 = −2

∫

k

k2

ωk

∂nF (ωk)

∂ωk
(3.51)

Massless Free Spectral Functions

Taking the analytic expression for the massive spectral function as starting point and
using the relation:

1 + exp[2x] = 2 cosh[x] exp[x] (3.52)

one fairly quickly arrives at the massless counterpart of Eq. 3.49∗:

ρH(ω, p) = Θ(ω2 − p2)NcT
2

2π2

(

1

4|~p|T (ω2 − p2)(a(1)H − a
(2)
H ) ln

[cosh((ω + p)/4T )

cosh((ω − p)/4T )
]
+

1

12T 2
(a

(1)
H + a

(2)
H )p2

+ (a
(1)
H + a

(2)
H )

(
Li2(−e−(ω+p)/2T ) + Li2(−e−(ω−p)/2T )

+
2T

p

[
Li3(−e−(ω+p)/2T )− Li3(−e−(ω−p)/2T )

] )

+Θ(p2 − ω2)
NcT

2

2π2

(

1

4|~p|T (ω2 − p2)(a(1)H − a
(2)
H )

(
ln
[cosh((ω + p)/4T )

cosh((ω − p)/4T )
]
− ω

2T

)

+ (a
(1)
H + a

(2)
H )

(
Li2(−e−(ω+p)/2T )− Li2(−e(ω−p)/2T )

+
2T

p

[
Li3(−e−(ω+p)/2T )− Li3(−e(ω−p)/2T )

] )
. (3.53)

∗Note: The expressions of Eqs.3.49-3.53 have been checked numerically starting from Eq. 3.39, the
analytic expression of Eq. 3.49 was not explicitly computed.
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When going to vanishing momentum in the massless case I1 and I2 degenerate and
become

I1 = I2 =
T 2

6
, (3.54)

while at the same time all dependence on a
(3)
H drops out in Eq. 3.39, as mentioned before.

Consequently the vanishing momentum, massless spectral functions reduce to:

ρH(ω, 0) =
Nc

16π2
(a

(1)
H − a

(2)
H ) ω2 tanh

( ω

4T

)
+
NcT

2

6
(a

(1)
H + a

(2)
H ) ωδ(ω) . (3.55)

Compared with the full expression in the massive case with non-vanishing momentum
the above expression is a sizable simplification. As a consequence most of the work in
this thesis focuses on computing the spectral function in exactly this limit. Nevertheless
it is instructive to examine how this limit is achieved and what general properties the
free spectral function possesses.

3.1.2 Properties of the Free Continuum Spectral Function

From the above expressions the general limiting behavior of the free spectral functions
regardless of mass, momentum and particle channel may be directly read off.
In the limit of large frequencies ω for example one finds

ρH(ω →∞, ~p) = Θ(s− 4m2)
Nc

4π2

(
(a

(1)
H − a

(2)
H )

ω2

4
+ (a

(1)
H + a

(2)
H )

[p2
3

+ (a
(1)
H − a

(3)
H )8m2

])
.

(3.56)

Once more concentrating on the vector spectral function as an example, two of the
possible three cases are immediately realized:

ρV (ω →∞, ~p) = ρii(ω →∞, ~p) = Θ(s− 4m2)
Nc

4π2
ω2 (3.57)

ρ00(ω →∞, ~p) = Θ(s− 4m2)
Nc

6π2
p2 , (3.58)

the last case is only realized for the time-time component of the axial vector current

ρA,00(ω →∞, ~p) = Θ(s− 4m2)
Nc

6π2
(p2 + 6m2) , (3.59)

this case will not be further examined in the following, however it is interesting to note
that the deviation from this behavior in the interacting case can be shown to be an effect
due to the axial anomaly [74].
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Let us now have a more detailed look at the three possible vector spectral functions
in the channels Vµµ, Vii and V00.
To this extent let us begin with the time-time component described by ρ00(ω, ~p). From
Eq. 3.55 it is clear that at vanishing momentum the spectral function describing this
channel is given by a delta function located at ω = 0, while at the same time Eq. 3.56
shows that the contribution from ω 6= 0 smoothly vanishes as the momentum goes to
zero. At this point note that in literature all spectral functions come with an extra factor
of 2π compared to our convention, from this point onwards we will explicitly include this
factor:

⇒ ρ00(ω) = 2πT 2ωδω . (3.60)

When the momentum is finite on the other hand the spectral function in the massless
limit reads

ρ00(ω, p) = 2πΘ(ω2 − p2)NcT
2

π2

( p2

12T 2
+ Li2(−e−(ω+p)/2T ) + Li2(−e−(ω−p)/2T )

+
2T

p

[
Li3(−e−(ω+p)/2T )− Li3(−e−(ω−p)/2T )

] )

+ 2πΘ(p2 − ω2)
NcT

2

π2

(
Li2(−e−(ω+p)/2T )− Li2(−e(ω−p)/2T )

+
2T

p

[
Li3(−e−(ω+p)/2T )− Li3(−e(ω−p)/2T )

] )
. (3.61)

It is interesting to investigate in what fashion the δ-function in the limiting case of van-
ishing momentum is achieved, to do so in Fig. 3.1 the limits of ω ց p and ω ր p are
shown with decreasing momentum p. Both the above and below limits are necessary
as the analytic expression in the massless limit clearly shows a discontinuity at ω = p.
Plotting the spectral function ρ00(ω → p) directly establishes the expected behavior, as
such the contribution above the lightcone vanishes with ∼ p2. The polylogarithms below
the lightcone on the other hand go to a finite value as the momentum vanishes. This
may be understood as the spectral function below the lightcone in the limit of vanishing
momentum contributes a δ-peak of finite height.

In the next step also the limit of vanishing mass should be examined and this is
achieved by fixing the momentum to |p|/T = 2.5 and then sending the mass from
m/T = 2.5 to zero. The result is shown in Fig. 3.2, in contrast to the massless case
a finite mass induces a gap between the regimes below the lightcone (ω < p) and above,
as can be seen already from the analytic expressions. Additionally however in the limit
of vanishing mass the already noted discontinuity at ω = p is encountered, which at
finite mass does not exist.
The mass gap in principle enables the decoupling of the low frequency and the interme-
diate to high frequency range and it becomes possible to research the physics below the
lightcone separately to that above. This is especially interesting as these two regimes
are responsible for two different types of physics phenomena. As will be shown in a later
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Figure 3.1: The limits ω ց p (red) and ω ր p (blue) of the V00 channel are shown over
momentum |p|/T in the massless limit. The dashed lines show the spectral
functions at |p|/T = 0.75, 1.5, and 2.5 where the x-axes now shows frequency
ω/T in order to clarify where the limits fit in.

section the frequency region around and below the lightcone will give rise to transport
phenomena, while that above is interesting from the point of view of hadron spectroscopy.
In view of the results of Fig. 3.2 at vanishing mass these two regimes are intermixed and
such a decoupling is not possible. Note here that the same holds for the Vµµ and Vii
channels, as such the mass dependence will not be explicitly shown in the following as
no new insight may be gained.

In the massless, vanishing momentum limit on the other hand the Vµµ and Vii channels
may be analyzed jointly, as their expressions are very similar. In fact they only differ by
a δ-function:

ρii(ω, 0) =
3

2π
ω2 tanh

( ω

4T

)
+ 2πT 2 ωδ(ω)

ρV (ω, 0) =
3

2π
ω2 tanh

( ω

4T

)
. (3.62)

Note here that the absence of the δ-function in the full vector spectral function can
be understood from the fact that it is the combination of the time-time and spatial
components

ρV (ω, 0) ≡ ρii(ω, 0)− ρ00(ω, 0) , (3.63)

hence the δ-functions cancel. In the interacting theory this is no longer the case, here
the time-time component can be linked to a conserved quantity, while the contribution
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Figure 3.2: The free V00 channel spectral function at fixed momentum |p|/T = 2.5 and
taking the limit m/T → 0. Clearly at finite mass a gap appears that separates
the below (ω < p) and above (ω > p) lightcone contributions. At vanishing
mass however a discontinuity arises and this separation is no longer possible.

from the spatial component is subject to thermal effects. More details on this will be
given in the following.
An immediate advantage of the simple expressions encountered in the massless limit at
vanishing momentum is that the integration to obtain the correlation function may be
done analytically, one thus obtains the free Euclidean continuum correlation function
depending on Euclidean time τT [73–75].

GV (τT )

T 3
= π2Nc(1− 2τT )

1 + cos2(2πτT )

sin3(2πτT )
+ 4Nc

cos(2πτT )

sin(2πτT )
(3.64)

Gii(τT )

T 3
=
GV (τT )

T 3
+ 1 , (3.65)

in the following it will be advantageous to heavily exploit these relations and to use the
Euclidean time times temperature τT as variable. As we will be taking the continuum
limit via different lattice sizes at the same temperature, using these variables ensures
comparability.

At finite momentum the situation is more complicated. In the case of the Vµµ channel
the spectral function was already derived above and is given by Eq. 3.46

ρV (ω, ~p) = Θ(ω2 − p2) NcT

2π2|~p|
(
(ω2 − p2) ln

[cosh((ω + ~p)/4T )

cosh((ω − ~p)/4T )
] )

+Θ(p2 − ω2)
NcT

2π2|~p|
(
(ω2 − p2) ln

[cosh((ω + ~p)/4T )

cosh((ω − ~p)/4T ) −
ω

2T

] )
, (3.66)
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as such there is no discontinuity dependent on p2 and also the polylogarithmic part drops
out. Subsequently at first sight this channel would be simplest to research. Unfortu-
nately this is exactly the spectral function that is subject to the most diverse interaction
effects, as it is the combination of all possible components. As a consequence we first
focus on the spatial component Vii, once this in combination with the V00 contribution
is understood we return to the Vµµ.

At finite momentum immediately note that the spatial component may be decomposed
into one part that is polarized transversally and one that is polarized longitudinally with
respect to the direction of the momentum

ρii(ω, ~p) = 2ρT (ω, ~p) + ρL(ω, ~p) . (3.67)

Consequently there are two different spectral functions that are combined into the full

expression of ρii(ω, ~p), which is given by Eq. 3.53 inserting the appropriate constants a
(i)
H

as before. Clearly this expression contains all possible contributions, i.e. from the cosh-
term, the polylogarithmic term and the term proportional to the momentum squared.
Compared to the expression in the ρV (ω, ~p) case this is much more complicated to handle.

However in the next step it is possible to disentangle the transversal and longitudinal
parts by exploiting a direct relation between the time-time and the longitudinal spectral
functions.
To see this consider the generic tensor structure of the correlation function [74]. In this
setting the conservation of charge is given by the expression [23]:

pµG
µν
R (p) = 0 . (3.68)

For the time-time (ν = 0) and spatial (ν = j) components one may then write

p0G
00
R + piG

i0
R = 0 (3.69)

p0G
0j
R + piG

ij
R = 0 , (3.70)

as Gµν
R −G

νµ
R = 0 one may combine both expressions to yield

p0 · (p0G00
R + piG

i0
R)− pj · (p0G0j

R + piG
ij
R) = 0 ⇒ p20 ·G00

R = pipj ·Gij
R , (3.71)

subsequently choosing ~p = (0, 0, p) gives p20 ·G00
R = p2z ·Gzz

R . Via Eq. 3.17 this expression
may be rewritten to read

ρL(ω, ~p) =
ω2

p2
ρ00(ω, ~p) (3.72)

Using Eq. 3.72 it is possible to compute the longitudinally polarized from the time-time
spectral function. In the next step exploiting Eq. 3.67 enables the computation of the
transversal spectral function. For |p|/T = 2.5 the results for the full, spatial, transversal
and longitudinal spectral functions are shown in Fig. 3.3. Here it is advantageous to
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Figure 3.3: The free Vµµ, Vii, VT and VL vector current-current spectral functions at
|p|/T = 2.5 in the massless limit in units 1/ω. Clearly the simple form of
Vµµ in the free case relies on cancellations of its components.

show the results divided by ω → ρ(ω)/ω, as then the limit ω → 0 approaches a constant
corresponding to a linear behavior in ω.

Returning to the Vµµ channel note that the relatively simple shape of the full spectral
function in fact finds its origin in the exact cancellation of parts of its components. As
such the discontinuity at ω = p is taken care of by the time-time and longitudinal com-
ponents, while the polylogarithmic and momentum dependent parts are canceled by the
combination of all three possibles components.
In the interacting case these cancellations cannot be a priori assumed as all compo-
nents are subject to thermal modifications at finite momentum. As a consequence the
transversal, longitudinal and time-time spectral functions have to be studied separately.
From a physics point of view all three are connected to in part different physics, e.g. the
spatial spectral function is still connected to the dilepton rate, see Eq. 1.18, the transver-
sal part on the other hand is directly related to the photon rate, see Eq. 1.17, while still
differently the longitudinal and time-time components are linked to the quark diffusion
constant, as will be shown below.

3.1.3 Free Discretized Spectral Functions

So far we have concentrated on the free continuum spectral function. Next it is instruc-
tive to also derive a lattice discretized version of the free spectral function. To do so
space-time is discretized as was explained in Chp. 2, the most important thing to keep
in mind however is that as a consequence of the lattice discretization also the momenta
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are discrete and confined to the Brillouin zone.
Consequently the lattice momenta in spatial direction are given by the condition:

ki = 2πni/Nσ , where: ni = −Nσ/2 + 1,−Nσ/2 + 1, ..., Nσ/2− 1, Nσ/2 . (3.73)

Following the recipe for deriving spectral functions outlined above write the correlation
function:

GH(τ, ~p) = −Nc

N3
σ

∑

~k

Tr
[
S(τ,~k)ΓHS(−τ, ~r)ΓH

]
, (3.74)

with the free Wilson lattice fermion propagator

S(τ,~k) =
−iγ4 sin(k4)− iK~k

+ 1− cos(k4) +M~k

sin2(k4) +K2
~k
+ (1− cos(k4) +M~k

)2
, (3.75)

where in turn

K~k
=

∑

i

γi sin(ki) and M~k
=

∑

i

(1− cos(ki)) +m . (3.76)

In the next step the propagator may be decomposed as [76]:

S(τ,~k) = γ4S4(τ,~k) +
∑

i

γiSi(τ,~k) + 1Su(τ,~k) . (3.77)

In the following we are interested especially in the spectral functions in an equivalent
form to Eq. 3.34. To arrive at such an expression it is best to separate away the time
dependence, the components of the propagator may then be written as [74]:

S4(~k) =
sinh(E~k

)

2E~k cosh(E~k
/2T )

=
S4(τ,~k)

cosh((τ − 1/2T )E~k
)

(3.78)

Si(~k) =
i sin(ki)

2E~k cosh(E~k
/2T )

=
Si(τ,~k)

sinh((τ − 1/2T )E~k
)

(3.79)

Su(~k) = −
1− cosh(E~k

) +M~k

2E~k cosh(E~k
/2T )

=
Su(τ,~k)

sinh((τ − 1/2T )E~k
)
+

δτ0
2(1 +M~k

)
, (3.80)

here

E~k = (1 +M~k
) sinh(E~k

) and cosh(E~k
) = 1 +

K2
~k
+M2

~k

2(1 +M~k
)

. (3.81)

The resulting free spectral function for Wilson fermions corresponding to Eq. 3.34 may
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then be shown to read

ρlattH (P ) =
4πNc

N3
σ

∑

~k

sinh
( ω

2T

)
·

{[
a
(1)
H S4(~k)S

†
4(~r) + a

(2)
H

∑

i

Si(~k)S
†
i (~r) + a

(3)
H Su(~k)S

†
u(~r)

]
· δ(ω + E~k

− E~r)

+
[
a
(1)
H S4(~k)S

†
4(~r)− a

(2)
H

∑

i

Si(~k)S
†
i (~r)− a

(3)
H Su(~k)S

†
u(~r)

]
· δ(ω − E~k

− E~r)

+ (ω → −ω)
}

, (3.82)

where the channel constants a
(i)
H are the same as before. This expression may in turn be

evaluated numerically and we will do so in the following.

Note at this point that one must be careful taking the massless limit when computing
the spectral function from Eq. 3.82. As the mass goes to zero it is also possible for
the single particle energies E~k

to go to zero, when this happens one numerically hits a

divergence as S(~k) ∼ 1/E~k ∼ 1/ sinh(E~k
) → 1/0. This problem is easily circumvented

using l’Hopital at E~k
= 0 and setting:

S4(~k) = 2(1 +M~k
)−1 and Si(~k) = Su(~k) = 0 . (3.83)

Discrete Spectral Functions and the Binning Method

The lattice discretized spectral and correlation functions are made up of the sums over
all lattice momenta, in a finite lattice volume these are naturally limited to a finite
number by construction. As a consequence the lattice discretized versions of the spectral
and correlation functions are made up of a sum of disconnected δ-functions in spatial
momentum and frequencies.
Making the momenta continuous thus implies taking the thermodynamic limit V →∞,
which in principle entails replacing the sum in Eq. 3.82 by an appropriate integral. In
practice however one turns to the so called binning method [75]. In a nutshell this
method implies smearing the delta functions of Eq. 3.82:

δ
(
ω + E(±)(~k, ~r)

)
→ Θ

(
ω + E(±)(~k, ~r)

)
·Θ

(
[E(±)(~k, ~r) + ∆ω]− ω

)
. (3.84)

In this way the δ-functions are averaged over an energy region, setting a large number of
lattice momenta then effectively gives a spectral function in the thermodynamic limit.

To illustrate the resulting effect we show the free lattice full vector spectral function
for |p|/T = 2.3562 in the massless limit in Fig. 3.4. In this figure the free lattice spectral
function is shown with a resolution in frequency of ∆ω = 0.004 and varying number of
spatial sizes and thus inner momenta Nσ = 128, 256, 512 and finally Nσ = 4056. The
very high resolution in frequency implies very narrow bins, which for most Nki effec-
tively constitute δ-functions as in the prescription of Eq. 3.82. A smooth encompassing
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Figure 3.4: The free lattice full vector spectral function at |p|/T = 2.3562 and vanishing
mass with varying spatial sizes Nσ, the black line shows the free continuum
result. Only in the thermodynamic limit may we obtain a smooth encompass-
ing function, in practice this is mimicked by the binning method.

discretized spectral function is only achieved with a very large number of internal mo-
menta. In our example case we take only spectral functions with Nσ ≥ 4056 to be close
enough to the thermodynamic limit and to capture most of the relevant discretization
effects at the frequency resolution ∆ω = 0.004.
In practice varying the latter by changing the bin width smoother lattice spectral func-
tions may be computed with smaller Nσ. Nevertheless our fine resolution shows quite
clearly that large lattices are necessary when studying spectral functions. Addition-
ally it is advantageous to use a very fine frequency resolution, when supplying the free
lattice spectral function as default model for the maximum entropy method, see Chp. 4.3.

Note the most striking difference between the free continuum and free lattice spectral
functions as seen in Fig. 3.4 is that the lattice part does not diverge in O(ω2). Instead it
develops two cusps at large frequencies ω, whereby it can be shown that these actually
originate from the edges of the Brillouin zone [75].
To see this recall the single particle energy of Eq. 3.81 and write [22, 74, 75]:

E~k
= log

[
1 +

K2
~k
+M2

~k

2(1 +M~k
)
+

√
(K2

~k
+M2

~k
)(K2

~k
+ (M~k

+ 2)2)

2(1 +M~k
)

]
. (3.85)

At the corners of the Brillouin zone the doublers contribute to the frequency ω:

ω = 2E~k
= 2 log[1 +M~k

] . (3.86)
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Figure 3.5: The free lattice vector spectral function ρ(ω)/ω2 with varying Nτ , at fixed
temperature this corresponds to taking the continuum limit. The free contin-
uum spectral function (black) is given for reference.

As a consequence the doublers contribute at the frequencies:

ωmin =
2

a
log[1 + (1 + am)] , ~k = (0, 0, 0) (3.87)

ωcp1 =
2

a
log[1 + (2 + am)] , ~k = (

π

a
, 0, 0), ... (3.88)

ωcp2 =
2

a
log[1 + (4 + am)] , ~k = (

π

a
,
π

a
, 0), ... (3.89)

ωmax =
2

a
log[1 + (6 + am)] , ~k = (

π

a
,
π

a
,
π

a
) . (3.90)

Thus the closer we are to the continuum, i.e. small lattice spacing, the higher are the
frequencies at which the discretization effects become noticeable. In this way for a→ 0
the continuum spectral function is retrieved in the thermodynamic limit, as such the low
frequency behavior closely resembles that of the free continuum at sufficiently small lat-
tice spacings. This is illustrated in Fig. 3.5 as we plot the massless free continuum vector
spectral function ρ(ω)/ω2 and its free discretized counterparts at different Nτ and van-
ishing momentum. At fixed temperature the increasing Nτ correspond to finer and finer
lattice spacings. As the temporal extent is increased the discretization effects encoded
in the cusp, e.q. at ωcp1 move to larger and larger frequencies. Below and especially in
the low frequency region the free continuum spectral function is thus retrieved already
at finite lattice spacing, even though the full continuum is only reached at Nτ →∞.
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3.2 Expectations for Interacting Theory

To estimate what is to be expected once interactions are introduced a large body of
physical understanding of the system is required.
Partly the behavior at finite temperatures may be constrained from certain physics as-
sumptions or general relations of the system. Another useful tool is to apply the theory
of linear response in order to get an idea of the reaction of a system to thermal pro-
cesses. In the following both approaches will be exploited to pin down the behavior of
the spectral functions as good as possibly feasible.

First turn to physics arguments and recall the free spectral function of the time-time
vector channel:

ρfree00 (ω) = 2πT 2ωδ(ω) . (3.91)

Indeed the time-time component of the spectral function may be connected to the quark
number susceptibility χq, as it is defined by [77]:

χq = −
1

T

∫
d3x 〈J0(τ, ~x)J†

0(0,
~0)〉. (3.92)

Physically speaking the integral over the time-time component of the vector current
gives the net number of quarks of a given flavor channel. As the net number of quarks is
conserved, it explicitly does not depend on Euclidean time. Consequently the time-time
vector correlation function G00(τ, ~p = 0) is a constant in Euclidean time. This is exactly
mirrored by the shape of the spectral function being a δ-function.
Introducing the quark number susceptibility the non-interacting and also the interacting
time-time spectral function of the vector current reads:

ρ00(ω) = 2πχqωδ(ω) . (3.93)

The subsequent correlation function may then be written as a constant contribution
proportional to the quark number susceptibility and the temperature

G00(τ, ~p = 0) = −χqT , (3.94)

clearly the spatial and full vector correlation functions at vanishing momentum only
differ by this constant:

GV (τ, ~p = 0) = Gii(τ, ~p = 0)− χqT (3.95)

This is an example where physics arguments completely determine the shape of the spec-
tral function and we will see below that the above relations are well motivated and hold
for all temperatures evaluated in this work.

In general however only assumptions on the temperature dependence of the spectral
function can be made. As such the known free, non-interacting case corresponds to that
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Figure 3.6: Sketch of the spectral functions in the free (T → ∞) and confined (T ∼ 0)
case in units of 1/ω2. In the intermediate case one expects the peak struc-
ture to “melt” and be absorbed into the continuous spectrum while additional
transport phenomena might appear.

in the limit of infinite temperature due to asymptotic freedom. At the same time from
spectroscopy and experiments there is good knowledge of the spectral functions at low
temperatures, i.e. in the confined phase.
Subsequently being given the two opposite limiting cases of the shape of the spectral
functions, it is the intermediate behavior that we have to establish to reach a full un-
derstanding. To get an idea how this might look like recall the spectral functions in the
case of vanishing momentum at infinite temperature. In Fig. 3.6 the full vector spectral
function is once more shown, the characteristic divergence with O(ω2) immediately en-
tails that the spectrum is given by a continuum of many-particle states.
On the other hand in the confined phase we know that the spectrum is made up of a col-
lection of Breit-Wigner peaks with the continuum of states dominating above a certain
mass-threshold, as sketch of a possible spectrum is also given in Fig. 3.6. The width of
the peaks is directly connected to the decay with of the particle states and thus varies
from very narrow resonances to large bumps in the spectrum.

A reasonable assumption to connect these two regimes is to assume that both known
regimes are in fact connected by a smooth change from the one into the other. This would
imply that the mass-threshold for the continuum is reduced as the temperature rises,
with the Breit-Wigner peaks being swallowed along the way. Simultaneously the Breit-
Wigner peaks may melt, i.e. their widths increase, while the amplitudes are reduced, or
change their position on the frequency axis.
In addition to these effects also new in-medium phenomena might arise that do not yet
exist in the confined phase and vanish at very high temperatures.
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3.2.1 Linear Response and Transport Coefficients

To get an idea of these in-medium, thermal modifications of the spectral functions in
the quark gluon plasma we invoke the linear response formalism, see e.g [30] or [23].
Imagine applying an external field to an equilibrium system, the goal of linear response
theory is then to calculate the change of the thermal average of the operator O(t) caused
by this external field to first (i.e. linear) order. The equation of motion of such a system
may be generically written as:

∂

∂t
O(t) = i

[
H0 +Hext(t), O(t)

]
, (3.96)

where H0 and Hext(t) denote the Hamiltonian operators of the equilibrium and the
external fields respectively. Given the eigenstates |n〉 of the Hamiltonian H0 in the
Heisenberg picture it follows that

∂

∂t
〈n|O(t)|n〉 = i〈n|

[
Hext(t), O(t)

]
|n〉 . (3.97)

The above equation. although being exact, cannot be solved in a closed form, so here
integrate only to the first order in Hext(t) as mentioned above:

δ〈n|O(t)|n〉 = 〈n|O(t)|n〉 − 〈n|O(t0)|n〉 = i

∫ t

t0

dt′〈n|
[
Hext(t

′), O(t)
]
|n〉 . (3.98)

Finally taking the ensemble average one arrives at an expression that gives the change
of the thermal average of the operator O(t) caused by this external field to first order,
exactly as was the aim:

δ〈O(t)〉 = i

∫ t

t0

dt′Tr
[
ρ̂[Hext(t

′), O(t)]
]

. (3.99)

Without loss of generality now assume a field φ(~x, t) coupling to the external source
Jext(~x, t) as

Hext(t) =

∫
d3xJext(~x, t)φ(~x, t) , (3.100)

then Eq. 3.99 may be rewritten in terms of the retarded correlation function introduced
in Eq. 3.14 and Eq. 3.19:

δ〈φ(~x, t)〉 = i

∫ t

t0

dt′
∫
d3x′ Jext(~x

′, t′) Tr
[
ρ̂[φ(~x′, t′), φ(~x, t)]

]

=

∫ ∞

−∞
dt′

∫
d3x′ Jext(~x

′, t′) GR(~x′, t′) (3.101)

δ〈φ(t, ~p)〉 =
∫ ∞

−∞
dt′ Jext(t

′, ~p) GR(t′, ~p) (3.102)

δ〈φ(ω, ~p)〉 = Jext(ω, ~p) G
R(ω, ~p) , (3.103)
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where in Eq. 3.101 we have sent t0 → −∞ and respecting the Θ-function in Eq. 3.19
set t = ∞. Note in this form the retarded correlation function is also known as the
response function, it thus quantifies the response of a system to a small perturbation
out of equilibrium due to the external source. Subsequently it yields the opportunity to
compute dynamical quantities of a thermal system.

To do so it is an advantage to define the static susceptibility at t = 0, where the source
term is specified to read:

Jext(t, ~p) = eǫtΘ(−t)Jext(0, ~p) , (3.104)

this type of external source leads to an adiabatic change in the thermal system. In this
setup the static susceptibility is

δ〈φ(0, ~p)〉 = χs(~p)Jext(0, ~p) = χs(~p)J
0
ext

⇒ χs(~p) =

∫ ∞

−∞
dt′e−ǫt′GR(t′, ~p) = GR(iǫ, ~p) , (3.105)

as a consequence the zero frequency correlation function is equal to the static suscep-
tibility χs. Combining the above relations and integrating both sides of Eq. 3.102 by∫∞
0 dωeiωt(...) one may derive an explicit expression for the response function [23]:

GR(ω, ~p) · J0
ext = χs(~p) · J0

ext + iω

∫ ∞

0
dteiωtδ〈φ(t, ~p)〉 . (3.106)

A good example to see how Eq. 3.106 works is to consider the diffusion of a massive
particle in a thermal medium. Specifically the particle density n(t, ~p) is connected with
the following correlation function:

Gnn(t, ~p) =

∫
d~xe−i~p~x〈[n(t, ~x), n(0, ~x)]〉 (3.107)

and obeys the classical diffusion equation [23]:

∂tn(t, ~x) +D∆n(t, ~x) = 0 , (3.108)

where D is the diffusion constant. After Fourier transformation the solution of the
diffusion equation reads

n(ω, ~p) =
n(t = 0, ~p)

−iω +Dp2
. (3.109)

note due to Eq. 3.105 the initial conditions is given by n(t = 0, ~p) = χq(~p). Plugging the
last expression into Eq. 3.106 one obtains the retarded correlation function

GR
nn(ω, ~p) = χs(~p) + iω

χs(~p)

−iω +Dp2
. (3.110)
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As highlighted above the imaginary part of the retarded correlation function immediately
gives the spectral function:

ρnn(ω, ~p) =
1

π
ImGR

nn(ω, ~p) =
χs(~p)

π

ωDp2

ω2 + (Dp2)2
. (3.111)

Also in this case the density-density, i.e. time-time, and longitudinally polarized spectral
functions are connected by Eq. 3.72, subsequently one writes:

ρL(ω, ~p) =
χs(~p)

π

Dω3

ω2 + (Dp2)2
. (3.112)

Using the last expression it is possible to define a Kubo formula. The so called Kubo
formula (see e.g. [30]) thereby relate the spectral functions to the transport properties
of a system, i.e. the transport coefficients, which is in this case the diffusion constant D:

Dχs = π lim
ω→0

lim
~p→0

ρL(ω, ~p)

ω
. (3.113)

For the electrical conductivity defined by ~JEM = σ ~E one may argue similarly to
find [28–30]:

σ =
1

6
lim
ω→0

1

ω

∫
d4x eiωt

〈[
JEM (x, t), JEM (0, 0)

]〉
Θ(t) (3.114)

As a result, given the connection of the retarded correlation function to the spectral
function, the corresponding transport coefficients may be read off the spectral function
once it is computed. In this work this is precisely the electrical conductivity of the quark
gluon plasma and the corresponding Kubo formula is:

⇒ σ =
Cem

6
lim
ω→0

ρii(ω, ~p = 0)

ω
=
Cem

6
lim
ω→0

ρV (ω 6= 0, ~p = 0)

ω
, (3.115)

where Cem =
∑

f Q
2
f is the sum of the electrical charges squared over the number of

flavors.

3.2.2 Heavy Quark Diffusion from the Langevin Equation

To get an idea of the shape of the spectral function that arises due to transport phenom-
ena in QCD, first look at the diffusion of a heavy quark in the quark gluon plasma. In
this setting the time scale for the diffusion of a heavy quark is in fact set byM/T 2, which
is long compared to the thermal time scale 1/T typically obeyed by the light quarks.
As a consequence a Langevin formalism may be invoked to appropriately describe the
system [78].
Together with the diffusion equation Eq. 3.108 the equations of motion in the Langevin
formalism are:

d~x

dt
=

P

M
,

d~p

dt
= ξ(t)− η~p(t) , 〈ξi(t)ξj(t′)〉 = κδijδ(t− t′) . (3.116)
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The solution may be found to read

~p(t) = e−ηt
[
~p(0) +

∫ t

0
dt′ξ(t′)eηt

]
, (3.117)

so that

lim
t→∞
〈pi(t)pj(t)〉 =

κ

2η
δij . (3.118)

Due to the equipartition and fluctuation-dissipation theorems the drag and fluctuation
coefficients are directly related

η =
κ

2MT
. (3.119)

For a thermal initial distribution of momenta 〈pi(0)pj(0)〉 = MTδij one may work out
the mean square distance

〈x2(t)〉 = 6D

η
(ηt− (1− e−ηt)) with D =

T

Mη
, (3.120)

where the diffusion constant D has been introduced. As such the above equation de-
scribes both the initial thermal velocity of the heavy quarks and the late time diffusion.

In order to make the connection with linear response theory and especially Eq. 3.106,
assume the probability P (t, ~x) of a heavy quark starting at time t = 0 moves a distance
~x over a time t is given by a Gaussian distribution where the width is given by the mean
square distance:

N(t, ~x) =

∫
d~x′P (t, ~x− ~x′)N(0, ~x′)

=

∫
d~x′ (2π 〈x2(t)〉 )−3/2 exp

[
− (~x− ~x′)2

2 〈x2(t)〉
]
N(0, ~x′) . (3.121)

This expression is equivalent to N(t, ~p) = P (t, ~p)N(0, ~p) and consequently the retarded
correlation function from linear response theory is written as

GR
00(ω, ~p) = χs(~p) + iω

∫ ∞

0
dt eiωtP (t, ~p) (3.122)

= χs(~p) +Dp2
∫ ∞

0
dt eiωt(1− e−ηt) exp[−Dp

2

η
(ηt− (1− e−ηt))]. (3.123)

Assuming Dp2 << η, which is equivalent to assuming (D~p)2 << T/M the last equation
may be approximated [22], the subsequent integration yields

GR
00(ω, ~p) = χs(~p) +Dp2

( 1

Dp2 − iω −
1

η − iω
)

. (3.124)
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Figure 3.7: The time-time (left) and longitudinal (right) spectral functions divided by
frequency from the Langevin approach for diffusive heavy quarks at differ-
ent momenta (solid lines), the corresponding free results have been included
(dashed lines) for comparison, whereby the diffusion constant D has been set
to unity throughout. Note the approximation of Eq. 3.124 (black dashed lines)
does not reproduce the full data well even at momentum p̄ = 0.5.

As before the corresponding spectral functions are then obtained from the imaginary
part of the retarded correlation function:

ρ00(ω, ~p) =
1

π
ImGR

00(ω, ~p) =
χs(~p)

π

ω(η2 − (Dp2)2)Dp2

((Dp2)2 + ω2)(η2 + ω2)
(3.125)

ρL(ω, ~p) =
ω2

p2
ρ00(ω, ~p) =

χs(~p)

π

ω3D(η2 − (Dp2)2)

((Dp2)2 + ω2)(η2 + ω2)
. (3.126)

The integration of Eq. 3.123 without further assumptions yields the Langevin results
on the spectral function of diffusing heavy quarks [78]. This may be done numerically
or analytically, whereby it is an advantage to rescale the variables to:

t = tη ; ω =
ω

η
and p2 =

Dp2

η
. (3.127)

The resulting spectral functions in these rescaled variables are shown in Fig. 3.7. Here
the spectral functions are given in units 1/ω and the approach to the Breit-Wigner peak
in the limit p̄→ 0 can be nicely seen. At the same time the approximation of the integral
is clearly only valid for very small momenta and the deviation from the actual result is
already very large at p̄ = 0.5.

Note the free theory results also shown in Fig. 3.7 can be derived directly following
the scheme of Chp. 3.1.1 in the non-relativistic limit, nf = exp[−p2/(2MT )], at very low
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momentum p≪ T [78]:

ρL(ω, ~p) = χs(~p)
ω3

p2
·
(
2πp2〈v

2

3
〉
)−1/2

· exp
[
− ω2

2p2〈v23 〉

]
, (3.128)

here 〈v2/3〉 is the thermal average of the squared velocity of quarks. As such its value
is 〈v2/3〉 = 1/3 for light and 〈v2/3〉 = T/M for heavy quarks. Note however that the
non-relativistic limit is not appropriate for a light quark system.

Beginning from Eq. 3.126 the longitudinally polarized spectral function in the limit of
vanishing momentum becomes equivalent to the spatial spectral function ρL → ρii/3 ,
in this case the spectral function becomes [78]

ρL(ω, 0) = lim
~p→0

ω2

p2
ρ00(ω, ~p) =

χs(0)

π

T

M

ωη

ω2 + η2
, (3.129)

which in turn yields the expected δ-function shape if the drag coefficient vanishes:

lim
η→0

ρL(ω, 0) =
χs(0)

π

T

M
ωδ(ω) . (3.130)

This result implies that in the limit of vanishing momentum the transport contribution
arising in the interacting theory is in fact well described by a Breit-Wigner peak with
its maximum at ω = 0. Even though this result was derived for massive quarks, it is
reasonable to assume that this shape is also realized in the case of massless quarks. In
the next step further evidence to substantiate this assumption is given by considering
light quarks in a Boltzmann type gas of particles.

3.2.3 Light Quarks in a Boltzmann Gas

The Langevin theory that was applied above hinges on the separation of time scales
between the diffusing heavy particle ∼ M/T and the thermal medium ∼ 1/T . A priori
such a separation cannot be safely assumed for light quark species.
One possibility however to study a thermal system of light quarks is to use the framework
laid down in the Boltzmann transport equation. In this kinetic theory the properties
of dilute gases are explained by analyzing the elementary collision processes between its
constituents. As such the physical interpretation is that of a particle propagating freely
until it collides with a constituent of the medium, at which point it consequently changes
its properties, e.g. momentum or flavor. The evolution of the transition probabilities of
such a particle may then be approximated by the Boltzmann equation for the probability
distribution f(t, ~x, ~p):

(∂t+ vp · ∂x)f(t, ~x, ~p) = C[f, ~p] , (3.131)

where C[f, ~p] is the so called collision operator. Generally speaking the Boltzmann
equation is linearized in a next step, as it cannot be solved analytically. One possibility to
do so is to linearize around the equilibrium distribution with constant temperature [79]:

f(t, ~x, ~p) = nF + δf(t, ~x, ~p) . (3.132)
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In the specific case of light quarks the computation was done by Hong and Teaney in [79]
and the most important steps of their treatment are briefly sketched in the following,
see also [23] for a review.

Through linear response theory and Eq. 3.103 the aim is to compute the retarded
correlator Gµν

R (ω,~k), switching to the notation of [79] Eq. 3.103 becomes:

〈Jµ(ω,~k)〉A = −Gµν
R (ω,~k)Aν(ω,~k), (3.133)

where 〈Jµ(ω,~k)〉A = δ〈φ(ω, ~p)〉 and the source is Aν(ω,~k) = Jext(ω,~k). Ultimately it

can be shown that 〈Jµ(ω,~k)〉A is directly accessible from the probability distributions
δf(t, ~x, ~p), see below Eq. 3.138.

Treating light quarks using the Boltzmann equation one has to include an external
field, this is the Lorentz force acting on a charged particle F i = QsF

i
µv

µ and it leads to
the Boltzmann equation for strangeness excess:

1

E~p

[
pµ∂µ +QsF

µνpν
∂

∂pµ

]
fs(~x, ~p, t) = Cs[f, ~p] , (3.134)

whereby the charge Qs is one for strange, minus one for anti-strange and zero for all
other quark species. In the next step one applies a weak external gauge field Aµ = (0, ~A)
to disturb the system from equilibrium. In this setting the corresponding linearized
Boltzmann equation is:

(−iω + i~vp · ~k)δfs−s̄(ω,~k)− iωnF (1− nF )2QsAi
pi
E~p

= Cs−s̄[δf, ~p] , (3.135)

where Cs−s̄[δf, ~p] is the full collision operator and the gauge field disturbs only the
fermionic difference δfs−s̄ = δfs − δf s̄.

The above equation must be solved for δfs−s̄ given the specific collision operator
Cs−s̄[δf, ~p]:

(Cq
qg − cq̄qg) = −

2γ

p
nF (1 + nB)[χ

q(~p)− χq(~p)]

+
2γ

ξp
nF (1 + nB)

∫

~k

1

k
nF (1 + nB)[χ

q(~p)− χq(~p)] , (3.136)

where, introducing also the Debye screening mass mD,

γ =
g4C2

F ξ

4π
log(

T

mD
) and ξ =

∫
d~k

(2π)3
1

k
nF (1 + nB) =

T 2

16
. (3.137)

As such the collision operator combines a loss and a gain term due to the quarks and
gluons. Once having computed δfs−s̄(ω,~k) the solution can be directly connected to
Eq. 3.133:

〈Ji〉A = Qsνs

∫
d~p

(2π)3
pi
E~p

δfs−s̄ , (3.138)
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Figure 3.8: The spectral functions divided by the frequency and normalized to unity at
ω′ → 0 , k̄ → 0 for the transversally (left) and longitudinally (right) polarized
vector spectral functions at finite momentum from the Boltzmann equation.
The solid lines show the spectral functions given their momentum k̄, the
dashed lines denote the corresponding free curves. The results at vanishing
momentum are given by the solid black lines.

whereby νs counts the degrees of freedom of the quarks and gluons.
As noted the corresponding calculations were done in [79], where additionally the same
procedure was applied to the free Boltzmann equation. In this case it is possible to
derive the corresponding spectral functions below the lightcone analytically:

ρL(ω, ~p)

ω
= c1 ·

ω2

p3
Θ(p− ω) , c1 =

πQ2
sνs
6

(3.139)

ρT (ω, ~p)

ω
= c2 ·

1

p

(
1− ω2

p2

)
Θ(p− ω) , c2 =

πQ2
sνs

12
. (3.140)

The resulting spectral functions scaled by frequency and normalized to unity in the
limits of vanishing frequency and momentum are shown in Fig. 3.8 both in the free and
the interacting case. Note here that the parameters are rescaled via

µF ≡
g2CFm

2
D

8π
log(T/mD) to ω′ = ωT/µF and k̄ = |p|T/µF . (3.141)

As such the parameters are not directly compatible with those invoked in the Langevin
formalism or those generally used in this work. Nevertheless comparing Fig. 3.8 and
Fig. 3.7 note the shape of the curves in the longitudinal channel are in fact very similar
for both cases. One particularly encouraging result is that in the case of vanishing
momentum all models seem to be well described by a simple Breit-Wigner form. This
solidifies the idea that the transport contribution in the vector current-current channel
may be modeled by a Breit-Wigner peak.
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3.3 Hard Thermal Loops and Alternative Approaches

Even though our aim here is the calculation of ultimately non-perturbative effects from
ab initio conditions, the above examples have shown the usefulness of model calculations.
Additionally perturbative techniques are among the most efficient and highly advanced
methods at our disposal and great successes have been made in extending its regime of
validity also in QCD. One such effort is given by the hard thermal loop resummation
scheme, another by exploiting the gauge/gravity correspondence of string theory.

3.3.1 Dileptons from Hard Thermal Loops

In finite temperature perturbative QCD one has to differentiate between hard momenta
of the order of O(T ) and soft momenta O(gT ). It can be shown that if all momenta in
a perturbative expansion are hard, ordinary perturbation theory applies and loop cor-
rections are suppressed by two powers in the strong coupling O(g2) [80]. If on the other
hand there is a soft momentum involved additional loop corrections at O(g) arise and
are of the same magnitude as the tree-level amplitudes [30, 31, 80]. The essential ingre-
dient of the hard thermal loop scheme is to resum these hard thermal loop corrections
in order to include all leading order effects in O(g) [80]. In our case this implies the free
propagator introduced in Eq. 3.33 is replaced by a resummed hard thermal loop effective
propagator. The rest of the calculation may then follow the general scheme outlined in
Chp. 3.1.1.
The effective hard thermal loop propagator reads [35, 80]:

ρHTL
F (K) =

1

2

(
ρ+(K)(γ0 − i

~k

|~k|
~γ) + ρ−(K)(γ0 + i

~k

|~k|
~γ)

)
, (3.142)

where

ρ±(k0, k) =
k20 − k2
2m2

T

[δ(k0 − ω±) + δ(k0 + ω∓)] + β±(k0, k)Θ(k2 − k20) , (3.143)

and

β±(k0, k) = −
m2

T

2
(±k0 − k)

([
π

2
m2

T

±k0 − k
k

]2

+

[
k(−k0 ± k) +m2

T

(
±1− ±k0 − k

2k
ln[
k + k0
k − k0

]

)]2)−1

, (3.144)

whereby mT (T ) = g(T )T/
√
6 denotes the thermal mass. Clearly the spectral density of

the fermions is much more complicated in the HTL-scheme compared to the free case,
first of all there are two separate dispersion relations [35, 80] in the thermal medium
denoted by ω±(k). These two branches represent the propagation of quarks in the
medium (ω+(k)) and a propagating collective mode that does not have an analog at
zero temperature (ω−(k)). Additionally however there is a branch cut from below the
lightcone, it can be shown that this contribution results from the interaction of valence
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Figure 3.9: Left: The pole-pole, pole-cut and cut-cut contributions to the vector spectral
function (σ(ω) = ρ(ω)) from hard thermal loops at mT /T = 1, the free vector
spectral function is shown for comparison and given by the crosses. Figure
taken from [81]. Right: The full hard thermal loop spectral function in 1/ω
compared to the free continuum at mT /T = 1.

quarks with the thermal gluons and corresponds to Landau damping [30, 35, 80].
As a consequence of these different contributions to the fermion spectral function the
desired vector meson spectral function is made up of three distinct contributions:

ρHTL(ω) = ρpole-pole(ω) + ρpole-cut(ω) + ρcut-cut(ω) . (3.145)

Nevertheless the calculation can be done [35] for the dilepton rate and using Eq. 1.21
the spectral function can be computed:

ρHTL(ω) =
4 ·Nc

π2
(eω/T − 1)

∫
k2dk

∫
dx

∫
dx′ nF (x)nF (x

′)δ(ω − x− x′)

×
[
4
(
1− x2 − x′2

2kω

)2
ρ+(x, k)ρ−(x

′, k)

+
(
1 +

x2 + x′2 − 2k2 − 2m2

2kω

)2
ρ+(x, k)ρ+(x

′, k)

+
(
1− x2 + x′2 − 2k2 − 2m2

2kω

)2
ρ−(x, k)ρ−(x

′, k)

+ Θ(k2 − x2)
m2

q

4kω2

(
1− x2

k2

)

×
((

1 +
x

k

)
ρ+(x

′, k) +
(
1− x

k

)
ρ−(x

′, k)
)]

. (3.146)

The resulting contributions to the spectral function and the full result at mT = 1
are shown in Fig. 3.9. Clearly the pole-pole, pole-cut and cut-cut yield very different
contributions to the spectral function and we refer the reader to [35, 80] and [81] for
detailed discussions. At this point we are only interested in the full result on the right of
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Fig. 3.9. For large frequencies the hard thermal loop result approaches the free continuum
one, while it diverges at low frequencies and especially does not yield a finite value
at ω → 0, this phenomenon however has been well studied and is due to the order
of accuracy in the hard thermal loop scheme as higher and higher orders in O(gnT )
contribute. The peaks visible in the full result are known as van-Hove singularities and
it would be interesting to see whether the lattice might confirm the existence of the
latter. In this work however we are far away of achieving this.

3.3.2 Spectral Functions from AdS/CFT Correspondence

The AdS/CFT correspondence is the best understood gauge/gravity correspondence
and to date the most successful invocation of the holographic principle.
The idea of the holographic principle was first introduced by ’t Hooft [82] and later put
into a string theory context by Susskind [83]. Whereby the initial spark to its formulation
came from the study of black holes. Here the well known Bekenstein-Hawking entropy
formula [84] suggested the entropy of a black hole is in fact proportional to the area A
of its boundary and not its volume:

SBH = A · kB

4
√
G~/c3

. (3.147)

The idea that the information content of a gravity system is not proportional to its
volume caused a lot of puzzlement for many years. Ultimately however it lead to the
formulation of the holographic principle, which states that the gravity description of
a volume of space can be thought of as encoded on a boundary to the region by some
other theory. So a d-dimensional gravity theory may be described by a d−1-dimensional
theory on its boundary.

In type IIB string theory in an AdS5 × S5 background it could be shown [85] that
after compactification of the S5-spheres, so they do not contribute any more, there is
indeed such a boundary theory. Moreover it could be shown that this theory is in fact
four dimensional N = 4 SYM theory [85].
Hereby the parameters of the field theory, i.e. the number of colors Nc and the cou-
pling g2, could be directly related to those of string theory in the AdS-space-time. This
duality between string theory and field theory can be shown to be strongest when the
coupling g2 is small but the ’t Hooft coupling is large λ = g2Nc. In this situation the
former limit suppresses the loops in string theory and the latter suppresses the stringy
effects, effectively reducing string theory to supergravity. As a consequence the weakly
coupled supergravity theory may be used to compute strongly coupled N = 4 SYM
theory. Additionally placing the string equivalent of a black hole into the AdS space-
time it is possible to set the temperature of the system and to naturally study finite
temperature effects in N = 4 SYM theory.

With such a setup in hand it is possible to derive the spectral functions of finite

73



Chapter 3 The Phenomenology of Spectral Functions

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

ω/T

ρ(ω)/ωT

free

HTL

AdS/CFT

Figure 3.10: The spectral function from AdS/CFT. Note the shown result is Eq. 3.148
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temperature strongly coupled N = 4 SYM theory in the large Nc limit explicitly [86]:

ρ(ω) =
N2

c

16π
· ω2 sinh(ω/2T )

cosh(ω/2T )− cos(ω/2T )
, (3.148)

leading to the conductivity

σ

T
=
N2

c

16π
. (3.149)

Setting Nc = 3 and rescaling to fit the free continuum result this spectral function is
shown in Fig. 3.10. Even though the conductivity is not a universal parameter and thus
depends on the theory under consideration, it is interesting nevertheless to see what
happens to it in a strongly coupled setting [87]. Comparing the lines from hard thermal
loops and AdS/CFT in Fig. 3.10 the lack of a transport peak in the low frequency
region is immediately apparent. The lack of the latter would imply that the strongly
coupled theory does not admit a quasiparticle interpretation [88] and it is subsequently
interesting to see whether or not strongly coupled QCD shares similar features.
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Chapter 4

Lattice Methodology

After these points on the spectral function let us turn to the actual methods on the
lattice that are needed to calculate the latter.

From finite temperature quantum field theory and statistical physics it is clear that
thermal expectation values of observables are given by [41–47]:

〈Ô〉 = 1

ẐQCD

∫
dÂdΨdΨ̂ · Ô · exp[−ŜQCD] (4.1)

The observables of interest in this thesis are the vector current-current correlation func-
tions defined in Eq. 3.26 on the lattice, thus write:

Gµν(τ, ~x) =
〈
Jµ(τ, ~x)J

†
ν(0,~0)

〉

=
1

Z

∫
DUDΨDΨ

(
Ψ(τ, ~x)γµΨ(τ, ~x)

)(
Ψ(0, 0)γ†νΨ(0, 0)

)
· exp[−S]

=
1

Z

∫
DUDΨDΨ

(
Tr

[
M−1(τ, ~x; 0,~0)γµM

−1(0,~0; τ, ~x)γ†ν

]

− Tr
[
γ†νM

−1(0,~0; 0,~0)
]
Tr

[
γµM

−1(τ, ~x; τ, ~x)
])
· exp[−S] , (4.2)

whereby the first summand of the above equation corresponds to connected, while the
second corresponds to disconnected diagrams in the correlation function.

Figure 4.1: G(τ, ~x) is made up of
connected and disconnected
diagrams.

However the contributions from the discon-
nected diagrams are parametrically small. This
can be argued from high temperature pertur-
bation theory. Here they give rise to the small
difference of quark number and isospin suscep-
tibilities, as they occur at O(g6 ln 1/g) in the
perturbative expansion and only show close to
the critical temperature Tc [77, 89].

Additionally the contribution of the discon-
nected diagrams vanishes for three degenerate
quark flavors in the calculation of the electro-
magnetic current:
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Jem =
∑

q

QqΨq(τ, ~x)γµΨq(τ, ~x) , (4.3)

here the contribution can be shown [77,90] to be proportional to ∼ (
∑

q Qq)
2, while the

connected part is proportional to Cem =
∑

q Q
2
q .

As a consequence we will restrict our discussion to the connected diagrams of Eq. 4.2,
the path integral in the case of two light quark flavors that is to be evaluated is:

Gµν(xµ) =
1

Z

∫
DU Tr

[
M [U ]−1(xµ; 0)γµM [U ]−1(0;xµ)γ

†
ν

]
det[M [U ]]2 exp[−SG[U ]].

(4.4)

In the quenched approximation the term det[M [U ]]2 = 1 as described before. Thus the
fermion matrix must be handled solely when computing the fermion propagator.

4.1 Lattice Correlation Functions and the Kernel

The connection between the lattice correlation function and the spectral function is given
by Eq. 3.30:

G(τ) =

∫ ∞

0

dω

2π
ρ(ω)K(τ, ω) (4.5)

where the kernel K(τ, ω) is given by:

K(τ, ω) =
cosh(ω(τ − 1/2T ))

sinh(ω/2T )
, (4.6)

as noted before it may be interpreted as the free boson propagator [29] and the spec-
tral function determines spectral distribution. Consequently the kernel is fixed and it is
important to understand its effect on the correlation functions we will compute on the
lattice.

To this extent notice the kernel may be rewritten in the limit of very large frequencies:

K(τ, ω) =
cosh(ω(τ − 1/2T ))

sinh(ω/2T )

ω≫0−−−→ exp[−ωτ ] . (4.7)

This implies the kernel suppresses the high frequency region of the spectral function in
Eq. 4.5 and subsequently the correlator is largely insensitive to the high ω-region.
For completeness note the same situation arises in the limit T → 0, as there the kernel
may be rewritten in the same fashion.
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the free lattice spectral function for Nτ = 16, 24, 32 and 48. Right: The ratio
of the free lattice and free continuum correlation functions for the same Nτ .

Expanding the kernel in the low frequency region on the other hand gives [94]:

K(τ, ω) =
2T

ω
+
( 1

6T
− τ + Tτ2

)
ω +O(ω3) , (4.8)

clearly this expression diverges as O(1/ω). Then time dependence only goes as τ · ω, as
the contribution Tτ2 · ω is suppressed given typical Euclidean times τT ∈ [0.1 : 0.5]. As
such the kernel exhibits only very weak time dependence in the region of low frequencies.

In Fig. 4.2(left) we show the kernel K(τT, ω/T ) in a double logarithmic plot for
τT = 0.1(grey) and τT = 0.5(black), as such the two values constitute the edges of
the Euclidean time window of a typical correlator. For frequencies ω/T . 4 the kernel is
seen to be the same over the entire time window, given the scales of the figure. Beyond
ω/T ≃ 4 on the other hand it starts to diverge and fall rapidly, consequently the kernel
highly suppresses the high frequency behavior of the spectral function in the correlator
computed from Eq. 4.5. To illustrate the effect this has on the full integrand we also
show the location of the dominant cusp in the free lattice spectral function ωcp1, see
also Fig. 3.5. Comparing the strength of the suppression of the kernel and the location
of ωcp1 it becomes apparent that for τT = 0.5 the contribution of the spectral function
at ωcp1 on the Nτ = 16 lattice gets a suppression factor of the order O(10−5) and even
O(10−25) for Nτ = 48. With such large suppression factors we can quite safely conclude
that the high frequency behavior of the correlator at τT = 0.5 is effectively cut off and
all the information originates from the low and intermediate frequency regions.
However this is only the midpoint, at smaller Euclidean times and ultimately τT = 0.1
we see that the suppression factor from the kernel weakens and becomes O(10−5) for
Nτ = 48 and even O(1) for Nτ = 16. So across the time window the high frequency
part and thus the lattice discretization effects gain in importance in the integrand of
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Eq. 4.5. In the following we will therefore choose carefully the region where we might
safely assume the high frequency, discretization effects to be of a subleading order.
The above argument is shown once more in Fig. 4.2(right), where we show the ratio of
the free lattice to free continuum correlation function. The deviation decreases with
increasing Euclidean time, however we also see that the Nτ = 16 lattice is contaminated
with discretization effects through the entire time window. Here the large suppression
factor from the kernel is not enough to cut off the high frequency contributions.

The large suppression of the high frequency region due to the kernel implies the
correlation function is in fact mostly determined by the low to intermediate frequency
domain. Even though this is exactly the region we wish to explore this result does not
simplify the problem. To see this remember that the correlation function is indeed only
dependent on Euclidean time and momentum G(τ, ~p), as the frequencies are integrated
out. However returning to our discussion of the low frequency behavior of the kernel
and its time dependence, we see that in the region ω/T . 4 in Fig. 4.2(left) the time
dependence is not clearly visible as the linear difference ωτ is swallowed by the Euclidean
time independent divergence of the kernel, as expected.
Consequently the weak time dependence in G(τ, ~p) makes it difficult to extract details of
the contributing spectral function, as the correlator at any τ essentially shows the same
information, also in the interacting case. As such extracting the detailed shape of the
transport peak from the correlator alone is very difficult.

4.2 Thermal Moments of the Correlation Function

Given the physics effects we are interested in here contribute at low frequencies and
the weak Euclidean time dependence entailing a weak signal of the detailed structure of
spectral functions in the correlator, one is prompted to motivate observables that might
be more sensitive to the region of low frequencies ω that we wish to explore.

One such possibility is the calculation of the thermal moments of the correlation
functions defined as:

G
(n)
H =

1

n!

dnGH(τT )

d(τT )n

∣∣∣
τT=1/2

=
1

n!

∫ ∞

0

dω

2π

(ω
T

)n ρH(ω)

sinh(ω/2T )
, (4.9)

where H = ii, V, P and n = even. Note all odd moments vanish as the spectral functions
as well as the integration kernel in the spectral representation of the correlators are odd
functions of the frequency.
Subsequently the thermal moments define the Taylor expansion coefficients of the expan-
sion of the correlation function around the temporal midpoint of the Euclidean lattice
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correlator:

GH(τT ) =
∞∑

n=0

G
(n)
H

(1
2
− τT

)n
. (4.10)

When computing the thermal moment defined in Eq. 4.9 the spectral function is weighted
by a term with a maximum at tanh(ω/2T ) = ω/2nT . This implies the n-th order moment
is most sensitive to the spectral function in the region where ω/T ≃ 2n, contributions
from higher order moments should be thus closer to their perturbative counterparts.
Furthermore the lowest order moments n = 0, 2, 4 are then expected to be most sensi-
tive to the low ω-region of the spectral function. Consequently the corrections due to
higher orders should be highly suppressed in the correlator at large Euclidean times.

To illustrate Eq. 4.10 we show the thus obtained correlator partially summing to
n = 0, 2, 4, 12 compared to the free correlation function in Fig. 4.3, on the left directly
and via the ratio Gpartial(τT )/Gfree(τT ) on the right. The dominance of the lowest
thermal moments at large distances τT is nicely revealed, as most of the correlation
function at τT & 0.38 is given in terms of the zeroth and second thermal moments.

In the infinite temperature, free field limit the correlation function is known analyti-
cally, as was shown in Chp. 3.1.2. For massless quarks recall:

Gfree
V (τT ) = 6T 3

(
π(1− 2τT )

1 + cos2(2πτT )

sin3(2πτT )
+ 2

cos(2πτT )

sin2(2πτT )

)

Gfree
ii (τT ) = T 3 +Gfree

V (τT )

Gfree
PS (τT ) =

1

2
Gfree

V (τT ) . (4.11)
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Consequently the first three non-vanishing moments become:

G
(0),free
V = 2G

(0),free
PS =

2

3
G

(0),free
ii = 2T 3 (4.12)

G
(2),free
H = 2G

(2),free
PS =

28π2

5
T 3 (4.13)

G
(4),free
H = 2G

(4),free
PS =

124π4

21
T 3 (4.14)

At this point also define the ratios of moments given by:

R
(2,0)
V,free =

G
(2),free
V

G
(0),free
V

= R
(2,0)
PS,free =

14π2

5
≃ 27.635 (4.15)

R
(2,0)
ii,free =

2

3
R

(2,0)
V,free ≃ 18.423 (4.16)

R
(4,2)
H,free =

155π2

147
≃ 10.407 . (4.17)

Note also that G
(n)
ii = G

(n)
V for all n > 0 at all values of the temperatures as the

correlators differ only by the constant contribution originating from the time-time cor-
relator G00(τT ) that is connected to the quark number susceptibility χq(T ), as noted in
Chp. 3.2. While in the free case Gii(τT ) contains a constant contribution that drops out
in the calculation of the higher moments, this is no longer the case at finite values of

the temperature. All thermal moments G
(n)
H with n ≥ 0 will be sensitive to the thermal

modification of the δ-function contribution of ρii(ω). Following the above reasoning we
nevertheless expect this contribution to be more and more suppressed in higher order
thermal moments.

The correlation function is dominated by an exponential decay, see e.g. Eq. 3.65. To
cancel this contribution we will analyze the ratio of GH(τT ) and the free field correlator

Gfree
H (τT ) in the following:

GH(τT )

Gfree
H (τT )

=
G

(0)
H

G
(0),free
H

(
1 + (R

(2,0)
H −R(2,0)

H,free)
(1
2
− τT

)2
+ ...

)
. (4.18)

As the thermal moments are defined by derivatives of the correlation function, the ratio
of midpoint subtracted correlation functions gives a more direct handle on the second
and higher orders:

∆H(τT ) ≡ GH(τT )−G(0)
H

Gfree
H (τT )−G(0),free

H

=
G

(2)
H

G
(2),free
H

(
1 + (R

(4,2)
H −R(4,2)

H,free)
(1
2
− τT

)2
+ ...

)
. (4.19)
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As a consequence the curvature of these ratios at the midpoint determines the deviation
of ratios of the thermal moments from the corresponding free field values. In the sub-
tracted correlation function the additional constant contributing to GV (τT ) drops out
and subsequently H = ii and H = V degenerate. The ratio of the correlation functions
on the other hand differ:

GV (τT )

Gfree
V (τT )

6= Gii(τT )

Gfree
ii (τT )

, ∆V (τT ) = ∆ii(τT ) and G
(n)
V = G

(n)
ii for n > 0 (4.20)

These relations and the special sensitivity of the thermal moments on the low fre-
quency region of the spectral function give us a new handle on the expected in-medium
modification of the latter. As such they will prove very useful in the following.

4.3 An Ill Posed Problem and its Bayesian Solution

Given the correlation function from the lattice the spectral function may be directly
computed via inversion of the relation of Eq. 3.30:

G(τ) =

∫ ∞

0

dω

2π
ρ(ω)

cosh(ω(τ − 1/2T ))

sinh(ω/2T )

T→0−−−→
∫ ∞

0

dω

2π
ρ(ω) exp[−ωτ ]

⇒ ρ(ω) = F−1(G(τ)) , (4.21)

where F−1 denotes the inverse transformation. As mentioned before for large frequencies
ω ≫ 0 or at zero temperature this is the inverse Laplace transform. Numerically this
is an ill-posed problem, which in the case of the inverse Laplace transform is subject of
intense mathematical research [23].
Put simply the resulting spectral functions should be continuous with an order of degrees
of freedom ∼ O(1000) but the correlators computed on the lattice only have an order of
∼ O(10) points that can be used as input. Consequently there is an infinite number of
solutions to Eq. 4.21.
However, even if it were feasible to compute the correlation function with ∼ O(1000)
points this does not solve the problem, as the data naturally possess errors. In the case
of the inverse Laplace transform it can be shown mathematically [91] that the possible
errors in the spectral function resulting from the imprecise correlator data only decrease
logarithmically. This implies improving the accuracy of the spectral function is in fact
exponentially computationally expensive.
To see this write the data as G(τ) = Gtrue(τ) + δG(τ), then let the ’error-spectral
function’ δρ(w) correspond to δG(τ). Now let the data satisfy a quality criterion, while
also limiting the oscillations of the error-spectral function [23, 91]:

∫ ∞

0
dτ |δG(τ)|2 ≤ ǫ2 and

∫ ∞

0
dωω|δρ(ω)|2 ≤ E2 (4.22)
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The size of the set of solutions S = {δρ} can then be shown to satisfy the lower bound:

supδρ∈S ||δρ|| &
πE

2| log(ǫ/E)| (4.23)

As noted above the accuracy thus only decreases logarithmically in the quality of the
correlator data.
Taken together these two statements immediately imply that to compute the spectral
function via Eq. 4.5 large lattices and highly accurate data are needed. As such the
analysis in this thesis presents results of the largest today feasible quenched lattices
with Nσ = 128 and Nτ = 48 with accuracies below the 1%-level. A full dynamical
calculation is forbidding at this time also due to these additional constraints.

4.3.1 Maximum Entropy Method

One possibility to nevertheless solve Eq. 4.5 given the lattice data with errors is to resort
to a Bayesian method [92, 93]. Thus we are satisfied with computing the best solution
to Eq. 4.5 given some criterion, for example we could require the best solution to be the
most probable or “average” of the latter.

In our specific case Bayes’ theorem states that the most probable spectral function
can be found by maximizing the posterior probability defined as [93]:

P [ρ|GH] =
P [G|ρH]P [ρ|H]

P [G|H]
, (4.24)

here ρ is the desired spectral function, while G denotes the data with errors and H
prior input information. Generally P [ρ|GH] is called the posterior probability, as noted
above, P [G|ρH] the likelihood function, P [ρ|H] the prior probability and P [G|H] the
evidence. As a consequence the problem of computing the spectral function is reduced
to specifying the likelihood function and the prior probability [22, 93].

In the case of the likelihood function this can be done by following the central limit
theorem. The functional form of P [G|ρH] can be expressed by a standard χ2-distribution
when the number of measurements N becomes large:

P [G|ρH] ∼ exp[−L] = exp[−χ
2

2
] , (4.25)

with

χ2 =

Nτ/2∑

i,j

(
Ḡ(τi)− F (τi)

)
C−1
ij

(
Ḡ(τj)− F (τj)

)
, (4.26)

here Ḡ(τi) denotes the average over all measurements, while Cij is given by the covariance
matrix:

Cij =
1

N(N − 1)

N∑

n=1

[Gn(τi)− Ḡ(τi)][Gn(τj)− Ḡ(τj)] , (4.27)
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F (τi) on the other hand is given in a discretized version by the trial spectral function
ρ̄(ω) and the predefined kernel K(τi, ω):

F (τi) =

∫ ∞

0
dωK(τi, ω)ρ̄(ω) ≃

∑

j

∆ωK(τi, ωj)ρ̄(ωj) (4.28)

with ωj = j · ω. In principle what we described so far is at basis of the standard χ2- or
least-squares fit procedure. In the standard approach the next step would be to maxi-
mize the likelihood function or equivalently minimize χ2.
However this method fails in our case as the number of input data points must be larger
than the parameters to be fitted. The fit parameters here are the degrees of freedom of
the spectral function and subsequently we run into the problem illuminated above.

The prior probability on the other hand cannot be derived as cleanly as the likelihood
function, it must be motivated and many different possibilities exist in literature. In our
case we choose the prior probability to be proportional to an entropy term:

P [ρ|H] ∼ exp[αS] , (4.29)

where α denotes a relative weight parameter between the likelihood function and the
entropy. The entropy term S(ρ) is given by the Shannon-Jaynes Entropy:

S(ρ) =

∫ ∞

0
dω

[
ρ(ω)−m(ω)− ρ(ω) ln

( ρ(ω)
m(ω)

)]
. (4.30)

At this point m(ω), the so called default model, enters. As such it encodes all the prior
information that we are able to specify for the system at hand. One advantage of this
type of prior probability is that it enforces the positivity of the result spectral function,
at the same time it allows one to specify prior knowledge about the spectrum explicitly
through the default model.
As the evidence P [G|H] is independent of the spectral function, it only implies a

normalization factor cGH . Putting these three pieces of information together one arrives
at the posterior probability by utilizing Eq. 4.24:

P [ρ|GH] = exp[−L] · exp[αS(ρ)]/cGH ∼ exp[αS(σ)− L] := exp[Q] . (4.31)

Subsequently the most probable spectral function can be found by maximizing P [ρ|GH] ∼
exp[Q] as function of the spectral function:

α∇ραS(ρ)−∇ραL = 0 (4.32)

As such this procedure to solve Eq. 3.30 numerically using Bayes’ theorem is called the
maximum entropy method (MEM).

Finally to reconstruct the spectral function the dependence on the weight parameter
α has to be specified. To do so once more invoke Bayes’ theorem and the identity

P [G|mα] =
∫
[dρα] P [G|ραmα]P [ρα|mα] (4.33)
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and arrive at:

P [α|Gm] =

∫
[dρ] P [G|ρmα]P [α|m]P [ρ|mα]/P [G|m]

=
1

α

∫
[dρα] exp[αS(ρα)− L] (4.34)

Using P [ρα|Gαm] = P [ρα|GH] and integrating over the wight parameter α the result
spectral function can be constructed:

ρ =

∫
dα

∫
[dρα] ρα P [ρα|Gαm]P [α|Gm]

≃
∫
dα ραP [α|Gm]

=

∫
dα

α
ρα

∫
[dρα] exp[αS(ρα)− L] . (4.35)

As noted above using MEM it becomes possible to compute the most probable spectral
function given the data with errors and prior information, parameterized in the default
model. It should be noted that MEM is a highly successful procedure with applications
in many areas ranging from high energy physics to image processing [93]. Naturally we
will be most concerned employing it to compute the current-current spectral functions in
lattice QCD and will highlight some of the specific challenges posed in this case below.

4.3.2 Remarks on the Bayesian solution

Computing spectral functions from meson correlation functions one is faced with some
limitations of the maximum entropy method and we will discuss two of them in the
following.

First recall that in the very low frequency region one may expand the integration
kernel to read (Eq. 4.8):

K(τ, ω) =
2T

ω
+
( 1

6T
− τ + Tτ2

)
ω +O(ω3) , (4.36)

this expression is clearly divergent at ω = 0 as mentioned before. When applying MEM
this must be taken into account, as it will otherwise influence the spectral function one
obtains [94, 95].
This divergence can be fairly simply removed by redefining the kernel before applying
MEM:

K̃(τ, ω) = tanh(
ω

2
) ·K(τ, ω) (4.37)

ρ̃(ω) = coth(
ω

2
) · ρ(ω) . (4.38)

In principle one is free to choose any suitable redefinition as long as the correlator re-
mains unmodified. One advantage of our choice is that it leaves the large frequency
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Figure 4.4: Mockdata test of MEM to highlight its problems. Shown is the spectral func-
tion in units of 1/ω, the blue line shows the default model supplied to MEM,
while the red line describes the input data. The magenta line represents the
MEM result and deviates strongly from the expected shape.

behavior of the kernel and the spectral function unchanged [95].

In practice a much more substantial drawback of the method is having to choose the
default model itself. Naturally the spectral function should behave as in the free case at
large enough frequencies or temperatures, however it is a priori not clear what the input
should be in the interesting low frequency region.
Given the data with errors there will be thus dependence on the default model and the
solution will not be unique. This is a systematic error introduced by MEM and there is
no clear possibility to quantify this error.

To illustrate these issues we show a mocktest of MEM in Fig. 4.4. Here the method
is given input data described by the spectral function denoted by SPF and choosing
the free spectral function as default model (DM). Clearly the resulting spectral function
obtained by MEM does not reproduce the input. In this case this is due to the exact
zero at ω = 0 in the free spectral function and the algorithm behind MEM. Without
going into too much detail note the spectral function that is to be computed may be
written as [94]:

ρ(ω) = m(ω) · exp[
N∑

j

cjuj(ω)] , (4.39)

where the functions uj(ω) are the basis functions of the discretized kernel K(τj , ωj). So
clearly to enable a non-zero intercept at ω = 0 in the spectral function the default model
is explicitly forbidden to vanish at this point. Thus using the free spectral function
as input MEM models the result spectral function around this fixed point at ω = 0
compensating at higher frequencies for the mismatch.
Nevertheless MEM is a very powerful tool, that, given the proper care, can be used very
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successfully and efficiently to obtain a feeling for the most dominant contributions to
the spectral function from only minimal input knowledge. However the uncertainties
induced by e.g the default model dependence lead to very large and undetermined errors
on physics results. If one were basing a physics analysis solely on MEM, it is therefore
best to put focus more on qualitative than quantitative results. A more qualitative
question that one might successfully answer using MEM for example is the dissociation
temperature of for instance charmonium, see e.g [22, 96].
The direct consequence in this work is however that we will not use MEM as a direct tool
to compute the spectral function from lattice a correlator. Instead we will develop an
alternative route that does not rely on MEM, but at the same time may be augmented
by it as a crosscheck.

4.4 An Alternative Route

Due to the insufficiencies of MEM it is desirable to develop and use an alternative
approach, preferably one that is more controllable and has understandable systematic
errors.
Here we revive and refine an older idea from [97], in a nutshell instead of using MEM it
entails using a well motivated fit-Ansatz for the spectral function that is used to compute
the correlator. This Ansatz naturally depends on a number of parameters, which are
then straightforwardly fitted to the correlator data using a standard χ2-procedure.
As we are free to choose we can construct classes of fit-Ansätze that may be varied to
explore the systematic effects induced by the choice of the specific Ansatz. Consequently
this gives us maximum control but also maximum bias.
To minimize the bias the Ansatz must be chosen with extreme care. The correlator data
must be evaluated very carefully, questions one needs to ask among others are:

• What and how strong are the effects of e.g. cut-off or finite size on the lattice?

• Is it possible to cleanly separate lattice effects from physics?

• Where is the data dominated by the perturbative/ the non-perturbative region?

• How well can the data be explained by known analytical solutions, e.g. the non-
interacting case?

• Can second level observables such as the thermal moments contribute additional
information that might be missed at first level?

• What are the model predictions in interacting theory? Are they compatible with
the data obtained?

Once these questions have been discussed we can motivate an Ansatz and systematically
vary it to describe all the data at hand simultaneously, in our case this means we fit the
correlator data and the thermal moments in the same fit-routine. The subsequent result
parameters give a fit-error and a quality criterion via the χ2/d.o.f of the fit-routine.
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Systematically varying the Ansatz within a suitably defined Ansatz class we can in turn
define also a more reliable systematic error. As a result parameters and spectral func-
tions are obtained that contain a small standard error but also a systematic error that
realistically encodes our gained knowledge.
In a next step the validity of the Ansatz class can be further confirmed by the maximum
entropy method. As such the result spectral functions from the Ansatz method are used
as default model for MEM, which will subsequently compute any corrections to the for-
mer. In this fashion MEM goes from a black box with difficult to control uncertainties
to a tool that quantifies corrections to a systematically obtained result.
In the following analysis we follow the above outlined scheme and ultimately we success-
fully compute the vector spectral function, see also [1] and [2].
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Chapter 5

The Vector Spectral Function at
Vanishing Momentum

In the past the vector current correlation function was already calculated, so before
turning to our new results we quickly review what has been achieved so far.

One of these past calculations was done using the same non-perturbatively improved
clover action as used in this work, however on lattices of size 643×16 [98]. A pure MEM
analysis without improved Kernel was used to determine thermal dilepton rates which
suggested a suppression of the spectral weight relative to the free spectral function at
small energies.
Additionally the vector correlation functions at finite temperature were analyzed using
staggered fermion formulations and a modified kernel was used in the MEM analy-
sis [94, 99]. This modification of the MEM algorithm increased the sensitivity of MEM
to the low energy structure of spectral functions and resolved part of the problems ob-
served before. However as was shown above, it is also crucial in a MEM analysis to
choose default models which allow for a linear slope of the spectral functions at small
energies for MEM to be able to reproduce a realistic spectral function.
Calculations of vector spectral functions using staggered fermions are more involved, as
two spectral functions, corresponding to different parity channels [100], need to be de-
termined simultaneously [94,99]. As such the staggered action is not particularly suited
to extract the spectral function from the correlator.
The past studies were performed using lattices with temporal extent up to Nτ = 14 [99]
and Nτ = 24 [94], respectively. They were performed with unrenormalized currents and
primarily aimed at a determination of the (unrenormalized) electrical conductivity. They
led, however, to quite different results, σ/T ≃ 7Cem [99] and σ/T ≃ (0.4± 0.1)Cem [94].

Our aim here is to improve over these studies with staggered fermions as well as
the analysis of the thermal dilepton rate performed with improved Wilson fermions.
To achieve this goal we compute the desired meson correlation functions using Wilson-
Clover fermions with unprecedented accuracy on very large lattices at varying values of
the cut-off and volume. Whereby the large lattice sizes enable us to go to very small
lattice spacing.
Ultimately we extrapolate the obtained results to the continuum limit, carefully checking
the systematics and keeping the lattice errors under tight control and below the 1%-level.
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Subsequently we compute the electrical conductivity and dilepton rates in the continuum
of quenched QCD at T ≃ 1.45Tc, taking into account also the systematic errors that
might arise from our analysis.

Going into more detail we have calculated the vector correlation function on lattices
of size N3

σ × Nτ , with 32 ≤ Nσ ≤ 128 and Nτ = 16, 24, 32 and 48. For Nτ = 16
we calculated GH(τT ) on lattices with spatial extent Nσ = 32, 64, 96 and 128. For
Nτ = 24 we checked that the quark masses used in our calculations are indeed small
enough on the scale of the temperature to be ignored in the analysis of our correlation
functions. On the largest spatial lattice, Nσ = 128, we performed calculations for four
different values of the lattice cut-off by choosing Nτ = 16, 24, 32 and 48 and at the
same time changing the value of the gauge coupling β such that the temperature is kept
constant, T ≃ 1.45Tc. Finally we varied the temperature at Nσ = 128 keeping the cut-off
scale fixed and varying the temporal extent Nτ = 16, 32 and 40, corresponding to the
respective temperatures T ≃ 3.0Tc, 1.45Tc and 1.2Tc.

As will be shown in the following it is indeed possible to systematically examine the
finite-size effects, as the large range of spatial lattice sizes used in this calculation, 2 ≤
Nσ/Nτ ≤ 8, allows to quantify finite volume effects at fixed values of the lattice cut-off,
aT = 1/Nτ . At the same time we are able to reduce the lattice spacing at T ≃ 1.45Tc to
about 0.01fm. As a result the variation of the cut-off, i.e. lattice spacing by a factor three
gives us good control over lattice cut-off effects in our calculation. We are subsequently
capable of carrying out the continuum extrapolation both for the correlation function
and its thermal moments. As a consequence we are able to compute the electrical
conductivity of the quark gluon plasma and the dilepton rate at unprecedented accuracy
with secure control over the systematic effects influencing our result.

5.1 The Vector SPF and Dilepton Rate in the Continuum
at T ≃ 1.45Tc

To begin our discussion let us first turn to the full vector correlation function GV (τT ). In
Fig. 5.1 we show the correlation function on the lattices at fixed temperature T ≃ 1.45Tc
and spatial extent Nσ = 128 together with their free continuum and free lattice coun-
terparts. Here the open symbols denote the free lattice correlators, while the magenta
line gives the free continuum. Clearly the exponential decay of the correlation function
dominates and obscures more subtle effects.
Nevertheless a large deviation of the correlator from the free case is naturally possible,
as is the case in the confined phase of QCD. Here, however, the correlator is seen to
be very close to the free field limit, implying that a spectral description based on or
incorporating the free behavior is a good starting point.
In the following therefore it will be useful to cancel the dominant exponential decay of
the correlator by normalizing with the free continuum or lattice counterparts. As will be
seen such a ratio efficiently reveals the more subtle physics in the correlation functions
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Figure 5.1: The full vector correlation function GV (τT ) at T ≃ 1.45Tc and varying cut-
off scale. The free continuum (magenta lines) and free lattice (open symbols)
are given for reference.

and, especially interesting for us, the contribution originating from the transport region
of the spectral function.

5.1.1 The Spectral Function of the Time-Time Vector Correlator

As was discussed in more detailed in Chp. 3.2 the spectral function of the time-time
correlation function G00(τT ) can be deduced from rather general arguments.
There it could be shown that the time-time correlation function is connected to the
conserved net quark number 〈n〉 = 0 through the quark number susceptibility [89].
Recall the time-time correlation function of the vector current given by Eq. 3.94 and
write

−G00(τT, ~p = 0)/T 3 = χq/T
2 . (5.1)

It is apparent that to verify the shape of the spectral function is to verify −G00(τ, ~p =
0)/T 3 to be indeed a τ -independent constant. In Fig. 5.2 we show the results for
−G00(τ, ~p = 0)/T 3 for all lattices analyzed in this work.

The left hand part of Fig. 5.2 shows results obtained on lattices with different spatial
extent at fixed lattice cut-off. Except for the smallest aspect ratio, Nσ/Nτ = 2, the
results agree within statistical errors of about 1%. The right hand part shows results
obtained on our largest spatial lattice, Nσ = 128, at four different values of the lattice
cut-off. This shows that also cut-off effects are small in the calculation of the time-
time component of the vector correlation function, i.e. the quark number susceptibility.
Apparently the fact that we use a non-conserved local current does not significantly alter
the spectral properties of the time-time correlator. Except for short distances it is to a
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Figure 5.2: The time-time component of the vector correlation function, −G00(τT )/T
3,

calculated at T ≃ 1.45Tc versus Euclidean time τT . The left hand part
of the figure shows the volume dependence of −G00(τT )/T

3 for Nτ = 16
and 32 ≤ Nσ ≤ 128. The right hand figure shows the cut-off dependence
of −G00(τ, T )/T

3 for Nσ = 128 and 16 ≤ Nτ ≤ 48. In both figures the
horizontal line shows a fit to the data obtained on the largest lattice, 1283×48.

good degree τ -independent.
This implies the spectral function is indeed a δ-function and we confirm:

ρ00(ω) = 2πχqωδ(ω) (X). (5.2)

The results for χq/T
2 ≡ −G00(τT )/T

3 calculated on the 1283 ×Nτ lattices are summa-
rized in Table 5.1.1, here we also include a continuum extrapolation taking into account
cut-off errors of O(a2) due to the non-perturbatively improved Wilson-Clover action.
As a side remark note that at T ≃ 1.45Tc the quark number susceptibility, χq/T

2, is

about 10% smaller than the free field value χfree
q /T 2 = 1 which is in accordance with

calculations performed with staggered fermions [101–104].

Nτ 16 24 32 48 ∞
χq/T

2 0.882(10) 0.895(16) 0.890(14) 0.895(8) 0.897(3)

Table 5.1: Quark number susceptibility (χq/T
2) calculated on lattices of size 1283 ×Nτ .

The quark number susceptibilities have been renormalized using the renormal-
ization constants listed in Tab. 5.1.1. The last column gives the result of a
continuum extrapolation taking into account cut-off errors of O(a2).
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Figure 5.3: The vector correlation function, GV (τT ), calculated on lattices of size N3
σ ×

Nτ at T ≃ 1.45Tc. The correlation functions are normalized to the free
vector correlation function Gfree

V (τT ) in the continuum. Shown are data for
τT > 1/Nτ only. Label I and II refer to data sets generated with two different
values of the quark mass (see Tab. 2.5 or Tab. 2.5).

Moreover, these results encourage us to normalize the correlation functions with the
quark number susceptibility χq/T

2 to avoid the usage of renormalization constants. This
is a property we may exploit here as the components of the vector current correlation
functions are subject to the same renormalization constant, see Chp. 2.4.1.

5.1.2 Spatial and Full Vector Correlation Functions

Turning to the main objectives of this work, i.e. the spatial and full vector correlation
and ultimately spectral functions, recall that Fig. 5.1 showed the thermal in-medium
effects to be obscured by the exponential decay of the correlation function.
To alleviate this issue we forthwith eliminate this decay by normalizing with the free
correlation functions as obtained from the free continuum and free discretized formula-
tions. This procedure is based on the observation that the dependence of the correlation
function on Euclidean time is in fact very similar to the free case. Additionally asymp-
totic freedom guarantees that the non-interacting case is reproduced at τT = 0 in the
continuum limit.

In Fig. 5.3 we show results for the ratio of the vector correlation function normalized
by its free continuum counterpart for H = V for all available lattice sizes. Data sets
with fixed spatial size at Nσ = 128 while varying the cut-off Nτ are shown in black.
Data sets with fixed cut-off (Nτ = 16) and varying volume are shown in color.
Recall for Nτ = 24 we performed calculations for two different values of the quark mass.
We find that finite quark mass effects are small and well within 2%. From the fixed cut-
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Figure 5.4: The spatial component of the vector correlation function, Gii(τT )/T
3, cal-

culated at T ≃ 1.45Tc on lattices of size 1283 × Nτ versus Euclidean time
τT (left) and the full vector correlator GV (τT )/T

3 (right). Both correlators
have been normalized by the continuum version of the corresponding free vec-
tor correlation function (top) and its discretized version calculated on infinite
spatial volumes with fixed Nτ (bottom), respectively.

off (colored) Nτ = 16 results finite volume effects for τT ≥ 0.3 are seen to remain within
below the 0.5% percent level even for the largest Euclidean time separation at τT = 0.5.
As a consequence these results show that finite volume effects are under control.
Focusing on cut-off effects it is immediately apparent that cut-off effects become large
and dominate the ratio below a certain Euclidean time distance, as all results rise rapidly
in the small distance region. In fact, the cut-off effects strongly influence the behavior
of GV (τT ) at short distances for the first 6 to 8 Euclidean time units, where 1/Nτ ≤
τT . 8/Nτ . As such for Nτ = 48 the cut-off effects dominate the ratio below τT . 0.15,
whereby this upper value increases with decreasing Nτ from τT . 0.2 at Nτ = 32 via
τT . 0.25 at Nτ = 24 to τT . 0.35 at Nτ = 16.

In Fig. 5.4 we show separately results for the spatial component of the vector current
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Nτ 16 24 32 48 ∞
GV (1/2)/(χ̃qG

free
V (1/2)) 1.276(14) 1.234(10) 1.226(10) 1.216(8) 1.211(9)

GV (1/4)/(χ̃qG
free
V (1/4)) 1.333(9) 1.235(6) 1.213(4) 1.202(5) 1.190(7)

Gii(1/2)/(χ̃qG
free
ii (1/2)) 1.184(7) 1.156(6) 1.152(5) 1.145(6) 1.142(9)

Gii(1/4)/(χ̃qG
free
ii (1/4)) 1.302(7) 1.213(6) 1.193(3) 1.183(5) 1.172(7)

Table 5.2: Several values of the vector correlation functions expressed in units of the
corresponding free field values and normalized with the quark number suscep-
tibility. Results are from calculations on lattices of size 1283 × Nτ . The last
column gives the continuum extrapolated results (see below). Note in these
ratios the renormalization constants drop out.

correlation function Gii(τT )/T
3 and the combined vector correlator GV (τT )/T

3. In
both cases the correlation function has been normalized to to its respective free correla-
tor Gfree

H (τT )/T 3. Recall however, that ratios for H = V and H = ii are related through
Eq. 3.95 and provide identical information on the vector spectral function representing
these correlators.

As discussed above it is apparent that the short distance (τ . (6 − 8)) part of the
vector correlation functions is strongly influenced by lattice cut-off effects. To some ex-
tent one can eliminate this dominant contribution by calculating the free field correlation
functions on lattices with finite temporal extent, as was shown in Chp. 3, and considering
the ratio GV /G

free,lat
V rather than the ratio obtained by normalizing with the free vector

correlator in the continuum limit. Naturally one expects the free lattice correlator to
capture much of the cut-off dependence and thus describe the data somewhat better. A
comparison between the lower and upper panels of Fig. 5.4 indeed shows a reduction of
cut-off effects across all available datasets, although the short distance part τT . 0.15 at
Nτ = 48 or τT . 0.35 at Nτ = 16 still deviates substantially from the free field values.
However, in the entire Euclidean time interval, where cut-off effects are under control, a
continuum extrapolation should be possible. Restricting ourselves to calculations with
comparable quark mass, i.e. Nτ = 48, 32 and 24 this is seen to be the case for the
Euclidean time window τT ∈ [0.2 : 0.5]. In this interval GV (τT ) as well as Gii(τT ) stay
close to the corresponding free field correlation functions.
Moreover, note that the data shown in Fig. 5.4 have been divided by the quark number
susceptibility χq/T

2 to avoid the usage of any renormalization constants as was discussed
above and are in fact renormalization independent results.

The corresponding data normalized by the free continuum correlation function and
the quark number susceptibility at τT = 0.5 and τT = 0.25 is summarized in Tab. 5.1.2.
Naturally multiplying the data shown in Fig. 5.4 by the quark number susceptibility
given in Tab. 5.1.1 gives the ratio of the vector correlation functions and the free vector
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correlator. These values are about 10% smaller than those shown in Fig. 5.4. We there-
fore expect that in the continuum limit deviations of the vector correlation function as
well as its spatial component from the corresponding free correlator remain smaller than
9% for all τT ≥ 0.2.

5.1.3 Continuum Extrapolation of the Vector Correlation Function

As the ratios for H = V and H = ii are related through Eq. 3.95 and provide identical
information on the vector spectral function representing these correlators, we will con-
centrate on the full vector correlation function in the following.

With the above results we are in a position to extrapolate to the continuum in the
region where the cut-off effects are under control.
This can be done directly for three values of Euclidean time, τT = 1/4, 3/8, 1/2, where
we have numerical results from calculations at all four values of the lattice cut-off. In
these cases we perform the continuum extrapolation of the correlation functions using
the data from lattices with temporal extent Nτ = 24, 32 and 48, as we ensure maximum
comparability on these lattices due to the almost equal quark masses.
Specifically, we extrapolated the ratio of correlation functions GH(τT )/(χ̃qG

free
V (τT )),

where χ̃q/T
2 by using a quadratic Ansatz in aT = 1/Nτ . Whereby the quadratic

Ansatz owes up to the fact that Wilson-Clover fermions, as used in this work have
errors of order O(a2). At other values of τT on the Nτ = 48 lattice we use spline
interpolations of the data sets on the Nτ = 24 and 32 lattices to perform continuum
extrapolations, i.e. we do the continuum extrapolations on all points τT = k/48 for
9 ≤ k ≤ 24. The resulting continuum extrapolations at the Euclidean time separations
τT = 0.1875, 0.25, 0.3125, 0.375 and 0.5 are shown in Fig. 5.5. Note here that the
results obtained from the continuum extrapolation of correlators normalized with the
free lattice and continuum correlation functions agree within errors. The resulting con-
tinuum extrapolation of the vector correlation function obtained in this way is shown in
Fig. 5.6. Data for τT = 1/4 and 1/2 are also summarized in Table 5.1.2.

From Fig. 5.6 we conclude that in the continuum limit the largest deviation of GV (τT )
from the free vector correlation function occurs at τT = 1/2. Taking into account the
normalization with χ̃q we obtain from Tab. 5.1.1

GV (1/2)

Gfree
V (1/2)

= 1.086± 0.008 ,

GV (1/4)

Gfree
V (1/4)

= (0.982± 0.005)
GV (1/2)

Gfree
V (1/2)

(5.3)

where the second relation has been obtained from a jackknife analysis of the ratio
GV (1/4)/GV (1/2).

We note that the increase of GV (τT )/G
free
V (τT ) with τT is significant. It becomes

apparent only for sufficiently small lattice spacing, i.e. for large Nτ , in particular in the
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Figure 5.5: The ratio of the vector correlation function, GV (τ, T ), normalized with the
quark number susceptibility and the free vector correlation function calcu-
lated in the continuum (full symbols) and on lattices with temporal extent
Nτ (open symbols). Shown are results for five values of Euclidean time,
τT = 0.1875, 0.25, 0.3125, 0.375 and 0.5 (bottom to top), on lattices
with temporal extent Nτ = 16, 24, 32 and 48. For distances larger than
τT = 0.1875 data have been shifted in steps of 0.1 for better visibility. For
τT = 0.1875, and 0.3125 spline interpolations have been used on the Nτ = 24
lattice to estimate results at these Euclidean time separations. Note that the
far most right data set, corresponding to Nσ = 16, has not been included in
the extrapolation.

normalization with the free continuum vector correlator. The rise with τT is a direct
indicator that the vector spectral function in the low-ω region is different from the free
case. As such it is absolutely mandatory to go to very fine lattice spacing, as was done
in this work, if one wants the chance to resolve the interesting thermal effects. Con-
sequently past calculations on lattices with small temporal extent are subject to large
systematic effects from the finite size but especially the cut-off.
Finally note that the monotonic increase of the continuum extrapolated ratio with in-
creasing Euclidean time once more indicates that the rapid drop observed in the lattice
data at small distances is governed by cut-off effects. Due to asymptotic freedom the ra-
tio must approach 1/χq in the limit τT → 0, as indicated also in Fig. 5.6. Even though
our result is still far away from this limit the continuum extrapolated result and its
monotonic increase is seen to fit well with such a behavior.

5.1.4 Computation of Thermal Moments

In the preceding chapter our careful analysis of the vector current at the correlator level
enabled us to establish that the low-ω, i.e. low-frequency, region is in fact modified in the
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Figure 5.6: Continuum extrapolation of the vector correlation function.

high temperature phase of QCD compared to the non-interacting case. In Chp. 4.2 we
introduced the notion of the thermal moment specifically as an observable that should
be especially sensitive to this regime.
Looking once more at Fig. 5.3 or Fig. 5.4 and recalling Eq. 4.18, we can already deduce
some basic results for the thermal moments. For one part it is obvious that the devi-
ation of the data from the free field correlation function change qualitatively when the
lattice spacing is reduced. For Nτ ≥ 24 the ratio GV (τT )/G

free
V (τT ) increases close to

τT = 1/2 indicating that the ratio of thermal moments R
(2,0)
V actually is smaller than

the corresponding free field value. Consequently we expect R
(2,0)
V < R

(2,0)
V,free.

The spatial part alone on the other hand drops when approaching τT = 1/2, as can be

seen in Fig. 5.4. This suggests R
(2,0)
ii > R

(2,0)
ii,free.

To get a more direct handle on the thermal moment we analyze the ratio of the
mid-point subtracted correlation function ∆V (τT ) introduced in Eq. 4.19. Results for
∆V (τT ) calculated at the four different values of the lattice cut-off are shown in Fig. 5.7.
As before in the case of the correlation function we perform spline interpolations of the

results obtained on lattices with temporal extent Nτ = 24 and 32. These interpolated
data together with the results obtained on the Nτ = 48 lattices are then extrapolated
to the continuum limit taking into account corrections of O((aT )2). As such the extrap-
olated data at all distances τT = τ/48 are shown also in Fig. 5.7. These extrapolated
data have been fitted to a quartic polynomial as indicated by the Taylor expansion given
in Eq. 4.19. From this fit we obtain

G
(2)
V

G
(2),free
V

= 1.067± 0.012 . (5.4)
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Figure 5.7: The mid-point subtracted vector correlation function normalized to the cor-
responding difference for the free vector correlation function. Shown is the
ratio as defined in Eq. 4.19 but normalized by the quark number susceptibility.
The continuum extrapolation is achieved as for the correlator.

Fits of the vector correlation function and the mid-point subtracted correlator are cor-
related, as they are calculated from each other. We made use of this and also computed
the ratio of the second thermal moment and the correlation function at the mid-point
employing an additional jackknife analysis. We find

G
(2)
V

G
(0)
V

= (0.982± 0.012)
G

(2),free
V

G
(0),free
V

,

G
(2)
ii

G
(0)
ii

= (1.043± 0.010)
G

(2),free
ii

G
(0),free
ii

. (5.5)

Although the deviation of G
(2)
V /G

(0)
V from the non-interacting limit is marginal, the

small difference from unity is consistent with the behavior of G(τT )/Gfree(τT ) close to
τT = 1/2 shown in Fig. 5.6. At large enough τT the latter has a positive slope in τT ,
which approaches zero from above when τT reaches 1/2, and a small negative curvature

that is in the limit of τT going to 1/2 proportional to R
(2,0)
V − R

(2,0)
V,free, as shown in

Eq. 4.18.
Note we also tried to look at the fourth thermal moment, which implied using the quartic
polynomial Ansatz. Unfortunately this moment could not be obtained as of this time,
as the numerical accuracy of our data does not allow to draw a firm conclusion about its
value. This and the small but significant and important deviation from unity in Eq. 5.5
shows the need of very high precision data and a proper continuum limit.
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Nτ 16 24 32 48 ∞
G

(2)
V /(χ̃qG

(2),free
V ) 1.273(4) 1.214(2) 1.207(1) 1.193(1) 1.189(13)

Table 5.3: The ratio of the second thermal moment and its corresponding free value for
our lattices 1283 × Nτ . The last column gives the continuum extrapolated
results taking into account corrections of O((aT )2).

Nonetheless the above results put stringent bounds on the magnitude of any contribution
to the vector correlation function that may arise from a peak in the vector spectral
function at small energies.
The results from Eq. 5.4 modulo the quark number susceptibility χ̃q on the individual
lattices and the continuum are summarized in Tab. 5.1.4.

5.1.5 Analyzing the Vector Correlator and computing the SPF

With all these results in hand, what can we say about the vector spectral function?
First of all we could establish the time-time vector spectral function, with this knowl-
edge we can intimately relate the spatial and full vector spectral functions at vanishing
momentum. As such the spatial component misses the the δ-function contribution of
the time-time part, it is subsequently somewhat clearer to switch to Gii(τT ) and ρii(ω)
in the following. To summarize our most important findings recall:

• The correlation function at τT = 1/2 is about 2% larger than the corresponding

free field value, Gii(1/2)/G
free
ii (1/2) = 1.024(8).

• The deviation from the free field value increases with decreasing Euclidean time.
At τT = 1/4 the ratio is Gii(1/4)/G

free
ii (1/4) = 1.051(7).

• The second moment of the vector spectral function deviates from the free field

value by about 7%, G
(2)
V /G

(2),free
V = G

(2)
ii /G

(2),free
ii = 1.067(12).

In view of these results and also Fig. 5.3-5.7 suggest the starting point for our “alterna-
tive route”, outlined in Chp. 4.4, is in fact the non-interacting, i.e. T →∞, theory.
Given the extensive knowledge gathered in Chp. 3 on the non-interacting spectral func-
tions and our expectations in the interacting case, we may immediately motivate the
desired Ansatz.

First of all, as stated above, the basis of the Ansatz should be formed by the free
continuum spectral function. At intermediate temperatures this contribution clearly
may be subject to perturbative corrections and we write:

ρbaseii (ω) =
3

2π
(1 + k(T ))ω2 tanh(ω/4T ) , (5.6)
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Figure 5.8: The reduced version of Eq. 5.13 for a number of widths over Euclidean time
shows the monotonic rise of our Ansatz.

where the parameter k(T ) parametrizes deviations from a free spectral function at large
energies as suggested above. At high temperature and for large energies, ω/T ≫ 1, we
expect to find k(T ) ≃ αs/π [105]. Note that k(T ) will also depend on ω and actually
will vanish for ω → ∞ at fixed T . Here we will treat k(T ) as a constant and will not
take into account any running of αs.

This takes care of the basic shape of the spectral function and its large frequency
behavior. In the next step recall our gained knowledge of interacting theory via linear
response already showed us the prime candidate for the transport contribution. All com-
putations in Chp. 3 with interactions at vanishing momentum point to a Breit-Wigner
shape as most possible contribution:

ρBW
ii (ω) = 2χqcBW

ωΓ/2

ω2 + (Γ/2)2
. (5.7)

Indeed this shape as the attractive feature that it retrieves the δ-peak necessary for free
theory as the width Γ→ 0, it thus satisfies our assumption of smoothness.
In total we thus motivate the Ansatz:

ρii(ω) = ρBW
ii (ω) + ρbaseii (ω)

= 2χqcBW
ωΓ/2

ω2 + (Γ/2)2
+

3

2π
(1 + k) ω2 tanh(ω/4T ) , (5.8)

as such this Ansatz depends on four temperature dependent parameters; the quark num-
ber susceptibility χq(T ), the strength cBW (T ) and width Γ(T ) of the Breit-Wigner peak
and the free parameter k(T ), as explained above.
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Figure 5.9: Fit and continuum extrapolation of the vector correlation function. Left: The
resulting fit is shown. Right: The data for the continuum extrapolation of
T 2GV (τT )/(χqG

free
V (τT )) is shown and an error band varying the width Γ̃

within its errors obtained from the fit is given.

With this Ansatz and introducing Γ̃ = Γ/T as well as χ̃q = χq/T
2 the corresponding

correlation function reads:

G̃ii(τT ) = (1 + k(T )) G̃free
V (τT ) + cBW χ̃qFBW (τT, Γ̃) , (5.9)

where

FBW (τT, Γ̃) =
Γ̃

2π

∫ ∞

0
dω̃

ω̃

(Γ̃/2)2 + ω̃2

cosh(ω̃(τT − 1/2))

sinh(ω̃/2)
. (5.10)

Once more this Ansatz shows the desirable properties (for k(T)=1):

lim
Γ̃→0

FBW (τT, Γ̃) = 1 ⇒ G̃ii(τT )→ Gfree
ii (τT ) (5.11)

lim
Γ̃→∞

FBW (τT, Γ̃) = 0 ⇒ G̃ii(τT )→ Gfree
V (τT ) . (5.12)

In the next step this Ansatz allows a straight forward definition of the midpoint
subtracted correlation function, as introduced in Eq. 4.19:

∆V (τT ) = 1 + k(T ) + cBW χ̃q
FBW (τT, Γ̃)− FBW (1/2, Γ̃)

G̃free
V (τT )− G̃free

V (1/2)
. (5.13)

Extrapolating to τT = 1/2 this fit Ansatz yields results for the zeroth and second
moment of the spectral function as introduced in Eq. 4.9 and Eq. 4.19,

G̃ii(1/2) =2 (1 + k(T )) + cBW χ̃qF
(0)
BW (Γ̃) ,

∆V (1/2) =1 + k(T ) + cBW χ̃q
F

(2)
BW (Γ̃)

G̃
(2),free
V

, (5.14)
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Figure 5.10: The vector spectral function obtained from the fit compared to its free con-
tinuum counterpart, the shaded area gives the error band fixed by the error
of the fit.

with

F
(2n)
BW (Γ̃) =

1

(2n)!

Γ̃

2π

∫ ∞

0
dω̃

ω̃2n+1

(
(Γ̃/2)2 + ω̃2

)
sinh(ω̃/2)

. (5.15)

In the limit Γ̃ → 0 the thermal moments F
(2n)
BW vanish for all n > 0 and the fit Ansatz

for ∆V (τT ) becomes a constant which relates to the deviations of the vector correlation
function from the free field correlator at short distances. For all Γ̃ > 0, however, the
right hand side of Eq. 5.13 is a monotonically increasing function of τT . This behavior
is illustrated in Fig. 5.8 where we show a reduced version Eq. 5.13:

∆FBW (τT, Γ̃)

∆G̃free
V (τT )

=
FBW (τT, Γ̃)− FBW (1/2, Γ̃)

G̃free
V (τT )− G̃free

V (1/2)
, (5.16)

clearly only multiplicative factors and constant contributions have been omitted and the
resulting ratio is shown in Fig. 5.8 for a number of widths over Euclidean time.

In the next step we fit the continuum extrapolated correlation function Gii(τT ) with

the Ansatz G̃ii(τT ) together with the zeroth and second moments G
(0)
ii and G

(2)
ii = G

(2)
V

via G̃ii(1/2) and ∆V (τT ). Note here the first thermal moment is taken into account
trivially as it is given by the midpoint of the correlation function. The parameters
obtained in the fit window [0.2 : 0.5] are:

k = 0.1465(30) , Γ̃ = 2.235(75) and 2cBW χ̃q/Γ̃ = 1.098(27) . (5.17)

This three parameter fit has a χ2/d.o.f. = 0.06 for 12 degrees of freedom. Even though
this small χ2/d.o.f shows that the data is strongly correlated also after continuum ex-
trapolation, the fit provides an excellent description of the data.

103



Chapter 5 The Vector Spectral Function at Vanishing Momentum

Using Eq. 3.95 it is straightforward to calculate GV (τT ) and to cross check the fit results,
they indeed agree. On the left of Fig. 5.9 the resulting line is shown together with the
lattice data and the continuum extrapolation. On the right we show the data for the
continuum extrapolation of T 2GV (τT )/(χqG

free
V (τT )) and give an error band varying

the width Γ̃ within its errors obtained from the fit.

The corresponding spatial vector spectral function can be easily obtained plugging in
the fit values and their errors. In Fig. 5.10 we show the corresponding spectral function
including also the resulting error band arising from the errors of the fit. These results
show that the vector correlation function is indeed sensitive to the low energy Breit-
Wigner shaped transport contribution only for Euclidean times τT & 0.25. However
taking into account the second thermal moment the fit parameters are well constrained
and the large distance behavior of the correlator and the low frequency spectral function
is excellently reproduced.
Using the Kubo-formula Eq. 3.115 we thus retrieve a significant result for the electrical
conductivity of the quark gluon plasma from quenched QCD at T ≃ 1.45Tc:

σ

T
=
Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3

cBW χ̃q

Γ̃
= (0.37± 0.01)Cem . (5.18)

This result is close to the past result found in [94] from staggered fermion calculations
and deviates somewhat of that found in [99]. Note also that its value is more than an
order of magnitude larger than the electrical conductivity of a pion gas above Tc [106].
At the same time the value determined for the correction to the free field behavior at
large energies k ≃ 0.05 at T ≃ 1.45Tc is quite reasonable. Using the relation to the
perturbative result k = αs/π yields for the temperature dependent running coupling
g2(T ) = 4παs ≃ 2 which is in good agreement with other determinations of temperature
dependent running couplings at high energies or short distances [107].
Note at this point that the error quoted above is the fit error. Subsequently we will
estimate a systematic error in the following.

Systematics of the Breit-Wigner Ansatz

Naturally the above determination of the electrical conductivity is sensitive to the Ansatz
we chose for our Analysis. Even though we obtain excellent fit results for the vector cor-
relation function with the simple Ansatz given in Eq. 5.9, other Ansätze might yield
equally good results. An additional analysis of the systematic errors introduced by our
choice is therefore desirable.

Beginning such an analysis we observe that the free continuum part of the Ansatz
contributes to the spectral function for all frequencies ω. This means especially the
highly non-perturbative low frequency region where the continuum part of the Ansatz
contributes a term proportional to ω3/T . To analyze the systematics introduced by this
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Figure 5.11: The truncation factor for the Ansatz of Eq. 5.9 at ω0 = 3 and several values
of ∆ω.

contribution we add a smooth truncation to our Ansatz:

ρii(ω) = 2χqcBW
ωΓ/2

ω2 + (Γ/2)2
+

3

2π
(1 + k) ω2 tanh(ω/4T ) ·Θ(ω0,∆ω)

Θ(ω0,∆ω) =
(
1 + e(ω

2
0
−ω2)/ω∆ω

)−1
. (5.19)

Hereby the truncation factor Θ(ω0,∆ω) depends on a width ∆ω and a cut-position ω0

parameter and mimics a smeared Θ-function. For illustration we show Θ(ω0,∆ω) for
a number of widths ∆ω in Fig. 5.11. Clearly in the limit ∆ω → 0 the Θ-function with
discontinuity at ω0 is achieved as desired, while at the same time ensures the continuum
contribution to vanish exponentially at ω = 0.

Now we perform three parameter fits with cBW , Γ and k as free parameters for several
values of ω0 and ∆ω. With increasing ω0 and/or increasing ∆ω the χ2 of the fit also
rises, implying the data can no longer be described well by the truncated Ansatz. This
implies that in both cases eventually too much of the continuum part at high energies is
suppressed. For small values of ω0 and ∆ω the Breit-Wigner term compensates for the
continuum contribution that has been cut off by increasing the low energy contribution
and the intercept at ω = 0 (electrical conductivity) rises. At large values of ω0 and ∆ω

the Breit-Wigner term however fails to compensate the missing continuum contribution
and the fit cannot describe the data well anymore.
Results from fits which all lead to χ2/d.o.f. smaller than unity are shown in Fig. 5.12. As
ω0 and ∆ω increase the χ2/d.o.f. of the fits shown in this figure rises from its minimal
value of about 0.06, obtained for ω0/T = ∆ω/T = 0 to unity. All fit parameters
corresponding to the curves shown in Fig. 5.12 are summarized in Tab. 5.4.
In particular the second moment of the correlation function normalized by the corre-

lation function at the mid-point of Eq. 4.18 R
(2,0)
ii reacts quite sensitive to the truncation
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Figure 5.12: Spectral functions obtained from fits to the vector correlation function using
the Ansatz given in Eq. 5.19. For comparison we also show only the con-
tinuum part of the spectral function. The left hand figure shows results for
different values of the cut-off (ω0) and fixed width (∆ω). The right hand fig-
ure shows results for fixed ω0/T = 1.5 and several values of ∆ω. The curve
labeled ’cont’ is the continuum contribution to the fit described in Eq. 5.9.
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Figure 5.13: The ratio of second and zeroth thermal moment of the correlation function
Gii(τT ) obtained from fits with different values for the continuum cut-off
parameter ω0/T and fixed ∆ω. Circles show results of a MEM analysis
where the fits have been used as default model. The band gives the result
extracted from the continuum extrapolated correlation function. The lower
curve shows the corresponding free field (infinite temperature) value, which
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ω0/T ∆ω/T 2cBW χ̃q/Γ̃ Γ̃ k/χ̃q χ2/dof

0.0 0.5 1.290(46) 2.091(112) 0.1677(42) 0.08
0.5 0.5 1.315(43) 2.038(114) 0.1683(41) 0.11
1.0 0.5 2.039(22) 1.198(25) 0.1739(4) 0.19
1.5 0.5 2.694(19) 0.866(15) 0.1760(4) 0.56
1.75 0.5 3.338(18) 0.679(15) 0.1774(4) 1.00

1.5 0.0 2.471(20) 0.947(17) 0.1778(4) 0.32
1.5 0.1 1.976(23) 1.232(27) 0.1741(4) 0.36
1.5 0.25 2.873(19) 0.808(13) 0.1773(4) 0.39
1.5 0.5 2.694(19) 0.866(15) 0.1760(4) 0.56

Table 5.4: Parameters for the fits shown in Fig. 5.12 left (top) and right (bottom). The
last column gives the χ2/dof of these fits.

of the continuum part of the spectral function. This is shown in Fig. 5.13, where we

compare the ratio R
(2,0)
ii extracted from our continuum extrapolated data (error band)

with fit results obtained for different values of ω0. The dependence on ∆ω on the other
hand is less pronounced.
It can be seen that the results from the truncated Ansatz below ω0/T . 1.5 stay within
the upper edge the error band given by the data, while the truncated Ansatz has diffi-
culties to reproduce the data at ω0/T ≥ 1.5 and fails to do so above ω0/T ≥ 1.75. This
is in accordance with the same observation made above based on the χ2-values. Note at

this point once more the clear and significant separation between the free ratio R
(2,0)
ii,free

and the interacting result obtained in this work.

The overall conclusion of this analysis is that for ω/T & (2 − 4) acceptable spectral
functions do in fact not deviate from the free field-like behavior modulo the perturbative
factor k(T ). Even more, we see the structure of the spectral function below ω/T . (2−4)
is sensitive to the form of the fit Ansatz. The class of functions analyzed here in this
fashion however clearly favor small values for the cut-position ω0 and a small value for
the intercept of ρii(ω)/ω at ω = 0.

Analysis using the Maximum Entropy Method

In the next step we confront our results with the maximum entropy method. As such
we discuss if and to what extent a MEM analysis can improve over our analysis so far
and whether or not it can reproduce our findings.
To this extent we performed a MEM analysis of the renormalized vector correlation
function on the 1283 × 48 lattice using the improved Kernel introduced in Chp. 4.3.2.

In light of the discussion of Chp. 4.3.2 it seems ill advised to choose the free continuum
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Figure 5.14: Spectral functions obtained from a maximum entropy analysis using for the
default model the spectral functions shown in Fig. 5.12(left). The right hand
figure shows the difference between the output spectral function obtained
from the MEM analysis and the input spectral function used in each case.

spectral function as default model. We already know that the MEM algorithm cannot
produce a finite intercept in ρ(ω)/ω, if the default model does not contain such a feature,
recall Fig. 4.4.
Clearly the best knowledge we have on the spectral function originates from our analysis
using the fit Ansatz. It thus seems reasonable to use the results of the above analysis as
input for MEM. At this stage one however needs to acknowledge that also MEM can be
over-constrained if the input information is too restrictive. In such case the probability
peak P (α) disintegrates and becomes a continuously rising function.
This was checked in all MEM runs and only the result spectral functions that preserve the
α-peak are shown in Fig. 5.14(left). Here the input information is given by the spectral
functions shown in Fig. 5.12(left), while the error on the output spectral functions was
controlled by performing the MEM analysis within a jackknife analysis.

As a consequence of Fig. 5.14(left) we may judge the stability of the spectral functions
obtained by the fit Ansatz using the maximum entropy method. To see this we show the
difference between the default models, i.e. our fit Ansatz results, and the output spectral
functions obtained by MEM in Fig. 5.14(right). The deviations thereby correspond to
unconstrained changes in the spectral functions from MEM and are generally seen to be
smaller than < 5%. These deviations on the other hand increase for small frequencies ω
as the χ2/d.o.f. of the default model gets worse. This observation in turn solidifies our
Ansatz method.
As a side remark note that the MEM analysis reproduces the calculated ratio of thermal
moments as well or even better than the fits used as a default model, although the value
of the thermal moments itself did not directly enter the MEM analysis. This can be seen
from Fig. 5.13 where the MEM results are also given.
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Figure 5.15: Thermal dilepton rate in 2-flavor QCD (left). Shown are results from fits
without a cut-off on the continuum contribution (ω0/T = 0) and with the
largest cut-off tolerable in our fit Ansatz (ω0/T = 1.5). The HTL curve
is for a thermal quark mass mT /T = 1 and the Born rate is obtained by
using the free spectral function. The right hand part of the figure shows the
spectral functions that entered the calculation of the dilepton rate.

5.1.6 The Thermal Dilepton Rate and Electrical Conductivity

The extensive analysis and discussion of our results of the vector correlation function
permitted the computation of the vector spectral function at vanishing momentum in
the continuum at T ≃ 1.45Tc.
With these results we may now discuss the consequences and impact have on the thermal
production rate of dileptons, the electrical conductivity of the quark gluon plasma and
the related soft photon production rate.
First the systematic analysis of the fit Ansatz enables us to put a systematic error on
our spectral function result. To do so we choose the result obtained from the simple
un-truncated Ansatz as lower bound, while the upper bound is given be the truncated
Ansatz spectral function with parameters ω0/T = 1.5 and ∆ω/T = 0.5. The latter
spectral function gave a χ2/d.o.f. ∼ 1 and is thus on the outer rim of what we consider
a fit that describes the data well.

In Fig. 5.15 we show the thermal dilepton rate calculated from the vector spectral
function via Eq. 1.21 for two massless (u,d) quark flavors. These results are compared to
the dilepton spectrum calculated within the hard thermal loop approximation Eq. 3.146
using a thermal quark mass mT /T = 1. Clearly the results are in good agreement for
all ω/T & 2. For 1 . ω/T . 2 differences between the HTL spectral function and
our numerical results is about a factor two, which also is the intrinsic uncertainty in
our spectral analysis. At energies ω/T . 1 the HTL results grow too rapidly, as was
described in Chp. 3.3.

Via the Kubo relation Eq. 3.115 we may calculate the electrical conductivity of the
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Chapter 5 The Vector Spectral Function at Vanishing Momentum

quark gluon plasma from ρii(ω)/ω in the limit ω → 0. These results are sensitive to
the choice of fit Ansatz, however in our class of Ansätze we obtain a small value for the
intercept. As such our analysis suggests:

2 . lim
ω→0

ρii(ω)

ωT
. 6 at T ≃ 1.45 Tc . (5.20)

The electrical conductivity therefore becomes:

1/3 .
1

Cem

σ

T
. 1 at T ≃ 1.45 Tc . (5.21)

Via Eq. 1.20 this result translates into an estimate for the production rate of soft photons:

lim
ω→0

ω
dRγ

d3p
= (0.0004 − 0.0013) T 2

c ≃ (1 − 3) · 10−5 GeV2 at T ≃ 1.45 Tc ,

(5.22)

where instead of Tc ≃ 270MeV of the quenched theory, we used Tc ≃ 165MeV, which is
the relevant value for QCD with two light quarks.
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5.2 Temperature Dependence of the Vector SPF on the
Lattice

In the preceding section we could successfully calculate the dilepton rate at T ≃ 1.45Tc
in the continuum limit of quenched QCD. This however is just a snapshot of a single
temperature in what should be the full evolution over all temperatures starting from the
initial collision, as in the end one is interested in reproducing the experimental figure
Fig. 1.8.
As such a single temperature is not yet enough to establish a route that might be fol-
lowed by an effective hydrodynamics evolution, even though it might be used as starting
point [108, 109]. Consequently more temperatures have to be studied in order to pin
down the temperature evolution.

In this section we try to close this gap a little by examining also the temperatures
T ≃ 1.2Tc and T ≃ 3.0Tc at β = 7.457. Here we do not have the data to make a con-
tinuum extrapolation and we can only compute the spectral functions at finite lattice
spacing. Nevertheless the datasets at T ≃ 1.45Tc and β = 7.457 were seen to be close
to the continuum at τT & 0.35 and we believe that most of the relevant physics effects
can indeed be already captured at this lattice spacing.

Let us therefore turn to the ratios of the correlator data to the free continuum in
Fig. 5.16. Here we show the ratio of the β = 7.457 and the β = 7.793 lattices for the
Gii and GV channels once as before in Euclidean temperature units (top) and once in
physical distance (bottom).
In the bottom panel of Fig. 5.16 we see that the β = 7.457 lattices lie on top of each
other for τ . 0.06fm and then deviate from one another. The behavior at τ . 0.06fm
can be immediately understood in light of the analysis of cut-off effects in Chp. 5.1. As
such the cut-off effects were shown to dominate the low distance region of the correla-
tion functions. In this work the temperature is varied by varying Nτ = 16, 32, 40 while
keeping β = 7.457 fixed, consequently also the lattice cut-off is kept fixed. As a result
the cut-off effects should remain the same and this is indeed what is seen in the bottom
panel of Fig. 5.16 in the low distance region.
At τ & 0.06fm the deviations of the results should subsequently be due to temperature
effects. Notice however that the Nτ = 16 results drop throughout the entire Euclidean
time interval, just as before at T ≃ 1.45Tc. With the x-axis scaled also in physical
distance these results are seen to follow the low distance behavior at almost all available
points. This is especially clear e.g. in GV /GV,free case on the bottom right in Fig. 5.16.
As such the Nτ = 16 results are more affected by the cut-off effects throughout the Eu-
clidean time interval, as noted before, and it is more difficult to destill the temperature
effects from these results.
Nevertheless the Nτ = 16 results seem to level out at the last few available distances, in
the top of Fig. 5.16 in the regime τT & 0.4, they are then seen to follow the results of
the Nτ = 32, i.e. T ≃ 1.45Tc, calculations.
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Figure 5.16: The full (right) and spatial (left) vector correlation functions normalized by
their free continuum counterparts at varying temperature. For comparison
the results both from the Nτ = 32 and Nτ = 48 lattices at T ≃ 1.45Tc are
shown. Results for T ≃ 1.2Tc and T ≃ 3.0Tc are obtained at β = 7.457 and
varying Nτ , as such the lattices sized Nτ = 16, 32 and 40 have the same
cut-off.

The correlator ratio from the T ≃ 1.2Tc lattice on the other hand exhibits a visibly larger
value for all Euclidean times, even though its trend is similar to that at T ≃ 1.45Tc.
This could originate from a much broader transport peak that subsequently leaves a
larger imprint on the correlator at large distances or it could be a combination of both
the transport peak and a possible ρ-resonance contribution.

The Temperature Evolution of the Quark Number Susceptibility

The temperature evolution of the quark number susceptibility has been studied quite ex-
tensively, see e.g. [101–104]. This is due to the notion that the fluctuations of conserved
charges, like the quark number susceptibility in our case, are expected to be sensitive
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Figure 5.17: Left: The quark number susceptibility over temperature T/Tc for the two cut-
off values corresponding to β = 7.457 and β = 7.793. Note here we also show
preliminary light quark results from a 1283×96 lattice at T ≃ 0.75Tc. Right:
The light and strange quark number susceptibilities versus temperature from
[104]. The solid lines show results for an ideal Fermi gas with mass m =
100 MeV and 200 MeV, respectively (top to bottom). Note to compare with
units T/Tc one needs to identify Tc ≃ 200MeV.

to the structure of a thermal medium produced in HIC-events. As such it could be
argued that quark number and electric charge in the QGP are in fact carried mostly by
quasi-particles with quark quantum numbers, see [103].

The quark number susceptibility and its temperature evolution based on the calcula-
tions in this work is shown in Fig. 5.17(left). Here we show the values of the β = 7.457
and the β = 7.793 lattices over temperature T/Tc. Whereby we also used added data
from a preliminaryNτ = 96 lattice at β = 7.793 and an olderNτ = 8 lattice at β = 7.457,
already evaluated in [110].
To compare the results from this work and results in literature we show the light and

β Nτ T/Tc χq/T
2

7.457 8 5.96 0.984(13)
16 2.98 0.915(11)
32 1.49 0.890(14)
40 1.16 0.854(20)

7.793 48 1.43 0.902(8)
96 0.72 -0.028(36)

Table 5.5: Table of results for the quark number susceptibility over temperature T/Tc.
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Figure 5.18: The midpoint subtracted correlator normalized to the corresponding result in
the free continuum theory, ∆ii(τT ), for T ≃ 1.2, 1.45 and 3.0Tc on lattices
sized 1283 × 40, 32 and 16.

strange quark number susceptibility from [104] on the right of Fig. 5.17. These results
were obtained on fully dynamical Nf = 2+ 1 configurations invoking an improved stag-
gered action (p4-action), whereby the quark masses were set to almost physical values for
the light quarks and the physical value for the strange quark. Note at this point that the
x-axis in Fig. 5.17(right) is given in energy units instead of T/Tc. To nevertheless com-
pare both sides identify Tc ≃ 200MeV, consequently 1.5Tc ≃ 300MeV, 0.75Tc ≃ 150MeV
and so forth. Whereby it should be noted that our calculation does not include the
disconnected part of the correlator, as noted in Chp. 4.
Nevertheless we observe similar behavior in both figures. Starting with a very low value
clearly both figures show a rapid rise of the quark number susceptibility at T ≃ Tc. This
rise then begins to level off at about T ≃ 1.2Tc and then slowly approaches the free limit.
In our case the free case is approached somewhat slower, this however might be due to
the quenched nature of our calculations. For reference the results of our calculation are
summarized in Tab. 5.5

5.2.1 Temperature Evolution of the Thermal Moments

Next we turn to calculating the temperature dependence of the thermal moments, as
before we calculate the quantity ∆H(τT ), omitting the normalization by the quark num-
ber susceptibility for the time being, and then fit to a quartic Ansatz.
The corresponding results for the spatial component of the vector correlation function
∆ii(τT ), once in Euclidean temperature units (left) and once in physical distance (right)
are given in Fig. 5.18.
On the whole both figures show very similar behavior to the results for the correlator
ratio. Just as we would expect from the preceding analysis, e.g. the Nτ = 16 data is
dominated by large cut-off effects. At the same time the Nτ = 40 results lie somewhat
above those of the Nτ = 32 lattice.
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Figure 5.19: Left: The ratio R
(2,0)
ii /R

(2,0),free
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the results for β = 7.457 (red) and the continuum extrapolation at T ≃
1.45Tc (black). Additionally a number of results from Nτ = 16 lattices at
varying temperatures (blue) are given, including also results that have been

obtained using data from [110]. Right: Table of results for R
(2,0)
ii /R

(2,0),free
ii .

As the extrapolation of ∆ii(τT ) to τT = 0.5 yields the ratio G
(2)
ii /G

(2),free
ii , it should

be noted that all results point to a slight increase of the second moment compared to
the free case. Nevertheless all results lie in the vicinity of ∼ 1.1, which implies that the
change in the second thermal moment due to temperature effects is in fact quite small.

In Fig. 5.19 we show the results for the ratio R
(2,0)
ii /R

(2,0),free
ii over T/Tc from our

calculations with β = 7.457, whereby we also give the Nτ = 16 and continuum extrap-
olated results at T ≃ 1.45Tc for comparison. Note here we added points also below Tc
from calculations done by the Bielefeld lattice group that have already been extensively
examined in [110].
Above Tc, i.e. temperature region evaluated here 1.2Tc . T . 3.0Tc, the data are seen
to be almost constant in T/Tc. Turning to the table on the right of Fig. 5.19 we identify
a slight rise of the ratio within 0.5% going from ≃ 1.45Tc and Nτ = 32 to ≃ 3.0Tc and
Nτ = 16, this however may be accounted for as the latter results are much more affected
by the cut-off effects due to the limited number of points in the time direction in the
latter, see also Fig. 5.18(right).
Below Tc on the other hand we immediately identify a clear temperature dependence

of the ratio R
(2,0)
ii /R

(2,0),free
ii . As such there is a 30% difference between the results at

T ≃ 0.55Tc and T ≃ 0.93Tc. At the same time the result at T ≃ 0.93Tc is roughly 20%
larger than that above Tc.
Together the drop below and the constant behavior above Tc are very interesting from
the point of view of a possible ρ-resonance in the spectrum. As such we estimate the

impact of a ρ-resonance on the ratio of thermal moments R
(2,0)
ii /R

(2,0),free
ii .
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To do so we assume the ρ-resonance to contribute a single cosh in the correlator:

Gρ(τ) = A · cosh
[mρ

T
· τT

]
, (5.23)

taking the second derivative in τT of Gρ(τ) would then give the second thermal moment,
thus we find:

R(2,0)
ρ =

(mρ

T

)2
=

(mρ

Tc

)2
·
(Tc
T

)2
. (5.24)

As a consequence we expect the ratio R
(2,0)
ρ to go like ∼ 1/T 2. Adding also a continuous

contribution to this model ratio we arrive at the following estimate for the temperature
dependence below Tc:

R
(2,0)
T<Tc

= ccont +
(cρmρ

Tc

)2
·
(Tc
T

)2
. (5.25)

Even though we have only two points below Tc we can nevertheless fit this estimate to
the data and the result is shown as blue line in Fig. 5.18. The mass contribution of the
ρ-resonance calculated in this way is cρmρ(T < Tc) ≃ 1.67GeV.

This and the qualitatively very different behavior above and below Tc observed in

Fig. 5.19, subsequently leads us to conclude that the drop of the ratio R
(2,0)
ii /R

(2,0),free
ii

below Tc is in fact mostly due to a particle contribution. At the same time the constant
behavior of the ratio above Tc suggests that the ρ-resonance does not contribute to

R
(2,0)
ii /R

(2,0),free
ii and thus the correlator anymore.

5.2.2 Consequences for the Spectral Functions

With the above results in hand we now turn to discussing their consequences on the
vector spectral function.
To do so we once more invoke the Breit-Wigner+continuum Ansatz and fit to the
T ≃ 1.2Tc, 1.45Tc and T ≃ 3.0Tc data. Unfortunately we cannot fall back on a con-
tinuum extrapolation and the data is contaminated by lattice effects.
Because of this we abandon the systematic calculation using the Breit-Wigner+truncated
Ansatz, as explained in Chp. 5.1, for the time being. Instead we analyze the dependence
of the fit parameters on τminT , as, with the data being subject to potentially large lat-
tice effects, especially in the Nτ = 16 case, our greatest source of error originates from
the fit-window we choose. The results obtained from this analysis are summarized in
Tab. 5.6.

From Tab. 5.6 it can be seen that the results at τminT = 0.396 and τminT = 0.354 have
the largest errors, this is understandable, as only very few points are actually passed to
the fit. Nevertheless these results should be closest to those in the continuum as only the
furthest distance points are comparatively free of lattice effects. Without a continuum
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T/Tc τminT 2cBW χ̃q/Γ̃ Γ̃ k/χ̃q χ2/dof 1/Cem · σ/T Rsum

2.98 0.396 0.93(19) 3.07(70) 0.160(19) 0.54 0.31(7) 4.0(7)
0.354 0.91(11) 2.93(78) 0.166(11) 0.72 0.30(4) 3.9(8)
0.3125 0.90(8) 3.08(36) 0.189(6) 1.37 0.30(3) 3.7(7)
0.25 0.71(2) 3.75(14) 0.122(4) 2.07 0.24(1) 4.4(9)

1.49 0.396 0.98(23) 3.14(80) 0.165(23) 0.01 0.33(8) 4.4(9)
0.354 0.97(11) 3.16(40) 0.166(11) 0.07 0.32(4) 4.4(12)
0.3125 0.92(4) 3.47(16) 0.164(7) 0.26 0.31(1) 4.9(17)
0.25 0.90(2) 3.53(10) 0.170(4) 1.16 0.30(1) 5.0(18)

1.16 0.396 1.00(34) 3.25(12) 0.235(38) 0.01 0.33(11) 4.7(9)
0.354 0.99(17) 3.30(62) 0.236(18) 0.01 0.33(6) 4.8(14)
0.3125 0.88(6) 3.89(20) 0.233(12) 0.05 0.29(7) 5.8(23)
0.25 0.87(4) 3.89(18) 0.242(6) 0.14 0.29(1) 5.7(22)

Table 5.6: The fit parameters of the simple Breit-Wigner+continuum Ansatz for T ≃
1.45Tc, 1.2Tc and T ≃ 3.0Tc on lattices with temporal extent Nτ = 16, 32 and
40. Here the fit window was varied between τminT = 0.25 and τminT = 0.396.
When the corresponding point was not available on the lattice at hand a spline
interpolation combined with a jackknife analysis was used to provide it. Note
the right hand column, Rsum, is explained around Eq. 5.31.

extrapolation however it is at this point not possible to discern the residual deviation
due to the lattice cut-off.
Decreasing τminT on the other hand leads to visible systematic trends in the parameters,
as such the electrical conductivity and the correction term k/χ̃q decrease with increasing

τminT , while the width Γ̃ increases. Additionally the χ2/dof increases with decreasing
τminT implying a lower quality fit with lower τminT . In light of the argument above
these results show that indeed the lattice effects influence the fit more strongly with
smaller τminT , as they cannot be taken care of by the employed Ansatz. Consequently
we attribute the largest part of the systematic trends observed above to the lattice effects.

Focusing on the parameters themselves note that the correction factor k(T ) is the most
accurately determined, as before. Clearly it shows an increasing trend with decreasing
temperature differing by a factor ∼ 1.5 between T ≃ 3.0Tc and T ≃ 1.2Tc. However as
k(T ) is coupled to the strong coupling via k(T ) ≃ αs/π [105], this behavior is expected.
The same can be seen for the width Γ̃ and the parameter 2cBW χ̃q/Γ̃, they also slightly
increase with decreasing temperature. However here, they remain within errors of each
other and the increase between T ≃ 3.0Tc and T ≃ 1.2Tc is only roughly ≃ 7%.
Naturally this leads also to at maximum ≃ 7% deviations of the absolute values of the
electrical conductivity. Note however that the Nτ = 16 differs by ≃ 5% from the Nτ = 32
results, while this deviation is only ≃ 2% for Nτ = 40. With the Nτ = 16 lattice being
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Chapter 5 The Vector Spectral Function at Vanishing Momentum

most affected by the systematics of the fit, we assume the largest part of this deviation to
find its origins there. Even so we find the electrical conductivity to be to a good degree
constant and within ≃ 7% across the temperature region evaluated here, whereby the
values at the individual temperatures have fit errors around ≃ (7− 11)%.

In the next step these results are now confronted with the expectations of the temper-
ature dependence of the electrical conductivity in a pion gas [106] and from perturbation
theory [111]:

σ ∼
√
mπ/T in a pion gas at T ≪ mπ , (5.26)

σ ∼ (mπ/T )
2 in a pion gas at T ≤ mπ , (5.27)

σ ∼ T from weak coupling perturbation theory, i.e. at T ≫ Tc . (5.28)

As the electrical conductivity is given in units of temperature above, the results from
this work at β = 7.457 imply:

σ = (0.33± 0.02± 0.04) · Cem · T , (5.29)

whereby the first error quoted corresponds to the temperature effects and the second to
the fit errors. Consequently the results indicate that the electrical conductivity indeed
goes linear in temperature above Tc.
Using Eq. 1.20 this result implies the production rate of soft photons goes as:

lim
ω→0

ω
dRγ

d3p
=

3αem

2π2
Cem · (0.33± 0.02± 0.04) · T 2 (5.30)

and therefore increases quadratically in temperature.

In addition to the temperature dependence of the electrical conductivity it can be
shown in perturbation theory that the area of the low frequency peak in the vector
spectral function satisfies a sum rule [112]:

Rsum =

∫

peak
dω
ρ(ω)

ω
=

2π

3
·Nc · Cem , (5.31)

whereby inserting Cem for NF = 2 and NF = 3 we obtain Rsum(NF = 2) = 3.49 and
Rsum(NF = 3) = 4.19.
With the results obtained above we can immediately check the integral over the low fre-
quency peak as required and the results are given on the far right of Tab. 5.6. At large
τminT we clearly observe an increasing trend with decreasing temperature. Nevertheless
the results agree within errors and as before the largest deviation manifests itself in the
Nτ = 16 results. However, as τminT is decreased there is a large increase in the integral
of the order of 10% − 20% for the Nτ = 16 and the Nτ = 40 results, respectively. It
consequently seems that the integral over the peak is far more sensitive to the systematic
uncertainties inherent in the data. As a result we cannot firmly exclude or establish the
above sum rule with the current status of our data, nevertheless our current results do
lean towards confirming it.
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Chapter 6

The Vector Spectral Function at Finite
Momentum

So far we have concentrated on the case of vanishing momentum. The study of free
spectral functions in Chp. 3 however revealed a particularly rich structure at finite mo-
mentum.
Here we present a first level analysis of the properties of the finite momentum correlation
functions at T ≃ 1.45Tc and examine the possible consequences of our results for the
finite momentum spectral functions.
To this extent we generated also meson correlators at finite lattice momentum which
may be connected to the physical scale |p|/T via:

|p|
T

= 2π · |~k| · Nτ

Nσ
. (6.1)

In our calculation we restrict ourselves to integer components of the momentum vector,
i.e. ~k = (i, i, i) where i ∈ N, consequently the aspect ratio Nσ/Nτ puts a hard limit on
the available momenta on our lattices ∗.

~k = (x, y, z) |p|/T (Nτ = 16) |p|/T (Nτ = 24) |p|/T (Nτ = 32) |p|/T (Nτ = 48)

(0,0,1);(1,0,0) 0.7854 1.1781 1.5708 2.3562
(0,0,2);(2,0,0) 1.5708 2.3562 3.1416 4.7124
(0,0,3);(3,0,0) 2.3562 3.5343 4.7124 7.0686

(1,1,0) 1.1107 1.6661 2.2214 3.3322
(2,1,0) 1.7562 2.6343 3.5124 5.2686
(2,2,0) 2.2214 3.3322 4.4429 6.6643

(3,1,0) 3.7255 4.9673 7.4509
(3,2,0) 4.2487 5.6636 8.4954
(3,3,0) 4.9982 6.6643 9.9965

Table 6.1: Table of available momenta in |p|/T at T ≃ 1.45Tc on lattices sized 1283 ×
48, 32, 24 and 16.

∗In the future it would be interesting to extend our study also to (smaller) non-integer momenta using
twisted boundary conditions [113].
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Figure 6.1: Left: The full vector correlator at Nτ = 48 with increasing momentum, shown
are the results for momenta ~k = (0, 0, pz) where pz = 0, 1, 2, 3. The colored
solid lines hereby denote the corresponding free continuum correlation func-
tions. Right: The ratio of the vector correlation function at varying momenta
and the vanishing momentum case. The lower Nτ = 16 momenta approach
the Nτ = 48 results, however due to cut-off effects do not lie on top of each
other at |p|/T = 2.3562. For comparison at this momentum the results of the
Nτ = 24 lattice are shown, these are seen to be closer to those of Nτ = 48.

The momenta that we could compute in this way are listed in Tab. 6. Without includ-
ing the Nτ = 16 there are never more than two matching momenta across the examined
lattice sizes, subsequently a continuum extrapolation as was done in the case of van-
ishing momentum is not possible. Fortunately, recalling Fig. 5.9, the Nτ = 48 results
are seen to be very close to the continuum extrapolation for Euclidean times as low as
τT ≃ 0.25, this carries over to finite momentum, as we will see shortly, and in the follow-
ing we will subsequently mostly examine the results from the Nσ = 128×Nτ = 48 lattice.

First look at the difference of the finite momentum case compared to that at vanishing
momentum. In Fig. 6.1(left) we show the full vector correlation function at Nτ = 48 for
the momentum in ~z-direction. We gather that with increasing momentum the correlation
function decreases and clearly deviates from the vanishing momentum case at Euclidean
times as early as τT & 0.05, at the midpoint we make out a difference of a factor ∼ 3
between the |~k| = 0 and |~k| = 3 case.

As before however the exponential decay dominates the correlator and we take the ratio
GV (τT, 0) and GV (τT, ~p) to examine the momentum induced deviation more closely.
From Tab. 6 it is apparent that the lowest physical momenta are achieved by the Nτ = 16
lattice while the highest are reached for Nτ = 48. As such the results from Nτ = 16
to Nτ = 48 give a connected line of physical momenta as both contain |p|/T = 2.356.
In Fig. 6.1(right) we therefore show the ratio GV (τT, 0)/GV (τT, ~p) for momentum in ~z-
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6.1 Analyzing the Vector Correlation Function at Finite Momentum

direction for the Nτ = 16 lattice and the first momentum in ~z-direction for Nτ = 48. The
figure shows the consequences drawn from the left hand figure on a more firmly basis.
Interestingly the momentum |p|/T = 2.356 does not match up between the Nτ = 16 and
Nτ = 48 lattices, this mirrors the results at vanishing momentum, see e.g. Fig. 5.9. Recall
that there the Nτ = 16 lattice was seen to be highly contaminated with lattice effects,
as a consequence it was neglected in the continuum extrapolation. From Fig. 6.1(right)
at |p|/T = 2.356 we conclude that this behavior indeed carries over to finite momentum.
For comparison also the Nτ = 24 results at the quark mass m/T ≃ 0.1 and momentum
|p|/T = 2.356 are shown in Fig. 6.1(right), these results match up much more nicely with
those of Nτ = 48 as expected.

6.1 Analyzing the Vector Correlation Function at Finite
Momentum

In Chp. 3 the finite momentum spectral functions were discussed at length, one of the
consequences shown in this context was the splitting of the spatial vector correlator into
transversally and longitudinally polarized parts:

Gii(τT, ~p) = 2 ·GT (τT, ~p) +GL(τT, ~p) . (6.2)

As result five different components or versions of the vector correlation function can be
studied, which of course are not independent of each other:

• GT (τT, ~p),

• G00(τT, ~p),

• GL(τT, ~p),

• GV (τT, ~p),

• Gii(τT, ~p).

As discussed in Chp. 3 some of these correlators are more difficult to analyses because
the underlying interacting spectral functions contain superpositions of a number of dif-
ferent effects, e.g. GV (τT, ~p). While others are theoretically simpler to understand, e.g.
due to a direct connection as in the case of G00(τT, ~p) and GL(τT, ~p). The transversal
correlator GT (τT, ~p) hereby takes the middle ground, while phenomenologically speak-
ing it is highly interesting as it directly connects to the photon rate, see Eq. 1.17.
Note at this point that the evaluation of the time-time correlator is postponed to a later
section, it will prove useful to examine it directly through its thermal moments and the
connection to the longitudinal channel below.

In Fig. 6.2 we give the ratio of the correlation function and its free continuum coun-
terpart in the GV (τT, ~p), Gii(τT, ~p), GT (τT, ~p) and GL(τT, ~p) channels for the mo-
menta ~k = (0, 0, pz) where pz = 0, 1, 2, 3. Here we only show the results from the
Nτ = 48, T ≃ 1.45Tc, as noted above, subsequently the physical momenta evaluated
are |p|/T = 0.0, 2.3562, 4.7124 and 7.0686. Note the |p|/T = 0 lines are identical to
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Figure 6.2: The vector correlation functions at finite momentum normalized by its free
continuum counterparts over Euclidean time. Shown are from top left to
bottom left in clockwise order the full, spatial, longitudinal and transverse
results for momenta ~k = (0, 0, pz) where pz = 0, 1, 2, 3 on the Nτ = 48 lattice.
These momenta correspond to the physical momenta |p|/T = 2.3562, 4.7124
and 7.0686 respectively.

those shown in Chp. 5.1. Whereby the vanishing momentum free continuum correlator
in the transversal and longitudinal channels is given by one third of the spatial vector
correlator due to Eq. 6.2, as the transverse and longitudinal channels degenerate in the
limit p→ 0.
In the low distance part τT . 0.15 we expect a dominant cut-off contribution, as in the
case of vanishing momentum, to carry over to the case of finite momentum. Indeed the
characteristic rapid drop can be seen in all channels and at all momenta. Going further
the datasets are seen to lie almost on top of each other at these distances, implying a
negligible momentum dependence of this part of the correlator.
Note here that the correction factor introduced in Chp. 5.1 due to the strong coupling
k(T ) ≃ αs/π in principle admits also a momentum dependence k(T ) → k(T, ~p). How-
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6.1 Analyzing the Vector Correlation Function at Finite Momentum

ever, the observed negligible momentum dependence in the region τT . 0.15 implies
that k(T ) is in fact momentum independent. As both the longitudinal and transverse
channels degenerate in the limit of vanishing momentum, this statement also implies
that both channels are subject to the same k(T ).
A weak momentum dependence can also be seen in the longitudinal channel for τT &
0.15. Here the ratio decreases with increasing distance for all momenta, however, all re-
sults remain within errors throughout the momentum region evaluated. As such the ratio
at vanishing momentum drops from about ∼ 1.07 at τT = 0.2 to ∼ 1.02 at τT = 0.5,
whereby all momenta evaluated remain above and within < 2% of this value. At the
same time the ratio shows a milder decrease with increasing momentum, e.g. the pz = 3
result drops only from ∼ 1.075 at τT = 0.2 to ∼ 1.04 at τT = 0.5.
These observations are in stark contrast to those of the transverse and as a result the
spatial and full ratios. Concentrating on the transverse channel at τT & 0.15, we also see
a decreasing trend of the ratio with increasing Euclidean time. Here however the ratio is
seen to drop by ∼ 20% between the vanishing momentum and the |p|/T = 7.0686 case.
So where in the longitudinal channel the vanishing momentum case set a lower bound
and larger momenta only deviated marginally, in the transverse the vanishing momen-
tum results sets an upper bound and the larger momenta deviate quite drastically.
This strong momentum dependence consequently sets the behavior of the composite
spatial and full vector correlator ratio, as the drop originating in the transverse channel
at τT & 0.15 dominates the result.

In the region where cut-off effects are under control all correlator ratios are seen to
show a decreasing trend with increasing distance. Taking into account the correction
factor k(T ) this implies that the free correlation function in this distance region is larger
than the corresponding data, subsequently the ratio of the two tends to smaller values.
Note the smallest values are thereby reached at and around the midpoint.
As this is the region where the low frequency region of the spectral function has its largest
impact, on the level of the spectral functions this behavior entails that the free spectral
function in the low frequency regime is in fact larger than its interacting counterpart.
So the contribution of the interacting low frequency spectral function is smaller than the
non-interacting limit.
Consequently the latter puts an upper bound on the contributions that we would model
in an Ansatz. Such a behavior also seems to be in accordance with the results of the
Langevin and Boltzmann approaches discussed in Chp. 3.2, as here also the free spectral
functions were seen to be somewhat larger than those of the interacting results.

6.1.1 Thermal Moments of the Finite Momentum Correlators

As the zeroth thermal moment of the correlation functions is given by the midpoint
of the correlator itself, the observed trends in Fig. 6.2 already show that the zeroth
moment is significantly reduced in the transverse and only lightly in the longitudinal
channels compared to their free counterparts. Clearly this mirrors the discussion above
that the corresponding free results are larger than those in the interacting case and are
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Figure 6.3: The midpoint subtracted correlator normalized by its corresponding free coun-
terpart ∆H(τT ) at finite momentum. Shown are the results for Nτ = 48 and
the momenta ~k = (0, 0, pz) where pz = 0, 1, 2, 3 in the full, spatial, transverse
and longitudinal vector channels.

approached from below. In the next step it is interesting to see what happens to the
second order thermal moments.
The latter are once more evaluated via the midpoint subtracted correlator normalized
by its free continuum counterpart, as defined in Eq. 4.19 and the results for Nτ = 48 at
momenta ~k = (0, 0, pz) where pz = 0, 1, 2, 3 are shown in Fig. 6.3. Note in this figure
only the results for the transverse and longitudinal channels are given, as the full and
spatial channels are made up of these two, bar the time-time contribution in the former.
Turning first to the longitudinal channel on the right of Fig. 6.3 the momentum depen-
dence is seen to be even weaker than in the correlator ratio. The cut-off contribution
once more dominates the results at τT . 0.15, as expected, above however all results lie
within a band of roughly ∼ 0.5% and no clear trend can be identified.
Also in the transverse case the momentum dependence in the midpoint subtracted cor-
relator normalized by the free continuum is not as clear and strong as in the ratio of the
correlation functions. Nevertheless at τT & 0.15 a momentum dependence can be cleanly
identified as the large momentum results show a decreasing trend with increasing dis-
tance, especially for |p|/T = 7.0686, while the vanishing momentum and |p|/T = 2.3562
results are almost flat.

In the next step the data is fitted by a quartic polynomial Ansatz, as was done in
Chp. 5.1, and the ratio of the second to the second free thermal moments is extracted.
Augmenting these results with those of the zeroth moment given by the midpoint of

the correlation functions, we list the ratios G
(2)
H /G

(2),free
H and R

(2,0)
H /R

(2,0),free
H for the

longitudinal and transverse channels in Tab. 6.2.
As one would expect the values obtained from the longitudinal results show only little
change with increasing momentum. Even though a slight trend towards smaller values
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|p|/T G
(2)
T /G

(2),free
T R

(2,0)
T /R

(2,0),free
T G

(2)
L /G

(2),free
L R

(2,0)
L /R

(2,0),free
L

0.0000 1.073(4) 1.043(9) 1.074(2) 1.043(8)

2.3562 1.068(3) 1.095(29) 1.070(1) 1.040(7)

4.7124 1.058(2) 1.178(21) 1.066(4) 1.033(9)

7.0686 1.045(2) 1.268(18) 1.071(3) 1.033(14)

Table 6.2: The ratio R
(2,0)
H /R

(2,0),free
H for the full, spatial, transverse and longitudinal

vector channels. All results have been obtained at Nτ = 48 and T ≃ 1.45Tc
using the procedure described in Chp. 5.1.

with increasing momentum in R
(2,0)
L /R

(2,0),free
L might be identified, it should be noted

that all values match within errors. In addition to this the ratio of second thermal mo-
ments G

(2)
L /G

(2),free
L is also seen to be constant within errors throughout the momentum

range evaluated.

The transverse channel on the other hand exhibits a clear rise in R
(2,0)
T /R

(2,0),free
T as

the momentum increases. This should be contrasted with the observation that the ratio
of second thermal moments G

(2)
T /G

(2),free
T on the other hand decreases with increasing

momentum. As a result the curvature of the correlator moves further towards the free
case as the momentum increases, the ratio of the curvature and the midpoint on the
other hand increases, implying the midpoint to drop further with increasing momentum,
in accordance with the preceding results.
It will be very interesting to see in a further step whether and in what fashion these
results are able to constrain the low frequency modification of the spectral function at
finite momentum.

6.1.2 Toy Models of the Correlation Function

To get an idea if and in what fashion the data discussed above is in fact accurate enough
to constrain and compute the spectral functions at finite momentum, we invoke two sets
of toy models that comprise two extreme possibilities for the momentum dependence
that might be at work.
Both models use the respective free continuum correlation functions as a starting point.
Whereby we introduce the correction factor k as before.
In the first model we assume the momentum dependence of the low frequency contri-
bution to be modeled by a constant contribution in the correlator, i.e. a Euclidean
time-independent part. As it was seen above that the free case is larger than the inter-
acting this contribution should be subtracted. Subsequently in the language of spectral
functions this would correspond to a δ-function with negative sign.
The second assumes the smearing of the free spectral function at ω . p to be very weak,
as to the extent that it suffices to multiply the spectral function below the lightcone only
by an additional factor. This possibility thereby includes the Euclidean time-dependence
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|p|/T k cconst cω<p

ρT (ω, ~p) 2.3562 1.070 0.077 0.861
4.7124 0.092 0.770
7.0686 0.072 0.690

ρL(ω, ~p) 2.3562 1.075 0.032 0.941
4.7124 0.018 0.914
7.0686 0.008 0.903

Table 6.3: The parameters of the toy models used to generate the data in Fig. 6.4. Here
cconst denotes the constant factor of toy model (I), Eq. 6.3, and cω<p the factor
for the low frequency part of the correlation function in toy model (II), Eq. 6.4.

of the free case, only at a different strength. Both toy models may be written as:

(I) GH(τT, ~p) = k ·Gfree
H (τT, ~p)−Gconst

−→ ρH(ω, ~p) = k · ρfreeH (ω, ~p)− c(~p)δ(ω) (6.3)

(II) GH(τT, ~p) = k ·Gfree
H,ω>p(τT, ~p) + c(~p) ·Gfree

H,ω<p(τT, ~p)

−→ ρH(ω, ~p) = k · ρfreeH,ω>p(ω, ~p) + c(~p) · ρfreeH,ω<p(ω, ~p) . (6.4)

These models are now tested on the data by taking the ratio GH(τT, ~p)/Gtoy
H (τT, ~p),

whereby in the next step the model parameters are tuned until this ratio gives unity
at least at τT = 0.5. The primary aim here is to compare the two toy models and to
see which of the two can better describe the data, so we do not expect to achieve a
perfect match throughout the Euclidean time interval. Nevertheless requiring at least
the midpoint to fit we can estimate where the assumptions made in the toy models are
too strong or too weak.

Following this procedure we obtain the results shown in Fig. 6.4, whereby the cor-
responding parameters are given in Tab. 6.3. As before we restrict ourselves to the
longitudinal and transverse correlators at momentum pz = 1, 2, 3, corresponding to the
physical momenta |p|/T = 2.3562, 4.7124 and 7.0686. Note here that throughout we
have also given the ratio of the data and the free correlation function multiplied by k
for comparison in the figure.
At first glance both models are seen to be able to describe the data astonishingly well.
Turning first to the transversal channel the lowest momentum results are hardly distin-
guishable from one for distances τT & 0.15, whereby below this value we once encounter
the rapid rise of the ratio due to cut-off effects, see Chp. 5.1. At this momentum both
models match very closely and it is not possible to tell if one describes the data better
than the other.

126



6.1 Analyzing the Vector Correlation Function at Finite Momentum

 0.9

 0.95

 1

 1.05

 1.1

 0.1  0.2  0.3  0.4  0.5

τT

GT(τT,pz)/GT
toy(τT,pz)

|p|/T=2.3562

GT
toy= k*GT

free

c*GT
ω<p+k*GT

ω>p

k*GT
free-Gconst

 0.96

 0.98

 1

 1.02

 1.04

 0.1  0.2  0.3  0.4  0.5

τT

GL(τT,pz)/GL
toy(τT,pz)

|p|/T=2.3562

GL
toy= k*GL

free

c*GL
ω<p+k*GL

ω>p

k*GL
free-Gconst

 0.9

 0.95

 1

 1.05

 1.1

 0.1  0.2  0.3  0.4  0.5

τT

GT(τT,pz)/GT
toy(τT,pz)

|p|/T=4.7124

GT
toy= k*GT

free

c*GT
ω<p+k*GT

ω>p

k*GT
free-Gconst

 0.96

 0.98

 1

 1.02

 1.04

 0.1  0.2  0.3  0.4  0.5

τT

GL(τT,pz)/GL
toy(τT,pz)

|p|/T=4.7124

GL
toy= k*GL

free

c*GL
ω<p+k*GL

ω>p

k*GL
free-Gconst

 0.9

 0.95

 1

 1.05

 1.1

 0.1  0.2  0.3  0.4  0.5

τT

GT(τT,pz)/GT
toy(τT,pz)

|p|/T=7.0686

GT
toy= k*GT

free

c*GT
ω<p+k*GT

ω>p

k*GT
free-Gconst

 0.96

 0.98

 1

 1.02

 1.04

 0.1  0.2  0.3  0.4  0.5

τT

GL(τT,pz)/GL
toy(τT,pz)

|p|/T=7.0686

GL
toy= k*GL

free

c*GL
ω<p+k*GL

ω>p

k*GL
free-Gconst

Figure 6.4: Comparison of the transverse (left) and longitudinal (right) data to results
obtained by toy models at pz = 1, 2, 3. Including a correction due to the
running of the coupling via the coefficient k as before, the coefficients of the
toy models are tuned to produce unity in the ratio of the data to the toy model
GH(τT, ~p)/Gtoy

H (τT, ~p). The deviation from unity by the toy models gives a
measure of how well they describe the data.
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Increasing the momentum however, this is no longer the case. While both models can
still reproduce the midpoint and the largest two or three distances, they have problems
describing the intermediate distance range 0.2 . τT . 0.4. As such toy model (II)
deviates above one already at |p|/T = 4.7124, with this deviation increasing at |p|/T =
7.0686. At the same time toy model (I) can still fairly well describe the data at |p|/T =
4.7124 even though a tendency to deviate below one already emerges. However at |p|/T =
7.0686 this model also begins to visibly deviate.
In the longitudinal channel the situation is a little more subtle. First of all the scale of
the momentum dependence is much smaller in this channel, as noted above. Secondly
however both toy models deviate only within the errors of each other and we have to
rely on the absolute values to draw some conclusions. As before both models are almost
degenerate at |p|/T = 2.3562, at larger momenta however toy model (II) exhibits a
deviation from one in the same way it did in the transverse channel. As such the ratio
rises above one in the region 0.2 . τT . 0.4. Model (I) with its constant contribution
fares much better in this channel and the ratio remains very close to unity throughout
all momenta evaluated.
Turning to the parameters in Tab. 6.3 note that the tuning was done by hand, as such
no errors are available. Nevertheless it is interesting to note that k is identical for all
momenta, as was already seen above, but it is also within 0.5% of the longitudinal and
the transverse channels, whereby this discrepancy might easily arise from the errors of
the data and the somewhat crude tuning technique. The model parameters cconst and
cω<p on the other hand both exhibit a decreasing trend with increasing momentum.
There is however an exception to this trend at |p|/T = 4.7124 in the transverse channel
for cconst, here the value exceeds both those at |p|/T = 2.3562 and |p|/T = 7.0686. The
reason for this is unclear at the time being.
Comparing the model parameters for the longitudinal and transverse channels, notice
that the constant cconst is significantly smaller in the longitudinal case than in the
transverse case, whereby at the same time the factor cω<p is much larger in the former
than the latter. This mirrors the observation that the momentum dependence of the
deviation from the free case in the longitudinal channel is much weaker than that of
the transverse. With the toy models being based on the free case, with cconst = 0
and cω<p = 1 implying no deviation from the latter, we would indeed expect a smaller
modification of the free case in the longitudinal channel than the transverse.
With these results in hand we can immediately compute the thermal moments encoded

in ∆H(τT, ~p), Eq. 4.19, also for the toy models and directly compare them with those
obtained from the data. The corresponding results are shown in Fig. 6.5, whereby we
only show results with |p|/T ≥ 4.7124, because the results from the lowest momentum
are indistinguishable, just as was seen in the correlator ratio above. Note at this point
that both models are built from the free continuum correlation functions, therefore we
do not expect them to reproduce ∆H(τT, ~p) below τT ≃ 0.15.
Turning to the transverse channel and the left of Fig. 6.5 we notice that as before the
shortcomings of the two models reveal themselves most clearly at |p|/T = 7.0686. How-
ever both momenta shown indicate that neither the constant contribution nor the simple
free form capture the effects that are encoded in the data. As such the data occupies
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Figure 6.5: Comparison of the thermal moments encoded in ∆H(τT, ~p) in the transverse
(left) and longitudinal (right) channels where ~k = (0, 0, pz) for pz = 2, 3 and
the corresponding results from the toy models.

a middle ground between the two limiting assumptions, on which the toy models are
based.
Even though the situation is again a little more subtle in the longitudinal channel, as
both model predictions are within the errors of the data. The absolute values on the
other hand clearly favor the first toy model for both momenta.

Summarizing both the correlator ratio and the thermal moments have shown to be bet-
ter described by a constant contribution in the longitudinal channel. While both models
in the transverse channel, although working well at |p|/T = 2.3562, fail to describe the
data for larger momenta.
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Figure 6.6: The time-time correlation function normalized by its free continuum coun-
terparts at finite momentum.

6.2 The Time-Time Vector Channel and its Thermal
Moments

So far the analysis focused on the transverse and longitudinal vector correlators at finite
momentum, however also the time-time component obtains a non-trivial momentum de-
pendence.
Subsequently the ratio of the data to the corresponding free continuum case for the
momenta |p|/T = 0.0000, 2.3562, 4.7124 and 7.0686 is shown in Fig. 6.6. Note here

that the free continuum function at |p|/T = 0.0 is simply Gfree
00 (τT, 0) = 1 due to the

structure of the time-time spectral function highlighted in Chp. 3.
As before the ratio quantifies the deviation of the data from the free case by differing
from unity. Whereby in the case of vanishing momentum the quark number susceptibil-
ity emerges, as we already saw in Chp. 5.1. Going to finite momentum we can see how
this limit is approached.
Indeed we observe a smooth trend towards the vanishing momentum result as the mo-
mentum is decreased. Note the limit of vanishing momentum seems to be achieved from
the midpoint downwards, with the last four or six Euclidean times being already very
close to the vanishing momentum case especially at |p|/T = 2.3562 and then rising with
decreasing distance.
Interestingly there seems to be a qualitative difference between the results at |p|/T =
2.3562 and those at larger momenta, as the latter results exhibit an inflexion point
around τT ≃ (0.2− 0.25) that is absent in the former. Nevertheless in general the ratio
drops throughout the Euclidean time interval at all momenta evaluated, starting from
slightly above one and going to slightly above the vanishing momentum result at the
midpoint.
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Recall at this point that the behavior of the longitudinal and time-time correlators
is in fact linked by the direct connection between the time-time and the longitudinal
components of the vector channel shown in Eq. 3.72. As such it gives rise to a special
connection between the two cases in terms of the thermal moments of the time-time
channel. Consequently recall Eq. 3.72 and write:

p2ρL(ω, ~p) = ω2ρ00(ω, ~p) , (6.5)

comparing this relation with the definition of the thermal moments in Eq. 4.9 and
Eq. 4.10, we may immediately write the second thermal moment of the time-time vector
channel in terms of the longitudinal component:

G00(τT, ~p) = G
(0)
00 (~p) +G

(2)
00 (~p)

(1
2
− τT

)2
+ ... (6.6)

G
(0)
00 (~p) = G00(τT = 1/2, ~p) (6.7)
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)2
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(0)
L (~p) , (6.8)

In fact bar the zeroth order the thermal moments of the time-time correlator may be
identified order by order by a corresponding moment of the longitudinal channel. To see
this write:
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The expansion in thermal moments then becomes:
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thus establishing a direct connection between the time-time correlator and the thermal
moments of the longitudinal correlator. Incidentally note here that the additional fac-
tor ∼ (n!(n + 2)!)−1 rapidly suppresses the contribution from thermal moments with
increasing order n.

A straightforward test whether the exact relation and our approximation by thermal
moments holds can be done by restricting oneself to the lowest two thermal moments,
write

∆0(τT ) =
G00(τT, ~p)

G
(0)
00 (~p) +

p2

2 G
(0)
L (~p)

(
1
2 − τT

)2 . (6.11)
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Figure 6.7: The ratio ∆0(τT, ~p) defined in Eq. 6.11 for the momenta |p|/T =
2.3562, 4.7124 and 7.0686. The longitudinal channel hereby takes over the
role of the second thermal moment of the time-time correlator. In the region
where the first two moments are expected to describe the full correlator, the
direct connection between the longitudinal and time-time correlators is seen
to be excellently confirmed.

In essence this definition is similar to what was done in Fig. 4.3(right), there we saw that
the description of the correlator with only the first two moments worked very well for
Euclidean times τT & 0.4 and is almost exact at τT & 0.45.

In Fig. 6.7 we show the resulting ∆0(τT ) on the Nτ = 48 lattice with momentum in
~z-direction. Clearly for τT & 0.45 the results are almost equal to unity for all momenta
shown, while they remain unity within errors down to Euclidean times τT & 0.4. This
implies the exact relation, Eq. 3.72, between the time-time and longitudinal vector cor-
relation functions is indeed satisfied.

So far we have concentrated on expressing the time-time correlation function with
its longitudinal counterpart. This however also works the other way round. To see this
consider the longitudinal correlator expressed in terms of the time-time spectral function
using Eq. 6.5:

p2GL(τ, ~p) ≡
∫ ∞

0

dω

2π
ρ00(ω, ~p)ω

2 cosh(ω(τ − 1/2T ))

sinh(ω/2T )

=

∫ ∞

0

dω

2π
ρ00(ω, ~p) ∂

2
τK(ω, τ, T )

= ∂2τ

∫ ∞

0

dω

2π
ρ00(ω, ~p)K(ω, τ, T ) (6.12)

⇒ p2GL(τ, ~p) ≡ ∂2τG00(τ, ~p) . (6.13)
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Figure 6.8: The longitudinal correlator (open symbols) and the second derivative of the
time-time correlation function divided by momentum squared (closed sym-
bols) for the momenta |p|/T = 2.3562 (red), 4.7124 (blue) and 7.0686 (green),
whereby ~k = (0, 0, pz) with pz = 1, 2, 3. The insertion shows the ratio of the
two, whereby the color coding is the same as in the main figure.

Consequently the second derivative with respect to time of the time-time correlation
function is identical to the longitudinal correlator times momentum squared.

To check this relation we discretize the second derivative and compute it numerically
given the time-time correlator data. The results are then immediately compared to the
longitudinal results in Fig. 6.8. Whereby the insertion shows the ratio p2GL/∂

2G00 over
Euclidean time. Clearly the relation of Eq. 6.13 holds very well, as the results lie on top
of each other and the ratio of the insertion is almost unity throughout the Eucldean time
intervall.

All of the above results are due to the exact relation of Eq. 6.5 and as such are ex-
pected. Nevertheless it is a valuable cross check of the accuracy of the numerical data
to see the equivalence of the correlators of the time-time channel and a sum of ther-
mal moments of the longitudinal, or likewise the longitudinal correlator and the second
derivative of the time-time case, emerge also in the data.

6.2.1 On a Non-Zero Intercept in the Longitudinal Channel

Recently it was suggested in [114], that contrary to the model predictions of [79], see
also Fig. 3.8, there might be a non-zero intercept at ω = 0 in ρL(ω, ~p)/ω.
In the study of [114] the authors invoked the staggered formulation and studied lattices
of temporal size Nτ = 24 at two different quark masses amq = 0.01 and amq = 0.05.
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Figure 6.9: Longitudinal vector spectral function for various momenta in the hot case
for ma = 0.01 from [114].

Using MEM with an improved kernel the longitudinal spectral function was extracted
from the corresponding correlator data at varying momenta and the resulting spectral
function is shown scaled with frequency in Fig. 6.9. These results exhibit a non-zero
intercept at ω = 0, suggesting a contribution linear in ω in the low frequency domain.

Having firmly established the link between the longitudinal and time-time vector cor-
relators it is consequently interesting to explore the consequences such an intercept has
on the time-time component.
To do this assume that the longitudinal spectral function may be split up into an inter-
cept component linear in the frequency cL · ω and an unspecified high frequency part
ρ′L(ω), then write:

ρ00(ω, ~p) =
p2

ω2
· ρL(ω)

=
p2

ω2
·
(
cLω + ρ′L(ω)

)
(6.14)

= ρlow00 (ω, ~p) + ρhigh00 (ω, ~p) .

Then the low frequency part of the time-time correlator may be written as:

Glow
00 (τT, ~p) =

∫ ω′

0
dω ρlow00 (ω, ~p) ·K(τ, ω)

=

∫ ω′

0
dω

p2 · cL
ω
· cosh(ω(τ − 1/2T ))

sinh(ω/2T )
, (6.15)
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Notice here that in the integration:

cosh(ω(τ − 1/2T )) ≥ 1 ∀ ω ∈ [0, ω′]

sinh(ω/2T ) < sinh(ω′/2T ) ∀ ω < ω′ (6.16)

as a result we can estimate the integral in Eq. 6.15 to obey the lower bound:

∫ ω′

0
dω

p2 · cL
ω
· cosh(ω(τ − 1/2T ))

sinh(ω/2T )
≥ 1

sinh(ω′/2T )

∫ ω′

0
dω

p2 · cL
ω

→∞ ∀τ . (6.17)

Consequently a non-zero intercept, linear in frequency in the longitudinal channel
leads to a diverging contribution in the time-time channel. Such a behavior is not only
not supported by our data but also unphysical and it is therefore excluded.

6.3 Consequences for the Spectral Functions at Finite
Momentum

Our preliminary analysis of the different vector correlation functions at finite momentum
leads to a number of results we will quickly summarize here:

• Focusing on the transverse and longitudinal channels the ratio of the correlators to
their corresponding free continuum counterparts reveals only very little momentum
dependence in the longitudinal channel. While the momentum dependence in the
transverse channel is seen to be quite strong.

• The correlator ratios are seen to exhibit only negligible momentum dependence at
τT . 0.15. Linking this behavior to the correction due to the strong coupling the
correction factor k(T ) is indeed only temperature dependent and should be the
same for all vector channels.

• All correlator ratios show a decreasing trend with increasing Euclidean time, im-
plying the low frequency free continuum results to be larger that those in the
interacting case. This means the contribution due to the low frequency free spec-
tral function is in fact approached from below, in accordance with the Langevin
and Boltzmann approaches.

• The ratio R
(2,0)
H /R

(2,0),free
H of the longitudinal channel shows hardly any momen-

tum dependence, while that of the transverse is seen to increase with increasing
momentum. Nevertheless in the latter case the ratio of second thermal moments
G

(2)
H /G

(2),free
H slowly decreases towards the free result with increasing momentum.

• We invoked two simple toy models in order explore what kind of contribution
to expect in the interacting spectral functions of the longitudinal and transverse
channels. As such a modified low frequency free behavior in the spectral function
and a constant contribution in the correlator are tested. Both are seen to describe
the data well at low momentum, at larger momenta on the other hand both models
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fail to accurately describe the transverse channel both in the correlator and the
thermal moments. At the same time a constant contribution in the correlator is
seen to model the longitudinal correlator and the corresponding thermal moments
very well, while the modified low frequency spectral function fails to do so at larger
momenta.

• Additonally it could be shown that the data obeys the direct connection between
the time-time and longitudinal correlators. This is done first by using the definition
of the thermal moments directly and rewriting the time-time correlator in terms of
the thermal moments of its longitudinal counterpart. Secondly the longintudinal
correlator is directly connected to the second derivative of the time-time correlator.
The subsequent analysis shows excellent agreement with these relations in our data.

• With the relation between time-time and longitudinal correlators firmly estab-
lished, we estimate the subsequent contribution to the time-time correlator from
a non-zero intercept linear in frequency in the longitudinal spectral function. This
contribution is seen to be divergent. However, as such a contribution in the time-
time correlator is unphysical, a non-zero intercept linear in frequency in the longi-
tudinal spectral function must be excluded.

Note these results are of a more exploratory nature than those obtained at vanishing
momentum in the continuum limit at T ≃ 1.45Tc. However they are nevertheless very
encouraging in a sense that more quantitative results may be found in the near future.
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Chapter 7

Notes on the Pseudo Scalar and Other
Spectral Functions

After having explored the vector channel quite extensively now turn to what may be said
on the other channels. To this extent we will show results of the pseudo scalar correlator
and its thermal moments at varying temperatures but vanishing momentum.
Additionally the possible degeneracy of the pseudo scalar and scalar, as well as the vector
and axial vector correlation functions at the midpoint will be examined.

7.1 The Pseudo Scalar Correlator and its Thermal
Moments

To open the discussion have a look at the pseudo scalar correlation function at T ≃
1.45Tc. Whereby we employ the tadpole-improved renormalization constants of Tab. 2.4.1
if not stated explicitely otherwise In Fig. 7.1(left) we show the correlation function on
the available lattices, as before, with their free continuum and free lattice counterparts.
The insertion gives the ratio of the free lattice and free continuum correlators. The latter
ratio is again seen to differ only in the short distance regime, where the cut-off effects
are expected to dominate.
Even though the exponential decay might obscure more subtle effects, in case of the
pseudo scalar channel there is a clearly visible deviation from the free behavior. At the
midpoint the intercept between the free lines and the data is in fact close to a factor
two. Still the correlation function itself is very round, so to explain the effect with a
single particle state is ill-advised, as such a state would show as a straight line in this plot.

In Fig. 7.1(right) we immediately show the temperature dependence of the correlator
at β = 7.457 in order to see what happens to this deviation as the temperature is de- or
increased. As before the correlation function together with its free counterparts is shown.
Whereby the insertion shows the data with the x-axis rescaled to physical distance units.
We see that the result at T ∼ 1.2Tc given by the 1283×40 lattice lies above that at 1.45Tc,
while the T ∼ 3.0Tc result of the 1283 × 16 lattice is roughly a factor two closer to the
free limit. Note however that it still visibly differs from the latter. These results imply
the pseudo scalar channel is subject to rather large non-perturbative effects. With the
results tending farther towards the free limit as the temperature is increased, we observe
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Figure 7.1: The pseudo scalar correlation function, (left) at T ≃ 1.45Tc and varying cut-
off scale and (right) at fixed cut-off while varying the temperature via Nτ .
As before the free continuum (magenta lines) and free lattice (open symbols)
are given for reference. The insertion on the left shows the ratio of the free
lattice and free continuum correlation functions, while the insertion on the
right shows the correlator data with the x-axis rescaled to physical distance
units.

a decreasing trend of the non-perturbative effects as we go closer to the non-interacting
regime, as one would expect.

7.1.1 The Correlator Ratio at T ≃ 1.45Tc

Next it is interesting to also examine the ratios of the correlation functions divided by
their free counterparts, as in the vector case. The result is given in Fig. 7.2(top) both
with the free continuum (left) and the free discretized (right) correlation function. As
before data sets with fixed spatial size at Nσ = 128 while varying the cut-off Nτ are
shown in black. Data sets with fixed cut-off (Nτ = 16) and varying volume are shown in
color. For one value of the cut-off (Nτ = 24) we performed calculations for two different
values of the quark masses. We find once more that finite quark mass effects are small
and well within 2%. From the fixed cut-off (colored) Nτ = 16 results in both plots finite
volume effects for τT ≥ 0.3 are seen to remain within one percent even for the largest
Euclidean time separation at τT = 0.5. As a consequence these results show that finite
volume effects are under control.

In the pseudo scalar case the situation concerning cut-off effects is not as immediately
evident as in the vector channel. The ratio shown in Fig. 7.2(top) shows large deviations
from the free field behavior even at short distances as expected from the analysis of the
correlator itself in Fig. 7.1. At all distances the correlator thus seems to be controlled
by large non-perturbative effects. Moreover, the analysis of cut-off effects is obscured by
the fact that the renormalization constants are known only perturbatively, see Tab. 2.4.1.
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Figure 7.2: The pseudo scalar correlation functions normalized by the free continuum
(left) and free lattice (right) correlation functions, calculated on lattices sized
N3

σ×Nτ at T ≃ 1.45Tc. Note the index “128
3×24−2 denotes the lighter quark

mass on this lattice. Bottom left and right: As top with both additionally
rescaled by the correlator at τT = 1/2, GPS(τT = 0.5), here only the results
with varying cut-off are shown.

To eliminate at least these uncertainties we show in Fig. 7.2(bottom) the pseudo scalar
correlation function normalized by the pseudo scalar correlation function at τT = 0.5.
As we focus on the cut-off dependence we only show equal quark mass Nσ = 128 results.
The left hand figure shows the pseudo scalar correlator normalized by the free continuum
correlator and in the right hand figure the free lattice correlation function has been used.
From the left hand plot it is now possible to get an idea of the cut-off dependence, as a
marginal rise in the short distance region becomes visible. We conclude that, similarly to
the vector case, cut-off effects above a certain τT are small and increase with decreasing
Euclidean time. For the Nτ = 48 lattice this value is, as before, τT ≃ 0.15, while
it increases with smaller Nτ and reaches τT ≃ 0.3 for Nτ = 16. Even though the
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Figure 7.3: The ratio of the pseudo scalar correlator without normalization by GPS(τT =
0.5) and its free counterparts RPS(τT ) including its continuum extrapolation.
In both cases the extrapolation was done as described in Chp. 5.1, filling in
spline interpolations when necessary. Unfortunately in the pseudo scalar
case it is not possible to form renormalization independent ratios and the
extrapolation is subject to the subsequent uncertainty.

cut-off effects become apparent below these values, they do not dominate the behavior
of the correlation function as in the vector channel. Actually the right hand side of
Fig. 7.2(bottom) indicates that the τ -dependence of the cut-off effects is similar to that
of the free lattice correlation functions, as hardly any cut-off effect is visible throughout
the Euclidean time interval.

7.1.2 The Continuum Extrapolation

Following the prescription outlined in the vector case Chp. 5.1.3, we nevertheless attempt
a continuum extrapolation. In Fig. 7.3 the corresponding result for the pseudo scalar
correlation function is shown. Here it is not possible to eliminate the renormalization
effects using suitable ratios of correlation functions. The extrapolation necessarily also
includes this ambiguity. As the correlator normalized by its value at the midpoint was
found to be almost cut-off independent and as finite volume effects were seen to be small
renormalization effects dominate the uncertainty of the extrapolation.

7.1.3 Thermal Moments of the Pseudo Scalar Correlator

Naturally we may also compute the thermal moment following the procedure developed
in the vector channel and presented in Chp. 5.1.4, as before they are especially interest-
ing as they are obtained at the largest Euclidean time separation where the correlation
functions are most sensitive to the low frequency region of the spectral function. In
particular, the lower orders of the thermal moments restrict the magnitude of the low
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Figure 7.4: The pseudo scalar quantity ∆PS(τT ) normalized by G
(0)
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quartic Ansatz as indicated by the definition of ∆H(τT ) and is shown within
the interval τT ∈ [0.2 : 0.5].

frequency contribution to the spectral function and thus to the correlation function.

In order to extract thermal moments we once more examine the quantity ∆H(τT ), this
time in the pseudo scalar case ∆PS(τT ), as defined in Eq. 4.19. As for the correlation
functions the resulting data is extrapolated to the continuum and extrapolated data is
subsequently fitted to a quartic polynomial. During this procedure the data is once

more rescaled by GPS(τT = 1/2) = G
(0)
PS in order to suppress the effects from the

renormalization constants, the corresponding results are shown in Fig. 7.4.
The resulting fit parameters yield for the second thermal moment:

T 3G
(2)
PS

G
(0)
PSG

(2),free
PS

= 0.7912± 0.0012 , thus R
(2,0)
PS = 10.932± 0.017 < R

(2,0)
PS,free . (7.1)

From Fig. 7.3 it is clear that G
(0)
PS/G

(0),free
PS is larger than 1, as a consequence we can

conclude the second thermal moment must be closer to the free field limit than the ze-
roth, even though the renormalization effects cannot be systematically controlled.

7.1.4 MEM analysis of the Pseudo Scalar Channel

In lack of alternatives we turn to a MEM analysis to shed some light on the possible shape
of the pseudo scalar spectral function. Specifically we do the analysis at T ≃ 1.45Tc on
the 1283 × 48 lattice.

For the analysis we employ two default models, the first is given simply by the free
lattice pseudo scalar spectral function, the second is a combination of the free lattice
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Figure 7.5: Results of a MEM analysis on the pseudo scalar correlator. Left: The low
frequency region of ρ(ω)/ωT is shown. Right: The full spectral function is
given in units 1/ω2. Note the index in ρMEM

PS,index shows which default model

was used as input.

spectral function and a Breit-Wigner type contribution. Here we choose the free lattice
spectral functions in order to minimize any effects originating from the large frequency
region of the spectral function.
In Fig. 7.5 we show the default models and their respective results, whereby the input
parameters of the Breit-Wigner were also varied in order to test default models with
peaks ranging from very broad to very narrow∗. On the left of the figure we show the
spectral functions scaled by frequency and temperature in the low frequency regime,
while on the right the spectral functions by frequency squared is given.

With both types of default model the intermediate and high frequency region exhibit
essentially the same form, especially in the frequency region ω/T ≃ (5 − 20) the result
spectral functions possess a similar peak structure, regardless of the default model.
Indeed this peak structure is seen to dominate the low to intermediate shape of the
spectral function.
Note however that this peak structure from the Breit-Wigner default models seems to
be slightly shifted. This shift can be accounted for by noticing that throughout all Breit-
Wigner default models the transport contribution is highly suppressed, if not entirely
deleted from the result. The remnant peak in some default models cannot be further
canceled by MEM due to the accuracy of the data and subsequently it compensates for
the existence of the peak in the higher frequency regions. Even so MEM suppresses
the Breit Wigner contribution of the default models by more than 75% throughout all
Breit-Wigner default models tested. Within the resolution of MEM this is a clear and
significant sign that a peak contribution at low frequencies is absent.

∗Only a representative selection is shown in Fig. 7.5
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7.2 Midpoints of the Current Correlators at Finite
Temperature

At finite temperature many correlation functions are expected to degenerate as signals
of symmetry restoration [15,115] and in this section we will briefly examine the situation
encountered in this work.

A clear observable to examine these degeneracies is the midpoint of the correlation
function. Recalling Eq. 3.80 the free lattice propagator contributions read:

S4(τ,~k) = S4(~k) · cosh((τ − 1/2T )E~k
) (7.2)

Si(τ,~k) = Si(~k) · sinh((τ − 1/2T )E~k
) (7.3)

Su(τ,~k) = Su(~k) · sinh((τ − 1/2T )E~k
) +

δτ0
2(1 +M~k

)
. (7.4)

Using the above relation one realizes that at the midpoint τ = 1/2T the decomposition
of the correlation function becomes simpler and one may immediately write [74]:

GH(τ = 1/2T, ~p) =
4Nc

N3
σ

∑

~k

a
(1)
H S4(~k)S

†
4(~r) . (7.5)

This implies that the midpoints of the scalar and pseudoscalar as well as the vector and
axialvector degenerate in the free case:

GPS(τ = 1/2T, ~p) = GS(τ = 1/2T, ~p) (7.6)

GV (τ = 1/2T, ~p) = GA(τ = 1/2T, ~p) . (7.7)

This is clear from the channel constant a
(1)
H and Tab. 3.1.1. However, the above particle

channels may also degenerate away from the non-interacting limit when symmetries of
the vacuum are restored, see e.g. [115].
As such the degeneration of the correlation functions for the vector and axial vector
currents is associated with the restoration of chiral symmetry. The degeneracy of the
pseudo scalar and scalar channels on the other hand can be shown to be sensitive to the
effective restoration of the axial UA(1) anomaly.

It is interesting to note at this point that the ratios of the vector to axial vector and
pseudo scalar to scalar channels are very sensitive to the uncertainties of the renormal-
ization constants, as:

G1

G2
(τ = 1/2T, ~p) =

Z1

Z2
· G

data
1

Gdata
2

(τ = 1/2T, ~p) . (7.8)

In the symmetric phase this implies a deviation from G1

G2
(τ = 1/2T, ~p) = 1 in the con-

tinuum limit may be attributed to the uncertainties in the renormalization constants.
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Figure 7.6: Left: The ratio of the midpoints of the vector and axial vector channel renor-
malized with non-perturbative and tadpole improved renormalization con-
stants. Right: A comparison of the non-perturbative vector to axial vector
ratio and the tadpole improved pseudo scalar to scalar.

To study these effects we show the ratio of the midpoints of the vector to axial vec-
tor and the pseudo scalar to scalar correlation functions for the available lattices with
Nσ = 128 in Fig. 7.6. In addition the data at T ≃ 1.45Tc is used to extrapolate the ratio
to the continuum. Whereby only the results with approximately the same quark mass
were used for the extrapolation, i.e. Nτ = 24, 32 and 48. Note that in order to check for
finite mass effects we show the results for both available quark masses on the Nτ = 24
lattice.

On the left of Fig. 7.6 we focus on the vector to axial vector ratio and show the full
vector to full axial vector ratio once using the non-perturbative and once the tadpole
improved renormalization constants given in Tab. 2.4.1. Additionally we give the non-
perturbatively renormalized ratio of the spatial components of the vector and axial vector
channels. Clearly the results are very much compatible and we observe a systematic de-
creasing trend with increasing cut-off. However, all our results can be approximately
contained in a region deviating in around 1% or 3% across our calculations and the
continuum extrapolation.
On the right of Fig. 7.6 we compare the non-perturbative full vector to axial vector ratio
with the tadpole improved pseudo scalar to scalar. We observe a strong cut-off depen-
dence and a deviation from unity of something between 10% and 6% in the pseudo scalar
by scalar case.
Comparing the two quark masses at Nτ = 24 in both figures finite mass effects are seen
to be small as they deviate from one another only on the level of 0.5%. As such they are
not strong enough to explain the deviation from unity of the results in the vector/axial
vector and the pseudo scalar/scalar ratios.
With finite mass effects small and a visible deviation from unity also in the continuum
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7.2 Midpoints of the Current Correlators at Finite Temperature

limit we identify two sources for the apparent mismatch. As such one possibility is that
the observed deviation indeed arises from the errors of the renormalization constants.
The other possibility is that the corresponding symmetries are not yet restored in the
available temperature range.
Fortunately we can turn to a number of studies to get a feeling which of the two scenarios
might be applicable, see e.g. [115,116] and references therein. As such using an improved
staggered fermion formulation on dynamical Nf = 2+1 configurations the recent calcu-
lation of [116] could show that in the intermediate temperature region 1.2Tc . T . 1.5Tc
both chiral symmetry and the anomalous UA(1) exhibit signs of restoration.
If we assume this to be the case in our study the deviation from unity would be mostly
due to the uncertainties of the renormalization constants.
If this is indeed so we can estimate the error induced by these uncertainties especially
in the pseudo scalar/scalar case. As here it is not possible to take renormalization in-
dependent ratios, as was done in the vector channel, when examining the correlation
functions. In the pseudo scalar channel additional error bands on the correlator data, in
e.g. Fig. 7.2, of the order of 5 − 10% due to renormalization could explain the offset of
the individual lattice results. Subsequently the discrepancies would not be due to lattice
effects.
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In this thesis we computed meson correlation functions in the deconfined phase of
quenched QCD. For the calculation we invoked the framework ofO(a2)-improvedWilson-
Clover fermions at light quark masses. We computed the vector correlation function on
lattices of size N3

σ ×Nτ , with 32 ≤ Nσ ≤ 128 and Nτ = 16, 24, 32 and 48. For Nτ = 16
we calculated GH(τT ) on lattices with spatial extent Nσ = 32, 64, 96 and 128, in or-
der to quantify finite volume effects at fixed values of the lattice cut-off. For Nτ = 24
we checked that the quark masses used in our calculations are indeed small enough on
the scale of the temperature to be ignored in the analysis of our correlation functions.
On the largest spatial lattice, Nσ = 128, we performed calculations for four different
values of the lattice cut-off by choosing Nτ = 16, 24, 32 and 48 and at the same time
changing the value of the gauge coupling β such that the temperature is kept constant,
T ≃ 1.45Tc. Finally we varied the temperature at Nσ = 128 keeping the cut-off scale
fixed and varying the temporal extent Nτ = 16, 32 and 40, corresponding to the respec-
tive temperatures T ≃ 3.0Tc, 1.45Tc and 1.2Tc.
With these datasets we were able to undertake physics analysis at an unprecedented
precision and our main results are summarized in the following.

The Light Quark Vector Spectral Function at Vanishing Momentum in the

Continuum Limit of Quenched QCD

At the fixed value of temperature T ≃ 1.45Tc we performed a systematic and detailed
analysis of the vector correlation functions at vanishing momentum. Analyzing different
lattice cut-off values combined with an analysis of finite volume and quark mass effects
allowed us to extrapolate the vector correlation function to the continuum limit for
the first time in a renormalization independent fashion for a large interval of Euclidean
times, spanning from the midpoint τT = 0, 5 to τT ≃ 0.2. In this interval we determined
the correlation function to an unprecedented accuracy at the 1% level. Additionally we
computed the first two thermal moments of the correlation functions, the second being
equivalent to the curvature of the correlator at the midpoint of the finite temperature
Euclidean time interval.

Subsequently we analyzed the continuum extrapolated correlation functions invoking
several fit Ansätze that differ in their low frequency structure. As a result we find the
vector correlator to be best fitted by a simple Ansatz of the free spectral function times
a perturbatively motivated correction factor k(T ) plus a phenomenologically inspired
Breit-Wigner term centered at ω = 0.
This Ansatz already gives small χ2/d.o.f. and describes the data well. Systematically
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changing the low frequency structure of the Ansatz spectral function, we are able to
estimate the systematic uncertainty of the low energy structure of the spectral function.
Some features of the spectral functions are robust, as such the spectral function for fre-
quencies ω/T & (2 − 4) is close to its free form. In this regime it would be interesting
to replace the component proportional to the free continuum spectral function in our
Ansatz by the hard thermal loop spectral function. This is easily possible and will be
done in the near future.
For energies in the region ω/T . (1−2) the spectral function is significantly larger than
the free result, but smaller than the HTL spectral function, which diverges at small
energies. As a result the the resulting thermal dilepton rate is an order of magnitude
larger than the leading order Born rate at energies ω/T ≃ 1.
Finally we accurately and systematically determined the electrical conductivity from
our resulting spectral functions, the thus obtained value is σ/T = (1/3 − 1) · Cem. To
our knowledge this is the first time a fully non-perturbative estimate of this transport
coefficient is given including also systematic uncertainties.

To quantitatively analyze in what fashion our results and the enhancement in the
low frequency region can account for the experimentally observed dilepton rates in this
energy region [38, 117], we need to extend our analysis to incorporate the temperature
and momentum dependence of our results. Then a complete analysis of dilepton rates
that takes into account the hydrodynamic expansion of dense matter created in heavy
ion collision will become possible [108].
First steps in this direction have been undertaken in this thesis and we quickly summarize
the corresponding results in the following.

Results on the Temperature Dependence at Vanishing Momentum

Fixing the cut-off to β = 7.457 and thus a−1 = 12.864GeV we performed an analysis of
the vanishing momentum vector correlation function by varying Nτ = 16, 32 and 40.
With these values we obtain the temperatures T ≃ 3.0, 1.45 and 1.2Tc, respectively.
We carefully analyzed the temperature dependence of the vector correlation function,
the quark number susceptibility and the thermal moments of the correlator. The latter
were seen to be almost constant in T/Tc, implying only little change in the underlying
spectral functions.

Additionally we fitted the data using the simple free continuum plus Breit-Wigner
Ansatz motivated at T ≃ 1.45Tc. Here our systematic analysis is limited to determining
the dependence on the Euclidean time window of the fit, as a continuum extrapolation
that eliminates the lattice effects was not yet possible within the available computing
resources.
The resulting parameters are then analyzed for the temperature dependence of the width
and height of the Breit-Wigner peak. For all these quantities the parameters are seen
to be almost constant in units of temperature, implying a linear dependence on the
temperature. As such the width increases linearly while the height drops linearly with
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increasing temperature.

A similar behavior is observed for the temperature dependence of the electrical con-
ductivity, whereby the corresponding results are within 7% of each other over the tem-
perature range. As a result we could establish also a linear dependence in temperature
for the electrical conductivity, in accordance with perturbation theory [111].

Finally we checked of a sum rule stating the area under the Breit-Wigner peak to
be constant and temperature independent [112]. Here the resulting values are seen to
match within errors. However the large uncertainties encountered make it difficult to
firmly establish the validity of the sum rule, even though our results lean towards this
direction.
For the temperature evolution additional lattice calculations, preferably with a subse-
quent continuum extrapolations are highly desirable.

Exploratory Study of the Vector Correlation Function at Finite Momentum

In the case of finite momentum we restricted our analysis to the lattice sized 1283×48 and
the lattice momenta ~k = (0, 0, pz) where pz = 0, 1, 2, 3, whereby the physical momenta
are given by |p|/T = 2π · |~k| ·Nτ/Nσ. We could show that the longitudinal component
of the vector correlation function exhibits only very little momentum dependence, both
in the correlator and its thermal moments.
This is markedly different in the transverse case. Here a large momentum dependence
was seen in the correlator and a somewhat weaker but nevertheless visible dependence
in the second thermal moment.

All results are seen to lie on top of each other at τT ≤ 0.15, implying the correction
factor k(T ) to be momentum independent.
Additionally the ratios of the data and the corresponding free correlators exhibit a
decreasing trend with increasing Euclidean time, taking into account the correction
factor this means the low frequency part of the interacting spectral function is in fact
smaller than that of the free case.

Invoking a set of toy models we then were capable to identify, what kind of behavior
is favored by both channels in the interacting case. To this extent we employed first
a time-independent contribution plus the free continuum and second a time-dependent
contribution modeled by the corresponding free behavior at low frequency plus the free
continuum. We could show that the longitudinal vector correlation function is very well
describable by a model that incorporates none or very little time dependence both in
the correlator and its thermal moments. While the transverse was seen to hold a middle
ground between the constant and modified free behavior. As such the corresponding
model parameters deviate less from the free case in the longitudinal channel than in the
transverse.
The results obtained are encouraging and suggest a determination of the spectral func-
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tion from our data is indeed possible.

Additionally we studied the connection between the time-time and longitudinal vector
correlation functions at finite momentum. We could derive two exact relations between
the longitudinal and the time-time correlation functions. The first approximately con-
nects the time-time correlator with a sum of thermal moments of the longitudinal case,
while the second links the longitudinal correlator with the second derivative of the time-
time case. These two relations are subsequently checked and an excellent agreement is
observed in our data. As a consequence we could estimate the effect of a contribution
linear in frequency in the longitudinal spectral function [114] on the time-time correla-
tor. We found this contribution to be divergent. Such a divergence is unphysical and we
therefore exclude the possibility of such a non-zero intercept in the longitudinal case.

Remarks on the Pseudo Scalar and Renormalization Issues

Finally we turned to evaluating the pseudo scalar correlation function and the midpoints
of the correlators of all channels, both at vanishing momentum.
As in the case of the vector correlator, we could combine a study of lattice, quark mass
and cut-off effects for the pseudo scalar. However here the possibility to take renor-
malization independent ratios does not arise and a continuum extrapolation contains
the additional uncertainties due to the only perturbatively known renormalization con-
stants. Nevertheless the extrapolation was done both for the correlator and its thermal
moments, revealing large non-perturbative effects at T ≃ 1.45Tc.
These effects were seen to persist also at T ≃ 1.2Tc and T ≃ 3.0Tc, even though in a
somewhat reduced sense in the latter case.
At T ≃ 1.45Tc we then used a MEM analysis to obtain an estimate of the pseudo scalar
spectral function. Using a number of default models which include Breit-Wigner con-
tributions in the low frequency regime, it turned out that MEM strongly disfavors the
presence of such a transport peak. Instead a dominant (non-perturbative) peak struc-
ture arises at ω/T ≃ (5−20), suggesting the survival of a resonance in the pseudo scalar
channel.
To further understand the effects in the pseudo scalar channel it is important to quan-
tify more rigorously the errors of the renormalization constants. Additionally a better
theoretical understanding of the effects expected would be desirable.

Touching on the topic of the uncertainties of the renormalization constants, we com-
pare the midpoints of the pseudo scalar and scalar as well as the vector and axial vector
correlation function. Assuming to be in the symmetry restored phase at T ≃ 1.45Tc, we
observe the results of the vector/axial vector ratio to be within 2% of unity while the
pseudo scalar/scalar results differ by about 10%.
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157



Acknowledgements

At this point I want to especially thank my comrade-in-arms Heng Tong Ding.
I would never want to miss the discussions and arguments
we had about MEM and spectral functions.
And I very cherish the memories of the times in Paris and Brookhaven.

Looking back at my time in Bielefeld,
I realize I never could have done it without my friends:
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