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An increasing number of research groups are developing custom hybrid
analog/digital very large scale integration (VLSI) chips and systems that
implement hundreds to thousands of spiking neurons with biophysically
realistic dynamics, with the intention of emulating brainlike real-world
behavior in hardware and robotic systems rather than simply simulating
their performance on general-purpose digital computers. Although the
electronic engineering aspects of these emulation systems is proceeding
well, progress toward the actual emulation of brainlike tasks is restricted
by the lack of suitable high-level configuration methods of the kind
that have already been developed over many decades for simulations on
general-purpose computers. The key difficulty is that the dynamics of
the CMOS electronic analogs are determined by transistor biases that
do not map simply to the parameter types and values used in typical
abstract mathematical models of neurons and their networks. Here we
provide a general method for resolving this difficulty. We describe a pa-
rameter mapping technique that permits an automatic configuration of
VLSI neural networks so that their electronic emulation conforms to a
higher-level neuronal simulation. We show that the neurons configured
by our method exhibit spike timing statistics and temporal dynamics
that are the same as those observed in the software simulated neurons
and, in particular, that the key parameters of recurrent VLSI neural net-
works (e.g., implementing soft winner-take-all ) can be precisely tuned.
The proposed method permits a seamless integration between software
simulations with hardware emulations and intertranslatability between
the parameters of abstract neuronal models and their emulation counter-
parts. Most important, our method offers a route toward a high-level task
configuration language for neuromorphic VLSI systems.
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1 Introduction

Developments during the past three decades of computational neuroscience
(Schwartz, 1993) have provided a prodigious collection of tools for the sim-
ulation of biophysically realistic neurons and their networks on general-
purpose digital computers, including NEURON (Hines & Carnevale,
1997), GENESIS (Bower, Beeman, & Wylde, 1998), and PCSIM (Pecevski,
Natschläger, & Schuch, 2008). The majority of these simulation tools are
designed to encode detailed mathematical models of neurons into a form
appropriate for digital simulation. Finally, these tools rest on numerical
methods for the simulation of difference equations.

A second approach to computational neuroscience is concerned with the
direct physical emulation of neural computation. The intention of these em-
ulations is to understand and exploit for novel computational technologies
the physical principles of brainlike computation rather than to simulate its
detailed biophysics on general-purpose digital computers. In this article,
we are concerned with an emulation method based on the construction of
CMOS VLSI neuromorphic devices and systems (Mead, 1989), which com-
prise large assemblies of silicon neurons and synapses whose dynamics are
very similar to those of their biological counterparts (Mahowald & Dou-
glas, 1991). An increasing number of research groups are developing these
custom hybrid analog/digital very large scale integration VLSI chips and
multichip systems that implement hundreds to thousands of spiking neu-
rons with biophysically realistic dynamics (Silver, Boahen, Grillner, Kopell,
& Olsen, 2007; Schemmel, Fieres, & Meier, 2008; Serrano-Gotarredona et
al., 2009), as well as analogs of biological vision (Mead & Mahowald, 1988;
Culurciello, Etienne-Cummings, & Boahen, 2003; Lichtsteiner, Posch, & Del-
bruck, 2008; Posch, Matolin, & Wohlgenannt, 2010) and auditory sensors
(Lyon & Mead, 1988; van Schaik & Liu, 2005).

Although the electronic engineering aspects of these emulation systems
are proceeding well, progress toward the actual emulation of brainlike
tasks is restricted by the lack of suitable high-level configuration methods
of the kind that have been developed over many decades for simulations
on general-purpose computers. The key difficulty is that the dynamics
of the CMOS electronic analogs are determined by transistor biases that
do not map directly to the parameter types and values used in typical
abstract mathematical models of neurons (e.g., the Hodgkin and Huxley
neuron model) and their networks. A further difficulty is that neuromor-
phic electronic circuits often exploit the subthreshold regime of transistor
operation in order to match the biological properties of neurons. The sig-
nals of these subthreshold circuits are small and therefore susceptible to
noise and fabrication variation. As a consequence of these technical diffi-
culties, neuromorphic engineers spend a large amount of time and effort
obtaining desired functionality by tuning the many circuit parameters man-
ually and by configuring ad hoc system solutions on a case-by-case basis.
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Clearly, a systematic and automated configuration methodology is urgently
required to design and implement large-scale brain-inspired computational
systems.

This article provides a general method for resolving this problem. We
describe a parameter mapping technique that permits an automatic con-
figuration of the voltage and current biases of CMOS VLSI neural circuits
so that their electronic emulation conforms to an abstract digital neuronal
simulation. We show that the neurons configured by our method exhibit
spike timing statistics and temporal dynamics that are the same as those
observed in the software-simulated neurons and, in particular, that the key
parameters of recurrent VLSI neural networks can be precisely tuned.

Determining unknown parameters and state variables of physical sys-
tems by measurement of a limited number of observables is a challenging
problem and has been the focus of several research groups (Brillinger, 1998;
Keat, Reinagel, Reid, & Meister, 2001; Paninski, Pillow, & Simoncelli, 2004;
Okatan, Wilson, & Brown, 2005; Huys, Ahrens, & Paninski, 2006; Abarbanel,
Creveling, Farsian, & Kostuk, 2009). Mapping parameters from silicon neu-
ral networks to their equivalent theoretical models is analogous to this
problem, and so in principle the parameter estimation methods from these
works can be applied. However, for the purpose of configuring hardware
neurons, we also require reverse mapping, which should be determined
by their equivalent theoretical model. In reverse mapping, the unknown
parameters are those of the hardware neurons, and the theoretical model
parameters represent the desired target values.

Provided a method to estimate a parameter, a typical solution to the
parameter configuration problem is to iteratively search the space of biases
until the estimated parameter matches a desired criterion. Unfortunately,
this approach requires a new measurement from the hardware system at
each step of the iteration. This can be prohibitively slow, especially when
each neuron (operating in real time) must be probed separately and can be
computationally expensive because large amounts of data (e.g., membrane
potential traces) must be analyzed.

Such parameter search methods can be improved with the use of heuris-
tics. For example Russell, Orchard, and Etienne-Cummings (2007) demon-
strate a multistage evolutionary algorithm that can tune the parameters of
a VLSI neural network until its behavior implements the one of a central
pattern generator network. Their approach is similar to a black box model
in that it does not require any knowledge of the underlying VLSI circuit.
Although this method would also allow configuring any neuromorphic
neural network, we propose a different bidirectional mapping approach
where the known parameters can be mapped directly to the neural hard-
ware by matching a theoretical neuron model to the VLSI neuron.

This bidirectional mapping approach is based on our ability to derive a
suitable electronic model against which to perform parameter estimation.
We use the firing rate of the neurons as state variables against which we



2460 E. Neftci, E. Chicca, G. Indiveri, and R. Douglas

fit an abstract neuron model, such as the linear threshold unit (LTU), that
represents the instantaneous firing rate of biological neurons (Ermentrout,
1994). This case is different from those in which parameters must be de-
rived for biological networks of spiking neurons. In those cases, obtaining
a model that defines suitable parameters may be difficult or even impos-
sible because of the complexity of the underlying phenomena or the lack
of adequate experimental data. Fortunately, in our case, the definition of
a suitable mathematical model of the hardware neurons and synapses
is more straightforward, because the designer has full knowledge of the
VLSI system. This circuit model can be more or less detailed depending
on the choice of simplifying assumptions for the transistors and analog
circuit behaviors and on their expected relationship with standard neural
network models. Once a suitable circuit model is chosen, the circuit cal-
ibration procedure can then be cast as a standard parameter translation
problem. Once the parameter translation has been established, it is possible
to determine the bias voltages that set the desired properties of the VLSI
neural network (such as synaptic weights, time constants, and refractory
periods).

In this article, we apply such parameter translations for automatically
configuring VLSI neural networks. The method is general and can be ap-
plied to any neuromorphic chip implementing neurons that can be con-
figured to behave as LTUs. Here, we demonstrate its functionality using a
specific multineuron neuromorphic VLSI device developed in our institute
(Indiveri, Chicca, & Douglas, 2006).

The remainder of the article is organized as follows. In section 2.1, we
present neuron models implemented in silicon and describe a method for
parameter translation between hardware and theoretical models. In sec-
tion 2.2 we describe the conditions under which the neuronal models imple-
mented as silicon neurons can be approximated by LTUs. We then describe
how to determine the sets of bias voltages for setting desired properties
of networks of silicon neurons and apply the procedure to a cooperative-
competitive network of silicon neurons using a mean-field approach. In
particular, in section 3.1, we show how the methodology proposed can be
used to tune the gain of recurrently coupled VLSI neurons. In section 3.2 we
show that our method can be used to infer the synaptic time constants of the
hardware synapses. In addition, we demonstrate that software-simulated
networks of integrate-and-fire (I&F) neurons with matched parameters ex-
hibit comparable temporal dynamics. Finally, in section 3.3, we apply the
full methodology to configure a VLSI spiking soft winner-take-all (sWTA)
neural network and predict its temporal behavior.

2 Material and Methods

2.1 A Low-Power Integrate-and-Fire Neuron Circuit. Many models of
neurons have already been implemented in silicon (Mead, 1989; Mahowald
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& Douglas, 1991; van Schaik, 2001; Hynna & Boahen, 2001; Indiveri, 2003;
Alvado et al., 2004; Simoni, Cymbalyuk, Sorensen, Calabrese, & DeWeerth,
2004; Schemmel, Meier, & Mueller, 2004; Arthur & Boahen, 2004, 2007; Far-
quhar & Hasler, 2005; Hynna & Boahen, 2006; Wijekoon & Dudek, 2008; Livi
& Indiveri, 2009; Yu & Cauwenberghs, 2009; Rastogi, Garg, & Harris, 2009;
Massoud & Horiuchi, 2009; Folowosele, Etienne-Cummings, & Hamilton,
2009). Depending on the complexity of the neuron model, the VLSI neuron
may require relatively large areas of silicon. For example, silicon neurons
implemented with electronic analogs of voltage-gated channels and with a
close analogy of the Hodgkin and Huxley (H&H) formalism require a rela-
tively large area of silicon and are thus usually integrated in relatively small
numbers on VLSI chips of practical dimensions (Douglas & Mahowald,
1995; Rasche & Douglas, 2000; Alvado et al., 2004; Yu & Cauwenberghs,
2009). As a consequence, the applications of these types of devices have
been confined to specific domains, such as hybrid biological-silicon
neuron interaction experiments (Renaud, Tomas, Bornat, Daouzli, & Saı̈ghi,
2007).

A family of simpler spiking neuron models that permits the implemen-
tation of large, massively parallel networks in VLSI is the I&F model and
the focus of this article. I&F neurons integrate presynaptic input currents
and generate a voltage pulse analogous to an action potential when the
membrane potential reaches a spiking threshold. Their parameters can be
related approximately to the properties of biological neurons. Therefore, in
principle, they allow the implementation of neuromorphic systems with bi-
ologically meaningful parameterization. However, in practice the electronic
and model parameters suffer from the matching problem outlined in section
1. Most VLSI implementations of I&F neuron models are based on the Axon-
Hillock circuit originally proposed by Mead (1989). This circuit integrates an
incoming current onto a capacitor until a high-gain amplifier switches. The
positive feedback produces a voltage spike, and the membrane potential is
reset to its initial state. This circuit is extremely compact and has been used
in a wide range of neural network chips. However, it does not implement a
classical R − C type of leaky I&F model, in which the leak is conductance
based. Rather, the leak is often implemented using a constant current sink.
As a result, a constant input current charges the capacitor linearly in time,
until the spiking threshold is reached, and it is therefore called a constant
leakage integrate & fire (CLI&F). We focus our analysis on this class of
CLI&F neuron models because it is the foundation of the majority of cur-
rent silicon neuron implementations. In particular, we use the low-power
I&F circuit that was originally proposed in Indiveri et al. (2006) and imple-
mented, for example, in the chips described in Camilleri et al. (2007) and
Massoud and Horiuchi (2009). This CLI&F neuron circuit is a silicon neuron
model with positive feedback, constant leakage, and refractory period. It has
been fully described and characterized in Indiveri et al. (2006). For the scope
of this article, it is sufficient to observe that the dynamics governing the
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membrane potential Vm below firing threshold obey the following differen-
tial equation:

C
d
dt

Vm = I (t) − β + I f be
κ

UT
(Vm−Vth )

, (2.1)

where C represents the membrane capacitance, I (t) the neuron’s input cur-
rent, β a passive (constant) leak term, I f b a positive feedback current, Vth

the neuron’s spiking threshold voltage, UT the thermal voltage, and κ the
MOSFET subthreshold slope factor (Mead, 1989). Communication with the
device is achieved with the address event representation (AER) protocol,
which uses spikes (events) to convey information, in a fashion similar to
biological neural systems (Lazzaro, Wawrzynek, Mahowald, Sivilotti, &
Gillespie, 1993). When the membrane potential reaches the firing threshold,
an AER event is produced and Vm is reset to its resting potential, which
is equal to 0 for this circuit. After each spike, the membrane potential is
actively clamped to the resting potential for a duration referred to as the
refractory period.

2.2 VLSI I&F Parameter Translation Using the Linear Threshold Unit
Approximation. We can integrate numerically equation 2.1 and use it in
neural network software simulators to implement software networks of
spiking neurons that faithfully reproduce the dynamics of the silicon neu-
rons. If we could map the parameters of equation 2.1 directly to the circuit’s
voltage biases, we would have defined the parameter translation between
software and hardware neuron models. However, the relationship between
voltage biases and model parameters is nonlinear and includes unknown
factors, dependent on the implementation details and on the VLSI fabrica-
tion process. Furthermore, this procedure alone would not provide us with
useful tools for analyzing the network behavior. Indeed, despite its sim-
plicity, the differential equation 2.1, coupled to the neuron’s thresholding
nonlinearity, yields a nonlinear system that does not have an explicit ana-
lytical solution. To extend our theoretical analysis to network properties, it
is necessary to link the silicon neuron circuit to LTU models, model neu-
rons that represent the instantaneous firing rate of biological neurons via a
threshold-linear transfer function. This is a very useful model, as the linear
relationship between the neuron’s input current and its output firing rate
has often been observed in biological neurons (Ahmed, Anderson, Douglas,
Martin, & Whitteridge, 1998). Although LTUs ignore many of the nonlin-
ear processes that occur at the synaptic level and contain, by definition, no
spike timing information, their analytical simplicity and their accuracy in
representing the activity of neural networks in a wide variety of cases make
them a powerful tool for analyzing neural networks (Yuille & Grzywacz,
1989; Ermentrout, 1994; Ben-Yishai, Lev Bar-Or, & Sompolinsky, 1995).
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Figure 1: Overview of the parameter translation method for configuring VLSI
neurons: How abstract, software, and hardware models of neurons are related
and can be used for parameter configuration. The left box represents the set
of abstract models that can be analytically solved. The middle box represents
the set of spiking neuron models that are typically simulated in software. The
right box represents the set of VLSI implementations of spiking neuron models.
The left-pointing arrows indicate how parameter estimation is achieved by
using observations and measurements from hardware and software models.
The right-pointing arrows indicate the parameter configuration process, which
originates with the desired biologically relevant variables, and ends with chip
biases.

The parameter translation method we propose comprises three compo-
nents: an abstract analytically tractable neuron model (the LTU), a nonlinear,
numerically computable neuronal model (the CLI&F neuron), and a silicon
neuron model (such as the VLSI low-power CLI&F neuron). To complete
the parameter translation procedure, we must therefore define the mapping
between the LTU parameters and the I&F neuron parameters by exploiting
their mathematical equivalence and the mapping between the I&F neuron
parameters and the voltage biases of the corresponding VLSI circuit. An
overview of this procedure is shown in Figure 1.

In the following sections, we show how I&F neurons with dynamics gov-
erned by equation 2.1 can be reduced to LTUs and under which constraints.
(For a similar study using conductance-based neurons, see Shriki, Hansel,
& Sompolinsky, 2003.) The application of this method to other neuron mod-
els and networks is possible as long as there exists a regime in which the
neurons have a threshold-linear activation function.

2.2.1 From VLSI I&F Neurons to Linear Threshold Units. The positive feed-
back term of the neuron in equation 2.1 becomes nonnegligible when Vm

approaches Vth . This term leads to dynamics that are not solvable in the gen-
eral case. However, if we use an effective firing threshold �, the threshold
voltage at which the neuron without positive feedback would have fired,
producing the same inter-spike interval (ISI) compared to the neuron with
positive feedback, we can neglect it. The effective firing threshold � can be
measured experimentally. In this case, equation 2.1 simplifies to

C
d
dt

Vm(t) = −β + I (t), Vm(t) ∈ (0,�), (2.2)
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where β is a constant leakage current, I (t) the neuron’s input current, C
the membrane capacitance (C = 1.06 pF for this circuit), and � the neuron’s
effective firing threshold (measured � = 1.1 V for the neuron threshold volt-
age Vth = 0.75 V). Figure 2b compares the membrane potential simulated
using the exact dynamics from equation 2.1 with the one simulated using
the approximated dynamics given above, stimulated with the synaptic cur-
rent shown in Figure 2a. In Figure 2c we see that the firing rates of these
two models are nearly identical for a large range of input mean frequencies.
Equation 2.2 is also the equation that characterizes the Axon-Hillock neu-
ron circuit (Mead, 1989) and many other silicon neurons proposed in the
literature. When the membrane potential reaches the firing threshold �, the
neuron emits a spike of finite pulse width. We can ignore the effects related
to the spike pulse widths and the neuron’s refractory periods by assuming
that the neuron’s ISI are much larger than the timescale of such effects. The
equation for Vm has an analytical solution that can be determined by inte-
grating equation 2.2. In appendix A, we show that a CLI&F neuron injected
with a constant current Iinj fires at rate ν,

ν = 1
C�

max(Iinj − β, 0), (2.3)

where the max(·, 0) is a rectification nonlinearity that keeps the firing rate
positive.

Input currents are generally provided by other neurons through
synapses and are time varying. If the time constant of the soma is small
compared to the synaptic time constant, then the firing rate of the neuron
tightly follows the synaptic input. Under this condition, equation 2.3 is also
a good approximation for time-varying synaptic inputs, and the temporal
evolution of the system is governed by the synaptic dynamics (Dayan &
Abbott, 2001). This condition is not a limiting factor for the vast majority
of neural hardware implementations because the synaptic time constants
can usually be set by the user and because this regime must be achieved
for the parameter translation calibration step only (explained in detail in
section 2.4). Synaptic currents depend on the activities of the presynaptic
neurons and are commonly modeled using first-order linear filter dynam-
ics (Destexhe, Mainen, & Sejnowski, 1998). In this model, the output current
of a synapse, Isyn, in response to an arbitrary spike train ρ(t), is governed
by the following equation,

Isyn(t) = qw

τ
· e− t

τ

∫ t

0
ds e

s
τ ρ(s), (2.4)

where qw is a scalar representing the weight of the synapse (the amount by
which Isyn is incremented at the arrival of a spike), τ its time constant, and
ρ(t) the presynaptic spike train, modeled by a sum of delta Dirac functions:
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ρ(t) = ∑
k δ(t − tk). Synaptic circuits that reproduce such dynamics can be

implemented in analog VLSI using a differential-pair integrator (DPI) (Bar-
tolozzi & Indiveri, 2007). To cast the network dynamics in terms of LTUs,
we must relate the presynaptic neuron’s firing rate to the synaptic current at
the postsynaptic neuron. For this, in appendix A, we show that the synaptic
current Isyn is a low-pass filtered version of the presynaptic neuron’s firing
rate ν(t), and that if the synaptic time constant τ is large compared to the
input inter-spike interval ISI, then Isyn(t) obeys the following differential
equation:

τ
d
dt

Isyn(t) + Isyn(t) ∼= qwν(t). (2.5)

This equation underlines the fact that under the assumption on the
synaptic time constant, Isyn integrates the spike responses and fluctuates
around a value qwν. Figure 2a shows an example trace of Isyn (solid line)
when the synapse is stimulated with a Poisson spike train ρ(t) of constant
mean frequency (vertical black lines) and illustrates how Isyn fluctuates
around its steady-state value (horizontal line) as a result of the stochasticity
of the spike train ρ. Recalling equation 2.3, we can now express the firing
rate of the postsynaptic neuron i as a function of both its synaptic currents
and a constant injection current Iinj ,

νi (t) = 1
C�

max

(
Iinji +

∑
j

Isyni j (t) − β, 0

)
, (2.6)

where the sum runs over all the indexes of presynaptic neurons contact-
ing neuron i . Equation 2.6 depends on synaptic currents Isyni j defined by
equation 2.5, which in turn depend on the firing rates of the presynaptic
neurons. Therefore, both equations are required to describe the network’s
firing rate dynamics. The variable νi (t) is the output of a LTU and faithfully
models the mean firing rate of a CLI&F neuron model. Figure 2c shows the
threshold-linear behaviors of the firing rate of the software-simulated neu-
ron from equation 2.1 and of the approximated CLI&F from equation 2.2
(without the positive feedback term) when stimulated with Poisson spike
trains.

2.2.2 Mapping Linear Threshold Unit Variables to VLSI I&F Neuron Para-
meters. By mapping the CLI&F model variables to the VLSI I&F neuron
parameters, we can establish a direct link between analytically tractable
LTUs and silicon neurons. Using equations 2.5 and 2.6, we find that the
steady-state mean firing rate of a silicon neuron is

νi = max

(∑
k

wikνk + bi − Ti , 0

)
, (2.7)
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where the variables wi j , Ti , and bi are defined as

wik = qwik

C�
, Ti = βi

C�
, bi = Iinji

C�
, (2.8)

and the terms wikνk represent the mean input current produced by the
synapses, the terms Ti represent a constant leakage, and bi the experimen-
tally applied input currents. The Iinji and βi variables in the translation
equations correspond to the neuron’s constant injection and the leak cur-
rents, respectively, and C and � represent the neuron’s membrane capac-
itance and effective firing threshold, respectively. In the following section,
we use the parameter translations to configure the mean activity and gain
in cooperative and competitive network of VLSI I&F neurons.

2.3 Parameter Configuration in Cooperative and Competitive Net-
works of I&F Neurons. Cortical neural networks are characterized by a
large degree of recurrent excitatory connectivity and local inhibitory con-
nections. This type of connectivity among neurons is remarkably similar
across all areas in the cortex (Douglas & Martin, 2004). It has been ar-
gued that a good candidate model for a canonical microcircuit, potentially
used as a general-purpose cortical computational unit in the cortices, is
the soft winner-take-all (sWTA) circuit (Douglas & Martin, 2004), or the
more general class of cooperative and competitive network (CCNs) (Amari
& Arbib, 1977). A CCN is a set of interacting neurons in which cooper-
ation is achieved by local recurrent excitatory connections, and competi-
tion is achieved by a group of inhibitory neurons, driven by the excitatory
neurons and inhibiting them (see Figure 3). As a result, CCNs perform
both common linear operations and complex nonlinear operations. The
linear operations include analog gain (linear amplification of the feed-
forward input, mediated by the recurrent excitation or common mode
input) and locus invariance (Hansel & Sompolinsky, 1998). The nonlin-
ear operations include nonlinear selection or sWTA behavior (Amari &
Arbib, 1977; Dayan & Abbott, 2001; Hahnloser, Sarpeshkar, Mahowald,
Douglas, & Seung, 2000), signal restoration (Dayan & Abbott, 2001; Dou-
glas, Mahowald, & Martin, 1994), and multistability (Amari & Arbib, 1977,
Hahnloser et al., 2000).

We will apply the parameter translation method described in this arti-
cle to a VLSI device implementing a CCN low-power I&F neurons with
DPI synapses (Indiveri et al., 2006, Bartolozzi, Mitra, & Indiveri, 2006).
The chip has been fabricated using a standard AMS 0.35 μm CMOS pro-
cess, and covers an area of about 10 mm2. It contains 124 excitatory neu-
rons with local hard-wired self; first, second, and third nearest-neighbor
recurrent excitatory connections; and 4 inhibitory neurons (all-to-all bidi-
rectionally connected to the excitatory neurons). Each neuron receives in-
put currents from a row of 32 afferent plastic synapses that use address
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Figure 3: CCN of VLSI neurons with recurrent excitatory couplings and global
inhibition. (Left) Circuit diagram of the VLSI chip implementing a spiking
CCN. In the circuit, there are 124 excitatory neurons (tiled horizontally) and
4 inhibitory neurons (only one is drawn here to avoid clutter). The dark and
light boxes represent inhibitory and excitatory synapses, respectively and the
trapezoids represent the somata of the neurons. The excitatory neurons are cou-
pled to each other in a local nearest-neighbor fashion through the synapse
of weight wE . In our chip, the first, second, and third neighbors are cou-
pled to each other. To avoid clutter, only the first nearest-neighbor connec-
tions are shown here. A subset of the synapses can be stimulated through
the AER (AER input blocks). The spiking activities of all the neurons are en-
coded as address events (AER output block). (Right) Schematic illustration
of the CCN architecture implemented on the chip. When the excitatory neu-
rons become active, the inhibitory neurons receive excitatory input (through
a synapse of weight wE I ). When the inhibitory neuron becomes active, it in-
hibits the excitatory neurons back (through a synapse of weight wI E ). A net-
work with such connectivity can perform soft winner-take-all computation (see
text).

event representation (AER) to receive spikes (Lazzaro et al., 1993). The
spiking activity of the neurons is also encoded using the AER. In this
representation, input and output spikes are real-time asynchronous dig-
ital events that carry analog information in their temporal structure. We
can interface the chip to a workstation for prototyping experiments us-
ing dedicated boards (Chicca et al., 2007; Fasnacht, Whatley, & Indi-
veri, 2008). These boards allow us to stimulate the synapses on the chip
(e.g., with synthetic trains of spikes) and monitor the activity of the I&F
neurons.

2.3.1 Cooperative and Competitive Network with Uniform Input. The LTU
approximation presented in section 2.2 can be applied to the CCN of VLSI
neurons. If the neural activity is statistically independent from neuron
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to neuron, one can use a mean-field approach to study network activity.
Such statistical independence typically arises in the diffusion approxima-
tion (Tuckwell, 1988), which is accurate when the synaptic weights qw are
small relative to the firing threshold �, the number of afferents to each
neuron is large, and the network spiking activity is asynchronous (Brunel,
2000; Fusi & Mattia, 1999). Although the diffusion approximation is exact
only for infinite-size networks, it is also known to be a good approximation
for finite-size networks (Renart, Brunel, & Wang, 2003). The assumptions
for the diffusion approximation can be approximatively valid in the case
of the VLSI CCN because each excitatory neuron is connected to its first,
second, and third neighbors; the synaptic weights can be set to arbitrar-
ily low values; and the inhibitory couplings can be tuned such that the
network activity is asynchronous (Brunel, 2000). When the CCN is stim-
ulated with a uniform input and the recurrent excitatory weight wE is
weak enough such that the sWTA does not break the symmetry of the net-
work (e.g., by selecting a winner as a result of small fluctuations), then
the CCN can be studied as a function of two LTUs—one for the excita-
tory population (νE ) and one for the inhibitory population (νI ). Under the
assumptions stated above, a straightforward calculation (carried out in
section A.2) shows that the steady-state activity of the excitatory neurons
of the CCN is

νE = bE

	
+ TI NI wI E − TE

	
, (2.9)

	 = 1 − 2wE + NI NEwI EwE I ,

where wE is the weight of the local recurrent nearest-neighbor excitation
(the factor 2 is due to the number of neighbors for each excitatory neuron),
wE I is the weight of the excitatory synapse on the inhibitory neuron, wI E

is the weight of the inhibitory synapse on the excitatory neurons, TE and
TI are the thresholds of the excitatory neurons and the inhibitory neurons,
respectively, NE is the number of excitatory neurons, and NI is the number
of inhibitory neurons. The two terms in equation 2.9 represent the activation
due to the constant current injection (first term) and the threshold of the
inhibitory and excitatory neurons (second term). The system gain of the
CCN is 	−1. Here, for simplicity, we have considered only the first nearest-
neighbor couplings. Using equation 2.8, the excitatory population activity
νE given by equation 2.9 can be cast in terms of currents Iinj , β and synaptic
weights qw. The synaptic weight of the differential-pair integrator synapse
qw itself is a function of three currents and a spike pulse duration (see
appendix B for a description of these currents). In practice, such currents are
controlled by bias voltages in a nonlinear fashion and must be determined
at least once experimentally during a calibration procedure, as we shall see
in the following section.
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2.4 Parameter Translation Calibration. In the previous section, we saw
the mathematical link between the LTU and the CLI&F neuron and argued
that the latter is a good model for the VLSI I&F neuron. To calibrate the
parameter translation, we need to match the VLSI I&F neuron to its hard-
ware instantiation in the chip. This calibration procedure must be carried
out only once and corresponds to the arrows pointing to the left in Figure 1.
It is equivalent to measuring the unknown parameters that depend on the
fabrication process by using the spiking activity data of the chip. To carry
out this calibration step, we make use of the steady-state solution given in
equation 2.9.

2.4.1 Current-Voltage Characteristics of MOSFET Transistors in Subthreshold
Regime. The currents appearing in the translation variables and the synaptic
weights in equation 2.8 involve constants related to the properties of the
transistors, which in turn depend on their fabrication process and must
be measured independently. We describe how this can be done using only
spiking activity measurements.

The current-voltage relationship of the MOSFET transistors operating
in subthreshold and in saturation have the following expressions (Mead,
1989):

I (Vg) = I0n

W
L

e
κn
UT

Vg (n-FET, source node tied to ground), (2.10)

I (Vg) = I0p

W
L

e
κp
UT

(Vdd−Vg ) (p-FET, source node tied to Vdd ), (2.11)

where I0n and I0p are the leakage currents (also called off-currents) and
κn and κp are the subthreshold slope factors of the n-FET and the p-FET
transistors, respectively. W

L is the width-to-length ratio of the transistor,
Vg is the gate voltage, and UT is the thermal voltage (∼= 25.6 mV at 25◦C).
These relationships are valid only when the source node of the n-FET (p-
FET) transistor is tied to ground (Vdd ), which is the case for all the transistors
associated with the currents appearing in equation 2.8.

Measurement of I0p , κp: The current injection is varied with the
bias Vinj and the leak is kept constant, with all recurrent synapses
turned off (wAE R, wE , wE I = 0). We fit the firing rate of the excitatory
population νE to equation 2.9 with the expressions for the transistor
currents in equation 2.11:

νE (Vinj ) = bE (Vinj ) − TE (p-FET measurement).

Measurement of I0n , κn: We perform a similar experiment as the one
above except that the leak bias is varied and the current injection
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Figure 4: Two experiments to estimate the off-currents and subthreshold slope
factors. (a) The population activity of the excitatory neurons νE , averaged over
2 s, as a function of the injection current bias Vinj . Since the injection involves
a p-FET, the firing rate increases as Vinj is set below Vdd = 3.3 V. (b) νE as a
function of the leak bias Vlk . At Vlk > 0.18V, the VLSI neurons are no longer able
to overcome the threshold, and the activity remains at 0.

bias Vinj is kept constant. We measure the firing rate of the excitatory
neuron population and fit it with

νE (Vleak) = bE − TE (Vleak) (n-FET measurement).

The measurements of νE , averaged over all the excitatory neurons, and
their corresponding fits are shown in Figure 4 and the fitted values of I0

and κ are

I0 n = 5.6 · 10−14 A κn = 0.76,
(2.12)

I0 p = 4.0 · 10−16 A κp = 0.69.

The two previous measurements determine the values of I0 and κ for the
n-FET and the p-FET. In theory, provided that the size of every transistor
is measured, all the variables required for equation 2.9 can be determined.
However, this procedure is inaccurate because the large number of synapses
per neuron and the various circuits tied to the soma and the synapses often
give rise to parasitic currents and also because in our case, the pulse du-
ration, which appears in the expression of the synaptic weight qw, cannot
be precisely estimated. Furthermore, measurements of the I0 currents are
known to be unreliable for small transistors (the typical sizes of the mea-
sured transistors were on the order of 300 to 600 λ2, where λ equals one-half
the feature size). The largest contribution to transistor mismatch is due
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to doping concentration variations in the silicon and is often described as
“spatial white noise” (Pavasović, Andreou, & Westgate, 1994) and therefore
follows a gaussian distribution. Although we can assume that the estimates
for the I0’s are sufficiently accurate because the two previous experiments
were carried out over populations of transistors, the transfer of these mea-
surements to single (small) transistors can lead to imprecise predictions.
For these reasons, in the next paragraphs, we individually fit the weight
of the couplings required to implement sWTA behavior: (1) the external
AER synapse, (2) the excitatory nearest-neighbor synapse, (3) the excita-
tory synapse of the inhibitory neuron, and (4) the inhibitory synapse of the
excitatory neurons, as a function of their biases.

Thus far, the neurons have been stimulated using a constant current
injection to the soma, represented by the term bE in equation 2.9. As men-
tioned in section 2.3, the neurons can be stimulated externally through an
AER synapse (e.g., by means of a digital PC or another chip-producing
spike). This type of stimulation is more flexible because the neurons can be
individually addressed with time-varying inputs, in contrast to the constant
current injection Iinj which is controlled by a global bias and is therefore
identical for all the neurons. According to equation 2.4 in steady state, a
neuron receiving a spike train of constant mean frequency νin is stimulated
with an average input current equal to wAE Rνin, where wAE R is the weight
of the AER input synapse. In this case, the bE terms in equation 2.9 can
simply be replaced or summed with wAE Rνin where necessary:

1. Mean population activity as a function of external address event
representation synapse weight bias VwAE R . We measure the firing
rate of the excitatory neurons stimulated with spike trains of constant
mean frequency as a function of the AER synapse weight bias VwAE R

with local excitatory and inhibitory couplings turned off (wE , wE I =
0). The measured data are fitted to

νE = wAE R(VwAE R )νin − TE , (2.13)

where b is the injection current, νin is the mean frequency of the input
spike trains, wAE R is the weight of the synapse, and TE is the leak (see
Figure 5a).

2. Mean population activity as a function of lateral couplings. We
measure the firing rate of the excitatory population as a function of
the recurrent nearest-neighbor synapse bias VwE . The measured data
are fitted to

νE = bE − TE

1 − 2wE (VwE )
, (2.14)

Results are shown in Figure 5b.
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Figure 6: Parameter translation calibration, inhibitory synapses. To determine
the precise relationships between the synaptic weights and the biases, we per-
form the calibration described in section 2.4 and present the results of each
experiment. (a) We observe that the effect of the inhibitory synapse is threshold
linear with a smooth onset, as described in appendix B. (b) The activity of the
excitatory neurons is plotted against the inhibitory synapse weight bias VwI E

and fitted to equation 2.16.

3. Mean population activity as a function of excitatory to inhibitory
couplings. We measure the weight of the excitatory to inhibitory
synapse by setting a constant injection bE to the excitatory neurons
and measuring νI as a function of VwE I . The firing rate of the inhibitory
neurons as a function of VwE I is then fitted to

νI = NEwE I νE (VwE I ) − TI , (2.15)

where NE is the number of excitatory neurons and νE is kept fixed
(results are shown in Figure 5c).

4. Mean population activity as a function of inhibitory to excitatory
couplings. We measure the inhibitory synaptic current by injecting
a constant current to both inhibitory neurons and excitatory neurons
and by recording the mean activity of the excitatory neurons as a
function of VwI E . Due to a nonlinearity in the VLSI implementation
of the inhibitory synapse, the inhibitory synaptic current behaves
approximately in a threshold-linear fashion (see appendix B). Under
these assumptions, the firing rate becomes

νE = bE − TE − NI wI E (VwI E ) max(νI − TI , 0), (2.16)

where NI is the number of inhibitory neurons and TI the effective
threshold due to the nonlinearity. The results are shown in Figures 5c
and 6a. The effect of the inhibitory synapse nonlinearity is shown in
Figure 6b.



VLSI Neuron Parameter Configuration 2475

3 Results

3.1 Cooperative and Competitive Network Gain Configuration. The
gain of a CCN is an important parameter that characterizes the sWTA
operation (Douglas et al., 1994). Experimentally, the transfer function of the
CCN is obtained by measuring the steady-state response of the excitatory
neurons to spike trains of increasing mean firing rates. By combining the
results of the previous section, we can determine every variable on the
right-hand side of equation 2.9 as a function of bias voltages, which can
be used to calculate the transfer function of the VLSI CCN (see Figure 7).
The excitatory and the inhibitory neurons activate sequentially due to the
leak of the neurons, resulting in a point where the slope of the transfer
function changes abruptly. Up to an input of 50 Hz, only the excitatory
neurons are active and show a high gain (steep slope) due to the effect of
the excitatory couplings. When both excitatory and inhibitory neurons are
active, the gain decreases to 	−1, as defined in equation 2.9. Except for the
discrepancies noticeable in Figure 7b, which are mainly due to nonlinearities
in the hardware synapses, the experimental transfer functions (black points)
are comparable to those predicted by the LTUs (dark curves) over a large
range of configurations, as shown in Figure 7. Some discrepancies are also
noticeable at very low and very high firing rates and are mainly due to the
nonlinearities in the hardware synapses and the LTU approximation.

3.2 VLSI I&F Neuron Temporal Dynamics Configuration. We have
demonstrated that the LTU approximation is accurate for setting the gain of
a CCN of VLSI I&F neurons and in predicting its steady-state mean firing
rate. However, as many aspects of computation in the brain are achieved
during transients, we show that the parameter translation can also predict
the temporal dynamics of the VLSI I&F neurons. We first show that the
time constants of the DPI synapse are reliably inferred and then perform
hardware and software simulations of neurons to compare the step response
and spike timing statistics.

3.2.1 Estimating the Postsynaptic Current of the DPI Synapse. The excita-
tory postsynaptic current (EPSC) of the local nearest-neighbor synapses is
the excitatory current flowing into the postsynaptic neurons as a result of
presynaptic spiking activity at an excitatory synapse. The EPSC can be de-
termined by recording spike-triggered averages of the membrane potential
of an excitatory neuron excited by one of its nearest neighbors, differenti-
ating it and subtracting the leak. To set the time constant of the synapses,
we used the measurements of the off-currents and the subthreshold slope
factors from section 2.4 and our knowledge of the DPI synapse circuit, reca-
pitulated in appendix B. Because the transistors responsible for controlling
the time constant and the weight of the synapse have relatively small sizes
(700 λ2 and 140 λ2, respectively), we expect a large variance in the EPSCs
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Figure 7: Transfer function of a CCN of 20 excitatory neurons and 4 inhibitory
neurons. We measure the activity of 20 VLSI excitatory neurons stimulated
by Poisson spike trains of increasing mean frequency (black). We compare the
transfer function of the hardware CCN with analytical predictions using equa-
tion 2.9 (thick dark line). The stimulation lasted 3 s for each point, and the
activity was measured after 2 s, such that the system was guaranteed to reach
steady state (the system typically converged to its steady state after 500 ms or
less). The curves in panels c and d have two different slopes (gains). This is due
to the effect of the leak in the inhibitory neurons: at an input frequency of ap-
proximately 50 Hz (c) and 20 Hz (d), the inhibitory neurons start to activate. The
transfer functions of the hardware CCN match the LTU solution quite precisely,
but less in panel b. This is partly due to the stochastic nature of the stimulation
and to nonlinearities in the hardware synapses. For all panels, the weight of the
AER input synapse was set to wAE R = 0.5. The transfer functions were plotted
against wAE Rνin in order to emphasize the system’s gain.

measured for each individual synapse. However, since the off-currents
were measured for the entire populations of neurons, we expect that the
EPSC averaged over the entire array will be close to the predictions of
equation 2.4.
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For these reasons, the measurements of the EPSC are repeated over
120 different local nearest-neighbor synapses of the chip and are com-
pared to equation 2.4 (see Figure 8). To observe the spike-triggered av-
erage of the EPSC, the neuron was not allowed to fire. As a result, the
membrane voltage was measured in a regime where the leak transistor
partially operated out of saturation (Vm < 0.1 V). This was compensated
by modeling the leak transistor in the ohmic region (Mead, 1989). In nor-
mal operation, the constant leakage approximation is nevertheless accu-
rate because the leak transistor of the VLSI neuron is in saturation in
approximatively 90% of the dynamical range of the membrane potential.
The error bars in Figure 8 represent the variation due to the mismatch
in the transistors. The predicted EPSC matches the average EPSC accu-
rately, although no direct fit of the EPSC had been performed. We con-
clude that our parameter translation is accurate for determining the average
time constant and average weight of the DPI synapses across the array of
neurons.

3.2.2 Comparison with Software-Stimulated CLI&F Neurons. We compare
the spike-timing-related statistics of a CCN of VLSI I&F neurons and
software-simulated CCN of CLI&F neurons with matched parameters.

For this, we run the following experiment: both software and hard-
ware networks were stimulated with identical Poisson spike trains of con-
stant mean frequency 110 Hz and of 2 s duration. In the software sim-
ulations, the effect of transistor mismatch was simulated by sampling
the synaptic weights from a gaussian distribution of standard deviation
0.2 · w (according to the mismatch observed in the histogram in Figure 8e)
and mean w.

Since the particular instance of the synaptic weights in the software
simulations does not match the mismatch in the VLSI I&F neurons, we
expect the spiking activity to be identical in the statistical sense only. This can
be observed in an ISI histogram averaged over the excitatory neurons (see
Figure 9c), in which both networks show a nearly identical ISI distribution.
The error bars represent the standard deviation due to the distribution of
synaptic weights.

The instantaneous firing rates of the software CCN and the hardware
CCN are plotted against time in Figure 9d and show that the temporal
dynamics of both networks are similar. We conclude that the parameter
translation can be used to predict the stationary statistics of the system.

3.3 Soft Winner-Take-All Gain and Time Constant Configuration.
The sWTA is a nonlinear function often used in computations requiring
decisions, such as saliency detection and object identification.

Equations 2.5 and 2.6 are also appropriate for studying the CCN tran-
sients because in the regime τsyn � ISI, the dynamics are dominated by the
synapses’ time constant (Fourcaud & Brunel, 2002).
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Figure 9: The spiking activity of the excitatory VLSI I&F neurons statistically
matches those of software simulated neurons. We present raster plots of the ex-
citatory neurons from the experiment described in Figure 7 for wAE Rνin = 65 Hz.
(a) Spiking activity of the VLSI I&F neurons. (b) Spiking activity of software sim-
ulated CLI&F neurons. Because of the particular instance of mismatch in the
software simulations, the spiking activity matches those of the VLSI neurons in
the statistical sense only. This is observed in the ISI distribution (c) and the in-
stantaneous firing rate of the entire population (d). Both hardware and software
neurons have equal steady-state firing rates and show comparable responses to
a step input (dashed line).

To study the dynamics of the CCN, we carry out an experiment
where two excitatory populations are stimulated and compete through the
inhibitory population. The mean-field analysis used for the parameter trans-
lation calibration in section 2.3 can be extended by adding one LTU per ad-
ditional excitatory population. The conditions for applying the mean-field
approach to the network must then be verified for each additional LTU.
This means that the input profile to the neurons of each excitatory LTU
must be uniform (but can be different from LTU to LTU). Due to the CCN
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connectivity, the two excitatory populations compete through an inhibitory
population. When both excitatory populations are stimulated with spike
trains of different firing rates, after a short transition period, the activity of
the excitatory population receiving the largest input will be amplified (the
winner) and the activity of the other population will be suppressed. Be-
cause several neurons remain active, the network is said to perform sWTA
(as opposed to “hard” sWTA). We set the gain and the time constants of
the VLSI CCN using our parameter translation method and compare them
with the analytical predictions obtained from the LTU model. In Figure 10c
we present the response of the VLSI device in the configuration without lo-
cal recurrent connectivity and in Figure 10f in the configuration with local
recurrent connectivity. The LTU predictions and the activity of the VLSI
neurons are comparable, demonstrating that our parameter translation
method can be used as a method to efficiently configure the key parameters
of an sWTA—its gain, selectivity (ratio between winner and losers activity),
and time constant.

4 Discussion

Many research groups are developing custom hybrid analog-digital VLSI
chips and systems that implement hundreds to thousands of spiking
neurons with biophysically realistic dynamics. However, unlike for conven-
tional digital systems, there exists no high-level programming language to
configure them to carry out a desired computation. This is one of the major
obstacles to the application of neuromorphic multineuron chips as general-
purpose computing devices.

A crucial and necessary step to reach this goal is to determine the tran-
sistor biases that map to the parameter types and values used in typical
abstract mathematical models of neurons and networks. In this article, we
have described a general method for obtaining this mapping in a systematic
way.

Our method permits the automatic configuration of VLSI neural net-
works so that their electronic emulation conforms to a higher-level neu-
ronal simulation. Indeed, we have shown that the neurons configured by
our method exhibit spike timing statistics and temporal dynamics that are
comparable to those observed in the software-simulated neurons, and in
particular that the key parameters of recurrent VLSI neural networks im-
plementing soft winner-take-all can be precisely tuned.

The parameter configuration of VLSI neurons consists in determining
the circuit’s bias voltages that correspond to the desired model parameters.
This problem can be solved by an iterative search that sweeps the various
bias voltages on the chip while measuring their effect, until the desired per-
formance is attained. Such global search strategies are generally prohibitive
in terms of the time required to set the biases, acquire the experimental
data, and analyze them. Furthermore, this brute-force approach offers no
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Figure 10: Configuration of key soft winner-take-all parameters. Two excita-
tory populations, denoted Pop1 and Pop2, are both stimulated by two Poisson
spike trains. Pop1 receives a stronger input (55 Hz) and Pop2 a weaker input
(28 Hz). (b) The raster plot of both excitatory populations in the case without
recurrent couplings. (c) We see that the mean output activities of each popula-
tions are equal to the input minus Te = 5 Hz (dashed line). (e, f) The neurons
are recurrently coupled (excitation and inhibition); hence, the two populations
excite themselves and compete with each other through the inhibitory popu-
lation (middle population). After a short transition period, the activity of the
excitatory population receiving the largest input (the winner) is amplified to
75 Hz and the activity of the losing population is suppressed (to 5 Hz). We see
that the response of the hardware neurons is close to the analytical predic-
tions (thick lines). Network parameters were 	−1 = 1.0, wE = 0.3, wE I = 0.05,
wI E = 0.15, WAE R = 0.5, TE = 5, TI

∼= 50 Hz τexc = 100 ms, τinh = 100 ms, τAE R =
50 ms.

predictive power, meaning that the algorithm must be run each time the
model parameter is configured to a new value.

On the other extreme, detailed analog circuit simulations using programs
such as SPICE can be carried out to determine the biases, with the advantage



2482 E. Neftci, E. Chicca, G. Indiveri, and R. Douglas

that any parameter in the chip can be computed. But often these computed
biases are quite different from the ones the chip requires due to inaccuracies
in the SPICE models (Tsividis, 1998).

Our parameter translation approach combines the advantages of the
two previous solutions by the use of a suitable model of the electronic
circuits, against which the parameter estimation is performed. Once the
parameter translation is calibrated, the method has sufficient predictive
power to tune the parameters of the circuit to any desired value within
reasonable accuracy, without any additional measurements.

Compared to a black box approach (Russell et al., 2007), our approach
has the advantage that the user can directly map neural models from previ-
ous theoretical investigations or software simulations onto the neuromor-
phic hardware. One drawback of using this approach is the need to build
the parameter translations and calibrate them, which requires the detailed
knowledge of the circuit that is configured. However, since large-scale im-
plementations usually consist of several stereotypic circuits (e.g., the CCN
network), this task is greatly simplified.

Using mean-field theory, we have extended this procedure to networks
of neurons. Specifically, we showed that the gain of a CCN implement-
ing the sWTA function could be configured using the LTU to VLSI I&F
equivalence. We have also demonstrated that the equivalence of the dif-
ferent models (LTU, CLI&F, VLSI I&F) is accurate in the temporal domain.
Indeed, the inferred time constants of the configured hardware synapses
were identical to those of the software simulation, and we observed that
the ISI’s distribution and instantaneous firing rates of the hardware neurons
compared well to those of software simulations.

For networks other than the CCN, the application of this method is
possible as long as the network can be configured to reach a regime that can
be modeled using a mean-field approach. Fortunately, this is the case for
most multineuron chips with reconfigurable AER connectivity (e.g., using
an AER mapper board; Chicca et al., 2007) and tunable synaptic weights. For
configuring chips incorporating few neurons and few possible connections,
such that the conditions for applying the mean-field approach cannot be
guaranteed, the use of heuristics (Russell et al., 2007) or parameter sweeps
is likely to be more efficient.

Many research groups working in the field of neuromorphic engineering
continue to use ad-hoc solutions for configuring their systems (see, e.g.,
Serrano-Gotarredona et al., 2009). While such approaches are viable for
implementing networks with few nodes and chips, it will be difficult to
scale such systems to implement arbitrary functionality and size.

The large-scale neuromorphic project Neurogrid (Silver et al., 2007),
composed of 16 multineuron chips, is aiming to reach a 1-million-neuron
AER infrastructure. The current prototype setups used, for example, in
modeling orientation selectivity hypercolumns (Choi, Merolla, Arthur,
Boahen, & Shi, 2005) and studying synchrony in the gamma band (Arthur
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& Boahen, 2007), were configured using an exhaustive search around
manually determined operating points.

Another large neuromorphic project has taken place within the Fast Ana-
log Computing with Emergent Transient States (FACETS) project (2005–
2009). In this project, Schemmel et al. (2008) have targeted a wafer-scale
implementation of spiking neural networks. The goal of this hardware
is to speed up simulations typically carried out using digital comput-
ers and to perform systematic explorations of a neural network’s pa-
rameter space. As a consequence, the neurons are designed to operate
at about 1000 to 10,000 times faster than their biological counterparts.
For configuring their hardware, the FACETS researchers have defined
a common interface for simulations and emulations of spiking neurons,
which has resulted in the creation of a simulator-independent description
language named PyNN (Davison et al., 2008). PyNN, however, does not
offer a concrete, general-purpose solution to the parameter configuration
problem per se. Instead, its implementation is left to the designer of the hard-
ware interface. In Brüderle (2009), for example, the configuration method
uses a brute-force iterative approach, based on comparisons with software
simulations performed using PyNN. The parameters are varied until they
reach a user-defined target value within a given tolerance. Although the
accelerated nature of the FACETS hardware is adequate for such iterative
methods, the main bottlenecks in the approach in Schemmel et al. (2008)
remain the acquisition and analysis of the AER data.

In our approach, once the parameter translation is calibrated, the desired
properties of the neurons can be set (configured) without proceeding
through systematic parameter sweeps. Therefore, the model-based ap-
proach proposed in this work is a possible solution to dramatically speed
up the search for bias voltages, especially in multidimensional parameter
search scenarios. In general, due to the interdependence of the biases’ effect
on the neural output, a parameter search method must search in a space
whose dimension is equal to the number of biases controlling the parameter
(i.e., O(Np), where p is the number of biases). Because the initial calibration
step measuring the I 0 and the κ values are carried out in a separate exper-
iment (involving current injection and leak transistors), our method is not
affected by such interdependencies. Therefore, the parameter translation
method is useful for decreasing the number of measurements required to
reach the desired behavior.

Also, both methods can be combined by using the parameter trans-
lation result as a starting point in the search method. This operation
would still be of order O(Np) but with a much smaller multiplicative
constant. Although we have not carried out a full characterization of
the number of measurements required for the search methods because it
strongly depends on the parameter that is configured and the optimization
method used, we observed that a standard Newton method converged after
about 30 measurements when setting Iinj (a one-dimensional search task)
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compared to about 150 measurements when starting from a reasonable
initial condition.

The LTU approximation used in this work holds only when the time
constants of the synapses are long in comparison to the ISIs of the neurons.
This implies that the calibration step mentioned above—the initial matching
of the models—can be performed only in this regime. However, in practice,
this is not a limitation since one is free to choose the regime in which the
calibration is carried out. The properties of the neurons set outside the
LTU regime are still accurate because the mapping between the CLI&F
model and the VLSI neuron model remains true (corresponding to the links
between the middle and the right boxes in Figure 1). We have demonstrated
this by successfully mapping parameters to synapse time constants of 10 ms
(see Figure 8b), despite the fact that the LTU approximation is not accurate
at such synaptic time constants.

A major problem of analog VLSI devices is the mismatch in their transis-
tor properties, which severely affect the functionality of the computations
they carry out. This is especially true when the subthreshold circuits are
used to implement sWTA networks, as the recurrent connections amplify
the mismatch in the circuits.

Because our method is based on a mean-field approach, the calibration
procedure is less sensitive to mismatch in the transistors inherent in the
fabrication process. As each LTU represents a population of neurons, we
can apply the values estimated during the calibration, the I 0 currents and
the subthreshold slope factor κ , to predict the LTU’s behavior.

Nevertheless, when the recurrent couplings in the sWTA become very
strong, the network amplifies all the discrepancies due to transistor mis-
match, hardware nonlinearities, and the inevitable imprecisions during the
calibration, and we observe that the accuracy of the predictions obtained
with the parameter translations gradually decreases (see, e.g., Figure 7b).

This imprecision could result in a lack of robustness when implementing
high-level computational models that crucially depend on the gain of the
underlying recurrent circuits. A possible solution to this problem is to use
the proposed parameter translation to provide an initial, coarse operating
regime, in which other methods such as on-chip plasticity rules (Mitra,
Fusi, & Indiveri, 2006) or homeostasis (Bartolozzi & Indiveri, 2006; Neftci
& Indiveri, 2010) can be applied to fine-tune the network’s properties.

Our method permits an integration between software simulations with
hardware emulations and intertranslatability between the parameters of
abstract neuronal models and their emulation counterparts. The key result
shown in this article is that it is possible to perform a neural model mapping
from theoretical models down to the neuromorphic hardware with a quan-
titatively accurate parameterization. From this point of view, the parameter
translation method raises the neural hardware and the computation they are
able to achieve to a level of usability that until now was unaccessible by neu-
romorphic engineers. This ability can be expected to accelerate research on
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hardware emulation of interesting neuronal computational processes, such
as hardware applications of liquid state machines (Maass, Natschläger, &
Markram, 2002), and the implementation in spiking neurons of graphical
models (Steimer, Maass, & Douglas, 2009).

Rutishauser and Douglas (2009) have shown how state-machines can
be composed of interconnected networks of winner-take-all (WTA). Since
our method can be used to configure the necessary circuits, the way is now
open to devise a high-level language that translates a description at the state-
machine level down to the biases required to instantiate that functionality
at the level of neuromorphic electronic circuits (Neftci, Chicca, Indiveri,
Cook, & Douglas, 2010).

Appendix A: Detailed Calculation from CLI&F to LTU Equations

We model each synapse as a first-order low-pass filter (as suggested in Des-
texhe et al., 1998). In this model, the postsynaptic current in response to a
presynaptic spike train

∑
k δ(t − tk) (where δ(t) is the delta Dirac) is given by

Isyni j (t) = e
− t

τi j
qwi j

τi j

∫ t

0
ds

∑
k

δ(t − tk)e
s

τi j , (A.1)

where Isyni j is the postsynaptic current delivered by the synapse i to the
postsynaptic neuron j , τi j is the time constant of the synapse, and qwi j is a
scaling factor for the strength of the synapse.

In other words, for each incoming spike, the synaptic current undergoes a
jump of height

qwi j

τi j
and otherwise decays exponentially with a time constant

τi j . By definition of the delta Dirac function, we have

Isyni j (t) = qwi j

τi j

∑
k

U(t − tk)e
tk −t
τi j , (A.2)

where U(t) is the unity step function. We will now show how Isyni j relates
to the firing rate of the presynaptic neuron. Taking the temporal average

around time t, defined by 〈·〉t = 1
T

∫ t+ T
2

t− T
2

ds, we have

〈Isyni j (t)〉t = qwi j

1
T

∑
{k|tk∈[t− T

2 ,t+ T
2 ]}

1 − e
tk −t−T

τi j .

The sum runs over all the spikes occurring between t − T
2 and t + T

2 and
counts the number of spikes nT (t) that occurred during that time interval.
By definition of the firing rate, we have nT (t)

T
∼= ν(t), and if t + T is large

compared to tk , which is the case for most of the spikes occurring dur-
ing the interval [t − T

2 , t + T
2 ], then the exponential term can be neglected.

Furthermore, if τi j is much larger than the ISI, then the synaptic current
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does not fluctuate too much around its temporal average, and we can as-
sume 〈Isyni j (t)〉t ∼= Isyni j (t). Then the synaptic current can be rewritten in the
differential form as

τi j
d
dt

Isyni j (t) + Isyni j (t) ∼= qwi j νi (t), (A.3)

where the index of νi refers to the firing rate of neuron i . Next, we look at
how the synaptic current causes the neuron to fire. The input current to a
neuron consists in a constant injection Iinji and a synaptic input

∑
j Isyni j (t).

The dynamics of the membrane potential Vmi of neuron i are then given by

C
d
dt

Vmi (t) =
∑

j

Isyni j (t) + Iinji − β. (A.4)

Due to the membrane capacitance C and the leak β, the firing rate is
approximately a low-pass filtered version of the synaptic input current. But
if this low-pass filter effect is small in comparison to the one occurring at the
synapse, then the firing rate of the neuron follows the changes in the synap-
tic current almost instantly (Dayan & Abbott, 2001). We can assume that this
is the case, as the vast majority of neural hardware can be configured with
long synaptic currents. This means that we can assume Isyni j

∼= constant
during one spike generation. By integrating equation A.4 with respect to
time, we have

CVmi (t) ∼=
⎛
⎝∑

j

Isyni j (t) + Iinji − β

⎞
⎠ t

with the initial condition Vmi (0) = 0. Writing 1
νi

as the time required to reach
the firing threshold �, and solving for νi leads to

νi (t) ∼= 1
C�

max

⎛
⎝∑

j

Isyni j (t) + Iinji − β, 0

⎞
⎠ , (A.5)

where the term max(·, 0) comes from the fact that ν cannot be negative. In
this final equation, we have shown that CLI&F neurons behave approx-
imately as LTUs that receive their input from other LTUs through linear
synapses.

A.1 Self-Consistent Solution for Networks with Uniform Synaptic
Dynamics. In the paragraphs above, we argued that the activity of CLI&F
neurons is well approximated by equations A.3 and A.5. In this appendix,
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we derive a self-consistent set of differential equations describing the state
of a network of LTUs. Let us consider a population of N neurons, each of
them able to have a synapse with every other neuron and itself.

We can write the synaptic current Isyni j provided by synapse i to the post-
synaptic neuron j as a product of

qwi j

τi j
and a dimensionless synaptic variable

xi j describing the state of the synapse. By defining the following variables,

xi j = τi j
Isyni j

qwi j

, wi j = qwi j

C�
, T = β

C�
, bi = Iinji

C�
,

the LTU equations, A.3 and A.5, can be written in a single line for the
synaptic variables xi j , noting that at steady state, xi j = τi jνi . Then the
dynamics of N2 LTUs are given by the following N2 self-consistent coupled
differential equations,

d
dt

xi j + xi j

τi j
= max

(
bi j +

∑
k

wik

τik
xik − T, 0

)
∀i, j=1, . . . , N, (A.6)

where the sum over k runs over the indexes of all neurons having synapses
with neuron i . We can reduce the number of equations by noticing that all
efferent synapses with identical time constants have identical dynamics.
In other words, the postsynaptic currents to afferent neurons are identical
up to a scaling factor, which is provided by the weight of the synapse qw.
As a result, the state of the synapse can be described by a single synaptic
variable per type of synapse per presynaptic neuron. A cartoon of this
simplification is shown in Figure 11. In the case of one type of synapse
per neuron (i.e., all the time constants of efferent synapses are equal), we
get the following N equations, which describe the dynamics of N synaptic
variables through N coupled differential equations:

d
dt

xi + xi

τi
= max

(
bi +

∑
k

wik

τk
xk − T, 0

)
∀i = 1, . . . , N. (A.7)

Once the solution for the synaptic variables xi (t) ∀i = 1, ..., N is com-
puted, the firing rates νi (t) can be recovered with

νi (t) = max

(
bi +

∑
k

wik

τk
xk(t) − T, 0

)
, (A.8)

Note that according to equation A.3, at steady state, we have νi = xi
τi

.

A.2 Closed-Form Solution for the CCN with Uniform Input. The con-
nectivity of the linear threshold unit can be represented by a weight matrix,
and in the case of nearest-neighbor connectivity and global inhibition, it is
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Figure 11: Synapses with identical time constants can be grouped together to
simplify LTU network analysis. If τi j = τi ∀ j , then the dynamics of the synapses
of neuron i can be described by a single synaptic variable xi . The postsynaptic
currents (currents flowing to filled triangles) will differ only by a scaling factor
given by the weight of the single synapse.

given by

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wS wE 0 0 wE wI E

wE wS wE 0 0 wI E

· · · · · ·
0 wE wS wE 0 wI E

0 0 wE wS wE wI E

wE 0 0 wE wS wI E

wE I wE I wE I wE I wE I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where wE is the connection weight between two nearest neighbors, wS to
the neuron itself, wE I from excitatory neurons to inhibitory neurons, and
wI E from inhibitory to excitatory.

If the synaptic weights qw are small relative to the range (0,�) (where
� is the effective firing threshold), the number of afferent connections to
each neuron is large, and the network activity is asynchronous, a mean-field
approach can be used to study the network activity (Brunel, 2000; Fusi &
Mattia, 1999). The assumptions above can be valid in the case of the VLSI
CCN because each excitatory neuron is connected to six of its neighbors
and because the synaptic weights can be set to arbitrarily low values.

If all excitatory neurons receive identical input, bi = b ∀i , and if the
recurrent couplings are weak, the steady state corresponding to {xk =
xE |k is excitatory} and {xk = xI |k is inhibitory} is the only stable solution.
This is true if the input can overcome the threshold (leak) of the excitatory
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and inhibitory neurons and if the spectral radius of the linearized system
(obtained by neglecting the threshold nonlinearity) is below 0 (Hahnloser,
Seung, & Slotine, 2000). This is guaranteed if 2wE + ws < 1 (Neftci, Chicca,
Indiveri, Slotine, & Douglas, 2008).

In steady state and with uniform input, equation A.7 is written:

xE
τE

= max

⎛
⎝b +

N∑
j=1

wE j
xj

τ j
− TE , 0

⎞
⎠ ,

xI
τI

= max

⎛
⎝ N∑

j=1

wI j
x j

τ j
− TI , 0

⎞
⎠ ,

where the indexes E, I , respectively stand for excitatory and inhibitory and
wi j are the i j matrix elements of W and N the total number units. We apply
ν = x

τ
, and writing NE and NI , the number of excitatory and inhibitory

units, respectively, we get:

νE = max(b + 2wEνE + wsνE − NI wI EνI − TE , 0),

νI = max(NEwE I νE − TI , 0).
(A.9)

Due to the presence of the max(·) term, the firing rates of the excitatory
and inhibitory neurons as a function of the current injection b are piecewise
linear:

νE (b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 b ≤ TE

1
1 − λE

(b − TE ) TE < b < TI (1−λE )/(NEwE I )+TE ,

1
	

(b + TI NI wI E −TE ) b ≥ TI (1 − λE )/(NEwE I ) + TE

νI (b) =
⎧⎨
⎩

0 b < TI (1 − λE )/(NEwE I ) + TE

NEwE I νE − TI b ≥ TI (1 − λE )/(NEwE I ) + TE
,

where λI = NI NEwI EwE I , λE = 2wE + wS, and 	 = 1 − λE + λI . The con-
ditions over b correspond to the boundary on which the inhibitory neurons
become active. When b ≤ TE , the input cannot overcome the leak term and
the neurons do not fire.

The extension of this calculation to more than two nearest neighbors
is straightforward and can be taken into account by scaling wE with the
number of nearest neighbors per neuron.
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Figure 12: Schematics of the differential-pair integrator, often used for VLSI
implementations of synapses. The nodes Vτ , Vthr , and Vw are the parameters
(biases) of the synapse controlling, respectively, the time constant and the weight
(both Vthr and Vw). The spikes arrive on the transistor Mpre , which acts as a digital
switch, and the current flowing to the soma is regulated by Vsyn.

Appendix B: The Differential-Pair-Integrator Synapse

The differential-pair integrator (DPI) is a VLSI implementation designed
by Bartolozzi and Indiveri (2007) to mimic the dynamics of the synapse
presented in equation 2.3. Its circuit is shown in Figure 12. The synapse is
driven by incoming spikes arriving at the gate of the transistor Mpls , which
acts as a digital switch. We assume that the spike is a box-shaped function
�pls(t) of duration tpls and of unit height. By solving the circuit depicted in
Figure 12 in the subthreshold regime, the equation governing the synaptic
current becomes

τ
d
dt

Isyn + Isyn = Iω
Iτ

Isyn

1 + Isyn

Igain

ρ(t), (B.1)

with the spike train ρ(t) = ∑
k �pls(t − tk). The currents Iτ and Iω are the

currents flowing through the transistor Mτ and Mw, respectively, and Igain is
the subthreshold current of a virtual p-type transistor of the same geometry
as Msyn and whose gate voltage is set to Vthr . The time constant of the
synapse is τ = CsynUT

κ Iτ
, with UT the thermal voltage, Csyn the capacitance

of the synapse, and κ the subthreshold slope factor of the transistor. At
steady state, the synaptic current is Igain

Iτ
(Iw − Iτ ). We see that if Iω � Iτ ,

the synaptic current rises to values such that Isyn � Igain. Applying this
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condition to equation B.1 leads to the following linear differential equation
for the synaptic current:

τ
d
dt

Isyn + Isyn = Iω Igain

Iτ
ρ(t). (B.2)

Following similar arguments as for equation A.3 and by assuming that
the pulse has a finite duration tpls , one shows that

〈Isyn〉 ∼= tpls
Iω Igain

Iτ
νin. (B.3)

A quick comparison with equation A.3 reveals that tpls
Iω Igain

Iτ
= qw, where

qw was the scaling factor for the weight of the synapse. Since the differential-
pair integrator synapse receives input as pulses on gate Mpre , the effec-
tive current flowing through the transistor Mw will be Iwtplsνin, and the
condition for the linearity of equation B.1 becomes Iωtplsνin � Iτ with νin

the mean frequency of the incoming spike trains. Therefore, the synap-
tic current Isyn as a function of νin is approximatively threshold linear.
For most excitatory synapses with long time constants (more than 50 ms),
this effect can be neglected. However, this nonlinearity is clearly observ-
able in the inhibitory synapse due to shorter pulse durations tpls resulting
from our implementation. In this case, the effective synaptic current is
given by

Isyn(t) ∼= tpls
Iω Igain

Iτ
max

(
νin − Iτ

Iωtpls
, 0

)
. (B.4)

In practice, the threshold term is determined experimentally because of
its dependence on the pulse duration, which cannot be measured experi-
mentally.

Appendix C: Chip Settings Used During Parameter Translations

As a reference, the relevant biases fixed during the parameter translations
are given below.

nrf= 0.25 V: Refractoriness bias of the soma, corresponding to a very
short refractory period. (<1 ms).
nsf= 0.75 V: Threshold Vth of the positive feedback circuit for the
spike generation, corresponding to an effective threshold of � = 1.1 V.
nplsloc= 0.40 V: Local excitatory synapse pulse extender bias,
roughly corresponding to pulses in the μs range.
nplslocinh= 0.40 V: Local inhibitory synapse pulse extender bias.
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psynlocinhw= 2.50 V: Weight bias of the inhibitory differential-pair
integrator synapse. Because the weight bias Vw of the differential-pair
integrator synapse also affects the nonlinearity described above, we
have used the threshold bias Vthr of the differential-pair integrator
synapse (controlling Igain) to set weight of the inhibitory synapse.
nsynlocth= 3.00 V: Threshold bias Vthr of the local excitatory
differential-pair integrator synapses.
nsynaerpls= 0.40 V: address event representation excitatory synapse
pulse extender bias.
nsynstdth= 2.85 V: Threshold bias Vthr of the excitatory address event
representation differential-pair integrator synapse.

Furthermore, the adaptation circuit in the soma and the short-term de-
pression circuit in the differential-pair integrator synapse were turned off
(see Indiveri et al., 2006). A full list of biases, as well as the list of values mea-
sured from layout ( W

L and capacitances) can be obtained from the authors
on request.

Acknowledgments

This work was supported by the DAISY (FP6-2005-015803) EU grant,
the Swiss National Science Foundation (PMPD2-110298/1), and the EU
ICT Grant ICT-231168-SCANDLE Acoustic SCene ANalysis for Detect-
ing Living Entities. We thank D. Fasnacht for the design of the AER
monitor/sequencer board and the reviewers for their useful comments.

References

Abarbanel, H., Creveling, D., Farsian, R., & Kostuk, M. (2009). Dynamical state
and parameter estimation. SIAM Journal on Applied Dynamical Systems, 8, 1341–
1381.

Ahmed, B., Anderson, J., Douglas, R., Martin, K., & Whitteridge, D. (1998). Estimates
of the net excitatory currents evoked by visual stimulation of identified neurons
in cat visual cortex. Cerebral Cortex, 8, 462–476.

Alvado, L., Tomas, J., Saighi, S., Renaud-Le Masson, S., Bal, T., Destexhe, A., et al.
(2004). Hardware computation of conductance-based neuron models. Neurocom-
puting, 58–60, 109–115.

Amari, S., & Arbib, M. A. (1977). Competition and cooperation in neural nets.
In J. Metzler (Ed.), Systems Neuroscience (pp. 119–165). Orlando, FL: Academic
Press.

Arthur, J., & Boahen, K. (2004, July). Recurrently connected silicon neurons with
active dendrites for one-shot learning. In IEEE International Joint Conference on
Neural Networks (Vol. 3, pp. 1699–1704). Piscataway, NJ: IEEE.

Arthur, J., & Boahen, K. (2007). Synchrony in Silicon: The Gamma Rhythm. IEEE
Transactions on Neural Networks, 18 1815–1825.



VLSI Neuron Parameter Configuration 2493

Bartolozzi, C., & Indiveri, G. (2006). Selective attention implemented with dynamic
synapses and integrate-and-fire neurons. NeuroComputing, 69(16–18), 1971–
1976.

Bartolozzi, C., & Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural Com-
putation, 19(10), 2581–2603.

Bartolozzi, C., Mitra, S., & Indiveri, G. (2006). An ultra low power current–mode
filter for neuromorphic systems and biomedical signal processing. In Biomed-
ical Circuits and Systems Conference, BIOCAS 2006 (pp. 130–133). Amsterdam:
Elsevier.

Ben-Yishai, R., Lev Bar-Or, R., & Sompolinsky, H. (1995). Theory of orientation tuning
in visual cortex. Proceedings of the National Academy of Sciences of the USA, 92(9),
3844–3848.

Bower, J., Beeman, D., & Wylde, A. (1998). The book of GENESIS: Exploring realistic
neural models with the GEneral NEural SImulation System. New York: Springer.

Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting nerve
cells. Biological Cybernetics, 593, 189–200.
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