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Abstract. We describe the response properties of a compact, low power, analog
circuit that implements a model of a leaky–Integrate & Fire (I&F) neuron, with
spike-frequency adaptation, refractory period and voltage threshold modulation
properties. We investigate the statistics of the circuit’s output response by modu-
lating its operating parameters, like refractory period and adaptation level and by
changing the statistics of the input current. The results show a clear match with
theoretical prediction and neurophysiological data in a given range of the param-
eter space. This analysis defines the chip’s parameter working range and predicts
its behavior in case of integration into large massively parallel very–large–scale–
integration (VLSI) networks.

1 Introduction

Models of spiking neurons have complex dynamics that require intensive computational
resources and long simulation times. This is especially true for conductance–based mod-
els that describe in details the electrical dynamics of biological neurons [1]. These models
include non–linear voltage–dependent membrane currents and are difficult to analyze
analytically and to implement. For this reason, phenomenological spiking neuron mod-
els are more popular for studies of large network dynamics. In these models the spikes
are stereotyped events generated whenever the membrane voltage reaches a threshold.
The Integrate–and–Fire (I&F) model neuron, despite its simplicity, captures many of
the broad features shared by biological neurons. This model can be easily implemented
using analog very–large– scale–integration (VLSI) technology and can be used to build
low power, massively parallel, large recurrent networks, providing a promising tool for
the study of neural network dynamics [2,3].

VLSI I&F neurons integrate presynaptic input currents and generate a voltage pulse
when the integrated voltage reaches a threshold. A very simple circuit implementation
of this model, the “Axon–Hillock” circuit, has been proposed by Mead [4]. In this circuit
an integrating capacitor is connected to two inverters and a feedback capacitor. A pulse is
generated when the integrated voltage crosses the switching threshold of the first inverter.
An alternative circuit, proposed in [5], exhibits more realistic behaviors, as implements
spike–frequency adaptation and has an externally set threshold voltage for the spike
emission. Both circuits however have a large power consumption due to the fact that
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the input to the first inverter (the integrated voltage on the capacitor) changes slowly,
typically with time constants of the order of milliseconds, and the inverter spends a large
amount of time in the region in which both transistors conduct a short–circuit current.
The power consumption is reduced, but not optimized, in the circuit described in [6],
using an amplifier at the input, to compare the voltage on the capacitor with a desired
spiking threshold voltage. As the input exceeds the spiking threshold, the amplifier
drives the inverter, making it switch very rapidly. In [7] Boahen demonstrates how
it is possible to implement spike-frequency adaptation by connecting a four transistor
“current-mirror integrator” in negative-feedback mode to any I&F circuit.An I&F circuit
optimized with respect to power consumption but lacking of spike-frequency adaptation
mechanisms, voltage threshold modulation, refractory period and explicit leak current is
described in [8].We designed a compact leaky I&F circuit, similar to previously proposed
ones, that additionally is low power and has spike-frequency adaptation, refractory
period and voltage threshold modulation properties [9]. In this work we characterize the
circuit and compare its response properties to the ones predicted by theory and observed
in neocortical pyramidal cells. Specifically we measured the response function of the
circuit to noisy input signals, by varying both circuit parameters and the parameters that
control the statistics of the input current. The results described in this paper present a
description of the integrated-circuit’s data in neurophysiological terms, in order to reach
a wider scientific community. With this approach we address important questions like the
feasibility of simulation of large networks of spiking neurons built using analog VLSI
circuits.

2 The I&F Circuit

The I&F neuron circuit is shown in Fig. 1. The circuit comprises a source follower M1-
M2, used to control the spiking threshold voltage; an inverter with positive feedback
M3-M7, for reducing the circuit’s power consumption; an inverter with controllable
slew-rate M8-M11, for setting arbitrary refractory periods; a digital inverter M13-M14,
for generating digital pulses; a current-mirror integrator M15-M19, for spike-frequency
adaptation, and a minimum size transistor M20 for setting a leak current.

2.1 Circuit Operation

The input current Iinj is integrated linearly by Cmem onto Vmem. The source-follower
M1-M2, produces Vin = κ(Vmem − Vsf ), where Vsf is a constant sub-threshold bias
voltage and κ is the sub-threshold slope coefficient [10]. As Vmem increases and Vin

approaches the threshold voltage of the first inverter, the feedback current Ifb starts
to flow, increasing Vmem and Vin more rapidly. The positive feedback has the effect
of making the inverter M3-M5 switch very rapidly, reducing dramatically its power
dissipation.

A spike is emitted when Vmem is sufficiently high to make the first inverter switch,
driving Vspk and Vo2 to Vdd. During the spike emission period (for as long as Vspk is
high), a current with amplitude set by Vadap is sourced into the gate-to-source parasitic
capacitance of M19 on node Vca. Thus, the voltage Vca increases with every spike,
and slowly leaks to zero through leakage currents when there is no spiking activity. As
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Fig. 1. Circuit diagram of the I&F neuron.

Vca increases, a negative adaptation current Iadap exponentially proportional to Vca is
subtracted from the input, and the spiking frequency of the neuron is reduced over time.

Simultaneously, during the spike emission period, Vo2 is high, the reset transistor
M12 is fully open, and Cmem is discharged, bringing Vmem rapidly to Gnd. As Vmem

(and Vin) go to ground, Vo1 goes back to Vdd turning M10 fully on. The voltage Vo2 is
then discharged through the path M10-M11, at a rate set by Vrfr (and by the parasitic
capacitance on node Vo2).As long as Vo2 is sufficiently high, Vmem is clamped to ground.
During this “refractory” period, the neuron cannot spike, as all the input current Iinj is
absorbed by M12.

The adaptation mechanism implemented by the circuit is inspired by models of its
neurophysiological counterpart [11,12,13]: the voltage Vca, functionally equivalent to
the calcium concentration [Ca2+] in a real neuron, is increased with every spike and
decays exponentially to its resting value; if the dynamics of Vca is slow compared to
the inter-spike intervals then the effective adaptation current is directly proportional to
the spiking rate computed in some temporal window. This results had been extensively
applied to investigate the steady-state responses [14,15] and the dynamic proprieties [15]
of adapted neurons.

Figure 2(a) shows an action potential generated by injecting a constant current Iinj

into the circuit and activating both spike-frequency adaptation and refractory period
mechanisms. Figure 2(b) shows how different refractory period settings (Vrfr) saturate
the maximum firing rate of the circuit at different levels.
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Fig. 2. (a) Measured data (circles) representing an action potential generated for a constant input
current Iinj with spike-frequency adaptation and refractory period mechanisms activated. The
data is fitted with the analytical model of eq. (5) (solid line). (b) Circuit’s f -I curves (firing rate
versus input current Iinj) for different refractory period settings.

2.2 Modeling the Neuron’s Subthreshold Behavior

The circuit presented does not implement a simple linear model of an I&F. Rather its pos-
itive feedback and spike-frequency adaptation mechanisms represent additional features
that increase the model’s complexity (and hopefully its computational capabilities). The
overall current that the circuit receives is Iin + Ifb − Iadap, where Iin is the circuit’s
input current Iinj subtracted by the leak current Ileak (see Section 2.3), Ifb is the positive
feedback current and Iadap is the adaptation current generated by the spike-frequency
adaptation mechanism. We can use the transistor’s weak-inversion equations [10] to
compute the adaptation current:

Iadap = I0e
κ Vca

UT (1)

where I0 is the transistor’s dark current [10] and UT is the thermal voltage.
If we denote with Ca the parasitic gate-to-source capacitance on node Vca of M19,

and with Cp the parasitic gate-to-drain capacitance on M19, then:

Vca = Vca0 + γVmem (2)

where γ = Cp

Cp+Ca
and Vca0 is the steady-state voltage stored on Ca, updated with each

spike.
To model the effect of the positive feedback we can assume, to first order approxi-

mation, that the current mirrored by M3,M7 is:

Ifb = I1eκVin (3)
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where I1 is a constant current flowing in the first inverter when both M4,M5 conduct,
and Vin = κ(Vmem − Vsf ) is the output of the source-follower M1,M2.

The equation modeling the subthreshold behavior of the neuron is:

C0
d

dt
Vmem = Iin + Ifb − Iadap (4)

where C0 = Cm + γ Ca. Substituting Iadap and Ifb with the equations derived above
we obtain:

C0
d

dt
Vmem = Iin +

[
I1e

−κ2
Vsf
UT eκ2 Vmem

UT

]
−

[
I0e

κ
Va0
UT eκγ Vmem

UT

(
1 − e− Vmem

UT

)]

(5)

We fitted the experimental data by integrating eq. (5) numerically and using the
parameters shown in Table 1 (see solid line of Fig. 2(a)). The initial part of the fit (for
low values of Vmem) is not ideal because the equations used to model the source follower
M1,M2 are correct only for values of Vmem sufficiently high.

Table 1. Parameters used to fit the data of Fig. 2(a)

Cm = 0.66pF Iin = 177pA Vsf = 0.5V
Ca = 0.12pF I1 = 2.29pA Va0 = 50mV
Cp = 500fF I0 = 100fA κ = 0.6

2.3 Stimulating the Neuron Circuit

To inject current into the neuron circuit we use an on-chip p-type transistor operating
in the weak-inversion domain [10]. By changing the transistor’s gate voltage we can
generate the current:

Iinj = I0e
κ

UT
(Vdd−Vp) (6)

where Vp is the p-type transistor’s gate voltage that we can control. If we take into
account the leak current Ileak sourced by the transistor M20 of Fig. 1 we can write the
net input current to the circuit as:

Iin = Iinj − Ileak = I0pe
κ

UT
(Vdd−Vp) − I0ne

κ
UT

Vlk(1 − e−Vmem) (7)

On the other hand, the desired input current that we want inject into the neuron is:

Ides = Id0 · η(µ, σ) (8)
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Fig. 3. f -I curves for different reference voltages Vp0 having set the refractory period to zero. The
relation between the input current and the output frequency is linear.

where Id0 is a normalizing factor and η represents a stochastic input signal ranging from
zero to one, characterized by a mean value µ and standard deviation (STD) σ.

We can force the net input current Iin to be the desired input current Ides if we break
up the current source gate voltage Vp in the following way:

Vp = r1Vin + r2Vp0 (9)

where Vp0 is a constant reference voltage, Vin is the voltage encoding the signal η
(controlled by a PC-IO card), and r1 and r2 are the factors of a resistive divider used to
scale and sum the two voltages Vp0 and Vin. In this case the net input current becomes:

Iin = I0e
κ

UT
(Vdd−r2Vp0)e− κ

UT
r1Vin − Ileak (10)

which can be simplified to

Iin = Ipe
− κ

UT
r1Vin − Ileak (11)

with constant

Ip = I0e
κ

UT
(Vdd−r2Vp0) (12)

If we map the signal η onto Vin in a way that

Vin = −UT

κ

1
r1

ln
(
e− κ

UT
r1Vdd − η

(
e− κ

UT
r1Vdd + e

κ
UT

r1Vdd

))
(13)
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Fig. 4. f -I curves measured for three different values of σ. Note that for σ = 0 (cross marker) the
presence of high non–linearity at the rheobase. For increasing σ’s the behavior at the rheobase is
linearized.

we make use of the full PC-IO card dynamic range (from -5V to +5V) and obtain the
desired current Iin = Ides, provided that the leak current is set to:

Ileak = Ipe
− κ

UT
r1Vdd (14)

and that Id0 of eq.(8) is:

Id0 = Ip

(
e− κ

UT
r1Vdd + e

κ
UT

r1Vdd

)
(15)

In Fig. 3 we show the effect of Vp0 (that affects exponentially Id0) on the f -I curve
measured from the circuit, for increasing values of the mean input current µ, with σ = 0.

3 Results

We first tested the neuron with the adaptation mechanism turned off, injecting an input
current with a statistics parameterized by mean µ and STD σ.

3.1 General Proprieties of the I&F Circuit

We measured the I&F circuit’s f -I curves as a function of its input current Id0η. The
signal η(µ, σ) was generated to reproduce white noise with mean µ and STD σ. Figure 4
shows the f -I curves for three different values of STD. All the curves were obtained by
setting the neuron’s refractory period to approximately 6.6 ms (Vrfr =280 mV).
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The circuit’s firing rate f has a dependence on the the refractory period (τr) of the
type [16]:

f ≈ 1
τr + 1

Iin

(16)

Figure 2(b) shows f -I curves obtained for three different values of Vrfr (τr). The curves
tend, in the limit of τr → 0, to a straight line with slope inversely proportional to the
circuit’s spiking threshold voltage (as shown in Fig.3).

We measured the distribution of the inter-spike intervals (ISIs) generated by the
circuit for two values of σ = {0.05, 0.1}, sweeping the mean input current Id0η. To
analyze the statistic of these distributions, we computed their coefficient of variation
(CV), given by the ratio between the STD and the mean of the neuron’s ISI [17,18]. In
Fig. 5 we plot the CVs against the neuron’s output frequency. The CVs are in accordance
with theoretical [19] and experimental studies on neurons of layer 4 and 5 of the rat [14].
The ISI distribution for increasing input currents shifts toward lower mean-ISI, and
its STD decreases. The refractory period constrains the distribution to remain above a
certain ISI even if its STD decreases with the current. In the theoretical limit of a renewal
process the mean and the STD of the ISI distribution should be approximately equal. By
increasing the mean afferent current the CV decreases because the probability to remain
above the threshold for spiking increases reducing the stochasticity of the spiking event.
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Fig. 5. Coefficients of variation of the I&F neuron’s ISIs for two different values of σ plotted against
output frequency. Higher σ’s produce higher spike decorrelation, similar to what is observed in
Poisson processes (CV close to one).
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3.2 Effects of the Adaptation on the I&F Circuit

Here we consider how the spike frequency adaptation mechanism influences the I&F
neuron’s behavior. We analyzed the response of the circuit to a series of depolarizing
current steps with increasing values of µ (with σ=0) and with different values of the
spike-frequency adaptation rate, both in the transient regime and in the steady-state
regime.

Dynamic Firing Proprieties. The neuron responds to current steps with instantaneous
firing rates that progressively adapt to lower (steady-state) values (see Fig. 6). The
circuit’s adaptation current Iadap is integrated by a non-linear integrator (see M15-M19
of Fig. 1) and increases progressively with every spike (see also Section 2.2). As Iadap

is subtracted from the input current Iin, the neuron’s net input current progressively
decreases, together with its output firing rate. In the steady-state an equilibrium is reached
when the adaptation current is balanced with the output firing rate (significantly lower
that the initial one).
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Fig. 6. Instantaneous frequency response of the circuit with Vadap=4.19V, for increasing values
of input step amplitudes (decreasing values of Vp). The abscissa of each data point corresponds
to the spike time from the input step onset.

In Fig. 6 we show different instantaneous frequency response curves over time (f -
t curves) for increasing values of the input current’s step amplitude and for a fixed
adaptation setting. Similar to what has been observed experimentally [20], the adaptation
rate increases and the instantaneous frequency response decay time decreases, with
higher input step amplitudes.
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output frequency is lower.

In Fig. 7 we plotted different f -t curves for different values of the adaptation rate.
The data plotted shows how increasing levels of adaptation shorten the time required by
the neuron to adapt and to reach a mean steady-state value.

Steady-State Firing Proprieties. Figure 8 shows two steady-state f -I curves measured
for two different spike-frequency adaptation rates. Increasing values of adaptation rate
decrease the overall steady-state firing rate f , as shown also in Fig. 7. The inset of Fig. 8
evidences how spike-frequency adaptation has the effect of decreasing the slope of the
steady-state curves at the rheobase, as predicted by theoretical [11] and experimental [14,
15] evidence.

4 Conclusions

We presented a novel analog VLSI circuit that implements a real-time model of a leaky
I&F neuron. We characterized its response properties in a wide range of conditions, as
a function of both the circuit’s parameters and the statistics of the input signals. One
of the most interesting properties of the circuit is its ability to model spike-frequency
adaptation.We activated this feature, characterized the circuit, and showed how it exhibits
different adapting behaviors when its operating conditions change. The inclusion of the
adaptation mechanism addresses the question of which neurophysiological parameters
in real neurons (spike induced Ca2+ influx, [Ca2+] decay time, ionic conductances) are
actually captured by the VLSI circuit. Ahmed et al. [20] reported that spike frequency
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adaptation to a current step in neurons of the cat primary cortex can be well fitted by a
single exponential curve depending on the degree of adaptation. This behavior is well
captured by our circuit (see Fig. 6): the exponential rate decay is observed for low
values of input currents, and the degree of adaptation can be set with Vadap. The results
presented here, together with the circuit’s low-power characteristics [9] make it suitable
for integration in very large arrays containing also synaptic circuits [2,7,21], and for the
construction of massively parallel analog VLSI networks of spiking neurons.
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