
Vision-based Posture Detection
and Tracking for Interactive

Scenarios

Dissertation zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Technischen Fakultät der Universität Bielefeld

vorgelegt von

Joachim Schmidt

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

Contents

1 Introduction 1

2 Related Approaches for Recognizing Humans 5

2.1 Person Localization . 5
2.2 Pose Reconstruction and Motion Tracking 7
2.3 Model Acquisition, Initialization and Error Recovery 12
2.4 Vision for Human Robot Interaction . 14

3 Optimization Techniques 17

3.1 Optimization Problems . 17
3.1.1 Definition of an Optimization Problem 17
3.1.2 Problem Classification . 19
3.1.3 Optimality Conditions . 20

3.2 Deterministic Optimization Algorithms . 21
3.2.1 The Simplex Algorithm . 22
3.2.2 The Mean Shift Algorithm . 22

3.3 Probabilistic Optimization Algorithms . 26
3.3.1 Particle Filtering . 27
3.3.2 Kernel Particle Filtering . 33
3.3.3 Evolutionary Computation . 37

3.4 Summary . 44

4 Person Localization 45

4.1 Applicability to Different Scenarios . 45
4.1.1 Industrial Working Cell Safety . 46
4.1.2 Scene Exploration with a Mobile Robot 46

4.2 Person Localization System Design . 47
4.3 6D Point Cloud Generation . 48

4.3.1 Velocity Computation using a Stereo Camera Setup 48
4.3.2 Velocity Computation using a Time-of-Flight Sensor 52

4.4 Generation and Tracking of Object Hypotheses 56
4.4.1 Over-Segmentation for Motion-Attributed Clusters 56
4.4.2 Weak Model for Object Hypotheses 57
4.4.3 Kernel Particle Filter for Object Localization 57

4.5 Summary . 60

5 Body Pose Tracking 63

5.1 Human Robot Interaction Scenario . 63
5.2 Body Pose Tracking System Overview . 64

i

Contents

5.3 Modeling the Appearence of Humans . 65
5.3.1 Articulated 3D Body Model . 66
5.3.2 The Monocular Challenge . 71
5.3.3 Image Cues for Body Pose Tracking 72
5.3.4 Body Pose Observation Model . 82

5.4 Kernel Particle Filtering for Body Pose Tracking 84
5.4.1 Refinement of the Particle Distribution 85
5.4.2 Extracting the Best Body Pose . 87
5.4.3 Motion Models for Body Pose Tracking 87
5.4.4 Random Noise Propagation . 88

5.5 Body Model Initialization . 92
5.5.1 Automatic Initialization Procedure Overview 93
5.5.2 Face and Hands Detection . 95
5.5.3 Integration into the Body Pose Tracking System 97

5.6 Summary . 99

6 System Evaluation and Optimization 101

6.1 Evaluating the Person Localization . 101
6.2 Evaluating the Body Pose Tracking . 102

6.2.1 Marker-Based Ground Truth . 103
6.2.2 Error Measure Definition . 109
6.2.3 Evaluating the Accuracy of the Body Pose Tracking 109

6.3 Automatic Parameter Optimization for Body Pose Tracking 112
6.3.1 Genetic Algorithms for Parameter Optimization 113
6.3.2 Parameter Optimization Results . 117

6.4 Evaluating the Automatic Initialization Procedure 124

7 Applications 127

7.1 Person Localization for Scene Reconstruction 127
7.2 Body Pose Tracking for Object Attention 131

7.2.1 Object Attention System Overview 132
7.2.2 Trajectory-Based Gesture Recognition 132
7.2.3 Object Attention . 133
7.2.4 Evaluating the System Performance 134

7.3 Hand Gesture Detection using the Body Pose Tracking 136
7.4 Motionese Developmental Studies . 139

8 Outlook 141

Bibliography 153

ii

1 Introduction

“Man has learned much from studies of natural systems, using what has been
learned to develop new algorithmic models to solve complex problems. [...] A

major thrust in algorithmic development is the design of algorithmic models to
solve increasingly complex problems. Enormous successes have been achieved

through the modelling of biological and natural intelligence, resulting in so-called
’intelligent systems’.”

Andries P. Engelbrecht (2007) [43]

“At the basic level, the name given to the science dedicated to the broad area of
human movement is kinesiology. It is an emerging discipline blending aspects of

psychology, motor learning, and exercise physiology as well as biomechanics.
Biomechanics, as an outgrowth of both life and physical sciences, is built on the

basic body of knowledge of physics, chemistry, mathematics, physiology, and
anatomy. It is amazing to note that the first real ’biomechanicians’ date back to

Leonardo DaVinci, Galileo, Lagrange, Bernoulli, Euler, and Young. All these
scientists had primary interests in the application of mechanics to biological

problems.”
David A. Winter (1990) [171]

Figure 1.1: Vitruvian Man. Painting by Leonardo Da Vinci (1485/90, Venedig,
Galleria dell’ Accademia), Photo by Luc Viatour.

1

1 Introduction

As Engelbrecht and Winter mention, it has often been nature that inspired man to
develop new ideas and that encouraged us to use these ideas for applications that can
affect our daily life. For any scientist, curiosity and amazement are two substantial char-
acteristics. For me this has often shown in amazement about the solutions that nature
provides for many big and small problems and in curiosity, how theories, concepts and
finally algorithms and systems could eventually be derived from that. These are the
kind of thoughts that have driven my research for the last years.

The thesis here present is about the perception of the human body and the environment
with means of computer vision and the analysis of these information for applications
in the field of human robot interaction. The discussion will mostly be about real-world
scenarios involving the observation of real humans; that means we will have to deal
with an ever-changing and dynamic environment and possibly large variations in the
appearance of an object to be observed. This poses a huge challenge to automated vision
techniques. Additional constraints can ease the problem, but also make the resulting
system less flexible. The presented work combines various techniques from computer
vision and optimization theory. The scenarios that are addressed are wide spread:
worker safety in an industry environment, interacting with a mobile robot and even
understanding the relevance of gestures for learning in children. The common ground
for all these scenarios is the fact that methods from computer vision are applied to
enable or to understand an interaction between humans among themselves and humans
and machines. The best way to outline the scope of this thesis is to describe the topics
covered.

Computer vision is a broad discipline, as are the applications where automated vision
techniques are applied. To get a better focus on the relevant topics, the Chapter (2) gives
an overview of related approaches and techniques that are of special importance for
this thesis. The basic step for any of the presented approaches is to find the human in
the scene. For camera images, humans can be found based on their appearance. More
detailed methods are able to find individual body parts and can put them in relation
with each other to reconstruct the pose of the human. Besides working with the 2D
information from a single image, using volumetric data has become more and more
common with the availability of affordable sensors and fast but reliable algorithms.
Such data can significantly improve the performance for localizing persons and objects
in a scene, especially when incorporating motion information. The application of such
techniques to human robot interaction has led to some remarkable systems that can
handle challenges like ambiguities in the appearance, a changing environment and the
variability of the objects and persons observed.

During the work on this thesis, optimization techniques have consistently been a central
part of the algorithms and methods developed. Chapter (3) describes the theoretical
background of optimization. Optimization means two things here. First, a theory to
find a mathematical formulation for a given problem such that a solution can be found.
Secondly, it means a technique or an algorithm that realizes a search process for this
solution given the constraints of the specific scenario. It is also important to mention
that the general term optimization is always meant here in the context of an application
as we aim at finding an optimal solution to solve a given task. Presenting the algorithms

2

in a chapter on their own provides the opportunity for a better comparison between the
individual algorithms, actually to find that there are more similarities then differences,
without being too much diverted by the concrete application.

The primary step for a system trying to interact with a human as a potential interaction
partner must be to localize the human in the environment. The main task is therefore to
find its position in space, which can be achieved by using volumetric data originating
from a stereo camera system or a time-of-flight sensor. There is even a market for
industrial applications of such localization systems. The SafetyEYE1, produced and
sold by Pilz and developed in cooperation with Daimler, is a camera-based system that
can detect if a person enters a potentially hazardous area, for instance the operational
range of an industry robot. Some of the processing steps this device uses to analyze
the image data have a substantial similarity with the algorithms presented in this the-
sis. Going further, additional velocity information can not only help to improve the
segmentation, it can also be used to predict the motion of the human and other objects
in the scene. In Chapter (4), the principle of abstracting from the raw data in multiple
steps is introduced. As a first level of abstraction, locally dense sets of points exhibiting
similar velocity annotations are summarized to form clusters. They serve as the basis
for generating person hypothesis using cylinders as a weak object model. It is presented
how these hypotheses can be tracked over time using particle filtering framework.

The principle of matching a parameterized model representation with the image data
is further exploited in Chapter (5). While the previous chapter is oriented more on
large-scale scenarios, we now aim at observing the motions of an individual person
trying to interact with a mobile robot using a single monocular camera. A clear focus
on needs of the proposed scenario helps to restrict the variability in possible situations
the system should be able to cope with. The goal of the studies is to develop a system
that is able to track the gestures of a human in 3D, focusing on the arms, while posing
no restrictions on the type of motions performed. In particular, the system should be
able to track prior unseen motions. This can be achieved by using an articulated 3D
upper body model that describes the physical properties and also serves as a model
for the appearance of the human. An inference process rates each configuration of the
model on its agreement with the image data and provides a pose likelihood by fusing
information from multiple cues, which is a special challenge when using monocular
images only. The space of possible configurations of the model is defined by the
14 joint angles. The task of finding the best-fitting pose is now to locate the point
in the parameter space which represents this pose. The ambiguity, nonlinearity, and
non-observability during the inference process make the posterior likelihood in the
space of the body configurations multi-modal and unpredictable. Probabilistic search
processes have shown their ability to efficiently explore such highdimensional spaces.
The proposed system therefore combines the kernel particle filtering technique with
intermediary mean shift optimization steps that help to better exploit the number of
particles available. A combination of motion models, including priors for modeling the
motion of an individual joint, are employed to narrow the search space. To allow a
self-starting tracking, an automatic initialization routine is proposed that builds up on

1http://www.pilz.de/products/sensors/camera/f/safetyeye/index.jsp

3

http://www.pilz.de/products/sensors/camera/f/safetyeye/index.jsp

1 Introduction

the detections of a face recognition module to obtain a rough guess on the initial pose
and to learn a color appearance model of the observed person.

To summarize the work presented in these two chapters, the goal of my thesis consists
in providing methods that facilitate the automatic localization and tracking of humans
in interaction scenarios. This includes the development of novel pose detection methods
as well as the investigation of mechanisms allowing for an analysis of high dimensional
and multi-modal feature spaces. Furthermore, the application of these techniques for
various applications constitutes an innovative contribution to the current research in
robotics and human machine interaction.

Eventually, the most important results of my work are summarized in Chapter (6),
which presents the evaluations that have been carried out to examine the accuracy of
the previously presented approaches for person localization and body pose tracking. A
leading idea for the development of the person localization system has been to use it as
a basic component for a safety system in an industrial workspace. The feasability of the
approach for such a setting can only be assured if the localization is both precise and
robust. Therefore, the system has been applied to a number of ground truth annotated
image sequences, measuring the algorithm’s ability to detect static and moving objects.
Similarly, ground truth data can be used to measure the reconstruction accuracy of the
body pose tracking. As the level of detail of the generated results is much higher here,
this also calls for a more elaborate evaluation method. For comparing the estimated
model pose with the actual pose of the human, a measure based on the positioning of
the person’s individual body parts is motivated. Recording the according ground truth
corpus is made possible by calibrating and synchronizing an active infrared marker
tracking system with a standard camera. The results allow a detailed inspection of the
behavior of the algorithm under different parameterizations and for different scenarios.
Going even further, a method for an automatic optimization of the system’s parameters
that makes use of the same ground truth corpus is presented and evaluated. Using
an evolutionary computation approach, an optimized set of parameters is automatically
generated to enhance the performance of the body tracking system for a given task. This
approach is based on a genetic algorithm which tests differently parameterized instances
of the body pose tracking system regarding their tracking accuracy and robustness. As
a tremendous amount of computational power is needed for this kind of evaluation, the
proposed approach offers a distributed computing framework to combine the computers
available in a local network.

Chapter (7) addresses the applications that the previously presented approaches have
been used for so far. These are in particular the reconstruction of static scenes using
a mobile robot, a fast and reliable hand gesture detection system, understanding the
importance of gestures for early-childhood learning of actions and finally a gesture
recognition and object attention system for a mobile robot. The systems designed for
these tasks are usually not based on a single algorithm, rather the presented approaches
are combined in a new fashion for each task.

This thesis ends with a discussion on the benefit of the presented work for potential
users in Chapter (8). Furthermore, possible extensions are addressed, which could be of
interest in the future.

4

2 Related Approaches for Recognizing Humans

In the following chapter, related approaches for recognizing humans using computer
vision systems are presented. While this is a huge field to cover in general, we will
rather focus on approaches that are of special significance for developing interactive
systems. As an example, the topic of surveillance will be addressed from the viewpoint
of recognizing and observing one or few persons instead of unserstanding the behaviour
of large groups of people. Also, we are most interested in recognizing the human as a
whole up to the detail of individual body parts as seen from a distance of several meters.
Detecting fine details, like the movements of the fingers, or a precise reconstruction of
the surface can be used to understand the motions of an arm, but this level of detail is
not what this thesis aims at.

The main topics to be discussed in the following are localizing persons and objects in the
environment and tracking their motions, reconstructing the pose of an individual hu-
man and tracking his motions and discussing suitable modelling approaches including
topics like the initialization of tracking systems and the recovery from failues. Works
on gesture detection and action recognition present options to understand the meaning
of the recognized motions in the context of a specific scenario. The chapter concludes
with a presentation of approaches that employ the discussed techniques in human robot
interaction scenarios.

2.1 Person Localization

Within the last years, lower production costs lead to a big increase in the number of
video surveillance cameras at public places. Even for the current number of deployed
cameras, an analysis of the images by a human observer is virtually impossible, and
their number is still growing. This is why an automated analysis is seen by many as
the only possible way to handle the big amount of data recorded. This need is also
reflected in the steadily growing activity of the computer vision community concerning
this topic. Concerns about pervasive surveillance and the consequences for a society are
not new [118] but arguing this topic will be left for others. Here, we will rather focus on
the benefits of these works for interactive vision systems.

2D Approaches

A first step to understand what happens in a scene is to analyze the presence of humans
in static images. If a human has been detected, consecutive methods can extract more
detailed information, for instance the path the human is walking and his interactions
with other humans or objects in the scene.

5

2 Related Approaches for Recognizing Humans

Surveillance cameras are typically set up to observe a specific location, like public places.
For such setups, humans are typically far away and show up quite small in the image.
As they are usually passing by, the motion to be observed most commonly will therefore
be walking. To robustly detect humans in images, an algorithm can make use of the

Figure 2.1: Wavelet descriptors for pedestrian detection. Not
all features are equally important for the task of detect-
ing a human. The image shows the activation for three
coefficients resembling different filter directions at two
different scales. The average human shape is clearly
visible. (Image found in [119])

constraints of the scenario. Pedestrians, for example, can be robulstly detected [119]
by applying a multi scale search and using a support vector machine (SVM) classifier
with wavelet descriptors for detection, cf. Fig. (2.1). Additionally, motion information
can be taken into account, as it is presented by Viola et al. [164]. The combined motion
and appearance descriptor can be efficiently trained using AdaBoost [49]. Dalal and
Triggs [33] proposed a 2D global detector using histograms of oriented gradients (HoG)
as descriptors which can be calculated very efficienty. The classification is based on
a linear SVM for best runtime efficiency. A big step forward is also that fact that
their system tolerates different poses, clothing, lighting and background much more
than previous approaches. But it currently works for fully visible upright persons only.
More general features, namely HoGs of variable-size blocks and a rejection cascade for
improved performance are presented by Zhu et al. [176] as an extension of the former
approach.

Figure 2.2: Scene geometry reconstruction.
After estimating planar structures in the
image, the search pattern of the detec-
tor is adapted to handle the perspective
transformations. (Image found in [71])

Apart from the detection of learned patterns, the structure of the image helps to under-
stand it [71]. From estimating planar structures such as walls and the floor the camera
viewpoint can be derived as well. Given that, the 3D relationships of the camera, the
surfaces and the objects in the scene can be reconstructed and can be used in a further
step to refine the search process as depicted in Fig. (2.2). Contextual information can
also be exploited using a bilattice-based logical reasoning approach [140] that integrates
knowledge about interactions between humans and can also deal with uncertainties
from detections and even from logical rules. If multiple cameras are avaiable, informa-
tion about the observed persons and objects can be interrelated. Such a system is able
to track multiple targets even in crowded environments [124].

6

2.2 Pose Reconstruction and Motion Tracking

3D Approaches

Three-dimensional vision plays an important role in human perception, especially for
the recognition of motion and the ability to track objects over time. It is advantageous
for vision systems to make use of this very basic information in order to perceive and
interprete the environment. Multiple cameras in a surveillance scenario can be used to

Figure 2.3: Kernel-based 3D person tracking. A
3D Point cloud is generated using multiple
camera views. Tracking robustness also bene-
fits from fusing multiple appearance features.
(Image found in [162])

generate 3D point clouds of the moving objects. The localization and tracking of objects
is achieved by mean shift clustering of the point cloud [87]. Extending this approach by
combining evidence from multiple calibrated cameras allows more robust tracking [162].
Here, the appearance features from all cameras are fused during the detection step, see
Fig. (2.3) for typical results. In addition to the 3D point cloud, contour and flow detection
in the image plane yields motion information that can be used for person tracking [139].
For mobile robots, mapping of the environment and localizing and tracking moving
objects can be combined into a single framework [113, 167]. The authors show that
neglecting moving objects during mapping yields more accurate results.

2.2 Pose Reconstruction and Motion Tracking

Analyzing humans in motion has a long history, driven by the wish to understand
the functionality of the human body. Many different techniques to retrieve the pose
of a human have been developed, each serving a specific purpose and considering
constraints as for example the need for realtime analysis, an accurate reconstruction
or versatility and simplicity of use.

The Role of Markers

Marey used photos with multiple exposures at a fixed interval of time to record a
moving person [107]. For his studies, the subjects had to wear black suits with reflecting
pieces of metal and white lines, see Fig. (2.4). This is one of the first marker-based
approaches to record human motions. In the composite image, the markers form
trajectories depicting the movement of the different body parts, see Fig. (2.4). Even today,
more than 120 years later, the state of the art for recording human full body motions
are visual systems using active or passive markers and multiple cameras to simplify the
correspondence problem. Such systems are commercially avaiable, e.g., from Vicon

1 or

1www.vicon.com

7

www.vicon.com

2 Related Approaches for Recognizing Humans

Figure 2.4: Marey’s “Motion Capture” suit. During his
studies of the human in motion he created characteristic
multi-exposure pictures showing subjects wearing black
suits with reflecting markers or white lines.

Lukotronic
2, but their applicability is limited due to the heavily instrumented setups

and the demands made on the environment. Some of these restrictions can be overcome
by using other sensors that do not rely on visual information, e.g., accelerometers or
electromagnetic tags that can be exactly localized in a confined space. For recording the
motions of a human the direct measuring of joint angles is also an option if an exact
kinematic model has been derived beforehand. A goniometer, attached to a limb, can
provide the relative position with respect to the adjacent limb by measuring the bending
of a sensor bar.

Vision for Markerless Tracking

The major challenge of moving from the laboratory to the real world remains. Many
recent works deal with the task of reconstructing the pose of the observed human from
visual input only, without the need for special markers or posing strong restrictions
on other factors like clothing, lighting conditions or the background. The surveys of
Gavrila [54], and Moeslund et al. [111, 112] provide a good overview on the topic of
tracking the human body.

Tracking the pose of a human over time is a problem of inference under uncertainty
and ambiguity. Powerful inference and learning algorithms are needed for an effective
solution as well as complex models for the appearance and motions.

Appearance-based Approaches

The methods presented earlier for detecting a person as a whole work well for pedes-
trians or distant detections. For complex human motions, however, they may not
scale well enough as the appearance changes drastically when considering all possible
articulations.

One way to overcome this is to extended the known approaches for localizing the human
by detecting simple parts like the face and the limbs individually. Such pictorial struc-
tures generalize well and show robust performance concerning cluttered background or
varying appearence [46]. Ramanan and Forsyth represented the human as an articulated

2www.lukotronic.com

8

www.lukotronic.com

2.2 Pose Reconstruction and Motion Tracking

Figure 2.5: Articulated part-based 2D
model. The generic model structure al-
lows efficient training and tracking for
miscellaneous creatures, e.g. humans
and horses. (Image found in [128])

structure and presented a 2D part-based model detection system that finds typical poses
using a generic pictorial model [126]. An efficient training and inference scheme for such
models can be achieved using dynamic programming [128]. The technique works well
for different articulated objects, like humans and other animals as shown in Fig. (2.5) The
individual body parts are often organized in a tree structure that models the correlations
between the limbs and enforces consistency. Choosing a different representation can
halp to avoid expensive inference due to large cliques, as Lan and Huttenlocher [96]
showed for their common-factor models.

Introducing 3D Models

By deriving 2D joint positions from the individual parts and incorporating knowledge
about the camera projection and the limb lengths, the amount of ambiguity can be
reduced far enough to allow a reconstruction of the 3D joint positions [97]. A full 3D
body model can be constructed in a probabilistic way out of body parts detected in the
image [125, 143]. Besides the ability to initialize and recover from almost arbitrary poses,
the advantage of such systems is that they are usually more robust against occlusions
of individual body parts. As a drawback, the body part detection is slow and the
generation of a coherent body model proves to be prone to confusions and ambiguities
and therefore often provides unpredictable results.

Multiocular Pose Reconstruction

Approaches for pose tracking need to solve a complex inference task, especially for the
monocular case. Monocular algorithms achieving a high accuracy are often compu-
tationally intensive, which prohibits their use for realtime human-machine interaction.
Depending on the aimed scenario, however, different techniques to lower the complexity
of the inference task can be applied. With multiple cameras or a multiocular camera
systems, images from different viewpoints or the additional depth information can be
used to resolve ambiguities. Posing restrictions on the environment or the appearance
of the tracked persons helps to narrow the search space, as also restricting the number
of detectable motions does.

9

2 Related Approaches for Recognizing Humans

Deutscher [37] employs an articulated 3D body model based on truncated cones and a
cost function based on edge and silhouette information. The images have been acquired
using 3 calibrated cameras in scenarios with a black background. Tracking has been
performed using the annealed particle filter. The authors report very good tracking
results for general unconstrained motions, but the computation times are far from real-
time. Multiple cameras are used in many systems to resolve ambiguities and to cope
with self-occlusions [39, 88, 132], but such approaches either require camera systems
with a wide baseline that are of no interest for our proposed scenarios or require
too large an mount of computational resources. Tracking of a human in 3D with
limited computational resources on a mobile robot was already described in 1996 by
Kortenkamp et al. [91]. This approach uses depth information from a stereo camera to
track a coarse 3D model of a single human arm but is restricted to slow motions and uses
a small repertoire of static gestures. Even for stereo approaches, simple image features
like skin color are often integrated as an additional cue to get the 3D hand position and
its pointing direction more accurately [115].

Other 3D Approaches

The use of multiple cameras in a task consisting in tracking the human body from
a mobile robot is technically difficult. In contrast to stereo camera systems, time-of-
flight sensors provide a denser depth map but with a relatively low spatial resolution.
Tracking only few anatomical landmarks in these distance maps is already sufficient
for estimating a pose in quasi realtime, although the spatial accuracy does not match
camera-based approaches [177]. Time constraints and also difficulties in recognizing
ambiguous poses can be overcome when 3D information acquired from time-of-flight
sensors are avaiable, as shown by [133].

Monocular Pose Reconstruction

Only few authors have addressed the problem of 3D full-body tracking using a single
uncalibrated camera. One such approach for tracking a detailed 3D human body model
was proposed by Sidenbladh [141, 142]. It is based on a variety of gray-level image cues
and a particle filter for tracking the human motions. To cope with the huge search space,
motion priors are used to predict the 3D body configuration prohibiting the tracking of
unconstrained motions. Learned image statictics help to interpret the likelihood of body
parts matching with image features.

Following Sidenbladh’s work, Sminchisescu used a more precise modeling of the 3D
body model and a complex parameter space exploration [148], but the computational
time required prohibits its use for real-time tracking. To cope with a large parameter
space, kernel-based Bayesian filtering has been proposed to track objects or isolated
body parts in the 2D image space [23, 63]. The problem dimensionality can be reduced
by performing standard dimensionality reduction techniques, as shown by Zhao and
Liu [175]. The pose is then reconstructed using an annealed genetic algorithm that
exploits the hierarchical structure of the solution space and the local characteristics of the

10

2.2 Pose Reconstruction and Motion Tracking

Figure 2.6: Kinematic full body model. The ’flesh’
is modeled by superquadric ellipsoids, the whole
model has 30 degrees of freedom. (Image found
in [147])

fitness function. In addition to a kinematic body model which describes the appearance
of the body, bringing in prior knowledge about familiar body configurations [16] can
help to constrain the search process and prevent the production of unrealistic pose
estimates.

The advantages of appearance-based and model-based approaches can be combined
to capture the multimodal and nonlinear relationships more reliably. Sigal and Black
[145] propose a multi-stage approach utilizing 2D bottom-up body part detectors for
initialization and non-parametric belief propagation for pose estimation in combination
with a learned mapping from 2D to 3D poses to estimate the full 3D body pose even from
monocular images. Jaeggli et al. [81] propose to learn a joint probability distribution of
the appearance and the body pose using a mixture of view-dependent models. They
formulate inference algorithms that are based on generative models but also exploit
the advantages of a learned model. Prior information about likely body poses and a
motion model is taken into account. Sminchisescu et al. [146] show how to learn a

Figure 2.7: Recover human pose from
learned examples. A prior for tra-
cking is constructed utilizing the
Laplacian Eigenmaps Latent Vari-
able Model (LELVM) for dimen-
sionality reduction. The walk cy-
cle is projected and then tracked
within a low dimensional mani-
fold. (Image found in [103])

generative recognition model that combines top-down and bottom-up processing for
monocular 3D human motion reconstruction. The recognition model is used to scan the
image and to predict 3D human poses, the inference scheme confirms the detections.
The framework covers detection of human body poses as well as initialization and
recovery from failures. Lu et al. [103] present a method to reduce the dimensionality
of the reconstruction problem and bias the estimates towards typical human poses and
motions even for missing, noisy and ambiguous image measurements. The method
is computationally efficient and requires only few training data. Unknown poses or
motions, however, can be covered only to a cretain degree, depending on the similarity
to the already seen examples.

11

2 Related Approaches for Recognizing Humans

2.3 Model Acquisition, Initialization and Error Recovery

For bottom-up approaches, the appearance model of the human is typically learned from
training examples, a well known example is the approach proposed by Viola et al. [164].
Top-down approaches, however, use a given model for the inference process. The idea
is to integrate common knowledge about the human body and its characteristics into
the model that can not – or not that easily – be learned from training images. The more
complex the model is, the more detailed can it represent the human body and the more
can it exert influence during the inference process.

But then, the challenge of how to acuire such a detailed model remains. Furtunately,
the human body has long been subject to scientific research. Already Leonardo da
Vinci was inpired by the idea to define rules that can describe the proportions of a
perfect man, see Fig. (1.1). It finally turned out that he managed to give a good
average of all men living at that time. These formal descriptions of the human body
are still used for various purposes, e.g.in industry when designing cars and airplanes
or in biomechanics for analyzing the performance of competitive athlets [168]. In these
cases, the model is used as an abstract representation that describe the properties of the
body, like forces during movements or the shape in different poses. The human body
is often represented as a set of geometric components, such as spheres, cylinders and
cones, resembling the different body segments. A well known realization of a segment
model was introduced 1964 by Hanavan, see Fig. (2.8). There exist many modifications
derived from this representation, many systems still base on this type of model. Segment
models require only few simple anthropometric measurements, e.g., segment lenths and
circumferences. These can be measured individually for each person to be analyzed or
they can be chosen from a generic model representing the mean measures of a human. In
his report, Bjørnstrup gives a chronological overview of the methods used for estimation
of body segment parameter from the 17th century to 1995 [12].

Figure 2.8: Hanavan’s model of the human body. A 15-body 34-degrees-of-freedom,
finite-segment model of the human body. The 15 bodies Bk (k= 1, . . . , 15) are
connected through hinges and ball-and-socket joints modeling the human limb
connections. (Image found in [77])

Some of the works mentioned above also include a learning part for the structure or
the appearance of the model. A generic approach for learning an appearance model

12

2.3 Model Acquisition, Initialization and Error Recovery

from examples has been presented by Oechsle [116]. His approach is based on genetic
programming and uses sub-goals during learnig similar to the boosting technique. Pic-
torial structures make use of the spatial relations between multiple image parts. These
part-based models can also be learned from training examples, including articulations
to a certain degree, but as 2D planar models they remain in the image plane [46, 126].
Adding additional constraints about the connections between body parts, full 3D body
models can be constructed out of body parts detected in the image [125, 127, 143].

Figure 2.9: Task specific ini-
tialization and tracking. The
golf club is tracked to find
key postures for initializa-
tion, tracking utilizes lo-
cal 2D appearance models
and a strong motion prior
from a database of learned
golf swings. (Image found
in [163])

The algorithms discussed above provide an estimate of the human’s pose simultane-
ously with the acquisition of the structural model. However, there is still a gap between
tracking algorithms and systems working in the real world, mainly due to the fact
that for most tracking approaches the challenges of automatic initialization and error
recovery are not addressed. For most of the presented approaches, the question of
initialization stays open or is subject to manual or semi-automatic procedures.

Urtason et al. [163] present a system that relies on stereotyped poses and can track com-
plex motions with strong self occlusions from monocular video. Interestingly, they use
context knowledge to initialize the tracking in this very restricted scenario of tracking a
golf swing. They first track the golf club and from that detect key postures to initialize
the tracking process, see also Fig. (2.9). As the scenario is very restricted, a deterministic
search scheme and a database of learned motions are enough to enable robust tracking.

Other tracking systems incorporating automatic or semi-automatic initialization proce-
dures have been presented recently [11, 161]. They usually rely on learned appearance
models or models of typical human motion patterns, e.g. walking. Knowledge about the
projection from the 3D world to the 2D camera image can be automatically acquired by
using a multi-ocular system for tracking and then mapping the 2D appearance as seen
from a single camera to the 3D body pose [145].

For such systems, initialization can also be formulated as the problem of pose estimation
or object reconstruction from a single image using strong models [98, 175]. Recovering
from tracking errors can then be refered as a different formulation of the initialization
problem.

13

2 Related Approaches for Recognizing Humans

2.4 Vision for Human Robot Interaction

As stated by McNeill gestures play an important role in human communication [109].
According to this, a social robot requires the abilities to localize, track and interpret
human behavior during an interaction session. Since the early work of Crowley and
Coutaz [31], hands and the vision-based detection of their motions is known as ways
to interact with computer systems. A simple 3D body model based on joints and
their motion is sufficient for humans to perform action recognition [84]. Having this
fact in mind, 3D body acquisition and tracking provides the data source necessary to
accomplish such a task, offering a great domain of applications: surveillance, activity
recognition, human computer and human robot interaction, mobile robotics, etc.

Using body tracking in human robot interaction often comes with strong restrictions,
e.g., the number and type of cameras available or the gesture repertoire to be observed.
Pursuing this challenge is an active field in computer vision research, due to the restric-
tions imposed by approaches developed so far for this purpose.

Figure 2.10: Interaction scenario with the Robonaut humanoid
robot. The human indicates the sequence in which the nuts
have to be tightened with pointing gestures, the robot is able
to match the visual information and the recognized gestures
with the posed task. (Image found in [15])

Especially the combination of several modalities enables robots to become aware of
interactions partners in the real world and to achieve situated and human-like interac-
tions with them. A robot system heading for this goal is presented by Stiefelhagen et
al. [153]. In detail they utilize the temporal synchrony of speech and hand trajectories
for recognizing pointing actions to objects. However, a specialized depth sensor (stereo
or time-of-flight) is needed for tracking the human’s face and hands in 3D.

But even a monocular camera can be enough for realizing visual recognition and tra-
cking of people and hand gestures, as Germa et al. [55] show with their tour-guide robot.
The fusion of multiple visual cues is achieved by a particle filtering framework, com-
mand gestures towards the robot are recognized from hand configuration templates. As
Germa et al. neither apply 3D body tracking nor hand trajectory recognition, their sce-
nario does not involve interaction with real-world objects. Jenkins et al. [83] presented a
kinematic pose estimation and action recognition system for that also monocular vision
is sufficient. To interact with the robot, they propose a motion vocabulary comprised
of learned primitives that describe human movement dynamics. In the CoSy project,
Kruijff et al. [95] work on aspects of anaphoric and exophoric references to objects. They

14

2.4 Vision for Human Robot Interaction

present a framework to manage the problems of dynamic changes of the environment
typical for human-robot interactions. Combining speech and object recognition they
achieve learning and detecting of objects. However, they do not dwell on gestural input
as an additional cue.

For humans and robots interacting multimodally in order to work together on realworld
spatial tasks involving objects, a robust joint visual attention is necessary for achieving a
common frame of reference, as proposed by Brooks and Brazeal [15], cf. Fig. (2.10). They
present a spatial reasoning framework that is able to determine an object from deictic
reference including pointing gestures and speech.

Even if each, object recognition, visual attention, language and action processing yield
useful results as individual algorithms, Fay et al. [45] prove that integrating sensory
data from different modalities is essential for human-like performance in dealing with
ambiguities. Within the last years, this has developed into complex integrated vision
systems, integrating gesture recognition, object detection as well as dialog systems to
build up multimodal and interactive systems [7].

15

2 Related Approaches for Recognizing Humans

16

3 Optimization Techniques

“Nothing is less productive than to make more efficient what should not be done
at all.”

Peter Drucker

Optimization is a term commonly used for describing the act of searching for the
best solution to a given problem. Finding the best solution is often understood as
finding a sufficiently good one selected from a set of possible solutions based on a
quality measure. The nature of the problem determines the attributes of the resulting
error function defined through the measure. The amount of possible solutions can be
very large, even infinite, which brings the time for finding the solution into play. For
optimization problems from the real world the amount of time available for calculation
is often limited. Hence, it is favorable to choose a good result that is fast to compute
instead of searching for the best result but not knowing when or if the computation will
succeed.

Although this chapter is meant to give a general introduction to optimization theory
and optimization algorithms, the selection of topics covered here is strongly biased by
the needs of the different projects that are part of this thesis. Similarly, we will allow
simplifications to general statements where the theory conforms to the task constraints.

This chapter commences with a formal definition of optimization problems. Several
techniques to solve such problems are presented thereafter, in particular approaches
which have been utilized throughout the thesis. Here, deterministic and probabilistic
approaches are distinguished.

3.1 Optimization Problems

The following section gives a formal definition on optimization problems with a special
focus on the subject of this thesis. A categorization into different types of problems
helps for a given problem to judge its complexity and thereby alleviate the choice of an
appropriate optimization method.

3.1.1 De�nition of an Optimization Problem

As presented by Engelbrecht [42] a classification problem consists of three parts: An
objective function, a set of variables, and a set of constraints.

• Objective Function: The objective function f , also called observation function, cost
function, or error measure, represents the value to be optimized. It describes the

17

3 Optimization Techniques

task to achieve in such a way that its result yields maximum values for the optimal
configuration. Ideally, the objective function is expected to be linear and unimodal
to guide an optimization process to its maximum. Depending on the formulation
of the problem, the aim can also be to minimize f , but this can be transfered into
the former formulation by maximizing − f . In the following, we assume that f is
to be maximized.

Implementations of the objective function can be a model describing an object or a
process observed in the real world. The desire for linearity and unimodality often
cannot be satisfied but is instead fulfilled locally. The formulation of the objective
function is the most critical part when designing an algorithm, as the subsequent
optimization techniques solely obtain their knowledge about the problem from
observing the values of the objective function.

The general constraints on the observation function are almost negligible. Com-
mon restrictions are that it needs to be defined for all feasible parameterizations,
some optimization techniques may require additional properties, e.g. that the
derivation can be calculated for any given point or that the function is continuous
differentiable.

• Set of Variables: The parameter vector x ∈ S represents a set of J variables x(j),
with 1 ≤ j ≤, J, therefore J denoting the dimension of x: dim(x) = J. To achieve
a mathematically correct definition, the variables are assumed to be independent,
although in practice they are often not independent or only partly independent.
The violation of this condition and its implications have to be considered for each
individual implementation. We will refer to the set of variables as the unknown
parameters that affect the value of the objective function, with the parameter space
S being the domain of all possible parameter combinations. A vector x represents
a single candidate parameterization. Given this, the objective function f (x) can
be calculated, its result y quantifies the quality of the solution. The vector x̂
yielding the highest result is the outcome of the optimization process and thus
the estimated optimal configuration, while the true optimum is expressed as x∗.
The value y∗ = f (x∗) is then the global maximum value of the objective function.

• Set of Constraints: Predefined constraints allow the process to exclude certain
combinations of values from being considered as a solution. The result is set of
allowed solutions F ⊆ S , called feasible space. For a parameter vector x ∈ F ,
all constraints are satisfied. During the optimization process, however, it may be
beneficial to allow violations of the constraints as long as the final result emanates
from the feasible space.

The aim of the optimization is to assign values from the allowed domain to the un-
knowns, such that the objective function is optimized and all constraints are satisfied.
The optimization process searches for a solution in the search space S while constraints
restrict the result x ∈ F to the feasible space.

18

3.1 Optimization Problems

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

100

150

200

250

σ
R

λ
R

E
rr

o
r

[m
m

]

Figure 3.1: Example of a nonlinear objective
function. The function defined by the
two parameters λR and σR exhibits a
nonlinear behaviour with an elongated
valley-like area for which the error is
minimized.

3.1.2 Problem Classi�cation

Knowledge about the nature of a given optimization problem can help choosing the
best suited method. Different types of problems can be categorized based on their
characteristics [42].

• Number of Variables: The number of variables J defines the dimensionality of the
search space S , as each variable corresponds to one dimension, that is dim(S) = J.
If only a single variable is to be optimized (J = 1), the problem is referred as
univariate. For multiple variables, it is named a multivariate problem.

• Type of Variables: Given that all variables of the parameter vector x are real, i.e.
xj ∈ R for each j ∈ 1, . . . , J, the problem is referred to as a continuous problem.
For all variables in x being integer valued, i.e. xj ∈ Z for each j ∈ 1, . . . , J, the
problem is named discrete. If the parameter vector is composed of both real and
integer valued entries, the problem is referred to as a mixed problem.

• Degree of Nonlinearity of the Objective Function: Problems differ according to
the behavior of the objective function, that can be categorized as linear or nonlinear
functions. For linear problems, the value of the objective function is linear in the
parameter values. Other dependencies can be stated, e.g., quadratic problems, but
generally the problem is called nonlinear for all other behaviors of the objective
function. For real world applications, it is often suitable to approximate the
objective function to be at least locally linear, although the global behavior with
respect to a parameter may be highly nonlinear.

• Type of Constraints: It is often reasonable to define boundary constraints that
restrict the domain for each variable, e.g., x1 > 0 for nonnegative parameters.
Such a problem with boundary constraints only is referred to as unconstrained.

For more complex methods, however, constraints can also be used to consider
dependencies between the variables by expressing them as additional equality
and/or inequality conditions. The problem is then called a constrained problem.

• Number of Optima: If there exists only one clear solution to the optimization
problem, it is called unimodal; that is, the objective function has a single distinctive

19

3 Optimization Techniques

global maximum.

If more than one solution exists, the problem is called multimodal. Then, the
objective function exhibits multiple optima. It can even exhibit false optima, for
example due to ambiguities during the observation, making the problem decep-
tive. Sadly, this is the common case for many real world applications dealing with
ambiguities and uncertainties.

• Number of optimization criteria: A problem is called uni-objective (or single-
objective) if the quantity to be optimized can be expressed using only one objective
function. A multi-objective problem specifies more than one sub-objective which
need to be simultaneously optimized, e.g., for finding an accurate and at the same
time fast parameterization of an algorithm.

The optimization methods used to solve the above problems differ significantly, as will
be illustrated in the parts that follow.

3.1.3 Optimality Conditions

The solutions found by an optimization algorithm can be classified concerning their
quality. The main types of solutions are local optima and global optima. Knowing
about the quality of a solution is of particular importance when observing the real
world. In the ideal case, the best solution to the problem is also the global maximum of
the observation function. Due to sensor noise and uncertain measurements the resulting
error function is more likely to show false local optima and is often deformed. The
optimization algorithm has to account for these conditions and, for example, needs to
be able to escape from false local maxima.

A global optimum can be defined as follows:
The solution x̂ ∈ F , is a global optimum of the objective function f if

f (x̂) > f (x), ∀x ∈ F (3.1)

where F ⊆ S . Thus, x̂ is the only point in the feasible space for which the objective
function becomes maximized.

The local optima can be divided in strong and weak local optima as follows:
The solution x̂N ∈ F , is a strong local maximum of the objective function f if

f (x̂N) > f (x), ∀x ∈ N (3.2)

where N ⊆ F is a set of feasible points in the neighborhood of x̂N . Thus, there is no
point close to x̂N for which the objective function results in bigger values. Outside N ,
however, there may well exist such points.

The solution x̂N ∈ F , is a weak local maximum of the objective function f if

f (x̂N) ≥ f (x), ∀x ∈ N (3.3)

where N ⊆ F is a set of feasible points in the neighborhood of x̂N . Thus, there is no
point close to x̂N for which the objective function results in bigger values but there may

20

3.2 Deterministic Optimization Algorithms

be any number of points resulting in the same value. This happens for example for
regions in the parameter space, where no measurements were taken and the resulting
objective function is just flat.

Note that all optima can well be located at the borders of the feasible space. Imagine an
objective function with a slope, e.g. f (x) = 0.5x, then it is obvious that selecting x as
large as possible yields a maximum result. Thus, x∗ will lie at the border of the feasible
space F .

Although the definition of the objective function is very specific to the posed optimiza-
tion problem, its interpretation may be very different depending on the given context.
For measuring the quality of a process, it may represent an error term, with the aim
to find the lowest possible error in the search space. The objective function is then
often called error function. For detection and tracking purposes in computer vision,
the definition of the objective function is usually based on an observation process.
An example for such a process is an appearance-based detector evaluated in the 2D
image plane providing a similarity measure for each pixel. The value of the observation
function can then be calculated as a function of the two parameters for the position
in the image. As an other example a model representation can be used to describe
the appearance of an object in the image. The variables are then the free parameters
of the model, e.g. the position in the world and additional deformations. Depending
on the nomber of free parameters, the underlying parameter space can easily become
highdimensional. An observation process is used to match the model with the image
and provides a rating of how good the model under the current parameterization fits the
observation. The response from the observation process can be utilized for optimization
as is or can be re-formulated as a probability density function (PDF) of the parameter space.
For both interpretations, the observation function is equally important, as it resembles
the interface between the real-world observations and the optimization process.

In the following, we will discuss different deterministic and probabilistic techniques
for solving optimization problems. As already mentioned, this is a broad topic that is
difficult to cover in general. The focus will therefore be on those methods that have been
used for various purposes within this thesis.

3.2 Deterministic Optimization Algorithms

The common aim for any optimization process is to find an optimum of the objective
function, or put in other words: to find the parameter combination, a point in the search
space that solves a given problem best. This process will also be referred as mode search,
as the aim is to find the most dominant modes of the observation function.

As already discussed above, there can either be only one optimal solution or multiple
local optima in the – often highdimensional – parameter space. Achieving an effective
search in many dimensions is a challenge in itself, but the true difficulty becomes
obvious by realizing that the examination of the observation function is the most costly
part of the whole process. An exhausting search is therefore not feasible, especially

21

3 Optimization Techniques

for problems defined for a large number of dimensions which are quite common in
this thesis. For the topics covered here, definition of the observation function is usually
related to some kind of measurement in the image. This can be a filter or a detector, as an
example, but our main concern is that it takes time to calculate the response for a given
parameter vector. Therefore, each run of the observation process is expensive, which
makes it important to make good decisions where to look. For the algorithms presented
in the following, let us keep in mind that we aim at useing as few as evaluations of
the observation function as possible to reach the maximum but still need to be general
enough to avoid local suboptimal maxima in the search space.

3.2.1 The Simplex Algorithm

The simplex algorithm as described by Danzig [34] uses fairly simple linear algebra to
find a local maximum. It does so by examining a sequence of points in the feasible space.
The algorithm is based on the fact that a solution that maximizes the objective function
will always occur at an extremum or at the borders of the feasible space. The runtime of
the algorithm depends on the properties of the observation function. It works best for
linear problems and solves general problems quickly in practice, although it can require
exponential time for some peculiar shaped functions [30].

The most commonly used implementation of a simplex algorithm was presented 1965
by Nelder and Mead [114], also called the Nelder-Mead-Algorithm.

Like many other multidimensional optimization algorithms for general purpose [30], it
tends to get stuck in local maxima. One way to avoid this is to select a starting point
that is already close to the optimal solution. In practice, the observation function is often
not sufficiently predictable and the algorithm is extended to circumvent these problems.
A common extension is to start the optimization process multiple times with random
starting points, in the hope that the real optimum is reached at least once. But running
the whole optimization many times is very time consuming and thus rarely used. An
other option is to extend the algorithm with an annealing technique to escape local
maxima. The difficulty that arises for any unsupervised annealing process is the choice
of the annealing parameters, as they have to reflect the properties of the observation
function, e.g. the size and the number of local maxima, which are often unknown in
advance.

Despite all shortcomings of deterministic optimization methods, they play an important
role in system design. They follow strict procedures and produce coherent results. If
the optimization task can be restricted to a local search and computation time is not a
key issue, they can play to their strength.

3.2.2 The Mean Shift Algorithm

The mean shift algorithm is an effective technique for localizing modes of the objective
function. Proposed 1975 by Fukunaga and Hostetler [52], it has been used in many
applications since then. Comaniciu and Meer reviewed the properties of the algorithm,

22

3.2 Deterministic Optimization Algorithms

especially the convergence behavior [28]. The Mean Shift algorithm is commonly ap-
plied for clustering low dimensional data, e.g. in the image domain [29]. But as we will
see, being a nonparametric estimator of the gradient, the mean shift is also well capable
of dealing with data of high dimensionality. The algorithm is briefly presented in the
following.

Several gradient-based optimization approaches calculate the gradient from a difference
between neighboring points sampled from the objective function. This is not only a slow
procedure as it multiplies the needed number of costly evaluations of the observation
function, it is also prone to noise, especially for observation functions defined on image
measurements which always comprise some amount of camera noise.

The mean shift algorithm, however, presents an alternative to directly measuring the
gradient. It is based on estimating a shift vector m(x) that is easier to compute than
explicitly calculating the gradient ∇ fK(x) of the observation function. The mean shift
vector points in the same direction as the gradient and adapts the magnitude based on
the observed function. To calculate the mean shift vector for a given point x ∈ RD,
a number of support points xn, n = 1, . . . , N sampling the observation function are
needed, but unlike other deterministic algorithms, the mean shift technique is not very
picky about where these points are located. Even random placement is feasible and yet
beneficial in some situations. The points xn used to represent the objective function are
named support points or sample points. In general we can say that a higher number of
sample points will yield a better approximation of the objective function, but will also
be computationally more intensive during the estimation process. This set of points,
sampled from the objective function, can also be seen as the outcomes of a random
variable. The objective function f can therefore be interpreted as the probability density
function (PDF) fK(xn) of the random process.

To determine the mean shift vector, the procedure performs a density estimation1 of the
PDF in a non-parametric way. For a given point x ∈ RD, the multivariate kernel density
estimator (KDE) is calculated by determining the distance of x to each of the sample
points xn, n = 1, . . . , N, rating the distance with a kernel K(x)

f̂K(x) =
1
N

N

∑
n=1

KH(x− xn) (3.4)

with the bandwidth matrix H ∈ Rd×d. As a fully parameterized matrix H would be
difficult to calculate, the simplification H = h2I allows to use the single bandwidth
parameter h > 0:

f̂K(x) =
1

Nhd

N

∑
n=1

K
(

x− xn

h

)
(3.5)

The gradient of the PDF is then given by

∇ f̂K(x) =
1

Nhd

N

∑
n=1
∇K

(
x− xn

h

)
(3.6)

1also known as the Parzen window technique [41] named after Emanuel Parzen

23

3 Optimization Techniques

−10 −5 0 5 10

(a)

−10 −5 0 5 10

(b)

−10 −5 0 5 10

(c)

Figure 3.2: Effect of different kernel bandwidths on the probability density estimation. For the same positions of
the kernel means, the shape of the resulting PDF varies greatly. This example shows gaussian kernels with
bandwidths (a) hG(·) = 0.5, (b) hG(·) = 1 and (c) hG(·) = 2.

Either type of multivariate kernel can be used, but radially symmetric kernels are often
more suitable. For the application presented in this thesis we use the radially symmetric
Epanechnikov kernel:

KE(x) =
{ 1

2 c−1
d (d + 2)(1− ‖x‖2) 0 ≤ ‖x‖ ≤ 1

0 otherwise
(3.7)

where cd is the volume of the d-dimensional unit sphere. The Epanechnikov kernel has
the profile

kE(x) =
{

1− x 0 ≤ x ≤ 1
0 x > 1

(3.8)

The Gaussian kernel, which is also commonly used, has the form

KG(x) = (2π)−d/2 exp
(
−1

2
‖x‖2

)
(3.9)

with its profile

kG(x) = exp
(
−1

2
x
)

x ≥ 0 (3.10)

(a) (b) (c)

Figure 3.3: Three kernel functions. (a) Epanechnikov kernel, (b) Gaussian kernel (c) Unity kernel.

A function k is called profile of a kernel, if it fulfills the following conditions [25, 166]:

(i) k is strictly monotonic decreasing: a ≤ b⇒ k(a) ≥ k(b).

24

3.2 Deterministic Optimization Algorithms

(ii) k is piecewise continuous.

(iii)
∫ ∞

0 k(x)dx < ∞.

(iv)
∫ ∞

0 k(x)dx > 0.

In the literature, further requirements are often made on the kernel profile, but they are
not needed for the scope of this work. As an example, property (iv) is often tightened
to
∫ ∞

0 k(x)dx = 1, compare also to [166]. Resigning this property allows us representing
the profiles in a simpler way.

Following [29], the profile notation can be used to rewrite Eqn. (3.4) as

f̂h,K(x) =
ck,d

Nhd

N

∑
n=1

k

(∥∥∥∥ x− xn

h

∥∥∥∥2
)

(3.11)

Given the set of sample points, its mean is determined by

m(x) =
∑N

n=1 xng
(∥∥∥ x−xn

g

∥∥∥2
)

∑N
n=1 g

(∥∥∥ x−xn

g

∥∥∥2
) (3.12)

where g(r) = −∇k(r) is a profile of kernel G and G is in turn the shadow kernel of K.

According to [25], the kernel Gh is called the shadow kernel of Kh if the associated kernel
profiles g and k fulfill the following property:

g(r) = l(r) + c
∫ ∞

r
g(t)dt (3.13)

where c > 0 is constant and l is a piecewise constant function.

The following statement is valid in particular for kernel profiles with a limited support
which are mainly used throughout this work. Let g be a kernel profile of the form

g(r) =
{

l(r) if 0 ≤ r ≤ 1
0 x > 1

(3.14)

where l : R → R is a differentiable function. Furthermore let k : [0, ∞[→ [0, ∞[be
definined by

k(r) =
{
−∇l(r) if 0 ≤ r ≤ 1

0 x > 1
(3.15)

If k is a kernel profile, then the kernel Gh with its profile g is the shadow-kernel of the
kernel Kh with its profile k.

From these assumptions follows:∫ ∞

r
k(t)dt =

∫ 1

r
k(t)dt = [−g(t)]1r = −g(1) + g(x). (3.16)

25

3 Optimization Techniques

Which can be rewritten as:

g(r) = g(1) +
∫ ∞

r
k(t)dt (3.17)

Togehter with the definition of Eqn. (3.4) this leads to the statement of Eqn. (3.12).

Note that the shadow kernel of the Epanechnikov kernel is the unity kernel, the shadow
kernel of a Gaussian kernel is as well a Gaussian kernel and the shadow kernel of a
Gaussian kernel with limited support is likewise a Gaussian kernel with limited support.
A kernel with a limited support eases calculations based on the PDF estimation, for
instance when calculating distances. The Epanechnikov kernel additionally comes with
nice properties (cf. [138]) like a simple shadow kernel profile and an easy to calculate
gradient. For these reasons, we choose it as kernel for representing the PDF.

As we are applying an optimization technique, we are interested in efficiently finding
the maxima of the PDF. The mean shift technique makes use of the fact that the maxima
of a function f (x) are at the positions with zero gradient ∇ f (x) = 0. It can be shown
that the mean shift vector m(x)− x always points in the direction of steepest ascent of
the density function [23]. By repeatedly shifting the point x in direction of the mean
shift vector, the algorithm finally converges to local maxima of the PDF.

The choice of the kernel bandwidth h from Eqn. (3.5) is of crucial importance in kernel-
based density estimation and is usually scaled down at each mean shift iteration in order
to concentrate the sample points in the dominant modes. In our implementation, the
initial bandwidth h0 is decreased for each iteration i according to h = iλ, with λ =]0, 1[.
A typical value for the annealing parameter is λ = 0.8. As described by [23] this alters
the shape of the kernel for each iteration. At the beginning of the optimization process a
wide support is desired to also gather sparsely distributed particles in highdimensional
spaces, but this comes at the cost of an inexact representation of the PDF, as such a
kernel will flatten out sharp peaks of the function. In consecutive iterations, however,
a decreasing bandwith parameter yields a more and more exact representation of the
PDF. A smaller support can be tolerated, as from the preceding iteration steps the sample
points have already been herded towards the local maxima.

The mean shift procedure is repeated until either a fixed number of iterations is reached
or the movement of the sample points falls below a threshold for consecutive iterations.
Figure 3.4 shows the trajectories of different points towards local maxima of a PDF.

Carreira [20] shows that mean shift is an expectation maximization (EM) algorithm for
Gaussian kernels and a generalized EM algorithm for non-Gaussian kernels. The mean
shift technique converges from almost any starting point and, in general, its convergence
is of linear order. Although approaching the mode usually takes multiple iterations, the
particle moves along the local principal component of the data points within the kernel,
yet providing a usable approximation after few steps.

3.3 Probabilistic Optimization Algorithms

The name probabilistic methods stands for a category of algorithms that employ a certain
degree of randomness as a part of their logic. Such algorithms typically use values from

26

3.3 Probabilistic Optimization Algorithms

Figure 3.4: Mean shift optimization in 2D.
An observation function has beed de-
fined in the image domain. A local
optimization using mean shift starting
arbitrary positions moves the sample
points (black lines) towards the modes
of the function (red dots). (Image found
in [29])

a pseudo-random number generator to alter their behavior with the aim of achieving
good performance in the average case. Probabilistic algorithms are particularly useful
when faced with multimodal objective functions. The randomness can help to cover
the parameter space as a whole without the need to spend too high a number of
observations. Employed correctly, this can be a big advantage compared to the discussed
deterministic algorithms which are unfavorable for parameter space exploration.

The two types of algorithms that will be discussed in this section are Particle Filters
(PF) and Genetic Algorithms (GA). In computer vision, particle filters are often used
as the search component within the inference scheme of tracking approaches. Genetic
algorithms have proven to be efficient for finding a parameterization to a given problem,
e.g. training parameters for cue fusion. Both employ a random sampling scheme and
perform well for multimodal search problems. A drawback of the standard particle filter
approach is that the accuracy scales poorly with the amount of computational resources
spent and that it does not support well tracking of multiple modes of the objective
function.To tackle these difficulties, the Kernel Particle Filter (KPF) has been applied
during this thesis and will be presented in the following. It combines the advantages of
fast parameter space exploration and efficient mode convergence.

3.3.1 Particle Filtering

In general, Particle Filters are categorized as Sequential Monte Carlo Methods. They are
based on the idea of approximating an unknown probability density function (PDF) with
a set of randomly sampled weighted particles. Particle Filters are often applied to solve
dynamic computer vision tasks, like tracking moving objects. In such a context, the PDF
models the state of the object, like its position and size. The sequential update process
is then used to update the state based on the consecutive images while incorporating
the information from former timesteps.

One of the first applications of Particle Filtering to a computer vision task was presented
1998 by Isard and Blake [80]. They propose a Particle Filtering scheme, called Conden-
sation, to track the contour of a walking person. The underlying model has 6 degrees
of freedom, but the observed movements are restricted to affine transformations and

27

3 Optimization Techniques

a previously learned motion model was used to guide the search process. Their most
important contribution was to show that Particle Filters offers advantages over conven-
tional techniques like Kalman Filtering in the context of visual object tracking. Here, the
PDF is often non-Gaussian and multimodal, which is hard to estimate with a Kalman
Filter. In contrast, Particle Filters do not pose any restrictions on the approximated PDF.
This also becomes obvious in the work of Deutscher et al. [38], who use particle filters
for tracking human motions, a task which rises the same challenges. In the following,
the particle filtering algorithm will be discussed in more detail.

Task Representation

From the perspective of particle filtering, the state of the system is described with a
state vector x which is equal to the parameter vector in 3.1.1. The state vector contains
all variables of the system and can often be interpreted within the given context, e.g., as a
pose of a model. The state at a timestep t is expressed as xt and it is expected to change
over time. The true state – for instance defined by a ground truth measurement – is
denoted as x∗t , the estimation of the current system state derived from the particle filter
optimization is then called x̂t.

Furthermore, let y
t

be a measurement – also called observation – that the observation
function is based on, and let Yt = {y

1
, . . . , y

t
} be the history of all measurements. In

computer vision, this is typically a sequence of images. For the current timestep, the
knowledge about the system state xt under the given history of measurements can then
be expressed as the PDF p(xt|Yt).

The temporal characteristics of the system can be expressed by the so-called system
model

p(xt|xt−1) t ≥ 1 (3.18)

which expresses the probability of the state xt given the last state xt−1. We assume
this to be a first order Markov process, which depends solely on the knowledge of the
previous state. When applied to computer vision problems, the system model is often
expressed as a motion model which describes the way an object changes its pose over
time. Depending on the application it can be favorable to use a history of events for
reference rather than a single timestep, which conflicts with the requirement of a first
order markov process. For this thesis, however, we simplify the problem formulation
to a single timestep only. If at some point more than one timestep is referenced, we
furthermore assume that this history can be encoded as a single system state which
allows us to handle the system model as a first order process again.

Next, an observation model can be defined as

p(y
t
|xt) t ≥ 1 (3.19)

It describes the probability to observe a measurement y
t

assuming a given state of the
system, e.g., how good a recorded image complies with a given model pose. The PDF
specified by this observation model is named observation density in the following.

28

3.3 Probabilistic Optimization Algorithms

Finally, the task of the particle filter should be to provide an estimate of the best state
under the history of measurements, thus estimating p(xt|Yt). The particle filter achieves
this by implementing a recursive Bayesian filter. It is called recursive, as the current
state can be calculated from the last estimation p(xt−1|Yt−1), which again depends on
the estimation before and so on. Following [80], the current state can be predicted using
the system model and given prior observations as

p(xt|Yt−1) =
∫

p(xt|xt−1)p(xt−1|Yt−1)dxt−1. (3.20)

After that, the system model 3.18 is included into the prediction 3.20, which yields the
posterior PDF p(xt|Yt) at time step t. Under the assumption that the new measurements
only depend on the current time step, Bayes’ rule can be applied which results in

p(xt|Yt) =
p(y

t
|xt)p(xt|Yt−1)∫

p(y
t
|xt)p(xt|Yt−1)dxt

(3.21)

so that the current state can be fully explained given the system model 3.18 and the
observation model 3.19. A more detailed description of recursive Bayesian filtering can
be found in [4]. Therein, Arulampalam et al. show that under some restrictions, e.g.,
gaussian PDF’s and a linear system model, the exact solution can be found while in the
general case, particle filtering still provides a good approximation which is relatively
fast to compute.

In particle filtering, the PDF is represented as a set of discrete samples sn
t , n = 1, . . . , N.

These samples can be interpreted as points in the state space. Each sample is associated
with a weight wn

t . In the nomenclature of section 3.1.1, a sample sn
t is a candidate

parameterization x of the objective function and the weight wn
t is the value y of the

objective function y = f (x) evaluated at position x. The tuple of a sample and its
accompanying weight (sn

t , wn
t) is called a particle, hence the name particle filter. All

particles together form the particle set St = {(s1
t , w1

t), . . . , (sn
t , wn

t)}, n = 1, . . . , N.

As we already learned from the Kernel Density Estimator 3.4, the posterior PDF can be
approximated by a set of support points. Here, we use a discrete weighted particle set
to approximate the PDF as

p̂(xt|Yt) =
N

∑
n=1

wn
t δ(xt − sn

t) (3.22)

with the Dirac-function providing the transition from the continuous to the discrete
space. Similar to the KDE in the mean shift, the approximation becomes more accurate,
the more particles are used. But, as we will see, a large number of particles also
means slow computation. For applications in computer vision, especially for real time
processing, a compromise between exactness of the approximation and speed must be
found.

Particle Filtering Steps

A well known implementation of the particle filter has been presented 1998 by Isard
and Blake [80] with the Condensation algorithm. We will use this as an example imple-

29

3 Optimization Techniques

Figure 3.5: One time step of the Conden-
sation algorithm. From the particle set
at the last timestep, a number of ex-
emplars are selected and predicted to
new positions. Updating the weights
yields a new particle set fro the current
timestep. (Image adapted from [80])

mentation to explain the technique of particle filtering. The filter performs a sequence
of steps for each new observation, called select, predict and update. The algorithm is
outlined in Alg. (3.6), its individual steps are detailed in the the following.

Require: Particle set St−1 = {sn
t−1, wn

t−1}N
n=1, new image measurement y

t
For initialization, let t = 1 and initialize St−1 from prior p(x0)

for all n = 1 : N do

Select sk
t−1 randomly out of St−1 with probability wk

t−1 and 1 ≤ k ≤ N
Predict sn

t ∼ p(xt|sk
t−1)

Update wn
t = p̂(y

t
|sn

t)
end for

Normalize weights wt such that ∑n wn
t = 1

Ensure: St = {sn
t , wn

t }N
n=1

Figure 3.6: The Condensation algorithm. An example for the particle filtering technique.

Selection

The first step at each iteration is to generate a new particle distribution to approximate
the PDF. As only a limited number of particles is available, it is the task of the selection
step to choose a set of particle locations in the parameter space which allows an efficient
exploration in order to locate the maximum for the current timestep. The new set of
particles is therefore based on that of the previous timestep St−1 and prefers regions
with high weights. In literature, this step is also called resampling, as it samples a new
set of particles out of the prior set. The positions of the new particles are determined by
a technique known as monte carlo random sampling or roulette wheel selection2 [40],
which works as follows.

2The name "Monte Carlo" was popularized by physics researchers Stanislaw Ulam, Enrico Fermi, John
von Neumann, and Nicholas Metropolis, among others; the name is a reference to a famous casino in

30

3.3 Probabilistic Optimization Algorithms

It is assumed that the weights of the particles in St−1 are normalized, thus they ful-
fill ∑N

n=1 wn
t−1 = 1. Monte Carlo sampling uses a cumulative sum function W(k) =

∑k
n=1 wn

t−1 that for a given particle k = 1, . . . , N sums up the weight of all particles up
to particle k. A single particle can now be chosen by giving a random number ρ =]0; 1]
and searching for the first particle k that makes the cumulative sum bigger or equal to
ρ, as depicted in Fig. (3.7).

arg max
k∈{1,...,N}

W(k) ∈ {k | ∀l < k : W(l) < ρ} (3.23)

Using this technique, particles with a high weight are more likely to be chosen as they
account for a bigger fraction of the sum. The result is a new set of particles at the same
positions as they have been in the last timestep, but particles with a low weight are left
out and particles with a high weight are multiplied.

Figure 3.7: Cumulative sum used for Monte Carlo sampling.
A random number between 0 and 1 is used to select
the particle with the corresponding value of the sum.
Particles with a high likeihood span a wider region of
the cumulative sum and are more likely to be selected.

For the initial iteration t = 1, where no information about former system states and
observations is available, the particles are sampled at random positions in the parameter
space with equal weights wn

1 = 1/N ∀n = 1, . . . , N for monte carlo sampling.

In the literature, this technique is also called a darting method [2], because it can be
compared to throwing a dart sideways into the sum function and then look up which
particle it hit. It can be generalized [149] to better explore the local mode structure if
advance knowledge about the location of these modes can be given.

Prediction

The newly generated particle set is now object to stochastic diffusion, applying the
system model as in Eqn. (3.18). The particles are shifted according to the known dy-
namics by adding the system model to each particle position. If no further information
is available, the system model defaults to zero-mean Gaussian noise.

When observing real world objects, e.g. a robot or a human, it is often suitable to choose
a model incorporating basic physical rules like inertia. In such a case, the system model
is often called motion model as the free parameters of the optimization process are the

Monaco where Ulam’s uncle would borrow money to gamble [74]. The use of randomness and the
repetitive nature of the process are analogous to the activities conducted at a casino.

31

3 Optimization Techniques

Figure 3.8: Particle set prediction with a
motion model. Modelling a person walk-
ing in a room with obstacles. Left
image: Brownian motion model (blue
points) incorporating scene constraints.
Right image: Additional task knowl-
edge (green points) guides the predic-
tion. (Image found in [17])

position and orientation of the object in the space. Typical implementations are linear
prediction, higher-order predictors or a Kalman filter [86] which uses a learned internal
model of the observed motion to predict the position for the next timestep.

Knowing about which motions are likely to occur, a detailed model predicting these
motions can be derived. An frequently applied technique consists in the use of a motion
prior, for instance in the form of a learned motion database.As we are dealing with
a distribution of particles, the prediction model can easily be realized as a mixture of
different sub-models, which will be applied each for a subset of the distribution. As an
example, Bruce et al. show how to incorporate scene and task knowledge [17], which
makes the prediction more specific than a general model only. This helps to gather
particles in regions of the parameter space that are more likely to match with the new
object position, cf. Fig. (3.8).

Note that for all models the diffusion in the parameter space must be wide enough to
cover all possible motions – or state changes – of the observed object that can occur
within one timestep. For a moving person, for example, it is plausible to define a
maximum velocity. If the parameter vector represents variables other than the spatial
position, an assumption about the dynamics of the variable is needed. Distributing too
widely, however, would waste particles and apart from that it could distract the particle
filter to optimize into a wrong local maximum.

Update

The next step in the process is to perform an update of the weights for each sample
from the newly generated set. For that, the objective function is evaluated using the
new measurement y

t
.

wn
t = p̂(y

t
|sn

t) ∝ wn
t−1 p(y

t
|sn

t) (3.24)

At this point, external information that is for instance provided by an image based
distance measure, is introduced into the particle filtering process. Finally, the particle
weights are normalized to sum up to 1. The outcome is an approximation of the
underlying PDF.

But the question what the result of the optimization process is remains. A set of
weighted system states is merely useful. Instead, a single system state x̂t is often needed

32

3.3 Probabilistic Optimization Algorithms

as an estimation. As long as the PDF is unimodal and undistorted, a simple weighted
average of all samples estimates well the mean position.

x̂t =
N

∑
n=1

wn
t sn

t . (3.25)

For more complex shaped PDF’s, e.g., showing multiple maxima or containing distorted
non-Gaussian modes this estimation fails. For two adjacent modes, for instance, it
estimates the optimal system state right in-between those two modes, which is a worse
result than just choosing the best mode and neglecting the others. Indeed, this is a
common workaround, but also bears problems, especially when dealing with visual
observations. Herein, the observation process is prone to camera noise and dynamic
environments, which easily results in volatile modes. It also frequently happens that the
true position is not the global maximum of the objective function but a local maximum
only. Reasons for this can be ambiguities in the measurements or the difficulty to find
an adequate objective function.

Initialization and Error Recovery

Particle Filters are often used to track an object over time. One of the difficulties is then
to choose an appropriate diffusion model that covers all possible motions. If the true
position is not within the search radius, it will never be evaluated and the tracking is
lost. The same problem arises, if the tracking gets stuck in a false local maximum. This
can happen if the diffusion is not wide enough to escape from the false mode. The
filter can also be stuck in flat regions of the parameter space, which means that the
observation function values to 0 or close to 0 for all samples. With all samples showing
equal weights, the selection step samples randomly and cannot provide proper guidance
for the optimization.

For all these cases, the principle of probabilistic optimization offers an elegant way to
integrate an error recovery component. Mixing a number of recovery particles into the
distribution, say 5%− 10%, enables the filter to evaluate the objective function at other
positions than those defined by selection and prediction. A random coverage of the
whole feasible space is the default choice since this resembles random guessing. Such a
technique becomes the less efficient the higher the dimensionality of the feature spaces.
It is obvious that with any kind of external knowledge, e.g., from other observation
processes, the recovery particles can be distributed far more efficiently. Note that the
initialization of the particle positions can be seen as a special case of the above. Instead
of a just a portion of the distribution, the whole set of particles is replaced by recovery
particles. Consequently, the particle weights are all set to an equal value of 1

N , as the
positions have not been based on valid observations.

3.3.2 Kernel Particle Filtering

Many extensions of the standard particle filter approach exist and most of them do for
the same reasons, as Arulampalam et al. [4] argue. First, the generation of the weights

33

3 Optimization Techniques

is very task specific and so is the resulting objective function in the parameter space.
Depending on the shape and number of true and false maxima, simplifications can be
made to make the optimization process converge faster, or the search can otherwise be
strengthened to avoid as many false maxima as possible. Secondly, a common problem
of particle filters is the phenomenon known as particle set degeneration which many
algorithms try to compensate. Particle set degeneration describes the fact that after
multiple iterations the set of particles might contain a large number of samples which
no longer contribute to the approximation of the posterior PDF. This can happen due to
particles with almost zero weights but also when too many samples are concentrated in
a small region of the parameter space – a state which is often referred to as a collapsed
particle set.

Multiple solutions to these problems are known from the literature, some of them are
discussed below. After that, an extension of the standard particle filtering approach,
the so-called Kernel Particle Filter (KPF), is presented, which has been adapted for this
thesis.

An early approach extending the standard technique is the annealed particle filtering
concept of Deutscher et al. [37]. Their approach approximates the observation density
as p(y

t
|sn

t) = w(y
t
, sn

t)
β for weights w(·) ∈ [0, 1] and performs up to 10 iterations of

Condensation per timestep. Starting with values for β close to zero and increasing it
for each iteration narrows down the peaks of the estimated observation density, thus
yielding a more and more exact estimation of the modes of the posterior PDF.

As proposed by Chang and Ansari [22] particle filtering can be combined with kernel
density estimation. Fitting a kernel around each particle allows the interpolation of
the objective function for positions in the state space between individual samples. This
kernel representation allows to approximate a PDF with a sparse distribution of par-
ticles, which is a particular advantage for high dimensional feature spaces. This idea
will also be used in the KPF approach presented in the next section. Furthermore, the
particle representation offers a convenient alternative to deal with multi-modal PDFs.
But still, the complexity of the standard PF approach dramatically increases with the
dimensionality of the sampled PDF.

Both, Maggio et al. [106] and Chang et al. [23] proposed KPF as a tracking algorithm
based on a combination of particle filtering and Mean Shift. The proposed tracker
generates a smaller number of samples than needed for standard PF and then shifts
the samples towards a close local maximum using Mean Shift. They show that the
combined tracker outperforms PF with only needing 20% of the number of samples.
This idea goes well with the fact that most applications aim at determining the state of
a model at a given time, for instance the position and size of an object or the pose of
a human. For such applications, one is not interested in approximating the objective
function as a whole, instead, finding its modes is sufficient to solve the task which is
also true for the applications of KPF in this thesis. In summary, KPF combines the
advantages of probabilistic and deterministic optimization techniques. It shows ways to
overcome the drawbacks of the standard PF approach like particle set degeneration and
deficient scalability for highdimensional feature spaces. The KPF algorithm is detailed
in the next section.

34

3.3 Probabilistic Optimization Algorithms

Kernel Particle Filtering Steps

The KPF algorithm utilizes a probabilistic particle filtering part to efficiently explore the
highdimensional parameter space. Additionally, it employs a meanshift approach as a
deterministic optimization procedure to herd particles at local maxima. It thereby allows
for a better coverage of the highdimensional parameter space without needing a high
number of particles, as they are shifted towards interesting regions of the parameter
space. The KPF method thereby significantly enhances the performance of the search
process compared to the standard PF approach.

Require: Particle set St−1 = {sn
t−1, wn

t−1}N
n=1 from last timestep t− 1,

new image measurement y
t
, bandwith parameter h0

Update particle set St with a single Condensation step

for all i = 1 : I do
Shift all particles according to mean shift vector m(s(n)

t , hi
0), n = 1, . . . , N

Update weights wn
t for all particles from image y

t
Normalize particles ∑N

n=1{sn
t , wn

t } = 1
end for

Normalize weights wt such that ∑n wn
t = 1

Output: Particle set St

next timestep: t=t+1

Figure 3.9: The Kernel Particle Filter (KPF) algorithm. The KPF combines the particle filtering technique
with a mean shift optimization approach. This code presents a single timestep of the KPF algorithm.

As for particle filtering, the underlying PDF is approximated by a set of particles. Here,
the true density distribution is estimated through placing a kernel function K on each
sample:

p̂(xt|Yt) =
N

∑
n=1

Kh(xt − s(n)
t)w(n)

t (3.26)

Extending the PDF approximation in Eqn. (3.22) with weighted kernels, it can now be
expressed as

Kh(xt − s(n)
t) =

1
Nhd

K(xt − s(n)
t)

h
(3.27)

with the associated weights w(n)
t and the kernel bandwidth h.

For a radially symmetric kernel like the Epanechnikov kernel, we have K(xt − s(n)
t) =

ck(‖xt − st‖), where c is a normalization constant which makes the integral K(xt − s(n)
t)

equal one, and k(r) = k(‖xt − st‖) is the profile of the kernel K.

Next, mean shift is introduced as a local mode finding approach to the kernel particle
filter. Given a particle set St and the associated weights {w(n)

t }N
n=1, the particle mean

from Eqn. (3.12) can now be expressed using the kernel representation for the PDF
(Eqn. (3.22)) which leads to:

m(s(n)
t) = ∑N

i=1 Hh(s(n)
t − s(i)

t)w(i)
t s(i)

t

∑N
i=1 Hh(s(n)

t − s(i)
t)w(i)

t

(3.28)

35

3 Optimization Techniques

Using multiple mean shift iterations, each of the particles s(n) = {x(n), w(n)} is shifted
towards a local mode of the estimated posterior.

The choice of the kernel bandwidth Hh is of crucial importance in kernel-based density
estimation and is usually scaled down at each mean shift iteration in order to concentrate
on the most dominant modes. In our implementation, the initial bandwidth H0 is scaled
at every iteration i according to Hh = 0.8i H0 where the value 0.8 has been determined
empirically, similar to [23].

Following the shifting of particles using the mean shift vector, the particle weights w(n)
t

are recomputed. As the shifting of the particles implies that the new particles are not
distributed according to the posterior distribution, a reweighting is performed in order
to guarantee that each mean shift iteration follows the correct posterior gradient. Using
subscript j to denote the particle set after the jth mean shift iteration at time t, the weight
is recomputed based on the posterior density evaluated at the new particle positions s(i)

t,j
and a particle density balancing factor [23]:

w(n)
t,j =

p(s(n)
t,j | Yt)

qt,j(s(n)
t,j)

. (3.29)

The balancing factor in the form of the denominator is the new proposal density:

qt,j(xt) =
N

∑
l=1

Kh(xt − s(l)
t,j). (3.30)

Without the balancing factor, several particles concentrating after a mean shift iteration
at one density mode would result in a high kernel density estimation at this position
and would, therefore, heavily influence the particle mean of Eqn. (3.28). This effect is
avoided by means of reweighting Eqn. (3.29). So, information on how many particles
are located in the kernel window around the new particle position is incorporated in
the posterior density evaluation.

The overall posterior density uses a sample-based approximation of the prior density
and is given by

p(xt | Yt) ∝ p(y
t
| xt)

N

∑
l=1

p(xt | s(l)
t−1)w(l)

t−1. (3.31)

Equation 3.31 is the Kernel particle filtering equivalent of recursive Bayesian filtering.

In contrast to Deutscher et al., our approach has the advantage that we can control the
sensitivity of each cue independently. Another major difference between our KPF and
their particle filter is the fact that we need no intermediate condensation iterations on the
particle sets in order to migrate particles to local modes in the posterior. Our mean shift
approach allows to do this much more efficiently. Typically, 2 or 3 iterations of mean
shift are sufficient to locate the posterior modes while, in [37], 10 annealing iterations
are proposed.

36

3.3 Probabilistic Optimization Algorithms

The outcome of the Mean Shift is a refined probability distribution with the particles
being more or less densely gathered around local maxima of the parameter space,
depending on the number of Mean Shift iterations and the configuration of the observed
space.

3.3.3 Evolutionary Computation

The main idea of Evolutionary Computation is inspired by the theory of evolution
according to Charles Darwin (1809–1882), who published3 it in his work “On the Origin of
Species by Means of Natural Selection” [35]. Therein he states that in a world with limited
resources and a stable population, each individual is in competition with each other.
Those individuals exhibiting the best abilities can reproduce and are more likely to sur-
vive. Beneficial abilities are bequeathed to their offsprings, thus spreading throughout
generations until they dominate the whole population. This is what now name selection.
Darwin further on states that while passing the abilities on to the offsprings, random
events can alter the abilities. This process is nowadays known as mutation. If these
mutated abilities are beneficial for the new individual, it will have a higher probability
to survive.

Genetic Algorithms

To transfer this to optimization, the evolutionary theory is applied in the form of a
Genetic Algorithm (GA) as follows. Genetic Algorithms are robust computational pro-
cedures that try to emulate some of the processes in natural evolution. Evolution is
an optimization process aiming at maximizing the survival rate of a population of
organisms – or in other words a biological system – while competing in a dynamic
environment. Taking up that idea, the technical system to be optimized by a GA is
represented by a set of individuals S(t) = {s(1)

t , . . . , s(N)
t }, with a population size of N.

Each individual s(n)
t of the population stands for a solution of the optimization problem

and is rated concerning its fitness f (s(n)
t), which corresponds to the objective function

in the optimization theory. The better an individual is rated with the objective function,
the higher its fitness. Each of the possible solutions is a parameter vector composed
of variables. In correspondence with their biological meaning, the parameter vector
representing the collection of all chromosomes is called the genetic material or genome of
an individual.

The population iteratively develops in discrete timesteps, called generations. For each
generation, the basic operations selection, reproduction, and mutation are applied to each
of its individuals, thus creating a new generation of individuals for the next timestep
aiming at a better performance of the total population. The selection operation com-
pares the individuals with each other according to their fitness and selects highly rated

3Alfred Wallace (1823–1913) developed the theory of evolution independently from Charles Darwin at
the same time. Although Jean-Baptiste Lamarck’s (1744–1829) scientific theories were largely ignored
during his lifetime, Lamarck began to publish details of his evolutionary theories beginning back in
1801.

37

3 Optimization Techniques

individuals. The reproduction operation – also called recombination or cross-over due to
the exchange of the genetic material – creates offsprings from selected individuals. The
offspring thereby inherits a mixture of the abilities of its parents while the mutation
operation randomly alters the new genetic material.

From generation to generation, the overall fitness of the individuals increases, as only
those performing well in the given environment are able to produce offsprings and to
pass on their genetic material. The optimization process can be seen in the creation of
ever new individuals with increasing performance, their genetic materials contains the
parameters to maximize the objective function. This process is called Genetic Algorithm
(GA), it is briefly outlined in 3.10.

Require: let t = 0 be the number of the current generation

let n = 1, . . . , N be the number of individuals

let s(n)
t be the individual n of the generation t

initialize a population S(0) = {s(1)
0 , . . . , s(N)

0 }
repeat

compute �tness f (s(n)
t) for each individual s(n)

t of the generation St
select surviving individuals S′t out of St
recombine pairs of individuals out of S′t to create o�springs St+1
mutate genetic material of o�springs St+1
next generation t = t + 1

until break criterion is reached

Output: generate best individual î from the current generation St

Figure 3.10: The Genetic Algorithm (GA). The GA as an example for evolutionary computation.

Throughout the whole process, the different operations are not executed every time but
they are subject to probabilities of random processes models as it can be observed in
the nature. Mutation, for instance, occurs rarely while selection and recombination are
quite common.

In Darwin’s Theory of Evolution, there is no need for a break condition, as the theory is
meant to describe the natural evolution in an ever-changing environment. It is however
the aim of an optimization algorithm to provide an optimal solution for a given problem
in a limited amount of time.

The algorithm therefore has to decide if further computation is beneficial, cf. [42]. The
optimization can be stopped after a fixed number of generations. Although this helps to
restrict the time needed to compute a solution, there is no guarantee that the algorithm
has converged until then. Consequently, this criterion is only useful if the convergence
behavior can be predicted for the given problem, or it can be used as a fallback if the
other criteria fail and convergence is never reached at all. The mean fitness value of a
generation can also be used as a cue if observed over time. If there is no increase – or
even a decrease – in the mean fitness over some time, it can be assumed that at least
a local optimum has been reached and optimization can be stopped. Prior knowledge
about the objective of the optimization can also be incorporated, for instance, if an

38

3.3 Probabilistic Optimization Algorithms

estimation can be made about what the fitness value of an individual resembling a good
solution would be. Optimization can then be stopped as soon as this value is reached.

Finally, an optimal solution – or in other words an optimal individual – has to be deter-
mined. Choosing the best individual of the current generation seems to be the obvious
choice, but similar to the mode search of the KPF other choices may be more elaborate
in some situations. The number of variables, and thus the number of dimensions of the
parameter space – can be quite high. By choosing the best individual, one may miss
the maximum. A better way is to consider a number of individuals around the best
rated individual and to choose their mean position in the parameter space as the final
solution.

Problem Coding

In 1975, John Holland developed a theoretical framework for Genetic Algorithms, pub-
lished in his book “Adaptation in Natural and Artificial Systems” [72]. He proposed a
building block theory, which encodes the genome in a binary representation and he
proved that the optimization process converges for operations on this representation. It
is also easier to define the needed operators if all variables in the genome are uniformly
coded. Binary coded genomes therefore have been used for a long time with a corre-
sponding transformation scheme for non-binary parts of the genome [110], which can
lead to data loss as the binary representation usually implies some kind of discretiza-
tion. Goldberg explains in [57] that the accuracy of the conversion can be increased
by choosing longer binary strings for the genome which can represent numbers in a
higher resolution. But the longer the genome, the longer the optimization process takes
and the more difficult it gets to accurately determine the maxima. As Antonisse [3]
proposed in 1989, a floating point representation for the genome x containing J variables
x(j) ∈ [0, 1] ⊂ R ∀j = 1, . . . , J offers the same benefits in terms of easily definable
operators but it is better applicable to specific problems. Janikow [82] proved this
assumption to be true for several test cases with adapted operators. This floating point
number representation of the genome will also be utilized for the GA in the course of
this thesis.

When defining the transformation functions, there are thee types of variables to account
for: floating point numbers, integers, and sets. For each of these variable types, an
independent transformation function is needed to map its values to the floating point
numbers of the desired domain. Furthermore, an inverse mapping is needed to transfer
the variables back into their original domain after optimization.

For the transformation, floating point numbers and integers are assumed to be restricted
by boundary constraints (ai ≤ xi ≤ bi), sets are assumed to be finite with the cardinality
m for a set xi ∈ {e1, . . . , em}. If such a restriction does not apply to a specific variable,
for instance because it may grow infinitely large, its range must either be restricted
to a large number – remember that the range for the floating point representation in
standard programming languages is also limited – or a distinctive mapping function
has to be found that maps from a finite range to infinite values, e.g. by deliberately
exploiting asymptotic behaviour.

39

3 Optimization Techniques

As the easiest choice, floating point numbers can be linearly scaled to the desired [0, 1]
domain

x[0,1]
i =

xi − ai

bi − ai
(3.32)

The corresponding backprojection is achieved by

xi = x[0,1]
i (bi − ai) + ai (3.33)

Similarly, integers are mapped via

x[0,1]
i =

xi − ai

bi − ai
(3.34)

The backprojection is realized by scaling and then rounding the floating point value to
the nearest integer.

xi = b(x[0,1]
i (bi − ai) + ai) + 0.5c (3.35)

For the transformation of sets, the elements are first mapped to a number of integer
values e(i) → i corresponding to their indices.

{e(1), . . . , e(m)} → {1, . . . , m} (3.36)

After that, the mapping can be performed as for integer values.

x[0,1]
i =

i− 1
m− 1

(3.37)

The backtransformation is performed accordingly.

i = b(x[0,1]
i (m− 1) + 1) + 0.5c (3.38)

During optimization, the parameters will typically be assigned with real number values.
The lossy backprojection is necessary for integers and sets, as there is normally no such
thing as a value between the elements e(n) and e(n+1). But this can pose a problem for
the optimization process. Small numerical changes in the genome do not necessarily
result in selecting a new element from the set and thus do not necessarily change the
behaviour of the objective function if the numerical value lies inbetween two numbers.
But for parameters close to an integer, a small parameter change can result in a sudden
change between elements which makes the objective function discontinuous and thus
hard to optimize for these variables.

Genetic Algorithm Operators

The operators selection, mutation and recombination of genetic algorithms are the equiv-
alents for the steps selection, prediction and refinement of the Kernel Particle Filter as
they fulfil similar roles. From the current generation, the selection operator choses a
number of members that are likely to best represent the system state in the next timestep.
Similar to the prediction process, the mutation operator explores the parameter space by
adding random variations to the genome of the existing individuals. Recombination can
be compared to the refinement step of the KPF. It generates an offspring that hopefully
better approximates the underlying fitness function than its parents. The operators and
suitable algorithms are detailed in the following.

40

3.3 Probabilistic Optimization Algorithms

Selection

Inspired by natural selection, the selection operator evaluates the fitness values of the
individuals and determines their chance to survive. For a best performance of the
optimization procedure the selection scheme must be carefully choosen. If the selection
is too much oriented at the best individuals – in nature this is called a high seletion
pressure – it is more likely that suboptimal members dominate the whole population.
These can be seen as local maxima in the objective function, which the population cannot
escape if it is not allowed to develop weaker individuals along the way to the global
maximum. If the selection pressure is choosen low the abilities of the individuals can
freely develop but the direction of the evolution becomes unclear and the chances to
miss a local maximum rise. As a consequence, the overall rate of convergence of the
optimization process would be very low.

There exist various selection mechanisms with different properties, such as linear and
power scaling, σ-truncation, windowing, etc, see [64] for a performance comparison of
different selection techniques. As the selection operator is crucial to the performance of
the GA, improving it can help to achieve a faster convergence rate [120]. As an intuitive
technique, similar to the selection procedure of the standard PF, proportional selection
defines the selection probability for an individual s(n)

t as a function of its fitness value.

pps(s(n)
t) =

f (s(n)
t)

∑J
j=1 f (s(j)

t)
. (3.39)

The main drawback of this technique is the tendency to create degenerated distributions.

To overcome this disadvantage, linear ranking with stochastic universal sampling is uti-
lized in this work since it handles robustly the posed tasks and prevents from premature
convergence and weak search. For linear ranking, the individuals of a population are
sorted according to their fitness. The probability to select a certain individual depends
on its position in the sorted list rather than its absolute fitness value as for proportional
selection. Comparing the two techniques, linear ranking can lower the selection pressure
for generations containing a small number of members having outstandigly high fitness
values. In the same manner, the selection pressure can be raised for generations mostly
comprised of evenly weighted members. The rank selection technique thereby prevents
the population from being dominated by few individuals or from being flattened out.
The linear ranking method by Baker [5] sorts the N individuals of a population accord-
ing to their fitness value f (s(n)

t). The member with the lowest fitness value is sorted as
the first element with index 1, the one with the highest value gets the index N. The
selection probability plr for the individual s(n)

t at rank n is then assigned by:

plr(s(n)
t) =

1
N

(
ηmax − (ηmax − ηmin)

n− 1
i− 1

)
(3.40)

with ηmax ∈ [1, 2] and ηmin = 2.0− ηmax being the expected fitness values of the best and
worst individual, respectively. Note that the probabilities are normalized to ∑n p(s(n)

t) = 1.
The selective pressure can be controlled with the free parameter ηmax. It thereby balances

41

3 Optimization Techniques

the exploration and exploitation aspects of the search. Baker found a value of ηmax = 1.1
to be feasible for several test cases [110] and it is also used as a default in this work.

The two most common techniques for choosing individuals from a population based
on their selection probability p(s(n)

t) are the roulette wheel algorithm and stochastic
universal sampling.

Roulette wheel – also known as stochastic sampling with replacement [6] – is similar to
the monte carlo sampling method of the PF. The members of a generation are ordered
on a line corresponding to the normalized cumulative sum of their selection probability.
A random number chooses the individual at a certain position on the line. A drawback
of this approach is that the number of offsprings for a certain individual can not be
guaranteed. In theory it is possible that a single individual produces no offsprings at
all even with a high selection probability. Although this is unlikely for generations
composed of many members as the random selection process tends to average out such
anomalies the effect can have negative influence on generations with a small number of
individuals as it is common in this work.

Figure 3.11: Stochastic universal sampling.
Beginning with a random offset r, sam-
ples are drawn in equidistant intervals.

Stochastic universal sampling [6] circumvents this problem as it does not rely on mul-
tiple iterations of the random process. Instead, it is based on a single random number
only. As before, the individuals are ordered on a line corresponding to their selection
probability, see also Fig. (3.11). As the probabilities are normalized, the line has the
length 1. For drawing a given number N of samples a second line of equally spaced
pointers referencing positions on the line of samples is generated. The distance between
two pointers is 1

N . A random number r ∈ [0, 1
N] is chosen and the line of pointers is

offset by r. Thus, the first pointer references the sample at position r, the second pointer
the one at r + 1

N , and so on. This technique results in a new generation of individuals
that minimizes the variance of the number of newly selected individuals from a single
member. Mitchell [110] states that stochastic universal sampling is in particular suitable
for non-deterministic fitness values as it does not over-emphasize single individuals
with possibly wrong large fitness values.

Mutation

The process of randomly changing parts of the genetic material an individual is called
mutation. In nature, mutation is one of the key elements for evolution, as it helps to
develop individuals with a priori unknown capabilities. For a genetic algorithm the role
of the mutation operator is the exploration of the parameter space, as a modification of
the genetic material means to relocate the individual to a new position in the parameter

42

3.3 Probabilistic Optimization Algorithms

space. This also guarantees the diversity of the population. If, for instance, the indi-
viduals of a generation are gathered in a local maximum, the mutation operator pushes
away some of the members towards unexplored regions.

For each gene xi, the mutation probability is given by a random number p(i)
m ∈ [0, 1],

which is usually chosen to be very small, e.g. p(i)
m = 0.01, so that mutation occurs

infrequently.

Too high a value for pm results in frequent modifications of the genotype and spreads
the members randomly, thereby counteracting convergence and neglecting already op-
timized genetic material. Too small a value will instead turn off the mutation operator
and the optimization procedure will be stuck in place with only selection and crossover
left working. Thus, the mutation probability must be chosen small, but big enough to
surmount false local maxima.

Recombination

In a biological sense, recombination – also called crossover – is the process to create and
to give place to a new generation. The parents pass on their of their genetic material to
their children, thereby ensuring the continuity of their characteristics and capabilities. If
these are mixed in the right way they will eventually produce offsprings which are even
superior in surviving in the environment. The same goes for the recombination operator
of the genetic algorithm. The crossover probability pc ∈ [0, 1] defines how frequent
procreation occurs, it is usually chosen to be much higher than the mutation probability,
e.g. pc = 0.6. For recombination, two individuals from the current generation are
selected and their genetic material is combined. For a general overview of crossover
types, see [13].

As a leftover from the times when the genetic material was commonly binary coded
comes the so-called uniform crossover. Here, the genetic material from the two parents
x and y is simply exchanged for a randomly chosen gene k:

x = (x1, . . . , xk−1, xk, xk+1, . . . , xJ)
y = (y1, . . . , yk−1, yk, yk+1, . . . yJ)

=⇒ x′ = (x1, . . . , xk−1, yk, xk+1, . . . , xJ)
y′ = (y1, . . . , yk−1, xk, yk+1, . . . , yJ)

For n-point uniform crossover the exchange is performed at n different positions.

Although these techniques work well for a binary coded genotype, neither one- nor
n-point crossover are well suited for floating-point represented variables. The coromo-
somes can only be exchanged but their values are not altered. The resulting position
of the offsprings can only be at the corners of a hypercube which is spanned by the
parents x and y lying in opposing corners, also compare to Fig. (3.12). The space within
the hypercube or any position on the edges are not reachable with this technique.

For high dimensional feature spaces, this still leaves many possible choices for off-
springs, but often the parents are already well positioned and the local maximum is
located right between them. For this reason, arithmetic crossover [13] is utilized in
this work. It allows the generation of offsprings as a linear interpolation between the

43

3 Optimization Techniques

Figure 3.12: One point crossover. Illustra-
tion of the possible outcomes of a two-
dimensional one point crossover. Par-
ents top right and bottom left, possi-
ble offsprings top left and bottom right.
(Image adapted from [13])

(x(1)
t , y(1)

t)

y

x

(x(2)
t , y(2)

t)(x(1)
t+1, y(2)

t+1)

(x(2)
t+1, y(1)

t+1)

parents which allows to place them anywhere in the hypercube volume. This is achieved
by choosing a mixing coefficient α ∈ [0, 1] which determines the influence rates of the
individual parents.

x(k)
t+1 = αx(i)

t + (1− α)x(j)
t (3.41)

After applying the selection and recombination operators to the generation St, a new set
of individuals representing a new generation St+1 has been generated and can be used
for the next iteration of the optimization process.

Elitism

A further improvement of the optimization procedure is introduction of elite individu-
als. For this work, elitism according to deJong [85] is applied. From each generation,
a small number of members with the best fitness values it kept unchanged and passed
on into the new generation. This has shown to be a very effective means to stabilize the
optimization process and to increase performance for various applications [110].

3.4 Summary

In this chapter, optimization problems are addressed on a theoretical level and a char-
acterization and formal description of such problems is given. That allows us for a
given real world problem to abstract from the task and find a formal representation of
the optimization problem. Various deterministic and probabilistic optimization tech-
niques were presented and discussed with regard to their competences and restrictions.
Usually, there exist many ways to solve a given problem once an abstract formulation
has been found. The presented optimization techniques resemble a small portion of
the many algorithms existent. They have been presented here in a special chapter, as
most of them have shown to perform reliably in many situations. The particle filter, as
an example, can be a powerful tool for situations where deterministic approaches fail
due to their immense computational complexity. But applying particle filters without
considering their random nature easily leads to unpredictable behavior of the whole
system they are applied within.

44

4 Person Localization

It is by no means a coincidence that the human strongly relies on his visual perception.
The visual appearance of a scene and the objects within provides rich information about
the location of individual objects, their size, their direction of movement and so on.
Together with common knowledge about the use of objects in specific situations and the
understanding of interactions between objects and their surroundings, humans are able
to obtain a detailed representation of a scene just from visual information. In particular,
three-dimensional (3D) vision plays an important role in human perception, especially
for the recognition of motion and the ability to track objects over time. It is advantageous
for vision systems to make use of this very basic information in order to perceive and
interprete the environment.

In this thesis, computer vision is used as a technique to perceive and describe the envi-
ronment. Much like the human, we aim at doing both, deriving a general description
of the environment and further localizing and tracking the dynamic parts of the scene.
Such automated vision systems can be employed in many situations, but their design is
strongly influenced by the constraints of the scenario and the task they are intended to
fulfil.

The following chapter presents a method for localising and tracking people and moving
objects in a velocity attributed 3D point cloud. We will employ a combination of
a bottom-up approach for spatio-temporal scene segmentation and weak models for
generation of object hypotheses in order to permit the detection of arbitrary objects. This
approach allows task-dependent interpretation without incorporating strong models,
which would restrain perception or require prior knowledge about the appearance or
structure of the scene.

In the following the scenarios the system has been applied to in the scope of this thesis
are introduced. The underlying assumptions and principles are discussed thereafter and
the vision-based system for 3D detection and tracking of moving persons and objects in
complex scenes is detailed.

4.1 Applicability to Di�erent Scenarios

The system developed in the scope of this thesis has shown to be applicable to various
situations, needing only minor modifications to individual system components. In the
remainder of this chapter we will detail the system from the viewpoint of two scenarios,
as they account for most of the different algorithms used. They share a common goal
which is to find and track the moving objects in the scene. A difference lies in the data
acquisition process, as different sensors are employed to generate a 3D point cloud.
Each sensor and each 3D data generation technique exhibits its own characteristics of

45

4 Person Localization

how exact and how dense the point cloud is. Consequently, the data preprocessing
techniques and also some later algorithms are adapted to match the requirements posed
from the sensor’s characteristics.

4.1.1 Industrial Working Cell Safety

The system has shown to robustly perform in an industrial scenario of a working cell
with a human worker and a moving robot as presented in [137]. In this scenario, the aim
is to localize and track moving objects in the scene for safety purposes. Modern indus-
try robots used within automotive engineering still require strict safety precautions to
ensure they do not harm human workers. This often manifests in fences, light curtains,
pressure sensitive floor matting and other arrangements which either require complex
hardware installations or deter both robots and humans from their normal work flow.
The idea is now that if the position and movements of any human or other objects
within or close to the working space of the robot is known, the robot can either adjust its
working cycle, e.g. lower the speed of its movements if otherwise a collision was likely or
it can completely stop in emergency situations. The only sensor needed is a downward-
looking stereo camera, which provided the image data to generate a 3D representation
of the environment, see also Fig. 4.2. As a part of this industry cooperation, two patents
[92, 93] have been published which partly rely on this approach.

4.1.2 Scene Exploration with a Mobile Robot

The second scenario resides in the context of a mobile robot exploring an unknown
scene and interacting with people. Acquiring information about the environment is a
crucial process. Localizing possible interaction partners and the ability to perceive its
surrounding enables a robot to build up and share its representation with the human.
In this interactive scene exploration scenario the human guides our mobile robot BIRON
around, showing an apartment [27, 62]. In such a highly dynamic scenario the scene is
barely static as the human interaction partner will be visible and other people or moving
objects may be close to the robot. We can assume that the robot is standing still for only
a few seconds (2s – 3s) to localize and track possible interaction partners. Furthermore,
the robot keeps looking around, comparable to human’s eye saccades, restricting the
time to record images without moving the camera to a few frames. Enabling the robot
to deal with moving objects is achieved by distinguishing between the moving and the
static parts in a scene.

Localizing and tracking those objects is an important feature in itself, as presented
in [137], but it furthermore enables the robot to build a model of a small part (sub-
scene) of the complete environment. It has been shown [9, 157] that by neglecting
data emerging from moving objects, the reconstruction gets more robust. Here, we will
focus on the localization and tracking aspects as presented in [158], as these parts of the
presented approach have been developed as part of this thesis; the data acquisition and
scene reconstruction parts of the system have been developed by other persons.

46

4.2 Person Localization System Design

4.2 Person Localization System Design

In the following the system design for localizing and tracking persons and moving ob-
jects is briefly outlined, after that the individual components developed for the different
scenarios are discussed in more detail.

Figure 4.1: Person localization and tracking system overview. The two approaches for person localization
and room categorization share many modules. After data and image acquisition, velocity components
are calculated. Using this 6D information, all objects are clustered and tracked with a particle filtering
framework. Finally, the static scene can be reconstructed and analyzed by neglecting data originating from
moving objects and persons in the scene.

The presented approach for analyzing a dynamic environment is very similar for the two
scenarios it has been applied to, see Figure 4.1 for a comparison. The challenges each
of these scenarios pose have inspired us to implement two versions of the localization
and tracking approach. The resulting modifications to the system are discussed in the
following.

The first realization - the “industry” scenario - is based on a stereo camera setup.
Two different techniques are applied to extract 3D information and velocities from the
images: A correlation-based block-matching stereo algorithm and a spacetime stereo
approach based on local intensity modelling. The data from these two algorithms is
merged into a 3D point cloud annotated with velocity components for some of the
points.

For the second realization - the “mobile robot” scenario - we use a 3D Time-of-Flight
(ToF) sensor to acquire a 3D point cloud representing the environment. Filtering deletes
invalid points and reduces noise, which strongly depends on the reflectance charac-
teristics of the observed surfaces. Each of the remaining 3D points is annotated with
velocity components using two algorithms: An optical flow method that detects the
moving parts in the scene and an adaption of the spacetime approach already used for
the “industry” scenario.

For both scenarios, we now have a 3D point cloud that is annotated with velocity
components for the moving parts of the scene. The following computation steps are
very similar for both scenarios.

For localising persons and objects in the scene the point cloud is segmented into clusters
by applying a hierarchical clustering algorithm, using velocity information as an addi-

47

4 Person Localization

tional discrimination criterion. Initial object hypotheses are obtained by partitioning
the observed scene, also including the tracking results of the previous frame. Using a
cylinder as a weak object model, multiple clusters are combined to potential dynamic
objects. Multidimensional unconstrained nonlinear minimisation is then applied to
refine the initial object hypotheses such that neighboring clusters with similar velocity
vectors are grouped to form a compact object. A particle filtering framework is used to
select hypotheses which generate consistent trajectories.

For the “industry” scenario, the tracked objects can now be used to predict their po-
sitions and check whether a collision with the robot is likely. For the “mobile robot”
scenario, the static scene can be reconstructed by neglecting all points belonging to
tracked objects. At the same time, the found objects can be used to find possible
interaction partners.

In the following sections the individual steps of the approach are detailed.

4.3 6D Point Cloud Generation

In human perception, depth plays an important role for tracking moving objects over
time. It is obviously advantageous for vision systems to make use of this very basic
information to perceive and interprete the environment. In addition to represent the
3D structure of the scene, we are interested in observing moving objects. Motion is
a strong cue to segment objects from the background and can also be used to make
predictions about the appearance of the scene in the near future. As an example to
recognize motion, we will present methods to compute additional velocity information
for the 3D point cloud using two different sensor setups.

4.3.1 Velocity Computation using a Stereo Camera Setup

It is known that humans are able to judge distances based on multiple cues. Depth
from triangulation - also called depth from stereo - builds on the fact that the eyes are
separated from each other in a known horizontal distance. Although it is only one of
many cues it is already sufficient to generate a good estimation on the distance of objects,
in particular for small distances. A further advantage of depth from stereo approaches
is the fact that they usually work quite well in scenes with enough contrast, e.g. light
objects in front of a dark background. Therefore, stereo vision is an efficient approach to
obtain 3D information about the scene without the need to place markers or to constrain
the appearance of objects.

Correlation-Based Block-Matching Stereo Algorithm

A classical stereo vision algorithm is the block-matching approach [44, 47, 48, 68]. At
each pixel of, say, the left image, a rectangular window is centered on the position of
that pixel. The algorithm computes the disparity value for that pixel by determining

48

4.3 6D Point Cloud Generation

in the right image the window of identical size on the same epipolar line for which
a similarity measure, e.g. the sum of squared differences (SSD), obtains an optimum.
Real-time stereo vision systems like those presented in [47] or [68] rely on the principle
of establishing correspondence e.g. by computation of SSD. For speed-up, making use
of several resolution levels [47] often turns out to be useful, as well as heuristics such as
suppression of uniform image regions by employing an interest operator and checking
for left-right consistency.

As a first stereo analysis algorithm, we employ the real-time block-matching approach
described in [47]. We assume that the cameras are calibrated and the images are rectified
to standard stereo geometry with epipolar lines parallel to the image rows [94]. For
each interest pixel in the left image for which a sufficiently high intensity gradient is
observed, a corresponding point is searched along the epipolar line in the right image.
Here, we use the SSD as a similarity measure. A square region around the interest pixel
in the left image is compared with regions on the corresponding epipolar line in the
right image for all candidate disparities, resulting in an array of correlation coefficients.
The disparity corresponding to the minimum SSD value is determined, and a parabola
is fitted to the local neighborhood of each maximum, yielding the disparity value
at subpixel accuracy. Only well localised correspondences are considered for further
processing.

Spacetime Stereo Algorithm based on Local Intensity Modelling

The approach described in [47] is extended in [48] by tracking 3D points individually
in a six-dimensional position-velocity space, thus extracting motion information during
an additional processing step after correspondence analysis. While virtually all classical
stereo vision approaches do not make use of image sequences, [36] describes a block-
matching spacetime stereo vision scheme which relies on pairs of image sequences
rather than just pairs of images, thus providing more exact results.

The idea of using image sequences for correspondence analysis can be carried on which
leads to the spacetime stereo approach of Wöhler [137]. He extends this idea to not
only estimate the 3D position of a point but also its velocity component along the
epipolar line. This technique is used to generate velocity annotations for the 3D point
cloud generated from the stereo camera and has shown to be applicable with minor
modifications to data from the Swissranger Time-of-Flight sensor. The algorithm is
briefly presented in the following.

Wöhler’s spacetime stereo approach exploits the spatio-temporal structure of the ac-
quired sequence of image pairs. To the local spatio-temporal neighborhood of each
interest pixel a parameterised function h(P, u, v, t) is adapted, where u and v denote the
pixel coordinates, t the time coordinate, and P the vector of function parameters.

Ideally, an object boundary is described by an abrupt intensity change. In real images,
however, one does not observe such discontinuities since they are blurred by the point
spread function of the optical system. Therefore, we model the intensity change at
an object boundary by a “soft” sigmoid function like the hyperbolic tangent. As we

49

4 Person Localization

cannot assume the image regions inside and outside the object to be of uniform intensity,
we model the intensity distribution around an interest pixel by a combined sigmoid-
polynomial approach:

h(P, u, v, t) = p1(v, t) tanh [p2(v, t)u + p3(v, t)] + p4(v, t). (4.1)

The terms p1(v, t), p2(v, t), p3(v, t), and p4(v, t) denote polynomials in v and t. The
polynomial p1(v, t) describes the amplitude and p2(v, t) the steepness of the sigmoid
function, which both depend on the image row v, while p3(v, t) accounts for the row-
dependent position of the model boundary. The value of p2(v, t) is closely related to
the sign of the intensity gradient and to how well it is focused, where large values
describe sharp edges and small values blurred edges. The polynomial p4(v, t) is a
spatially variable offset which models local intensity variations across the object and in
the background, e.g. allowing the model to adapt to cluttered background. All described
properties are assumed to be time-dependent. Interest pixels for which no parametric
model of adequate quality is obtained are rejected if the residual of the fit exceeds a
given threshold.

The parametric model according to Eq. (4.1) in its general form requires that a nonlinear
least-mean-squares optimisation procedure is applied to each interest pixel, which may
lead to a prohibitively high computational cost of the method. Is is possible, however,
to transform the nonlinear optimisation problem into a linear one by assuming that (i)
the offset p4(v, t) is proportional to the average pixel intensity Ī of the spatio-temporal
neighborhood of the interest pixel, i.e. p4(v, t) = wĪ, and (ii) the amplitude p1(v, t) of
the sigmoid is proportional to the standard deviation σI of the pixel intensities in the
spatio-temporal neighborhood with p1(v, t) = kσI . These simplifications yield the model
equation

p2(v, t)u + p3(v, t) = artanh
[

I(u, v, t)− wĪ
kσI

]
≡ Ĩ(u, v, t), (4.2)

where the model parameters, i.e. the coefficients of the polynomials p2(v, t) and p3(v, t),
can be determined by a linear fit to the transformed image data Ĩ(u, v, t). Pixels with
|[I(u, v, t)− wĪ] / [kσI]| > θ are excluded from the fit, where θ is a user-defined thresh-
old with θ < 1, since arguments of the artanh function close to 1 would lead to a strong
amplification of noise in the original pixel intensities I(u, v, t). The factors k and w are
further user-defined parameters of the algorithm.

The intensity gradient obtains its maximum value in horizontal direction at the root
ue(v, t) = −p3(v, t)/p2(v, t) of the hyperbolic tangent. The horizontal position of the
intensity gradient at the current time step for the epipolar line on which the interest
pixel is located is given by the value ue(vc, tc), where the index c denotes the centre of
the local neighborhood of the interest pixel. The direction δ of the intensity gradient
is given by δ = ∂ue/∂v. The velocity µ of the intensity gradient along the epipolar
line corresponds to the temporal derivative µ = ∂ue/∂t of the location of the epipolar
transection. Both derivatives are computed at vc and tc.

For correspondence analysis, the SSD similarity measure is adapted to our algorithm
by comparing the fitted functions h(Pl , u, v, t) and h(Pr, u, v, t) rather than the pixel

50

4.3 6D Point Cloud Generation

intensities themselves, where the indices l and r denote the left and the right image,
respectively:

S =
∫ [

h(Pl , u− ul
e(vc, tc), v, t)− h(Pr, u− ur

e(vc, tc), v, t)
]2

du dv dt, (4.3)

where u, v, and t traverse the local spatio-temporal neighborhood of the left and the
right interest pixel, respectively. Once a correspondence between two interest pixels
on the same epipolar line has been established by searching for the best similarity
measure, the disparity d corresponds to d =

[
ul

i + ul
e(vc, tc)

]
−
[
ur

i + ur
e(vc, tc)

]
with

ul
i and ur

i as the integer-valued horizontal pixel coordinates of the left and the right
interest pixel, respectively. Given the optical and geometrical parameters of the camera
system, the velocity components parallel to the epipolar lines and along the depth axis
can be computed directly in metres per second from the values µ̄ =

(
µl + µr) /2 and

∂d/∂t = µl − µr.

Annotating the 3D Point Cloud with Velocities

Both described stereo techniques generate 3D points based on edges in the image,
especially object boundaries. Due to the local approach they are independent of the
object appearance. While correlation stereo has the advantage of higher spatial accuracy
and the capability to generate more point correspondences, spacetime stereo provides
an additional velocity value for each computed stereo point. However, it generates a
smaller number of points and is spatially less accurate, since not all edges are necessarily
well described by the model defined in Eq. (4.1). Taking into account these properties of
the algorithms, the results are merged into a single motion-attributed 3D point cloud.

(a)

(b)
(c) (d)

Figure 4.2: Working cell observed with a stereo camera setup. (a) Original image (left camera), (b) background
subtracted image, (c) full correspondence stereo point cloud, (d) reduced motion-attributed point cloud.

For each extracted 3D point ck an average velocity v̄(ck) is calculated, using all spacetime
points sj, j ∈ (1, . . . , J) in an ellipsoid neighborhood defined by δS(sj, ck) < 1 around

51

4 Person Localization

ck. To take into account the spatial uncertainty in depth direction of the spacetime data,
δS(sj, ck) defines a Mahalanobis distance whose correlation matrix Σ contains an entry
Σz 6= 1 for the depth coordinate which can be derived from the recorded data.

v̄(ck) =
ρ

J

J

∑
j=1

v(sj) ∀ sj : δS(sj, ck) < 1 (4.4)

The factor ρ denotes the relative scaling of the velocities with respect to the spatial
coordinates. It is adapted empirically depending on the speed of the observed objects.
This results in a 4D point cloud, where each 3D point is attributed with an additional
1D velocity component parallel to the epipolar lines, see Fig. (4.2(d)).

A reference image of the observed scene is used to reduce the amount of data to be
processed by masking out 3D points that emerge from static parts of the scene, as shown
in Fig. (4.2(b)). Furthermore, only points within a given interval above the ground
plane are used, as we intend to localise objects and humans and thus always assume a
maximum height for objects above the ground.

4.3.2 Velocity Computation using a Time-of-Flight Sensor

As correspondence-based stereo vision is a passive approach, the quality of the re-
constructed point cloud strongly depends on the environmental conditions and on
the objects in the scene. Active sensors try to overcome this restriction by generating
and sending a signal on their own and measuring the reflected signal. Laser range
scanners deliver one scanning line of accurate distance measurements often used for
navigation tasks [113, 167]. 3D Time-of-Flight (ToF) Sensors [169, 174] have recently
become available at reasonable prices. They combine the advantages of active sensors
providing accurate distance measurements and camera-based systems recording a 2D
matrix at a high frame rate. Compared to stereo rigs the 3D ToF sensors can deal much
better with prominent parts of rooms like walls, floors, and ceilings even if they are not
structured. ToF sensors are of special interest to mobile robotics, as they offer dense
depth maps from a compact device.

Our system uses the Swissranger SR3000 provided by Swiss Center for Electronics and
Microtechnology (CSEM) [169] delivering a matrix of distance measurements indepen-
dent from texture and lighting conditions. It consists of 176× 144 CMOS pixel sensors
which are able to determine actively the distance between the optical center of the
camera and the real 3D world point by measuring the time-of-flight of a near-infrared
signal. Besides the distance value matrix (Fig. 4.3(b)), the camera provides for each
frame a matrix of amplitude values (Fig. 4.3(a)). The value indicates the amplitude of
the reflected near-infrared signal received by the sensor and therefore the amount of
light reflected from the object observed.

Various preprocessing techniques dealing with noise arising from the different reflectance
properties and characteristics of the ToF camera have been presented recently. Schiller
[134] proposed an automatic calibration of the entire 3D ToF signal using a number of
cameras. Color information can be used for outlier detection as shown by Huhle [76]. To

52

4.3 6D Point Cloud Generation

(a) (b)

(c) (d)

Figure 4.3: Data acquired from the Time-
of-Flight sensor. (a) amplitude image, (b)
distance image, (c) unpreprocessed 3D
point cloud, and (d) preprocessed 3D
point cloud. (Image found in [158])

remove the so-called “flying pixels” at edges, taking into account the 2D neighborhood
can help to iteratively detect geometric outliers [75]. Smoothing techniques that directly
rely on the ToF data are amplitude thresholding with a fixed value [108], and correct-
ing the amplitude values using distance values and vice versa [117]. For this thesis
we applied the preprocessing techniques proposed by Swadzba in [159], including a
distance-adaptive median filter and a rejection of “flying pixels”.

In the following two different image based methods for motion computation are pre-
sented which can be easily applied here by treating the point cloud as planar depth maps
or images respectively. The methods differ in the accuracy of the estimated velocity
components and in the number of pixels for which the motion can be calculated. At first
glance the optical flow method fits best with the dense depth maps of the Swissranger
sensor as it is able to estimate the motion for almost every 3D point. However, the
results are prone to be noisy. The presented spacetime method is an adaption from an
approach used for stereo computations. It provides exact measurements of the motion
present in the image but as it it based on a spatio-temporal edge model, the motion can
only be computed at very few points where the model can be fitted.

Optical Flow

In order to distinguish between static parts of the scene and moving objects we deter-
mine the motion in the scene as presented by Swadzba [157]. A widely used technique
is to compute the optical flow of each 2D image pixel, which is the distribution of
apparent velocity of moving brightness patterns in an image and arises both from the
relative motion of the object and the viewer [56]. The flow of a constant brightness

53

4 Person Localization

(a) (b) (c)

Figure 4.4: Velocity detection with the optical flow method. (a) 2D velocity vectors (b) 3D velocity vectors
from combining 2D velocities and point correspondences in consecutive images, (c) the latter smoothed
componentwise by a median filter. Each 3th velocity vector is displayed and color coded with respect to its
length, with red denoting large motion and blue little.(Image found in [158])

profile

I(x, y, t) = I(x + dx, y + dy, t + dt)
= I(x + vx · dt, y + vy · dt, t + dt) (4.5)

⇒ ∂I
∂x
· vx +

∂I
∂y
· vy = −∂I

∂t
(4.6)

is described by the constant velocity vector v2D = (vx, vy)T. Usually, the estimation
of optical flow is founded on differential methods. They can be classified into global
strategies which attempt to minimize a global energy functional [73] and local methods
that optimize some local energy-like expression. A prominent algorithm developed
by Lucas and Kanade [104] uses the spatial intensity gradient of the images to find a
good match using a type of Newton-Raphson iteration. They assume the optical flow
to be constant within a certain neighborhood N which allows to solve the Optical Flow
Constraint Equation 4.6 via least square minimization. For the presented approach,
we used a hierarchical implementation of Lucas’s and Kanade’s algorithm written by
Sohaib Khan 1 2.

Spacetime Algorihm Modi�cation

Our second velocity computation approach exploits the spatio-temporal structure of the
acquired sequence of images. Although originally designed to detect correspondences
with velocities in sequences of image pairs originating from a stereo camera, we found
Wöhler’s spacetime approach to nicely cope with the depth data of the Swissranger
time-of-flight sensor, as presented in [158].

Other than for the original approach as described in section 4.3.1, we are no longer
interested in acquireing 3D information for points in the scene, the swissranger already

1http://www.cs.ucf.edu/∼khan/
2http://server.cs.ucf.edu/∼vision/source.html

54

4.3 6D Point Cloud Generation

provides a dense depth map. We are instead interested in the temporal structure of
the scene, namely if there are any moving points. The original spacetime apporach
fits a parametrized sigmoid function to the local spatio-temporal neighborhood of each
interest pixel in both stereo images to simultaneously calculate correspondences and
velocity components. Here, we apply the algorithm to a sequence of depth images
from the Swissranger camera and let the spacetime algorithm search for horizontal
velocity components only. By using the image representation of the depth data and
interpreting distances as intensities in the image, the original approach requires only
marginal changes.

We found the assumption that object boundaries are blurred by the point spread func-
tion of the optical system to be as well valid for the depth images. Naturally, the
velocities can only be calculated for a small number of 3D points for which the local
spatio-temporal neighborhood matches well enough with the sigmoid function. Given
the optical and geometrical parameters of the camera system, the velocity component
parallel to the horizontal line can be computed directly. The result is a number of
points annotated with a horizontal velocity component each as shown in Fig. (4.5(a)).
These points are mapped to the 3D point cloud from the time-of-flight camera which
finally yields a 3D point cloud with an additional horizontal velocity component, see
Fig. (4.5(b)).

Figure 4.5: Velocity processing with the
spacetime method. (a) 2D velocity vectors
along the horizontal lines (b) 3D velocity
vectors from mapping the 2D velocities
to the 3D point cloud.

(a) (b)

One might argue that this is not a full 6D representation, which is obviously true, but for
the proposed scenario we are mainly interested in observing persons walking in front of
the robot. In such situations, the lateral movement components hold the most important
information for us. Consequently, the weak object model that is later applied to these
data also does not encode a vertical position or vertical velocities but only a XY-position
on the ground. We can therefore use the data generated by this technique in the same
way as those from the stereo setup.

The spacetime technique relies on several - we have chosen three - consecutive images
to calculate the temporal derivatives. As a consequence, no velocities can be calculated
for the very first and very last image of a sequence. For the same reason, the algorithm
reacts very sensitively to variations in the time interval between individual images, e.g.
due to framedrops. Both arguments are also valid for the optical flow technique, as it
similarly relies on a temporal differencing.

When comparing the results of the optical flow and the spacetime technique, see also
Figures 4.4 and 4.5, it gets obvious that the velocities computed by the latter method are

55

4 Person Localization

far more accurate but also very sparse. The optical flow method provides velocities for
each point, which goes well with the dense depth maps of the time-of-flight sensor, but
only at the price of unreliable and noisy results.

4.4 Generation and Tracking of Object Hypotheses

For both scenarios, the preceding processing steps provided velocity annotated point
cloud representing the scene. The remaining steps are almost identical for both scenar-
ios. For localising persons and objects in the scene the point cloud is segmented into
clusters by applying a hierarchical clustering algorithm, using the velocity information
as an additional discrimination criterion. Initial object hypotheses are then obtained
by partitioning the observed scene with cylinders, including the tracking results of the
previous frame. Multidimensional unconstrained nonlinear minimisation is applied to
refine the initial object hypotheses, such that neighboring clusters with similar velocity
vectors are grouped to form a compact object. A particle filter is finally used to select
hypotheses which generate consistent trajectories.

4.4.1 Over-Segmentation for Motion-Attributed Clusters

To simplify the scene representation and to reduce the computation complexity, the 6D
points are clustered. The first step is to span small contiguous regions in the cloud of
the 6D points, based on features for spatial proximity and homogeneity of the velocities.
By incorporating velocity information for clustering, we expect an improvement in
segmentation at these early stages of the algorithm, without needing strong models
to ensure separation of neighboring moving objects, e.g. a person walking in front of a
wall.

(a) (b)

Figure 4.6: Hierarchical 6D Cluster-
ing. (a) Over-segmentation and
cluster velocities, (b) objects with
convex hull.

This procedure deliberately over-segments the scene, generating many small motion-
attributed clusters. To build these clusters we apply a hierarchical clustering using the
complete linkage algorithm [8], also called furthest neighbor, to describe the distance
between two clusters. The resulting hierarchical tree is partitioned by selecting a clus-
tering threshold and addressing each subtree as an individual cluster, see Fig. (4.6(a)).

56

4.4 Generation and Tracking of Object Hypotheses

The criterion for selecting the threshold is the increase in distance between two adjacent
nodes in the tree, for which a maximum allowed value is determined empirically.

For each cluster, the following attributes are extracted based on all associated 6D points:
The 2D position of the centroid projected on the ground plane, a weight factor based on
the number of points, and the mean velocity of all points.

4.4.2 Weak Model for Object Hypotheses

From here on, persons and objects can be represented as a collection of clusters of similar
velocity within an upright cylinder of variable radius, see Figure 4.7. The model aims at
grouping together as many neighboring clusters with similar velocity values as possible
to form a compact object, as shown in Fig. (4.6(b)).

Figure 4.7: A cylinder as a weak object model. The appearance of the cylinder
is fully describes by the following five parameters: x and y position on
the ground, radius r, direction of movement vθ and magnitude of move-
ment vr.

This weak model offers an object hypothesis s(a), which is suitable for persons and
most encountered objects. It is represented by a five-dimensional parameter vector
a = [x y vθ vr r]T with x and y being the center position of the cylinder on the ground
plane, vθ denoting the magnitude and vr indicating the direction of the velocity of the
object, r is the radius of the cylinder.

4.4.3 Kernel Particle Filter for Object Localization

To extract the correct object positions, we utilise a combination of parameter optimisa-
tion and particle filter based tracking. We first generate a number of initial hypotheses
and optimise their locations in the parameter space. This set of resulting hypotheses is
predicted into the next frame and tracked through a kernel based particle filter [137] as
follows.

For each new image a set of initial object hypotheses is created for initialization and
error recovery. The basis is the set of tracking results from the previous frame. To
find any new object that appeared in the scene or that have been lost during tracking,
the observed scene is partitioned with cylinders generating additional hypotheses. A
multidimensional unconstrained nonlinear minimisation [114] is applied to roughly
estimate the positions of the objects in the scene. After optimisation, hypotheses with
identical parameterisation are merged and those without any clusters are removed.

57

4 Person Localization

The position, size and velocity of each object s(k)
t−1(a) that has been localized in the

last frame is predicted for the current frame t utilizing a first order motion model

a∗ = Φ(a, ȧ), creating a new set of hypotheses s(k)
t (a∗) Φ←− s(k)

t−1(a) , k = 1, . . . , K. Each
of these K hypotheses representing an object found in the scene can be seen as a specific
point in the parameter space, or in the context of the kernel particle filter stands for a
particle.

Figure 4.8: Object hypothesis likelihood function. Evaluated on a regular grid of X and Y positions for two
examplaric hypotheses while keeping the following parameters constant. (blue) object moving upwards:
vθ = 0, vr = 0.26 m s−1, r = 0.53 m, (green) object moving downwards: vθ = π, v = −0.79 m s−1,
r = 0.53 m, values mirrored for clearer display.

Each hypothesis is rated based on the relative position, relative velocity, and weight of
all clusters l within the cylinder sk using Gaussian kernels:

ρ(s(k)) = Kr(s(k)) ∑
l∈s(k)

Kd(l, s(k))Kv(l, s(k)) (4.7)

with the weithing functions

Kr(s(k)) = exp
(
− r(s(k))2

2H2
r,max

)
− exp

(
− r(s(k))2

2H2
r,min

)
(4.8)

Kd(l) = exp
(
− ‖d(l)−d(s(k))‖2

2 H2
d

)
(4.9)

Kv(l, s(k)) = exp
(
− ‖v(l)−v(s(k))‖2

2 H2
v

)
(4.10)

The term 4.8 is used to keep the radius in a realistic range, 4.9 reduces the importance
of clusters further away from the cylinder centre, and 4.10 masks out clusters having
differing velocities. The functions r(·), d(·), and v(·) extract the radius, the 2D position
on the ground plane and the velocity of a cluster l or a hypothesis sk. The kernel widths
H are determined empirically.

Eqn. (4.7) denotes the quality of the grouping process for a given hypothesis on the set
of clusters. It is used as the observation function ρ(s(k)) of the particle filter as shown in
Eqn. (3.24). The outcome is a density approximation based on the object hypothesis and
the attributes of the appendant clusters, with the maxima corresponding to the actual
objects. See Fig. (4.8) for a plot of the likelihood for two moving objects while varying

58

4.4 Generation and Tracking of Object Hypotheses

their position in space. Each found object can be easily represented by its convex hull,
see Fig. (4.6(b)), which encloses all 3D points that are assigned to the object.

Figure 4.9: Mean shift iterations for object localization. Consecutive iterations refine the initial particle
distribution depicted in step 1. The colors denote individual objects. Only few iterations are needed
to converge towards the local maxima.

The particle filter propagates the found objects from the current timestep to the next
image. It thereby also tracks the objects, as not only the position but also the size ans
the velocity of the objects are coded in the model and used for matching the model
with the clustered point cloud. If, for instance, two similar-sized objects are passing
close to each other, they have a small spatial distance and cannot be told apart based on
their size but they still have differing velocity vectors which allows the kernel particle
filter to distinguish between them. Two hypotheses that always move parallel, as a
second example, can very well resemble one and the same object in the world and can
be confused unless they are spatially separated far enough.

Fig. (4.9) shows the refinement of the particle distribution using multiple iterations of
the mean shift technique. The first step shows the initial distribution as created from the
propagation step from the last image. Mean shift converges very fast for well-defined
maxima (upper right red blob) and converges along the steepest ascent of the underlying
PDF for more complicated situations (upper left). Multiple neighboring objects can only
be separated using a higher number of iterations (lower left). Tracking of individual
objects is achieved by matching it with particles generated from the same hypothesis for
consecutive images.

The motion model used for propagation ensures that only objects forming a consistent
trajectory are kept as active hypotheses, see Fig. (4.10). If an object moved faster or
changed direction faster than covered by the motion model, its old trajectory ends and a
new hypothesis is generated at its current position with its current valocity. Additional

59

4 Person Localization

Figure 4.10: Motion model for person tracking. Using the velocity
information from the tracked clusters, the position of the person is
projected to the next timestep. For both velocity vr and direction
vΘ of movement, gaussian noise is added to create new object
hypothesis. −2 −1 0 1 2 3

−2

−1

0

1

2

3

v
r

vΘ

constraints on the maximum and minimum size are ensured by Eqn. (4.7). That leaves
us with only those hypothesis forming a consistent trajectory.

Figure 4.11: Trajectories of tracked objects. (a) ’industry’ scenario: Person walking in the workspace of a
robot. Tracked object positions (blue) and ground truth labels (green text boxes and yellow trajectories), (b)
’mobile robot’ scenario: Two persons passing each other. Tracked object positions (blue). The points with
velocities, clusters, and the convex hulls are also displayed.

The final outcome is for each frame a list of tracked object hypotheses, see Fig. (4.11)
which not only holds their position in space but also their current velocity, their size
and the convex hull representing a rough shape in 3D for further computations. An
evaluation of the exactness of the tracking is presented in Chapter 6.1, an example for
applying the system in a different scenario is presented in Chapter 7.1.

4.5 Summary

In this chapter we presented a system for localizing objects and persons in the context of
a mobile robot scenario. A 3d point cloud representing the observed space is acquired

60

4.5 Summary

using a stereo camera setup or a time-of-flight camera. Different techniques to extract
velocity annotations for the 3D point cloud have been presented. The resulting 6D
point clouds can be beneficial to segment the scene into meaningful clusters, the addi-
tional velocity information can help to improve the quality of the segmentation process.
Subsequently, objects and humans in the scene can be localized by combining multiple
moving clusters using a cylinder as a weak object model. The quality of the grouping
process is rated based on features like the proximity of the clusters and their similarity
of velocity. A kernel particle filtering scheme tracks multiple person hypotheses over
time, thus providing robust trajectories and even a motion prediction for each object
encountered.

61

4 Person Localization

62

5 Body Pose Tracking

In the last chapter we presented a method to localize and track persons in a scene in the
context of a mobile robot scenario. Using the presented techniques we are already able
to give answers to some typical questions arising in such a scenario, for instance “Where
are objects in the scene” and “where are they moving”. Two follow-up questions that
have not yet been adressed but that are of special importance for an interactive robot
are: “Are these moving objects really persons” and “What is he or she doing”’. These
two questions will be the guideline for the following chapter.

In the remainder of this chapter it is explained how the posed questions can be for-
mulated as an optimization problem and which techniques are suitable to provide a
solution under the specific constraints of the given scenario. As a possible solution we
discuss a technique to track the upper body of a human using an articulated body model
and a kernel particle filter framework for the inference process.

The chapter starts with an introduction to the system and gives an overview over the
framework.

5.1 Human Robot Interaction Scenario

Let us recall the mobile robot scenario from the previous chapter. It was based on
the idea of a typical human robot interaction scenario, i.e. where an individual is
communicating with an artificial actor. While the last chapter presented methods to
localize possible interaction partners we will now focus on the idea to provide means to
understand the gestures of the human.

Figure 5.1: Biron hometour scenario. A person
guides the mobile robot Biron around in a flat and
teaches him an object using a pointing gesture.

That leads us to a more challenging scenario. Imagine a person guiding the robot
around, showing him different rooms in a flat, teaching him objects to recognize and

63

5 Body Pose Tracking

introducing him to other persons. It is natural for humans to use gestures in such
situations, for instance to give directions and commands, to refer to objects and places,
and to support verbal communication. A robot can greatly benefit from being able to
recognize and understand these gestures in the right context.

The work presented in this chapter can be seen as the basis for a system to recognize and
analyze these gestures. It deals with tracking the movements of a human’s arms and
hands in 3D as presented in [136] but it stops at the very point where these movements
are recorded and can be expressed in the form of a body posture or a trajectory of
a single limb. The analysis which gesture is concealed within the recorded motions
and what these gestures mean in a specific context is left over to others, it has been
exemplary presented in [135] where pointing gestures to objects in a scene are being
recognized by the system, see also Sec. (7.2). The system has also shown to be beneficial
for other applications, as presented in chapter Sec. (7.4).

For the proposed method, some restrictions which are well suited for human robot
interaction can be derived from the given scenario which have been a driving factor for
the design of the whole system. The assumptions are as follows: The person is trying
to communicate, therefore his or her intention is to cooperate with the system. The
person is standing in an upright position, facing the camera. At least the upper body,
including the head, the torso and the hands are visible. The person and its appearance,
e.g. clothing, and the appearance of the scene are previously unknown to the robot. As
a sensor, a single monocular camera is used as it was the intention to build a system
that is not dependent on other sensors or special hardware.

5.2 Body Pose Tracking System Overview

There are a number of features that should be considered in order to make a system
flexible enough to operate within the described context of a human robot interaction
scenario. The person and its body dimensions must not necessarily be known a priori,
but the distance of the human to the robot has to be adequate for interaction. Images
are acquired using a single monocular color camera as the system is intended to be used
on a mobile robot without employing further sensors. During system design, we also
avoided specific background models to allow the tracking to be independent from the
appearance of the observed scene. To further allow a moving camera, image background
substraction based techniques like motion history images are avoided as well.

The presented algorithm uses an articulated body model that is compared to the image
through multiple intensity and color cues that rate how well the model pose resembles
the actual pose of the human. The inference process is achieved by a kernel particle
filtering framework, which efficiently explores the highdimensional pose space. An
overview of our algorithm for matching 3D object features of a generic human body
model and 2D image features extracted from input images is depicted in Fig. (5.2). One
iteration of our algorithm can be described as follows: Input images are acquired with
an uncalibrated monocular color camera 1© and preprocessed. The results 2© are used
for matching configurations of the body model with the current image. Several cues

64

5.3 Modeling the Appearence of Humans

image preprocessing

gauss pyramid

skin color
segmentation

update

Output

add noise

MM predict

normalized
partial derivatives

mean shift

reweight

best mode

2

4

5

3

6

7

1

8

9

Figure 5.2: Outline of the algorithm for tra-
cking human upper body motions. Images
are recorded with a monocular camera
and preprocessed 1©- 2©. The presented
approach employs a combination of par-
ticle filter-based pose space exploration
3©, 7©- 9© and mean shift-based pose re-

finement 4©- 6©.

based on intensity and color information each provide a likelihood for the accuracy
of the match between the model and the image. The cues are combined 3© to form a
probability distribution which is further explored in multiple iterations 4© of the mean
shift algorithm. That leads to the identification of different modes 5© of the underlying
probability distribution from which a single mode 6© representing the most likely hu-
man body pose is selected as output for subsequent recognition algorithms. This mode
is also used as input 7© for the next time step of the particle filter. Particles generated
from this mode are then - partly after applying a motion model 8© - disturbed 9© to give
an estimation of body configurations for the next time step. Finally, the next picture is
acquired 1©, preprocessed 2©, and the propagated configurations are evaluated 3© on the
new image. The outcome is for each image a single pose or posture of the model which
is estimated as the best fit. This process is therefore often referred to as pose estimation.
Collecting these poses over time leads to a sequence of poses which - depending on the
needs of the application - can also be interpreted as trajectories of individual body parts,
e.g. the trajectory of the right hand.

5.3 Modeling the Appearence of Humans

The basic idea of model based posture estimation is to use a model of the person to be
observed that allows us to inference the person’s posture given the current image. The
presented algorithm is based on such a model of the human as a reference to find its
pose in the image. This model describes the physiology of the human body, its shape
and its ability to move, as well as its appearance.

By bringing the model in a position that fits as good as possible with the image of the
human, the pose can be determined. Tracking a person or individual body parts in the
2D camera image can be achieved by relatively simple means, but such approaches only
provide a position in the image and no depth information.

Using a 3D model, however, enables us to estimate distances even from a 2D image. We

65

5 Body Pose Tracking

humans do that all day, for instance by knowing that objects further away also appear
smaller. Also many optical illusions rely on this principle. But size is only one of many
features to judge the distances of a person’s individual body parts. As an example, if
you see a the hand of a person in front of his chest, you can judge its distance from the
torso by looking at the angle how far the ellbow is bended. For a hand far away from the
torso the ellbow needs to be almost fully stretched out, for the hand touching the chest
the arm needs to be bended. Such information is usually well visibe in the image but it
can only be exploited by utilizing a three-dimensional model. The model can also help
to constrain the space of allowed postures to those a human is really able to perform.
For instance, a pose where the hand is positioned inside the torso can be rejected. In
the same way, unnatural or unlikely poses, e.g. the hands touching on the back can be
rejected. This reduces the search space and can also help to resolve ambiguities.

An exact pose estimation can only be assumed under the premise that the model exactly
reprocudes the properties of the observed human. At the same time, the model must
generalize well enough to also bear unpredictable variations to the visual appearance
that can, for example, emerge from changing lighting conditions and wrinkling clothes.

The presented algorithm is based on an articulated 3D body model consisting of cylin-
ders with ellipsoid cross sections. With a known camera geometry the 3D body model
is back-projected into the image plane using a pinhole-camera model. This yields an
approximate representation of the 3D body model consisting of a 2D polygon in the
image plane for each limb. The anticipated visual appearance of each limb, in turn, is
coded in the form of visual cues - also called filters - that describe independent features
of the limb, for instance the edges, the overall color and if it resembles skin. These cues
each calculate a likelihood of how well the expected feature is represented in the image.
Combining multiple likelihoods per limb and the likelihoods of all the limbs for the
whole body yields a final likelihood for the model in the given pose to fit to the visual
impression - the higher the likelihood, the better the fit.

The image processing described in this chapter are mainly carried out using the IceWing
modular vision framework [102] in combination with routines from the OpenCV vision
library [78]. Communication between different instances and modules has been realized
using the XCF communication framework [172]

The differnent parts needed to calculate the body model likelihood – the model itself,
the image cues, and the rules to combine the filter answers to a model likelihood – are
detailed in the following.

5.3.1 Articulated 3D Body Model

Computational models of humans are usually employed to obtain a numerical descrip-
tion of the body and its motions. The list of disciplines interested in aspects of human
movements is quite long; it includes athletic coaches, orthopedic surgeons but also
sports equipment designers and engineers for automobiles and aircraft, to name just
a few. Their interest lies in modeling the biological and physical principles that are
common for all humans. Besides the physical appearance that often also includes the

66

5.3 Modeling the Appearence of Humans

kinematics of the body and the work of muscles and energy transfer throughout the
skeletal structure. As Winter [171] declares, a synthesis of human movement incorpo-
rating external forces can be achieved using inverse dynamics, for instance to model the
performance of an athlete.

The numerical representation of the human body is what we usually call a body model.
There exist various approaches to implement such a model, the most common are
structures of geometric components for the individual body parts that are more or less
tightly coupled to represent the kinematic structure of the human body.

An example for such an abstract representation is the work of the Humanoid Animation
Working Group [59], who presented the H-Anim specification, an abstract representa-
tion for modeling three dimensional human figures. They have been driven by the
fact that for a huge number of different software packages for motion capture, 3D
modeling and animation exist, but they lack a standardized skeletal system to exchange
information. Simplified versions of such a model are most commonly encountered in
the field of human body tracking. In 1964, Hanavan presented a segment model [77],
cf. Fig. (2.8) that represents the body segments with cylinders and cones. Segment
models require only few simple anthropometric measurements, e.g., segment lenths and
circumferences. These can be measured individually for each person to be analyzed or
they can be chosen from a generic model representing the mean measures of a human.
A similar model but with more detail has been employed by Sminchisescu [147], who
modeled the body parts by superquadric ellipsoids, see also Fig. (2.6). Other approaches
aim at even further simplified representations that incorporate the connections between
the different body parts but evade an explicit 3D model as presented by Ramanan [126],
cf. Fig. (2.5).

All of these models serve the purpose to enable the application of analytical meth-
ods [152] as they offer a unique representation and allow to draw conclusions about the
impacting forces. An example would be to analyze gait patterns including the ground
reaction forces and the variations for a single human and between multiple subjects.

To represent the appearance of the human body we use an articulated 3D body model
consisting of cylinders with ellipsoid cross sections as shown in 5.3(c). The model is
organized as a tree structure, beginning with the torso as the root limb. Attached to the
torso are the head and the upper arms, then following the lower arms and finally the
hands. The limbs are connected among each other by joints, with each having individual
joint angle limits which model the physical constraints of the human body. The overall
structure of the model is defined by the offsets from one joint to the next. Together, they
form a kinematic chain, similar to the skeletal structure of the human, see Fig. (5.3(a)).
Motions in the joints are restricted to three degrees of freedom (DOF) in the shoulder
OR,L and one DOF for the ellbow UR,L. The head and the hand are fixed with respect
to the preceding limb. Together with the position tT and orientation αT of the torso this
results in a upper body model with 14 DOF to be estimated during tracking. A posture
of the model at time t is therefore fully described by its 14-dimensional state vector

xt = [ϕT, ϑT, ψT, xT, yT, zT, ϕUR , ϑUR , ψUR , ϕLR , ϕUL , ϑUL , ψUL , ϕLL]
T (5.1)

67

5 Body Pose Tracking

with the following abbreviations for the limbs: T: torso, H: head, UR: upper right arm,
LR: lower right arm, UL: upper left arm, LR: lower left arm, HR: right hand, and HL: left
hand. The vector xt spans the space of all possible configurations of the body model.
Estimating a pose means estimating the single point in the pose space that resembles
the optimum solution to the optimization problem.

ϕUL

[ϕOR , ϑOR , ψOR]T
[ϕOL , ϑOL , ψOL]

T

tT
αT

ϕUR

(a)

ϕl
ψl

XlZl

ϑl

Yl

(b) (c)

Figure 5.3: Articulated model of the human’s upper body. (a) The underlying kinematic chain connects the
individual limbs, similar to the skeletal structure of the human. (b) Limbs are represented by a truncated
cone with a maximum of three rotational degrees of freedom (DOF) in the joint. The shape of the cone
defines the appearance of the model, thus resembling the flesh of the model. (c) The resulting articulated
model with 14 DOF. (Image found in [66])

The truncated cones are attached to the kinematic structure, they resemle the flesh of
the body. For the algorithm, they define the locations where the image cues are to be
evaluated. The shape of each truncated cone is defined by an offset from the limb origin,
the length of the cone and two values for the semi-major and semi-minor axis of each
ellipse forming the cap of the cone, see Fig. (5.3(b)).

Camera Model and Projection

Knowing the camera geometry, each point on the surface of a cylinder can be projected
into the image. A projection model transfers from the 3D world coordinate system of
the body model to the 2D image coordiante system of the camera image, compare also
to [51].

A 2D position in image coordinates can be represented by the vector i = [u, v, 1]T, giving
the row and the column. Similarly, a 3D point in world coordinates is represented
by the vector w = [x, y, z, 1]T. We use the homogeneous coordinate notation which is
commonly used in robotics and computer vision to express the mapping from pixel to
world coordinates as

i = Pw (5.2)

with the 3× 4 projection matrix P = [A|03×1], where

A =

 αx γ u0

0 αy v0

0 0 1

 (5.3)

68

5.3 Modeling the Appearence of Humans

is the intrinsic camera parameter matrix. Since we assume the images to be rectified we
do not need to correct any radial or tangential distortions. Further assuming quadratical
pixels, now skew, and u0 and v0 being the center point of the image, A can be simplified
to

A =

 α 0 u0

0 α v0

0 0 1

 (5.4)

Thus, using Eqn. (5.4), Eqn. (5.2) can be rewritten as: u
v
1

 =

 α 0 u0 0
0 α v0 0
0 0 1 0

xw

yw

zw

1

 (5.5)

giving the direct mapping from world coordinates w = [x, y, z, 1]T to pixel coordinates
i = [u, v, 1]T.

Furthermore, homogeneous coordinates can be used to easily express affine transforma-
tions in the 3D space:

a′ = Ta (5.6)

where

T4×4 =
[

R3×3 t3×1
01×3 1

]
(5.7)

is the homogeneous form of the transformation matrix. It consists of the rotation matrix
R and the translation vector t combined in a single matrix.

The advantage of the homogeneous representation is that affine transformations can be
calculated as a matrix operation. As an example, for transforming a point from a limb-
local coordinate system of limb la into the coordinate system of an adjacent limb lb we
need to know the translation t from one joint to the next and the joint angles φ, θ, and
ψ, e.g. given in euler ZYX angles. The translation followed by multiple rotations now
can easily be calculated.

The rotation matrices are gives as

Tx,φ =

1 0 0 0
0 cos φ − sin φ 0
0 sin φ cos φ 0
0 0 0 1

 (5.8)

Ty,θ =

cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 (5.9)

and

Tz,ψ =

cos ψ − sin ψ 0 0
sin ψ cos ψ 0 0

0 0 1 0
0 0 0 1

 (5.10)

69

5 Body Pose Tracking

The translation is given by

T t =

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 (5.11)

Matrix multiplication yields the final transformation matrix from limb la to limb lb.

T la→lb = T t · Tz,ψ · Ty,θ · Tx,φ (5.12)

Similarly, a point aHR given in local coordinates of the right hand limb can be expressed
in world coordinates as aW by multiplying all the transformation matrices that corred-
pond to the joints in the body model hierarchy:

aW = Tworld→T · TT→UR
· TUR→LR

· TLR→HR
· aHR (5.13)

This representation allows us to transform any point expressed in local coordinates
of a limb and given the current pose of the body into the world coordinate system.
Consequently, each 3D world point can be projected into the image plane given the
camera parameters, see [26] for a more detailed description.

Body Model Projection and Approximation

The image cues described in the following sections are based on evaluating filter re-
sponses for defined points on the body model. Although an exact projection of the
cylinder surface into the image would be possible, a simplified and much faster to
calculate representation is chosen as for each image, several thousands to million feature
points are evaluated.

(a) (b)

Figure 5.4: 2D polygon approximation for
3D body model. (a) A 3D limb cylinder
is approximated by a 2D polygon in the
image. (b) the position of a samplepoint
is defined in a local coordiante system
defined on the polygon (green values),
regions can be defined similarly (blue).

Using the camera model described above, the 3D body model is back-projected into the
image plane. This yields an approximate representation of the 3D body model consisting
of a 2D polygon in the image plane for each limb, see Fig. (5.4(a)). A specific point on the
limb can then be addressed by giving two coordinates (a, b) ∈ [0, 1] in the polygon-local
2D coordinate system, see Fig. (5.4(b)). To give an example, the center line of the limb is
defined by (0.5, b), the right and left border of the limb are addressed as (a ∈ {0, 1}, b).

70

5.3 Modeling the Appearence of Humans

The polygon approximation shows the lowest error when the cylinder is observed by
the camera from the side. The more the cylinder axis is parallel to the optical axis
of the camera, e.g. an arm pointing directly into the camera, the more inaccurate the
approximation gets, as the polygon degrades to a single line for frontal views.

5.3.2 The Monocular Challenge

Estimating the pose for a complicated articulated model from monocular observations is
a highly ambiguous task. The resulting posterior likelihoods over human pose space are
typically multi-modal with a high number of false local maxima. This is due to several
reasons, including complicated modeling as well as feature extraction difficulties. The
problem of estimating the correct pose of the model for each image can be expressed as
finding the one local maximum in the high-dimensional parameter space that fits best
the current pose while still obeying all given constraints, e.g. the joint angle limits. It is
only feasible if enough data are present, e.g. from using multiple cameras [18] or special
sensors like stereo cameras [178] are utilized.

Depending on the number of image cues and their discrimination capabilities, a monoc-
ular approach can be successful [141, 147] but the resulting posterior likelihoods over
human pose space are typically multi-modal with a high number of false local maxima.
Restricting the search space to known motions [103] is a common approach to overcome
the highdimensional search problem, but this does not work if the scenario requires
arbitrary motions to be allowed. Some motions pose additional problems to monocular
approaches, especially motions of body segments in depth, towards or away from the
camera. Also axial rotations of limbs are not observable in the image. The ambiguity
of body configurations, nonlinearity of observations, and non-observability make the
posterior likelihood in the pose space multi-modal and unpredictable.

In our approach, we counter these difficulties with a restricted scenario and by focus on
the estimation of the upper body pose only. Motions of body segments in depth, towards
or away from the camera, cannot be tracked precisely with a monocular camera, but as
long as tracking is not lost, a very rough estimate of the body configuration is still
available.

The likelihood for a specific pose is obtained by fusing the filter responses for all
cues and all limbs and transferring them into likelihoods with a cue-specific weighting
function representing the expected characteristics of the cue. Combining multiple cues
makes the estimation more robust against local disturbances but typically also results
in a high number of false local maxima in the parameter space. When evolving over
time, new modes often emerge from regions with low probability while existing modes
degenerate or even vanish. To track the correct pose of the human, the structure of the
high-dimensional probability density has to be efficiently exploited, taking into account
the constraints and the dynamics of the model. The utilized kernel particle filter [136]
propagates such multi-modal distributions and provides a probabilistic search for the
best matching body configuration.

The discussed KPF approach has shown to generalize well for the pose reconstruction

71

5 Body Pose Tracking

and tracking challenges that are present in this thesis. The principle of KPF has been
specialized to the problem of assembly pose localization as presented by Stößel [155]
with the Extended Kernel Particle Filter. He exploits the availability of exact 3D CAD
models of the parts to localize that have to be known before the actual optimization
starts but with that he is able to achieve a high spatial accuracy during the localization
process. Stößel applies a hierarchical partitioning of the parameter space which eases
the search process, but this technique builds on the assumption that each part of the
object can be exactly localized without knowing the remaining parts’ locations. Not only
that this assumption does not hold for human body tracking, even more, the presented
monocular approach is designed to exploit for each limb the data that is available and
determine the body configuration from the interdependency of the limbs.

5.3.3 Image Cues for Body Pose Tracking

With the 3D model back-projected into the image we have a proper representation at
hand to calculate the likelihood for a given pose of the model using multiple image cues.
All cues rely on the 2D polygon representation of the model and select the position of
their feature points according to the polygon and the type of the cue.

For the indiviudual body parts - in the following they are always referred to as limbs -
each cue independently calculates a filter response, while not every cue must be used
for each limb. The arm, for instance, is found best by combining the edge, ridge and the
mean color cue, while the hand is found best using the skin color cue only. For a single
limb, all filter responses are first reansfered into a cue likelihood and then combined
into a limb likelihood.

The estimation of the likelihood for a given pose is done by combining the likeli-
hoods from each limb l = 1, . . . , L of the body model using up to four image cues
c ∈ {E, R, C, S} or filters, where E stands for the edge cue, R is the ridge cue, C is the
mean color cue, and S denotes the skin color cue. Combining multiple cues makes the
estimation more robust against local disturbances while still producing good likelihoods
for the correct pose.

Some parts of the image processing can - bust must not necessarily - be accomplised
before the actual cue calculation starts as a kind of preprocessing. That includes the
generation of a gaussian pyramid from the input image and the calculation of partial
derivatives for each level of the pyramid. Depending on the given scenario, the system
setup can be altered to either benefit from multiple cpu cores or to use more efficient
but still serial processing for a single cpu core. In the first case, the calculation of
several image features like the gaussian pyramid, the local partial derivatives, a Susan
edge filter followed by a chamfer distance transform and the skin color segmentation
is performed as a preprocessing step in a separate instance of the image processing
framework. As multiple core cpu’s are already common in modern cpu architectures
the additional instance can be run on a different core and communicates with the main
instance via methods provided by the image processing framework. But as it can not
be known in before where the model will be positioned in the image and thus which

72

5.3 Modeling the Appearence of Humans

pixels will be used as feature points, the preprocessing must always be done for the
whole image. The situation gets different when the calculation of the derivatives of the
gaussian pyramid is done within the cue calculation itself. A dynamic programming
approach is then used to only calculate those filter responses actually needed for the
current limb. Also multiple requests for the same point do not need to be calculated
again. For the discussion of the image cues we simply assume that the filter responses
are avaiable the one or the other way.

In the remainder of this section, the image preprocessing and the calculation of the
image cues for a given pose of the model are detailed. The combination of the individual
filter responses into a pose likelihood is described thereafter.

Figure 5.5: Gaussian image pyramid. The
original image is smoothed and subsam-
pled multiple times. The resulting set
of images is a scalespace representation
where in each layer resolution is halved.

Gaussian Image Pyramid

A gaussian image pyramid is generated by smoothing the image with a gaussian filter
and then subsampling it to half the size of the original image, see Fig. (5.5). This process
is repeated multiple times, resulting in a stack of images with each level having a
lower resolution as the preceding image. With the smoothing process unwanted aliasing
artefacts from subsampling can be avoided.

The gaussian pyramid is a scale-space representation of the image. As we observe
people and objects in the real world we can not predict at which size they will appear in
the image, but some of the cues are sensitive to the size of the observed features. Using
the gaussian pyramid the algorithm is able to choose the layer of the pyramid for which
the resolution and the object size match best the needs for the cue.

Image Gradient from Partial Derivatives

An edge in an image can be defined as an abrupt change in the intensity. By interpreting
the image as a two-dimensional function f (x, y), such changes can be easily detected by
looking at the gradient of the function. Edges will point out as the local extrema of the
image gradient.

The gradient of a scalar function f (x, y) is defined by its partial derivatives:

∇ f (x, y) =
(

∂ f
∂x

,
∂ f
∂y

)
. (5.14)

73

5 Body Pose Tracking

(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.6: Partial derivatives interpreted as image gradient. (a) Original image, (b) ∂ f
∂x , first partial derivative

in x direction, computed at the original image resolution (as are (c)-(f)) (c) ∂ f
∂y , first partial derivative in y

direction (d) ∂2 f
∂2xx , second partial derivative in xx direction (e) ∂2 f

∂x∂y , second partial derivative in xy direction

(f) ∂2 f
∂2y , second partial derivative in yy direction (g) second partial derivatives computed at level 4 of the

gaussian pyramid.

These derivatives are relatively easy to calculate in the image, as they can be approxi-
mated as the forward-backward-difference for a specific pixel.

Skin Color Segmentation

The color of human skin is a very specific feature which on the one hand shows a great
variability from person to person and also for different skin regions of the same person,
on the other hand it is often well separable from the background. Exceptions are some
wood colors as seen in furniture or beige colored walls. But most of the time a skin
color segmentation can give a good clue where to look for the hands and the face of
a person. Obviously, wearing gloves or looking away from the camera renders this
approach useless, but since it is only one of many features we can assume it to be quite
robust and live with temporary occlusions.

Here, we applied the skin color segmentation approach proposed by Fritsch [50], which
is based on a two-step mechanism as follows. First, the image to be segmented is
transformed into the RG color space. The RG color space has the advantage to be
illumination invariant. That means that pixels are only classified according to their
specific color and not according to their brightness, which is an important feature
when dealing with real-world images. Only those pixels with RG color values inside
a restricted region, the so-called skinlocus, cf. Fig. (5.7(a)), are processed further. The
skinlocus is shaped such that all possible skin colors lie inside the region. This relatively
simple pre-segmentation is fast to compute and significantly reduces the amount of
data, cf.Fig. (5.7(b)) that needs to be classified with the next step of the approach. In this
second step the remaining pixels are classified as being skin or non-skin with a mixture-
of-gaussians classifier. It also works within the RG color space and calculates a skin

74

5.3 Modeling the Appearence of Humans

(a) (b) (c)

Figure 5.7: Skin color segmentation in the RG color space. (a) Skinlocus for pre-segmentation, displayed as
a region in the RG color space, the gray pixels inside are a histogram of the classified color values, (b)
segmentation result after applying the skinlocus, (c) segmentation result after applying the mixture-of-
gaussians classifier.

color likelihood by the sum of multiple gaussian weighting functions. See Fig. (5.7(c))
for the final segmentation result.

At this point we would like to point out that the skin color segmentation and the
corresponding cue to be described later can serve as an example on how to integrate
results from any other segmentation process into the tracking framework, e.g. coming
from a texture analysis module. The only requirements are that the feature can be
localized to a specific region on the body model, for instance the area of the lower right
arm, and that the module can be evaluated in the form of an image filter, which means
that it must provide a reliable measure on how well the image region corresponds to
the expected appearance.

Edge Cue

The first cue to be presented is the edge cue, which has been inspired by the work
of Hedvig Sidenbladh [141]. It uses the first partial derivatives in X and Y direction
which are sensitive to strong changes in contrast. The idea is that at the borders of
the body model, a strong change in image intensity - which we usually call an edge -
can be expected, as there will be the transition from the foreground, the human, to the
background.

For recognizing human body parts the presence of edges is most important, not their
magnitude. Therefore all images with partial derivatives have been scaled with a nonlin-
ear normalization function. This function has been used to smooth low magnitude edges
stemming from textured backgrounds and to emphasize stronger ones, see Fig. (5.6(b))
and Fig. (5.6(c)).

The edge cue provides an accurate match for the position of a limb l by comparing for
a point z on the border of the limb the estimated limb angle α, which has been obtained
from the 3D model, with the angle of the edge gradient [∂x(z), ∂y(z)]T measured in the
image. This is done for m = 1, . . . , ME feature points z(m) positioned equally spaced
on the limb boundaries, see Fig. (5.8) for the positioning of the samplepoints. Let

75

5 Body Pose Tracking

Figure 5.8: Positioning of the features on the body
model. Regions and sample point locations for the
color-based and intensity-based cues, respectively.
(green) Regions for the mean color cue, (yellow)
regions for the skin color cue, (red) sample points
for the edge cue, (blue) sample points for the ridge
cue. For a clearer display, the number of features
in the figure is reduced.

z(m) = [x, y]T denote the location of one pixel in the image plane. The response of the
edge filter is:

f (l)
E (z(m), α) = ∂y(z(m)) cos(α)− ∂x(z(m)) sin(α). (5.15)

As the filter response is not static but depends on the angle of the border of the limb, it is
called a steerable filter. The filter response for the whole limb is calculated by averaging
over the ME feature points, with typical values for ME = 20.

f̄ (l)
E =

1
ME

ME

∑
m=1

f (l)
E (z(m)). (5.16)

All the cues described here generate a separate filter response for each limb they are
applied to. To be able to later fuse the cues, the filter responses are converted into
likelihoods using the following Gaussian weighting function:

p(c, l) = exp

(
− (f̄ (l)

c)2

2 σ2
c

)
. (5.17)

This transfer function maps from the range of all possible outcomes of the filter to the
uniform likelihood domain p(c, l) ∈ [0, 1] for any of the different cues c ∈ {E, R, C, S, H}.
The standard deviation σc is derived from the variability of the responses of each utilized
cue. It can also be used as a parameter to control the behavior of the cue in the context
of fusing it with other cues. A low σc makes the cue transfer function very picky, even
small changes of the filter response will lead to significantly lower likelihood values.
Choosing a large σc then again means a wider variance to be allowed which makes the
cue more generous. Concrete values for the sigmas always have to be chosen in relation
to the values of the expected filter responses. For the following evaluation of the edge
cue we have chosen σE = 0.1.

76

5.3 Modeling the Appearence of Humans

Figure 5.9: Body model positioning for cue evaluation.
From an initial (correct) position, the right arm is
moved up and down using the shoulder joint ψUR ,
exemplaric body model poses are shown in red.
Additionally, the arm is moved to the front and
back using the ϕUR joint (not shown here).

In order to understand the principle of this cue and to compare the results to the other
cues, it has been applied to a range different postures for a sample image, see Fig. (5.9).
For the evaluation, the only cue activated is the edge cue on the lower right arm of the
body model. For this evaluation, the body model has been placed in the correct position
at approximately and then the arm has been moved using two joints of the shoulder.
The first angle, ψUR , is responsible for moving the arm up and down, the second one,
ϕUR , moves the arm back and forth. Together, they span a 2D subspace of the full 14D
parameter space used during optimization. Fig. (5.10) shows a plot of the resulting
limb likelihood for different poses of the model, the optimal position is at ϕUR = −0.16,
ψUR = −0.75 approximately. Fig. (5.10(a)) displays the likelihood surface for iterating
both parameters, the correct position is denoted by the arrow. Fig. (5.10(b)) is generated
by slicing Fig. (5.10(a)) at the blue line which runs directly through the correct position
for ϕUR . This scheme is repeated for the remaining cues for a better comparability.

(a)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ

lik
el

ih
oo

d

(b)

Figure 5.10: Edge cue likelihood. Calculated by averaging over 10 feature points, σE = 0.1, and without
importance reweighting λE = 0: (a) varying angles ϕUR and ψUR of the upper arm, (b) varying angle ψUR

only.

77

5 Body Pose Tracking

A high likelihood at the correct position and low values for any other configuration
are the desired characteristics for an ideal cue. In the plot, such a behaviour would
show as a single sharp peak at the correct position. It is obvious that the cue provides
a high likelihood for the correct position but unfortunately it also does for many other
configurations. The likelihood values sharply decline for moving the arm vertically
but much slower when moved backwards or forwards. The reason is that vertical
movements of model easily create a misalignment with the person’s arm, whereas for
movements in the depth direction, the projection simply gets distorted but still in place
overall. As a result, the edge cue seperates well the arm’s correct position from slight
variations, but it does not cope well for motions in depth direction. Even worse, it
exhibits extensive false maxima for other regions in the image as it gets confused easily
when edges are present.

Ridge Cue

The design of the ridge cue has also been inspired by [141]. It is utilized to find
elongated structures of a specified thickness - called ridges - which is excellent for
finding a person’s arms in the image. Here, the second partial derivatives are used,
see Fig. (5.6(d)), Fig. (5.6(e)) and Fig. (5.6(f)). As the cue depends on the size of the limbs
in the image, it only provides appropriate results if the observed limb is in a particular
distance to the camera. To overcome this restriction, we select a resolution level µ in the
Gaussian image pyramid based on the current distance of the limb to the camera. In
the image from this pyramid level, the limb has the correct size to be recognized by the
ridge cue, cf. Fig. (5.6(g)). Similar to the edge cue, a normalized representation for the
derivatives is utilized.

(a)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ

lik
el

ih
oo

d

(b)

Figure 5.11: Ridge cue likelihood. Calculated by averaging over 10 feature points, σR = 1.0, and without
importance reweighting: (a) varying angles ϕUR and ψUR of the upper arm, (b) varying angle ψUR only.

For finding ridges, the cue suppresses point-like edge features by searching for elon-
gated edge structures parallel to the expected limb angle α and missing edges in perpen-
dicular direction. This is achieved by evaluating the normalized second partial deriva-

78

5.3 Modeling the Appearence of Humans

tives [∂(µ)
xx (z), ∂

(µ)
xy (z), ∂

(µ)
yy (z)]T at m = 1, . . . , MR feature points z(m) equally distributed

on the main limb axis, see Fig. (5.8).

f (l)
R (z, α) =

∣∣∣sin(α)2 ∂
(µ)
xx (z) + cos(α)2 ∂

(µ)
yy (z)− 2 sin(α) cos(α) ∂

(µ)
xy (z)

∣∣∣−∣∣∣cos(α)2 ∂
(µ)
xx (z) + sin(α)2 ∂

(µ)
yy (z) + 2 sin(α) cos(α) ∂

(µ)
xy (z)

∣∣∣ . (5.18)

Similar to the edge cue, the ridge filter response is dependant from the asked limb angle,
it is therefore also a steerable filter. The filter response for the whole limb l is computed
by averaging over all MR feature points, with typical values for MR = 20.

f̄ (l)
R =

1
MR

MR

∑
m=1

f (l)
R (z(m), α) (5.19)

The filter responses are transfered into likelihoods using Eqn. (5.17), here using σR = 1.0.

For the evaluation, the only cue activated is the ridge cue on the lower right arm of the
body model. Looking at Fig. (5.11) shows us that the ridge cue gives a coarser estimate
of the limb position than the edge cue, but produces less false maxima. With its smooth
slopes it is better suited to guide the search process towards the correct position than the
edge cue with the sharp peaks. Both the smoothness and the slight inaccuracy can – at
least partly – be explained by the use of the higher levels of the gaussian pyramid.

Mean Color Cue

Color can be a very meaningful feature, in particular if the color of the clothing sig-
nificantly differs from the background. The mean color cue models the appearance of
a limb using an learned color model. Instead of looking at the whole limb at a time,
the algorithm uses Bl regions on each limb l, see Fig. (5.8). Each region is defined by a
square in the local coordinate system of the back-projected limb, the number of regions
Bl and their positions are chosen on the basis of the limb type. Using an initial image
and a corresponding body pose a mean color value C̄t(Z (b,l)) is learned for each region
from all pixels within the region Z (b,l) = {z(b,l)

1 , . . . , z(b,l)
m }.

To calculate the filter response, the mean color Ct(z(b,l)) of each polygon b at position
z(b,l) is compared to the learned mean color C̄t(Z (b,l)) of this polygon on limb l using
the L2 norm in the utilized RGB color space:

f (b,l)
C =

∥∥∥Ct(z(b,l)) − C̄(b,l)

t−1

∥∥∥− ρM if
∥∥∥Ct(z(b,l)) − C̄(b,l)

t−1

∥∥∥ > ρM

0 otherwise.
(5.20)

where ρM defines a minimum error threshold that first has to be exceeded before an
error value is generated. We call this threshold the mean plateau, as it appears like a
flat region in the surface of the error function. It has been introduced to neglect the
small unpredictable errors originating from the camera noise that could distract the
optimization.

79

5 Body Pose Tracking

The filter response for the limb l is calculated by taking all regions into account:

f̄ (l)
C =

1
Bl

Bl

∑
b=1

f (b,l)
C . (5.21)

The cue likelihood is again determined using the transfer function Eqn. (5.17). For the
following evaluation we used σM = 35.0 and ρM = 0.0 Note that this value for the
variance is significantly higher than those of the other cues. The reason is that the filter
generates much larger responses as these resemble distances in the RGB color cube.
Here, the maximum filter response is d =

√
3 · 255 ≈ 441, 7.

To deal with varying illumination conditions we adapt the current mean color model
according to those values Ĉt−1(z(b,l)) that have been extracted on the basis of the best
pose in the last time-step t− 1:

C̄(b,l)
t−1 = β · Ĉt−1(z(b,l)) + (1− β) · C̄(b,l)

t−2 (5.22)

where β is an adaptation factor, typically chosen to be small, e.g. β=[0.01,0.05], to make
only a small adaption for each image. This adaption is not sensitive to the accuracy
of the tracking results, therefore a too fast adaption would mean to degrade the color
model. In case of a false tracking, the limb could for instance be slightly off the body
and the background color would be learned.

(a)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ

lik
el

ih
oo

d

(b)

Figure 5.12: Mean color cue likelihood. Calculated utilizing three patches in the lowest level of the gaussian
pyramid, σM = 35.0, mean plateau ρM = 0.0, and without importance reweighting λM = 0: (a) varying
angles ϕUR and ψUR of the upper arm, (b) varying angle ψUR only.

For the evaluation, the only cue activated is the mean cue on the lower right arm of the
body model, using three neighboring regions. The mean cue reliably finds the coarse
limb position as color is a very discriminative cue, see Fig. (5.12). It is robust to false
maxima as long as the learned colors do not appear in the background. Additionally,
it is generous concerning minor disturbances and therefore in general very robust.
Unfortunately, it very much depends on the appearance of the scene, e.g. the clothing
of the person to be tracked. A uniformly colored shirt means, for example that the arms

80

5.3 Modeling the Appearence of Humans

and the torso can not be told apart. For textured clothing, a mean value is not very
informative and the cue is a bad choice.

Skin Color Cue

The skin color cue is based on the segmentation image presented in Sec. (5.3.3). Assum-
ing that the only skin colored regions originate from the person to be tracked, this cue
allows to find the positions of the hands and the head. Similar to the mean color cue,
it uses one or more regions defined on a limb. All MS pixels Z (b,l) = {z(b,l)

1 , . . . , z(b,l)
m }

originating from a region b are analyzed. The filter response for the limb l is calculated
using the ratio of pixels being classified as skin or non-skin:

f̄ (l)
S =

1
MS

MS

∑
m=1

ρ(z(b,l)
m) (5.23)

where ρ(z(b,l)
m) = 1 means that the pixel has been classified as being skin colored and

ρ(z(b,l)
m) = 0 if not.

(a)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ

lik
el

ih
oo

d

(b)

Figure 5.13: Skin color cue likelihood. Calculated utilizing a single patch on the hand limb, σS = 0.1, and
without importance reweighting λS = 0: (a) varying angles ϕUR and ψUR of the upper arm, (b) varying
angle ψUR only.

The cue likelihood is again determined using the transfer function Eqn. (5.17), we used
σM = 35.0, ρM = 0.0 and all pixels from the hand limb region for the cue evaluation.

Note that for mapping the filter responses to the likelihood domain using the transfer
function is only an option, not a must. The filter responses of the skin cue are already
in the correct domain that is f̄ (l)

S ∈ [0, 1], as it resembles the ratio between skin and
non-skin pixels. We nevertheless apply Eqn. (5.17) here with a σS = 0.1, as it allows us
to better control the sensitivity of the cue. This is – at least up to a certain degree – also
true for the other cues, as using a gaussian transfer function is only a proposal. If it
was only for the transfer to the correct domain, a simple linear or second order scaling

81

5 Body Pose Tracking

with an offset would also have been sufficient, but during our experiments, the use of
the transfer function to customize the behavior of the cues has proven to be an effective
and intuitive means.

The cue likelihood displayed in Fig. (5.13) shows the best localized and compact max-
imum. It even allows some reasoning about the distance of the hand limb which is
mainly an effect of the forward kinematics of the body model. Unlike the arm used for
the mean color cue, the hand used to find skin color is a very small region. Moving
the arm back and forth means a circular movement in euclidian space which very
soon pushes the small hand limb outside the likewise small hand in the image. This
example shows that an accurate skin segmentation can be very beneficial for tracking a
person’s movements. The advantage of the proposed system is, however that it does not
fail completely if the skin color segmentation is temporarily inadequate or the hand is
occluded from time to time, the system will rather benefit from accurate data if available
and otherwise be content with the other cues still providing enough data to keep up a
robust tracking.

5.3.4 Body Pose Observation Model

The presented results from the cue evaluations are promising and give proof of the fact
that a pose of the body model can be rated based on different image features. But
at the same time, the discussion made us question the reliability of each individual
cue. It is easy to imagine situations in which some cues may not show satisfactory
performance. That calls for a combination of multiple cues to enhance their accuracy
and their reliability.

(a)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ

lik
el

ih
oo

d

(b)

Figure 5.14: Combined edge and ridge cue likelihood. Calculated by multiplying the two individual cue
likelihoods. (a) varying angles ϕUR and ψUR of the upper arm, (b) varying angle ψUR only.

As an example, let us have a closer look again at the edge and the ridge cue. To briefly
recall the qualities, the edge cue is very exact but produces many false maxima, the
ridge cue is less exact but produces less false maxima. Multiplying the likelihoods of

82

5.3 Modeling the Appearence of Humans

both cues yields a new combined likelihood which much better resembles the desired
characteristics of a cue to be used for an optimization process. Fig. (5.14) shows a clear
maximum at the correct position and much less disturbances from false detections.

For rating a pose of the body model given the current image the responses from all cues
are combined into a compound likelihood:

p(y
t
|xt) = ∏

c∈{E,R,M,S,H}

L

∏
l=1

p(c, l)ρ
(l)
c (5.24)

where
ρ

(l)
c = δ

(l)
c

1

λcN(l)
c

(5.25)

is a limb- and cue-specific balancing factor. Eqn. (5.24) resembles the probability for a
given pose of the model xt the observation y

t
can be made, where the latter is defined

by the image cues at time t. The fact that a simple multiplication can effectively be used
to combine results from very different image processing techniques is made possible
by the transfer into the likelihood domain and under the assumption that the cues are
independent from each other.

The number of cues used for a single limb N(l)
c differs. The skin cue, for instance, is

the only cue used for the hand limb, whereas the position of the lower arm is estimated
using three or more cues. To account for the variations in the number of cues per limb,
the cue likelihoods of an individual limb l are scaled according to the total number
of cues Nl for this limb. This way, the likelihood of each limb contributes equally to
the likelihood of the overall body pose. The function δ

(l)
c as part of the balancing term

Eqn. (5.25) can be used to express whether a cue c is activated for a limb l:

δ
(l)
c =

{
1 if cue is active for limb l
0 else

(5.26)

A fusion of such dissimilar features as presented here always requires to reason about
the importance of each cue in relation to the other cues and its importance for the rating
of the whole body pose. The factor λc is a term to re-weight the importance of a cue c
regardless for which limbs it is applied. Such a modification of the cue importance can
be made if the scenario is known in before to raise difficulties for a single cue, e.g. if the
skin color can not be segmented robustly. If no assumptions can be made, λc defaults to
one for all cues, rendering it inactive.

The compound likelihood as in Eqn. (5.24) is the final result of the observation process.
For a given image and a given pose it provides a likelihood of how well the model pose
fits to the observed image. As an example, Fig. (5.15) shows a plot of the combined
likelihoods of all of the cues above. The resulting density is unimodal and well shaped.
Only the exact position in the depth direction can not be determined that well. It must
also be noted that the example image used here, cf. Fig. (5.9), shows an almost perfect
situation. The person is facing the camera which makes the body model projection
error small. The skin color can be segmented easily and the background color is neither

83

5 Body Pose Tracking

(a)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ

lik
el

ih
oo

d

(b)

Figure 5.15: Final Pose Likelihood. Calculated by combining all of the likelihoods above. (a) varying angles
ϕUR and ψUR of the upper arm, (b) varying angle ψUR only.

similar to skin nor to the color of the shirt. Furthermore, the background is more or less
uniform, which produces less false detections for the edge cues.

For this example only the cues for the lower right arm and the hand have been used and
they have been sampled for two degrees of freedom. To get an idea of how complex the
posed problem can get, imagine that the displayed likelihood density is multimodal and
ill-shaped and has to be explored for a 14-dimensional parameter space. At this point it
gets obvious that an exhaustive search of the parameter space is not suitable and other
means of exploration have to be found. The next section focuses on the kernel prticle
filtering mechanism to solve this problem.

5.4 Kernel Particle Filtering for Body Pose Tracking

The problem of estimating the correct pose of the model for each image can be ex-
pressed as finding the one local maximum in the high-dimensional parameter space
that fits best the current pose while still obeying all given constraints, e.g. the joint angle
limits. To track the correct pose of the human, the structure of the high-dimensional
probability density has to be efficiently exploited, taking into account the constraints
and the dynamics of the model. The utilized kernel particle filter propagates such
multimodal distributions and provides a probabilistic search for the best matching body
configuration. The theory of the KPF method has been presented in section 3.3.2, we
will now focus on its adaptation for model based tracking of the human body.

In the literature, many different techniques based on particle filtering can be found
for tracking persons or a person’s body parts. The idea of using the mean shift mode
seeking within a particle filter has mainly been utilized in experiments consisting of
tracking objects or isolated body parts in the 2D image space (e.g., [23, 63]). The last
chapter gave an example for a localization and tracking approach in 3D. It already
employed a kernel particle filter based optimization of a model with multiple degrees of

84

5.4 Kernel Particle Filtering for Body Pose Tracking

freedom. But the data provided was more more detailed as depth information and even
velocities were present instead of monocular images only. The task of localizing a peron
in space is less ambigious than recognizing his or her pose. This also becomes apparent
in the number of parameters that need to be estimated. The person localization approach
employed a model with six degrees of freedom, here we already need to estimate 14
degrees of freedom.

The kernel particle filtering technique proposed in section 3.3.2 is well capable of per-
forming tracking in the high-dimensional space associated with 3D human modeling.
Let us briefly review the filtering steps. The distribution of particles is rated based
on the image cues, a mean shift procedure herds the particles in regions with a high
probability. The best configuration is extracted and used to propagate the distribution
to the next timestep. The following adaptions allow us to use the kernel particle filter
technique for pose estimation.

The most individual part of each optimizsation approach, the problem representation
itself, has been presented in the previous sections of this chapter. For each pose, a
request can be forulated to rate the agreement of the model pose with the recorded
image. The body model and the image cues provide the basis for the definition of the
objective function. We can now focus on the remaining steps: refining the distribution,
estimating the best pose and from that generating a new particle distribution for the
next time step.

5.4.1 Re�nement of the Particle Distribution

As already addressed before, degenration of the particle distribution is a common
problem for particle filter approaches and many solutions to this problem have been
presented. To give a well known example, the specific variant of sequential importance
sampling also known as “Condensation” [79] applies a re-sampling step to avoid degen-
eration of the particle based representation.

We tackle this problem in a different way by designing the system for the specific task
of human pose tracking in an interaction scenario. In order to perform tracking with
a small number of particles, an iterative mode-seeking in the form of the mean-shift
algorithm is applied to shift the particles to high weight areas. The advantage of
mean shift is its principle of being a local approach. The kernel used for calculating
the mean shift vector only takes into account a local region around the particle to be
shifted. Besides, it employs an annealing technique which narrows the local support
with each iteration. As a result, the distribution rapidly converges towards the next local
maximum as depicted in Fig. (5.16), regardless of the global structure of the underlying
PDF.

The choice of the kernel bandwidth h is of crucial importance in kernel based density
estimation and it is usually scaled down at each mean shift iteration in order to concen-
trate on the most dominant modes. A small value can generate a very ragged density
approximation with many peaks, while a large value can produce an over-smoothed
density estimate. In particular, if the bandwidth of the kernel is too large, significant

85

5 Body Pose Tracking

(a) (b) (c)

(d) (e) (f)

Figure 5.16: Mean shift iterations for human body tracking. Consecutive iterations of the mean shift procedure.
(a) Initial distribution generated from the propagation model of the last time step. The particle distribution
after (b) one, (c) two, (d) three, and (e) four mean shift iterations. The colors denote the likelihood of each
pose after being evaluated with the image cues with white denoting a high likelihood and yellow towards
red decreasing likelihood values. (f) The estimated body pose extracted from the most dominant mode of
the distribution.

features of the distribution, like multi-modality can be missed. In our implementation,
the initial bandwidth h0 is scaled at every iteration i according to h = 0.8i h0 where the
value 0.8 has been determined empirically, similar to [23]. To cope with the different
scalings of the values for each dimension, the bandwith is adapted separately for each
parameter using the joint deviation vector, resulting in a bandwith vector H = hB.
Other kernel particle filtering approaches, like the EKPF presented by Dirk Stößel [156]
employ both whitening and automatic bandwith selection techniques, which also aim
at unifying the dynamics of the different parameters. These techniques are profitable to
use for unknown configurations but as we are well aware of the meaning of the different
parameters, e.g. joint angles and spatial positions, and we furthermore know about the
applied propagation model, we can directly use this knowledge to perform a manual
whitening to decorrelate the parameter space.

Iterating the mean shift procedure continues until a maximum number of iterations
has been reached or until the Euclidean distance between the corresponding modes in
the last two iterations is below an empirically determined threshold. Although a fixed
number of iterations, e.g. 3, is more likely to produce distributions that are still spread
out in the parameter space, this has the advantage that the runtime of the refinment
step is more assessable. Additionally, the next step in the algorithm, the extraction of
the best body pose, can handle such non-collapsed distributions to a certain degree.

86

5.4 Kernel Particle Filtering for Body Pose Tracking

5.4.2 Extracting the Best Body Pose

Following the particle distribution refinement, the most dominant mode is obtained
by a weighted averaging over all particles in a window centered at the peak of the
posterior. This mode serves as estimate of the current body pose, see Fig. (5.16(f)), and
is output to other algorithms, like a trajectory based gesture recognition system. The
back-projection of this pose into the image plane is also utilized as reference model for
updating the mean color using Eqn. (5.22).

Over time, the best poses form a trajectory in the highdimensional pose space, which can
be interpreted as the movements of the person. Motions of single limbs, for instance of
the right hand, can be dervied similarly from the trajectory. In principle, the trajectory
of any point on the limb surface or any point which is defined in relation to a limb
can be calculated given the pose history and applying forward kinematics for the mody
model.

Additional to the output to external modules the current pose also serves as the refer-
ence for estimating the particle distribution for the next timestep, as presented in the
following.

5.4.3 Motion Models for Body Pose Tracking

A key element for the efficient exploration of the parameter space is the propagation
step of the particle filtering technique. It generates a new distribution of particles for
the next timestep at those positions in the parameter space that the model is likely to
take. Only the correct choice of the propagation model Φ ensures the particle filter to
track any motion of the body that is possible. The generated distribution therefore must
be widespread to capture the whole range of different parameterizations and also dense
enough to enable the mean shift procedure to work properly. At the same time, the
computational complexity of the particle filter roughly scales linearly with the number
of particles generated. The most costly part is the evaluation of the objective function
based on the image cues. Typically, a fixed number of particles is chosen to keep up
a predictable runtime behaviour which implies that the avaiable particles have to be
distributed wisely.

For propagating the particles from the dominant mode to the next time step we combine
three different strategies: For some joints, velocity templates are used to model the
dynamics of the human musculoskeletal system, a linear motion model covers the
remaining degrees of freedom, and a minimum percentage of the particles are subject
to random propagation. The reason for not relying on a specific motion model for the
particle filter is that we aim at tracking general human motion and at the same time we
need the ability to recover the tracking in case of failure. For each of the strategies the
cumulated probabilities of the particles in the posterior are calculated to decide on the
ratio of particles for the next time step. The method which generated the particles with
the highest probabilities is favored. A minimum percentage for each method is always
enforced to guarantee the ability to recover from tracking failures. If the propagation

87

5 Body Pose Tracking

results in an invalid body configuration, the propagation step is repeated until a valid
body pose is obtained.

5.4.4 Random Noise Propagation

Propagating the particles with a random noise model ΦN is often used as a fallback for
error recovery and if the limb movements can not be predicted accurately. The particle
distribution for the next timestep t + 1 is defined by a normal distribution centered at the
current position of the best mode µ

t+1
= xt in the parameter space, see also Fig. (5.17).

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(a)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b)

Figure 5.17: Random Noise Models. Distributions of
500 particles generated for a given position (x) of
the best mode. (a) uniform noise, also called white
noise, (b) normal noise, also called gaussian noise.

The normal distribution is often used within classic particle filtering approaches. It
offers a high density at the center but still spreads wide enough to catch strong motions.

ΦN = N (µ
t+1

, σt+1) (5.27)

We chose the standard deviations σt+1 = B to equal the initial bandwiths given in the
body model definition. The values of the joint angle bandwith parameters B have been
determined experimentally based on the model definition, the camera view and the
application domain.

In the context of a kernel particle filter, however, a uniform noise model ΦU has shown
to perform better compared to the normal distribution model.

ΦU = U (µ
t+1

, σt+1) (5.28)

Kernel particle filtering employs the mean shift procedure to concentrate the particle
distribution in successive iterations. A prior concentration of the particles is not needed,
instead they are better off with being used for exploring the parameter space. Fig. (5.17)
nicely shows that the same amount of particles covers a larger area of the parameter
space.

Linear Velocity Model

More elaborate approaches for propagating the particle distribution often involve pre-
dicting the pose of the body model to the next time step and then forming a distribution
appropriately. A reliable prediction can be achieved by taking into account the history
of body poses for the last timesteps. For each joint, a new position can be estimated by
extrapolating from the recorded positions.

88

5.4 Kernel Particle Filtering for Body Pose Tracking

0 1 2 3 4 5 6 7 8 9 10

−4

−3

−2

−1

0

1

2

3

4

5

Figure 5.18: Linear motion model. The joint velocity
(green) is estimated from the current trajectory (blue).
At the predicted position of the joint, new particles are
formed by applying a random noise model.

As shown in Fig. (5.18), a new position for a joint can be predicted by estimating a
velocity vector vt recursively:

vt = α
xt − xt−1

δt
+ (1− α)vt−1 (5.29)

with α being a smoothing factor that determines the influence of the latest measure-
ments. A recorsive definition is in particular useful for noisy trajectries, as single outliers
can be smoothed out. For smaller values of α, the velocity estimation is more robust but
also reacts slower to changes in the trajectory. For recognizing pointing gestures with
the proposed method, a value of α = 0.7 is typical.

At the estimated position xt + vt, the noise model from Eqn. (5.27) is used to create a
particle distribution. We can assume that the velocity estimation is already somewhat
close to the correct position, so the derivation can be chosen to be smaller as when using
a noise model only. We chose the derivation to be σt+1 = 0.25B.

Velocity Template Models

Human kinetics shown typical patterns in joint velocities. Admiraal et al. [1] discuss
the possibility to model such movements by an analysis of the kinetics and dynamics
of a human arm. One example of such a modelling is Fitt’s Law1, which describes the
motion during a pointing gesture, in particular the variation in velocity depending on
the size and the distance of the target of the pointing gesture. This law can not only be
used as a description, it also plays an important rule in the perception of motions [58]
and is often applied in human machine interaction.

Fig. (5.19) depicts the typical progression of the joint angle velocities during a pointing
gesture. Such sequences of velocities can now be reduced to a model representation. In
contrast to other approaches that are based upon a database of poses and motions, the
presented approach uses a more abstract representation as it tries to model each joint

1published by Paul Fitts in 1954

89

5 Body Pose Tracking

Figure 5.19: Arm angle velocities during a
pointing movement. These velocities have
been extracted from the tracking results
of a pointing gesture recorded at 30Hz.
The figure shows the velocities of the
shoulder joints ϕUR , ϑUR , ψUR and the el-
bow joint ϕLR .

independently. It could be compared to approaches using a model of the dynamics of
the human body, although our model is much more coarse and does not incorporate
important features like masses of the limbs, inertia and gravity. It must be seen on a
phenomenological level, as it tries to describe the typical velocities present in pointing
gestures.

1

5.0

0

50− .

1−
0 .0 5 1

1

0.5

0
0 .0 5 0

1−1

−0.5

0

0 5. 1

Figure 5.20: A choice of trajectory template
models. The leftmost model is intended
to represent the elbow’s typical velocities
during a pointing gesture, which is first
bended an then stretched again. In com-
bination with the scaling during the infer-
ence process, the two more generic models
resemble the prospects of Fitt’s law.

We use three models to cover most of the occurring motions. They are built from scaled
gaussian function and are depicted in Fig. (5.20). The basic idea behind the shape of the
models is that for each motion, the arm first needs to be accelerated to start moving and
when getting close to the desired target position, it is decelerated again. Such motions
of the arm result in according patterns in the joint angles. We deliberately chose not
to use the acceleration defined by the second derivation as a feature, as the tracking
results are typically quite noisy and often result in corrupted velocities given by the first
derivation.

The basic idea of template based motion modeling is to record a history of joint angles,
calculate the according velocities and match this velocity history with the templates
using a multitude of different scalings and offsets. The parameterized template that
best fits the original data is then used to predict the joint velocity – and thereby also the
joint position – for the next timestep. This is done separately for each joint to reduce
the complexity of the inference process. This approach has been inspired by the gesture
detection presented by Hofemann [70] and uses a similar technique for the template
representation and the search process. It has been implemented by Luemkemann and is
described in more detail in [105].

90

5.4 Kernel Particle Filtering for Body Pose Tracking

Scaling the templates is necessary as the absolute intensity and the duration of a gesture
is not known in before. We use three parameters to describe a scaled template, as
depicted in Fig. (5.21). Amplitude scaling adapts the absolute intensity of the gesture to
match with the maximal velocity during motions. Time scaling stretches or compresses
the template to adapt to differnt length of motions. The time offset oτ determines a
starting point inside the template. This parameter is important in the context of the
search process that is described in the following.

10.80.6
time

0.40
−2

a
n

g
u

la
r

v
e

lo
c
it
y

−1

2

0.2

0

1

(a)

10.80.6
time

0.40
−2

a
n

g
u

la
r

v
e

lo
c
it
y

−1

2

0.2

0

1

(b)

10.80.6
time

0.40
−2

a
n

g
u

la
r

v
e

lo
c
it
y

−1

2

0.2

0

1

(c)

Figure 5.21: Template scaling. (a) Amplitude scaling sa, (b) time scaling sτ , (c) time offset oτ .

Again, we use a particle filter approach to select the best fitting template parameter-
ization xt for a given history of joint velocities zt at time t. The parameter vector
xt = {m, sa, sτ, oτ} fully describes a specific parameterized template with m selecting
one of the three template models. The likelihood of a template model xt to resemble the
observed joint velocities zt is expressed by

pmot = (zt|xt) . (5.30)

The error measure comparing the history of joint velocities with the template model
uses a window function that restricts the time frame to a number of time steps. Here,
the time offset oτ becomes important as it defines the starting point of the comparison
window. For a more detailed description of the underlying algorithm, please see [105].

When observing a gesture, the result of the condensation process is a history of template
parameters, giving the model chosen, the current offset and the scaling factors. For a
completed gesture, the offset runs through the complete model from beginning to end.
The scaling must not be the same for the whole gesture, as the condensation process
allows gradually changes to the parameters. Thus, a gesture may start slowly and then
become faster, as it also may exhibit different motion intensities. Fig. (5.22) shows an
exemplary motion that has been fitted to the first gesture model. The different scaling
for the first and the second part of the motion can be observed well.

The prediction accuracy of the joint position can be significantly improved if the ve-
locities follow one of the templates. The effect on the tracking framework is that the
new particles are better positioned for the next timestep and eventually less particles
are sufficient for a good prediction. However, motion template modeling is a far more
complex technique than the previously proposed motion models and the benefits for
the tracking process should well surmount the additional effort if using this approach.

91

5 Body Pose Tracking

10

8

6

4

2

0

2−

4−

−6

01

8

6

4

2

0

2−

4−

−6

0 .50 1 0 .50 10 .50 10 .50 10 .50 1

0 0.5 1 0 0.5 1 0 0.5 1

01

8

6

4

2

0

2−

4−

−6

01

8

6

4

2

0

2−

4−

−6

01

8

6

4

2

0

2−

4−

−6

01

8

6

4

2

0

2−

4−

−6

.
6−

−4

−2

0

2

4

6

8

0101

8

6

4

2

0

2−

−4

−6
0 0 5 1 0 0.5 1

10

8

6

4

2

0

2−

4

6−

−

Figure 5.22: Matching the joint velocity with a template. The trajectory template follows the true velocity over
time and also provides a good prediction for the next timestep.

The biggest chances for this model can be seen if it was combined with a full dynamic
model or a gesture detection algorithm as the extracted information is far more valuable
than just to be used for a prediction of joint positions.

5.5 Body Model Initialization

The body model tracking system that has been presented so far assumes that a manual
initialization of the body pose is given for the first image. As long as the system is
used for analyzing recorded image sequences such as presented in Sec. (7.4), a manual
initialization is fasible. For many related body posture tracking approaches that can
be found in the literature, the question of initialization also stays open or is subject to
manual or semi-automatic procedures.

Related tracking systems incorporating automatic or semi-automatic initialization often
make use of learned appearance models [125], rely on stereotyped poses [163] or on
combining a repertoire of learned pose estimates and visual appearance [11, 145, 161].
Initialization can also be formulated as the problem of pose estimation or object recon-
struction from a single image using strong models [98]. Summarizing, recent literature
has described different approaches focused on tracking people. However, there is still a
gap between tracking algorithms and systems working in the real world, mainly due to
the fact that for most tracking approaches the challenges of automatic initialization and
error recovery are not addressed thoroughly.

92

5.5 Body Model Initialization

As a possible solution, we define in the following an initialization procedure that incor-
porates knowledge about the appearance of a human in an image and knowledge about
the human robot interaction scenario to automatically derive an initial pose and initial
parameters for the image cues of the pose tracking algorithm.

5.5.1 Automatic Initialization Procedure Overview

The presented system is situated within a typical human robot interaction scenario,
where an individual is communicating with an artificial actor. The basic idea guiding
the design of the initialization procedure is to integrate robust face and hand detection
results into a model representation that can be used for automatic initialization and
failure recovery of a pose tracking algorithm.

Figure 5.23: Automatic initialization sys-
tem overview. Faces are detected, shirt
and skin color are learned, hand and
face positions are used to estimate a
density for initializing the tracking and
for error recovery. Modules denoted by
* have been used in the existing body
model tracking framework, but had to
be manually initialized.

Using body tracking in human robot interaction often comes with strong restrictions,
e.g., the number and type of cameras available or the gesture repertoire to be observed.
There are a number of features that should be considered in order to make a system
flexible enough to operate within this context: The person and its body dimensions
must not necessarily be known a priori, but the distance of the human to the robot
has to be adequate for interaction. Images are acquired using a single monocular color
camera as the system is intended to be used on a mobile robot without employing
further sensors. During system design, we also avoided specific background models to
allow the tracking to be independent from the appearance of the observed scene. To
further allow a moving camera, image background substraction based techniques like
motion history images are avoided as well.

To ease the initialization process, we can pose additional requirements to the initializa-
tion stage compared to the tracking stage, where they are no longer neccessary. We
assume the following requirements, which are well suited for a human robot interaction
scenario, to hold for the initialization stage: 1) The person is trying to communicate,
therefore his or her intention is to cooperate with the system. If, for instance, the

93

5 Body Pose Tracking

estimate initial pose from single image:

if face is detected then

extract skin and shirt samples

update color models for skin and shirt

create segmented images

detect hands using skin and shirt color segmentation

generate initial density estimating the correct pose:

if hands are detected then

�nd probable model poses based on the distances of the hands

and the face, use 5 DOF for model
else

body model facing the camera, arms hanging down, use 3 DOF

for model
track human body:

do

wait

until initial density is provided

if tracking for the �rst time then

start tracking:

use density as prior
else

keep tracking:

if initial density is provided then

use density as recovery component

use updated skin and shirt color models for tracking
else

track relying on current model

Figure 5.24: The automatic initialization algorithm.

tracking fails at some point, the person can help recover the tracking by entering poses
that are easier to recognize for the system. 2) The upper body, including the head, the
torso and both hands, is visible in the camera image and no large self occlusion occurs.
3) The person is standing in an upright position, facing the camera and having the arms
outstretched.

The initialization procedure, as depicted in Fig. (5.23) and briefly outlined in Alg. (5.24),
is presented in the following. As a first step, a face has to be detected for estimating
an initial pose density and starting the tracking. Accounting for the current lighting
conditions, a personalized skin color model is learned and based on this, both hands
are located. Face and hands information, if detected, is utilized to estimate the likelihood
for an initial body model location and pose. Once initialized, the body tracker performs
continuously considering face and hands information whenever available. Future face
and hand features allow the tracking system to have an additional validation control
useful to recover the tracking from failures.

94

5.5 Body Model Initialization

5.5.2 Face and Hands Detection

The Encara2 face detection system employed has been developed by Modesto Castril-
lón [21]. It integrates, among other cues, several classifiers based on the general object
detection framework by Viola and Jones [165], skin color, multilevel tracking, and more.
The chosen detection system provides not only face detection but also facial feature
location information in many situations.

Figure 5.25: Internal face feature detection. Normalized face
sample and likely locations for nose and mouth positions after
normalization.

The facial element detection procedure is only applied in those areas which bear evi-
dence of containing a face. This is true for regions in the current frame, where a face
has been detected, or in areas with detected faces in the previous frame.

Color Modeling

To add further details to the representation of the individual detected, our system learns
models of the skin and the shirt color taking into account the previously detected face
region. This is done only for a robustly detected face, for which at least three facial
features – the face itself, its eyes and the nose or the mouth – have been detected as a
trusted result. This consideration is used to reduce the possibility of false detections,
i.e. false positives. A color model is then learned, or updated if already created for that
individual, only from these trusted faces, reducing the probability of using erroneous
face detections.

(a) (b) (c)

Figure 5.26: Color training. (a) Input image, (b) Skin color training pixel, (c) Torso color histogram
segmentation.

From the internal features’ position, a face container is estimated to provide training
data for the skin color model. In a lower position a second container is used to select
an area of the user’s shirt. Both containers are utilized to model respectively the skin
and shirt colors of the user by means of a histogram based color model [160]. Fig. (5.26)
presents an examplary segmentation of the input image based of these histograms, see
Fig. (5.26(b)) for skin and Fig. (5.26(c)) for shirt color-like areas. It can be observed that

95

5 Body Pose Tracking

the shirt is segmented easily but hands and skin-like areas, are not necessarily clear and
compact.

Due to the sensitivity of the histogram based skin color model, we chose another color
model representation. The mask of the skin blob extracted from the face container
determines the skin pixels to be employed as training samples, see Fig. (5.27(a)). The
skin color of each individual is then learned and further adapted throughout tracking
using the mixture of gaussians color model as described in Sec. (5.3.3), see Fig. (5.27(b))
for the segmentation results using the learned MoG color model. The histogram based
color model, learned from training pixel drawn from a region below the face, is similarly
used to provide training data for the mean color cue described in Sec. (5.3.3).

(a) (b) (c)

Figure 5.27: Head and hands detection. (a) Skin color training pixels produced from the face detection, (b)
resulting segmentation using the skin locus and learned mixture of gaussians (MoG) in RG-color space, (c)
detected head and hands location.

Hand Detection

Searching the full 14-dimensional pose space is not feasible for an initialization proce-
dure. But robustly finding an initial pose of the body model can be achived with less
effort by assuming to have an exact position of the head and the two hands of a person.
The corresponding limbs of the body model can then be attached to the found body
parts which drastically reduced the complexity of the search.

Multiple difficulties are present regarding robust and efficient hand detection in video,
mainly due to the inherent variability of the articulated hand structure, the large domain
of gestures, the restriction of real-time performance, varying illumination conditions and
complex background clutter. Therefore, different restrictions are commonly considered
or even manual initialization is performed for this task.

Literature is rich in hand detection approaches that have traditionally been based on
skin color segmentation [154], due to their reduced processing cost. Recent approaches
[90, 151], however, have utilized the Viola-Jones’ object detection framework [165] even
when hands are not that easy to describe as faces. They are highly deformable objects,
so training a single cascade classifier for detecting hands is a complex and arduous task.
For that reason, a different classifier for each recognizable gesture can been trained [151],
but also a single classifier can be sufficient for a limited set of hands [90].

96

5.5 Body Model Initialization

Considering the unrestricted context, where the use of multiple detectors would pro-
duce an approach not suitable for real time processing, we have chosen the skin color
approach for faster processing. However, instead of using a predefined color space
definition, the information obtained from the face blob is used, as described above, to
estimate the skin color model for that individual, see Fig. (5.27). The skin color model
is then employed to locate other skin-like blobs in the image.

As we mentioned above, the approach considers that both hands are visible, no gloves
are used, their distance to the face is similar, and that a vertical line falling from the
face center would leave each hand on one side. If all those conditions fit, and two well
proportionated and coherent skin blobs are located close to the shirt-colored region, then
they are suggested as hands candidates, and provided to the 3D tracker initialization
module, see Fig. (5.27(c)) for the detected positions.

5.5.3 Integration into the Body Pose Tracking System

After determining the position of the head and hand limbs in the image, we now must
transfer this into a valid pose of the body model. Estimating the correct pose is even
more difficult on a single frame than on a sequence where also temporal dependencies
could be used. Restrictions on the scenario and the expected poses help to simplify
the task. For initialization, we assume the person to be facing the robot with the arms
outstretched. As a consequence, the model can be constrained to be oriented towards
the camera and the arm limbs to move only in a plane parallel to the image plane,
having the elbow relaxed. This allows reducing the number of DOF to be determined
during initialization to only 5 parameters: Three for the model position and one for
the elevation of each arm. In situations in which no hands can be found, the arms are
assumed to be close to the torso, reducing the dimensionality d of the parameter space
further to 3. An additional scaling factor for the body size is needed, as due to the
orthographic projection, variations in the absolute size and in the distance to the camera
can result in the same appearance. For the presented interaction scenario, however, we
can assume that the distance of the person is close to the robot.

The 2D distances between the detected face, dH, and left and right hand features, dHL

and dHR , and the corresponding model limbs are converted into likelihoods using the
following Gaussian weighting function

p(c) = exp
(
− (dc)2

2 σ2
c

)
, (5.31)

where the standard deviations σc are choosen to cover the maximal observable distance
depending on the image size for each utilized feature c ∈ {H, HL, HR}. For a number of
different poses, these distances are almost the same, as the positions of the face and the
hands in the image will not change drastically when translating the model in the depth
direction. Similar to Eqn. (5.24), the likelihood that a model pose xt at the current time
t causes the observation y

t
can be formulated as

p(y
t
| xt) = ∏

c∈{H,HL,HR}
p(c) (5.32)

97

5 Body Pose Tracking

Figure 5.28: Generating a distribution for automatic initialization and error recovery. The particle distribution
approximates the likelihood density defined by the face and hands detection.

with p(c) = 1 if the feature is not present. In the d-dimensional space Rd of all possible
poses, an initialization particle set SI t = {s(n)

t }N
n=1 is used to represent the observation

density with the associated weights {w(n)
t }N

n=1 distributed according to p(xt | yt
) and w

normalized to ∑N
n=1 w(n)

t = 1.

Using this particle set, we employ a kernel particle filter for searching the pose space
for initialization postures agreeing with the results from the face and hand detection.
The result is a particle distribution estimating the likelihood density in the reduced
parameter space. Figure 5.28 illustrates the result when both face and hand position are
given. These image positions each form a line when projected into the 3D space, on
which the corresponding limbs of the model have to be placed. The distribution indeed
shows a good estimation seen from the image plane perspective, but it covers a wider
range in the depth direction, as the distance to the camera respective the size of the
model can only be determined indirectly.

Up to this point, the problem of fitting the model to three given points in the image
can be solved much more easily, e.g., making use of inverse kinematics which could
provide a deterministic set of possible solutions. Using a multiple-hypothesis approach
for both tracking and initialization instead gives us the advantage that the generated
results can easily be integrated into the tracking framework. This approach also leaves
room for future extensions, which will possibly result in higher dimensional statespaces,
e.g. including occlusion and texture information.

A major problem of all tracking approaches is the tendency to get stuck in false local
maxima. To overcome this drawback, the presented approach adds a recovery compo-
nent to the existing tracking framework. Recovering from tracking errors is achieved
by inserting a fixed percentage α (e.g., 5% - 20%) of particles from the initialization
distribution SI t into the tracking distribution ST t

{ST t}bα·Ncn=1 = Φ(SI t, n) (5.33)

with Φ(SI t) sampling from the distribution according to the weight of the particles.
These particles do not necessarily represent the correct pose and in such cases will

98

5.6 Summary

be neglected during the tracking process. If the tracking gets stuck in a wrong pose,
however, the recovery particles enable the algorithm to explore the parameter space in
a region outside of the current search radius of the tracking process while they are still
more directed and therefore more likely to resemble the correct pose than randomly
distributed particles.

5.6 Summary

In this chapter, we presented a system for tracking human upper body motions in a
human robot interaction scenario that is based on a monocular approach and uses no
specialized hardware. The system does not depend on a database of learned motions
or on a mapping from 2D shilouettes to 3D poses. Instead, a generic 3D body model
is employed for matching the estimated pose with the appearance of the human in the
image. The inference process is based on multiple image cues that are fused to obtain
a likelihood for a given pose of the model. A kernel particle filtering scheme efficiently
explores the highdimensional search space to track the body pose over time. Using a
face recognition module, the system is self starting and learns the appearance of the
observed human from a generic model.

99

5 Body Pose Tracking

100

6 System Evaluation and Optimization

“In theory, there is no difference between theory and practice. But, in practice,
there is.”

Jan L. A. van de Snepscheut

The last chapters have presented various techniques for vision-based localization, pos-
ture detection and tracking of humans. Employing these techniques in the context of
interactive scenarios means that they are used to extract position and pose information
from the images and provide these data to subsequent processing steps, e.g. for engi-
neering safety measures or to recognize gestures in order to understand the actions of
a human. Integrating the proposed recognition techniques into bigger systems calls for
an evaluation of the exactness of the reconstruction as subsequent processing steps need
to cope with the expected inaccuracies.

The following sections present evaluations that examine the reconstruction accuracy
for both the person localization and the posture tracking algorithm. To determine
the error during localization and tracking the image sequences have been annotated
with ground truth either manually or based on active and passive markers. From this
error a quality measure determining the performance of the algorithm under the current
parameterization can be derived. Having this at hand, we can even go a step further
and develop a method to automatically determine an optimal set of parameters for
the algorithms. The probabilistic optimization technique and the results obtained are
presented in the last section of this chapter.

6.1 Evaluating the Person Localization

For evaluation of the person localization, multiple real-world image sequences have
been recorded with a PointGrey Digiclops multiple CCD camera system with an image
size of 640× 480 pixels, a pixel size of 7.4 µm, and a focal length of 4 mm. The stereo
baseline corresponds to 100 mm. The sequences display an industrial working cell with
a human worker, a robot, and a moving platform. The distance of the camera to the
scene is 5.65 m.

We empirically found for the correlation matrix element Σz in Eqn. (4.4) the value
Σz = 0.292, regarding a set of 3D points obtained with the spacetime stereo algorithm
and belonging to a plane scene part, while Σx = Σy = 1 are equally scaled. The velocity
scaling factor is set to ρ = 380 s, where the velocity is expressed in meters per second
and the spatial coordinates in meters. The kernel widths for Eqn. (4.7) are chosen as
Hr,max = 1.88 m, Hr,min = 0.135 m, Hd = 0.113 m, and Hv = 0.188 m.

101

6 System Evaluation and Optimization

with velocity without velocity

seq. # pic. object RMSE % tracked RMSE % tracked

person 26.5 100.0 38.3 84.8
industry1 69 table 60.3 100.0 21.8 69.7

robot 87.8 95.5 111.8 98.5
person 42.7 100.0 31.8 94.8

industry2 79 table 43.5 100.0 27.5 100.0
robot 12.1 98.7 17.7 96.1

person 19.6 100.0 14.7 100.0
industry3 24 table 24.9 100.0 22.5 90.9

robot 17.1 100.0 29.3 100.0
person 24.7 75.7 35.2 89.2

industry4 39 table 27.0 100.0 24.5 97.3
robot 9.1 100.0 20.0 97.3

person 20.8 90.9 25.4 81.8
industry5 24 table 21.9 100.0 32.9 100.0

robot 8.6 77.3 33.1 100.0

Table 6.1: Person localization tracking results. Tracking accuracy by comparing to manually labeled ground
truth. The RMSE is given in centimeters.

For each sequence, ground truth was generated manually by marking the center of the
objects of interest in each frame, e.g. the head of the person or the center of the car,
and transforming them into 3D coordinates using the known geometry of the scene
and the objects, e.g. the tallness of the person and the position of the ground plane.
The trajectories of the tracked objects are compared to the ground truth based on the
corresponding value of the root mean square error (RMSE). The results in Table 6.1
show that objects can be tracked in a stable manner at reasonable accuracy. Using
velocity as an additional feature yields a more accurate localisation result for 10 of 16
detected objects, and detection is usually possible in a larger fraction of the frames. For
four other objects the RMSE but at the same time also the detection rate is lower when
velocity information is neglected. The system is designed to segment the point cloud
into clusters of differing velocity. As a consequence, the proposed system works best
for objects with homogeneous velocity. For example, we observed that for a walking
person moving the arms backwards the object hypothesis does not contain the arms. As
it is illustrated by the trajectories in Fig. (4.11), the system is able to track objects and
persons in a top-view surveillance setup as well as in a side-view setup.

6.2 Evaluating the Body Pose Tracking

Being able to make statements about the exactness of the tracking is a prerequisite for a
qualitative evaluation and in consequence for measuring improvements of the algorithm.
This can be achieved by a comprison of the estimated body pose and the true pose of
the human, the so called ground-truth. The challenge is therefore to record images of
the human and his body pose simultaneously and to define an appropriate measure

102

6.2 Evaluating the Body Pose Tracking

for comparison. In the following a ground truth corpus based on acitve markers is
presented and the utilized quality measure is motivated. The corpus has been recorded
with the help of Andre Zielinski. For technical details, a motivation on the ground truth
measure and first evaluations of the body tracking system you may also see [179].

6.2.1 Marker-Based Ground Truth

To determine the “true pose” of a human seems to be an easy task given the right tech-
nical equipment. This is only true up to a certain point. Motion capuring systems are
well known nowadays from special effects in movies. Our approach to record a ground
truth dataset is based on active markers that are attached to the limbs of the subject,
quite similar to the passive marker systems commonly used for motion capturing. But
in fact, the motion capturing system only records the position of the markers, not the
pose of the human. You might ask what the difference between those two is. The
markers can be seen as a projection of the human posture. As the markers are attached
to the subjects’ skin or clothing, they easily shift their position during movements. This
can be due to wrinkles or loose fitting clothes but also due to unavoidable disturbances
of the body surface from the muscles. Therefore, the recorded data must be seen as
an approximation of the body pose and calls for a closer examination of the utilized
distance metric for comparing the tracked pose with the ground truth.

Figure 6.1: Sample images from the
HumanEva-I corpus. The subjects
are wearing black clothes with retro-
reflective infrared markers and perform
a variety of actions.

Before detailing our own ground truth data set, let us have a look at the HumanEva-I
corpus [144], which Leonid Sigal and Michael Black presented in 2006. It is freely
available in the Internet1 and shares some technical and methodological features with
our corpus, so we will discuss it briefly. The idea to make this corpus public is to
provide a possibility to quantitatively compare different body tracking approaches.

The HumanEva-I corpus contains recordings of four persons performing a number of
different actions, like walking, jogging, boxing and gesturing, see Fig. (6.1). Black and
Sigal used a ViconPeak Motion Capturing System which uses a number of infrared
cameras with active lighting to localize retro-reflective markers attached to the subjects’
body. Image data has been recorded at 60Hz with four Pulnix TM6710 gray scale
cameras and three UniQ UC685CL color cameras from different points of view. Ground
truth is provided in the form of a true full body pose, which has been optimized using
all tracked markers, cf. Fig. (6.2). A comparison to tracking results can be done either

1http://vision.cs.brown.edu/humaneva/index.html

103

6 System Evaluation and Optimization

Figure 6.2: HumanEva-I ground truth. An optimal position for the
body model has been determined using all tracked markers. This
can be used as a direct reference or by placing virtual markers on
the model.

by comparing the body postures or by placing virtual markers on the ground truth
model. A more detailed description of the dataset and further information about the
data processing can be found in [144].

For evaluating the body tracking framework, however, the HumanEva-I dataset has been
only partly usable. We aim at a monocular setup in an interaction scenario, where the
focus lies on frontal views of the upper body of the human. The HumanEva-I dataset
is optimized for a multi-camera setups employed in full body tracking approaches. For
many actions, the person is too small as it is further away from the camera and it
is moving around which reduces the reasonably usable observation time for a single
camera to only a few frames. That prohibits the evaluation of tracking failures and the
recovery abilities of our system for longer image sequences. Additionally, the person’s
appearance often provides too little detail for our image cues, as the subjects are mostly
wearing dark clothes, probably to ease the calculation of silhouettes.

The following paragraph explains the setup that has been used for our own recordings
of ground truth data that much better fits the purpose the system has originally been
designed for.

Figure 6.3: Lukotronic AS200 motion capture system. Active infrared
marker chain with transmitter and trinocular infrared camera sys-
tem for 3D marker tracking.

104

6.2 Evaluating the Body Pose Tracking

Recording Setup and Con�guration

For our experiments, a Lukotronic AS200 Motion Capturing System has been used to
record the marker information, cf. Fig. (6.3). This system is comprised of an active
infrared marker chain with a transmitter that is attached to the subject and a trinocular
infrared camera system that tracks the markers and calculates the according 3D informa-
tion. Each marker sends out infrared pulses with a unique code sequence and therefore
can be identified unambiguously. The design of the markers restricts the visibility to a
cone angle of approximately 170◦. The maximum allowed distance from the camera is
12m, in the range of 1–5m, the manufacturer assures a maximum error of 0,1mm. The
system is able to record marker data at a framerate of 60Hz. It is self-calibrating, which
means that the marker coordinates are output in a metric world coordinate system.
Simultaneously, images have been recorded using a Sony DFW-V500 firewire camera at
15Hz on a different laptop. Both systems recorded timestamps for each frame.

All recordings have been made in a lab environment under natural lighting with the
aid of two photo lamps. Prior to the actual recording sessions we captured multiple
calibration images.

Figure 6.4: Marker positioning for
ground truth recording. (a) Marker po-
sitions as proposed by the H-Anim
specification. (Image found in [59]) (b)
The marker positioning as used for
our experiments. For each arm, one
marker is placed on the shoulder, one
at the elbow and two at the wrist to
better handle occlusions. The markers
on the left arm are highlighted.

(a) (b)

We used a total of eight markers to record the pose of the human that have been
positioned as follows: For each arm, one marker is placed on the shoulder, one at the
elbow and two at the wrist at opposite sides of the arm. This allows a better coverage
in terms of visibility and more robustness against occlusions which are quite common
while gesturing.

Contents of the Corpus

The corpus is comprised of the data of two subjects. For each of them, multiple streams
have been recorded with a total of approximately 11.000 images and the according
marker trajectories. The subjects repeatedly perform various actions and different types
of gestures, including pointing at objects in the scene, raising both arms outstretched

105

6 System Evaluation and Optimization

(for calibration purposes) and deliberately occluding body parts. For some streams,
the person has been standing still in front of a black curtain, cf. Fig. (6.5(a)), for others
the person has been moving around in a cluttered lab environment, cf. Fig. (6.5(b)).
For some streams, the subjects changed their clothes to provide a wider variety of
appearances throughout the corpus. These recordings have been cut into multiple
sequences with 30–150 frames each. A single sequence holds a single gesture, like
pointing at one object or raising the arms.

(a) (b)

Figure 6.5: Sample images from
the ground truth data set. (a)
The author of the thesis
pointing at an object in the
scene. (b) The second subject
presenting his dancing skills.

Fig. (6.6) displays the recorded marker data for one stream containing multiple gestures.
Note that the wrist markers on the left arm (green and pink trajectories) are not visible
all the time due to occlusion and visibility constraints.

Figure 6.6: Marker trajectories. 3D trajectories
recorded from the eight active infrared markers for
a person performing pointing gestures to multiple
targets.

Synchronization and Calibration

Images and marker data have been recorded independently on two separate laptops
at different framerates, as depicted in Fig. (6.7). Although each image and each set of
marker positions is annotated with a timestamp, the internal clocks never run absolutely
synchronously and a later synchronization is required for a unique mapping of images
and marker data. Furthermore, the two data streams need to be aligned in order to
find a common starting point. Thus, two parameters for the temporal scaling ak ∈ R

and the temporal offset bk ∈ R have to be determined. As the marker data is (almost)
never recorded at the very same moment the image is captured, the position information

106

6.2 Evaluating the Body Pose Tracking

Figure 6.7: Image and marker framer-
ate. The camera provides images at
a framerate of 15Hz, the marker data
is recorded at a four times higher rate
of 60Hz.

needs to be interpolated to reconstruct the correct point in space at the time of the image
recording. Although making a small error here, we choose a linear interpolation to be
sufficient for our needs. A polynomial regression or spline interpolation would provide
more exact results, especially when observing accelerated motions.

We used a semi-automatic technique for synchronization, similar to Black’s method
applied on the HumanEva-I dataset, see Sec. (6.2.1) for reference. Camera calibration
using the Matlab Camera Calibration Toolbox of Jean-Yves Bouguet2 with a standard
checkerboard pattern yields an estimation for the intrinsic parameters of the camera k:
The focal length f

k
∈ R2, the principal point ck ∈ R2 and the radial distortion coefficients

kk ∈ R5. To calibrate the camera with the marker tracking system, we further need to
know the relative orientation rk ∈ R3 and the translation vector tk ∈ R3 representing the
extrinsic parameters.

100 150 200 250 300 350 400

100

150

200

250

300

350

400

450

width [px]

he
ig

ht
 [p

x]

manually labeled marker position
projected marker position

(a)

250 300 350 400 450 500
700

800

900

1000

1100

1200

1300

1400

image frame

m
ar

ke
r

in
de

x

manually labeled correspondences
linear regression

(b)

Figure 6.8: Determining spatial and temporal parameters for synchronization. (a) Manually labeled correspon-
dences (green boxes) for the 3D markers. (b) linear regression yields the temporal parameters ak and bk.

Our synchronization technique uses the Nelder Mead Simplex algorithm, see Sec. (3.2.1),
to determine a usable combination for the free temporal and spatial parameters. For the
3D markers Γ(3)

t , t ∈ {1 . . . T(3D)}, their position in the 2D image Γ(2D)
t , t ∈ {1 . . . T(2D)}

has been manually labeled for a number of reference images, preferably such with
motion present as this makes the following synchronization less ambiguous. Synchro-
nization and calibration can be achieved simultaneously by minimizing the Euclidean

2http://www.vision.caltech.edu/bouguetj/calib_doc/

107

http://www.vision.caltech.edu/bouguetj/calib_doc/

6 System Evaluation and Optimization

0 100 200 300 400 500 600 700 800
0

10

20

30

40

frame

ve
lo

ci
ty

 [p
x/

fr
am

e]

ground truth marker
manually labeled marker

0 100 200 300 400 500 600 700 800
0

5

10

15

20

frame

er
ro

r
[p

x]

Figure 6.9: Error of the synchronization over time. The plot at the top displays the magnitude of the markers’
velocities calculated by differencing adjacent position values. The bottom plot displays the synchronization
error for all values where both markers and tracking results are available.

distance f (Γ(3D)
t ; rk, tk) ∈ R2 between the markers and their labeled image position:

argmin
rk ,tk ,ak ,bk

T(2D)

∑
t=1

[
δ(t; ak, bk) · ||Γ

(2D)
t − f (Γ(3D)

t∗ak+bk
; rk, tk)||2

]
. (6.1)

The result of the minimization yields a unique mapping of the marker positions recorded
in 3D space to the images. Note that the 3D marker position Γ(3D)

t∗ak+bk
is linearly interpo-

lated, to incorporating the previously mentioned temporal interpolation, which means
that ak and bk are being real-valued. The δ(·) function serves as a domain test, to ensure
that only indices are used for which both, marker data and images, are present.

δ(t; ak, bk) =

0 if t · ak + bk > T(3D)

0 if t · ak + bk < 1
1 otherwise

(6.2)

Initial values for rk, tk, ak and bk are being chosen by hand to roughly resemble the
configuration of the experimental setup. The results of the optimization are shown
in Fig. (6.8). The captured 3D marker positions nicely fit to the manually annotated
positions. A linear regression yields the offset to find a common starting point and
the temporal scaling factor. Using these information, a new list of interpolated marker
positions for each image frame can be calculated and used for later evaluation.

When viewed over time, the synchronization error displayed in Fig. (6.9) mostly stays
below 5 pixels. Higher errors of up to 17 pixels occur only in situations where the marker
is more or less rapidly moved. At first sight this could be taken as a result of our inexact
interpolation. But a closer examination of the raw marker data reveals that the pose
always lags behind the position as observed in the image. So either the camera changes

108

6.2 Evaluating the Body Pose Tracking

its framerate when observing motion or the motion capturing device sometimes has
problems with the exact timing during motions. But for calling this behavior an error,
the effect was too weak too momentary and thus has been disregarded for the further
experiments.

6.2.2 Error Measure De�nition

To judge the exactness of the tracking results, a measure is needed that expressed the
error between the estimated body pose from the tracking framework and the recorded
ground truth.

The error measure that is used for this evaluation follows the proposal of Bălan et al. [18].
It is based on the Euclidian distance between virtual markers on the body model and
the real markers from the motion capturing system. In the following, we will briefly
discuss the definition of virtual markers with respect to the body model as defined
in Sec. (5.3.1). Thereafter, the definition of the error measure is presented.

For each real marker of the motion capture system, a corresponding virtual marker id
defined at the same position as the real marker was placed. The measure is then based
on the mean distance for all markers, see also [144] for a more in-depth examination of
different measures for body tracking evaluation. Let M the number of virtual markers
on the estimated body model X̂ = {x̂1, x̂2, . . . , x̂M} of the tracking system, and accord-
ingly the markers X = {x1, x2, . . . , xM} of the ground truth. For an estimated posture
X̂, the distance to the ground truth posture X can be given as the mean absolute error
of the corresponding markers by

D(X, X̂, ∆) =
M

∑
m=1

δm||xm − x̂m||
∑M

i=1 δi
. (6.3)

As already seen in Fig. (6.6), the presence of all markers can not be ensured for every
timestep due to occlusions and visibility constraints. We define a set ∆t = {δ1, δ2, . . . , δM}
of selection variables that defines for each marker xi whether the data is valid δi = 1 or
not δi = 0 at the current timestep t.

For a sequence of images with the length T, the mean error over all tracked body
postures can be determined as follows:

µseq =
1
T

T

∑
t=1

D(Xt, X̂t, ∆t). (6.4)

6.2.3 Evaluating the Accuracy of the Body Pose Tracking

As a first step, we are interested in the overall exactness of the body tracking framework.
It is commonly known that the employed kernel particle filtering technique shows better
results for a large number of particles, as with more particles, the parameter space can
be covered more densely. But still, using double the number of particles we still do not

109

6 System Evaluation and Optimization

anticipate double the exactness for two reasons: First, in the highdimensional parameter
space, twice as many particles do not double the exactness of the search process. Sec-
ondly, we are employing a twofold optimization process which uses alternating particle
filtering and means shift steps. It is the effect of these two statements what we are trying
to document with the following evaluation.

E�ect of the Number of Particles on the Accuracy

This evaluation shows the effect of changing the number of particles available for the
kernel particle filtering process. We used numbers of 100, 250, 500, 750 and 1000
particles. As the KPF is a probabilistic approach, the results vary for each iteration.
Although we expect this effect to abate the more particles are used, it may be well
noticeable for a small number of particles. Therefore we used 10 separate runs for
each parameterization and evaluated the mean error and the variance. For each run, the
same model pose is used for initialization. It has been manually determined to resemble
best the ground truth marker configuration, much like Black and Sigal did to generate
ground truth body poses. The mean shift is set to use a fixed number of three iterations.
The parameters for scaling the cue likelihood transfer function σc and the importance
reweighting factors λc of the image cues c have been set to a configuration known to
track robustly as follows. Edge cue: σE = 1, 0, λE = 1, 5; Ridge cue: σR = 1, 5, λR = 1, 0;
Mean cue: σM = 35, 0, λM = 0, 5; Skin cue: σS = 0, 3, λS = 1, 0.

Figure 6.10: Pose error over time. Results from se-
quence A containing three pointing gestures with
increasing difficulty. The last gesture produced the
highest error.

For the experiment, two sequences from the corpus have been used. The first, sequence
A, has a length of 161 frames. The subject performs three pointing gestures with the
right arm towards objects positioned in the scene. This sequence is expected to be easier
to track as no large self-occlusions occur. Sequence B, comprised of 118 images, is more
difficult, as the subject performs two pointing gestures with the left arm towards objects
right in front of the person. Thus the arm points directly towards the camera which is
more ambiguous and temporarily occludes other body parts.

110

6.2 Evaluating the Body Pose Tracking

particles sequence A sequence B
µ±σ µ±σ

100 111,44±31,44 140,37±53,94
250 90,20±16,40 99,57±38,05
500 83,75±19,58 94,57±35,71
750 81,53±19,21 89,23±38,97
1000 78,19±17,17 88,76±32,9

Table 6.2: Effect of the number of particles on the tracking
accuracy. Mean error and variance are given for two
sequences while varying the number of particles.

To better understand the behavior of the tracking algorithm let us have a look at the
results for the tracking error of sequence A plotted over time, as displayed in Fig. (6.10).
Here, the system uses 250 particles. Shortly after initialization the error is smallest.
That was expected, as the initial body pose was chosen to minimize the error. After a
few frames the error stabilizes at a value of approximately 90mm, which represents the
exactness that the algorithm is able to achieve in average. The three gestures pose an
increasing difficulty to the tracking framework. For the first two gestures, the tracking
error shortly raises during the translational movement of the arm. During the holding
phases, however, it falls back to normal values. In the third gesture, the arm points more
towards the camera. Here, the tracking algorithm is not able to recover the pose exactly,
which results in a high position error of up to 128mm. Even though the tracking is not
that exact, it is able to recover as soon as the disadvantageous pose is abandoned.

Figure 6.11: Marker error on a logarithmic scale.
When plotted on a logarithmic scale, the mean
error shows a linear behavior for 250 and more
particles.

100 200 300 500 700 1,000
40

60

80

100

120

140

160

180

200

particles

er
ro

r
[m

m
]

sequence A
sequence B

Now let us inspect the change of the error for different numbers of particles used.
Tab. (6.2) lists the results for the two sequences with five parameterizations each. The er-
ror obviously decreases with more particles available to cover the search space. Fig. (6.11)
reveals an even more interesting detail. For 250 particles and more, the error is linear on
a logarithmic scale. This means for doubling the number of particles – and by that also
doubling the calculation time of the algorithm – the error decreases only by a fraction.
Here, the error for 500 particles is a mere 8% lower than for using 250 particles. Even
using 1000 particles instead of 250 only lowers the error by 13% using up four times the
computational resources. Note that these numbers are valid only for the current config-

111

6 System Evaluation and Optimization

uration of the system and the current image sequence. The general behavior, however,
stays the same and has been observed throughout the whole evaluation and also became
obvious during the calculations performed for other projects. The even bigger errors
for 100 particles can be explained by the very sparse coverage of the parameter space
that results from such a low number of points distributed in a 14-dimensional space.
Assuming the particles are used to independently sample the individual parameter
dimensions, this number would just suffice to put 7 sample points for each parameter.
Although this example is constructed and the truth is that the particles can not be seen
as being that independent from each other, the unexpectedly high error suggests that
the algorithm often fails to find the correct pose. The similarly higher variances further
support this claim.

Our findings coincide with the results that Bălan, Sigal and Black [18] published in
2005. They also claimed a logarithmic relation between the tracking exactness and the
number of particles, although their optimization process uses a different particle filtering
technique. The achieved tracking accuracy, however, is hard to compare. Bălan et al.
used a multi-camera setup and they were only able to reliably track with at least three
camera views for a longer period of time without losing tracking. For three cameras, the
error can be constantly kept at 50mm or less. For the same reason it was not reasonably
for us to use the HumanEva-I dataset to evaluate the body tracking framework. Stable
observation periods would have been too short to provide meaningful results.

Summarizing, the results demonstrate that the kernel particle filter allows tracking of
human motions in cluttered environments as long as no large self-occlusions occur. It
works best for scenes with a simple background and for motions that do not produce
ambiguous results. Consequently, with a standard camera and a laptop computer
mounted onboard a mobile robot, our approach can be used for gesture recognition
to improve human-robot interaction.

6.3 Automatic Parameter Optimization for Body Pose Tracking

The huge number of variables in the model and in the algorithm and their mutual
dependencies complicate applying the body tracking system to new scenarios. In prin-
ciple, the effect of all parameters are well known and can be adjusted precisely. In
practice, it has shown that the same set of parameters does not always perform equally
well in different scenarios and for different system configurations. The algorithms to be
presented in this section have been implemented by Hermes and are described in more
detail in [66]. The following explains how the principle of evolutionary computation can
help to formulate a method to optimize the existing body tracking frameworks given an
optimization criterion. Let us make this clear with two examples.

First, imagine a master student developing a new cool feature to be integrated into the
tracking framework, for instance a texture descriptor. He develops and tests the feature
on its own, it performs well and provides a robust segmentation between foreground
and background. It is integrated into the tracking framework and at the next live
demonstration a robust tracking is almost impossible. What has happened? The new

112

6.3 Automatic Parameter Optimization for Body Pose Tracking

feature has been tested extensively on the video the student had used all the time and
he also found a working parameterization for this one videos. But he never realized the
fact that the outcome depends on the appearance of the scene and that the individual
features might combine quite differently when applied to a new scenario. The reliability
of the cues strongly depends on the appearance of the scene. The skin segmentation, for
instance, sometimes produces false positives for wooden furniture, which then distracts
the tracking process. You could blame this to be an error of the skin segmentation
module, but the fact is that a perfect functioning of all cues is more an exception than the
rule. Here, the system could use a learning phase to try out the newly integrated feature
on a large pool of collected videos, which resemble a widespread variety of different
scenarios, lighting conditions, cameras used, people observed and so on. Instead of
finding one optimal parameterization for the tracking framework, the optimization
method could help to find a set of parameters that generates robust results for many
different scenarios.

Second, imagine that the body tracking system has been developed as a stand-alone
component and is now planned to be integrated on a mobile robot with limited compu-
tational resources but which offers a clear scenario. Here, the optimization method can
take the functioning algorithm and optimize its parameters to find a suitable trade-off
between accuracy and computational complexity.

These examples make clear that we have to deal with a multivariate problem. Even if
we assume that a single parameter has a big impact on the accuracy, for example the
number of particles as presented in Sec. (6.2.3), some parameters exhibit a much more
unpredictable behavior and are strongly interdependent, for instance the cue likelihood
transfer function scaling parameters σc and the importance reweighting factors λc of the
image cues.

6.3.1 Genetic Algorithms for Parameter Optimization

Genetic algorithms have shown to perform well on multivariate problems with strong
nonlinearities in the parameters. We will now investigate how the body tracking as
a system can be introduced as the subject of optimization to a genetic algorithm. An
instance of the tracking system will therefore function as an individual of the genetic
algorithm, the genetic material is determined by the parameters of the tracking system.
A generation of individuals will therefore be composed of a number of instances of the
body tracking system.

De�ning a Fitness Function

First, we need to define a fitness function that represents how well the body pose
tracking system – our individual – performs at the given task. The genetic algorithm
expects the fitness value to increase with better performance and to lower otherwise.
We intend to use the ground truth measure µseq presented in Eqn. (6.4) as the basis for
the fitness value. From the examples we learned that a second figure to be taken into

113

6 System Evaluation and Optimization

account is the runtime of the tracking process. In is based on measuring the time τt

needed to estimate a body pose at the time t. For a sequence with the length T, this
leads to a mean time per frame

ωseq =
1
T

T

∑
t=1

τt. (6.5)

Unfortunately, both µseq and ωseq and thus also Fµ,ω(x) behave exactly the opposite than
required, as a lower error means a better tracking result and a lower processing time
means better performance. Therefore, we first need to transfer these measures into a
fitness value. A simple negation of µseq and ωseq would correct the gradient direction,
but we also must obey the constraints selection operators, which demands the selection
probability to be greater than zero. We chose a nonlinear scaling using a sigmoidal
transfer function to best fit the demands of the genetic algorithm concerning the fitness
function. The logistic function σa(x) – also known as the basic form of the neuron
activation function used in artificial neural networks – offers an almost linear projection
for values close to zero (σ′(0) = 1) and an asymptotic behavior for large input values.

σa(x) =
1

(1 + e−a·x)
(6.6)

σ′a(x) = a · σa(x) · (1− σa(x))

We now search for a function scR(x) following the above conditions and with the
characteristics

scR(0) = R ∧ sc′R(0) = −1 ∧ scR(∞) = 0. (6.7)

Here, R defines the maximum value of scR(x). The following function fulfills the
requirements of a transfer function:

scR(x) = 2R · (1− σ 2
R
(x)), (6.8)

where
µ̃seq = scR(µseq) (6.9)

represents the fitness value of the measure µseq, the fitness value ω̃seq is calculated
accordingly.

Using Eqn. (6.8), low values of the measures µseq and ωseq are bring transfered into high
fitness values, while large error values and a long processing time leads to low fitness
values.

The two fitness criteria µ̃seq and ω̃seq can be used separately, e.g.for only optimizing the
accuracy and ignoring the runtime, which then would be a uni-objective optimization
problem. If both criteria are to be optimized, we talk about a multi-objective problem,
which can be handled by defining a new criterion F̃µ̃,ω̃(x) that combines the fitness
values of µ̃seq and ω̃seq for a given set of parameters x as

F̃µ̃,ω̃(x) = αF · µ̃seq(x) + (1− αF) · ω̃seq(x), (6.10)

114

6.3 Automatic Parameter Optimization for Body Pose Tracking

−5 0 5
0

0.5

1

x

σ a=
1(x

)

(a)

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

x

sk
al

R
=

10
0(x

)

(b)

Figure 6.12: Fitness scaling function. (a) The logistic function σa(x) offers the characteristics needed by the
operators of the genetic algorithm. (b) The final scaling function scR(x) can be used to transfer the results
of the ground truth measure into fitness values.

where the weighting coefficient αF ∈ [0, 1] determines the importance of the two mea-
sures. A low value of αF emphasizes the time criterion and forces the optimization to
find a parameterization with a low computation time, while big values of αF put the
focus more on the exactness of the tracking. Most interesting are mid-range values,
as they represent a trade-off between efficiency and accuracy. We found values of
αF ∈ [0.5, 0.8] to provide the reasonable results.

Computation Framework for a Genetic Algorithm

Now having a fitness function at hand that rates the performance of the body pose
tracking, it can be used as the objective function for the optimization problem of finding
the set of parameters that maximizes the fitness values. For the search process, we
employ a genetic algorithm that is based on a series of generations consisting of evolving
individuals. Here, each individual represents an instance of the body tracking frame-
work. To determine its fitness for a given parameter vector, the tracking framework has
to be evaluated on one or multiple sequences if images, comparing the tracking results
with the marker-based ground truth. The genetic algorithm then uses the fitness values
to breed a new generation using the mutation and selection operators while aiming at a
higher mean fitness of the population.

In this optimization process, the body pose estimation with the tracking framework is
the most time consuming part. For a single individual, a whole sequence of images
has to be tracked, which can take several minutes to hours, depending on the length
of the sequence and on several parameters that can be changed during optimization,
as, for instance, the number of particles. Each generation again consists of a number
of individuals each with a unique set of parameters. The advantage is now that these
individuals are independent from each other and that the calculation can therefore easily
be parallelized to speed up the total runtime of an experiment. We chose a client server
architecture as the basis for the implementation of the computation framework that
allows the distribution of the time-consuming tracking runs to multiple machines in a

115

6 System Evaluation and Optimization

local network of Linux machines.

The Server

The server provides a user interface to set up new experiments and is responsible for
the administration and distribution of the upcoming calculation tasks. It holds a list
of the machines currently available as clients and monitors them. Communication is
based on XML-messages over the TCP/IP-network protocol. It allows to send an receive
textual information as well as the exchange of serialized objects to ease the integration
process of the different software modules. The server collects and integrates the results
from the clients into the optimization procedure. As soon as the fitness values for all
individuals of a generation are completely calculated, the genetic algorithm calculates
a new generation of individuals whose parameter sets are again sent out to the clients.
The server schedules the calculation tasks such that the results can be obtained as fast
as possible. If one client does not complete the calculation of the tracking process for a
long time, for instance due to a malfunction, the server submits the according parameter
set to a different machine. If for a specific set of parameters, the clients never report back
any results, the server assumes that this specific combination of parameters is prone to
enforce an error – e.g. a deadlock – on the clients. The individual is then neglected in the
genetic algorithm as a single individual only account for a small piece of information in
the optimization process.

The Client

Each client communicates with the server, receives new parameter and image data
and stores them locally. It then runs the tracking procedure while monitoring the
computation time. Finally , it calculates the ground truth error, and stores and reports
back the results to the server. Calculations on each client machine are run with a low
priority in order not to disturb the local user. At wish of the user, calculation can also be
totally stopped and the client can be excluded from the list of available machines. The
client also offers the possibility to remotely monitor the progress of the tracking process.
Each client sets up a new virtual desktop on which the IceWing tracking instance is
started and that can be exported via a virtual network client to be viewed remotely,
e.g. from the server machine.

Normalization of the Time Measure

For a faster completion of the genetic algorithm optimization process, using a big
number of machines is desirable. Remembering the second optimization criterion, the
time constraint that puts us in a difficult situation. Measuring the total processing time
to complete a run of the tracking algorithm may not be the best choice to calculate this
measure, as the result would then mainly depend on the performance of the machine.
Using a slow machine, the tracking inherently takes longer than on a fast machine.

116

6.3 Automatic Parameter Optimization for Body Pose Tracking

10 20 30 40 50 60 70
0

5

10

15

Frame

∆
t [

s]

10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

Frame

∆
T

 [m
i]

machine A
machine B

machine A
machine B

Figure 6.13: Normalization of the time measure. (top) Time measurements in seconds per frame for two
machines using the same parameter set. Obviously, machine B is faster. (bottom) Normalizing the
measurement reveals that both machines needed approximately the same number of instructions. The
values are given in million instructions per frame.

We use the Whetstone-benchmark after Curnow [32], that repeatedly calculates a num-
ber of different arithmetic operations and averages the needed time to a MIPS-value
(millon instructions per second) that represents the speed of the machine. This benchmark
is run on each client and the time measurement is then normalized using the bench-
mark result. Fig. (6.13) shows the success of the normalization. Even though the two
machines have different speeds, in absolute they need approximately the same number
of operations to complete the tracking. Note that the probabilistic tracking technique
is based on random processes and thus the computation time may vary for repeated
runs of even for the same set of parameters. Also, fluctuations due to network traffic,
hardware interrupts and processes of other user can not be regarded reliably. The only
way to avoid mistakes due to outliers is to repeat the tracking a number of times and
use the average or median measurement. 3-5 runs have already shown to be sufficient
to mask out the worst effects, but that still means a threefold computational effort.

6.3.2 Parameter Optimization Results

To better understand the functioning of the optimization framework we will first present
it as a tool to calculate a sequence of parameterizations without applying any optimiza-
tion procedure. As a response to the two examples from the beginning of this section,
we will begin with optimizing the parameters such to produce accurate results, secondly
we will try to find a parameterization that represents a good trade-off between speed
and accuracy.

117

6 System Evaluation and Optimization

Accuracy for Di�erent Numbers of Particles

Similarly to the evaluation in Sec. (6.2.3), we will use the computation framework to
perform a series of tracking runs while changing the number of particles employed. As
the calculation is not deterministic, the measurement for each number of parameters is
repeated 30 times, resulting in a total number of 750 tracking runs for the evaluation
displayed in Fig. (6.14). As expected, the mean error decreases for a bigger number
of particles. The increase of the standard deviation can be explained by the strong
influence of the random effects in the tracking module. For a low number of particles,
the tracking is never able to achieve good results, while using more particles performs
better in average, but few runs using 1000 particles still perform worst than the best
results for 100 particles. However, this could be an effect of the specific image sequence
that has been used for this evaluation. Substantial statements could only be made if
multiple image sequences posing different challenges to the tracking module were used,
which was not possible due to the long processing time of the tracking framework.

0 100 200 300 400 500 600 700 800 900 1000

100

150

200

250

300

particles

er
ro

r
[m

m
]

Figure 6.14: Effect of changing the
number of particles. For each param-
eterization, tracking is carried out
30 times. The mean value (blue)
clearly shows a higher accuracy
when using many particles. The
standard deviation (red) is also in-
creasing.

Note that Fig. (3.1) has been created using the same technique. It displays the ground
truth error values for varying the two parameters λR and σR of the ridge cue. The blue
valley-like area represents good parameter combinations. Interestingly, a combination
of λR = 1.0 and σR = 1.5 is almost equal to λR = 2.0 and σR = 3.0 in terms of a low error,
but the latter combination can be expected to generalize better for other scenarios, as it
offers a bigger margin for the two parameters and thus should perform more robustly.

Determining Operator Parameters with a Benchmark Function

After having verified the functionality of the computation framework we can now exam-
ine the optimization process for correct functioning. A benchmark function providing
artificial and reproducible fitness values is used for testing. In contrast to the tracking
framework, the benchmark function is very fast to calculate which eases trying out
different setups for the parameters of the optimization framework. Exemplary, we will

118

6.3 Automatic Parameter Optimization for Body Pose Tracking

here discuss the parameter for the mutation probability in more detail which has a
default value of pm = 0.01.

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2 −2

−1

0

1

20

50

100

150

200

250

300

350

400

x
2x

1

f sc
(x

)

(a)

0 20 40 60 80 100
250

300

350

400

generation

m
ea

n
fit

ne
ss

 o
f t

he
 b

es
t i

nd
iv

id
ua

l

p
m

 = 0.01

p
m

 = 0.05

p
m

 = 0.1

(b)

Figure 6.15: Benchmark optimization of the genetic algorithm. (a) Fitness values of the scaled Levy Nr. 5 test
function fsc(x). (b) Optimization by varying the mutation rate pm.

The benchmark function we employed for testing is the two-dimensional function Levy
Nr. 5 [121], which is scaled to a fitness function fsc as follows:

f (x) =
5

∑
i=1

[i · cos ((i− 1)x1 + i)] ·
5

∑
j=1

[j · cos ((j + 1)x2 + j)]

+ (x1 + 1,42513)2 + (x2 + 0,80032)2 (6.11)

fsc(x) = − f (x) + 220 (6.12)

The scaled Levy-function expects a two-dimensional parameter vector x = (x1, x2)T, its
response is depicted in Fig. (6.15(a)) for the range of input values −2 ≤ x{1,2} ≤ 2. It
features a number of local maxima that easily distract the optimization from the correct
global maximum x∗ at (−1.31,−1.42)T with a value of fsc(x∗) = 396.14.

A population size of 10 individuals with randomly chosen positions for initialization is
used for the genetic algorithm. The mentioned range −2 ≤ x{1,2} ≤ 2 has also been used
as boundary constraints. For the two-dimensional parameter space, we deliberately
chose a small number of individuals to simulate the sparse distributions of particles
in the later highdimensional parameter space. Three different values for the mutation
probability pm = {0.01, 0.05, 0.10} are evaluated. Each optimization has been repeated
30 times for a duration of 100 generations. For each generation, the fitness value of the
best individual has been chosen and is averaged over the number of repetitions. The
results are depicted in Fig. (6.15(b)).

It shows that for a mutation rate of pm = 0.01 the optimization almost gets stuck and
converges only slowly. Both of the other values perform much better. It is remarkable
that doubling the mutation rate from pm = 0.05 to pm = 0.10 hardly shows any effect
on the convergence behavior and produces similar results. Although pm = 0.10 leads to
a slightly higher final fitness, we chose pm = 0.05 for further evaluations as it produced
slightly better results in early stages of the optimization process.

119

6 System Evaluation and Optimization

(a) (b) (c)

Figure 6.16: Streams used for parameter optimization. Some of the occurring challenges are (a) partial
occlusions, (b) pointing gestures, (c) wide movements.

Optimizing for Accuracy

The previous evaluations have shown the functionality of the genetic algorithm. The
following evaluation aims at simultaneously optimizing multiple parameters of the body
pose tracking framework. The parameters to be optimized and the boundary constraints
are displayed in Tab. (6.3). The experiment is divided in two parts. In a first step, a
general parameter combination is found, for which in a second step selected parameters
are further refined.

parameter min max
particles 1 2000
meanshift iter. 1 10
Hh 0,1 10
σE 0,01 3,0
σR 0,01 3,0
σM 0,1 500,0
ρM 0,0 200,0
σS 0,01 5,0
λE 0,01 10,0
λR 0,01 10,0
λM 0,01 10,0
λS 0,01 10,0

Table 6.3: Boundary constraints for the body pose tracking parame-
ters. The parameters to be optimized by the genetic algorithm
have direct influence on the image cues calculating the pose
likelihoods.

This experiment is reduced to use only a single image sequence, Fig. (6.16(a)) depicts
an example image. The decision to base the optimization on a single sequence has been
made to compensate for the long processing time. Furthermore, we are interested in a
coarse estimation of suitable parameters, a more detailed examination will be carried
out in the next experiment.. The genetic algorithm is set up to use a population size of
20 individuals that are allowed to develop for 50 generations. For a single individual
the calculation of the fitness value is not repeated to reduce the workload. Still, the two
presented experiments presented in this paragraph took several days to complete using
all available machines (20 or more) in our working group. As we deliberately failed

120

6.3 Automatic Parameter Optimization for Body Pose Tracking

to define a break condition, the optimization always is carried out for the maximum
number of generations unless the researches who conducts the experiments stops it
premature. The best individual that has ever existed in any generation will then be used
as output providing a new optimized set of parameters for the tracking framework.

parameter mean value
particles 1170,24 ± 64,40
meanshift iter. 4,17 ± 0,65
σE 1,31 ± 0,39
σR 0,95 ± 0,07
σM 143,14 ± 67,02
ρM 82,32 ± 11,14
σS 2,80 ± 0,52
λE 3,81 ± 0,62
λR 7,66 ± 0,36
λM 7,42 ± 0,45
λS 6,82 ± 0,86

Table 6.4: Best parameter configuration. Averaged
from all individuals of generation 27.

5 10 15 20 25 30 35 40 45 50
150

200

250

300

350

400

450

500

550

generation
er

ro
r

[m
m

]

Figure 6.17: Development of the parameter optimiza-
tion. Mean error for generation 27: 244.13mm.

The development of the average error µseq for all individuals is depicted in Fig. (6.17).
After 30 generations, some kind of saturation effect seems to begin, possibly due to a
local minimum. The best average result is produced by generation 27 with a mean error
of 244.13mm, the averaged parameters for this generation are shown in Tab. (6.4).

As we learned from the evaluation in Sec. (6.3.2), using only a single image sequence
bears the risk of losing generalizability. Therefore a second experiment is set up to use
three sequences for the parameter optimization. They comprise postures and gestures
of varying difficulty, while the overall appearance has been kept equal. Example im-
ages from the sequences are shown in Fig. (6.16). This second parameter optimization
experiment uses 50 individuals per generation and the calculation of the fitness values
is repeated 9 times for each individual. As for one fitness calculation, the three streams
are not all evaluated in sequence but one is randomly chosen by the optimization frame-
work, repeating the calculation 9 times means that each sequence is in average repeated
three times for one individual, although the actual number may vary. In contrast to the
former experiment, we chose only the cue fusion parameters σc and λc to be optimized,
which slightly reduces the parameter space and also takes out the number of particles
as a free parameter, which otherwise surmounts the other parameters concerning its
influence for the final result. Therefore, a fixed number of 1000 particles and three mean
shift iterations has been used. The results from the last experiment are used as initial
values for the parameters.

Fig. (6.18) depicts the development of the error during optimization. As we already
chose an optimized set of initial parameters, convergence is much slower than for the
former experiment. The lowest error of 177.10mm can be found for generation 46.
However, this error value only partially reflects the performance of the new param-

121

6 System Evaluation and Optimization

parameter mean value
particles 1000 fixed
meanshift iter. 3 fixed
σE 1,56 ± 0,44
σR 1,78 ± 0,28
σM 362,43 ± 64,62
ρM 101,71 ± 18,54
σS 2,77 ± 0,61
λE 6,16 ± 1,38
λR 5,57 ± 1,57
λM 5,33 ± 0,91
λS 5,04 ± 1,24

Table 6.5: Best parameter configuration using three
sequences. Averaged over all individuals of gener-
ation 46.

10 20 30 40 50 60
120

140

160

180

200

220

240

260

280

300

generation

er
ro

r
[m

m
]

Figure 6.18: Error of the parameter optimization using
three sequences. Mean error for the best genera-
tion # 46: 177.10mm.

eter combination, as it has been determined from three sequences each with its own
challenges. Tab. (6.6) details the achieved accuracy for each sequence. The results have
been obtained by averaging over 30 calculations of the tracking error for each sequence
using the resulting parameter set as shown in Tab. (6.5).

sequence error [mm]
A 94,43 ± 14,22
B 193,83 ± 32,41
C 200,48 ± 123,18

Table 6.6: Error for the three streams in detail. While the opti-
mization has been successful for sequence A, the other two
sequences still produce a higher tracking error with the same
set of parameters, which shows the varying difficulty.

Optimizing for Speed and Accuracy

For the last experiment concerning the automatic parameter optimization, we will ex-
plore the effect of integrating an additional time criterion in the fitness function F̃µ̃,ω̃(x),
as described in Eqn. (6.10). The scaling factor for the influence of the temporal criterion
has been set to α = 0.7. The parameters to be optimized here are those with the greatest
impact on the total calculation time of the tracking algorithm, namely the number of
particles, the number of means shift iterations and the kernel bandwidth of the mean
shift. The last two parameters are tightly coupled and are therefore both chosen for
optimization. As before, the optimization has been performed using the three sequences,
the population size is 20, and the calculation of the fitness values is also repeated 9
times for each individual. The remaining parameters are set to the optimal values as
determined by the last experiment.

The results for the optimization combining the spatial and temporal criteria are quite
surprising. Even though we initialized this optimization run with already optimized
parameters, a slight improvement is still visible, especially for the first few generations,
see Fig. (6.19). After that, the search process seems to drift away from the local maximum

122

6.3 Automatic Parameter Optimization for Body Pose Tracking

parameter mean value
particles 749,09 ± 47,56
meanshift iter. 1,27 ± 0,55
Hh 5,06 ± 1,34
σE 1,56 ± fixed
σR 1,78 ± fixed
σM 362,43 ± fixed
ρM 101,71 ± fixed
σS 2,77 ± fixed
λE 6,16 ± fixed
λR 5,57 ± fixed
λM 5,33 ± fixed
λS 5,04 ± fixed

Table 6.7: Best parameter configuration combining spa-
tial and temporal criteria. Averaged over all individ-
uals of generation 59.

5 10 15 20 25 30 35 40 45 50 55 60
80

100

120

140

160

180

200

generation

er
ro

r
(c

om
bi

ni
ng

 s
pa

tia
l a

nd
 ti

m
e

cr
ite

rio
n)

Figure 6.19: Error of the parameter optimization com-
bining spatial and temporal criteria. Mean error for the
best generation # 59: 111.86. Note that the fitness
values have been back-transformed into the error
domain for better readability.

as the increase in both error and variance suggest. What happens here, is that the num-
ber of particles is steadily decreased which on the one hand results in a higher fitness
of the time criterion, but at the same time makes tracking much harder. Interestingly,
the optimization finds an better configuration in the later steps which also offers a low
variance. The mean error is even significantly lower compared to the previous results.

spatial criterion only spatial + temporal criterion
mean error [mm] time per frame [s] mean error [mm] time per frame [s]

sequence A 94,43 ± 14,22 4,46 ± 0,01 83,62 ± 12,57 1,97 ± 0,01
sequence B 193,83 ± 32,41 4,50 ± 0,02 196,55 ± 21,21 1,98 ± 0,01
sequence C 200,48 ± 123,18 4,46 ± 0,02 204,97 ± 141,64 1,98 ± 0,01

Table 6.8: Comparison of optimization results combining spatial and temporal criteria. Adding the time criterion
yields a comparable accuracy but twice the speed of the original parameter set. Values are averaged over
30 runs using the best parameter set. Results from Tab. (6.6) are repeated for a better comparability.

The biggest surprise, however, holds the evaluation of the runtime of this configuration.
The runtime is more than cut in half while the error stays almost the same. As before,
Tab. (6.7) is generated by averaging over 30 runs independently for each sequence. The
runtime measurement reflects the mean time the tracking framework needed for each
frame. The shorter runtime corresponds to the lower number of observations that had
to be carried out for each frame. The previous experiment used 1000 particles and three
mean shift iterations, totaling to 3000 observations per frame, the new setup proposes
749 particles ×1.27 mean shift iterations which makes a total of 951.23 observations. An
explanation for the good performance needing less particles than before can be found in
the kernel bandwidth Hh, which determines the scaling of the Epanechnikov kernel that
defines the neighborhood for the calculation of the mean shift vector. Its initial value of
1.0 has been scaled up to 5.04. This means that each particle has a bigger support which
means that the mean shift algorithm is enabled to function even for a sparse coverage of

123

6 System Evaluation and Optimization

the parameter space.

A question that may arise at this point is why this combination of a low number of
particles combined with a high accuracy has not been found before, as it obviously
even outperforms the result of the optimization without the time constraint which
we already thought to be optimal. In principle, all the parameters except the kernel
bandwidth were free to be optimized in the first experiment. But exactly this single
parameter seems to play an important role in combination with the functioning of the
mean shift in sparsely covered parameter spaces. It must be said at this point that all the
parameters in question were thoroughly tested even before the automatic optimization
had been created. A finding like this, or remember also the discovery of the more robust
parameter combination for the ridge cue as depicted in Fig. (3.1), only shows that some
of the interrelations between the parameters may be hard to predict or may be just a
case of “Never thought of that”.

Although a numerical comparison to related body tracking approaches stays difficult,
as the applied techniques differ in too many points, a calculation time of two seconds
per frame given the achieved exactness can be seen as a good result. As presented in
other parts of this thesis, the speed may be increased by using even less particles and
constraining the search space but that also lowers the accuracy. Chen et al. [24] presented
an investigation on parallelizing the body tracking using multiple cores. They applied
the annealed particle filtering method of Deutscher et al. [37] and optimized the code for
both, the vision processing and the particle filtering steps. The fastest version needed
3.2s per frame with 8 cores. For a single core, the computation time increased to 21s
per frame, but it must be mentioned that they used images from four cameras, which
naturally is more complex than using a single image. Bălan et al. [18] support this claim.
They achieved low tracking errors of 41mm in average on the HumanEva dataset, but
only for using three or more cameras. The error of 283mm they give for a single camera
must not be taken seriously, as it is just the result of the tracking drifting further and
further away from the correct position. Thus, a mean error between 80mm and 200mm
is still comparable taking into account the extreme challenges of a monocular tracking
that these approaches are not able to comply with. Many different approaches to achieve
a fast monocular tracking have been proposed recently [19, 103, 145], but they usually
rely on strong constraints concerning the appearance and the scenario or predefined
motions. The presented system, in contrast, has been designed to initially pose as few
constraints as possible. If a fast calculation is required, the system can be adapted by
introducing similar constraints and then using the automatic optimization procedure to
find an optimal parameter configuration under these constraints.

6.4 Evaluating the Automatic Initialization Procedure

The following section evaluates the automatic initialization procedure that has been
proposed for the body pose tracking algorithm as presented in Sec. (5.5). Given the
position of the face in an image, either the height of the person or the distance to the
camera can be determined due to the monocular setup. For the experiments we assumed
a fixed height for the person, thus only varying the distance during initialization.

124

6.4 Evaluating the Automatic Initialization Procedure

(a) (b) (c) (d)

Figure 6.20: Body tracking results using automatic initialization. Results for subjects B (a-b) and C (c-d) from
tracking with learned body model: (a) and (c) show the most likely poses, (b) and (d) the final tracking
results.

For evaluation, the system has been applied to image sequences of three persons point-
ing at objects on a table with 836 frames in total. Ground truth has been generated by
manually annotating the position of the hands and the head. To show the effectiveness
of the presented approach both for initialization and recovery from tracking failures, the
automatic initialization setup is compared to the manually initialized setup as described
in [136]. For the latter, we still need a relatively high number of particles to ensure
robust tracking over a longer image sequence, furthermore it is necessary to adjust the
measures of the body model for each person accurately.

The system is configured in two ways: 1) 1500 particles and 6 mean shift iterations, 2)
500 particles and three meanshift iterations. The automatically initialized system is also
set up to use 500 particles, three mean shift iterations but uses a generic body model for
all subjects. For each iteration, α = 5% recovery particles are inserted into the tracking
distribution. All setups employ the same cues with identical parameterization.

manual initialization automatic init
1500 particles 500 particles 500 particles

sequence # pict. RMSE σ RMSE σ RMSE σ

subj A 318 18.73 13.87 52.65 41.31 30.11 26.05
subj B 242 14.52 8.58 32.86 23.26 21.96 22.13
subj C 276 12.04 10.14 72.64 38.30 54.82 57.76

Table 6.9: Position error using automatic initialization and error recovery. RMSE (root mean squared error)
position error and standard deviation σ given in pixel. Comparison of three setups: manual initialization
with 1500 particles and with 500 particles, automatic initialization and error recovery with 500 particles.
The colored mean error values for subject B can also be seen in Figure 6.21.

Figure 6.20 shows typical tracking results using the automatically acquired body model.
For Fig. (6.20(a)) and Fig. (6.20(c)) the most likely poses are colored white, less likely
poses red. Note the multi-modal distribution in Fig. (6.20(c)) due to ambiguous mea-
surements of the pose. Fig. (6.20(b)) and Fig. (6.20(d)) show the final tracking result and
the learned shirt color.

125

6 System Evaluation and Optimization

Figure 6.21: Tracking quality for three se-
tups.. Comparing tracking errors of sub-
ject B for manual and automatic ini-
tialization setups. Also compare to Ta-
ble 6.9. Note the tracking loss around
frames 265 and 340 and the recovery af-
terwards.

200 250 300 350 400
0

50

100

150

image #

er
ro

r
[p

ix
el

]

automaic init
500 particles
1500 particles

see image in
Figure 6 (a,b)

Table 6.9 shows the tracking quality as the differences between the annotated position
of the right hand and the model position projected into the image plane as RMSE
and standard deviation in pixel for each sequence. For the presented approach, the
RMSE stays between 20 – 55 pixel, which is accurate enough for detecting gestures in a
human robot interaction scenario [61]. In contrast to the existing tracking approach, the
standard deviation is much higher for the presented approach, which suggests that the
tracking suffers from losses but is able to recover again as depicted in Figure 6.21 taking
subject B as an example (blue line). Tracking gets lost around frames 265 and 340, but
as soon as the situation gets less complicated, the inserted recovery particles are able to
guide the tracking towards the correct pose again. Thus, the loss is only temporary and
results in a comparably low RMSE as for 1500 particles (red line), but using only a third
of the number of particles. Employing an identical parameterization using 500 particles
but without the automatic initialization and recovery behaviour leads to an even less
accurate tracking (green line) with a 30% higher error in average. For subject C, the
system tends to lose tracking over and over again for sophisticated postures, e.g., the
hand pointing directly towards the camera, a situation where the recovery component
also does not work resulting in high errors for both approaches. The scaled standard
body model does not suit this subject well enough. This is also reflected by the high
RMSE of more than 70 pixel. Actually, the tracking was stuck in one position while
the person moved, producing varying error values. Robust tracking for this subject is
nevertheless possible. The former approach applied a personalized body model and an
increased computational effort, yielding accurate results.

This clearly shows the limits of the presented approach adapting a generic model and
calls for automatically adapted model kinematics and limb sizes. The usability of the
presented system for the human robot interaction is still much higher compared to
the former tracking approach. Persons interacting with such a system now have the
possibility to repeat unrecognized gestures if tracking has been lost unintentionally.

126

7 Applications

In the scope of this chapter, the results for applying the presented techniques in different
applications are presented. While the last chapter was meant to provide quantitative
analyses of the accuracy and speed of the developed approaches, here, an overview will
be given over applications, scenarios, and systems, where the person localization and the
body pose tracking played an important role. The works presented in this chapter have
been realized using a variety of tools and frameworks, e.g. Matlab1 for the localization
modules, IceWing[102] and OpevCV [78] for the image processing of the body pose
tracking, and XCF [173] for communication between the individual modules.

7.1 Person Localization for Scene Reconstruction

For a mobile robot destined to interact with people acquiring information about its
environment is a crucial process. Localizing possible interaction partners and the ability
to perceive its surrounding enables a robot to build up and share its representation with
the human. Recalling the scene exploration scenario described in Sec. (4.1.2) we will
now briefly present the results of applying the person localization and tracking system
in this scenario. The following evaluation have mainly been carried out by Swadzba and
Beuter, see [158] for a more in-depth description. They are presented here anyway to
underline the usefulness and the ease of integration of the person localization for the
scene reconstruction system.

(a) (b) (c)

Figure 7.1: Detecting two persons walking through a corridor. (a) Clusters with velocities. (b) The blue and
green error surfaces represent the observation function ρ(s(k)), see Eqn. (4.7), evaluated for hypotheses
with opposing velocities. Using multiple mean shift iterations, the hypotheses are shifted towards the local
maxima of the density. (c) Objects found by searching for modes in the density and their convex hulls.

Reconstructing an environment is trivial for static scenes as a simple integration over
time is often sufficient both for image and 3D data. The situation gets more complex

1http://www.mathworks.com/

127

http://www.mathworks.com/

7 Applications

if neither the scene is static nor the duration of the recording lasts longer than a few
frames. Simple integration produces in severe reconstruction errors, as moving objects
will misleadingly be added to the background model. Localizing and tracking those
objects is an important feature in itself, as presented in [137], furthermore it allows the
reconstruction module to neglect data emerging from moving objects, yielding more
exact results. In this paper we are concentrating on reconstructing a static scene model
whereas trajectories of moving objects are also an important information for a robot in
order to keep track of events occurring in the robot’s environment.

(a) amplitude image ofMGT (b) MGT (c) MMEAN

(d) MMPIX (e) MTRACK (f) MCOMB

Figure 7.2: Room reconstruction results under different motion filtering techniques. The different colors encode
planar surfaces extracted on the generated 3D background models. (a) Amplitude image of the ground
truth. (b) 3D point cloud of the ground truthMGT. (c) Background modelMMEAN produced by averaging
over the entire sequence without excluding any points. (d) Background model MMPIX excluding points
with large motion. (e) Background modelMTRACK excluding points from tracked objects. (f) Background
model MCOMB resulting from our combined approach.

As presented in Sec. (4.2), our proposal for reconstructing the static background of a
dynamic environment is a combination of tracking dynamic objects and reconstructing
the static parts to a complete scene representation. The person localization and tracking
is able to robustly segment the 3D point cloud, see Fig. (7.1(a)), and to apply the weak
object model to generate hypotheses of the possible location of persons in the scene,
see Fig. (7.1(b)). Finally, the objects are tracked using the particle filter, see Fig. (7.1(c)),
and the information about all tracked objects is forwarded to the scene reconstruction
and analysis module, see also Sec. (4.2).

Figure 7.2 shows the reconstruction results for a sequence where a person passes the
camera while picking up a chair. The empty scene is depicted in Fig. (7.2(a)), generated

128

7.1 Person Localization for Scene Reconstruction

ē± σ scene 1 scene 2a scene 2b scene 2c
MMEAN 259± 238 93± 120 125± 201 94± 139
MMPIX 112± 227 27± 74 90± 221 37± 91
MTRACK 44± 65 46± 88 46± 98 58± 103
MCOMB 33± 26 22± 71 41± 105 21± 175

Table 7.1: Reconstruction accuracy for the different approaches. Mean error ē, see Eqn. (7.1), and standard
deviation σ of the four models MMEAN, MMPIX, MTRACK, and MCOMB compared to the ground truth
MGT. All values are given in millimeter (mm). The combined methodMCOMB performs best for all scenes.

by acquiring data from the scene without any moving objects. Four different approaches
for reconstructing the static scene are compared to each other. We start with the simplest
approach where the frames of the entire sequence are averaged without removing any
3D data per frame, which is referred to asMMEAN, see Fig. (7.2(c)). The next approach is
to remove from each frame those 3D points annotated with a velocity vector larger than
a certain threshold – in the following named as moving pixels. Here, for each pixel the
motion is computed by determining the optical flow at each pixel taking into account the
current and the proceeding frame. The resulting model will be referred to as MMPIX,
see Fig. (7.2(d)). The second approach is neither able to detect non-moving persons
within few frames nor able to distinguish between motion produced by moving objects
and motion introduced from noise. Tracking of moving objects using spacetime in order
to gain reliable motion information as presented in Section 4.3.2 enables us to build
a more sophisticated model MTRACK, see Fig. (7.2(e)). Combining tracking of moving
objects and rejection of moving pixels leads to an approach which is not sensitive to
failures during tracking producing an even better modelMCOMB, see Fig. (7.2(f)).

The models are compared to the ground truthMGT by computing a mean error. As each
3D point is associated with a pixel of a 2D image, both in the model and the ground
truth, the Euclidean distance between the model 3D point and the ground truth 3D point
for each pixel is computed. The quality is indicated by the mean error ē

ē =
1
|i|∑i

|~pGT
i − ~pM

i | (7.1)

M = {MEAN, MPIX, TRACK, COMB}
i : index of valid pixels (3D points, respectively)

and the standard deviation σ of all valid pixels ~pM
i .

As shown in Tab. (7.1) and Figure 7.2 the combined modelMCOMB estimates the ground
truth modelMGT best with a small mean error ē of 21mm compared to the three other
models –MTRACK with 58mm,MMPIX with 37mm andMMEAN with 94mm mean error.
MCOMB uses the advantages of both methods which is tracking of moving objects and
removing 3D points annotated with large velocity vectors. As MMPIX and MMEAN

are generated from methods not based on tracking they suffer from the problem that
situations like standing persons cannot be handled well and therefore these persons
are integrated into the scene model since less optical flow/3D motion can be observed
between two consecutive frames. This problem can be resolved by tracking moving

129

7 Applications

(a) frame 14 (b) frame 43

Figure 7.3: Functioning of the combined approach. Green polygons indicate the convex hulls from the object
tracking approach, the yellow highlighted areas contain points annotated with large motion vectors. (a)
The person is standing still, it can still be tracked robustly and thus be neglected from reconstruction. (b)
The person is tracked but separated into two objects. The motion information from the optical flow corrects
the missing object information for the central part of the body.

objects which also leads to the detection of temporarily standing persons as depicted
in Fig. (7.3(a)). Also, excluding 3D points with large motion vectors is beneficial for the
background extraction in the case of failed tracking or splitting of a person into two
objects, as shown in Fig. (7.3(b)). MCOMB determines the points on the object between
the two polygons by considering additionally optical flow on the entire image. The
standard deviation of our reconstruction is quite small which indicates that the ground
truth is estimated quite well even considering the extensive motions involved.

(a) virtual amplitude image (b) reliability map

Figure 7.4: Reliability of the reconstruction results. (a) The reconstructed amplitude image for MCOMB, (b)
the corresponding reliability map, with the color encoding the number of measurements fused. Red color
depicts regions with many data present and therefore a reliable reconstruction, and green towards blue
becoming less and less reliable. Note that the floor has a low reliability as the carpet absorbs the infrared
light from the Swissranger sensor and provides only poor measurements. Furthermore, the person stood
still in the central part of the image and has been neglected during reconstruction, leaving only some - but
still enough - points for a robust reconstruction.

Fig. (7.4(b)) shows a reliability map of our modelMCOMB. The color encodes the amount
of measurements which contributed to a certain model point (red: a lot of measure-

130

7.2 Body Pose Tracking for Object Attention

ments, blue: only few measurements). It can be seen that only few measurements
from the ground floor and the edges could be collected due to the poor reflectance
properties and big amount of motion arising from the persons’ feet. The walls and
the table, however, provide a lot of stable measurements. Additionally, it can be seen
that between the corner and the table less measurements are collected as this is the
place where the person has been standing for a short period of time. Still, gaining only
few measurements is not a problem since only reliable measurements are chosen and
therefore a stable 3D background model can still be computed.

7.2 Body Pose Tracking for Object Attention

Intended to be a personal robot companion, the mobile robot Biron (Bielefeld Robot
Companion [62]) is a research and evaluation platform used in human-robot studies
focused on social interaction. The basic functionalities of our robotic interaction system
are a model for human awareness, the ability to navigate in unknown environments
and a dialog system for naturally spoken language, see also [150]. The following
section presents the vision system that is used for resolving object references, it has been
presented at the IROS 2008 conference [135]. The vision components presented here are
designed to be integrated into a multimodal system that can bear the requirements of
human-robot interaction in everyday life.

Figure 7.5: Object attention scenario. The
mobile robot Biron is facing a table with
different objects. The person interact-
ing with the robot will stand behind the
desk and point at the objects.

The contribution of this work can be seen as part of a bigger learning scenario: Imagine
the robot to be placed in an unknown environment, e.g. the first time to see the flat of
the human owner. The task here is to let the robot learn new objects by pointing at them,
therefore having the human and the robot observing each other and interacting on ob-
jects in the real world. The vision system provides information about the environment,
especially about the gestures of the human interaction partner.

131

7 Applications

7.2.1 Object Attention System Overview

Regarding the technical basis, we use two cameras, one for recognizing the human and
his gestures and one active camera for the acquisition of closeup images of objects. For
body tracking an Apple iSight (body tracking camera) is used, whose field of view
is wide enough to completely observe the upper body of the interaction partner at a
distance of 2.0 - 2.5 m. The second camera (object camera) is a Sony Evi pan-tilt camera,
utilized to get a closeup of the referenced object. Calibrating both cameras with respect
to the robot’s coordinate system allows the object camera to aim at the target position
of a pointing gesture seen from the body tracking camera. The software basis for the
integrated system presented in this paper is provided by the XML-based communication
framework XCF [173] and the image processing framework IceWing[102].

Control

Control

Control

Control

Control

Control

Tracking
Body

Supervisor
Execution

Control

− speech

− legs
− faces

Robot SystemEvaluated Vision System

Classification
Object

Attention
PersonObject

Attention

Recognition
Gesture

Dialog

Scene−
model

Figure 7.6: Object attention system overview. This sketch outlines the vision system for recognizing pointing
gestures on a mobile robot. The robot system is only shown as a reference here to illustrate the integration
into the framework. The evaluation presented here has been done on the vision system only.

The vision system evaluated in this paper consists of three modules that are presented
in the following, see also Fig. (7.6). We start with tracking the human’s upper body,
especially his acting hand (Body Tracking). These motions are interpreted in order to
detect actions like pointing (Gesture Recognition). Based on the recognized action, a
region of interest (RoI) is determined (Object Attention) to finally enable detecting and
learning the referenced object.

7.2.2 Trajectory-Based Gesture Recognition

The trajectory-based gesture recognition module developed by Hofemann [69] uses the
tracked motions are used as input in order to detect meaningful gestures. Due to the
constraints of the presented scenario, the trajectory of the right hand as depicted in
Fig. (7.7(a)) is sufficient for recognizing the human’s gestures. The hand’s motions are
represented in a cylindrical coordinate system with the basis in the human’s shoulder.
The features used for the recognition process are the relative radial and the vertical
velocities with respect to the torso, therefore making the recognition process indepen-
dent from the viewpoint of the camera. In a preprocessing step the sequential data is
smoothed by a causal Savitzky-Golay filter [123].

Trajectory models are generated from annotated training examples. For the presented
approach, we trained the following gestures: pointing at an object (point), retracting the

132

7.2 Body Pose Tracking for Object Attention

(a) (b)

Figure 7.7: Gesture recogni-
tion results. (a) Hand trajec-
tory provided from the tra-
cking module. (b) Activation
potentials for different ges-
ture models (top) and gesture
completion likelihood (top).

arm after pointing (back), raising the arm (up), waving (wave) and lowering the arm
finally (down).

Briefly, the actual recognition is done by comparing the current motion simultaneously
with the different possible trajectory models. As a new gesture can start any time, we
employ a particle filtering scheme [70] tracking a multitude of hypotheses each with
different parameters. Optimized parameters are the time when the gesture started and
scaling factors for duration and amplitude of the motion, respectively. The parameters
of one hypothesis define the optimal trajectory for this hypothesis that is compared with
the trajectory actually observed based on a similarity measure. From this comparison
the likelihood for each hypothesis can be calculated and used for the propagation step
in the particle filter. For each trajectory model the likelihoods of all hypotheses can
be added over the complete particle set resulting in the likelihoods for each trajectory
model and those for completing the gesture successfully, see Fig. (7.7(b)). The gesture
recognition thereby segments the continuous hand trajectory into meaningful gestures.
External triggering, e.g., by speech is not needed.

7.2.3 Object Attention

The presented interaction scenario eventually aims at recognizing objects the human
points at. The tracked and recognized gestures provide the basis for calculating a region
of interest (RoI) to resolve the referenced object. The object attention module has been
developed by Haasch [60].

As soon as a gesture is recognized as pointing the position of the human is extracted
from the tracking results and affirmed by comparing it to the person attention informa-
tion. To determine the RoI, the pointing direction is assumed as a line extending from
the users head over his hand, cf. [153]. The region of interest is represented as a sphere
in the world coordinate system, centered at the estimated object position. The distance
between the tracked hand position and the RoI center can be scaled comprising verbal
information, e.g., describing the size (“large”, “tiny”) of the object. The zoom of the
object camera is set accordingly. A fixed distance is used for this evaluation, as speech
input has not been considered. The RoI position is then transformed into the coordinate
system of the robot’s object camera and an image is captured for analysis, see Fig. (7.8).

133

7 Applications

(a) (b)

Figure 7.8: Region of Interest (RoI) for Object Attention. (a) The RoI position is defined by the pointing
direction. (b) At the expected position of the object, sample images are recorded for further processing, e.g.
an object detection module.

The object attention verifies if the verbal and visual information correspond during
interaction. Predefined color words, e.g. “blue”, are used to apply a simple color based
object segmentation using a direct mapping to preassigned RGB-values. This enables
the user to resolve ambiguities from pointing, e.g., for two nearby objects by naming
their color. Thus a coupling of verbal and gestural modalities is supported by the
object attention. The color segmentation can be used to acquire a closeup view of the
referenced object for later use, e.g. training an object recognition system.

7.2.4 Evaluating the System Performance

For evaluation the following setup has been used: The human is standing in front of a
table with five objects, facing the robot Biron. The person is asked to show the objects to
the robot by pointing at them. The human’s actions are recorded by the body tracking
camera while we ensured that the upper body is in its field of view. Likewise, the
object positions are well within range of the pan-tilt camera. The exact position of each
objects has been manually measured. The objects are the targets for pointing gestures
and therefore serves as a reference for the following experiments.

The experiments were performed with 4 persons, two female and two male. Half of the
participants were inexperienced and performed the gestures for the gesture recognition
for the very first time. The other half were experienced users. After an initialization
phase for the body tracking the person pointed (point) at each object in sequence
(crocodile, cup, ball, lemon, bottle), withdrawing their hand (back) after each gesture.
The next gestures are raising the hand (up) and waving (wave) into the camera, finally
lowering the arm (down). All participants had to perform the same sequence of gestures
three times changing the order of targets each time.

We recorded each subject performing the experiments four times, resulting in 16 se-
quences with a total number of 18572 images, equivalent to more than 20 minutes of
video, counting 496 performed gestures in total.

Compared to our previous work [61], appropriate depth information about the current
body pose can significantly improve the robustness of action recognition. Probabilistic

134

7.2 Body Pose Tracking for Object Attention

fusion of data from gesture and speech recognition, however, could help to validate as-
sumptions, as speech and gestures naturally co-occur in everyday communication [170].

Both, body tracking trajectories and recognized gestures are essential for determining
the region of interest. For evaluating the object attention module only the 167 correctly
recognized pointing gestures are used.

−0.6−0.4−0.200.20.40.6
0.4

0.6

0.8
1.8

2
2.2

width

de
pth

he
ig

ht

Figure 7.9: Recognized object positions. RoI center positions for recognized pointing gestures and ground
truth (bold markers) for each object. Objects (1-5) from left to right.

The final object position error is calculated as the euclidian distance in [m] in the world
coordinate system between the measured object position and the RoI center. Table 7.2
presents the RMSE error µ and the variance σ for the RoIs separately for each subject.
The objects (1-5) are ordered in the same manner as in Figures 7.9 and 7.6.

The RoI errors are for most objects not bigger than 25cm. Even without further valida-
tion from the robot’s person attention, the object RoI is determined robustly. The error
in the RoI positions is mainly due to the coarse gesture information from the preceding
modules. Also, estimating the pointing direction as a line from the head through the
hand does not always suit well. For objects (4) and (5) to the left of the person (at the
right in the image), the RoI is estimated to be too close to the human for two reasons:
1) The body tracking cannot handle the self occlusion that good and produces more
noisy results; 2) for the described posture it is uncommon to have the hand in the line
of sight towards the object, the gesture is more like “shooting from the hip”. This calls
for learning task-specific dependencies. The error could be overcome by altering the RoI
offset for this specific gesture, as the recognized RoI positions are still compact, which
explains the low σ in Table 7.2, but their mean position is slightly offset as Fig. (7.9)
clearly shows.

subj A subj B subj C subj D all
Object # g µ σ # g µ σ # g µ σ # g µ σ # g µ σ

(1) green crocodile 9 0.22 0.04 7 0.10 0.03 7 0.15 0.04 9 0.13 0.06 32 0.15 0.06
(2) blue cup 8 0.28 0.02 10 0.21 0.07 7 0.23 0.02 7 0.23 0.03 32 0.24 0.05
(3) pink ball 8 0.29 0.06 7 0.14 0.05 8 0.25 0.04 7 0.22 0.07 30 0.23 0.08
(4) yellow lemon 7 0.38 0.05 7 0.25 0.03 7 0.25 0.05 8 0.34 0.03 29 0.31 0.07
(5) red bottle 8 0.58 0.04 10 0.47 0.07 11 0.51 0.05 10 0.50 0.04 39 0.51 0.06
all 40 0.35 0.14 41 0.25 0.15 40 0.30 0.14 41 0.29 0.14 162 0.30 0.14

Table 7.2: Position error for the calculated region of interest (RoI). Objects (1-5) and subjects (A-D). # g: number
of recognized gestures, µ: mean error, σ: standard deviation, both in [m].

Objects (1-3) show that better results are achievable. Comparing the different subjects,

135

7 Applications

the errors vary only slightly although the gestures were performed very differently
across subjects. Individual gesture models therefore seem to be a good way to deal with
such variations.

The exactness could be further increased if verbal descriptions for size and color were
available and information from the person attention (e.g., position of the gesturer, acous-
tic input present) were utilized. Integrating context knowledge about the environment
and the current task could also help to reduce the search space for the body tracking as
well as the gesture recognition.

7.3 Hand Gesture Detection using the Body Pose Tracking

As we already learned, gesture are an important means for everyday communication be-
tween humans. The advantages of a gesture recognition process for mobile robotics has
been presented in the last chapter. On of the disadvantages of the presented approach is
that the type of the gesture performed is solely determined by the trajectory of the hand,
which obviously works for dynamic gestures. But our life is also full of static gestures,
like the “stop” sign shown in Fig. (7.10). These gestures are meaningful on their own,
but also during dynamic gestures, the hand pose can determine the exact purpose of
the action. The difference between pointing and grasping, as an example, is hard to
tell observing the trajectory only, but can be made possible when including appearance
information. A well known approach using hand gestures to control a user interface
is the HandVU system presented by Kölsch and Turk [89]. The following technique
for appearance-based hand gesture detection has been implemented by Gärtner and is
presented in more detail in [53].

Figure 7.10: Stop command gesture. Basic commands can be given to
the robot using static gestures.

The body model tracking framework does not model the hand in detail, it only provides
a rough estimate of the hand’s position and the orientation in space given by the lower
arm. The idea of the hand gesture detection using the body pose tracking is to let
the tracking determine a likely region for the hand and then use an appearance based

136

7.3 Hand Gesture Detection using the Body Pose Tracking

detector to determine the exact hand gesture. A big problem of appearance-based
detectors is the dependency on the orientation and scaling of the feature. This is where
the body tracking really comes into play. The orientation of the lower arm is known in
3D from the 3D body model. Backprojecting it into the image, it can be used to straighten
up and scale the hand region to be free from rotation and perspective transformation,
as depicted an Fig. (7.11).

Figure 7.11: Hand region normalization.
Using information from the body tra-
cking, the hand region is straightened
up.

The appearance based hand pose detector utilizes the AdaBoost learning technique that
constructs a cascade of multiple efficiently to calculate features, similar to the detector
proposed by Viola et al. [164] whose approach is well known as a face and object
detector. Kölsch and Turk [89] extended the features of the Viola approach and used it
to detect hand gestures. Training this kind of detectors usually requires a huge training
data set, comprised of both positive and negative samples, see Fig. (7.12(a)) for some
images from our positive training set. The AdaBoost strategy picks for each learning

(a) (b)

Figure 7.12: Hand gesture training data and detection results. (a) Training examples for the “pointing” (top
row) and “stop” (bottom row) gestures. The rightmost column shows the according feature distribution
of the chain boost cascade classifier. (b) Detection results. Similar to other appearance-based detector
approaches, a multitude of detections for the same object are created.

step those features, that best separate the remaining positive and negative examples.
The resulting cascade of classifiers follows the principle “from coarse to fine”, which
means that the uppermost classifiers react on those regions in the input image that give
a strong indication whether the image contains a hand or not. Using a cascade allows a
fast execution of the final classifier, as early stages in the cascade neglect most of the non-
hand images and therefore do not need to be inspected further. The detector employed

137

7 Applications

for this approach is based on the chain boost detector developed by Peters [122], and has
been extended to use four-block features in addition to the usual two- and three-block
features known from the Viola approach. This extension proved to perform efficiently
for the task of recognizing hand gesture which, in contrast to face classical detection,
is much more depending on the recognition of fine and complex details, as the human
hand is a highly articulated structure.

�stop� gesture
actual value

positive negative

detection
positive 250 92

negative 71 4133605039
0.779 0.999

sensitivity specificity

�pointing� gesture
actual value

positive negative

detection
positive 100 30

negative 241 383035805
0.293 0.999

sensitivity specificity

Table 7.3: Classification results for the two classifiers “stop” and “pointing”. Both classifiers have been trained
until a detection rate of at least 0.999 had been achieved, without posing further restrictions on the
sensitivity or specificity.

Training of the classifier is continued until a given detection rate, e.g. 99, 9% is achieved.
An allowed false-positive rate of up to 30%− 50% for each cascade level have shown
to be reasonable [100]. The classification results for the two classifiers “stop” and
“pointing” are displayed in Tab. (7.3).

enforcing less actual value

false negatives positive negative

detection
positive 659 131802

negative 3 177971733
0.995 0.999

sensitivity specificity

Table 7.4: Classification results for the combined cascade
classifier. Training both classifiers in a cascade and
using more positive examples drastically improves the
performance.

The classification results of these two classifiers are moderate. A high false negative
rate prevents them from being used in a real application as too many hand gestures
would not be correctly determined. This mostly results from the poor training data.
The tables already suggest that only few positive examples were used, whereas nega-
tive examples were generated automatically and therefore are virtually available in an
unlimited number. Further manual labeling of hand gestures provided new training
material and has been used to train a combined cascade classifier for both gestures,
see Tab. (7.4) for the results. A single cascade for both classifiers has the advantage that
they can benefit from sharing the uppermost cascade levels, which can be interpreted
as being a “hand presence” detector. This also helps to further reduce processing time,
as incoming samples only need to be classified with a single cascade instead of one per
detector.

Efforts to train a general hand classifier or to introduce more than two gestures were
not carried on due to the labor-intensive manual labeling of the hand gestures. Also,
a study using a “fist” and an “idle” gesture (hand is relaxed) supposed that not all
gestures are equally well detectable with the presented approach. Although the hand
gesture detection had not been integrated on the robot, the prospects of combining the
body pose tracking with the hand gesture detection approach are promising.

138

7.4 Motionese Developmental Studies

7.4 Motionese Developmental Studies

An interesting approach related to human robot interaction has been contributed by
a field that – at the first sight – seems to be unrelated to robotics. Developmental
studies investigated the importance of motion learning in early childhood development
in the so-called “motionese” studies. The term motionese is a neologism combining the
words “motion” and “motherese”. The latter is a term known from linguistics, where
it describes the changes in speech that parents often feature when communicating with
their children in the early childhood speech acquisition phase, for instance that the
prosody becomes emphasized. Motionese describes the emphasis of specific features in
motion that can be observed during gestural interaction of parents with their children,
as described by Brand et al. [14].

Studies by Rohlfing et al. [129, 131] aimed at finding quantitative evidence for the
described effect by observing parents during gestural interaction with a child and by
comparing the observed motions for an action to the motions of the same action when
performed towards an adult. One of the biggest challenges was to extract the parents’
motion without posing too much constraints on the experimental setup, as letting the
parents wear special clothing or attach marker to them could have their affected their
unbiasdness.

Figure 7.13: Tracking motions
for developmental studies. (a,b)
Two subjects explain a task
to their particular adult part-
ner, (c,d) the same task is ex-
plained to their child. Mul-
tiple features of the hand
trajectory reveal differences
between child-directed and
adult-directed motions.

(a) (b)

(c) (d)

The body tracking system was seen as a good option to analyze the parents’ motions,
as it combines all the features needed for the experiment: It does nor require markers, it
does not require specific clothing or a specific environment, it is not specific to a single
person, it does not make any assumptions on the type of gestures observed, it is able to
provide a 3-dimensional reconstruction of the gestures performed and, probably most

139

7 Applications

important, it eases the experimental setup as it does not require specific hardware like
stereo cameras but functions with a single monocular color video camera. 16 families
took part in the recordings, which makes a total of 32 persons to be analyzed. From these
32, 22 persons had to be excluded from the final evaluation, partly due to variations
in the manner the gestures were performed, partly due to technical issues like errors
during recording, but some also due to failed tracking. The most common reasons for
lost tracking were fast motions and occlusions and ambiguities due to the camera view-
point and the fact that the persons were sitting at a table, sometimes bending forward
towards their child which the tracking framework could not handle. In general it can
be said that the tracking quality strongly depended on a good visibility in the image,
on clothing that was distinguishable from the background but also showed enough
features to allow the separation of individual body parts and las but not least on a good
fitting model, which puts the suitability of the body tracking approach for a general
unconstrained experiment back into perspective. Some results of the tracking can be
seen in Fig. (7.13), the full results of the studies are presented in [130, 131]. Quantitative
analysis of the motions indeed revealed a significant interrelation between some features
of the trajectories, like pace and roundness, and the presence of motionese.

140

8 Outlook

In my thesis, I introduced a system that enables the automatic localization of persons
and the tracking of upper body gestures in a human robot interaction scenario. The
importance of such systems has been shown with the variety of scenarios they have
been applied in. Further improvements, however, could open up new fields of activities.

First signs for newly emerging applications are already in sight. Lowering production
costs for sensors and increasing computational power in all kinds of electronic equip-
ment that penetrates our daily life makes methods for observing human motions easily
available. As an example, the Swissranger Time-of-Flight sensor that has been used to
record depth information costs several thousand euros. The 3DV company1 recently
presented the ZCam, a ToF sensor that provides depth information synchronized with
RGB images and thereby outperforms the Swissranger to be sold at a reasonable price
of approximately 100 euros. It will probably soon be found as an interface for game
consoles, similar to the well-known EyeToy camera2. Depth information could also be
used within the body pose tracking framework to achieve more reliable pose estimation,
similar to [133].

More professionally oriented, an automated observation of industrial workplaces for
safety purposes has already been achieved with the vision based SafetyEYE3 system
which is commercially available. Adding motion information has already shown to
improve the performance of the segmentation and tracking. But still, the SafetyEYE
and also the presented localization system are only reactive systems. The next step
towards interactive systems would be to understand the actions of the human [99]
through observing his motions in context of the objects in the scene and the performed
task. Knowledge about typical trajectories in a given scenario can be used to classify
the observed motions and to predict future states, as Hermes et al. [67] presented for a
driver assistance system, but those methods could be transferred to other scenarios as
well. The prospect of enabling humans and robots to work together are aspects that also
inspired the formulation of the patent [92].

As mentioned above, cheaper sensors may revolutionize the whole field of human
motion analysis. The soon to come broad availability of standard computer hardware of-
fering multiple cores in a single machine calls for algorithms that can benefit from these
developments. The presented particle filtering technique clearly is such an algorithm.
The inference of possible model configurations can easily be parallelized, the overall
system performance scales well with the number of cores available, as it was shown
in [24]. In the last years, the processing units of standard graphic cards have undergone

1http://www.3dvsystems.com/
2http://www.eyetoy.com/
3http://www.pilz.de/products/sensors/camera/f/safetyeye/index.jsp

141

http://www.3dvsystems.com/
http://www.eyetoy.com/
http://www.pilz.de/products/sensors/camera/f/safetyeye/index.jsp

8 Outlook

Figure 8.1: Directed attention for fast per-
son localization. (a)-(c) Top-down object
attention maps representing the most
salient regions using a learned directed
attentional model. (d)-(f) The found ob-
ject position given by the most salient
point.

(a) (b) (c)

(d) (e) (f)

a similar trend. GPUs already offer 800 and more parallel processing units, big effort is
taken to enable the mapping of computational concepts to this standard hardware [65].

In contrast to the recent hardware developments, understanding the humans’ visual
perception has been of interest to cognitive scientists for a long time. An approach
to detect humans in images is presented by Beuter [10], summarizing the work of
Lohmann [101]. In contrast to applying strong models which necessitate a certain
appearance, the directed attention approach uses the idea of bottom-up feature analysis
to detect salient regions in the image without making any assumptions about their
origination. Finding humans and other objects is achieved by selecting only those fea-
tures that separate best fore- and background. A weak top-down model that describes
humans as a union of multiple regions is not introduced until this late point of the
algorithm, see Fig. (8.1) for exemplary results. Such a bottom-up feature analysis could
be integrated into the body pose tracking framework to restrain the search process. It
also seems promising to employ it as a basic vision component of future frameworks
for robotic applications, where it could function as a module that can learn the typical
appearance from higher level vision modules, say a face detector or an object classifier,
and then provide a fast to calculate directed attention towards specific image regions.

Figure 8.2: Barthoc humanoid robot. Bielefeld
anthropomorphic Robot for human oriented
communication.

Understanding and interpreting human motions is undoubtedly of interest to any robotic
system trying to interact with humans. The growing discipline of humanoid robotics has
a particular interest in gesture perception and understanding, as such robotic system of-

142

fer a much more intuitive human robot interaction [150], cf. Fig. (8.2). If the robot is able
to track and interpret human gestures, interaction is no longer limited to perception, as
imitation and synthesis of gesture becomes possible. Concurrently, developmental sci-
ences become of interest for robotics, as technical systems can likewise benefit from the
understanding of learning in humans. Perception and understanding are fundamental
parts of cognition, the work presented in this thesis hopefully can provide inspirations
for further realizations of technical systems that percept and interpret human motions
to enable the development of interactive cognitive systems.

143

8 Outlook

144

Appendix: Publication List

Patents

• U. Kreßel, L. Krüger, W. Progscha, C. Wöhler, F. Kummert, G. Sagerer, J. Schmidt,
R. Ott: System zum Training von Personen und zur Überprüfung deren Lernfortschritts,
German Patent No. DE 10 2006 048 165 A1, 10.10.2006.

• U. Kreßel, L. Krüger, W. Progscha, C. Wöhler, F. Kummert, G. Sagerer, J. Schmidt,
R. Ott: Verfahren zur Beobachtung einer Person in einem industriellen Umfeld, German
Patent No. DE 10 2006 048 166 A1, 10.10.2006.

Journal Papers

• A. Swadzba, N. Beuter, J. Schmidt, and G. Sagerer: 6D Scene Analysis: From a
Dynamic Environment to a Static Scene, Computer Vision and Image Understanding
(CVIU): Special Issue on Time-of-Flight based Computer Vision. (submitted for
review).

Conference Papers

• N. Beuter, O. Lohmann, J. Schmidt, F. Kummert: Directed Attention – A cognitive vi-
sion system for a mobile robot, ROMAN 2009, 18th IEEE International Symposium on
Robot and Human Interactive Communication, Japan, September 2009. (submitted
for review).

• J. Schmidt: Monokulare Modellbasierte Posturschätzung des Menschlichen Oberkörpers,
8. Oldenburger 3D-Tage, Oldenburg, January 2009.

• N. Beuter, A. Swadzba, J. Schmidt and G. Sagerer: 3D-Szenenrekonstruktion in
Dynamischen Umgebungen, 8. Oldenburger 3D-Tage, Oldenburg, January 2009.

• J. Schmidt, N. Hofemann, A. Haasch, J. Fritsch, and G. Sagerer: Interacting with a
Mobile Robot: Evaluating Gestural Object References, IROS 2008, Nice, France, Septem-
ber 2008.

• N. Beuter, A. Swadzba, and J. Schmidt: Simultaneous Tracking And Scene Reconstruc-
tion For Robot Perception, Workshop for Cognitive Humanoid Vision: IEEE-RAS,
Daejeon, Korea, 2008.

• A. Swadzba, N. Beuter, J. Schmidt, and G. Sagerer: Tracking Objects in 6D for
Reconstructing Static Scenes, CVPR 2008 Workshop On Time of Flight Camera based
Computer Vision (TOF-CV), Anchorage, Alaska, June 2008.

145

8 Outlook

• J. Schmidt, and M. Castrillón Santana: Automatic Initialization for Body Tracking
- Using Appearance to Learn a Model for Tracking Human Upper Body Motions, 3rd
International Conference on Computer Vision Theory and Applications (VISAPP),
Funchal, Madeira - Portugal, January 2008.

• J. Schmidt, C. Wöhler, L. Krüger, T. Gövert, and C. Hermes: 3D Scene Segmentation
and Object Tracking in Multiocular Image Sequences, In Proc. of 5th International
Conference on Computer Vision Systems (ICVS), Bielefeld, Germany, March 2007.

• J. Schmidt, B. Kwolek and J. Fritsch: Kernel Particle Filter for Real-Time 3D Body
Tracking in Monocular Color Images, In Proc. of Automatic Face and Gesture Recog-
nition (FG), pages 567-572, Southampton, UK, April 2006.

146

List of Figures

1.1 Vitruvian Man . 1

2.1 Wavelet descriptors for pedestrian detection 6
2.2 Scene geometry reconstruction . 6
2.3 Kernel-based 3D person tracking . 7
2.4 Marey’s “Motion Capture” suit . 8
2.5 Articulated part-based 2D model . 9
2.6 Kinematic full body model . 11
2.7 Recover human pose from learned examples 11
2.8 Hanavan’s model of the human body . 12
2.9 Task specific initialization and tracking . 13
2.10 Interaction scenario with the Robonaut humanoid robot 14

3.1 Example of a nonlinear objective function 19
3.2 Effect of different kernel bandwidths on the probability density estimation 24
3.3 Three kernel functions . 24
3.4 Mean shift optimization in 2D . 27
3.5 One time step of the Condensation algorithm 30
3.6 The Condensation algorithm . 30
3.7 Cumulative sum used for Monte Carlo sampling 31
3.8 Particle set prediction with a motion model 32
3.9 The Kernel Particle Filter (KPF) algorithm 35
3.10 The Genetic Algorithm (GA) . 38
3.11 Stochastic universal sampling . 42
3.12 One point crossover . 44

4.1 Person localization and tracking system overview 47
4.2 Working cell observed with a stereo camera setup 51
4.3 Data acquired from the Time-of-Flight sensor 53
4.4 Velocity detection with the optical flow method 54
4.5 Velocity processing with the spacetime method 55
4.6 Hierarchical 6D Clustering . 56
4.7 A cylinder as a weak object model . 57
4.8 Object hypothesis likelihood function . 58
4.9 Mean shift iterations for object localization 59
4.10 Motion model for person tracking . 60
4.11 Trajectories of tracked objects . 60

5.1 Biron hometour scenario . 63
5.2 Outline of the algorithm for tracking human upper body motions 65

147

List of Figures

5.3 Articulated model of the human’s upper body 68
5.4 2D polygon approximation for 3D body model 70
5.5 Gaussian image pyramid . 73
5.6 Partial derivatives interpreted as image gradient 74
5.7 Skin color segmentation in the RG color space 75
5.8 Positioning of the features on the body model 76
5.9 Body model positioning for cue evaluation 77
5.10 Edge cue likelihood . 77
5.11 Ridge cue likelihood . 78
5.12 Mean color cue likelihood . 80
5.13 Skin color cue likelihood . 81
5.14 Combined edge and ridge cue likelihood 82
5.15 Final Pose Likelihood . 84
5.16 Mean shift iterations for human body tracking 86
5.17 Random Noise Models . 88
5.18 Linear motion model . 89
5.19 Arm angle velocities during a pointing movement 90
5.20 A choice of trajectory template models . 90
5.21 Template scaling . 91
5.22 Matching the joint velocity with a template 92
5.23 Automatic initialization system overview 93
5.24 The automatic initialization algorithm . 94
5.25 Internal face feature detection . 95
5.26 Color training . 95
5.27 Head and hands detection . 96
5.28 Generating a distribution for automatic initialization and error recovery . 98

6.1 Sample images from the HumanEva-I corpus 103
6.2 HumanEva-I ground truth . 104
6.3 Lukotronic AS200 motion capture system 104
6.4 Marker positioning for ground truth recording 105
6.5 Sample images from the ground truth data set 106
6.6 Marker trajectories . 106
6.7 Image and marker framerate . 107
6.8 Determining spatial and temporal parameters for synchronization 107
6.9 Error of the synchronization over time . 108
6.10 Pose error over time . 110
6.11 Marker error on a logarithmic scale . 111
6.12 Fitness scaling function . 115
6.13 Normalization of the time measure . 117
6.14 Effect of changing the number of particles 118
6.15 Benchmark optimization of the genetic algorithm 119
6.16 Streams used for parameter optimization 120
6.17 Development of the parameter optimization 121
6.18 Error of the parameter optimization using three sequences 122

148

List of Figures

6.19 Error of the parameter optimization combining spatial and temporal criteria123
6.20 Body tracking results using automatic initialization 125
6.21 Tracking quality for three setups. 126

7.1 Detecting two persons walking through a corridor 127
7.2 Room reconstruction results under different motion filtering techniques . 128
7.3 Functioning of the combined approach . 130
7.4 Reliability of the reconstruction results . 130
7.5 Object attention scenario . 131
7.6 Object attention system overview . 132
7.7 Gesture recognition results . 133
7.8 Region of Interest (RoI) for Object Attention 134
7.9 Recognized object positions . 135
7.10 Stop command gesture . 136
7.11 Hand region normalization . 137
7.12 Hand gesture training data and detection results 137
7.13 Tracking motions for developmental studies 139

8.1 Directed attention for fast person localization 142
8.2 Barthoc humanoid robot . 142

149

List of Figures

150

List of Tables

6.1 Person localization tracking results . 102
6.2 Effect of the number of particles on the tracking accuracy 111
6.3 Boundary constraints for the body pose tracking parameters 120
6.4 Best parameter configuration . 121
6.5 Best parameter configuration using three sequences 122
6.6 Error for the three streams in detail . 122
6.7 Best parameter configuration combining spatial and temporal criteria . . 123
6.8 Comparison of optimization results combining spatial and temporal criteria123
6.9 Position error using automatic initialization and error recovery 125

7.1 Reconstruction accuracy for the different approaches 129
7.2 Position error for the calculated region of interest (RoI) 135
7.3 Classification results for the two classifiers “stop” and “pointing” 138
7.4 Classification results for the combined cascade classifier 138

151

List of Tables

152

Bibliography

[1] M. A. Admiraal, M. J.M.A.M. Kusters, and S. C.A.M. Gielen. Modeling kinematics
and dynamics of human arm movements. In Motor Control, pages 312–338. Human
Kinetics Publishers, Inc., 2004.

[2] I. Andricioaei, A. F. Voter, and J. E. Straub. Smart Darting Monte Carlo. In J. Chem.
Phys., volume 114, pages 6994–7000, 2001.

[3] J. Antonisse. A new interpretation of schema notation that overturns the binary
encoding. In David J. Schaffer, editor, Proceedings of the Third International Con-
ference on Genetic Algorithms (ICGA’89), pages 86–91, San Mateo, California, 1989.
Morgan Kaufmann Publishers, Inc.

[4] S. Arulampalam, S. Maskell, and N. Gordon. A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing,
50:174–188, 2002.

[5] J. E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings of
the 1st International Conference on Genetic Algorithms, pages 101–111, Mahwah, NJ,
USA, 1985. Lawrence Erlbaum Associates, Inc.

[6] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings
of the Second International Conference on Genetic Algorithms on Genetic algorithms
and their application, pages 14–21, Mahwah, NJ, USA, 1987. Lawrence Erlbaum
Associates, Inc.

[7] C. Bauckhage, M. Hanheide, S. Wrede, T. Käster, M. Pfeiffer, and G. Sagerer. Vision
Systems with the Human in the Loop. EURASIP J. on Applied Signal Processing,
2005(14):2375–2390, 2005.

[8] M. Berthold and D. J. Hand. Intelligent Data Analysis. Springer, 2nd edition, 2003.

[9] N. Beuter, A. Swadzba, and J. Schmidt. Simultaneous tracking and scene re-
construction for robot perception. Workshop for Cognitive Humanoid Vision at the
International Conference on Humanoid Robots, 2008.

[10] Niklas Beuter, Okko Lohmann, Joachim Schmidt, and Franz Kummert. Directed
attention - a cognitive vision system for a mobile robot. In 18th IEEE International
Symposium on Robot and Human Interactive Communication, Toyama, Japan, Septem-
ber 2009. IEEE, IEEE.

[11] A. Bissacco, M.-H. Yang, and S. Soatto. Fast human pose estimation using appear-
ance and motion via multi-dimensional boosting regression. In Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
2007.

153

Bibliography

[12] J. Bjørnstrup. Estimation of human body segment parameters — historical back-
ground. Technical report, Laboratory of Image Analysis, Institute of Electronic
Systems, Aalborg University, 1995.

[13] L. B. Booker, D. B. Fogel, D. Whitley, P. J. Angeline, and A. E. Eiben. Recom-
bination. In Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors,
Evolutionary Computation 1 – Basic Algorithms and Operators, chapter 33, pages 256–
307. Institute of Physics Publishing, 2000.

[14] R. J. Brand, D. A. Baldwin, and L. A. Ashburn. Evidence for ‘motionese’: modifi-
cations in mothers’ infant-directed action. Developmental Science, 5(1):72–83, 2002.

[15] A. G. Brooks and C. Breazeal. Working with robots and objects: revisiting deictic
reference for achieving spatial common ground. In HRI ’06: Proceedings of the 1st
ACM SIGCHI/SIGART conference on Human-robot interaction, pages 297–304, New
York, NY, USA, 2006. ACM.

[16] T. Brox, B. Rosenhahn, U. Kersting, and D. Cremers. Nonparametric density
estimation for human pose tracking. In K. Franke, R. Mueller, B. Nickolay, and
R. Schaefer, editors, Pattern Recognition 2006, DAGM, volume 4174, pages 546–555,
Berlin, 2006. LNCS, Springer-Verlag, Berlin Heidelberg.

[17] A. Bruce. Better motion prediction for people-tracking. In In Proceedings of ICRA
2004, 2004.

[18] A. O. Bălan, L. Sigal, and M. J. Black. A quantitative evaluation of video-based
3d person tracking. In ICCCN ’05: Proceedings of the 14th International Conference
on Computer Communications and Networks, pages 349–356, Washington, DC, USA,
2005. IEEE Computer Society.

[19] D. Bullock and J. Zelek. Towards real-time 3-d monocular visual tracking of
human limbs in unconstrained environments. Real-Time Imaging, 11(4):323–353,
2005.

[20] M. A. Carreira-Perpinan. Gaussian mean-shift is an em algorithm. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 29(5):767–776, 2007.

[21] M. Castrillón Santana, O. Déniz Suárez, M. Hernández Tejera, and C. Guerra Artal.
ENCARA2: Real-time detection of multiple faces at different resolutions in video
streams. Journal of Visual Communication and Image Representation, pages 130–140,
April 2007.

[22] C. Chang and R. Ansari. Kernel particle filter: iterative sampling for efficient
visual tracking. In IEEE Int. Conference on Image Processing, volume 2, pages 977–
980, 2003.

[23] C. Chang and R. Ansari. Kernel particle filter for visual tracking. Signal Processing
Letters, 12(3):242–245, 2005.

[24] T. P. Chen, D. Budnikov, C. J. Hughes, and Y. Chen. Computer vision on multi-core
processors: Articulated body tracking. In International Conference on Multimedia and
Expo (ICME), Beijing, China, July 2007. Springer-Verlag.

154

Bibliography

[25] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal.
Mach. Intell., 17(8):790–799, 1995.

[26] R. Cipolla and P. Giblin. The Visual Motion of Curves and Surfaces. Cambridge
University Press, 2000.

[27] COGNIRON. The cognitive robot companion, 2004. (FP6-IST-002020),
http://www.cogniron.org.

[28] D. Comaniciu and P. Meer. Mean shift analysis and applications. In ICCV (2),
pages 1197–1203, 1999.

[29] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–
619, 2002.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, 2nd edition, 2001.

[31] J. L. Crowley and J. Coutaz. Vision for man machine interaction. In Proceedings of
the IFIP TC2/WG2.7 Working Conference on Engineering for Human-Computer Interac-
tion, pages 28–45, London, UK, 1996. Chapman & Hall, Ltd.

[32] H. J. Curnow and Brian A. Wichmann. A synthetic benchmark. Comput. J.,
19(1):43–49, 2003.

[33] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
CVPR, volume 1, pages 886–893, 2005.

[34] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, New
Jersey, 1963.

[35] C. Darwin. On the origin of species by means of natural selection, or, The preservation of
favoured races in the struggle for life. Grant Richards, London, 1902.

[36] J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz. Spacetime stereo: A
unifying framework for depth from triangulation. IEEE Trans. Pattern Analysis and
Machine Intelligence, vol.27(2), 2005.

[37] J. Deutscher, A. Blake, and I. Reid. Articulated body motion capture by annealed
particle filtering. In Int. Conf. on Pattern Recognition, pages 126–133, 2000.

[38] J. Deutscher, B. North, B. Bascle, and A. Blake. Tracking through singularities
and discontinuities by random sampling. In In IEEE International Conference on
Computer Vision, pages 1144–1149, 1999.

[39] J. Deutscher and I. Reid. Articulated body motion capture by stochastic search.
Int. J. Comput. Vision, 61(2):185–205, 2005.

[40] A. Doucet, N. De Freitas, and N. Gordon, editors. Sequential Monte Carlo methods
in practice. Springer, New York, 2001.

[41] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley &
Sons Inc, 1973.

[42] A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. John Wiley &
Sons, 2006.

155

Bibliography

[43] A. P. Engelbrecht. Computational Intelligence – An Introduction. John Wiley & Sons,
2007.

[44] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press,
Cambridge, Massachusetts, 1993.

[45] R. Fay, U. Kaufmann, A. Knoblauch, H. Markert, and G. Palm. Integrating object
recognition, visual attention, language and action processing on a robot in a
neurobiologically plausible associative architecture. In G. Palm and S. Wermter,
editors, NeuroBotics Workshop Proceedings. 27th German Conf. of Artificial Intelli-
gence, University of Ulm, 2004.

[46] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recogni-
tion. Int. J. Comput. Vision, 61(1):55–79, 2005.

[47] U. Franke and A. Joos. Real-time stereo vision for urban traffic scene understand-
ing. In Conf. on Intelligent Vehicles, Detroit, 2000. IEEE.

[48] U. Franke, C. Rabe, H. Badino, and S. K. Gehrig. 6D-Vision: Fusion of Stereo
and Motion for Robust Environment Perception, pages 176–183. Lecture Notes in
Computer Science 3663. Springer-Verlag Berlin Heidelberg, pattern recognition.
proc. 27th dagm symposium, vienna, austria edition, 2005.

[49] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In European Conference on Computational
Learning Theory, pages 23–37, 1995.

[50] J. Fritsch, S. Lang, M. Kleinehagenbrock, G. A. Fink, and G. Sagerer. Improving
adaptive skin color segmentation by incorporating results from face detection. In
Proc. IEEE Int. Workshop on Robot and Human Interactive Communication (ROMAN),
pages 337–343, Berlin, Germany, September 2002. IEEE.

[51] P. Fua, A. Gruen, R. Plaenkers, N. D’Apuzzo, and D. Thalmann. Human Body
Modeling and Motion Analysis From Video Sequences. In International Symposium
on Real Time Imaging and Dynamic Analysis, 1998.

[52] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function,
with applications in pattern recognition. Information Theory, IEEE Transactions on,
21(1):32–40, 1975.

[53] M. Gaertner. Integration eines Handgestenerkenners zur intuitiven Systems-
teuerung. Diplomarbeit, Faculty of Technology: Bielefeld University, 2005.

[54] D. M. Gavrila. The visual analysis of human movement: A survey. Computer Vision
and Image Understanding: CVIU, 73(1):82–98, 1999.

[55] T. Germa, F. Lerasle, P. Danes, and L. Brethes. Human / Robot Visual Interaction
for a Tour-Guide Robot. In Int. Conf. on Intelligent Robots and Systems (IROS), 2007.

[56] J. J. Gibson. The perception of the visual world. Riverside Press, 1950.

[57] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, January 1989.

[58] M. Grosjean, M. Shiffrar, and G. Knoblich. Fitt’s law holds in action perception.
Psychological Science, 18:95–99, 2007.

156

Bibliography

[59] Humanoid Animation Working Group. Information technology – computer
graphics and image processing – humanoid animation (h-anim).

[60] A. Haasch. Attention-controlled acquisition of a qualitative scene model for mobile robots.
PhD thesis, Faculty of Technology: Bielefeld University, 2007.

[61] A. Haasch, N. Hofemann, J. Fritsch, and G. Sagerer. A multi-modal object attention
system for a mobile robot. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 1499–1504, Edmonton, Alberta, Canada, August 2005. IEEE.

[62] A. Haasch, S. Hohenner, S. Hüwel, M. Kleinehagenbrock, S. Lang, I. Toptsis,
G. A. Fink, J. Fritsch, B. Wrede, and G. Sagerer. BIRON – The Bielefeld Robot
Companion. In E. Prassler, G. Lawitzky, P. Fiorini, and M. Hägele, editors, Proc.
Int. Workshop on Advances in Service Robotics, pages 27–32, Stuttgart, Germany, May
2004. Fraunhofer IRB Verlag.

[63] B. Han, Y. Zhu, D. Comaniciu, and L. Davis. Kernel-based bayesian filtering for
object tracking. In Int. Conf. on Computer Vision and Patt. Recognition, pages 227–234,
2005.

[64] P. J. B. Hancock. An empirical comparison of selection methods in evolutionary
algorithms. In Selected Papers from AISB Workshop on Evolutionary Computing, pages
80–94, London, UK, 1994. Springer-Verlag.

[65] M. Harris. Mapping computational concepts to gpus. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Courses, page 50, New York, NY, USA, 2005. ACM.

[66] C. Hermes. Evolutionäre Algorithmen für die zielgerichtete Optimierung eines
Systems zur Verfolgung von 3D-Körperposturen. Diplomarbeit, Faculty of Technol-
ogy: Bielefeld University, 2008.

[67] C. Hermes, C. Wöhler, K. Schenk, and F. Kummert. Long-term vehicle motion
prediction. In IEEE Intelligent Vehicles Symposium, June 2009.

[68] H. Hirschmueller. Improvements in real-time correlation-based stereo vision. In
Int. Conf. on Computer Vision and Pattern Recognition, Stereo Workshop, Hawaii, 2001.

[69] N. Hofemann. Videobasierte Handlungserkennung für die natürliche Mensch-Maschine-
Interaktion. Phd thesis, Faculty of Technology: Bielefeld University, Bielefeld, 2007.

[70] N. Hofemann, J. Fritsch, and G. Sagerer. Recognition of deictic gestures with
context. In C. E. Rasmussen, H. H. Bülthoff, M. A. Giese, and B. Schölkopf,
editors, Pattern Recognition, 26th DAGM Symposium, Tübingen, Germany. Proceed-
ings, volume 3175 of Lecture Notes in Computer Science, pages 334–341, Heidelberg,
Germany, 2004. Springer-Verlag.

[71] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in perspective. In CVPR
’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 2137–2144, Washington, DC, USA, 2006. IEEE Computer
Society.

[72] J. H. Holland. Adaptation in natural and artificial systems: An introductory analysis
with applications to biology, control, and artificial intelligence. University of Michigan
Press, 1975.

157

Bibliography

[73] B. K. P. Horn and B. G. Schunck. Determining optical flow. In Artificial Intelligence,
volume 17, pages 185–204, 1981.

[74] D. Hubbard. How to Measure Anything: Finding the Value of Intangibles in Business.
John Wiley & Sons, 2007.

[75] B. Huhle, P. Jenke, and W. Strasser. On-the-fly scene acquisition with a handy
multisensor-system. In Workshop on Dynamic 3D Imaging (Dyn3D), 2007.

[76] B. Huhle, T. Schairer, P. Jenke, and W. Strasser. Robust non-local denoising of
colored depth data. In Intl. Conference on Computer Vision and Pattern Recognition
(CVPR), Workshop on Time of Flight Camera based Computer Vision (TOF-CV), 2008.

[77] R. L. Huston, C. E. Passerello, and M. W. Harlow. On human body dynamics.
Annals of Biomedical Engineering, 4:25–43, 1976.

[78] Intel. Intel Open Source Computer Vision Library, v1.0.
www.intel.com/research/mrl/research/opencv, October 2006.

[79] M. Isard and A. Blake. Contour tracking by stochastic propagation of conditional
density. In Europ. Conf. on Computer Vision, pages 343–356, 1996.

[80] M. Isard and A. Blake. Condensation – conditional density propagation for visual
tracking. International Journal of Computer Vision, 29:5–28, 1998.

[81] T. Jaeggli, E. Koller-Meier, and L. J. Van Gool. Monocular tracking with a mixture
of view-dependent learned models. In AMDO, pages 494–503, 2006.

[82] C. Z. Janikow and Z. Michalewicz. An experimental comparison of binary and
floating point representations in genetic algorithms. In ICGA, pages 31–36, 1991.

[83] O. C. Jenkins, G. González, and M. M. Loper. Tracking human motion and
actions for interactive robots. In HRI ’07: Proceedings of the ACM/IEEE international
conference on Human-robot interaction, pages 365–372, New York, NY, USA, 2007.
ACM.

[84] G. Johansson. Visual perception of biological motion and a model for its analysis.
Perception and Psychophysics, 14:201–211, 1973.

[85] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

[86] R. E. Kalman. A new approach to linear filtering and prediction problems. ASME-
Journal of Basic Engineering, 82:35–45, 1960.

[87] M. Keck, J. Davis, and A. Tyagi. Tracking mean shift clustered point clouds for 3d
surveillance. In VSSN, pages 187–194, 2006.

[88] R. Kehl, M. Bray, and L. Van Gool. Full body tracking from multiple views using
stochastic sampling. In CVPR ’05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume 2, pages
129–136, Washington, DC, USA, 2005. IEEE Computer Society.

[89] M. Kölsch and M. Turk. Fast 2d hand tracking with flocks of features and multi-
cue integration. In In IEEE Workshop on Real-Time Vision for Human-Computer
Interaction (at CVPR, page 158, 2004.

158

Bibliography

[90] M. Kölsch and M. Turk. Robust hand detection. In Proceedings of the International
Conference on Automatic Face and Gesture Recognition, May 2004.

[91] D. Kortenkamp, E. Huber, and R. P. Bonasso. Recognizing and interpreting
gestures on a mobile robot. In Nat. Conf. on Artificial Intelligence, pages 915–921,
1996.

[92] U. Kreßel, L. Krüger, W. Progscha, C. Wöhler, F. Kummert, G. Sagerer, J. Schmidt,
and R. Ott. System zum Training von Personen und zur Überprüfung deren
Lernfortschritts, October 2006. DE 10 2006 048 165 A1.

[93] U. Kreßel, L. Krüger, W. Progscha, C. Wöhler, F. Kummert, G. Sagerer, J. Schmidt,
and R. Ott. Verfahren zur Beobachtung einer Person in einem industriellen
Umfeld, October 2006. DE 10 2006 048 166 A1.

[94] L. Krüger, C. Wöhler, A. Würz-Wessel, and F. Stein. In-factory calibration of mul-
tiocular camera systems. In SPIE Photonics Europe (Optical Metrology in Production
Engineering), pages 126–137, Strasbourg, 2004.

[95] G.-J. M. Kruijff, J. D. Kelleher, and N. Hawes. Information fusion for visual
reference resolution in dynamic situated dialogue. In Perception and Interactive
Technologies, PIT 2006, volume 4021 of LNCS, pages 117–128. Springer Berlin /
Heidelberg, 2006.

[96] X. Lan and D. P. Huttenlocher. Beyond trees: Common-factor models for 2d
human pose recovery. In ICCV ’05: Proceedings of the Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, pages 470–477, Washington, DC,
USA, 2005. IEEE Computer Society.

[97] H. J. Lee and Z. Chen. Determination of 3d human body postures from a single
view. Computer Vision Graphics and Image Processing, 30(2):148–168, May 1985.

[98] M. Lee and I. Cohen. Human upper body pose estimation in static images. In
Proc. of European Conference on Computer Vision ECCV), pages 126–138, 2004.

[99] Z. Li, N. Hofemann, J. Fritsch, and G. Sagerer. Hierarchical modeling and recog-
nition of manipulative gesture. In Proc. IEEE ICCV, Workshop on Modeling People
and Human Interaction, Beijing, China, October 2005.

[100] R. Lienhart, A. Kuranov, and V. Pisarevsky. Empirical analysis of detection
cascades of boosted classifiers for rapid object detection. Technical report, Mi-
croprocessor Research Lab, Intel Labs, December 2002.

[101] O. Lohmann. Objektrepräsentation durch visuelle Salienz zur Erzeugung
gerichteter Aufmerksamkeit. Diplomarbeit, Faculty of Technology: Bielefeld Uni-
versity, 2009.

[102] F. Lömker, S. Wrede, M. Hanheide, and J. Fritsch. Building modular vision systems
with a graphical plugin environment. In Proc. of International Conference on Vision
Systems, St. Johns University, Manhattan, New York City, USA, January 2006. IEEE.

[103] Z. Lu, M. Carreira-Perpinan, and C. Sminchisescu. People tracking with the
laplacian eigenmaps latent variable model. In J.C. Platt, D. Koller, Y. Singer,

159

Bibliography

and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages
1705–1712. MIT Press, Cambridge, MA, 2008.

[104] B. D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In IJCAI, pages 121–130, 1981.

[105] J. Luemkemann. Kinematik und Dynamik eines 3D-Körpermodells für bild-
basierte Gestenerkennung. Master’s thesis, Faculty of Technology: Bielefeld Uni-
versity, 2005.

[106] E. Maggio and A. Cavallaro. Hybrid particle filter and mean shift tracker with
adaptive transition model. In Proc. of IEEE Signal Processing Society International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA,
USA, 19–23 March 2005.

[107] E.-J. Marey. Chronophotograph. Deutsches Filmmuseum, Frankfurt am Main,
Germany, reprint of: berlin, mayer u. müller, 1893 edition, 1985.

[108] S. May, B. Werner, H. Surmann, and K. Pervolz. 3D Time-of-Flight cameras for
mobile robotics. In Intl. Conference on Intelligent Robots and Systems (IROS), pages
790–795, 2006.

[109] D. McNeill. Hand and Mind: What Gestures Reveal about Thought. University of
Chicago Press, 1992.

[110] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA, 1998.

[111] T. B. Moeslund and E. Granum. A survey of computer vision-based human motion
capture. Computer Vision and Image Understanding: CVIU, 81(3):231–268, 2001.

[112] T. B. Moeslund, A. Hilton, and V. Krüger. A survey of advances in vision-based
human motion capture and analysis. Computer Vision and Image Understanding:
CVIU, 104(2):90–126, 2006.

[113] M. Montemerlo, W. Whittaker, and S. Thrun. Conditional particle filters for
simultaneous mobile robot localization and people-tracking. In ICRA, 2002.

[114] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, vol.7:308–313, 1965.

[115] K. Nickel, E. Seemann, and R. Stiefelhagen. 3D-Tracking of Heads and Hands for
Pointing Gesture Recognition in a Human-Robot Interaction Scenario. In Int. Conf.
on Face and Gesture Recognition, 2004.

[116] O. Oechsle and A. F. Clark. Feature extraction and classification by genetic pro-
gramming. In Antonios Gasteratos, Markus Vincze, and John K. Tsotsos, editors,
ICVS, volume 5008 of Lecture Notes in Computer Science, pages 131–140. Springer,
2008.

[117] S. Oprisescu, D. Falie, M. Ciuc, and V. Buzuloiu. Measurements with tof cameras
and their necessary corrections. In Intl. Symposium on Signals, Circuits & Systems
(ISSCS), 2007.

[118] G. Orwell. 1984 Nineteen Eighty-Four. Secker and Warburg (London), June 1949.

160

Bibliography

[119] C. Papageorgiou, T. Evgeniou, and T. Poggio. A trainable pedestrian detection
system, 1998.

[120] J. Park, M. Jeon, and W.S. Pedrycz. Score-based resampling method for evolu-
tionary algorithms. In IEEE Transactions on Systems, Man, and Cybernetics, Part B,
volume 38, pages 1347 – 1355. IEEE, October 2008.

[121] K. Parsopoulos and M. Vrahatis. Recent approaches to global optimization prob-
lems through particle swarm optimization. Natural Computing, 1(2–3):235–306,
2002.

[122] V. Peters. Effizientes Training ansichtsbasierter Gesichtsdetektoren. Diplomarbeit,
Faculty of Technology: Bielefeld University, 2006.

[123] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C.
Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

[124] W. Qu, D. Schonfeld, and M. Mohamed. Distributed bayesian multiple-target tra-
cking in crowded environments using multiple collaborative cameras. EURASIP
J. Appl. Signal Process., 2007(1):21–21, 2007.

[125] D. Ramanan and D. A. Forsyth. Finding and tracking people from the bottom up.
In Conf. on Computer Vision and Pattern Recognition, volume 2, pages 467–474, 2003.

[126] D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a pose: Tracking people by
finding stylized poses. In CVPR ’05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1, pages
271–278, Washington, DC, USA, 2005. IEEE Computer Society.

[127] D. Ramanan, D. A. Forsyth, and A. Zisserman. Tracking people by learning their
appearance. IEEE Trans. Pattern Anal. Mach. Intell., 29(1):65–81, 2007.

[128] D. Ramanan and C. Sminchisescu. Training deformable models for localization.
In CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 206–213, Washington, DC, USA, 2006. IEEE
Computer Society.

[129] K. Rohlfing, J. Fritsch, and B. Wrede. Learning to manipulate objects: A quantita-
tive evaluation of motionese. In Third International Conference on Development and
Learning (ICDL 2004), page 27, La Jolla, CA, October 2004. ISBN 0-615-12704-5.

[130] K. Rohlfing and T. Jungmann. Referenz durch bewegung: Eine studie zu mo-
tionese, 2005. Poster presented at 17th EPSY, Bochum, 2005.

[131] K. J. Rohlfing, J. Fritsch, B. Wrede, and T. Jungmann. How can multimodal cues
from child-directed interaction reduce learning complexity in robotos? Advanced
Robotics, 20(10):1183–1199, 2006.

[132] R. Rosales, M. Siddiqui, J. Alon, and S. Sclaroff. Estimating 3D body pose
using uncalibrated cameras. In Conf. on Computer Vision and Pattern Recognition,
volume 1, pages 821–827, 2001.

[133] R. Dillmann S. Knoop, S. Vacek. Sensor fusion for 3d human body tracking with
an articulated 3d body model. In Proceedings of the IEEE International Conference on
Robotics and Automation, Walt Disney Resort, Orlando, Florida, May 2006.

161

Bibliography

[134] I. Schiller, C. Beder, and R. Koch. Calibration of a pmd camera using a planar
calibration object together with a multi-camera setup. In The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, volume 37
Part B3a, pages 297–302, 2008.

[135] J. Schmidt, N. Hofemann, A. Haasch, J. Fritsch, and G. Sagerer. Interacting with a
mobile robot: Evaluating gestural object references. In Intl. Conference on Intelligent
Robots and Systems (IROS), Nice, France, November 2008.

[136] J. Schmidt, B. Kwolek, and J. Fritsch. Kernel Particle Filter for Real-Time 3D
Body Tracking in Monocular Color Images. In Proc. of Automatic Face and Gesture
Recognition, pages 567–572, Southampton, UK, April 2006. IEEE.

[137] J. Schmidt, C. Wöhler, L. Krüger, T. Gövert, and C. Hermes. 3D Scene Seg-
mentation and Object Tracking in Multiocular Image Sequence. In Proc. of 5th
International Conference on Computer Vision Systems (ICVS’07), Bielefeld, Germany,
March 2007.

[138] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley
Series in Probability and Statistics). Wiley-Interscience, September 1992.

[139] V. Sharma and J. Davis. Integrating appearance and motion cues for simultaneous
detection and segmentation of pedestrians. In ICCV, 2007.

[140] V. D. Shet, J. Neumann, V. Ramesh, and L. S. Davis. Bilattice-based Logical
Reasoning for Human Detection. In IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2007.

[141] H. Sidenbladh. Probabilistic Tracking and Reconstruction of 3D Human Motion in
Monocular Video Sequences. PhD thesis, KTH Sweden, 2001.

[142] H. Sidenbladh, M. Black, and D. Fleet. Stochastic tracking of 3D human figures
using 2D image motion. In Europ. Conf. on Computer Vision, pages 702–718, 2000.

[143] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard. Tracking loose-limbed people.
In Conf. on Computer Vision and Pattern Recognition, volume 1, pages 421–428, 2004.

[144] L. Sigal and M. J. Black. Humaneva: Synchronized video and motion capture
dataset for evaluation of articulated human motion. Technical Report CS-06-08,
2006. http://vision.cs.brown.edu/humaneva/index.html.

[145] L. Sigal and M. J. Black. Predicting 3d people from 2d pictures. In IV Conference
on Articulated Motion and Deformable Objects - AMDO 2006, volume 4069, pages
185–195, Mallorca, Spain, July 2006. IEEE Computer Society, LNCS.

[146] C. Sminchisescu, A. Kanaujia, and D. Metaxas. Learning joint top-down and
bottom-up processes for 3d visual inference. In CVPR ’06: Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages
1743–1752, Washington, DC, USA, 2006. IEEE Computer Society.

[147] C. Sminchisescu and B. Triggs. Covariance scaled sampling for monocular 3d
body tracking. In CVPR, pages 447–454, 2001.

[148] C. Sminchisescu and B. Triggs. Mapping minima and transitions of visual models.
Int. J. of Computer Vision, 61(1), 2005.

162

Bibliography

[149] C. Sminchisescu and M. Welling. Generalized Darting Monte-Carlo. In Artificial
Intelligence and Statistics, volume 1, 2007.

[150] T. Spexard, M. Hanheide, and G. Sagerer. Human-oriented interaction with an
anthropomorphic robot. IEEE Transactions on Robotics, 23, Special Issue on Human-
Robot Interaction(5):852–862, October 2007.

[151] B. Stenger, A. Thayananthan, P. Torr, and R. Cipolla:. Hand pose estimation using
hierarchical detection. In ECCV Workshop on HCI, pages 102–112, 2004.

[152] N. Stergiou. Innovative Analysis of Human Movement. Human Kinetics, 2004.

[153] R. Stiefelhagen, H. Ekenel, C. Fügen, P. Gieselmann, H. Holzapfel, F. Kraft,
K. Nickel, M. Voit, and A. Waibel. Enabling multimodal human-robot interaction
fort the karlsruhe humanoid robot. IEEE Transactions on Robotics, 23, Special Issue
on Human-Robot Interaction(5):840–851, October 2007.

[154] M. Storring, T. B. Moeslund, Y. Liu, and E. Granum. Computer vision-based
gesture recognition for an augmented reality interface. In 4th IASTED International
Conference on VISUALIZATION, IMAGING, AND IMAGE PROCESSING, pages
766–771, September 2004.

[155] D. Stößel. Automated Visual Inspection of Assemblies from Monocular Images. PhD
thesis, Faculty of Technology: Bielefeld University, 2007.

[156] D. Stößel and G. Sagerer. Kernel Particle Filter for Visual Quality Inspection from
Monocular Intensity Images. In Katrin Franke, Klaus-Robert Müller, Bertram
Nickolay, and Ralf Schäfer, editors, DAGM06, volume 4174 of Lecture Notes in
Computer Science, pages 597–606, Heidelberg, Germany, 2006. Springer-Verlag.

[157] A. Swadzba, N. Beuter, J. Schmidt, and G. Sagerer. Tracking objects in 6d for
reconstructing static scenes. Computer Vision and Pattern Recognition Workshop: Time
of Flight Camera based Computer Vision, 2008.

[158] A. Swadzba, N. Beuter, J. Schmidt, and G. Sagerer. 6d scene analysis: From a
dynamic environment to a static scene. Computer Vision and Image Understanding:
Special Issue on Time-of-Flight based Computer Vision, 2009. submitted for review.

[159] A. Swadzba, B. Liu, J. Penne, O. Jesorsky, and R. Kompe. A comprehensive system
for 3d modeling from range images acquired from a 3d tof sensor. In Proc. of
International Conference on Computer Vision Systems, Bielefeld University, Bielefeld,
Germany, 2007. University Library of Bielefeld.

[160] M. J. Swain and D. H. Ballard. Color indexing. International Journal on Computer
Vision, 7(1):11–32, 1991.

[161] L. Taycher, G. Shakhnarovich, D. Demirdjian, and T. Darrell. Conditional random
people: Tracking humans with crfs and grid filters. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 222–229, 2006.

[162] A. Tyagi, M. Keck, J. W. Davis, and G. Potamianos. Kernel-based 3d tracking. In
CVPR, 2007.

[163] R. Urtasun, D.J. Fleet, and P. Fua. Monocular 3d tracking of the golf swing. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, 2005.

163

Bibliography

[164] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion
and appearance, 2003.

[165] P. Viola and M. J. Jones. Robust real-time face detection. International Journal of
Computer Vision, 57(2):151–173, May 2004.

[166] M. P. Wand and M. C. Jones. Kernel Smoothing (Monographs on Statistics and Applied
Probability). Chapman & Hall/CRC, December 1994.

[167] C. Wang, C. Thorpe, M. Hebert, S. Thrun, and H. Durrant-Whyte. Simultaneous
localization, mapping and moving object tracking. IJRR, 26(6), 2007.

[168] V. Wank. Modellierung und Simulation von Muskelkontraktionen für die Diag-
nose von Kraftfähigkeiten. Berichte und Materialien des Bundesinstituts für
Sportwissenschaft, 1st edition, 1996.

[169] J. Weingarten, G. Gruener, and R. Siegwart. A state-of-the-art 3D sensor for robot
navigation. In IROS, 2004.

[170] R. M. Willems, A. Özyürek, and P. Hagoort. When language meets action: The
neural integration of gesture and speech. Cerebral Cortex, 2006.

[171] D. A. Winter. Biomechanics and Motor Control of Human Movement. Wiley, 1990.

[172] S. Wrede, J. Fritsch, C. Bauckhage, and G. Sagerer. An XML Based Framework
for Cognitive Vision Architectures. In Proc. Int. Conf. on Pattern Recognition, pages
757–760, 2004.

[173] S. Wrede, M. Hanheide, S. Wachsmuth, and G. Sagerer. Integration and coordina-
tion in a cognitive vision system. In Proc. of International Conference on Computer
Vision Systems, St. Johns University, Manhattan, New York City, USA, 2006. IEEE.

[174] Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck. Smart pixel –
Photometric Mixer Device (PMD) / new system concept of a 3D-imaging-on-a-
chip. In M2VIP, pages 259–264, 1998.

[175] X. Zhao and Y. Liu. Generative tracking of 3d human motion by hierarchical
annealed genetic algorithm. Pattern Recognition, 41(8):2470–2483, 2008.

[176] Q. Zhu, S. Avidan, M. C. Yeh, and K. T. Cheng. Fast human detection using a
cascade of histograms of oriented gradients. In CVPR, pages 1491–1498. IEEE
Computer Society, 2006.

[177] Y. Zhu, B. Dariush, and K. Fujimura. Controlled human pose estimation from
depth image streams. In CVPR 2008 Workshop On Time of Flight Camera based
Computer Vision (TOF-CV), 2008.

[178] J. Ziegler, K. Nickel, and R. Stiefelhagen. Tracking of the articulated upper body
on multi-view stereo image sequences. In Conference on Computer Vision and Pattern
Recognition - CVPR, New York, USA, June 2006. IEEE Computer Society.

[179] A. Zielinski. Quantitative Evaluierung eines Systems zur Bildbasierten Verfolgung
von 3D-Körperposturen. Diplomarbeit, Faculty of Technology: Bielefeld University,
2006.

164

	Introduction
	Related Approaches for Recognizing Humans
	Person Localization
	Pose Reconstruction and Motion Tracking
	Model Acquisition, Initialization and Error Recovery
	Vision for Human Robot Interaction

	Optimization Techniques
	Optimization Problems
	Definition of an Optimization Problem
	Problem Classification
	Optimality Conditions

	Deterministic Optimization Algorithms
	The Simplex Algorithm
	The Mean Shift Algorithm

	Probabilistic Optimization Algorithms
	Particle Filtering
	Kernel Particle Filtering
	Evolutionary Computation

	Summary

	Person Localization
	Applicability to Different Scenarios
	Industrial Working Cell Safety
	Scene Exploration with a Mobile Robot

	Person Localization System Design
	6D Point Cloud Generation
	Velocity Computation using a Stereo Camera Setup
	Velocity Computation using a Time-of-Flight Sensor

	Generation and Tracking of Object Hypotheses
	Over-Segmentation for Motion-Attributed Clusters
	Weak Model for Object Hypotheses
	Kernel Particle Filter for Object Localization

	Summary

	Body Pose Tracking
	Human Robot Interaction Scenario
	Body Pose Tracking System Overview
	Modeling the Appearence of Humans
	Articulated 3D Body Model
	The Monocular Challenge
	Image Cues for Body Pose Tracking
	Body Pose Observation Model

	Kernel Particle Filtering for Body Pose Tracking
	Refinement of the Particle Distribution
	Extracting the Best Body Pose
	Motion Models for Body Pose Tracking
	Random Noise Propagation

	Body Model Initialization
	Automatic Initialization Procedure Overview
	Face and Hands Detection
	Integration into the Body Pose Tracking System

	Summary

	System Evaluation and Optimization
	Evaluating the Person Localization
	Evaluating the Body Pose Tracking
	Marker-Based Ground Truth
	Error Measure Definition
	Evaluating the Accuracy of the Body Pose Tracking

	Automatic Parameter Optimization for Body Pose Tracking
	Genetic Algorithms for Parameter Optimization
	Parameter Optimization Results

	Evaluating the Automatic Initialization Procedure

	Applications
	Person Localization for Scene Reconstruction
	Body Pose Tracking for Object Attention
	Object Attention System Overview
	Trajectory-Based Gesture Recognition
	Object Attention
	Evaluating the System Performance

	Hand Gesture Detection using the Body Pose Tracking
	Motionese Developmental Studies

	Outlook
	Bibliography

