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Chapter 1

Introduction

Recombination dynamics belongs to the research area of theoretical population genet-
ics which forms an exciting interdisciplinary field, combining biological processes of
inheritance with mathematical modeling.

1.1 Theoretical population genetics

Theoretical population genetics is concerned with investigating the genetic composition
of populations and the mathematical study of how this changes with time due to evolu-
tionary processes such as mutation, selection and recombination, or factors like random
genetic drift, migration, environmental changes etc. The primary source of data used
in population genetics is regarding genetic variation in populations with the aim to de-
scribe changes in this variation in terms of the fundamental rules of inheritance. These
rules describe how the genetic material of the parental population is transmitted to the
population formed by their offspring.

Recent advances in molecular biology, which have been mainly driven by faster and
cheaper DNA sequencing technologies, have led to an increasing amount of data that
can be used for population genetics studies. As an example, it is now common to
analyse multiple genetic loci instead of only one or two loci as population genetics was
restricted to approximately 25 years ago. This allows population genetics to reveal
genome-wide patterns and locus-specific effects of evolution [65].

Population genetics uses mathematical models to achieve theoretical understandings
of the evolutionary processes e.g. to infer the ancestral relationship of various species
as well as to obtain information about the evolutionary history within one species.
These models are used to study the factors that shape populations on an abstract level
by taking into account the more relevant processes while ignoring the less relevant
ones. Although mathematical models are necessarily idealised by concentrating on the
most decisive factors, they nonetheless contribute to a greater understanding of the
underlying dynamics and the interplay of the processes that affect populations. They
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allow to study certain evolutionary factors separately and can thus provide new ideas
about the mechanisms of these forces. Indeed, there are several examples that show
that complex scenarios can be described by relatively simple models surprisingly well,
see [65].

Further questions of theoretical population genetics address the estimation of mutation
and recombination rates, predictions of the future system behaviour as well as the
detection of evidence for population size fluctuations, migration, selectionary forces and
various forms of geographical structures such like subdivision. In addition, population
genetics is used for simulation studies and supports research of the genome structure
such as mapping of disease genes, identifying regions affected by selection and regions
with unusual mutation rates.

Population genetics models appear in various forms: in discrete or continuous time
and in a deterministic or a stochastic manner. They also include a wide range of
mathematical fields: probability theory, stochastic processes, theory of differential and
difference equations and algebra.

Indeed, population genetics has even motivated a new area of mathematics, the theory
of Genetic Algebras. Algebraic structures arise in genetics in a quite natural way due to
the genetic laws of inheritance. In particular, they exhibit an interesting mathematical
feature since these algebras are generally commutative but non-associative algebras
[56, 69].

In this work, we investigate a model that only incorporates the evolutionary factor of re-
combination. Recombination happens during gamete formation in sexually reproducing
organisms when maternal and paternal chromosomes exchange genetic material. Thus,
recombination contributes significantly to genetic variation since it introduces new al-
lele combinations into the population. In fact, recombination has such an impact on
population genetics studies that it can be hardly ignored in population genetics models.
It has already been shown in simulation studies around 30 years ago that recombina-
tion has a significant effect on the sampling properties of a neutral allele model [34].
However, the effects of recombination are complex and not completely resolved yet,
see [34], and invite further research. Recombination is also said to be the fundamental
phenomenon that distinguishes the population genetics of multiple loci from that of a
single locus [12], the main reason due to the effect of scrambling evolutionary history,
i.e. it allows linked loci on a chromosome to have different histories (i.e. genealogies).
This influences statistical methods involved in population genetics since recombination
reduces dependencies between loci, i.e. loosly linked loci can be viewed as indepen-
dent replicates of the evolutionary process. For example, when considering the famous
stochastic process Coalescence [43], the only way that variance (caused by the ran-
dom nature of the trees that are simulated during this process) can be reduced is by
incorporating recombination (and not by increasing the sample size) [58].

Furthermore, recombination finds application in certain optimisation problems based
on genetic algorithms [61] and constitutes the main process in directed evolution exper-
iments that are amongst others used for engineering improved proteins and enzymes.
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For the inference of the optimal parameters of these processes, a mathematical descrip-
tion for recombination is of crucial importance [53].

Nevertheless, modeling recombination dynamics leads to a possibly very large set of
nonlinear equations, due to the random mating of the partner individuals involved,
that exhibit a complex structure.

1.2 Recombination dynamics in mathematics

The dynamics of the genetic composition of populations evolving under recombination
has been a long-standing subject of research. The traditional models assume ran-
dom mating, non-overlapping generations (meaning discrete time) and populations so
large that stochastic fluctuations may be neglected and a law of large numbers (or
infinite-population limit) applies so that the evolution of an infinitely large population
is essentially deterministic. Even this highly idealised setting leads to models that are
notoriously difficult to treat and solve, namely, to large systems of coupled, nonlinear
difference equations. A good introduction and overview of mathematical models with
recombination can be found in [11, 12].

Although recombination requires a population of diploid organisms, the process is usu-
ally formulated at the level of the populations haploid gametes, i.e. the evolution of
a population is a description of the formation of gametes in the population [12]. The
diploid individual then originates as a zygote formed by the fusion of two (male and
female) gametes. Identifying a population by its gamete pool is justified by the prin-
ciple of random mating that is described in detail by Jennings [36]: random mating
of zygotes gives the same results as random mating of the gametes which they produce
(from [36]).

The abstract process of recombination can be briefly described as follows: a diploid cell
(obtained by the fusion of two haploid gametes and also referred to as zygote) undergoes
meiosis, the cell division circle necessary for sexual reproduction, that results in gametes
as haploid products. These gametes may either carry the same genetic material as one
of the parental gametes or they carry part of the maternal material and part of the
paternal material - in this case, recombination has occurred.

Elucidating the underlying structure and finding solutions to the recombination equa-
tions has been a challenge to theoretical population geneticists for nearly a century. The
first studies go back to Jennings [36] in 1917 and Robbins [57] in 1918. Building on
[36], Robbins solved the dynamics for two diallelic1 loci (also called sites from now on)
and gave an explicit formula for the gamete frequencies as functions of time. To over-
come the obstacles of nonlinearity, Robbins introduced a new function of the gamete
frequencies to diagonalise the dynamics - an approach that became a common way to
deal with the nonlinearities of recombination dynamics. Furthermore, he showed that

1each locus has two possible alleles.
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the population approaches a stationary distribution in which the alleles are associated
at random (which is now common knowledge).

Geiringer [24] investigated the general recombination model for an arbitrary number of
loci and for arbitrary ‘recombination distributions’ (meaning collections of probabilities
for the various partitions of the sites that may occur during recombination) in 1944. She
was the first to state the general form of the solution of the recombination equation (as
a convex combination of all possible products of certain marginal frequencies derived
from the initial population) and developed a method for the recursive evaluation of the
corresponding coefficients. This simplifies the calculation of the type frequencies at any
time compared to the direct evaluation through successive iteration of the dynamical
system. She applied this idea to confirm the two site solution and to infer an explicit
solution for the three site case [25]. Even though she also worked out the method for
the general case in principle, its evaluation becomes quite involved for more than three
sites.

Her work was followed by Bennett [7] in 1954. He introduced a multilinear transforma-
tion of the type frequencies to certain functions that he named principal components.
They correspond to linear combinations of certain correlation functions (i.e. measures
of linkage disequilibrium) that transform the dynamical system (exactly) into a linear
one. The new variables decay independently and geometrically for all times, whence
they decouple and diagonalise the dynamics. They therefore provide an elegant solution
in principle, but the price to be paid is that the coefficients of the transformation must
be constructed via recursions that involve the parameters of the recombination model.
Bennett worked this method out for up to six sites, but did not give an explicit method
for an arbitrary number of sites. This was later on completed by Dawson [14, 15],
who showed that the transformation to diagonalise the dynamics is always of the form
Bennett claimed and derived a general and explicit recursion for the coefficients of the
principal components (at least for the diallelic case).

While all the work mentioned above assumes models in discrete time, E. and M. Baake
proposed a recombination model in continuous time [3], considering the special case
where recombination is restricted to single-crossovers, i.e. the case where maximum
one crossover event can happen in the same generation. Even though the recombi-
nation equations exhibit the same nonlinear character as the ones in the previously
mentioned models, the corresponding dynamics can be solved in closed form [3, 4].
Again, a crucial ingredient is a transformation to certain correlation functions (or link-
age disequilibria) that linearise and diagonalise the system. Fortunately, in this case,
the corresponding coefficients are independent of the recombination parameters and
the transformation is available explicitly. This is an essential simplification to pre-
vious results on recombination dynamics and suggests an underlying linearity in the
dynamics.

E. Baake and Herms [5] studied the finite population counterpart to the determinis-
tic single-crossover model, i.e. the Moran model with single-crossover recombination.
Simulation studies for four diallelic sites indicate that a population of approximately
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105 can be considered as ‘infinite’, i.e. in this case the deterministic limit constitutes
a very good approximation to the actual non-deterministic process. Further results on
single-crossover recombination for finite and infinite populations are summarised in [6].

An alternative framework to study recombination dynamics for infinite populations is
the representation via algebraic structures that was initiated by Etherington in 1939
[17]. A good review about algebras in genetics can be found in [56], while [69] offers a
complete overview of this topic. Algebraic structures in population genetics arise due to
the multiplicative nature of sexual reproduction. As an example, consider an arbitrary
(but finite) number of gametes a1, . . . , an in a random mating population. Random
mating of two gametes ai and aj forms the zygote aiaj and the resulting offspring
gamete is obtained according to the following rule:

aiaj =

n∑

k=1

γijkak ,

where the coefficients γijk fulfil

• 0 ≤ γijk ≤ 1.

•

∑n
k=1 γijk = 1.

• γijk = γjik.

Then, a1, . . . , an can be considered as the basis of an algebra with the above multi-
plication rule where each element p :=

∑n
i=1 αiai, 0 ≤ αi ≤ 1,

∑n
i=1 αi = 1, of this

algebra corresponds to an actual population, i.e. the coefficients αi signify the rela-
tive frequencies of the gametes ai in the population. Furthermore, the coefficients γijk
specify the laws of inheritance and multiplication of two populations corresponds to the
production of the offspring population of gametes. The above algebra is called gametic
algebra [56, 69].

Algebras which arise in genetics are generally commutative but non-associative as
should be obvious from a purely biological perspective. If a population p mates ran-
domly within its generation (which is usually assumed), then the successive generations
are given by the sequences of plenary powers p[n] = p[n−1]p[n−1].

There exist several definitions of algebras that could have genetic significance (e.g.
algebras with genetic realisation, and baric algebras, compare [56, 69]), but the ‘main’
definition of such an algebra, the Genetic Algebra, was first given by Schafer in 1949 [60]
and later formulated in a more coherent way by Gonshor [26]. Most theoretical results
that are important for population genetics are based on the assumption of a genetic
algebra, while at the same time many genetic situations fit this definition. In particular,
each gametic algebra is a genetic algebra after Gonshors definition, and thus the process
we are interested in - the process of recombination on the basis of gametes - is a genetic
algebra. To determine the successive generations in terms of an initial population
remains complicated due to the quadratic evolutionary operator. In 1930 Haldane
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described a procedure that became known as Haldane linearisation, compare [48, 52],
which in some cases allows the representation of the quadratic operator as a linear one
(on a higher dimensional space). Following this idea, Holgate [32] proved that this
linearisation works for each genetic algebra, so that in particular the original vector
space of each gametic algebra (with recombination) can be embedded into an higher-
dimensional vector space where the dynamics can be represented linearly. Bennett’s [7]
and Dawson’s [14, 15] linearisation procedure is essentially an example of Haldane
linearisation outside the abstract framework of algebras.

In this work, a single–crossover recombination model in discrete-time is studied exten-
sively for the first time. Single–crossover recombination (SCR) is a special, although
biologically relevant, case that corresponds to the extreme characteristic of the biolog-
ical phenomenon of interference (where the occurrence of a crossover event completely
inhibits any other crossover events in the same generation). A solution for the cor-
responding model in continuous time has already been found in [3, 4]. However, the
discrete-time case is quite different and important to consider since the overwhelm-
ing part of literature deals with non-overlapping generations. We seek to elaborate
the underlying mathematical structure of the discrete-time process by providing a sys-
tematic, but still elementary, approach that exploits the inherent (multi)linear and
combinatorial structure of the problem. Besides contributing to the understanding of
how recombination affects populations, the final goal is to state the genetic composi-
tion of a population at any time based upon a given initial population. In addition,
knowledge of the structure of the single-crossover model in discrete time turns out to
be very helpful for the study of an extended model, the general recombination model,
where the restriction to single-crossovers is omitted.

To begin with, we explain the biological foundations of recombination in Chapter 2. In
Chapter 3, we first describe the discrete-time single-crossover model and the general
framework. We then recapitulate the essentials of the continuous-time model, in par-
ticular the diagonalising transformation, and its solution. Returning to discrete time,
we first analyse explicitly the cases of two, three, and four sites. For two and three
sites, the dynamics is analogous to that in continuous time (and, in particular, avail-
able in closed form), but differs thereafter. This is because a certain linearity present in
continuous time is now lost. The differences to the continuous-time dynamics and the
resulting difficulties to solve the equations are then studied in detail. In particular, the
transformation operators used in continuous time are not sufficient to both linearise and
diagonalise the discrete-time dynamics. However, they lead to a linearisation which is
worked out in the following. We show that the resulting linear system has a triangular
structure that is then diagonalised in a recursive way.

In Chapter 4, we develop a new approach to infer an explicit solution of the single-
crossover dynamics by viewing the recombination process from another perspective. In
doing so, we use the underlying stochastic process (with reference to a finite population)
to trace recombination backwards in time, i.e. by backtracking the ancestry of the
various independent segments each type is composed of. This results in binary tree
structures, the ancestral recombination trees, which can be used as a tool to formulate
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an explicit solution.

Chapter 5 serves as an introduction to the general recombination model, where the
restriction to single-crossovers is dropped. We formulate the recombination equation
(in continuous time) together with its particular notation and examine the model with
several examples. Furthermore, we consider the tree structure that corresponds to the
solution of the general recombination model. Finally, we briefly indicate how to discuss
this model in the frame of genetic algebras.

We conclude with a summary and discussion of our results in Chapter 6.





Chapter 2

Biological fundamentals

As mentioned in the introduction, population genetics seeks to understand the genetic
structure of a population and how this changes from generation to generation due to
several evolutionary forces (see below). The data used in population genetics is usually
polymorphism data, where polymorphism refers to the simultaneous occurrence of two
or more different forms (i.e. different nucleotides or alleles) at the same location in the
genome (with reference to a population or a sample of a population). Explaining the
biological foundations, we follow [47].

2.1 Genetic diversity

Guaranteeing genetic variability is of crucial importance for a population since this
allows the members of the population to adapt to environmental changes. Mutation
is the only factor that is able to introduce new sequence forms into the population,
i.e. without mutations there would be no polymorphisms. Mutations are rare, e.g. in
bacterial cells the mutation rate per nucleotide is around 10−9 per generation [47]. Mu-
tation is counteracted by selection, the evolutionary factor that refers to the organisms
environmental interactions, and affects the probability of survival and the number of
progenies, respectively. Selection occurs whenever an individual and its progenies have
a different chance of survival, relative to other individuals, due to sequence differences.
Through this process, harmful mutations can be eliminated while the proportion of
sequences carrying beneficial mutations can be increased within the population.

Furthermore, populations are affected by a random factor called genetic drift. In any
finite population, the set of gametes passed to the next generation is typically not
a copy of the set of the gametes of the parental generation but a random sample of
these. Thus, due to stochastic fluctuations, two succeeding generations vary in their
compositions. The smaller the population, the stronger is the impact of genetic drift,
while genetic drift can be often ignored in very large populations.
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Finally, recombination breaks up linkage between loci on the same chromosome and
thus increases the amount of allele combinations.

2.2 Recombination

Recombination occurs in sexually reproducing organisms and refers to the reassorte-
ment and exchange of genetic material during the formation of the gametes (i.e. sperm
and egg cells). This may then lead to new combinations of the genetic material (i.e. new
genotypes) and therefore recombination increases the genetic diversity of a population,
having a profound influence on genome diversity and evolution.

The cells of diploid organisms contain two homologs of each morphological type of
chromosome. The two homologs constituting each pair of homologous chromosomes
are descended from different parents, i.e. homologous chromosomes are typically not
identical. Recombination occurs during meiosis, the type of cell division when a diploid
germ cell gives rise to four gametes with a haploid set of chromosomes.

2.2.1 Meiosis

Meiosis includes two phases of cell division, meiosis 1 and meiosis 2. Initially, the
genetic material of the diploid (premeiotic) germ cell is replicated to give rise to chro-
mosomes that consist of two identical sister chromatids that are attached at the cen-
tromere1. In the early phase of meiosis 1, the pairs of homologous chromosomes pair
with each other by a process called synapsis to form a tetrad, which is composed of
four homologous chromatids (two maternal and two paternal). At this stage, recom-
bination events occur, leading to the exchange of homologous nucleotide sequences
between a maternal and a paternal chromatid. We will discuss this process in detail
below. Afterwards, the pairs of homologous chromosomes (each consisting of two sister
chromatids) are separated and randomly distributed to two daughter cells while the
sister chromatids remain associated. Finally, in meiosis 2, the sister chromatids are
also separated, which results in the formation of four haploid gametes as the outcome
of meiosis. The process of meiosis is illustrated in Figure 2.1.

2.2.2 Mechanisms of recombination and crossover events

As mentioned above, during early meiosis 1, the homologous chromosome pairs are
physically connected and recombination events are observed. Indeed, in nearly all
organisms at least one recombination event is required to ensure proper cell division.
Recombination is thus not only an important factor to increase genetic diversity but for
survival of the cell as well [50]. Recombination forms an essential physical connection

1the centromere is a constricted DNA region that associates itself with several proteins and is
required for proper cell division.
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D
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M1M2

Figure 2.1: Illustration of meiotic cell division with one pair of homologous chromo-
somes in a diploid germ cell: Initially, the genetic material is duplicated (D). After-
wards, synapsis and recombination occur, resulting in recombined chromosomes (R).
During meiosis 1, the homologous chromosomes are separated (M1), followed by a sec-
ond cell division in meiosis 2 when the sister chromatids segregate to result in four
haploid gametes (M2).

between homologous chromosomes, which is called chiasma2. This subsequently allows
chromosomes to align correctly on the meiosis 1 spindle3 and thus to accurately segre-
gate to different daughter cells during the first cell division. Evidence of the importance
of recombination for meiosis can be found in studies with S. cerevisiae mutants where
the blocking of recombination also blocks proper segregation in meiosis 1 [42].

Recombination starts with a double-strand break induced by the Spo11 protein in the
DNA of one of the homologous chromosomes. The ends of the broken DNA are then
digested by exonucleases4 to produce single-stranded DNA. This allows one of the cut
strands to disassociate from its complementary strand and particular recombinase en-
zymes to catalyse its pairing with the complementary strand of the intact homologous
chromosome aiming for its repair5. This is the so-called strand invasion by which the
invading strand displaces its homologous strand from the actual intact chromosome.
The invading strand is then extended by DNA polymerase (using the complemen-
tary strand of its homologue as template) until the displaced single-strand pairs with
the other single-strand from the (double-strand cut) homologous chromosome. After
further DNA extension, where again the respective homologous complementary single-
strand is used as template, the two ends from the double-strand break are ligated and

2cytological manifestation at the point of nucleotide exchange between two homologue’s due to
meiotic recombination [50].

3bipolar array of microtubules that forms during meiosis to which chromosomes attach and by which
chromosomes are segregated to daughter cells [50].

4enzymes that digest nucleotides from the end of a polynucleotide chain.
5The mechanism of recombination is indeed strongly related to DNA repair mechanisms in the cell.
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gene conversion crossover

or

Holliday structure

Figure 2.2: Resolution of the Holliday structure through either gene conversion (hor-
izontal cut) or through a crossover (vertical cut). Here, each pair of strands displays
the DNA double-strand structure.

the resulting structure is the famous Holliday structure6. The Holliday structure is then
resolved by cleavage of the strands. The resolution of the Holliday structure can be
done in two different ways (depending on which pair of strands in the complex is cut):
this results in either a crossover event (recombined chromosomes due to a reciprocal
nucleotide exchange) or in a non-crossover event, also known as gene conversion, where
part of the nucleotide sequence of one chromosome is replaced by the sequence of its
homologue (i.e. there is no exchange of sequences but replacement), see also Figure 2.2.
Gene conversion is due to the fact that in a region located in the immediate vicinity
of the initial break point, a heteroduplex is found: one strand of one chromosome is
base-paired with the strand of the homologous chromosome, i.e. usually base-pair mis-
matches are obtained. Mismatches are usually repaired by specific repair mechanisms
of the cell where one strand acts as template for the other strand to correct for these;
as a result one sequence replaces the other in this area. Importantly, only crossover
recombination products are ultimately manifested as chiasmata, so that - following the
previous explanation - always one crossover event per pair of homologs is required, the
so-called ‘obligatory chiasma’ [9].

Indeed, there also exist models that challenge the well-established Holliday model where
crossovers and non-crossovers form as alternative outcomes of the resolution of the
Holliday structure. An example is the ‘Early crossover decision model’ [9] claiming that
the decision to generate a crossover or a non-crossover event is made shortly after the
double-strand break, i.e. much earlier than the stage at which the Holliday structure
is resolved. Afterwards, they claim two different pathways, one that generates non-
crossover events and an alternative pathway (which involves the Holliday structure)

6named after Robin Holliday who first stated this structure in 1964 [33].
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that generates crossover events.

Cytological data in mammals show a ratio of approximately 10:1 of non-crossovers to
crossovers following a double-strand break, while the average ratio of non-crossovers to
crossovers in yeast is said to be around 2:1 (this might also differ within different regions
on the chromosomes) [41]. Despite the excess of non-crossovers compared to crossovers,
most studies have focused on crossover events since gene conversion is generally much
harder to spot (e.g. via evolutionary models), see [39, 66].

Similarly, we will be only concerned with crossover events, more precisely with so-called
single-crossover events, recombination events where exactly one crossover occurs. Even
though we use this restriction primarily for mathematical purposes, it is also biologically
justified - at least for shorter DNA sequences - since crossovers are in general rare events.
Additionally, the phenomenon of interference also explains why single-crossovers exhibit
a relevant special case. In the following, with recombination, we will always refer to a
real crossover event.

Interference

Interference accounts for the fact that the occurrence of one crossover event reduces
the probability that another crossover will occur simultaneously in a nearby region.
For closely adjacent regions, interference is usually complete (i.e. completely inhibits
any further crossover) [40] and it is typically inversely correlated with distance. Thus,
interference is crucial to the observation that the distribution of crossovers along chro-
mosomes is strikingly nonrandom (see below) by introducing dependencies between
levels of recombination in adjacent regions.

Although the molecular mechanisms of interference are still not completely understood,
there exist several theories about this remarkable factor [9, 23, 40, 51]. One often
proposed model is the ‘stress relief’ model [51]: this claims that the designation of a
crossover involves structural changes on the chromosome that relieve mechanical stress
to neighbouring regions. Thereby, the occurrence of further crossovers is inhibited
while the effect of interference decreases to more distant regions. With regard to this
model, the formation of the obligatory crossover is determined by ensuring sufficient
initial stress. Furthermore, the overall view is that the mechanisms of crossover control
operate at the level of whole chromosomes rather than on particular chromosome regions
or nucleotide sequences [40].

2.2.3 Crossover: occurrence and frequencies

So far, we have seen that homologous chromosomes during meiosis (almost) always ex-
perience the obligatory crossover and additionally that the phenomenon of interference
is observed, i.e. crossovers tend to be spaced. Furthermore, recombination events are
more likely to occur in some regions of the genome than in others, i.e. they exhibit a
striking nonrandom distribution [41]. How this distribution is formed and which factors
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support (or suppress) recombination is an intensely debated issue. Most recombination
events cluster within so-called recombination hotspots, small (around 1-2 kb) genomic
intervals with high recombination activities which are surrounded by large stretches
of non-recombining DNA. As an example, average spacing between clusters is about
65 kb in humans [41]. Estimates suggest that about 80 % of all crossover events occur
in 10-20 % of the whole genomic material [13]. These hotspots are found in different
genomic regions and share no obvious sequence similarities.

Crossover activity is usually expressed in centimorgans (cM)7 per megabase pair (Mb).
The genetic distance of 1 cM between two loci corresponds to a 1 % frequency of
recombinant progeny. In particular, genetic distance does not correspond to the phys-
ical distance due to the uneven distribution of crossovers. Recombination rates - even
within the same species - vary highly depending on a wide range of factors which are
not known or completely understood yet. The average crossover frequency in humans
is about 1.1 cM/Mb, but there also exist hotspots with recombination activities of
0.3 cM/Mb and 370 cM/Mb, respectively [41]. For comparison, the average crossover
rate in mice is around 0.5 cM/Mb (even though there exists a hot spot with an intense
peak activity of 1300 cM/Mb), and for yeast the average is as high as 370 cM/Mb
[41]. Further observations suggest that in most species females exhibit more crossovers
than men, many hotspots show a high content of the bases Guanin and Cytosin and
that smaller chromosomes have higher recombination rates than larger ones (at least
in humans). In many mammals, the crossover rate is reduced near the centromeres
and increased near the telomeres8. Furthermore, it has been proposed that the recom-
bination rate is also positively correlated with gene density and nucleotide diversity
[13].

To conclude, recombination is a fundamentally important process, not only because it
is required for accurate chromosome segregation, but also because it plays a significant
role in shaping the genetic history of populations. Due to this, when studying questions
of genome evolution, it is necessary to incorporate the factor recombination into the
respective methods. First of all, it is the only factor (together with the related factor
gene conversion) that allows linked loci to have independent evolutionary histories [58].
Thus, it has an extensive influence on conclusions regarding population relations and
the inference of other evolutionary parameters such as mutation rates and selection
values [13]. Furthermore, indications suggest that recombination might be associated
with mutational processes, and that selection might be more efficient in regions with
high recombination activity [37].

Many studies are concerned with building so-called recombination rate maps of various
genomes to capture the local recombination landscape of chromosomes, i.e. charac-
terising hotspots and their corresponding crossover rates, see for example [13, 37, 45]
and references therein. Increasing knowledge about recombination has also important
implications for human genetics, e.g. the mapping of disease genes in connection with

7named after Thomas Hunt Morgan (1866-1945), who discovered genetic linkage.
8particular DNA region at the ends of each chromosome.
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linkage studies9 [45].

As a matter of course, including recombination into mathematical tools in population
genetics is unavoidable. However, primarily due to its nonlinear nature, recombination
is difficult to employ mathematically and also results in computational difficulties [58].

9linkage studies use linkage disequilibrium (LD) as a measure of whether alleles at different loci on
the same chromosome coexist in a population nonrandomly. Recombination breaks down LD since it
decouples alleles.





Chapter 3

Single–crossover recombination

in discrete time: The model

The recombination model we are considering in this work is the discrete-time counter-
part of the one described by E. and M. Baake in [3]. The model describes the dynamics
of the genetic composition of sexually reproducing populations that evolve with re-
combination acting as the only evolutionary force. As a special case, we only consider
single-crossovers, which leads to what we call single-crossover recombination (SCR). In
particular, we restrict ourselves to the deterministic limit of infinite population size,
also known as infinite population limit (IPL), where the population is identified with
a probability measure on type space that evolves deterministically. Thus, we neglect
any stochastic fluctuations that are commonly referred to as genetic drift.

Furthermore, we make the following assumptions: Both sexes are assumed to be equal,
i.e. they agree in the composition of all haplotypes as well as in all recombination
parameters. With reference to Hardy, see [30], the single allele frequencies remain
constant with time. We will describe the dynamics on the level of the gametes (hap-
lotypes) with respect to the concept of random mating stating that the random union
of zygotes is equivalent to the random union of all the gametes which these produce.
Jennings [36] already showed in 1917 that it is indeed sufficient to only consider the
gamete pool of an infinite large population instead of taking into account the diploid
nature of sexually reproducing organisms. The process we are considering can then be
idealised as follows, see also Figure 3.1: We assume a very large population (indeed,
in our model an ‘infinite’ large population) of gametes. To recombine, two gametes
are chosen randomly out of the population, and a crossover leads to the exchange of
genetic material before (and after, respectively) the crossing point. Afterwards, the
mixed gametes separate and replace their parents in the population.

Since we only consider single-crossovers, the new recombined gametes consist of exactly
two segments: the leading segment of the first and the trailing segment of the second
parent.
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female male

random combination

Figure 3.1: Schematic representation of the life cycle of a gamete population under
recombination: Random mating of two gametes.
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Figure 3.2: Illustration of a gamete with sites and links.

3.1 The mathematical setup

A gamete (of length n + 1, say) is represented as a linear arrangement of the n + 1
sites of the set S = {0, 1, . . . , n}. Sites are discrete positions on a gamete that may be
interpreted as gene or nucleotide positions. A set Xi collects the possible elements (such
as alleles or nucleotides) at site i. For convenience, we restrict ourselves to finite sets
Xi, though much of the theory can be extended to the case that each Xi is a locally
compact space, see [4], which can be of importance for applications in quantitative
genetics [20]. What we call a type is then defined as a sequence (x0, x1, . . . , xn) ∈
X0 ×X1 × · · · ×Xn =: X, where X denotes the (finite) type space.

Recombination events take place at the so-called links between neighbouring sites,
collected into the set L = {1

2 ,
3
2 , . . . ,

2n−1
2 }, where link α = 2i+1

2 is the link between
sites i and i+1, see also Figure 3.2. Since we only consider single-crossovers here, each
individual event yields an exchange of the sites either before or after the respective
link between the two types involved. A recombination event at link 2i+1

2 that involves
x = (x0, . . . , xn) and y = (y0, . . . , yn) thus results in the types (x0, . . . , xi, yi+1, . . . , yn)
and (y0, . . . , yi, xi+1, . . . , xn), with both pairs considered as unordered.

Since we assume an infinite population, we are not looking at the individual dynamics,
but at the induced dynamics on the probability distribution on the type space X. The
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population at time t, t ∈ N0, is then described by pt = (pt(x))x∈X ∈ P(X), where
pt(x) denotes the relative frequency of type x ∈ X at time t, and P(X) is the set of
probability measures on X. Let ρα, α ∈ L, denote the probability for a crossover at
link α in every time step. Consequently, we must have ρα ≥ 0 and

∑
α∈L ρα ≤ 1,

where ρα > 0 is assumed from now on without loss of generality (when ρα = 0, the set
X

α− 1
2

×X
α+ 1

2

can be considered as a space for an effective site that comprises α − 1
2

and α+ 1
2).

Then, the time evolution of the relative frequencies pt(x) of types x = (x0, . . . , xn)
when starting from an initial population p0 at time t = 0, is given by the following
system of recombination equations for all x ∈ X:

pt+1(x) =
∑

α∈L

ρα pt(x0, x1, . . . , x⌊α⌋, ∗, ∗, . . . , ∗) pt(∗, ∗, . . . , ∗, x⌈α⌉, x⌈α⌉+1, . . . , xn)

+
(
1−

∑

α∈L

ρα

)
pt(x), with t ∈ N0 .

(3.1)

Here, ⌊α⌋ (⌈α⌉) denotes the largest integer below (the smallest above) α and the star
∗ at site i stands for Xi, and thus indicates marginalisation at site i. (3.1) explains
how to obtain the frequency of any type x = (x0, . . . , xn) at time t+ 1 with regard to
time t: Any type x = (x0, . . . , xn) at time t+ 1 can result from recombination at link
α ∈ L of type (x0, x1, . . . , x⌊α⌋, ∗, ∗, . . . , ∗) with type (∗, ∗, . . . , ∗, x⌈α⌉, x⌈α⌉+1, . . . , xn)

present at time t (compare Figure 3.3), and, furthermore, all types x of time t that
are not involved in recombination, remain in the population. Since (3.1) describes a

x0, . . . , x⌊α⌋, x⌈α⌉, . . . , xn
ρα

∗ , . . . , ∗ , ∗ , . . . , ∗

x0, . . . , x⌊α⌋, ∗ , . . . , ∗

∗ , . . . , ∗ , x⌈α⌉, . . . , xn

Figure 3.3: Recombination at link α resulting in type x = (x0, . . . , xn).

large nonlinear coupled system of difference equations, the way to an explicit solution
is rather difficult. An important step to solve (3.1) lies in its reformulation in a more
compact way with the help of certain recombination operators.

Recombination operators

Let X be the type space considered in our model. To construct the recombination
operators, we first need the canonical projection operator πi : X −→ Xi, defined by
x 7→ πi(x) = xi as usual. Likewise, for any index set J ⊆ S, the projector πJ is defined
as πJ : X −→ XJ :=×i∈J

Xi. We will frequently use

π<α := π{0,...,⌊α⌋} and π>α := π{⌈α⌉,...,n} .
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Since π<α describes a projection on the sites before link α, while π>α projects on the
sites behind α, these can be understood as ‘cut-and-forget’ operators since they ‘cut out’
the leading and the trailing segment of a type x, respectively, and ‘forget’ about the rest.
The projectors induce linear mappings from P(X) to P(XJ ) by p 7→ πJ ·p := p ◦ π−1

J ,
where π−1

J denotes the preimage under πJ and ◦ indicates composition of mappings.
The operation . (not to be confused with a multiplication sign) is known as the pullback
of πJ with respect to p. Consequently, πJ ·p is the marginal distribution of p with respect
to the sites of J , i.e. πJ ·p(πJ(x)) = (p ◦ π−1

J )(πJ(x)) = p({y ∈ X|πJ (y) = πJ(x)}) for
any x ∈ X.

Recombinator

We can now define recombination via the the ‘cut-and-forget’ operators. If we consider
recombination at link α, performed on the entire population, then the resulting pop-
ulation consists of randomly chosen leading segments relinked with randomly chosen
trailing segments. This operation may be described through the (elementary) recombi-
nation operator (or recombinator for short) Rα : P(X) −→ P(X), defined by p 7→ Rα(p)
with

Rα(p) := (π<α·p)⊗ (π>α·p) , (3.2)

where ⊗ denotes the product measure and reflects the independent combination of both
marginals π<α·p and π>α·p. The recombinators are in particular structural non-linear
operators that do not depend on the recombination probabilities.

Properties of the recombinators

Before we rewrite the recombination equations in terms of the recombinator, let us
recall some of their elementary properties. The proofs can be found in [3].

Proposition 3.1. On P(X), the elementary recombinators are idempotents and com-
mute with one another. We thus have R2

α = Rα and RαRβ = RβRα for all α, β ∈ L.

This proposition permits the consistent definition of composite recombinators

RG :=
∏

α∈G

Rα (3.3)

for arbitrary subsets G ⊆ L. In particular, one has R∅ = 1 and R{α} = Rα. Here, the

product is to be read as composition, and clearly, RG(p) is the product measure with
respect to all links in G.
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Proposition 3.2. On P(X), the elementary recombinators are commuting idempo-
tents. For α ≤ β, they satisfy

π<α·

(
Rβ(p)

)
= π<α·p and π>α·

(
Rβ(p)

)
= (π{⌈α⌉,...,⌊β⌋}·p)⊗ (π>β·p) ; (3.4)

likewise, for α ≥ β,

π>α·

(
Rβ(p)

)
= π>α·p and π<α·

(
Rβ(p)

)
= (π<β·p)⊗ (π{⌈β⌉,...,⌊α⌋}·p) . (3.5)

Furthermore, the composite recombinators satisfy

RGRH = RG∪H (3.6)

for arbitrary G,H ⊆ L.

These properties can be understood intuitively as well: (3.4) says that recombination
at or after link α does not affect the marginal frequencies at sites before α, whereas
the marginal frequencies at the sites after α change into the product measure (and
vice versa in (3.5)). Furthermore, repeated recombination at link α does not change
the situation any further (recombinators are idempotents) and the formation of the
product measure with respect to ≥ 2 links does not depend on the order in which the
links are affected.

Employing recombinators, the equations (3.1) in discrete time with a given initial dis-
tribution p0 can be compactly rewritten as

pt+1 = pt +
∑

α∈L

ρα
(
Rα − 1)(pt) =: Φ(pt) . (3.7)

As indicated, the non-linear operator of the right-hand side of (3.7) is denoted by Φ
from now on.

As mentioned in the introduction, part of this work is to study the discrete-time re-
combination dynamics in comparison with the analogous dynamics in continuous time.
Thus, before continuing with the investigation of the discrete-time model, the main
results from the continuous-time model should be summarised. This is needed to fully
understand the complications involving discrete time.

3.2 Excursus: SCR in continuous time

We now consider the recombination dynamics with overlapping generations employing
the same assumptions as in the discrete-time model. Making use of the recombinators
introduced above, the dynamics (in the IPL) is described by a system of differential
equations for the time evolution of the probability distribution (or measure), starting
from an initial condition p0 at t = 0. It reads [3]

ṗt =
∑

α∈L

ρ̃α
(
Rα − 1)(pt) , (3.8)

where ρ̃α is now the rate for a crossover at link α. Although (3.8) describes a coupled
system of nonlinear differential equations, the closed solution for its Cauchy (or initial
value) problem is available [3, 4]:
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Theorem 3.3. The solution of the recombination equation (3.8) with initial value p0
can be given in closed form as

pt =
∑

G⊆L

ãG(t)RG(p0) , (3.9)

with the coefficient functions

ãG(t) =
∏

α∈L\G

exp(−ρ̃αt)
∏

β∈G

(1− exp(−ρ̃βt)) . (3.10)

These are non-negative functions, which satisfy
∑

G⊆L ãG(t) = 1 for all t ≥ 0 .

The underlying stochastic process for finite populations and the proof for the infinite
population limit can be found in [5]. With reference to the stochastic process (i.e. inde-
pendent Poisson processes for all α ∈ L, each with parameter ρ̃α in each individual), the
coefficient functions can be interpreted probabilistically. Given an individual sequence
in the population, ãG(t) is the probability that the set of links that have seen at least
one crossover event until time t is precisely the set G. Note that the product structure
of the ãG(t) implies independence of links, a decisive feature of the single-crossover
dynamics in continuous time, as we shall see later on. By (3.9), pt is always a convex
combination of the probability measures RG(p0) with G ⊆ L. Consequently, given
an initial condition p0, the entire dynamics takes place on the closed simplex (within
P(X)) that is given by conv{RG(p0) | G ⊆ L}, where conv(A) denotes the convex hull
of A.

It is surprising that a closed solution for the dynamics (3.8) can be given explicitly.
Explicit solutions for large nonlinear systems of differential equations are rare - solu-
tions to differential equations are usually reserved for linear ones. This suggests the
existence of an underlying linear structure [4] for (3.8), which is indeed the case and
well known from similar equations, compare [48]. In the context of the formulation
with recombinators, it can be stated as follows, compare [3] for details.

Theorem 3.4. Let
{
c
(L′)
G′ (t) | ∅ ⊆ G′ ⊆ L′ ⊆ L

}
be a family of non-negative func-

tions with c
(L)
G (t) = c

(L1)
G1

(t) c
(L2)
G2

(t), valid for any partition L = L1∪̇L2 of the set L
and all t ≥ 0, where Gi := G ∩ Li. Assume further that these functions satisfy∑

H⊆L′ c
(L′)
H (t) = 1 for any L′ ⊆ L and t ≥ 0. If v ∈ P(X) and H ⊆ L, one has the

identity

RH

(∑

G⊆L

c
(L)
G (t)RG(v)

)
=
∑

G⊆L

c
(L)
G (t)RG∪H(v) ,

which is then satisfied for all t ≥ 0.

Here, the upper index specifies the respective set of links. So far, Theorem 3.4 depends

crucially on the product structure of the functions c
(L)
G (t), but we will show later how

this assumption can be relaxed. In any case, the coefficient functions ãG(t) of (3.10)
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satisfy the conditions of Theorem 3.4. The result then means that the recombinators
act linearly along solutions (3.9) of the recombination equation (3.8). Denoting ϕt as
the forward flow of (3.8), Theorem 3.4 thus has the following consequence.

Corollary 3.5. On P(X), the forward flow of (3.8) commutes with all recombinators,
which means that RG ◦ ϕt = ϕt ◦RG holds for all t ≥ 0 and all G ⊆ L.

The conventional approach to solve the recombination dynamics consists in trans-
forming the type frequencies to certain functions which diagonalise the dynamics, see
[7, 14, 15, 48] and references therein for more. From now on, we will call these functions
principal components after Bennett [7]. For the single-crossover dynamics in continuous
time, they have a particularly simple structure: they are given by certain correlation
functions, or linkage disequilibria (LDE), which play an important role in biological
applications, see for example [64] and references therein. They have a counterpart at
the level of operators on P(X).

Namely, let us define LDE operators on P(X) as linear combinations of recombinators
via

TG :=
∑

H⊇G

(−1)|H−G|RH , with G ⊆ L , (3.11)

so that the inverse relation is given by

RH =
∑

G⊇H

TG (3.12)

due to the combinatorial Möbius inversion formula, compare [1]. Let us note for further
use that, by equation (3.6) in Proposition 3.2, TG ◦ RG = TG. Note also that, for a
probability measure p on X, TG(p) is a signed measure on X; in particular, it need not
be positive. The LDEs are given by certain components of the TG(p) — see [3, 5] for
more. In the continuous-time single-crossover setting, it was shown in [3] that, if pt is
the solution (3.9), the TG(pt) satisfy

d

dt
TG(pt) = −

( ∑

α∈L\G

ρ̃α

)
TG(pt), for all G ⊆ L, (3.13)

which is a decoupled system of homogeneous linear differential equations, with the stan-
dard exponential solution. That is, the LDE operators both linearise and diagonalise
the system, and the LDEs are thus, at the same time, principal components.

A straightforward calculation now reveals that the solution (3.9) can be rewritten as

pt =
∑

G⊆L

ãG(t)RG(p0) =
∑

K⊆L

bK(t)TK(p0) =
∑

K⊆L

TK(pt), (3.14)

where the new coefficient functions are given by

bK(t) := exp
(
−
∑

α∈L\K

ρ̃αt
)
.
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This way, an explicit solution for pt is obtained as a decomposition into exponential
factors. At this point, it is important to notice the simple structure of the LDE op-
erators, which do not depend on the crossover rates. Moreover, the transformation
between recombinators and LDE operators is directly given by Möbius formula, see
equations (3.11) and (3.12). This is a significant simplification in comparison with
previous results, compare [7, 14, 15, 24], where the coefficients of the transformation
generally depend on the crossover rates and must be determined recursively.

To summarise the results from the continuous-time recombination model: Even though
the dynamics is described through a large nonlinear coupled system of differential equa-
tions, an explicit solution to the dynamics could be found. This surprising result is due
to an underlying linearity in the system that can be explained with the independence
of links. In turn, this results in the linear action of the (nonlinear) recombinators on
solutions of the dynamics as well as in the commuting property of the forward flow
of the system of differential equations with all recombinators. Furthermore, the spe-
cial structure of the continuous-time model is reflected in the simplifying construction
of the principal components that are in particular independent of the recombination
parameters (in contrast to previous results on recombination dynamics).

Below, we shall see that the SCR dynamics in continuous time is indeed a special case,
and that the above results cannot be transferred directly to the corresponding dynamics
in discrete time. Nevertheless, part of the continuous-time structure prevails and offers
a useful entry point for the solution of the discrete-time counterpart.

3.3 SCR in discrete time

After this short introduction to the SCR dynamics in continuous time, we now continue
with investigating the discrete-time dynamics described by (3.7). The final goal is to
state an explicit solution to the dynamics, namely for pt = Φt(p0) with t ∈ N0. Based
on the result for the continuous-time model, the solution is expected to be of the form

pt = Φt(p0) =
∑

G⊆L

aG(t)RG(p0) , (3.15)

with aG(0) = δG,∅, aG(t) ≥ 0, for all G ⊆ L, and
∑

G⊆L aG(t) = 1, describing the
(unknown) coefficient functions arising from the dynamics. This representation of the
solution was first stated by Geiringer [24]. In particular, the discrete-time dynamics
takes place on the simplex conv{RG(p0) | G ⊆ L} as well. We will prove in Theorem 3.7
that this ansatz is indeed right and constitutes the solution to the recombination dy-
namics (3.7).

The structure of the solution (3.15) can also be illustrated by the following consider-
ation, see also Figure 3.4: Starting at time t = 0, the initial population p0 = R∅(p0)
has not experienced any recombination event so far. Then imagine all individuals of
p0 to recombine at link α ∈ L. The emerging population is then given by Rα(p0).
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α
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α α
α

α α
α

β

β β
β

p0 = R∅(p0)

p1 = Rα(p0)

p2 = R{α,β}(p0)

Figure 3.4: Illustration of the concept of recombined populations for four different
gametes.

Furthermore, let recombination occur at another link β ∈ L for all individuals, giving
rise to the population R{α,β}(p0) etc. The RG(p0), G ⊆ L, are the so-called recombined
populations. Since, of course, recombination most likely will only happen to a fraction
of the population as well as at different links, the actual population at time t ∈ N0

will be given as a mixture of the various recombined populations as stated by (3.15).
In particular, the aG(t), G ⊆ L, give the corresponding proportions of the recombined
populations and suggest the same probabilistic interpretation as in the continuous-time
case: given an individual in the population pt, aG(t), G ⊆ L, gives the probability that
until time t exactly the links of G have been involved in recombination.

Remark 3.6. We will define the underlying stochastic process to the IPL dynam-
ics (3.7) in Section 4.1. With the help of another stochastic process, we will then
eventually justify the stochastic interpretation of the coefficient functions, see Proposi-
tion 4.14.

What we are left with is to determine the coefficient functions aG(t), G ⊆ L. The
question is if we can make use of the tools developed for the solution of the analogous
continuous-time dynamics, e.g. if we can adopt the transformation (3.11) to diagonalise
the discrete-time dynamics.

In connection with this, we are particularly interested in whether a discrete-time equiv-
alent to Corollary 3.5 exists, that is, whether all recombinators RG commute with Φ.
This is of importance since it would allow for a diagonalisation of the dynamics via the
LDE operators (3.11). To see this, assume for a moment that Rα ◦ Φ = Φ ◦ Rα for all
α ∈ L, and thus RG ◦Φ = Φ◦RG for all G ⊆ L. Noting that, when α ∈ G ⊆ H, equa-
tion (3.6) from Proposition 3.2 implies that (Rα−1)RH = RH∪{α}−RH = RH−RH = 0,
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we see that the assumption above would lead to

TG ◦ Φ =
∑

H⊇G

(−1)|H−G|RH ◦ Φ =
∑

H⊇G

(−1)|H−G|Φ ◦RH

=
∑

H⊇G

(−1)|H−G|RH +
∑

H⊇G

(−1)|H−G|
∑

α∈L

ρα(Rα − 1)RH

= TG +
∑

H⊇G

(−1)|H−G|
∑

α∈L\G

ρα(Rα − 1)RH

=
(
1−

∑

α∈L\G

ρα

)
TG +

∑

α∈L\G

ρα
∑

H⊇G
α/∈H

(
(−1)|H−G|RH∪{α} + (−1)|H∪{α}−G|RH∪{α}

)

=
(
1−

∑

α∈L\G

ρα

)
TG ,

so that, indeed, all TG(pt) would decay geometrically. This wishful calculation is badly
smashed by the nonlinear nature of the recombinators, and we are now concerned with
true identities that repair the damage. To get an intuition for the dynamics in discrete
time, let us first take a closer look at the discrete-time model with two, three, and four
sites.

3.3.1 Two and three sites

For two sites, one simply has S = {0, 1} and L = {1
2}, so that only one non-trivial

recombinator exists, R = R 1
2

, with corresponding recombination probability ρ = ρ 1
2

.

Consequently, the SCR equation simplifies to

pt+1 = Φ(pt) = ρR(pt) + (1− ρ) pt , (3.16)

where pt is a |X|-dimensional probability vector. The solution is given by

pt = a(t) p0 +
(
1− a(t)

)
R(p0) (3.17)

with a(t) = a∅(t) = (1− ρ)t. This formula is easily verified by induction [68]. Thus, in
analogy with the SCR dynamics in continuous time, the solution is available in closed
form, and the coefficient functions allow an analogous probabilistic interpretation. Fur-
thermore, it is easily seen that the recombinators R∅ = 1 and R 1

2

= R commute with

Φ and therefore with Φt for all t ∈ N0. For two sites, the analogue of Corollary 3.5
thus holds in discrete time. As a consequence, the LDE operators from (3.11) decouple
and linearise the system (3.16). At the level of the component LDEs, this is common
knowledge in theoretical population genetics; compare [31, Chap. 3].

Similarly, the recombination equation (3.7) for three sites S = {0, 1, 2} and links
L = {1

2 ,
3
2} can be solved explicitly as well. An elementary calculation (applying
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the iteration and comparing coefficients, see [68]) shows that the corresponding coeffi-
cient functions aG(t) follow the linear recursion




a∅(t+ 1)
a 1

2

(t+ 1)

a 3
2

(t+ 1)

a
{ 1

2
, 3
2}
(t+ 1)




=




1− ρ 1
2

− ρ 3
2

0 0 0

ρ 1
2

1− ρ 3
2

0 0

ρ 3
2

0 1− ρ 1
2

0

0 ρ 3
2

ρ 1
2

1







a∅(t)
a 1

2

(t)

a 3
2

(t)

a
{ 1

2
, 3
2}
(t)




,

with solution

a∅(t) =
(
1− ρ 1

2
− ρ 3

2

)t
,

a 1
2

(t) =
(
1− ρ 3

2

)t
−
(
1− ρ 1

2

− ρ 3
2

)t
,

a 3
2
(t) =

(
1− ρ 1

2

)t
−
(
1− ρ 1

2
− ρ 3

2

)t
,

a{ 1
2
, 3
2}
(t) = 1−

(
1− ρ 3

2

)t
−
(
1− ρ 1

2

)t
+
(
1− ρ 1

2
− ρ 3

2

)t
.

(3.18)

If we compare this to the analogous coefficient functions ãG(t), G ⊆ {1
2 ,

3
2}, from the

continuous-time dynamics, we observe a crucial difference. Recall that, in continuous
time, single-crossovers imply independence of links, which is expressed in the product
structure of the coefficient functions ãG(t) (see (3.10)). As we find in (3.18), already
for three sites, the coefficients of the discrete-time dynamics fail to show the product
structure used in Theorem 3.4. The independence observed in continuous time is lost
in discrete time, where a crossover event at one link forbids any other cut at other links
in the same time step.

But even though Corollary 3.5, concerning the forward flow of (3.8), is a consequence
of Theorem 3.4, which, in turn, is based upon the product structure of the coefficients,
a short calculation reveals that RG ◦Φ = Φ ◦RG still holds for the discrete-time model
with three sites for all G ⊆

{
1
2 ,

3
2

}
. As a consequence, just as in the case of two sites,

the TG linearise and decouple the dynamics, which is well-known, see [7, 12] for more.
In fact, we obtain:

T∅(Φ(p)) = (1− ρ 1
2
− ρ 3

2
)T∅(p) ,

T 1
2

(Φ(p)) = (1− ρ 3
2

)T 1
2

(p) ,

T 3
2
(Φ(p)) = (1− ρ 1

2
)T 3

2
(p) ,

T{ 1
2
, 3
2}
(Φ(p)) = T{ 1

2
, 3
2}
(p) .

To summarise: despite the loss of independence of links, an explicit solution of the
discrete-time recombination dynamics is still available, and a linearisation and diagonal-
isation of the dynamics can be achieved with the methods developed for the continuous-
time model, that is, a transformation to a solvable system via the TG. However, things
will become more complex if we go to four sites and beyond. In particular, there is
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no equivalent to Corollary 3.5, i.e., in general, the recombinators do not commute with
Φ, and we have to search for a new transformation that replaces (3.11), as will be
explained next.

3.3.2 Four sites

The complication with four sites originates from the fact that R 3
2

◦Φ 6= Φ ◦R 3
2

, so that

the property described by Corollary 3.5 for continuous time is lost here. Consequently,
the TG fail the desired (diagonalisation) properties. In particular, one finds

T∅(Φ(p)) =
(
1− ρ 1

2
− ρ 3

2
− ρ 5

2

)
T∅(p)− ρ 1

2
ρ 5

2
T 3

2
(p),

so that an explicit solution of the model cannot be obtained as before. Furthermore,
a simple but lengthy calculation shows that the coefficient functions aG(t) no longer
follow a linear recursion for all G ⊆ L, see [68]. This raises the question why four sites
are more difficult than three sites, even though independence of links has already been
lost with three sites. To answer this, we look at the time evolution of the coefficient
functions aG(t), G ⊆ L. For this purpose, let us return to the general model with an
arbitrary number of sites.

3.3.3 General case

We now consider an arbitrary (but finite) set S with the corresponding link set L. For
each G ⊆ L, we use the following abbreviations:

G<α := {i ∈ G | i < α} , G>α := {i ∈ G | i > α} ,

L≤α := {i ∈ L | i ≤ α} , L≥α := {i ∈ L | i ≥ α} .

We then obtain

Theorem 3.7. For all G ⊆ L and t ∈ N0, the coefficient functions aG(t) evolve
according to

aG(t+ 1) =
(
1−

∑

α∈L

ρα

)
aG(t) +

∑

α∈G

ρα

( ∑

H⊆L≥α

aG<α∪H
(t)
)( ∑

K⊆L≤α

aK∪G>α
(t)
)
,

(3.19)
with initial condition aG(0) = δG,∅.

Proof. Geiringer [24] already explained in words how to derive this general recursion,
and illustrated it with the four-site example; we give a proof via our operator formalism.
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Using (3.15), the recombination equation for pt+1 reads

pt+1 =
∑

G⊆L

aG(t+ 1)RG(p0) = Φ
(
pt
)
= Φ

(∑

G⊆L

aG(t)RG(p0)

)

=
∑

α∈L

ρα

((
π<α·

(∑

H⊆L

aH(t)RH(p0)
))

⊗
(
π>α·

(∑

K⊆L

aK(t)RK(p0)
)))

+
(
1−

∑

α∈L

ρα

)(∑

G⊆L

aG(t)RG(p0)
)
,

where each product term in the first sum can be calculated as
(
π<α·

(∑

H⊆L

aH(t)RH(p0)
))

⊗

(
π>α·

(∑

K⊆L

aK(t)RK(p0)
))

=
∑

H,K⊆L

aH(t)aK(t)

((
π<α·RH(p0)

)
⊗
(
π>α·RK(p0)

))

=
∑

H,K⊆L

aH(t)aK(t)

((
π<α·RH<α∪K>α

(p0)
)
⊗
(
π>α·RH<α∪K>α

(p0)
))

=
∑

H,K⊆L

aH(t)aK(t)

(
Rα

(
RH<α∪K>α

(p0)
))

,

where we use the linearity of the projectors in the first step, and equations (3.4) and
(3.5) from Proposition 3.2 in the second (more precisely, we use the left parts of equa-
tions (3.4) and (3.5), reading them both forward and backward). Insert this into the
expression for pt+1 and rearrange the sums for a comparison of coefficients of RG with
G ⊆ L. Comparison of coefficients is justified by the observation that, for generic p0
and generic site spaces, the vectors RG(p0) with G ⊆ L are the extremal vectors of the
closed simplex conv{RK(p0) | K ⊆ L}. They are the vectors that (generically) cannot
be expressed as non-trivial convex combination within the simplex, and hence the ver-
tices of the latter (in cases with degeneracies, one reduces the simplex in the obvious
way). If G = ∅, we only have

(
1−
∑

α∈L ρα
)
a∅(t) as coefficient for R∅. Otherwise, we

get additional contributions for each α ∈ G, namely, from those H,K ⊆ L for which
H<α = G<α and K>α = G>α, while H≥α and K≤α can be any subset of L≥α and L≤α,
respectively. Hence, the term belonging to RG(p0) reads

∑

α∈G

ρα

( ∑

H⊆L≥α

∑

K⊆L≤α

aG<α∪H
(t) aK∪G>α

(t)
)
+
(
1−

∑

α∈L

ρα

)
aG(t) ,

and the assertion follows.

The iteration (3.19) can be understood intuitively as well: A type x resulting from
recombination at link α is composed of two segments x<α and x>α. These segments
themselves may have been pieced together in previous recombination events already,
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and the iteration explains the possible cuts these segments may carry along. The first
term in the product stands for the type delivering the leading segment (which may
bring along arbitrary cuts in the trailing segment), the second for the type delivering
the trailing one (here any leading segment is allowed). The term

(
1−

∑
α∈L ρα

)
aG(t)

covers the case of no recombination.

This way, we also show that ansatz (3.15) is indeed right since it constitutes the (unique)
solution to the discrete-time recombination dynamics (3.7).

Note that the above iteration is generally nonlinear, where the products stem from the
fact that types recombine independently. This nonlinearity is the reason that an explicit
solution cannot be given as before. A notable exception is provided by recombination
events that occur at links where one of the involved segments cannot have been affected
by previous crossovers, namely the links 1

2 and 2n−1
2 . In this case, at least one of the

factors in equation (3.19) becomes 1 (since, obviously, G<α = ∅ for α = 1
2 and G>α = ∅

for α = 2n−1
2 ) and the resulting linear and triangular recursion can be solved. Setting

η := 1−
∑

α∈L ρα, the coefficients for the corresponding link sets can be inferred directly
(proof via simple induction) as

a∅(t) = ηt ,

a 1
2

(t) =
(
η + ρ 1

2

)t
− ηt ,

a 2n−1
2

(t) =
(
η + ρ 2n−1

2

)t
− ηt , and

a{ 1
2
, 2n−1

2 }(t) = ηt −
(
η + ρ 1

2

)t
−
(
η + ρ 2n−1

2

)t
+
(
η + ρ 1

2
+ ρ 2n−1

2

)t
.

(3.20)

This explains the availability of an explicit solution for the model with up to three
sites, where we do not have links other than 1

2 and/or 3
2 , so that all corresponding

coefficients can be determined explicitly. Indeed, one recovers (3.18) with n = 2 and
η = 1− ρ 1

2

− ρ 3
2

. So far, we have observed that the product structure of the coefficient

functions, known from continuous time, is lost in discrete time from three sites onwards;
this reflects the dependence of links. In contrast, the linearity of the iteration is only
lost from four sites onwards. The latter can be understood further by comparison of
(3.19) with the differential equations for the coefficients of the continuous-time model.
These read:

d

dt
ãG(t) = −

( ∑

α∈L\G

ρ̃α

)
ãG(t) +

∑

α∈G

ρ̃α ãG\{α}(t) , (3.21)

that is, they are linear, with solution (3.10). Note that this linear dynamics emerges
from a seemingly nonlinear one, namely the analogue of (3.19),

d

dt
ãG(t) = −

(∑

α∈L

ρ̃α

)
ãG(t)+

∑

α∈G

ρ̃α

( ∑

H⊆L≥α

ãG<α∪H
(t)
)( ∑

K⊆L≤α

ãK∪G>α
(t)
)
. (3.22)

However, due to the product structure of the solution, the product term in the second
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sum, when inserting (3.10), reduces to a single term,
( ∑

H⊆L≥α

ãG<α∪H
(t)
)( ∑

K⊆L≤α

ãK∪G>α
(t)
)

= ãG(t) + ãG\{α}(t) ,

which turns (3.22) into (3.21).

What happens here is the following.

From four sites onwards (namely, beginning with n = 3 and a crossover at α = 3
2 , and

both in discrete and continuous time), it happens that leading and trailing segments
meet that both possess at least one link that may possibly have seen a previous cut.
When a crossover at α takes place, the new joint distribution of cuts before and after α
is formed as the product measure of the marginal distributions of cuts in the leading and
trailing segments (see (3.19) and (3.22)) — akin to the formation of product measures
of marginal types by Rα. In continuous time, the links are all independent, hence the
new combination leaves the joint distribution of cuts unchanged. Therefore, a set G of
affected links (before and after α) is simply augmented by α if α is a ‘fresh’ cut; this
results in the linearity of (3.21). In discrete time, however, the dependence between
the links, in particular between those in the leading and trailing segment, means that
the formation of the product measure changes the joint distribution of affected links,
in addition to the new cut at α; thus (3.19) remains nonlinear.

Since we aim at an explicit solution of the discrete-time recombination model, we need
to find a way to overcome the obstacles of nonlinearity. Inspired by the results of
the continuous-time model, we first search for a transformation that decouples and
linearises the dynamics.

To this end, we first investigate the behaviour of the RG and TG in the discrete-time
model since a deeper understanding of their actions will help us find a new transforma-
tion. We are still concerned with the LDE operators from the continuous-time model,
because of their favourable structure and the existence of the inverse transformation
(Möbius inversion). Moreover, as will become clear later, some of them still have the
desired features and can be adopted directly for the discrete-time model. First, we
need further notation.

Definition 3.8. Two links α, β ∈ L are called adjacent if |α − β| = 1. We say that
a subset L̃ ⊆ L is contiguous if for any two links α, β ∈ L̃ with α ≤ β, also all links
between α and β belong to L̃ (this includes the case L̃ = ∅). A non-empty contiguous
set of links is written as L̃ = {ℓmin, . . . , ℓmax}.

Whereas, according to Theorem 3.4, all recombinators act linearly on the solution of
the continuous-time recombination equation, this is generally not true for the solution
of the discrete-time model, though the following property still holds.

Lemma 3.9. Let {cG | G ⊆ L} be a family of non-negative numbers with
∑

G⊆L cG = 1.
For an arbitrary v ∈ P(X) and for all K ⊆ L with L \K contiguous, one has

RK

(∑

G⊆L

cGRG(v)
)

=
∑

G⊆L

cGRG∪K(v) .
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Proof. When K = ∅, the claim is clear, because R∅ = 1 and L itself is contiguous.
Otherwise, we have K = A ∪B with A := {1

2 ,
3
2 , . . . , α} and B := {β, β + 1, . . . , 2n−1

2 }
for some β > α (this includes the case K = L via β = α+1). Since we work on P(X),
we have RK = RBRA from Proposition 3.2. With the projection πi· : P(X) → P(Xi)
onto a single site i, we obtain

πi·

(∑

G⊆L

cGRG(v)
)
=
∑

G⊆L

cGπi·RG(v) =
∑

G⊆L

cGπi·v = πi·v , (3.23)

since πi· is a linear operator and πi·RG(v) = πi·v by Proposition 3.2. For the contiguous
set A and w :=

∑
G⊆L cGRG(v), we obtain, with the help of (3.23) and a repeated

application of Proposition 3.2,

RA

(∑

G⊆L

cGRG(v)
)
= π0·w ⊗ · · · ⊗ π⌊α⌋·w ⊗ π>α·w

= π0·v ⊗ · · · ⊗ π⌊α⌋·v ⊗ π>α·w =
∑

G⊆L

cG
(
π0·v ⊗ · · · ⊗ π⌊α⌋·v ⊗ π>α·RG(v)

)

=
∑

G⊆L

cG
(
π0·RG(v) ⊗ · · · ⊗ π⌊α⌋·RG(v)⊗ π>α·RG(v)

)
=
∑

G⊆L

cGRA∪G(v) .

An analogous calculation reveals RB

(∑
G⊆L cGRA∪G(v)

)
=
∑

G⊆L cGRA∪B∪G(v) for
contiguous B. This proves the assertion.

Thus, only some particular recombinators act linearly on certain convex combinations,
that notably include solutions of the recombination equation (3.7). We delay the in-
tuitive explanation of Lemma 3.9 to the next section where we formally introduce the
concept of segments that are produced by recombination.

3.4 Reduction to segments

In this section, we show a certain product structure of the recombinators and the LDE
operators. This will turn out as the key for constructing an appropriate transformation.
Recall that a crossover at link α ∈ L partitions S into {0, . . . , ⌊α⌋} and {⌈α⌉ , . . . , n}
(i.e. what we were always referring to as leading and trailing segment, respectively).
In general, recombination events at the links belonging to G =

{
α1, . . . , α|G|

}
⊆ L,

α1 < α2 < · · · < α|G|, induce the following ordered partition SG =
{
JG
0 , JG

1 , . . . , JG
|G|

}

of S (see Fig. 3.5):

JG
0 = {0, . . . , ⌊α1⌋} , J

G
1 = {⌈α1⌉ , . . . , ⌊α2⌋} , . . . , J

G
|G| =

{
⌈α|G|⌉, . . . , n

}
. (3.24)

Note that the partition is ordered due to the restriction to single crossovers. In connec-
tion with this, we have the tupel of links that correspond to the respective parts of the
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partition SG (Fig. 3.5). Namely, for G =
{
α1, . . . , α|G|

}
⊆ L, LG :=

(
IG0 , IG1 , . . . , IG|G|

)

with

IG0 =
{
α ∈ L : 1

2 ≤ α < α1

}
, IG|G| =

{
α ∈ L : α|G| < α ≤ 2n−1

2

}
,

and IGℓ =
{
α ∈ L : αℓ < α < αℓ+1

}
for 1 ≤ ℓ ≤ |G| − 1

(3.25)

specifies the links belonging to the respective parts of SG: the links associated with
JG
k ∈ SG, 0 ≤ k ≤ |G|, are exactly those of IGk ∈ LG (and vice versa).

0 1 2 3 4 5 6 7 8 9

1
2

3
2

5
2

7
2

9
2

11
2

13
2

15
2

17
2

I0 I1 I2 = ∅ I3

J0 J1 J2
J3

Figure 3.5: The full system with 10 sites (i.e., S = {0, . . . , 9}, L = {1
2 , . . . ,

17
2 }) cut

at the links G = {5
2 ,

13
2 ,

15
2 } (broken lines). The resulting segments are characterised

through SG = {J0, . . . , J3} and LG = (I0, . . . , I3) with J0 = {0, 1, 2}, J1 = {3, 4, 5, 6},
J2 = {7} and J3 = {8, 9} as well as I0 = {1

2 ,
3
2}, I1 = {7

2 ,
9
2 ,

11
2 }, I2 = ∅ and I3 = {17

2 }
(the upper index G is suppressed here for clarity).

With this definition, IGi = ∅ is possible for each 0 ≤ i ≤ |G| and will be included
(possibly multiply) in LG. Furthermore, L∅ := (L), so that I∅0 = L. The upper index
will be suppressed in cases where the corresponding set of links is obvious. Clearly,
LG is not a partition of L, whereas SG is a partition of S. Thus, LG is a tupel and
each segment is identified by a contiguous set of links. This way, recombination at the
links in G ⊆ L fragments the whole chromosome described through the sites S and the
links L (what we will refer to as the ‘full system’ from now on) into several smaller

segments that are characterised through the sites J
(G)
k and the corresponding links I

(G)
k ,

0 ≤ k ≤ |G|.

Remark 3.10. We can now interpret Lemma 3.9. Its intuitive content falls into
place with the explanation of Theorem 3.7 with respect to all segments produced by
RK for K ⊆ L with L \K contiguous. The linearity of the particular recombinators of
Lemma 3.9 is due to the fact that RK produces maximum one segment, namely the one
with links L \K (and respective sites), that might be affected by previous recombination
events. In contrast, all other segments consist of only a single site (and no link) and
thus cannot bring along cuts from ‘the past’.

We demonstrate below that it is sufficient to consider the segments produced by re-
combination separately, a property that reduces the problem of dealing with the re-
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combination dynamics. Note first that repeated application of (3.4) and (3.5) leads
to

π<α·R
(L)
G (p) = R

(L<α)
G<α

(π<α·p) and π>α·R
(L)
G (p) = R

(L>α)
G>α

(π>α·p) , (3.26)

where R
(L)
G is our usual recombinator acting on P(X) = P(X0 × · · · ×Xn), and R

(L<α)
G<α

denotes the respective recombinator on P(X0 × · · · ×X⌊α⌋), which acts on the segment

specified through the sites L<α and cuts the links G<α (and analogously for R
(L>α)
G>α

).

Likewise, recombinators R
(I)
H , I ⊆ L and H ⊆ I, acting on any segment specified

through the links I may be defined in the obvious way. For consistency, we define

R
(∅)
∅ = 1. From now on, the upper index specifies the corresponding segment the RG

(and, likewise, the TG) are acting on. It will be suppressed in cases where the segment
is obvious. We now explain the inherent product structure of the recombinators:

Proposition 3.11. Let G ⊆ L. For each α ∈ G and p ∈ P(X), one has the identity

R
(L)
G (p) =

(
R

(L<α)
G<α

(π<α·p)
)
⊗
(
R

(L>α)
G>α

(π>α·p)
)
.

Proof. For α ∈ G, Proposition 3.2 implies :

R
(L)
G (p) = R(L)

α

(
R

(L)
G (p)

)
=
(
π<α·R

(L)
G (p)

)
⊗
(
π>α·R

(L)
G (p)

)

=
(
R

(L<α)
G<α

(π<α·p)
)
⊗
(
R

(L>α)
G>α

(π>α·p)
)
,

where the last step follows from (3.26).

This proposition carries over to the LDE operators:

Proposition 3.12. On P(X), the LDE operators satisfy

T
(L)
G (p) =

(
T
(L<α)
G<α

(π<α·p)
)
⊗
(
T
(L>α)
G>α

(π>α·p)
)

for all α ∈ G,

where T
(L<α)
G<α

and T
(L>α)
G>α

now describe the operators acting on the simplices P(X0 ×

· · · ×X⌊α⌋) and P(X⌈α⌉ × · · · ×Xn), respectively.
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Proof. Let α ∈ G. Using the product structure from Proposition 3.11 and splitting the
sum into two disjoint parts, one obtains

T
(L)
G (p) =

∑

H⊇G

(−1)|H−G|R
(L)
H (p)

=
∑

H⊇G

(−1)|H−G|

((
R

(L<α)
H<α

(π<α·p)
)
⊗
(
R

(L>α)
H>α

(π>α·p)
))

=
∑

L\{α}⊇H⊇G\{α}

(−1)|H−G\{α}|

((
R

(L<α)
H<α

(π<α·p)
)
⊗
(
R

(L>α)
H>α

(π>α·p)
))

=
∑

L<α⊇H<α⊇G<α

(−1)|H<α−G<α|
∑

L>α⊇H>α⊇G>α

(−1)|H>α−G>α|

(
R

(L<α)
H<α

(π<α·p)⊗R
(L>α)
H>α

(π>α·p)

)

=
( ∑

L<α⊇H<α⊇G<α

(−1)|H<α−G<α|
(
R

(L<α)
H<α

(π<α·p)
))

⊗
( ∑

L>α⊇H>α⊇G>α

(−1)|H>α−G>α|
(
R

(L>α)
H>α

(π>α·p)
))

=
(
T
(L<α)
G<α

(π<α·p)
)
⊗
(
T
(L>α)
G>α

(π>α·p)
)
,

which establishes the claim.

Using this argument iteratively on the respective segments, one easily obtains

T
(L)
G (p) =

(
T
(I0)
∅ (πJ0·p)

)
⊗
(
T
(I1)
∅ (πJ1·p)

)
⊗ · · · ⊗

(
T
(I|G|)
∅ (πJ|G|·

p)
)
, (3.27)

where the upper index again specifies the corresponding segments associated with G,
compare (3.25). Hence, the effect of TG on the full system is given by that of T∅ on
the respective segments corresponding to G.

Our goal is now to study the effect of the RG and TG on Φ, the right-hand side of
the recombination equation (3.15). This will show us in more detail when and why
the LDE operators from the continuous-time model are not sufficient for solving the
discrete-time model and, at the same time, will direct us to the new transformation.

If Φ(L) denotes the right-hand side of the recombination equation on the full simplex
P(X0 × · · · × Xn), then, for any contiguous I = {α, . . . , β} ⊆ L, the right-hand side
of the recombination equation on the subsimplex P(X⌊α⌋ × · · · ×X⌈β⌉) will be denoted

with Φ(I). Again, we suppress the upper index when the simplex is obvious.
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Proposition 3.13. For the right-hand side of the recombination equation,

Φ(L)(p) =
(
1−

∑

α∈L

ρα

)
p+

∑

α∈L

ραR
(L)
α (p) = p+

∑

α∈L

ρα
(
R(L)

α − 1(L))(p) ,
one finds

R(L)
α

(
Φ(L)(p)

)
=
(
Φ(L<α)(π<α·p)

)
⊗
(
Φ(L>α)(π>α·p)

)

for every α ∈ L and p ∈ P(X).

Proof. Since R
(L)
α

(
Φ(L)(p)

)
=
(
π<α·

(
Φ(L)(p)

))
⊗
(
π>α·

(
Φ(L)(p)

))
, we obtain with the

help of (3.26):

π<α·

(
Φ(L)(p)

)
= π<α·

(
p+

∑

β∈L

ρβ
(
R

(L)
β − 1(L))(p))

= π<α·p+
∑

β<α

ρβ(R
(L<α)
β − 1(L<α))(π<α·p) +

∑

β≥α

ρβ(R
(L<α)
∅ − 1(L<α))(π<α·p)

= π<α·p+
∑

β<α

ρβ(R
(L<α)
β − 1(L<α))(π<α·p) = Φ(L<α)(π<α·p) .

Analogously, one obtains π>α·

(
Φ(L)(p)

)
= Φ(L>α)(π>α·p), and the assertion follows.

More generally, this theorem implies inductively that

R
(L)
G (Φ(L)(p)) =

(
Φ(I0)(πJ0·p)

)
⊗
(
Φ(I1)(πJ1·p)

)
⊗ · · · ⊗

(
Φ
(I

|G|
)
(πJ

|G|
·p)
)
. (3.28)

Finally, for the interaction between the T
(L)
G and Φ(L), we have the following result.

Proposition 3.14. For the LDE operators (3.11) and all G ⊆ L, one has

T
(L)
G

(
Φ(L)(p)

)
=
(
T
(I0)
∅

(
Φ(I0)(πJ0·p)

))
⊗ · · · ⊗

(
T
(I

|G|
)

∅

(
Φ
(I

|G|
)
(πJ

|G|
·p)
))

,

with Ji and Ii, i = 0, . . . , |G|, according to (3.24) and (3.25).

Proof. Using (3.28) and (3.27), one calculates

T
(L)
G

(
Φ(L)(p)

)
= T

(L)
G

(
R

(L)
G

(
Φ(L)(p)

))
= T

(L)
G

((
Φ(I0)(πJ0·p)

)
⊗ · · · ⊗

(
Φ
(I

|G|
)
(πJ|G|·

p)
))

=
(
T
(I0)
∅

(
Φ(I0)(πJ0·p)

))
⊗ · · · ⊗

(
T
(I

|G|
)

∅

(
Φ
(I

|G|
)
(πJ

|G|
·p)
))

,

which establishes the formula.

This result is of particular significance since it shows that, to determine the effect of the

T
(L)
G on Φ, it is sufficient to know the action of the T∅ on the segments that correspond

to G. Hence, we now need to determine T∅ ◦Φ. It will turn out that this relies crucially
on the commutators of RG with Φ, which will be the subject of the next section.
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3.5 The commutator and linearisation

The more algebraic approach of [4], which was later generalised by Popa [55], suggests
to further analyse the problem in terms of commuting versus non-commuting quantities.
For G ⊆ L, the commutator is defined as

[RG, Φ ] := RG ◦ Φ− Φ ◦RG .

Recall that, in the continuous-time model, the linear action of the recombinators on
the solution of the differential equations entails that the corresponding forward flow
commutes with each recombinator (see Corollary 3.5). But this no longer holds for
discrete time: [RG, Φ ] = 0 is not true in general. We are interested in the commutators
because — as we will see in a moment — they lead us to the evaluation of T∅ ◦Φ, and
this in turn gives TG ◦ Φ (see Proposition 3.14).

Proposition 3.15. On P(X), one has

T∅ ◦ Φ =
(
1−

∑

α∈L

ρα

)
T∅ +

∑

G⊆L

(−1)|G| [RG, Φ ] .

Proof. Expressing the left-hand side as

T∅ ◦ Φ =
∑

G⊆L

(−1)|G|(RG ◦ Φ) =
∑

G⊆L

(−1)|G|(Φ ◦RG) +
∑

G⊆L

(−1)|G| [RG, Φ ] ,

and using Φ =
(
1−

∑
α∈L ρα

)1+
∑

α∈L ραRα, one calculates

∑

G⊆L

(−1)|G|(Φ ◦RG) =
∑

α∈L

(∑

G⊆L

(−1)|G|ραRαRG

)
+
(
1−

∑

α∈L

ρα
) ∑

G⊆L

(−1)|G|RG

=
(
1−

∑

α∈L

ρα
)
T∅ +

∑

α∈L

∑

G⊆L
α/∈G

(
(−1)|G|ραRαRG + (−1)|G∪{α}|ραRG∪{α}

)

=
(
1−

∑

α∈L

ρα
)
T∅ +

∑

α∈L

(∑

G⊆L
α/∈G

(−1)|G|ρα(RαRG −RG∪{α})
)

=
(
1−

∑

α∈L

ρα
)
T∅ ,

which shows the claim.

Proposition 3.15 shows that T∅ only yields a diagonal component if all recombinators
commute with Φ. We now need to determine the commutator [RG, Φ ]. To this end, it
is advantageous to introduce a new set of operators.
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Definition 3.16. For G ⊆ K ⊆ L, we define the operators

T̃G,K :=
∑

G⊆H⊆K

(−1)|H−G|RH . (3.29)

Equivalently, for any M ⊆ L \G, this means that

T̃G,G∪̇M =
∑

G⊆H⊆G∪̇M

(−1)|H−G|RH =
∑

K⊆M

(−1)|K|RG∪̇K .

These operators act on the full simplex and can be interpreted in analogy to the original
LDE operators (3.11), where the links in the complement of G∪̇M (the disjoint union
of G and M) are regarded as inseparable. If necessary, we will specify the system the
operators are acting on by an upper index as before.

Lemma 3.17. On P(X), the operators (3.29) satisfy

T̃G,G = RG and T̃G,L = TG .

They have a product structure,

T̃
(L)

G,G∪̇H
(p) =

(
T̃
(IG0 )

∅,H∩IG0
(π

JG
0 ·
p)
)
⊗
(
T̃
(IG1 )

∅,H∩IG1
(π

JG
1 ·
p)
)
⊗ · · · ⊗

(
T̃
(IG

|G|
)

∅,H∩IG
|G|

(π
JG
|G|

·
p)
)
,

(3.30)
for all H ⊆ L \G. Moreover, one has

T̃G,G∪̇M =
∑

G⊆H⊆L\M

TH =
∑

K⊆L\(M∪G)

TG∪̇K (3.31)

for all G,M ⊆ L with G ∩M = ∅. Consequently, Möbius inversion returns TG as

TG =
∑

G⊆H⊆L\M

(−1)|H−G| T̃H,H∪̇M . (3.32)

Proof. The first assertion is obvious; the second is analogous to (3.27) and follows along
the same lines. Relation (3.31) is true since

T̃G,G∪̇M =
∑

K⊆M

(−1)|K|RG∪̇K =
∑

K⊆M

(−1)|K|
∑

H⊇G∪̇K

TH =
∑

H⊇G

∑

K⊆M
K⊆H

(−1)|K| TH

=
∑

H⊇G

TH

∑

K⊆M∩H

(−1)|K| =
∑

H⊇G

δM∩H,∅ TH =
∑

G⊆H⊆L\M

TH .

In the second-last step, we used that, if H is a finite set, one has
∑

G⊆H

(−1)|G| = δH,∅ , (3.33)

which is the key property of the Möbius function of ordered partitions [1].
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IH0 IH1 IH2 IH3 IH4

α1 α2 α3 α4

Figure 3.6: Illustration of the segments, indicated here by their corresponding links,
that evolve due to recombination at the links of H = {α1, α2, α3, α4}. In particular,
the property of Lemma 3.19(4) should become obvious here: whether a set G ⊆ L
separates H is independent of its intersection with the first as well as the last segment
IH0 and IH|H|, respectively.

Before we turn to the commutator, we introduce a new function, the separation function,
which will allow for a clear and compact notation.

Definition 3.18. For G,H ⊆ L with G∩H = ∅, we say that G separates H if, for all
α, β ∈ H with α < β, there is a γ ∈ G with α < γ < β. Hence, we define the separation
function as

sep(G,H) =

{
1, if G separates H,

0, otherwise.

In the particular cases H = ∅ and H = {α}, α ∈ L, we define sep(G,H) = 1 for all
G ⊆ L, and it is understood that sep(G,H) = 0 whenever G ∩H 6= ∅.

First, let us summarise some elementary properties of the separation function.

Lemma 3.19. The separation function sep(G,H) with H ⊆ L \ G has the following
properties:

1. sep(G,H) = 0, if H contains any adjacent links;

2. sep(G,H) = 0 implies sep(G
′
,H) = 0 for all G

′
⊆ G;

3. sep(G,H) = 0 whenever L \G is contiguous with H ⊆ L \G and |H| ≥ 2;

4. sep(G,H) = 1 implies IHi ∩G 6= ∅ for all i ∈ {1, . . . , |H| − 1}.

These four properties of the separation function can be easily figured out, compare
also the illustration in Figure 3.6. Particularly note that Lemma 3.19(4) implies that
IH0 ∩G = ∅ and IH|H| ∩G = ∅ are possible for sets G that separate H, thus, these two
segments differ crucially from the other segments that correspond to H.

Later, we need the following summation formula for the separation function.

Lemma 3.20. Let H,K ⊆ L with H 6= ∅, H ∩K = ∅, and IHi defined as in (3.25).
Then ∑

G⊆K

(−1)|G| sep(G,H) = sep(K,H) (−1)|H|−1 δK∩IH0 ,∅ δK∩IH
|H|

,∅ .
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Proof. For sep(K,H) = 0, the claim is clear by Lemma 3.19(2). We now define Ai :=
K∩IHi for all i ∈ {0, . . . , |H|}. Then, for sep(K,H) = 1, it follows from Lemma 3.19(4)
that Aj 6= ∅ for all 1 ≤ j ≤ |H| − 1. Likewise, since G ⊆ K, sep(G,H) = 1 if and

only if G ∩ IHj 6= ∅ for all 1 ≤ j ≤ |H| − 1, with no condition emerging for G ∩ IH0 or

G ∩ IH|H|. This gives

∑

G⊆K

(−1)|G| sep(G,H) =
∑

B0⊆A0

(−1)|B0|

|H|−1∏

i=1

( ∑

Bi⊆Ai
Bi 6=∅

(−1)|Bi|
) ∑

B
|H|

⊆A
|H|

(−1)
|B

|H|
|
=

|H|∏

j=0

Fj .

Here, for j = 0 and j = |H|, the factors Fj are given by Fj :=
∑

Bj⊆Aj
(−1)|Bj | = δAj ,∅,

where we have used (3.33). For 1 ≤ j ≤ |H| − 1,

Fj :=
∑

Bj⊆Aj

Bj 6=∅

(−1)|Bj | = −1 +
∑

Bj⊆Aj

(−1)|Bj | = −1 + δA
j
,∅ = −1 ,

where we have again used (3.33) in the second-last step, and Aj 6= ∅ in the last.

With this notation, let us take a closer look at R
(L)
G

(
Φ(L)(p)

)
for G ⊆ L. Evaluating

(3.28) explicitly, using Definition 3.16, expanding and using the product structure (3.30)
backwards gives

R
(L)
G

(
Φ(L)(p)

)
=
(
πJ0·p+

∑

α0∈I0

ρα0
(R

(I0)
α0

− 1(I0))(πJ0·p))⊗ · · · ⊗

(
πJ

|G|
·p+

∑

α
|G|

∈I
|G|

ρα
|G|

(R
(I

|G|
)

α
|G|

− 1(I|G|
)
)(πJ

|G|
·p)
)

=
(1(I0) − ∑

α0∈I0

ρα0
T̃
(I0)
∅,α0

)
(πJ0·p)⊗ · · · ⊗

(1(I|G|
)
−

∑

α
|G|

∈I
|G|

ρα
|G|

T̃
(I

|G|
)

∅,α
|G|

)
(πJ

|G|
·p)

=
∑

H⊆L\G

(−1)|H| sep(G,H)ρH T̃
(L)

G,G∪̇H
(p) ,

where, in the last step, we have further set ρH =
∏

α∈H ρα for all H ⊆ L (in particular,
ρ∅ = 1) and used Lemma 3.19(4); note that the separation function is basically used
as an indicator variable here. On the other hand, we obtain

Φ ◦RG =
∑

α∈L\G

ραRαRG +
(
1−

∑

α∈L\G

ρα
)
RG = T̃G,G −

∑

α∈L\G

ραT̃G,G∪̇{α}

= sep(G,∅) T̃G,G −
∑

α∈L\G

sep(G, {α})ραT̃G,G∪̇{α} ,

which finally yields the commutator.
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Theorem 3.21. For all G ⊆ L, the commutator on P(X) is given by

[RG, Φ ] =
∑

H⊆L\G
|H|≥2

(−1)|H| sep(G,H) ρH T̃G,G∪̇H .

Please note that, by the properties of the separation function, many of the summands
vanish. In particular, [RG, Φ ] = 0 whenever |L \G| ≤ 1.

Corollary 3.22. [RG, Φ ] = 0 if L \G is contiguous.

Proof. By Theorem 3.21, only terms with |H| ≥ 2 need to be considered. For these,
Lemma 3.19(3) tells us that sep(G,H) = 0 if L\G is contiguous and H ⊆ L\G. Hence,
[RG, Φ ] = 0.

Let us note in passing that the converse direction of Corollary 3.22 may fail if the site
spaces are sufficiently trivial. Nevertheless, in the generic case, [RG, Φ ] = 0 implies
sep(G,H) = 0 for all H ⊆ L \G with |H| ≥ 2, because the relevant terms then cannot
cancel each other. We omit a more precise discussion of this point, because we do not
need it later on.

Recalling that Φt is the discrete-time analogue of ϕt, we can consider Corollary 3.22
as what is left of Corollary 3.5 in discrete time. Hence, it becomes clear why the LDE
operators (3.11) from the continuous-time model do not suffice to linearise and decouple
the discrete-time dynamics.

We still aim at determining T∅ ◦Φ according to Proposition 3.15. In doing so, we need

to express the commutator [RG, Φ ] in terms of the TG (which are related to the T̃
G,G∪̇M

via (3.31)). This, and the consequences for general TG ◦ Φ, G ⊆ L, are captured in the
following theorem.

Theorem 3.23. On P(X), the operators TG = T
(L)
G and Φ = Φ(L) satisfy

T
(L)
G ◦ Φ(L) =

∑

K⊇G

z(L)(G,K) T
(L)
K (3.34)

for all G ⊆ L. The coefficients z(L)(∅,K), K ⊆ L, are given by

z(L)(∅,∅) = 1−
∑

α∈L

ρα (3.35)

and, for K 6= ∅, by

z(L)(∅,K) = −
∑

H⊆L\K

ρH sep(K,H) (1 − δ
H∩IK0 ,∅) (1− δ

H∩IK
|K|

,∅) . (3.36)

For K ⊇ G 6= ∅, the coefficients are recursively determined by

z(L)(G,K) = z(I
G
0 )
(
∅,K ∩ IG0

)
· . . . · z

(IG
|G|

)(∅,K ∩ IG|G|

)
. (3.37)
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Proof. Let us first prove the case G = ∅. According to Proposition 3.15, we have(
1−
∑

α∈L ρα
)
T∅◦Φ = T∅+

∑
G′⊆L(−1)|G

′
|[R

G
′ , Φ ], where

(
1−
∑

α∈L ρα
)
= z(L)(∅,∅)

by definition. Let us thus evaluate the last term. In the first step, we insert the
commutator from Theorem 3.21; we then use relation (3.31) and change the order of
summation to arrive at

∑

G′⊆L

(−1)|G
′
|[R

G′ , Φ ] =
∑

G′⊆L

(−1)|G
′
|
∑

H⊆L\G
′

|H|≥2

(−1)|H| sep(G
′
,H)ρH T̃

G′ ,G′ ∪̇H

=
∑

G′⊆L

(−1)|G
′
|
∑

H⊆L\G
′

|H|≥2

(−1)|H| sep(G
′
,H)ρH

∑

G′⊆K⊆L\H

TK

=
∑

K⊆L

TK

∑

H⊆L\K
|H|≥2

(−1)|H|ρH
∑

G′⊆K

(−1)|G
′
| sep(G

′
,H) , (3.38)

which does not contain any term with T∅. We can now compare coefficients for TK .
Note first that, by (3.38), we only need to consider sets H ⊆ L\K, that is, H ∩K = ∅.
In this case, δ

K∩IH0 ,∅
= 1 − δ

H∩IK0 ,∅
and δ

K∩IH
|H|

,∅
= 1 − δ

H∩IK
|K|

,∅
. This is true since

K ∩ IH0 = ∅ (6= ∅) implies that the smallest element in H is smaller (larger) than the
smallest element in K, thus H ∩ IK0 6= ∅ (= ∅) (and vice versa for K ∩ IH|H|). Taking

this together with Lemma 3.20, the coefficient of TK in (3.38) turns into

∑

H⊆L\K
|H|≥2

(−1)|H|ρH
∑

G
′
⊆K

(−1)|G
′
| sep(G

′
,H)

= −
∑

H⊆L\K
|H|≥2

ρH sep(K,H) (1 − δ
H∩IK0 ,∅)(1 − δ

H∩IK
|K|

,∅)

= −
∑

H⊆L\K

ρH sep(K,H) (1 − δ
H∩IK0 ,∅)(1 − δ

H∩IK
|K|

,∅) .

Note that, in the last step, the restriction on |H| may be dropped since it is already
implied by the factors involving the δ-functions (in case |H| ≤ 1, at least one of the
intersections H ∩ IK0 and H ∩ IK|K| is empty). This proves the claim for G = ∅. For the

case G 6= ∅, we follow Proposition 3.14 and write, for p ∈ P(X),

T
(L)
G

(
Φ(L)(p)

)
=
(
T
(I0)
∅

(
Φ(I0)(πJ0·p)

))
⊗
(
T
(I1)
∅

(
Φ(I1)(πJ1·p)

))
⊗· · ·⊗

(
T
(I

|G|
)

∅

(
Φ
(I

|G|
)
(πJ

|G|
·p)
))

.

Applying the above result for G = ∅ to each factor, and using the product structure
of Proposition 3.14 backwards, establishes the claim.
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Corollary 3.24. The coefficients z(∅,K) with K 6= ∅ can be expressed explicitly as

z(L)(∅,K) = −
∑

α0∈I
K
0

ρα0

(|K|−1∏

i=1

(1 +
∑

αi∈I
K
i

ραi
)
) ∑

α
|K|

∈IK
|K|

ρα
|K|

. (3.39)

Proof. Let us consider those H whose contribution to the sum in (3.36) is not annihi-
lated by the separation function or the δ-functions. For sep(K,H) = 1 to hold, each
α ∈ H must belong to a different IKi ∈ LK . Furthermore, H must contain one element
each from IK0 and IK|K| (α0 and α|K|, respectively) to keep the factors involving the

δ-functions from vanishing. Thus, the sum in (3.36) may be factorised as claimed.

In particular, (3.39) entails

z(L)(∅,K) = 0 if K ∩ {1
2 ,

2n−1
2 } 6= ∅ . (3.40)

Taking this together with (3.35), one obtains z(L)(∅,K) = (1 −
∑

α∈L ρα) δK,∅ for

K ⊆ L whenever |L| ≤ 2, and hence, in these cases, T
(L)
∅ ◦Φ(L) = (1−

∑
α∈L ρα)T

(L)
∅ is

already a diagonal component in line with the observation in Section 4. Furthermore,
(3.37) from Theorem 3.23 and (3.40) entail that

z(L)(G,K) = 0 whenever K ∩
( ⋃

0≤i≤|G|

{min(IGi ),max(IGi )}
)
6= ∅ . (3.41)

Theorem 3.23 reveals the linear structure inherent in the action of TG on Φ. In fact, the

structure is even triangular (with respect to the partial ordering ⊆) since T
(L)
G ◦ Φ(L)

is a linear combination of the T
(L)
K , K ⊇ G. Thus, diagonalisation will boil down to

recursive elimination. As a preparation, we make the following observation.

Corollary 3.25. If L 6= ∅, one has the relation z(L)(G,L) = 0 for all ∅ ⊆ G ( L.
Furthermore, z(L)(L,L) = 1.

Proof. When ∅ ⊆ G ( L, the intersection in (3.41), with K = L, can never be empty,
so that z(L)(G,L) = 0 follows. If G = L, the property follows directly from (3.35)
together with (3.37).
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3.6 Diagonalisation

Motivated by the triangular structure of (3.34), we make the ansatz to define new
operators UG, G ⊆ L, as the following linear combination of the well-known TG:

UG =
∑

H⊇G

c(G,H)TH , (3.42)

where the coefficients c(G,H) are to be determined in such a way that they transform
the recombination equation into a decoupled diagonal system, more precisely so that

UG ◦ Φ = λGUG , G ⊆ L , (3.43)

with eigenvalues λG that are still unknown as well. An example for this transformation
can be found in Example 3.31. Note first that, with the help of (3.34), equations (3.42)
and (3.43) may be rewritten as

UG ◦ Φ = c(G,G) (TG ◦ Φ) +
∑

N)G

c(G,N) (TN ◦ Φ)

= c(G,G)
(
z(L)(G,G)TG +

∑

K)G

z(L)(G,K)TK

)

+
∑

N)G

c(G,N)
(
z(L)(N,N)TN +

∑

M)N

z(L)(N,M)TM

)

!
= λG

(
c(G,G)TG +

∑

N)G

c(G,N)TN

)
= λGUG .

(3.44)

Obviously, there is some freedom in the choice of the c(G,G); we set c(G,G) = 1 for all
G ⊆ L (and we will see shortly that this is consistent). Equation (3.44) has the structure
of an eigenvalue problem of a triangular matrix with coefficients z(L)(G,H), where the
role of the unit vectors is taken by the TH , and the c(G,H), H ⊇ G, take the roles
of the components of the eigenvector corresponding to λG (note that, by considering
c(G,H) for H ⊇ G only, we have already exploited the triangular structure). Recall
next that the eigenvalues of a triangular matrix are given by its diagonal entries, which
are

λG = z(L)(G,G) =

|G|∏

i=0

z(I
G
i )(∅,∅) =

|G|∏

i=0

(
1−

∑

αi∈I
G
i

ραi

)
(3.45)

by Theorem 3.23. In particular, λ∅ = z(L)(∅,∅) = 1 −
∑

α∈L ρα ≥ 0. Indeed, the
λG have already been identified by Bennett [7], Lyubich [48] and Dawson [14, 15]
as the generalised eigenvalues of the linearised deterministic dynamics. We keep an
interpretation of these coefficients and more about their important role in connection
with the solution of the recombination model for Chapter 4. Let us first note the
following:
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Lemma 3.26. For all G,H ⊆ L with G ( H, one has λG < λH .

Proof. Let ∅ ( G ( L. Then, for H = G
·
∪ {β}, with β ∈ IGi for an arbitrary

i ∈ {0, . . . , |G|}, we see from (3.45) that z(L)(H,H) = λH and hence obtain

λH =

(
i−1∏

j=0

(
1−

∑

αj∈I
G
j

ραj

))(
1−

∑

αi∈I
G
i

αi<β

ραi

)(
1−

∑

αi∈I
G
i

αi>β

ραi

)( |G|∏

j=i+1

(
1−

∑

αj∈I
G
j

ραj

))

= λG

(
1−

∑
αi∈I

G
i

αi<β

ραi

)(
1−

∑
αi∈I

G
i

αi>β

ραi

)

(
1−

∑
αi∈I

G
i
ραi

) > λG ,

because all ρα are positive, as are all three terms in parentheses of the fraction, and
ρβ > 0 by assumption. Finally, the argument also works for λ∅ = 1 −

∑
α∈L ρα,

provided 1 −
∑

α∈L ρα > 0. Since λG > 0 for all G 6= ∅, the claim trivially also holds
for 1−

∑
α∈L ρα = 0. The assertion then follows inductively for any H ) G.

The coefficients c(G,H) can now be calculated recursively as follows.

Theorem 3.27. The coefficients c(G,H) of (3.42) are determined by c(G,G) = 1 and

c(G,H) =

∑
H)K⊇G c(G,K) z(L)(K,H)

λG − λH

(3.46)

for H ) G. The coefficients of the inverse transformation of (3.42),

TG =
∑

H⊇G

c∗(G,H)UH , with G ⊆ L , (3.47)

are determined by

c∗(G,K) = −
∑

K)H⊇G

c∗(G,H) c(H,K) , (3.48)

for K ) G together with c∗(G,G) = 1.

Proof. Considering (3.44) with c(G,G) = 1, comparing coefficients for TH , H ) G, and
observing (3.45), one obtains

z(L)(G,H) + c(G,H)λH +
∑

H)K)G

c(G,K) z(L)(K,H)
!
= λG c(G,H) ,

and the recursion for c(G,H) follows. It is always well-defined for all H ) G, since
λG < λH by Lemma 3.26. The recursion for the coefficients of the inverse transfor-
mation follows directly from

TG =
∑

H⊇G

c∗(G,H)UH =
∑

H⊇G

c∗(G,H)
∑

K⊇H

c(H,K)TK

=
∑

K⊇G

TK

∑

K⊇H⊇G

c∗(G,H) c(H,K) ,

which enforces
∑

K⊇H⊇G c∗(G,H) c(H,K) = δK,G, as the TK are distinct.
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We now identify those TG that already give diagonal components of the discrete-time
system:

Theorem 3.28. For all G ⊆ L that satisfy |IGi | ≤ 2 for all i ∈ {0, . . . , |G|}, one has

TG

(
Φ(p)

)
= λGTG(p)

for p ∈ P(X).

Proof. In this case, we have (3.41) for all K ) G, hence z(G,K) = λGδK,G, from which
the assertion follows via Theorem 3.23.

Note that |IGi | ≤ 2 for all IGi ∈ LG simply implies that each segment consists of at
most three sites, hence all segments can be reduced to the simple cases considered in
Section 3.3. Then, for such G, c(G,H) = c∗(G,H) = δG,H for all H ⊇ G.

Remark 3.29. With Theorem 3.28, one particularly finds for p ∈ P(X):

TL(Φ(p)) = TL(p)

TL\{α} (Φ(p)) = (1− ρα)TL\{α}(p) for all α ∈ L.

TL\{α,β}(Φ(p)) =

{
(1− ρα − ρβ)TL\{α,β}(p) for α, β ∈ L adjacent.

(1− ρα)(1 − ρβ)TL\{α,β}(p) for α, β ∈ L not adjacent.

With the help of this transformation, we can finally specify the solution pt of the re-
combination equation in terms of the initial condition p0. To this end, we first use
the transformation (3.12) from the recombinators to the TG operators, and then rela-
tion (3.47) to arrive at the UH operators, which finally diagonalise the system according
to (3.43). Finally, we use the appropriate inversions to return to the recombinators:

pt = Φt(p0) = R∅(Φ
t(p0)) =

∑

G⊆L

TG(Φ
t(p0)) =

∑

G⊆L

∑

H⊇G

c∗(G,H)UH (Φt(p0))

=
∑

G⊆L

∑

H⊇G

c∗(G,H)λt
H UH(p0) =

∑

G⊆L

∑

H⊇G

c∗(G,H)λt
H

∑

M⊇H

c(H,M)TM (p0)

=
∑

G⊆L

∑

H⊇G

c∗(G,H)λt
H

∑

M⊇H

c(H,M)
∑

T⊇M

(−1)|T−M |RT (p0) .

(3.49)

The coefficient functions can now be extracted as follows.

Theorem 3.30. The coefficient functions aG(t) of the solution (3.15) of the recombi-
nation equation in discrete time may be expressed as

aG(t) =
∑

M⊆G

(−1)|G−M |
∑

H⊆M

∑

K⊆H

c(H,M)λt
H c∗(K,H) (3.50)

for all G ⊆ L. Here, c(H,M) and c∗(K,H) are the coefficients of Theorem 3.27.
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Finally, we have arrived at a closed expression for the coefficient functions of our recom-
bination model (3.7). Still, its corresponding coefficients c(H,M) and c∗(K,H) from
(3.50) have to be determined in a recursive manner according to Theorem 3.27. Let us
discuss the path to an explicit solution of the recombination dynamics model via the
above chain of transformations with an example.

Example 3.31. To illustrate the construction, let us spell out the example of five
sites. We have S = {0, 1, 2, 3, 4} and L =

{
1
2 ,

3
2 ,

5
2 ,

7
2

}
, the corresponding recombination

probabilities ρα, α ∈ L, λ∅ = 1− ρ 1
2

− ρ 3
2

− ρ 5
2

− ρ 7
2

, and a given initial population p0.

Aiming at determining the coefficient functions aG(t) for all G ⊆ L, we can immediately
write down a∅(t) = λt

∅, a 1
2

(t) = (λ∅ + ρ 1
2

)t − λt
∅, a 7

2

(t) = (λ∅ + ρ 7
2

)t − λt
∅ and

a
{ 1

2
, 7
2}
(t) = λt

∅ − (λ∅ + ρ 1
2

)t − (λ∅ + ρ 7
2

)t + (λ∅ + ρ 1
2

+ ρ 7
2

)t, see (3.20).

If we wanted to determine the remaining coefficient functions aG(t) for a given time t,
they could be calculated using the method of Geiringer [24] (i.e. Theorem 3.7). But
since we aim at a closed solution for all t, we use the procedure developed above. To
determine the coefficients of Theorem 3.30, we have to calculate the corresponding
c(G,H) and c∗(G,H). Theorem 3.27 and 3.28 imply UL = TL, UL\{α} = TL\{α} for all
α ∈ L, UL\{α,β} = TL\{α,β} for all α, β ∈ L, as well as U 3

2

= T 3
2

and U 5
2

= T 5
2

. Hence,

in these cases, the only non-vanishing coefficients are c(L,L) = c(L \ {α}, L \ {α}) =
c(L \ {α, β}, L \ {α, β}) = c({3

2}, {
3
2}) = c({5

2}, {
5
2}) = 1 for all α, β ∈ L. It remains to

determine U 1
2

, U 7
2

and U∅.

1. Constructing U 1
2

:

The recursion starts with c({1
2}, {

1
2}) = 1. Following (3.41), z(L)({1

2},H) = 0
for all H ) {1

2} except for H = {1
2 ,

5
2}, and thus the only non-zero c({1

2},H),
H ) {1

2}, is

c({1
2}, {

1
2 ,

5
2}) =

z({1
2}, {

1
2 ,

5
2})

λ 1
2

− λ
{ 1
2
, 5
2
}

=
ρ 3

2

ρ 7
2

ρ 5
2

+ ρ 3
2

ρ 7
2

,

where we have used the recursion (3.46) together with λ 1
2

= 1−ρ 3
2

−ρ 5
2

−ρ 7
2

and

λ
{ 1
2
, 5
2
}

= (1 − ρ 3
2

) (1 − ρ 7
2

). So, for the transformation (3.42) we obtain

U 1
2

= T 1
2

+
ρ 3

2

ρ 7
2

ρ 5
2

+ ρ 3
2

ρ 7
2

T
{ 1
2
, 5
2
}
,

so that U 1
2

◦ Φ = (1− ρ 3
2

− ρ 5
2

− ρ 7
2

)U 1
2

. Analogously,

U 7
2

= T 7
2

+
ρ 1

2

ρ 5
2

ρ 3
2

+ ρ 1
2

ρ 5
2

T
{ 3
2
, 7
2
}
.
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2. Constructing U∅:

By (3.41), the only non-vanishing coefficients are c(∅,∅), c(∅, {3
2}), c(∅, {5

2}),
and c(∅, {3

2 ,
5
2}). They are determined by the recursion (3.46) and lead to the

following transformation (3.42):

U∅ = T∅+
ρ 1

2

(ρ 5
2

+ ρ 7
2

)

ρ 3
2

+ ρ 1
2

(ρ 5
2

+ ρ 7
2

)
T 3

2
+

(ρ 1
2

+ ρ 3
2

)ρ 7
2

ρ 5
2

+ (ρ 1
2

+ ρ 3
2

)ρ 7
2

T 5
2
+

ρ 1
2

ρ 7
2

ρ 1
2

ρ 7
2

+ ρ 3
2

+ ρ 5
2

T{ 3
2
, 5
2}

.

Now that we know the c(G,H), the coefficients c∗(G,H) are calculated via (3.48).
Finally, the remaining coefficient functions follow from Theorem 3.30:

a 3
2
(t) =

ρ 3
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

(λt
3
2
− λt

∅) ,

a 5
2

(t) =
ρ 5

2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

(λt
5
2

− λt
∅) ,

a{ 1
2
, 3
2}
(t) = λt

{ 1
2
, 3
2
}
− λt

1
2
−

ρ 3
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

(λt
3
2
− λt

∅) ,

a{ 1
2
, 5
2}
(t) =

ρ 5
2

ρ 3
2

ρ 7
2

+ ρ 5
2

(λt
{ 1
2
, 5
2
}
− λt

1
2

)−
ρ 5

2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

(λt
5
2

− λt
∅) ,

a{ 3
2
, 5
2}
(t) =

ρ 3
2

+ ρ 5
2

ρ 1
2

ρ 7
2

+ ρ 3
2

+ ρ 5
2

λt
{ 3
2
, 5
2
}
−

ρ 3
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

λt
3
2
−

ρ 5
2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

λt
5
2

+
(
1−

(ρ 1
2

+ ρ 3
2

)ρ 7
2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

−
(ρ 5

2

+ ρ 7
2

)ρ 1
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

+
ρ 1

2

ρ 7
2

ρ 1
2

ρ 7
2

+ ρ 3
2

+ ρ 5
2

)
λt
∅ ,

a{ 3
2
, 7
2}
(t) =

ρ 3
2

ρ 1
2

ρ 5
2

+ ρ 3
2

(λt
{ 3
2
, 7
2
}
− λt

7
2
)−

ρ 3
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

(λt
3
2
− λt

∅) ,

a{ 5
2
, 7
2}
(t) = λt

{ 5
2
, 7
2
}
− λt

7
2
−

ρ 5
2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

(λt
5
2
− λt

∅) ,

a{ 1
2
, 3
2
, 5
2}
(t) = λt

{ 1
2
, 3
2
, 5
2}

− λt
{ 1

2
, 3
2}

−
ρ 5

2

ρ 5
2

+ ρ 3
2

ρ 7
2

(λt
{ 1

2
, 5
2}

− λt
1
2
)−

ρ 3
2

+ ρ 5
2

ρ 3
2

+ ρ 5
2

+ ρ 1
2

ρ 7
2

λt
{ 3

2
, 5
2}

+
ρ 3

2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

λt
3
2
+

ρ 5
2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

λt
5
2

−
(
1−

(ρ 1
2

+ ρ 3
2

)ρ 7
2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

−
(ρ 5

2

+ ρ 7
2

)ρ 1
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

+
ρ 1

2

ρ 7
2

ρ 1
2

ρ 7
2

+ ρ 3
2

+ ρ 5
2

)
λt
∅ ,
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a
{ 1

2
, 3
2
, 7
2}
(t) = λt

{ 1
2
, 3
2
, 7
2}

− λt
{ 1

2
, 3
2}

− λt
{ 1

2
, 7
2}

−
ρ 3

2

ρ 3
2

+ ρ 1
2

ρ 5
2

λt
{ 3

2
, 7
2}

+ λt
1
2

+
ρ 3

2

ρ 3
2

+ ρ 1
2

(ρ 5
2

+ ρ 7
2

)
λt

3
2
+

ρ 3
2

ρ 3
2

+ ρ 1
2

ρ 5
2

λt
7
2
−

ρ 3
2

ρ 3
2

+ ρ 1
2

(ρ 5
2

+ ρ 7
2

)
λt
∅ ,

a{ 1
2
, 5
2
, 7
2}
(t) = λt

{ 1
2
, 5
2
, 7
2}

− λt
{ 5

2
, 7
2}

− λt
{ 1

2
, 7
2}

−
ρ 5

2

ρ 5
2

+ ρ 3
2

ρ 7
2

λt
{ 1

2
, 5
2}

+ λt
7
2

+
ρ 5

2

ρ 5
2

+ ρ 3
2

ρ 7
2

λt
1
2
+

ρ 5
2

ρ 5
2

+ ρ 7
2

(ρ 1
2

+ ρ 3
2

)
λt

5
2
−

ρ 5
2

ρ 5
2

+ ρ 7
2

(ρ 1
2

+ ρ 3
2

)
λt
∅ ,

a{ 3
2
, 5
2
, 7
2}
(t) = λt

{ 3
2
, 5
2
, 7
2}

− λt
{ 5

2
, 7
2}

−
ρ 3

2

ρ 3
2

+ ρ 1
2

ρ 5
2

(λt
{ 3

2
, 7
2}

− λt
7
2
)−

ρ 3
2

+ ρ 5
2

ρ 3
2

+ ρ 5
2

+ ρ 1
2

ρ 7
2

λt
{ 3

2
, 5
2}

+
ρ 3

2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

λt
3
2
+

ρ 5
2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

λt
5
2

−
(
1−

(ρ 1
2

+ ρ 3
2

)ρ 7
2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

−
(ρ 5

2

+ ρ 7
2

)ρ 1
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

+
ρ 1

2

ρ 7
2

ρ 1
2

ρ 7
2

+ ρ 3
2

+ ρ 5
2

)
λt
∅ ,

and

a{ 1
2
, 3
2
, 5
2
, 7
2}
(t) = λt

{ 1
2
, 3
2
, 5
2
, 7
2}

− λt
{ 1

2
, 3
2
, 5
2}

− λt
{ 1

2
, 3
2
, 7
2}

− λt
{ 1

2
, 5
2
, 7
2}

− λt
{ 3

2
, 5
2
, 7
2}

+ λt
{ 1

2
, 3
2}

+
ρ 5

2

ρ 5
2

+ ρ 3
2

ρ 7
2

λt
{ 1

2
, 5
2}

+ λt
{ 1

2
, 7
2}

+
ρ 3

2

+ ρ 5
2

ρ 3
2

+ ρ 5
2

+ ρ 1
2

ρ 7
2

λt
{ 3

2
, 5
2}

+
ρ 3

2

ρ 3
2

+ ρ 1
2

ρ 5
2

λt
{ 3

2
, 7
2}

+ λt
{ 5

2
, 7
2}

−
ρ 5

2

ρ 5
2

+ ρ 3
2

ρ 7
2

λt
1
2
−

ρ 3
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

λt
3
2

−
ρ 5

2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

λt
5
2
−

ρ 3
2

ρ 3
2

+ ρ 1
2

ρ 5
2

λt
7
2

+
(
1−

(ρ 5
2

+ ρ 7
2

)ρ 1
2

ρ 1
2

(ρ 5
2

+ ρ 7
2

) + ρ 3
2

−
(ρ 1

2

+ ρ 3
2

)ρ 7
2

ρ 7
2

(ρ 1
2

+ ρ 3
2

) + ρ 5
2

+
ρ 1

2

ρ 7
2

ρ 1
2

ρ 7
2

+ ρ 3
2

+ ρ 5
2

)
λt
∅ ,

where the λG are given by (3.45).

At the end, we are concerned with the asymptotic behaviour for large iteration numbers.
In doing so, we first need the following property of the coefficients.

Lemma 3.32. The coefficients c(G,L) and c∗(G,L) satisfy c(G,L) = c∗(G,L) = δG,L

for arbitrary ∅ ⊆ G ⊆ L.

Proof. We have c(G,G) = c∗(G,G) = 1 for all G by Theorem 3.27. The claim for
c(G,L) now follows from the recursion (3.46) together with Corollary 3.25. Inserting
this into recursion (3.48) establishes the relation for the c∗(G,L).
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Finally, let us consider what happens in the limit as t → ∞.

Proposition 3.33. The solution pt of the recombination equation (3.7) with initial
condition p0 satisfies

pt
t→∞
−−−→ RL(p0) =

n⊗

i=0

(πi·p0) ,

with exponentially fast convergence in the norm topology.

Proof. When expressing pt in terms of UH according to (3.49), we first observe pt =
UL(p0) +

∑
G(L

∑
H⊇G c∗ (G,H) λt

H UH(p0), because λL = 1 and c∗(G,L) = δG,L by
Lemma 3.32. Since UL = RL, we obtain the following estimate in the variation norm

‖pt −RL(p0)‖ =
∥∥∥
∑

G(L

∑

H⊇G

c∗ (G,H)λt
HUH(p0)

∥∥∥

≤
∑

H(L

λt
H

∥∥∥
∑

G⊆H

c∗ (G,H)UH(p0)
∥∥∥ t→∞
−−−→ 0 ,

which establishes the claim since λH < 1 for H 6= L.

As was to be expected, the solution of the recombination equation converges towards
the independent combination of the alleles, that is towards linkage equilibrium. This is
a well-known result that has been proved by many authors with their respective models
of recombination, see for example [3, 11, 12, 25, 69].

Despite the construction of a solution to the recombination dynamics in an instructive
way, we are still left with the question whether there might be a more direct approach
to the solution, i.e. a solution that does not employ recursions like the one from
Theorem 3.27. If we have a closer look at the explicit solution from Example 3.31,
a systematic pattern does not seem to be directly perceptible. If we even go beyond
five sites, the recursions become more and more involved, and the arising coefficient
functions do not give any hint at what they are actually describing, i.e. what is actually
happening within the dynamical system. After we have investigated the recombination
model in detail, this result is thus not perfectly convincing. Therefore, provided with
the knowledge about the recombination process from this chapter, we next set out to
search for a closed expression for the coefficient functions aG(t) without the need of
a transformation. In doing so, we will view the recombination process from another
perspective.



Chapter 4

Recombination and ancestral

recombination trees: an explicit

solution

In this chapter, we develop a new approach to an explicit solution to the determinis-
tic recombination dynamics (3.7). In doing so, we formulate the underlying stochastic
process of the finite population counterpart of (3.7). This allows us to trace recom-
bination backwards in time resulting in binary tree structures, the so-called ancestral
recombination trees, which are then used as a tool to state an explicit solution to the
dynamics.

The technique of looking backwards in time is extremely popular in population genetics
these days. When investigating the evolution of a population that is formed by a
complex process, the idea is to find an associated process (the dual process) with a
preferably simpler structure than the original one. This dual process might then be used
to infer information about the original evolutionary process. In population genetics,
these dual processes are primarily backwards processes concerning the genealogy of a
population. Arguably the most famous backwards approach is the coalescence originally
introduced by Kingman [43] in 1982, where lineages of a sample of individuals from a
present-day population are traced backwards in time. On a more abstract level, the
usage of dual processes is strongly related to the study of interactive particle systems,
for a good introduction refer to [16].

Unless otherwise stated, we will use all notation from Chapter 3 including those de-
scribing gametes, types and recombination probabilities.
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4.1 The finite population counterpart: the Wright-Fisher

model

When dealing with finite populations, the changes in the genetic structure of the pop-
ulation are due to a stochastic rather a deterministic process as we have formulated
in the previous chapter. These variations due to the stochastic effect of sampling are
commonly known as genetic drift. A well known and, owing to its simplicity, com-
monly used model in finite population genetics is the so-called Wright-Fisher model
(Fisher [21], Wright [70]). Although several versions of the Wright-Fisher model exist
(see [19] for a good overview), which incorporate different evolutionary forces, there
are two basic characteristics common to all. The first is that the finite population
size is assumed to be constant. The second is that the population evolves through
non-overlapping generations whereby, at each time step, the entire population dies and
is replaced by its offspring. The offspring are sampled from the parental generation
with replacement and equal probability, i.e. Wright-Fisher models exhibit a ‘multino-
mial sampling characteristic’. They are commonly formulated as discrete-time Markov
processes.

In our case, the dynamics of a finite population that evolves solely due to single-
crossover recombination can be described by the following Wright-Fisher model, see
also Figure 4.1.

Wright-Fisher model with single-crossover recombination

The model assumes each generation to be of constant size N . Each individual lives
only one generation and dies after the offspring are produced. In each generation,
each offspring individual chooses its parent(s) independently according to the following
scheme:

• with probability 0 ≤ 1 −
∑

α∈L ρα < 1 a single parent is selected uniformly at
random from the previous generation;

• with probability ρα > 0, α ∈ L, two parents are chosen uniformly and randomly
to recombine at link α, this giving rise to the corresponding recombined offspring
(with the leading segment from the first and the trailing segment from the second
parent).

We denote the population at time t by
Zt = (Zt(x))x∈X ∈ E := {ν counting measure on X|‖ν‖ = N}, where ‖.‖ denotes total
variation norm and Zt(x) is the number of individuals of type x at time t. We will also
need the corresponding normalised quantity Ẑt :=

1
NZt. It is clear that an individual

that recombines at link α ∈ L in generation t draws its type from Rα(Ẑt−1), and a

non-recombining individual draws its type from Ẑt−1 = R∅(Ẑt−1).
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t = 0

t = 1

t = 2

Figure 4.1: Wright-Fisher model with single–crossover recombination for N = 4.

The discrete-time Markov chain {Ẑt}t∈N0 on P(X) may therefore be formulated as
follows:

• In each generation t, let Nα(t), α ∈ L, denote the random number of new indi-
viduals that are created from the previous generation with recombination at link
α ∈ L. Analogously, N∅(t) is the number of individuals that are sampled without
recombining. Clearly, they follow a multinomial distribution:

(N∅(t), N 1
2

(t), . . . , N 2n−1
2

(t)) ∼ M(N, 1−
∑

α∈L

ρα, ρ 1
2

, . . . , ρ 2n−1
2

) , iid for all t .

(4.1)

• In generation t, the subpopulation Yβ(t) of individuals that experienced recom-
bination at link β ∈ L or no recombination (indicated by β = ∅) is given by

Yβ(t) ∼ M(Nβ(t), Rβ(Ẑt−1)), β ∈ L or β = ∅ . (4.2)

• Finally , we obtain Ẑt via

Ẑt =
1

N
Y∅(t) +

1

N

∑

α∈L

Yα(t) . (4.3)

Next, we show that the infinite population limit (IPL) from the above model, where
we let N → ∞ without rescaling any other parameters so that we lose the stochastic
effects of sampling, indeed results in our deterministic model (3.7). First of all, we
obviously have for all t ∈ N

Nα(t)

N
N→∞
−−−−→ ρα , α ∈ L, and

N∅(t)

N
N→∞
−−−−→ 1−

∑

α∈L

ρα a.s. (4.4)

due to the strong law of large numbers. Furthermore, for β ∈ L and β = ∅, Nβ(t) → ∞
for all t ∈ N as N → ∞ a.s. and thus

Yβ(t)

Nβ(t)

N→∞
−−−−→ Rβ(Ẑt−1) a.s. . (4.5)
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As a consequence of (4.3), (4.4) and (4.5), we have

Ẑt =
N∅(t)

N
·
Y∅(t)

N∅(t)
+
∑

α∈L

Nα(t)

N
·
Yα(t)

Nα(t)

N→∞
−−−−→ (1−

∑

α∈L

ρα)Ẑt−1+
∑

α∈L

ραRα(Ẑt−1) a.s. .

(4.6)
This result already motivates the deterministic recombination dynamics from (3.7), and
indeed we can prove that (3.7) describes the infinite population limit of the stochastic
process:

Proposition 4.1 (Infinite Population Limit). Let {Ẑ
(N)
t }t∈N0 , N = 1, 2, . . ., be the

family of processes defined by (4.1), (4.2) and (4.3), with initial states such that

limN→∞ Ẑ
(N)
0 = p0. Then, for every given t ∈ N0, one has

lim
N→∞

sup
s≤t

|Ẑ(N)
s − ps| = 0 a.s , (4.7)

where ps = Φs(p0) denotes the solution of (3.7).

The corresponding situation in continuous time is covered by the very general law of
large numbers by Ethier and Kurtz [18, Thm.11.2.1], but no such general result seems
to be available in discrete time. Let us therefore include the few lines of proof here:

Proof. of Prop. 4.1 We can write Ẑ
(N)
0 = p0 + ε0 and Ẑ

(N)
t = Φ(Ẑ

(N)
t−1 ) + εt for t ∈ N,

where {εt}t∈N0 is a sequence of real-valued random variables. Due to (4.6), we can
always choose N such that for any given t ∈ N0 and ε > 0, |εs| ≤ ε holds (almost surely)
for all s ≤ t. Since Φ is globally Lipschitz (it is differentiable and its domain, P(X),
is compact), the claim then follows directly from a discrete version of the Gronwall
lemma, compare [29].

Remark 4.2. We can also recompute the proof of Proposition 4.1 to make the assertion
explicit:

Using the same assumptions as in the above proof, we can define et := |Ẑ
(N)
t − pt| as

the deviation between the stochastic process (defined via (4.1), (4.2) and (4.3)) and the
deterministic process (3.7). Inductively, we then obtain

e0 = |Ẑ
(N)
0 − p0| ≤ ε0

e1 = |Ẑ
(N)
1 − p1| = |Φ(Ẑ

(N)
0 ) + ε1 − Φ(p0)| ≤ L|ε0|+ |ε1|

e2 = |Ẑ
(N)
2 − p2| = |Φ(Ẑ

(N)
1 ) + ε2 − Φ(p1)| ≤ L|Ẑ

(N)
1 − p1|+ |ε2| ≤ L2|ε0|+ L|ε1|+ |ε2|

...

et =

t∑

j=0

Lj |εj | ≤

t∑

j=0

Ljε =
1− Lt+1

1− L
· ε ,

where we use that Φ is Lipschitz with Lipschitz constant L 6= 1 (the case L = 1 obviously

also yields the assertion) and the above explanations for that Ẑ
(N)
t = Φ(Ẑ

(N)
t−1 ) + εt for

t ∈ N together with |εs| ≤ ε (almost surely) for all s ≤ t.
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Note that the convergence in (4.7) applies for any fixed t ∈ N0, but need not hold as
t → ∞. Indeed, the asymptotic behaviour of the stochastic system is fundamentally
different from that of the deterministic one: Due to resampling, the Markov chain is
absorbing (in fact, it experiences fixation of a single type with probability one in finite
time). In contrast, the deterministic system never loses any type, and the complete
product measure with respect to all links in L is obtained as the stationary distribution
(linkage equilibrium), see Proposition 3.33.

After we have defined the underlying stochastic process to the deterministic dynamics,
we will pursue the stochastic perspective in the following and look at recombination
backward in time, which will lead us to the coefficient functions in closed form. This
will be subject to the next section.

4.2 Ancestral recombination process

4.2.1 The ancestral process

In the ancestral recombination process, we follow the ancestry from a selected individual
from the population that evolved according to the Wright-Fisher model as described
by (4.1), (4.2) and (4.3). To this end, we start with an individual in the present pop-
ulation at time t and let time run backwards, as illustrated in Figure 4.2. Whenever
a recombination event occurs, the genetic material of the individual has different an-
cestors and the genealogy bifurcates into two parts (i.e. leading and trailing segment
of the respective ancestral material), and the ancestry of both parts is followed back
from then on. Note that these parts only consist of (distinct) subsets of all sites, in
particular they are joined with non-ancestral material which is of no significance for
our process. As long as the (constant) population size N is finite, two parts that have
been separated due to recombination may come together again in the same individual,
i.e. the genealogy may coalescence. In population genetics, such a graph that takes
into account coalescence as well as recombination events is called ancestral recombina-
tion graph as described in [28, 34]. In common literature [28, 34, 54, 46], the general
sample size of individuals (or sequences) is considered to be greater than one. Usually
for all these processes that involve coalescence, see e.g. Kingman [43], the population
size is also considered to tend to infinity, but time as well as other parameters, such
like mutation rates, are rescaled. Therefore, the ancestral process we are considering
crucially differs from the commonly known processes. We consider the ancestry of the
genetic material of a single individual to trace back the history of the segments it is
composed of due to recombination. Indeed, we can ignore coalescence events when N
tends towards infinity since we lose the resampling effect:
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t = 0

t = 1

t = 2

Figure 4.2: Ancestries for two individuals from a Wright-Fisher population. We trace
back the ancestry of the segments present at t = 2; the thin black lines indicate non-
ancestral material whose history is not relevant. The left graph refers to the second
individual from Figure 4.1; here the two segments go back to two different ancestors.
The right graph corresponds to the third individual from Figure 4.1. Here, two of
its three segments have the same parent due to a coalescence event. In the infinite
population limit, such a graph does not occur; rather all possible ancestries will be
given as binary trees.

Fact 1. In the ancestral process described above, the probability that no coalescence
occurs in the genealogy of a given individual tends to 1 as N → ∞.

Proof. It is clear that only recombination events that take place within the ancestral
material are relevant. As shown in Figure 4.2, at every such event, the leading and
trailing parts of the respective ancestral material are separated into two randomly
chosen parents; otherwise, the parental situation remains unchanged. Independently
of N , the maximum number of segments an individual may be composed of is |L|+ 1
(i.e. in case each link has been hit by recombination). Thus, the probability that all
segments have different parents is greater or equal than

1 · (1−
1

N
) · (1−

2

N
) · . . . · (1−

|L|

N
)

N→∞
−−−−→ 1 .

Therefore, each genealogy for one selected individual is given by a full binary tree (i.e.
a tree, where each internal node has either none or exactly two children nodes) in the
limit N → ∞, see also Figure 4.2.

4.2.2 Segments and the segmentation process

As we have seen above, the segments an individual is composed of are gradually sepa-
rated from each other in the ancestral process. This motivates to consider the following
process of progressive segmentation (which will turn out to coincide with the ancestral
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process in the limit N → ∞): The complete segment that represents the entire chromo-
some is characterised by the full set of links L = {1

2 , . . . ,
2n−1

2 } (and the corresponding
sites S = {0, . . . , n}). If we follow back the ancestry of an individual that has experi-
enced recombination at all links in G = {α1, . . . , α|G|} ⊆ L, α1 < α2 < · · · < α|G|, we
obtain the genealogy of all the segments it is composed of. These are captured in the
tupel

LG :=
({

α : 1
2 ≤ α < α1},

{
α : α1 < α < α2

}
, . . . ,

{
α : α|G| < α ≤ 2n−1

2

})
= L

(L)
G ,

just as we have already seen in Section 3.4, compare (3.25) and see also Figure 4.3.
Again, we here use the upper index L to indicate that we consider the segments derived
from the complete set L (but we will omit it if this is obvious). Different from the
notation in Chapter 3, we only need the corresponding links to characterise the segments
what makes the treatment in the frame used here less cumbersome.

This progressive segmentation can then be described by the following process:

1
2

3
2

5
2

7
2

9
2

{1
2} {5

2 ,
7
2} ∅

Figure 4.3: Example for L =
{
1
2 , . . . ,

9
2

}
and G =

{
3
2 ,

9
2

}
: the three corresponding

segments of LG =
(
{1
2}, {

5
2 ,

7
2},∅

)
.

Definition 4.3 (Segmentation process). The segmentation process is the discrete-time
Markov chain {Ft}t∈N0 , where Ft takes values in the power set of L according to the
following rules. We start with F0 = ∅. Then, if Ft = G, every segment J ∈ LG, inde-
pendently of all other segments, either remains unchanged (probability 1 −

∑
α∈J ρα),

or is cut at a single link, namely at link α ∈ J with probability ρα. Ft+1 is then the
union of G and the set of all freshly cut links. That is,

Ft+1 = Ft ∪ (
⋃

J∈LG

AJ) , where AJ =

{
∅, with probability 1−

∑
α∈J ρα ,

{α}, with probability ρα, for all α ∈ J .

(4.8)

Note that, as in the Wright-Fisher model (and its deterministic limit), the links are
not, in general, independent; however, the backward point of view adopted here reveals
(conditional) independence of the segments. This will turn out as a key to the solution



62 Recombination and ancestral recombination trees: an explicit solution

(just as the independence of links was the crucial ingredient to the explicit solution of
the continuous-time dynamics). One important property of the segmentation process,
which reflects the conditional independence, is the probability that nothing happens in
one time step (i.e. all currently present segments are not cut):

P(Ft+1 = G|Ft = G) =
∏

J∈L
(L)
G

(1−
∑

α∈J

ρα) = λ
(L)
G , for G ⊆ L . (4.9)

Thus, we rediscover the lambda coefficients from the diagonalisation process (3.45)
from Section 3.6. As before, the upper index specifies the set of links the corresponding
segments are derived from. Analogously, these coefficients are defined on any segment,

i.e. on any contiguous set I ⊆ L, as λ
(I)
H =

∏
J∈L

(I)
H

(1−
∑

α∈J ρα), H ⊆ I. In particular,

λ
(L)
G =

∏

I∈L
(L)
G

λ
(I)
∅ . (4.10)

We have constructed the segmentation process so that its time reversal is the process
that gives rise to an individual pieced together from various segments due to recom-
bination, i.e. for Ft = G, G ⊆ L, the outcome of the forward process is an individual
that experienced recombination at the links of G. It is thus more than plausible that
aG(t) = P(Ft = G) for all G ⊆ L; this will be formally proved later on (see Proposi-
tion 4.14). This means, aG(t) is the sum over the probabilities of all possible paths of
the segmentation process that lead to Ft = G. For G = ∅, a∅(t) = λt

∅ follows directly
from (3.19).

To further explain this, let us continue with an example.

Example 4.4. For four sites S = {0, 1, 2, 3} with the corresponding links L = {1
2 ,

3
2 ,

5
2},

we consider the coefficient function a
{ 1
2
, 3
2
}
(t), i.e. the probability that until time t

exactly the links 1
2 and 3

2 have been involved in recombination. Solving (3.19) explicitly
on the one hand (or with the help of Theorem 3.30 from Section 3.6), and considering
the outcome of the segmentation process (4.8) on the other hand, one indeed obtains

a
{ 1
2
, 3
2
}
(t) = ρ 1

2
ρ 3

2

t−2∑

k=0

λk
∅

t−2−k∑

i=0

λi
1
2
λt−2−k−i
{ 1
2
, 3
2
}

+ ρ 1
2
ρ 3

2
(1− ρ 5

2
)

t−2∑

k=0

λk
∅

t−2−k∑

i=0

λi
3
2
λt−2−k−i
{ 1
2
, 3
2
}

= P(Ft = {1
2 ,

3
2}) .

With reference to the segmentation process, this corresponds to summing explicitly
over all paths of the trees of Figure 4.4. Here, the two sums reflect the order of the two
separating events: The first term takes into account that link 1

2 is the first to be cut,
the second that link 3

2 is cut first (time backwards). The respective lambda coefficients
(4.9) ensure that nothing happens during the time between these separating events. All
different time combinations are captured in the respective sums. In the case where 3

2 is

the first separation event, the additional factor λ
( 5
2
)

∅ = (1−ρ 5
2

) is required to guarantee
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λk
∅
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{ 1
2 , 32 }
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1
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Figure 4.4: Two possible ways of the segmentation process resulting in Ft = {1
2 ,

3
2}. The

left panel refers to the first term of P(Ft = {1
2 ,

3
2}), the right one to the second. Here,

this corresponds to the two possible histories of an individual present at time t that
consists of three segments due to recombination at the links 1

2 and 3
2 and explains the

structure of the coefficient function a
{ 1
2
, 3
2
}
(t). The arrows point in backward direction

of time in accordance with the ancestral recombination process.

that at the time of the second separation event (at link 1
2 ), the segment described by

link 5
2 remains unchanged. The corresponding term for the other case is λ

(∅)
∅ = 1.

Obviously, P(Ft = G) may be understood as a sum over tree topologies and branch
lengths, i.e. we are concerned with all possible ultrametric binary trees that can be
produced by the segmentation process, where each internal node corresponds to a sep-
aration event. We will show in the following that it is sufficient to deal with all tree
topologies that belong to these ultrametric trees.

4.2.3 Ancestral recombination trees

We aim to state each coefficient function in terms of all corresponding binary tree
topologies, i.e. we want to assign probabilities to each binary tree so that we can state
each coefficient function as a sum of these probabilities. Let us anticipate that we will
be able to evaluate the sum for each topology explicitly; for Example 4.4, this will
result in

P(Ft = {1
2 ,

3
2}) = P(Tree 1) + P(Tree 2) =

(
(λt

{ 1
2
, 3
2
}
− λt

∅)
ρ 1
2

λ
{ 1
2 , 32 }

−λ
∅

− (λt
1
2
− λt

∅)
)

+
(
(λt

{ 1
2
, 3
2
}
− λt

∅)
ρ 3
2

λ
{ 1
2 , 32 }

−λ
∅

− (λt
3
2

− λt
∅)

ρ 3
2

λ 3
2

−λ
∅

)
,

where Tree 1 refers to the tree topology of the left and Tree 2 to the topology of the
right tree of Figure 4.4.

Let us now state a suitable definition for our tree topologies.
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Definition 4.5 (Tree topology). For ∅ 6= G ⊆ L, a (binary) tree topology is defined
as T := (G,m), where G signifies the set of internal nodes, and in particular γ ∈ G
designates the root of the tree. The function m is given by

m : G −→ G ∪ {r}

α 7→ m(α) ,

with m(α) denoting the (unique) ancestor of the internal node α ∈ G. Since obviously
γ has no ancestor, we define the function m for γ as m(γ) = r.

Thus, T = (G,m) has the internal nodes α ∈ G and the corresponding internal edges
E = {(m(α), α)|α ∈ G,m(α) 6= r}. For later use, we also introduce the additional
external edge (r, γ) that leads to the root γ. Note that we have not included the
(external) leaves (and corresponding external edges) in our definition - what is rather
unusual- since they will never be required explicitly. Thus, in particular for G = ∅,
the only tree topology is the empty tree (with no nodes).

Example 4.6. For G = {α1, . . . , α5} ⊆ L, we consider the following tree topology
T = (G,m) with m given as m(α1) = α2, m(α2) = r, m(α3) = α4, m(α4) = α2,
m(α5) = α4. The corresponding tree is shown in Figure 4.5.

It is commonly known from combinatorics that the number of full binary trees with n
internal nodes is given by the n−th Catalan number Cn, with Cn = (2n)!

n!(n+1)! . Hence,
for any G ⊆ L, we are dealing with C|G| different tree topologies.

We will need the following partial order on T .

Definition 4.7 (Partial order on T = (G,m)). A partial order � on a tree topology
T = (G,m), G ⊆ L, with γ ∈ G denoting the root of T , is defined as

α � β ⇐⇒ α is on the path from γ to β i.e. α = mi(β) for some i ∈ {0, . . . , |G|} .

Obviously, γ is the minimal element of G with respect to �. Each edge of a particular
tree topology can be associated with a certain segment. Hence, we define for T = (G,m)
and each α ∈ G, α 6= γ:

Iα(T ) := A ∈ L{β:β�α} s.t α ∈ A .

Thus, Iα(T ) identifies the contiguous subset of links that is associated with the internal
edge (m(α), α) such that, at this stage, Iα(T ) is independent of all other links and
describes the segment that will be next cut at link α (given the topology T ). For the
root γ, we particularly define Iγ(T ) := L. An example for this is given in Figure 4.5.
Note that, with the specification of Iγ(T ) := L = Iγ (independently of T ), all Iα(T ),
α 6= γ, are uniquely determined via T . From now on we will suppress the dependency
of Iα(T ) on the tree topology T for reasons of simplicity and write Iα instead of Iα(T ).
Next, we will define subtrees.
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α1

α2=γ

α3

α4

α5

Iα1

Iγ

Iα3

Iα4

Iα5

Figure 4.5: Tree topology T = (G,m) for G = {α1, . . . , α5} from Example 4.6. Each
(internal) edge in the tree is identified with a certain segment. Here, we have Iα1

= L<γ ,
Iα2

= L, Iα3
= {γ + 1, . . . , α3, . . . , α4 − 1}, Iα4 = L>γ and Iα5 = L>α4

.

Definition 4.8 (Subtrees). Given T = (G,m), ∅ 6= G ⊆ L, then for any H ⊆ L a
subtree of T is defined via Tα(H) = (Gα(H),m(Gα(H))) for every α ∈ G, where

Gα(H) := {β ∈ G|α � β and h � β ∀h ∈ H with α � h}

and m(Gα(H)) is the restriction of m to Gα(H). We again define m(Gα(H))(α) = r as
before for the root of the respective subtree.

Obviously, Gα(H) depends on the topology T (due to the partial ordering), but again
we omit to indicate this for reasons of simplicity. The set of links associated with the
edge that leads to any node β of a subtree Tα(H) is Iβ(Tα(H)) = Iβ(T ).

Example 4.9. Let us consider the tree topology T = (G,m) from Example 4.6. We
then obtain for H = {α1, α2, α5} subtrees Tαi

(H), i = 1, . . . , 5, with the following
internal nodes: Gα1

(H) = {α1}, Gα2
(H) = {α2, α3, α4}, Gα3

(H) = {α3}, Gα4
(H) =

{α3, α4} and Gα5
(H) = {α5}. The corresponding subtrees are shown in Figure 4.6.

α1 α2=γ

α3α3

α3 α4

α4

α5

Tα1
(H) Tα2

(H) Tα3
(H) Tα4

(H) Tα5
(H)

Figure 4.6: Subtrees for the tree topology from Example 4.6 with H = {α1, α2, α5}.

Before we come to the final theorems, we first need the following elementary, but useful
variant of the geometric series:
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Lemma 4.10. For a 6= b, one has

n∑

i=0

aibn−i =
bn+1 − an+1

b− a
.

Proof. A simple calculation reveals:

n∑

i=0

aibn−i = bn(1 +
a

b
+ . . . + (

a

b
)n) = bn

1− (ab )
n+1

1− a
b

=
bn+1 − an+1

b− a
.

After we have introduced all notation that is necessary to understand the structure of
the solution, we can now finally state the probability for each tree topology as follows:

Theorem 4.11. The probability for the tree topology T = (G,m), G ⊆ L, under the

segmentation process from Definition 4.3 is given as Pt(T ) = (λ
(L)
∅ )t for G = ∅, and,

for G 6= ∅, as

Pt(T ) =
∑

γ∈H⊆G

(−1)|H|−1
[
(λ

(L)
Gγ (H))

t − (λ
(L)
∅ )t

]
f(T,H), (4.11)

where, for H ⊆ G,

f(T,H) :=
∏

α∈G

g(Tα(H)) (4.12)

with
g(T ) =

ργ
λG − λ∅

for all T = (G,m), G 6= ∅, with root γ ∈ G,

so that in particular

g(Tα(H)) :=
ρα

λ
(Iα)
Gα(H) − λ

(Iα)
∅

. (4.13)

The segmentation process from Definition 4.3 is a Markov chain that can be viewed
in the forward as well as in the backward direction (in analogy with the Kolmogorov
forward - and backward equations for continuous-time Markov chains, see [2]): In
the forward direction, the growth of the corresponding ultrametric tree is at the tree
top. Here, the external branches are extended in case a segment is not affected by a
separation event and split up, respectively, when a separation event occurs. Conversely,
in the backward direction, the tree grows at its base, i.e. the branch leading to the root
is extended and the two corresponding subtrees merge, respectively. The independence
of the segments turns out to be advantageous when formulating the process in the
forward direction as in Definition 4.3. In contrast, in the backward direction, one only
has to deal with two objects, namely the left and the right subtree that emerge via the
first segmentation event (and are joined when looking back), instead of a possibly large
number of smaller segments at the top. This will be the advantageous point of view
for the proof.



4.2 Ancestral recombination process 67

γγγ

γ
′

γ
′′

γ
′′

Figure 4.7: Joining together the left and the right subtree with respect to the root
γ. Three different cases arise depending on whether the left and/or right subtree are
empty trees. These cases are treated separately in the proof.

Proof. of Theorem 4.11. We will prove the claim via induction by - proceeding from
top to base of a tree - progressively merging pairs of subtrees. In doing so, we firstly
need some properties that refer to this particular tree decomposition. Let us consider a
tree topology T = (G,m), ∅ 6= G ⊆ L, for any set of links L. The root of T is denoted
with γ ∈ G. In case γ has two children nodes, then these are denoted with γ

′
(on

L<γ) and γ
′′
(on L>γ). We then define the left subtree T

′
of T as T

′
= (G<γ ,m

(G<γ))
and analogously the right subtree T

′′
as T

′′
= (G>γ ,m

(G>γ)), both obviously with
less nodes than T . For convenience we will denote L<γ (L>γ) with L

′
(L

′′
) as well

as the respective nodes with G
′
= G<γ (G

′′
= G>γ). In case γ has none or only

one offspring node, we have to consider the empty tree as left and/or right subtree.
Consequently, the offspring nodes of root γ are specified through the preimage of γ
from the function m, i.e. m−1(γ) ∈ {{∅}, {γ

′
}, {γ

′′
}, {γ

′
, γ

′′
}}. T can then be obtained

by joining these subtrees together at root γ, see also Figure 4.7. With respect to the
segmentation process, this refers to the event when the complete segment L is first cut
at link γ, taking into account that this might happen at any time j ∈ {1, . . . , t}, i.e. L
is preserved for i = j − 1 ∈ {0, . . . , t− 1} times while the respective topologies T

′
and

T
′′
last for the remaining t− 1− i time steps.

It is thus clear that

Pt(T ) =

t−1∑

i=0

(λ
(L)
∅ )iργPt−1−i(T

′
)Pt−1−i(T

′′
) . (4.14)

For all L = L
′
∪ L

′′
∪ {γ} and all G

′
⊆ L

′
, G

′′
⊆ L

′′
, we find due to the product

structure of the lambda coefficients, compare (4.10),

λ
(L

′
)

G′ · λ
(L

′′
)

G′′ = λ
(L)

G′∪G′′∪{γ}
. (4.15)
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Furthermore, Lemma 4.10 together with (4.13) implies

ρα

t−1∑

i=0

(λ
(Iα)
∅ )i(λ

(Iα)
Gα(H))

t−i−1 =
ρα

λ
(Iα)
Gα(H) − λ

(Iα)
∅

· ((λ
(Iα)
Gα(H))

t − (λ
(Iα)
∅ )t)

= g(Tα(H))((λ
(Iα)
Gα(H))

t − (λ
(Iα)
∅ )t)

(4.16)

for all ∅ 6= G ⊆ L and H ⊆ L. For all m−1(γ) ⊆ H ⊆ G one finds

Gγ((H ∪ {γ}) \ C) = {γ} ∪
⋃

η∈C

Gη(H) for C ⊆ m−1(γ) . (4.17)

An important property for the nodes of a subtree is the following: For all H ⊆ G with
H

′
:= G

′
∩H and H

′′
:= G

′′
∩H one has

Gα(H) = Gα(H
′
) = G

′

α(H
′
) for all α ∈ G

′
and

Gα(H) = Gα(H
′′
) = G

′′

α(H
′′
) for all α ∈ G

′′
,

(4.18)

so that consequently

Tα(H) = T
′

α(H
′
) for all α ∈ G

′
and

Tα(H) = T
′′

α (H
′′
) for all α ∈ G

′′
.

For all those H, this then leads to the following product rule for the function f(T,H)
from (4.12):

f(T,H) = g(Tγ(H)) ·
∏

α∈G′

g(Tα(H))
∏

α∈G′′

g(Tα(H))

= g(Tγ(H)) ·
∏

α∈G′

g(T
′

α(H
′
))
∏

α∈G′′

g(T
′′

α (H
′′
)) = g(Tγ(H))f(T

′
,H

′
)f(T

′′
,H

′′
) .

(4.19)

Note that in case G
′
= ∅ or G

′′
= ∅, the corresponding empty product is defined as 1

as usual.

We now continue with the proof via induction over |G|. In case G = ∅, the claim holds
trivially. For G ⊆ L such that |G| = 1, i.e. G = {γ}, the left as well as the right subtree
are empty trees. Using first (4.14), then the result for G

′
= G

′′
= ∅, then (4.15), and

finally (4.16), we obtain

Pt(T ) =
t−1∑

i=0

(λ
(L)
∅ )iργPt−1−i(T

′)Pt−1−i(T
′′) =

t−1∑

i=0

(λ
(L)
∅ )iργ(λ

(L
′
)

∅ )t−1−i(λ
(L

′′
)

∅ )t−1−i

=
t−1∑

i=0

(λ
(L)
∅ )iργ(λ

(L)
γ )t−1−i = g(Tγ({γ}))

(
(λ(L)

γ )t − (λ
(L)
∅ )t

)
.

We then assume the claim to hold for all tree topologies T = (G,m) for all possible
set of links L̃ and G ⊆ L̃ with |G| ≤ k for some k ∈ N. Thus, we next turn to
G = {α1, . . . , αk+1}, G ⊆ L, and fixed T = (G,m).
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T with root α1

We consider the case that T has the root γ = α1 such that the left subtree T
′
is an

empty tree while T
′′
has the root γ

′′
∈ G

′′
, i.e. m−1(γ) = {γ

′′
}. We then find

Pt(T ) =
t−1∑

i=0

(λ
(L)
∅ )iργPt−1−i(T

′
)Pt−1−i(T

′′
)

=

t−1∑

i=0

(λ
(L)
∅ )iργ(λ

(L
′
)

∅ )t−1−i
∑

γ′′∈H′′⊆G′′

(−1)|H
′′
|−1
(
(λ

(L
′′
)

G
′′

γ
′′ (H

′′ )
)t−1−i − (λ

(L
′′
)

∅ )t−1−i
)
f(T

′′
,H

′′
)

=

t−1∑

i=0

λi
∅ργ

∑

γ′′∈H′′⊆G′′

(−1)|H
′′
|−1
(
λt−1−i
Gγ ((H

′′∪{γ})\{γ′′ })
− λt−1−i

Gγ (H
′′∪{γ})

)
f(T

′′
,H

′′
)

=
∑

γ
′′
∈H

′′
⊆G

′′

(−1)|H
′′
|−1g(Tγ((H

′′
∪ {γ}) \ {γ

′′
}))
(
λt
Gγ ((H

′′
∪{γ})\{γ

′′
})
− λt

∅

)
f(T

′′
,H

′′
)

−
∑

γ′′∈H′′⊆G′′

(−1)|H
′′
|−1g(Tγ(H

′′
∪ {γ}))

(
λt
Gγ (H

′′∪{γ})
− λt

∅

)
f(T

′′
,H

′′
)

=
∑

γ′′∈H′′⊆G′′

(−1)|H
′′
|−1
(
λt
Gγ ((H

′′∪{γ})\{γ′′ })
− λt

∅

)
f(T, (H

′′
∪ {γ}) \ {γ

′′
})

−
∑

γ′′∈H′′⊆G′′

(−1)|H
′′
|−1
(
λt
Gγ (H

′′∪{γ})
− λt

∅

)
f(T,H

′′
∪ {γ})

=
∑

γ∈H⊆G\γ′′

(−1)|H|−1
(
λt
Gγ (H) − λt

∅

)
f(T,H)−

∑

{γ,γ′′}⊆H⊆G

(−1)|H|
(
λt
Gγ (H) − λt

∅

)
f(T,H)

=
∑

γ∈H⊆G

(−1)|H|−1
(
λt
Gγ (H) − λt

∅

)
f(T,H) .

Here, we have first used (4.14), then the induction hypothesis, and then the product
structure of the lambda coefficients (4.15) together with the property (4.17) combined
with (4.18). Next, we involve (4.16) (separately on each term in the brackets), use
property (4.19) and finally change the summation variable. All topologies with root
γ = α|G| can be treated analogously.
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T with root /∈ {α1, α|G|}

For a topology T = (G,m) with root γ = αi, i = 2, . . . , |G| − 1, we have to consider
the left subtree T

′
with root γ

′
as well as the right subtree T

′′
with root γ

′′
, i.e.

m−1(γ) = {γ
′
, γ

′′
}. Proceeding exactly as in the previous case, we obtain

Pt(T ) =

t−1∑

i=0

(λ
(L)
∅ )iργPt−1−i(T

′
)Pt−1−i(T

′′
)

=

t−1∑

i=0

(λ
(L)
∅ )iργ

∑

γ′∈H′⊆G′

(−1)|H
′
|−1
(
(λ

(L
′
)

G
′

γ
′ (H

′ )
)t−1−i − (λ

(L
′
)

∅ )t−1−i
)
f(T

′
,H

′
)

×
∑

γ′′∈H′′⊆G′′

(−1)|H
′′
|−1
(
(λ

(L
′′
)

G
′′

γ
′′ (H

′′ )
)t−1−i − (λ

(L
′′
)

∅ )t−1−i
)
f(T

′′
,H

′′
)

=

t−1∑

i=0

(λ
(L)
∅ )iργ

∑

γ′∈H′⊆G′

∑

γ′′∈H′′⊆G′′

(−1)|H
′
|+|H

′′
|
(
λt−1−i
Gγ((H

′∪H′′∪{γ})\{γ′ ,γ′′})

− λt−1−i
Gγ((H

′∪H′′∪{γ})\{γ′′ })
− λt−1−i

Gγ((H
′∪H′′∪{γ})\{γ′ })

+ λt−1−i
Gγ(H

′∪H′′∪{γ})

)
f(T

′
,H

′
)f(T

′′
,H

′′
)

=
∑

γ′∈H′⊆G′

∑

γ′′∈H′′⊆G′′

(−1)|H
′
|+|H

′′
|×

(
g
(
Tγ((H

′
∪H

′′
∪ {γ}) \ {γ

′
, γ

′′
})
)(
λt
Gγ(H

′
∪H

′′
∪{γ}\{γ

′
,γ

′′
})
− λt

∅

)

− g
(
Tγ((H

′
∪H

′′
∪ {γ}) \ {γ

′′
})
)(
λt
Gγ(H

′
∪H

′′
∪{γ}\{γ

′′
})
− λt

∅

)

− g
(
Tγ((H

′
∪H

′′
∪ {γ}) \ {γ

′
})
)(
λt
Gγ(H

′
∪H

′′
∪{γ}\{γ

′
})
− λt

∅

)

+ g
(
Tγ(H

′
∪H

′′
∪ {γ})

)(
λt
Gγ(H

′
∪H

′′
∪{γ})

− λt
∅

))
f(T

′
,H

′
)f(T

′′
,H

′′
)

=
∑

γ∈H⊆G\{γ
′
,γ

′′
}

(−1)|H|−1(λt
Gγ(H) − λt

∅)f(T,H)

−
∑

{γ,γ′}⊆H⊆G\{γ′′}

(−1)|H|(λt
Gγ (H) − λt

∅)f(T,H)

−
∑

{γ,γ′′}⊆H⊆G\{γ′}

(−1)|H|(λt
Gγ (H) − λt

∅)f(T,H)

+
∑

{γ,γ′ ,γ′′}⊆H⊆G

(−1)|H|−1(λt
Gγ (H) − λt

∅)f(T,H)

=
∑

γ∈H⊆G

(−1)|H|−1
(
λt
Gγ (H) − λt

∅

)
f(T,H) .

(4.20)
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We have now stated an explicit formula for the probability of a certain tree topology
T , Pt(T ). To further show its special structure, we can explain the probability (4.11)
via subtree decomposition:

Definition 4.12 (Subtree decomposition). Given a tree topology T = (G,m) with root
γ ∈ G, ∅ 6= G ⊆ L, then each γ ∈ H ⊆ G describes a decomposition of T into
(non-empty) subtrees Tα(H) = (Gα(H),m(Gα(H))), α ∈ H, each with root α ∈ H and
internal nodes Gα(H).

Obviously, there exist 2|G|−1 different decomposition of a topology T into subtrees, the
simplest being the one for H = {γ} such that Tγ({γ}) = T , the finest the one for
H = G where each internal node α ∈ G is root of a subtree. Another example for
subtree decomposition is shown in Figure 4.8. Using subtree decomposition, we can
also state (4.12) differently:

Remark 4.13. For any tree topology T = (G,m), ∅ 6= G ⊆ L , we can state (4.12) as

f(T,H) =
∏

α∈H

∏

β∈Gα(H)

g(Tβ(H)) . (4.21)

Thus, as we can see from (4.11), to state the probability for a tree topology T , we have to
sum over all possible subtree decompositions of T , and furthermore, the structure of the
function f(T,H) (4.21) implies that all these subtrees are conditionally independent.

α1

α2=γ

α3

α4

α5

Figure 4.8: Decomposition of a tree topology into three subtrees via H = {γ, α4, α5}
such that Gγ(H) = {α1, γ}, Gα4(H) = {α3, α4} and Gα5(H) = {α5}.

Subtree decomposition also explains the four arising sums in (4.20) of the above proof,
i.e.

Pt(T ) =
∑

γ∈H⊆G\{γ′ ,γ′′}

(−1)|H|−1(λt
Gγ(H) − λt

∅)f(T,H)−
∑

{γ,γ′}⊆H⊆G\{γ′′}

(−1)|H|(λt
Gγ(H) − λt

∅)f(T,H)

−
∑

{γ,γ′′}⊆H⊆G\{γ′}

(−1)|H|(λt
Gγ(H) − λt

∅)f(T,H) +
∑

{γ,γ′ ,γ′′}⊆H⊆G

(−1)|H|−1(λt
Gγ(H) − λt

∅)f(T,H) .

(4.22)
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Here, the the (non-empty) left subtree T
′
and the (non-empty) right subtree T

′′
with

respect to the root γ of T = (G,m) are joined together at γ. The induction ansatz

implies that we consider all 2|G
′
|−1 subtree decompositions of T

′
as well as all 2|G

′′
|−1

subtree decompositions of T
′′
. Consequently, there exist four possibilities to incorporate

{γ} = G \ (G
′
∪ G

′′
) into each subtree decomposition (with respect to T

′
and T

′′
) to

finally obtain all possible 2|G|−1 subtree decompositions of the tree T (see Figure 4.9):

• the subtree of the subtree decomposition of T
′
that contains γ

′
and the subtree

of the subtree decomposition of T
′′
that contains γ

′′
are joined together via γ to

form one subtree as part of the subtree decomposition of T (see Figure 4.9 a));
this corresponds to the first sum of (4.22).

• the subtree of the subtree decomposition of T
′′
that contains γ

′′
is joined together

with γ while the subtree of the subtree decomposition of T
′
that contains γ

′

remains a separate part of the subtree decomposition of T (see Figure 4.9 b));
this corresponds to the second sum of (4.22).

• the subtree of the subtree decomposition of T
′
that contains γ

′
is joined together

with γ while the subtree of the subtree decomposition of T
′′
that contains γ

′′

remains a separate part of the subtree decomposition of T (see Figure 4.9 c));
this corresponds to the third sum of (4.22).

• the subtrees of the decompositions of T
′
and T

′′
, respectively, remain unchanged

and γ becomes the only node of a separate subtree of the subtree decomposition
of T (see Figure 4.9 d)); this corresponds to the fourth sum of (4.22).

These four cases, or more precisely, the set of nodes that belong to the subtree that
contains the root γ, correspond to the four different cases of (4.17) (assuming that
m−1(γ) = {γ

′
, γ

′′
}). Analogously, the two arising sums in the proof for γ = α1 (and

γ = α|G|, respectively) can be explained in the obvious way.

After stating explicitly the probability for a certain tree topology, we furthermore know
that P(Ft = G) =

∑
T :T=(G,m) Pt(T ), G ⊆ L, holds for the segmentation process. Next,

we finally show that the solution of the recombination equation can indeed be stated
as the sum over all possible tree probabilities:

Proposition 4.14. For the coefficient functions of the recombination equation, one
finds

aG(t) = P(Ft = G) , for all G ⊆ L .

Before turning to the proof, we first need to express the coefficient functions on segments
(as we have done it for recombinators etc. in Section 3.4), i.e. for G ⊆ L, α ∈ G, we
obtain ∑

H⊆L≥α

a
(L)
G<α∪H

(t) = a
(L<α)
G<α

(t) , (4.23)



4.2 Ancestral recombination process 73

γ

γ
′

γ
′′

a) b) c) d)

T
′

T
′′

Figure 4.9: The non-empty trees T
′
and T

′′
are joined together at root γ to give rise

to the tree T . With reference to the respective subtree decompositions of T
′
and T

′′
,

there exist four possibilities to incorporate γ to form a subtree decomposition of T ;
these are explained in the text.

where a
(L<α)
G<α

(t) denotes the respective coefficient function of the recombination dy-
namics on P(X0×· · ·×X⌊α⌋) (and analogously for the segment L>α). For consistency,

a
(∅)
∅ (t) := 1. This is again a direct consequence of Proposition 3.2. We can then rewrite

the iteration of the coefficient functions (3.7) as

a
(L)
G (t+ 1) = λ

(L)
∅ a

(L)
G (t) +

∑

α∈G

ραa
(L<α)
G<α

(t)a
(L>α)
G>α

(t) . (4.24)

Analogously, the segmentation process can be defined on particular segments, as usual
we denote this by an upper index in brackets.

Proof. of Proposition 4.14

To prove the assertion, we show that P(F (L)
t = G), G ⊆ L, indeed fulfils iteration (4.24).

For G = ∅, the claim is obvious. For G 6= ∅, we fix one tree topology T = (G,m). T
then has root γ ∈ G and the corresponding left subtree T

′
on L<γ and right subtree

T
′′
on L>γ . We then find:

Pt+1(T ) =

t∑

i=0

λi
∅ργPt−i(T

′
)Pt−i(T

′′
)

= λ∅

t−1∑

i=0

λi
∅ργPt−1−i(T

′
)Pt−1−i(T

′′
) + ργPt(T

′
)Pt(T

′′
) = λ∅Pt(T ) + ργPt(T

′
)Pt(T

′′
) ,

where we again use (4.14) in the first and in the last step. Since this holds for all
tree topologies T with corresponding left and right subtrees T

′
and T

′′
as well as
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corresponding root γ ∈ G, we sum over all tree topologies (both sides) and obtain

P(F (L)
t+1 = G) =

∑

T :T=(G,m)

Pt+1(T ) = λ∅

∑

T :T=(G,m)

Pt(T ) +
∑

T :T=(G,m)

T
′
=(G<γ ,m

(L<γ )),

T
′′
=(G>γ ,m

(L>γ ))

ργ Pt(T
′
)Pt(T

′′
)

= λ∅

∑

T :T=(G,m)

Pt(T ) +
∑

γ∈G

ργ
∑

T ′ :T ′=(G<γ ,m
(G<γ ))

Pt(T
′
)

∑

T ′′ :T ′′=(G>γ ,m
(G>γ ))

Pt(T
′′
)

= λ∅P(F
(L)
t = G) +

∑

γ∈G

ργP(F
(L<γ)
t = G<γ)P(F

(L>γ)
t = G>γ) .

This obviously corresponds to the iteration (4.24), and since the initial value at time 0,

P(F (L)
0 = G) =

∑
T :T=(G,m) P0(T ) = δG,∅ - compare Theorem 4.11 - is also fulfilled,

this proves the assertion.

Proposition 4.14 finally explains the stochastic interpretation of the coefficient functions
from Section 3.3. Since the segmentation process keeps only track of the links that have
been cut until time t with reference to a single ancestry, the fact that aG(t) = P(Ft = G)
justifies to interprete aG(t) as the probability that the links that have been involved in
recombination in a single individual until time t are exactly those of G.

The final result then follows directly from Proposition 4.14:

Corollary 4.15. The discrete-time recombination equation (3.7) has the solution

pt =
∑

G⊆L

aG(t)RG(p0),

where
aG(t) =

∑

T :T=(G,m)

Pt(T ) (4.25)

for all G ⊆ L and with Pt(T ) as given in Theorem 4.11.

Thus, we have found an explicit representation for the solution of the recombination
dynamics. What we are still left with is to enumerate all possible tree topologies for a
given G ⊆ L, i.e. all C|G| different full binary trees.

Since trees - and in particular binary trees - are widely used structures that find a
lot of applications especially in computer science, there exist many efficient algorithms
to enumerate and generate them. Several of these algorithms also concentrate on full
binary trees since there exists a well-known 1-to-1-correspondence between all full (often
also called strict or regular) binary trees with n internal nodes and all general binary
trees with in total n nodes [71]. The general idea to enumerate all binary trees is
to represent each tree topology as a sequence of integers (or even as a single integer
number) through a bijection, and to develop an efficient algorithm to generate all
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appropriate (tree-representing) sequences and via them finally all possible binary trees.
The general procedure to represent a tree topology with n nodes by a sequence of
integers is the following described in [49]: each node is assigned a certain integer (e.g.
for our trees, the index of the corresponding link) and by traversing the nodes in a
specific order, uniquely determined n-tupels are obtained (some methods might even
require the use of two traverses [49]). Commonly used orders for such a traversal are for
example preorder traversal and inorder traversal, refer to [22]. For some methods, these
sequences are then converted into integers, which is usually referred to as ranking while
the reverse operation is called unranking. Indeed, there also exist methods that map
directly from trees to integers, see for example [62]. However, the choice of the most
efficient and appropriate method depends on the respective aspects that are essential
to the application. For example, the mapping to a single integer, which is usually from
the set of binary trees to {1, . . . , Cn}, is of particular use if the trees should follow a
specific lexicographic order.

The first important work in this field was done by Knott [44] who encoded n-node
binary trees by certain permutations of {1, . . . , n}, the tree permutations. Furthermore,
he defined the (bijective) ranking function rank(T ) to assign each binary tree a number
in the set {1, . . . , Cn}. The inverse of this function rank−1(i, n) then returns the tree
permutation corresponding to the tree T with rank(T ) = i. Using this method, the
function can be used to generate all n-node binary trees. Zaks [71] represents full
binary trees with n internal nodes by 0-1 sequences of length 2n. He states conditions
for these sequences to be feasible, i.e. to let them have the property that there exists a
unique full binary tree that is represented by this sequence. Moreover, he proposes an
algorithm that produces all Cn feasible sequences and thus leads to the generation of
all full binary trees.

Particularly interesting - since the procedure shows similarities with our segmentation
process - is the approach of Johnsen [38]. Johnsen generates full binary trees recursively,
starting with the full binary tree with only one internal node, by adding two descending
leaves to one of the trailing leaves of the current tree, a process he denotes with grafting.
As a result, he describes each tree that was obtained by this procedure by its unique
grafting sequence. Finally, he states a set of k − 1 inequalities whose integer solutions
define all possible grafting sequences for full binary trees with k internal nodes. This
allows the generation of all corresponding full binary trees.





Chapter 5

Outlook: The general

recombination model

5.1 Introduction and Notation

So far, we restricted our recombination model to the particular case of single–crossovers.
Even though this assumption is biologically justified in particular for shorter sequences
(due to interference), the next step would be to formulate a recombination model that
allows for any crossover event. While single–crossover recombination always leads to
an ordered partition of sites, this no longer holds for general recombination events (see
for example Figure 5.1). In connection with this, one of the main consequences of
multiple crossovers is that it is no longer sufficient to explain recombination events via
the links. Instead, we now have to describe recombination via induced partitions of
sites. From the biological point of view (based on the assumption that exactly two
parental gametes are involved in recombination), only partitions of the sites into two
blocks (where one parent contributes one set of the sites, and the second parent the
complementary set) have to be taken into account. In some cases (if only for the
reason of mathematical completeness), it might be useful to include even more general
processes of recombination that involve more than two parents. Despite its rather
contrived construction, this may have applications for example in models that seek to
explain cultural inheritance, compare [10]. For mathematical purposes, these models
have been already discussed by Dawson [14, 15] and Baake [4]. However, to exclude
the biologically meaningless cases, the corresponding recombination rates/probabilities

Figure 5.1: Effect of a double crossover between two types. In particular, the partition
of sites is not ordered anymore.
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can be set to zero.

In this chapter, a short introduction into the general recombination model and a first
impression about the dynamics as well as the arising similarities and differences with
previous results will be given. In doing so, we follow the same procedure as with the
single-crossover model(s) in Chapter 3. These should serve as a starting point and
motivation for further investigation of the general recombination model.

For the description of the general recombination model, we will need additional notation
for partitions, where we primary follow the notation in [1]. As mentioned above, we
only need the sites of S = {0, 1, . . . , n} for modelling since the convenient ability to use
links is no longer sufficient.

A partition A of S is denoted by A = {A1, . . . , A|A|} or for short A = (A1|A2| . . . |A|A|),
where the Ai are the blocks or parts of the partition A. |A| denotes the number of blocks.
All possible partitions are collected into the set
Σ(S) := {(01 . . . n), (0|12 . . . n), . . . , (0|1|2| . . . |n)}, where in particular I = (01 . . . n)
denotes the trivial partition that only consist of a single block while S = (0|1|2| . . . |n)
denotes the partition where each block contains exactly one single element. For conve-
nience, if the set of sites is clear, we will use the notation Σ(S) = Σ.

Furthermore, there is a (well-known) natural ordering of partitions which is defined as
follows: for two partitions A,B ∈ Σ, A � B means that every block of A is wholly
contained in a block of B. Then, A is called a refinement of B (or, B is a coarsening of
A), and � is the refinement relation. Obviously, I ∈ Σ is the unique coarsest partition,
whereas S ∈ Σ is the unique finest partition. For two partitions A,B ∈ Σ, the finest
joint coarsening is denoted by A∨ B and the coarsest joint refinement by A∧ B.
Furthermore, a partition A of S induces a partition U on each subset U ⊆ S: for all
A ∈ A, either A ∩ U = ∅ or A ∩ U ∈ U . This relation will be denoted by U = A

−→
∩U ,

see also [15] where this notation is used. Studying the general recombination model,
induced partitions will be of significant importance.

Example 5.1. Let S = {0, 1, 2, 3, 4}, A = (023|14) and B = (03|12|4) and U =
{0, 1, 2}. Then, A∧B = (03|1|2|4), A∨B = (01234), A

−→
∩U = (02|1) and B

−→
∩U = (0|12).

The union of induced partitions on all parts of a partition of S is again a partition of
S, indeed the following holds, compare [15]:

Corollary 5.2. Let A = (A1| . . . |Ak) and B1, . . . ,Bk be partitions of S. Then

k⋃

i=1

(Bi
−→
∩Ai) = C , (5.1)

where C is again a partition of S with C � A. Furthermore, for a partition B of S with
B � A, one finds

k⋃

i=1

(B
−→
∩Ai) = B .
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As long as not stated otherwise, we take over all notation from Chapter 3 and 4. First
of all, we have to redefine the recombinators in terms of partitions.

The recombinator

In analogy to the definition of the recombination operator via the links as in (3.2), we
here define the recombinator for any partition A = (A1|A2| . . . |A|A|) ∈ Σ and for all
ω ∈ P(X) as

R̄A(ω) =

|A|⊗

i=1

(
πAi·ω

)
. (5.2)

Analogous to the composite recombinators defined via set of links as in (3.6), we here
find

R̄A ◦ R̄B = R̄A∧B = R̄B ◦ R̄A for arbitrary A,B ∈ Σ ,

which obviously includes R̄2
A = R̄A. We can now state a generalisation of Proposi-

tion 3.2 from Section 3.1, where the proof follows along the same lines:

Proposition 5.3. Let U ⊆ S and A ∈ Σ be any partition of S. Then, on P(X) the
recombinators satisfy

πU ·R̄A(p) = πU ·R̄B(p) for all B ∈ Σ with B
−→
∩U = A

−→
∩U .

The intuitive content of Proposition 5.3 is the same as for the analogue in Proposi-
tion 3.2. When projecting on the sites of U , the partition of the sites of the comple-
mentary set S \ U is of no relevance.

5.2 The general recombination model in continuous time

Let us start with the general recombination model in the IPL in continuous time since
this will make clear that the continuous-time single-crossover model discussed in Sec-
tion 3.2 is indeed a particular special case. We will show that the ‘nice’ properties
observed in continuous time get lost as soon as we allow for any partition of sites (i.e.
not only ordered partitions), and that the advantage of continuous time over discrete
time - as in the single-crossover case - vanishes.
Let ρ̄A ≥ 0 denote the rate for a recombination event that corresponds to the partition
A ∈ Σ. We set ρ̄I = 0 since the partition I corresponds to an ‘empty’ recombination
event (see (5.3)).
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The general recombination equation then reads in analogy to (3.8):

ṗt =
∑

I 6=A∈Σ

ρ̄A(R̄A − 1)(pt) , (5.3)

starting from an initial distribution p0 ∈ P(X), where as before 1 = R̄I denotes the
recombinator that belongs to the trivial partition I = (01 . . . n) ∈ Σ. If we only
refer to biological plausible cases, we set ρ̄A = 0 for all A ∈ Σ with |A| 6= 2. Obviously,
we recover the single-crossover model (3.8) if we also set rates for unordered partitions
A ∈ Σ to zero. As for the single-crossover model (in discrete as well as in continuous
time), we expect the solution to be of the form

pt =
∑

A∈Σ

āA(t)R̄A(p0) (5.4)

with āA(0) = δA,I , where again the āA(t) are the deciding coefficient functions. In
the following, we will show that this ansatz is indeed right and infer the corresponding
differential equations for the coefficient functions. To this end, we first aim to determine
R̄A(pt) for any partition A = {A1, . . . , Ak} ∈ Σ and thus calculate

R̄A(pt) = R̄A

(∑

B∈Σ

āB(t)R̄B(p0)
)
= πA1·

pt ⊗ · · · ⊗ πA
k
·pt

= πA1·

(∑

B1∈Σ

āB1
(t)R̄B1

(p0)
)
⊗ · · · ⊗ πA

k
·

( ∑

B
k
∈Σ

āB
k
(t)R̄B

k
(p0)

)

=
(∑

B1∈Σ

āB1
(t)πA1·

R̄B1
(p0)

)
⊗ · · · ⊗

(∑

B
k
∈Σ

āB
k
(t)πA

k
·R̄B

k
(p0)

)

=
∑

B1,...,Bk

āB1
(t) · . . . · āB

k
(t)
(
πA1·

R̄B1
(p0)⊗ · · · ⊗ πA

k
·R̄Bk

(p0)
)

=
∑

B1,...,Bk

āB1
(t) · . . . · āB

k
(t)
(
πA1·

R̄
(B1

−→
∩A1)∪(B2

−→
∩A2)∪...∪(Bk

−→
∩A

k
)
(p0)⊗ · · · ⊗

πA
k
·R̄(B1

−→
∩A1)∪(B2

−→
∩A2)∪...∪(Bk

−→
∩A

k
)
(p0)

)

=
∑

B1,...,Bk

āB1
(t) · . . . · āB

k
(t)
(
R̄A

(
R̄

(B1
−→
∩A1)∪(B2

−→
∩A2)∪...∪(Bk

−→
∩A

k
)

)
(p0)

)

=
∑

B1,...,Bk

āB1
(t) · . . . · āB

k
(t)R̄

(B1
−→
∩A1)∪(B2

−→
∩A2)∪...∪(Bk

−→
∩A

k
)
(p0) . (5.5)

In the first five steps, we only use the ansatz for the solution pt from (5.4), the def-
inition of the recombinators as well as the linearity of the projectors. We then use
assertion (5.1) of Corollary 5.2 together with Proposition 5.3 since for C := (B1

−→
∩A1)∪

(B2
−→
∩A2) ∪ . . . ∪ (Bk

−→
∩Ak) ∈ Σ holds that C

−→
∩Ai = Bi

−→
∩Ai for all i ∈ {1, . . . , k}. Af-

terwards, the definition of the recombinator is used, before employing A ∧ C = C since
C � A. This allows to state the induced differential equations for the coefficients of the
solution (5.4):
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Proposition 5.4. The differential equations for the coefficients of the solution (5.4)
are

˙̄aC(t) =
∑

A�C

ρ̄A

(∏

A∈A

∑

Z∈Σ:
Z
−→
∩A=C

−→
∩A

āZ(t)
)
−
∑

A∈Σ

ρ̄AāC(t) (5.6)

for each C ∈ Σ.

Proof. Having the ansatz pt =
∑

B∈Σ āB(t)R̄B(p0) for the solution of the recombination
equation, one infers

ṗt =
∑

A∈Σ

ρ̄A(R̄A − 1)(pt) = ∑

A∈Σ

ρ̄A(R̄A − 1)(∑
B∈Σ

āB(t)R̄B(p0)
)
=
∑

C∈Σ

˙̄aC(t)R̄C(p0) .

(5.7)
The proof follows along the same lines as the proof of Theorem 3.7 from Section 3.3.
We compare coefficients for R̄C(p0) for a fixed C ∈ Σ, where comparison of coefficients
is justified for the same reason as stated in the proof of Theorem 3.7. The effect of any
R̄A on pt, A = (A1| . . . |Ak) ∈ Σ, is given in (5.5), where we only find a contribution to
R̄C(p0) if C � A, i.e. for those B1, . . . ,Bk with B1

−→
∩A1 = C

−→
∩A1,. . .,Bk

−→
∩Ak = C

−→
∩Ak.

Additionally, 1(pt) contributes to R̄C(p0) only for B = C in (5.7). Taking this together,
(5.6) is obtained.

For completion, we show that the coefficient functions from (5.4) indeed form a prob-
ability vector:

Lemma 5.5. Let ā(t) = (ā(01···n)(t), . . . , ā(0|1|···|n)(t)) denote the vector containing

all coefficient functions. Then the induced differential equations ˙̄aC(t) = FC(ā(t)) −∑
A∈Σ ρ̄AāC(t), where FC(ā(t)) :=

∑
A�C ρ̄A

∏
A∈A

∑
Z∈Σ:

Z
−→
∩A=C

−→
∩A

āZ(t), have a probabil-

ity vector ā(t) as solution.

Proof. To prove the assertion, we have to show that

1. FC(ā(t)) ≥ 0 for ā(t) ≥ 0

2.
∑

C∈Σ FC(ā(t)) =
∑

C∈Σ ρ̄C for a probability vector ā(t) .

1. obviously holds since ρ̄A ≥ 0 for all A ∈ Σ and āZ(t) ≥ 0 for all Z ∈ Σ according to
the assumption. Furthermore,

∑

C∈Σ

FC(ā(t)) =
∑

C∈Σ

∑

A�C

ρ̄A
∏

A∈A

∑

Z∈Σ:
Z
−→
∩A=C

−→
∩A

āZ(t) =
∑

A∈Σ

ρ̄A
∑

C�A

∏

A∈A

∑

Z∈Σ:
Z
−→
∩A=C

−→
∩A

āZ(t) =
∑

A∈Σ

ρ̄A ,

since for a fixed A ∈ Σ(S) holds:
∑

C�A

∏

A∈A

∑

Z∈Σ:
Z
−→
∩A=C

−→
∩A

āZ(t) =
∏

A∈A

∑

D�I∈Σ(A)

∑

Z∈Σ:
Z
−→
∩A=D

āZ(t) =
∏

A∈A

∑

Z∈Σ(S)

āZ(t) = 1 ,
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where Σ(A) denotes the set of all possible partitions of the sites that belong to A ∈ A.
This proves 2.

Next, let us have a look at the recombination dynamics of the general model, in par-
ticular in comparison with the corresponding single-crossover dynamics discussed in
Chapter 3. Again, we start with three sites.

5.2.1 Three Sites

We consider the recombination model (5.3) for three sites S = {0, 1, 2}, with taking
into account 5 possible partitions of sites. The differential equations for the coefficients
of the solution are (compare (5.6)):

˙̄a(012)(t) = −(ρ̄(0|12) + ρ̄(01|2) + ρ̄(02|1) + ρ̄(0|1|2))ā(012)(t) ,

˙̄a(0|12)(t) = ρ̄(0|12)ā(012)(t)− (ρ̄(01|2) + ρ̄(02|1) + ρ̄(0|1|2))ā(0|12)(t) ,

˙̄a(01|2)(t) = ρ̄(01|2)ā(012)(t)− (ρ̄(0|12) + ρ̄(02|1) + ρ̄(0|1|2))ā(01|2)(t) ,

˙̄a(02|1)(t) = ρ̄(02|1)ā(012)(t)− (ρ̄(0|12) + ρ̄(01|2) + ρ̄(0|1|2))ā(02|1)(t) ,

˙̄a(0|1|2)(t) = ρ̄(0|1|2)ā(012)(t) + (ρ̄(01|2) + ρ̄(02|1) + ρ̄(0|1|2))ā(0|12)(t) ,

+ (ρ̄(0|12) + ρ̄(02|1) + ρ̄(0|1|2))ā(01|2)(t) + (ρ̄(0|12) + ρ̄(01|2) + ρ̄(0|1|2))ā(02|1)(t) .

They are thus linear differential equations with the following solution (āA(0) = δA,(012)):

ā(012)(t) = exp(−(ρ̄(0|12) + ρ̄(01|2) + ρ̄(02|1) + ρ̄(0|1|2))t) ,

ā(0|12)(t) =
(
1− exp(−ρ̄(0|12)t)

)
exp(−(ρ̄(01|2) + ρ̄(02|1) + ρ̄(0|1|2))t) ,

ā(01|2)(t) =
(
1− exp(−ρ̄(01|2)t)

)
exp(−(ρ̄(0|12) + ρ̄(02|1) + ρ̄(0|1|2))t) ,

ā(02|1)(t) =
(
1− exp(−ρ̄(02|1)t)

)
exp(−(ρ̄(0|12) + ρ̄(01|2) + ρ̄(0|1|2))t) ,

ā(0|1|2)(t) = exp(−(ρ̄(0|12) + ρ̄(01|2) + ρ̄(02|1) + ρ̄(0|1|2))t)(
2− exp(ρ̄(01|2)t)− exp(ρ̄(0|12)t)− exp(ρ̄(02|1)t)

+ exp((ρ̄(0|12) + ρ̄(01|2) + ρ̄(02|1) + ρ̄(0|1|2))t)
)
.

It should be noted here that the differential equations for the coefficient functions are
not only linear but their solution also suggests the same interpretation as in the single-
crossover model. Note that the single-crossover solution for three sites is recovered here
for ρ̄(02|1) = ρ̄(0|1|2) = 0 (i.e. (02|1) reflects the case of a double crossover while the

partition (0|1|2) corresponds to the contrived case that three parents are involved in
reproduction). In particular, R̄(0|12) =̂ R 1

2

from the definition of the recombinators via

the links, and R̄(01|2) =̂ R 3
2

.
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LDE operators

In Section 3.2, we identified a particularly simple set of LDE operators that diagonalise
the continuous-time single-crossover recombination dynamics. Later on, in Section 3.5,
we used these for a linearisation of the more complicated discrete-time recombination
dynamics. Recall that the inversion formula for these operators, compare (3.11), is
directly obtained due to the property of the Möbius function. This raises the question
whether there exists an equivalent set of operators for the general model. To find an
appropriate transformation, as a starting point, we use a similar ansatz as before, and
define a set of operators via the Möbius function, i.e.

T̄A :=
∑

B�A

µ(B,A)R̄B , for A ∈ Σ (5.8)

where µ(B,A) denotes the Möbius function for partitions. The inverse relation is then
given by

R̄A =
∑

B�A

T̄B .

The corresponding Möbius function for the lattice of partitions is the following, for the
proof refer to [59].

Proposition 5.6. Let A,B be two partitions of a set with n elements, where B � A
with |B| = k ≥ |A| = m. Define ri := number of blocks of A that contain exactly i
blocks of B. The Möbius function is then given by

µ(B,A) = (−1)k−m(2!)r3(3!)r4 · · · ((k − 1)!)rk .

For partitions A,B with B � A, µ(B,A) = 0.

Remark 5.7. It can be found in [8] that together with the ordering �, the partially
ordered set (Σ,�) of partitions is indeed a (finite) geometric lattice. In particular, the
minimal element of the poset is S while the maximal element is I.

Let us now apply the operators from (5.8) to the general model with three sites. We
then obtain

T̄(0|1|2) = R̄(0|1|2) ,

T̄(01|2) = R̄(01|2) − R̄(0|1|2) ,

T̄(0|12) = R̄(0|12) − R̄(0|1|2) ,

T̄(02|1) = R̄(02|1) − R̄(0|1|2) ,

T̄(012) = R̄(012) − R̄(0|12) − R̄(01|2) − R̄(02|1) + 2R̄(0|1|2) ,
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and the operators fulfil the following differential equations:

d

dt
T̄(0|1|2)(pt) = 0 ,

d

dt
T̄(01|2)(pt) = −(ρ̄(0|12) + ρ̄(02|1) + ρ̄(0|1|2))T̄(01|2)(pt) ,

d

dt
T̄(0|12)(pt) = −(ρ̄(01|2) + ρ̄(02|1) + ρ̄(0|1|2))T̄(0|12)(pt) ,

d

dt
T̄(02|1)(pt) = −(ρ̄(01|2) + ρ̄(0|12) + ρ̄(0|1|2))T̄(02|1)(pt) ,

d

dt
T̄(012)(pt) = −(ρ̄(01|2) + ρ̄(0|12) + ρ̄(02|1) + ρ̄(0|1|2))T̄(012)(pt) .

The transformation thus leads to diagonalisation of the dynamics and in comparison
with the results for the single-crossover model, no differences are observed. Again, let
us skip to four sites.

5.2.2 Four Sites

For four sites S = {0, 1, 2, 3}, we are dealing with 15 possible partitions of sites. In
particular, the differential equations for the coefficients functions (5.6) are in general
nonlinear, for example

˙̄a(01|23)(t) = ρ̄(01|23)

(
ā(0123)(t) + ā(01|23)(t) + ā(012|3)(t) + ā(013|2)(t) + ā(01|2|3)(t)

)

(
ā(0123)(t) + ā(0|123)(t) + ā(01|23)(t) + ā(023|1)(t) + ā(0|1|23)(t)

)
−
∑

A∈Σ

ρ̄Aā(01|23)(t) .

Recall that in the single-crossover setting the corresponding differential equations for
the coefficient functions are always linear, see (3.21). Thus, just as in the discrete-time
single-crossover model, the equations of the general model even in continuous time
become more involved from four sites onwards. If we apply the transformation (5.8)
to the four sites-model, similarities to the discrete-time single-crossover model can be
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observed as well. In detail, one obtains

d

dt
T̄(0|1|2|3)(pt) = 0 ,

d

dt
T̄(0|1|23)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (23)=(2|3)

ρ̄A

)
T̄(0|1|23)(pt) ,

d

dt
T̄(01|2|3)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (01)=(0|1)

ρ̄A

)
T̄(01|2|3)(pt) ,

d

dt
T̄(0|12|3)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (12)=(1|2)

ρ̄A

)
T̄(0|12|3)(pt) ,

d

dt
T̄(0|13|2)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (13)=(1|3)

ρ̄A

)
T̄(0|13|2)(pt) ,

d

dt
T̄(02|1|3)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (02)=(0|2)

ρ̄A

)
T̄(02|1|3)(pt) ,

d

dt
T̄(03|1|2)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (03)=(0|3)

ρ̄A

)
T̄(03|1|2)(pt) ,

d

dt
T̄(01|23)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (01)=(0|1)

ρ̄A +
∑

B∈Σ:
B
−→
∩ (23)=(2|3)

ρ̄B

)
T̄(01|23)(pt) ,

d

dt
T̄(02|13)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (02)=(0|2)

ρ̄A +
∑

B∈Σ:
B
−→
∩ (13)=(1|3)

ρ̄B

)
T̄(02|13)(pt) ,

d

dt
T̄(03|12)(pt) = −

( ∑

A∈Σ:
A
−→
∩ (03)=(0|3)

ρ̄A +
∑

B∈Σ:
B
−→
∩ (12)=(1|2)

ρ̄B

)
T̄(03|12)(pt) ,

d

dt
T̄(0|123)(pt) = −

( ∑

A6=(0|123)

ρ̄A

)
T̄(0|123)(pt) ,

d

dt
T̄(012|3)(pt) = −

( ∑

A6=(012|3)

ρ̄A

)
T̄(012|3)(pt) ,

d

dt
T̄(013|2)(pt) = −

( ∑

A6=(013|2)

ρ̄A

)
T̄(013|2)(pt) ,

d

dt
T̄(023|1)(pt) = −

( ∑

A6=(023|1)

ρ̄A

)
T̄(023|1)(pt) ,

d

dt
T̄(0123)(pt) = −

( ∑

I 6=A∈Σ

ρ̄A

)
T̄(0123)(pt) +

( ∑

A∈Σ:
A
−→
∩ (01)=(0|1),

A
−→
∩ (23)=(2|3)

ρ̄A

)
T̄(01|23)(pt)

+
( ∑

A∈Σ:
A
−→
∩ (02)=(0|2),

A
−→
∩ (13)=(1|3)

ρ̄A

)
T̄(02|13)(pt) +

( ∑

A∈Σ:
A
−→
∩ (03)=(0|3),

A
−→
∩ (12)=(1|2)

ρ̄A

)
T̄(03|12)(pt) .

(5.9)
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Just as we have seen with four sites in the discrete-time setting, the diagonalisation
property of the transformation (5.8) is lost from four sites onwards while a linearisation
of the dynamics is still achieved. This confirms that the single-crossover recombination
model is indeed a very special case. While in the single-crossover model the setting
with continuous time makes things much easier compared to the setting with discrete
time, for the general recombination model in continuous time, the arising dynamics
show notably analogy with the single-crossover discrete-time dynamics (i.e. the arising
difficulties/dependencies here). Hence, this suggests that the simplifying structure of
continuous time is lost when considering the general recombination model. To further
analyse this, let us have a look at some exemplary coefficient functions for the four sites
model. Solving the equations from (5.9), one finds

ā(0123)(t) = exp
(
−
∑

I 6=A∈Σ

ρ̄At
)
,

i.e. this coefficient function is in accordance with previous results (in continuous as
well as in discrete time). Continuing with the partition (0|123) one obtains

ā(0|123)(t) = exp
(
−

∑

A6=(0|123)

ρ̄At
)(
1− exp(−ρ̄(0|123)t)

)
, (5.10)

thus, again, no differences to the analogous solution in continuous time are observed.
This is due to the fact that one part of the partition only consists of one site (compare
the explanation for the single-crossover model that follows the proof of Theorem 3.7)
as becomes clear when turning to the next coefficient function:

ā(01|23)(t) =
ρ̄(01|23)

ρ̄
(01|23)

−
∑

A∈Σ:
A
−→
∩ (01)=(0|1),

A
−→
∩ (23)=(2|3)

ρ̄A

(
exp
(
−

∑

A:A6=(01|23)

ρ̄At
)
×

exp
(
−

∑

A∈Σ:
A
−→
∩ (01)=(0|1),

A
−→
∩ (23)=(2|3)

ρ̄At
)
− exp

(
−
∑

A∈Σ

ρ̄At
))

=
ρ̄(01|23)

ρ̄(01|23) −
∑

A∈Σ:
A
−→
∩ (01)=(0|1),

A
−→
∩ (23)=(2|3)

ρ̄A

(
exp
(
−(

∑

A∈Σ:
A
−→
∩ (01)=(0|1)

ρ̄At+
∑

A∈Σ:
A
−→
∩ (23)=(2|3)

ρ̄At)
)

− exp
(
−
∑

A∈Σ

ρ̄At
))

,

(5.11)

where indeed the simplifying product structure is lost as soon as we allow for more than
only single-crossover events. Moreover, the structure of the solution (5.11) resembles
the structure of the solution for the coefficient function a 3

2

(t) from the discrete-time
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model for four sites. This reads

a 3
2
(t) =

ρ 3
2

λ 3
2

− λ∅
(λt

3
2
− λt

∅) .

This structural similarity is also observed for further coefficient function, e.g.

ā(0|1|23)(t) = exp
(
−

∑

A∈Σ:
A
−→
∩ (23)=(2|3)

ρ̄At
)
− exp

(
−

∑

A∈Σ:
A
−→
∩ (123)6=(123)

ρ̄At
)
− exp

(
−

∑

A∈Σ:
A
−→
∩ (023)6=(023)

ρ̄At
)

−
ρ̄(01|23)

ρ̄(01|23) −
∑

A∈Σ:
A
−→
∩ (01)=(0|1),A

−→
∩ (23)=(2|3)

ρ̄A

(
exp
(
−

∑

A:A6=(01|23)

ρ̄At
)
×

exp
(
−

∑

A∈Σ:
A
−→
∩ (01)=(0|1),A

−→
∩ (23)=(2|3)

ρ̄At
)
− exp

(
−
∑

A∈Σ

ρ̄At
))

+ exp
(
−
∑

A∈Σ

ρ̄A
)
,

(5.12)

when compared to

a
{ 1
2
, 3
2
}
(t) = λt

{ 1
2
, 3
2
}
− λt

1
2

−
ρ 3

2

λ 3
2

− λ∅
(λt

3
2

− λt
∅) .

All these similarities of the general recombination model (in continuous time) with the
single-crossover model in discrete-time suggest that the general model might be treated
with similar methods that we have developed in Section 3.5.

5.2.3 Product structure

Here, we shortly present some results for the general recombination model that are
analogous to the subsystem structure revealed for the discrete-time single-crossover
model in Section 3.4. First of all, we find for the recombinators (5.2):

Proposition 5.8. Let C be a partition of S. Then for each coarsening B
′
of C, C � B

′
,

with B
′
= {B, B̄}, i.e. |B

′
| = 2, and ω ∈ P(X), one finds

R̄
(S)
C (ω) =

(
R̄

(B)

C
−→
∩B

(πB·ω)
)
⊗
(
R̄

(B̄)

C
−→
∩ B̄

(πB̄·ω)
)
. (5.13)

Proof. Following Proposition 3.2 and the definition of the recombinators from (5.2), we
have

R̄
(S)
C (ω) = R̄

(S)

B′

(
R̄

(S)
C (ω)

)
=
(
πB·R̄

(S)
C (ω)

)
⊗
(
πB̄·R̄

(S)
C (ω)

)

=
(
R̄

(B)

C
−→
∩B

(πB·ω)
)
⊗
(
R̄

(B̄)

C
−→
∩ B̄

(πB̄·ω)
)
.
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Here, as before, the upper index specifies the corresponding subsystem (specified through
the respective sites and part of a partition, respectively) the recombinators are acting
on. Analogously, the notation will be used for the transformation operators as well.
This obviously works for any coarsening B

′
of C in an analogous way. Proposition 5.8

directly carries over to the transformation operators (5.8):

Proposition 5.9. On P(X), the transformation operators (5.8) satisfy

T̄A(ω) =
(
T̄
(B)

A
−→
∩B

(πB·ω)
)
⊗
(
T̄
(B̄)

A
−→
∩ B̄

(πB̄·ω)
)

for all B
′
= {B, B̄} ∈ Σ and A ∈ Σ with A � B

′
.

Proof. We have

T̄A(ω) =
∑

C�A

µ(C,A)R̄C(ω) =
∑

C�A

µ(C,A)
(
R̄

(B)

C
−→
∩B

(πB·ω)⊗ R̄
(B̄)

C
−→
∩ B̄

(πB̄·ω)
)

=
∑

C1�(A
−→
∩B)

µ(C1, (A
−→
∩B))

∑

C2�(A
−→
∩ B̄)

µ(C2, (A
−→
∩ B̄))

(
R̄

(B)
C1

(πB·ω)⊗ R̄
(B̄)
C2

(πB̄·ω)
)

=
( ∑

C1�(A
−→
∩B)

µ(C1, (A
−→
∩B))R̄

(B)
C1

(πB·ω)
)
⊗
( ∑

C2�(A
−→
∩ B̄)

µ(C2, (A
−→
∩ B̄))R̄

(B̄)
C2

(πB̄·ω)
)

=
(
T̄
(B)

A
−→
∩B

(πB·ω)
)
⊗
(
T̄
(B̄)

A
−→
∩ B̄

(πB̄·ω)
)
,

where we use relation (5.13) in the second step and in the third step that the Möbius
function is multiplicative, see [1].

Inductively, for any partition A = (A1| . . . |Ak) ∈ Σ and ω ∈ P(X), this proposition
then leads to

T̄
(S)
A (ω) = T̄

(A1)
I (πA1·ω)⊗ · · · ⊗ T̄

(A
k
)

I (πAk·
ω)

since obviously A
−→
∩Ai = I ∈ Σ(Ai) for all blocks of the partition A, where now

I ∈ Σ(Ai) denotes the coarsest partition of the respective blocks Ai. Thus, the effect

of the operator T̄
(S)
A of (5.8) on the full system (specified through the complete set of

sites S) is given by that of T̄I on the corresponding parts of the partition of A. Clearly,
this is in accordance with the results for the single-crossover model in discrete time,
compare (3.27). Denoting the forward flow of the differential equation (5.3) with ϕt,
we thus have pt = ϕt(p0) and for the differential equations for the operator (5.8) we
obtain:

d

dt
T̄
(S)
A (ϕt(p0)) =

d

dt
T̄
(S)
A (pt) =

d

dt

( k⊗

i=1

T̄
(Ai)
I (πAi·pt)

)

=

k∑

i=1

T̄
(A1)
I (πA1·pt)⊗ · · · ⊗

( d

dt
T̄
(Ai)
I (πAi·pt)

)
⊗ · · · ⊗ T̄

(Ak)
I (πAk·

pt) .
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Thus, we are again left to evaluate d
dt T̄I(ϕt(p0)), just as in Section 3.4, to determine

the differential equations for all transformation operators. To do so, we first calculate

d

dt
T̄I(ϕt(p0)) =

d

dt

∑

H∈Σ

µ(H, I)R̄H(ϕt(p0))

=
d

dt

(∑

H∈Σ

µ(H, I)ϕt(R̄H(p0)) +
∑

H∈Σ

µ(H, I)[R̄H, ϕt](p0)
)

=
∑

H∈Σ

µ(H, I)
d

dt
ϕt(R̄H(p0)) +

d

dt

∑

H∈Σ

µ(H, I)[R̄H, ϕt](p0)

=
∑

H∈Σ

µ(H, I)
∑

I 6=V∈Σ

ρ̄V(R̄H∧V − R̄H)(pt) +
d

dt

∑

H∈Σ

µ(H, I)[R̄H, ϕt](p0) .

(5.14)

Before continuing, we need the following corollary that can be found in [59]:

Corollary 5.10 (Weisner). Let L be a finite lattice with maximal element 1. Let a < 1
in L. Then, for any b in L, ∑

x:x∧a=b

µ(x, 1) = 0 . (5.15)

For our particular lattice of partitions, Corollary 5.10 corresponds to the following:

Corollary 5.11. Let V ∈ Σ 6= I. Then, for any A ∈ Σ,

∑

H:H∧V=A

µ(H, I) = 0 .

With Corollary 5.11, part of the first term from (5.14) reduces to

∑

H∈Σ

µ(H, I)
∑

I 6=V∈Σ

ρ̄VR̄H∧V(pt) =
∑

I 6=V∈Σ

ρ̄V
∑

H∈Σ

µ(H, I)R̄H∧V(pt)

=
∑

I 6=V∈Σ

ρ̄V
∑

A∈Σ

R̄A(pt)
∑

H∈Σ:
H∧V=A

µ(H, I) = 0 ,

so that we finally obtain

Corollary 5.12. The differential equation for T̄I(ϕt(p0)) = T̄I(pt) is given as

d

dt
T̄I(pt) = −

∑

I 6=V∈Σ

ρ̄V T̄I(pt) +
d

dt

∑

H∈Σ

µ(H, I)[R̄H, ϕt](p0) .
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When comparing this result to Proposition 3.15 of Section 3.5, the similarities with
the discrete-time model should become obvious once more. The determination of
d
dt T̄I(pt) again boils down to evaluating the respective commutator with the final goal
to construct an appropriate (i.e. diagonalising) transformation. Taking into account all
analogies with the discrete-time recombination model we have revealed so far, further
proceedings should follow along the same lines as in Section 3.5.

We finish this section with stating the differential equations of T̄I(ϕt(p0)) for five and
six sites to give an impression about the results. For five sites, we obtain

d

dt
T̄(01234)(pt) = −

( ∑

I 6=V∈Σ

ρ̄V

)
T̄(01234)(pt) +

∑

A=(A1|A2)∈Σ
|Ai|≥2

T̄A(pt)
( ∑

B∈Σ:B
−→
∩A1 6=I∈Σ(A1)

B
−→
∩A2 6=I∈Σ(A2)

ρ̄B

)
,

and for six sites

d

dt
T̄(012345)(pt) = −

( ∑

I 6=V∈Σ

ρ̄V

)
T̄(012345)(pt) +

∑

A=(A1|A2)∈Σ
|Ai|≥2

T̄A(pt)
( ∑

B∈Σ:B
−→
∩A1 6=I

B
−→
∩A2 6=I

ρ̄B

)

−
∑

A=(A1|A2|A3)∈Σ
|Ai|≥2

T̄A(pt)
( ∑

B∈Σ:B
−→
∩A1 6=I

B
−→
∩A2 6=I,B

−→
∩A3 6=I

ρ̄B

)
.

5.3 Trees in the general recombination model

After we have recovered crucial similarities in the dynamics of the general recombination
model with the discrete-time single-crossover model, it suggests itself to study the
solution for the general model in terms of tree structures. Recall that the tree structure
in Chapter 4 is based upon the concept of segments (or subsystems). The corresponding
segments for the general model are always the blocks of a particular partition. Hence,
note the following:

Remark 5.13. In the discrete-time single-crossover model, the probability that there is
no further recombination within one time step in a particular segment defined via the

contiguous set of links J ⊆ L is given as λ
(J)
∅ = (1−

∑
α∈J ρα). In the continuous-time

general model, the analogous rate that there is no recombination within the part B ∈ B
of any partition B for any time k, is given by exp(−

∑
A∈Σ:

A
−→
∩B 6=I∈Σ(B)

ρ̄Ak).

We will examine the tree-like structure for the general recombination model with four
sites. To do so, let us only consider ‘natural’ recombination events for simplification,
i.e. events that partition the sites into exactly two blocks. Thus, ρ̄A = 0 for all A ∈ Σ
with |A| 6= 2. As a consequence, recombination remains to be a binary operation so
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0123

0123

0

0

123

123

k

t− k

Figure 5.2: The only tree that corresponds to the coefficient function ā(0|123)(t). After

some time k the separation event (0|123) happens. For the remaining time t− k both
segments remain unchanged.

that we can expect binary trees. Starting with the coefficient function ā(0|123)(t), one

can indeed state its solution (5.10) as

ā(0|123)(t) =

∫ t

k=0
exp
(
−
∑

A∈Σ
|A|=2

ρ̄Ak
)
ρ̄(0|123) exp

(
−

∑

A∈Σ
|A|=2,A

−→
∩ (123)6=(123)

ρ̄A(t− k)
)
dk

= exp
(
−

∑

|A|=2

A
−→
∩ (123)6=(123)

ρ̄At
)(
1− exp(−ρ̄(0|123)t)

)
.

It should be clear that this can be explained with a continuous-time tree producing
process just as in Section 4.2, where the only corresponding tree topology is given in
Figure 5.2.

Analogously, the solution for the coefficient function ā(01|23)(t), compare (5.11), can be
explained:

ā(01|23)(t) =

∫ t

k=0
exp
(
−
∑

A∈Σ
|A|=2

ρ̄Ak
)
ρ̄(01|23) exp

(
−
∑

|A|=2

A
−→
∩ (01)=(0|1)

ρ̄A(t− k)
)
exp
(
−
∑

|A|=2

A
−→
∩ (23)=(2|3)

ρ̄A(t− k)
)
dk

=
ρ̄(01|23)

ρ̄(01|23) −
∑

A∈Σ:
A
−→
∩ (01)=(0|1),

A
−→
∩ (23)=(2|3)

ρ̄A

(
exp
(
−(

∑

A∈Σ:
A
−→
∩ (01)=(0|1)

ρ̄At+
∑

A∈Σ:
A
−→
∩ (23)=(2|3)

ρ̄At)
)
− exp

(
−
∑

A∈Σ

ρ̄At
))

=
ρ̄(01|23)

ρ̄(01|23) − ρ̄(02|13) − ρ̄(03|12)
×

(
exp
(
−

∑

|A|=2
A6=(01|23)

ρ̄At
)
exp(−(ρ̄(02|13) + ρ̄(03|12))t)− exp

(
−
∑

A∈Σ
|A|=2

ρ̄At
))

.
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Figure 5.3: Three different histories that correspond to the partition (0|1|23). In partic-
ular, the second and the third tree have the same topology and can be only distinguished
from making the corresponding partitions explicit.

When considering the coefficient function ā(0|1|23)(t) as in (5.12), one finds three dif-
ferent trees that correspond to the solution, see Figure 5.3. Here, one main difference
to the single-crossover dynamics becomes obvious. In the single-crossover case, each
tree topology can be uniquely described by its corresponding links as internal nodes of
the tree since this implies the respective partition of sites due to the ordered structure.
But since we are no longer dealing with only ordered partitions in the general model,
we do not have an implicit order of the partitions anymore. In particular, the same
tree topology (in the geometric sense) may refer to different partitions. This can be
seen with the trees two and three of Figure 5.3. Consequently, each internal node has
to state the whole information of the current parts of the partition. Finally, (5.12) can
be indeed stated as

ā(0|1|23)(t) =

∫ t

k=0

∫ t−k

i=0

[
exp
(
−
∑

|A|=2

ρ̄Ak
)
ρ̄(0|123) exp

(
−

∑

A
−→
∩ (123)6=(123)

ρ̄Ai
)

(
∑

A
−→
∩ (123)=(1|23)

ρ̄A) exp
(
−

∑

A
−→
∩ (23)6=(23)

ρ̄A(t− k − i)
)]

di dk

+

∫ t

k=0

∫ t−k

i=0

[
exp
(
−
∑

|A|=2

ρ̄Ak
)
ρ̄(01|23) exp

(
−

∑

A
−→
∩ (01)6=(01)

ρ̄Ai
)

(
∑

A
−→
∩ (01)=(0|1)

ρ̄A) exp
(
−

∑

A
−→
∩ (23)6=(23)

ρ̄A(t− k)
)]

di dk

+

∫ t

k=0

∫ t−k

i=0

[
exp
(
−
∑

|A|=2

ρ̄Ak
)
ρ̄(023|1) exp

(
−

∑

A
−→
∩ (023)6=(023)

ρ̄Ai
)

(
∑

A
−→
∩ (023)=(0|23)

ρ̄A) exp
(
−

∑

A
−→
∩ (23)6=(23)

ρ̄A(t− k − i)
)]

di dk =
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= exp
(
−

∑

A
−→
∩ (23)=(2|3)

ρ̄At
)(
1− exp(−

∑

A
−→
∩ (023)=(0|23)

ρ̄At)
)

− exp
( ∑

A6=(0|123)

ρ̄At
)
(1− exp(−ρ̄(0|123)t))

− exp
( ∑

A6=(023|1)

ρ̄At
)
(1− exp(−ρ̄(023|1)t))

−
ρ̄(01|23)

ρ̄(01|23) −
∑

A∈Σ:
A
−→
∩ (01)=(0|1),

A
−→
∩ (23)=(2|3)

ρ̄A
exp(−

∑

A:A6=(01|23)

ρ̄At)×

exp
(
−

∑

A∈Σ:
A
−→
∩ (01)=(0|1),

A
−→
∩ (23)=(2|3)

ρ̄At
)(
1− exp(−(ρ̄(01|23) −

∑

A∈Σ:
A
−→
∩ (01)=(0|1),

A
−→
∩ (23)=(2|3)

ρ̄A)t)
)

= exp(−(ρ̄(012|3) + ρ̄(02|13) + ρ̄(03|12) + ρ̄(013|2))t)×

(1− exp(−(ρ̄(0|123) + ρ̄(01|23) + ρ̄(023|1))t))

− exp
(
−
∑

A6=(0|123)

ρ̄At
)
(1− exp(−ρ̄(0|123)t))− exp

(
−
∑

A6=(023|1)

ρ̄At
)
(1− exp(−ρ̄(023|1)t))

−
ρ̄(01|23)

ρ̄(01|23) − ρ̄(02|13) − ρ̄(03|12)
exp
(
−

∑

A:A6=(01|23)

ρ̄At
)
×

exp(−(ρ̄(02|13) + ρ̄(03|12))t)(1 − exp(−(ρ̄(01|23) − ρ̄(02|13) − ρ̄(03|12))t)) ,

where again each (double) integral corresponds to one tree of Figure 5.3.

These examples should show that the model allowing for general recombination events
(in continuous time) can be in principle solved with the same methods as the model with
the restriction to single-crossovers. While the usage of links is sufficient (and indeed very
convenient) to describe recombination in the single-crossover model, the involvement of
the underlying partitions in the general model is unavoidable. But anyways, thanks to
the extensive studies of the discrete-time single-crossover recombination dynamics, the
extension of the problem to general recombination events seems to be rather a problem
of notation than of mathematics.

Remark 5.14. In the above examples, we restricted ourselves to ‘real’ recombination
events and the ancestral process thus referred to binary trees. If we also allow for re-
combination events that include more than two parents, we have to consider all possible
arising trees that are not necessarily binary, e.g. the partition (0|1|23) can be also
explained by the non-binary tree of Figure 5.4 completing the three histories from Fig-
ure 5.3. The arising probability of this tree (with respect to a corresponding segmentation
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Figure 5.4: History of the partition (0|1|23) due to a non-binary recombination event.

process) can be then stated as

∫ t

k=0
exp
(
−
∑

A∈Σ

ρ̄Ak
)
ρ̄(0|1|23) exp

(
−

∑

A
−→
∩ (23)6=(23)

ρ̄A(t− k)
)
dk

=
ρ̄(0|1|23)∑

A:A
−→
∩ (23)=(23) ρ̄A

exp
(
−

∑

A:A
−→
∩ (23)=(2|3)

ρ̄At
)(

1− exp
(
−

∑

A:A
−→
∩ (23)=(23)

ρ̄At
))

.

With regard to a general recombination model in discrete time, we can so far say that
the way to a solution will not differ from the approach to deal with the model in
continuous time. Instead of the exponential functions, one has to deal with terms such
like the lambda-coefficients from (3.45), now defined on particular parts of respective
partitions. While the usage of continuous time in the single-crossover model turned
out to simplify the dynamics to an unexpected extent (compared to discrete time),
differences in complexity between both approaches seem to vanish when allowing for
more general recombination events.

5.4 Genetic algebras for the general recombination model

As mentioned in the introduction, the algebraic structure of genetic inheritance suggests
to investigate population genetics models in terms of algebras. Algebraic structures that
arise in genetics are also of purely mathematical interest since these algebras generally
do not belong to any of the well-known classes of algebras and their study leads to new
and interesting mathematical results [69]. In this section, we will briefly explain how
recombination dynamics can be embedded into this framework of algebras. This should
inspire further analysis in this field - if only for reasons of mathematical interest.

We define an algebra as follows:

Definition 5.15 (Algebra). An algebra A is an n-dimensional vector space over a field
K together with a K-bilinear binary operation, called multiplication, from A×A to A:

p1 × p2 7→ p1p2 ∈ A for all p1, p2 ∈ A .
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For algebras that arise in population genetics, the basis of an algebra A generally
corresponds to all possible population types (for example a finite number of gametes)
while any p ∈ A displays a population state. The multiplication operation specifies the
‘rule’ of inheritance, i.e. p 7→ p2 describes the evolutionary map from population p to
its daughter population p2.

Since we are considering the recombination process on the level of gametes, we will
need the gametic algebra that was already stated in the introduction, see also [56, 69]:
Considering gametes a1, . . . , an in a random mating population as basis elements in an
n-dimensional real vector space, multiplication is defined by

aiaj =
n∑

k=1

γijkak ,

such that

• 0 ≤ γijk ≤ 1.

•

∑n
k=1 γijk = 1.

• γijk = γjik.

Here, each element p :=
∑n

i=1 αiai, 0 ≤ αi ≤ 1,
∑n

i=1 αi = 1, corresponds to an actual
population of gametes, in which αi denotes the frequency of gamete ai. Furthermore,
the coefficients γijk specify the laws of inheritance. For two populations p1 =

∑n
i=1 αiai

and p2 =
∑n

j=1 βjaj , the daughter population is obtained as

p1p2 =
( n∑

i=1

αiai

)( n∑

j=1

βjaj

)
=

n∑

k=1

( n∑

i,j=1

αiγijkβj
)
ak .

As a very first example, let us have a look at the diallelic case for two loci with recom-
bination:

Example 5.16. Let us consider two loci that can be occupied by alleles A, a and B,
b, respectively.

With respect to the basis that consists of all occurring gametes a1 = AB, a2 = Ab, a3 =
aB and a4 = ab together with the recombination parameter θ (that is the probability
that a zygote a1a4 undergoes a transition into a2a3, or conversely), the resulting gametic
algebra has the following multiplication table:

a1 a2 a3 a4
a1 a1

1
2(a1 + a2)

1
2(a1 + a3)

1
2 (a1 + a4)−

1
2θd

a2 a2
1
2(a2 + a3) +

1
2θd

1
2(a2 + a4)

a3 a3
1
2(a3 + a4)

a4 a4

where d := a1 − a2 − a3 + a4
(arrays below the diagonal are omitted due to symmetry).
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Algebras which arise in genetics are in general commutative but non-associative as
should be clear from a biological point of view. The most general definition of an
algebra with applications in population genetics is an algebra with genetic realisation
[56, 69]:

Definition 5.17 (Algebra with genetic realisation). Let A be an algebra over R with
basis {a1, . . . , an} and multiplication table

aiaj =

n∑

k=1

γijkak ,

such that 0 ≤ γijk ≤ 1 for all i, j, k, and
∑n

k=1 γijk = 1 for i, j = 1, . . . , n. Then A is
called algebra with genetic realisation and the basis is called natural basis for A.

Obviously, the gametic algebra from above is an algebra with genetic realisation. Since
the class of algebras with genetic realisation is too large to infer class-specific results
[56], a further specialisation of the above definition was needed. The first one to state
an appropriate definition of an Genetic Algebra was Schafer [60] in 1949. His definition
was later reformulated in a more coherent way by Gonshor [26] in 1971:

Definition 5.18 (Genetic algebra, Gonshor). Let A be a commutative finite-dimensional
algebra. Then A is called genetic algebra if there exists a basis {c0, . . . , cn} with mul-
tiplication table

cicj =

n∑

k=0

λijkck for all i, j = 0, . . . , n ,

with multiplication constants that fulfil

• λ000 = 1.

• λ0jk = 0 for k < j.

• λijk = 0 for k ≤ max(i, j) and i, j > 0.

{c0, . . . , cn} is called canonical basis (or Gonshor basis) of A and the constants λ000 = 1,
λ011,. . ., λ0nn are called the train roots of A.

Wörz-Busekros [69] worked out in detail that each gametic algebra with recombination
is a genetic algebra after Gonshors definition. For the two-loci example from above,
this can be easily seen:

Example 5.19. We continue with the diallelic two-loci model from Example 5.16.
To show that this is indeed a genetic algebra after Gonshor‘s definition, the basis is
transformed via c0 = a1, c1 = a1 − a2, c2 = a1 − a3 and c3 = a1 − a2 − a3 + a4. One
then obtains the following multiplication table:
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c0 c1 c2 c3
c0 c0

1
2c1

1
2c2

1
2(1− θ)c3

c1 0 1
2θc3 0

c2 0 0

c3 0

The non-vanishing coefficients are λ000 = 1, λ011 = 1
2 , λ022 = 1

2 , λ033 = 1
2(1 − θ) (all

train roots) and λ123 = 1
2θ. Therefore, this gametic algebra is a genetic algebra.

5.4.1 Linearisation

As before, when studying the process of recombination, the arising nonlinearities ex-
hibit the main problem of dealing with the corresponding dynamics. Our ansatz in
Chapter 3 - 5 (for the single-crossover as well as the general recombination model),
overcomes this nonlinearity with a transformation to a linear system so that it can be
treated with matrix methods. That this is generally possible for systems like the ones
described previously, is a result that was actually proved with the theory of genetic al-
gebras. In 1930, Haldane [48, 52] described a procedure - named Haldane linearisation
- which, in some cases, enabled the quadratic evolutionary operator to be represented
as a linear operator (on a higher-dimensional space). Holgate [32] proved that this
linearisation works for any mating system that forms a genetic algebra. Consequently,
it exists a transformation for the gametic algebra with recombination that embeds the
original vector space into an higher-dimensional vector space, where the dynamics can
be represented linearly.

Example 5.20. Let us continue with the situations from Examples 5.16 and 5.19. for
the gametic algebra with Gonshor basis {c0, c1, c2, c3}. The population of gametes is
described by p = c0 + α1c1 + α2c2 + α3c3 (for simplification the term corresponding to
c0 is set to 1), αi ∈ R. According to the multiplication scheme in Example 5.19, one
then obtains

p2 = c20 + 2α1c0c1 + 2α2c0c2 + 2α3c0c3 + 2α1α2c1c2

= c0 + α1c1 + α2c2 + ((1 − θ)α3 + θα1α2)c3 .

Introducing a new variable α4 := α1α2, the dynamics for the mapping p 7→ p2 can now
be represented linearly:

α1 7→ α1 ,

α2 7→ α2 ,

α3 7→ (1− θ)α3 + θα4 ,

α4 7→ α4 ,
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i.e. the corresponding matrix for mapping (in the order: α1, α2, α4, α3) is given as




1 0 0 0
0 1 0 0
0 0 1 0
0 0 θ (1− θ)


 .

5.4.2 Haldane linearisation for the recombination dynamics

With the aim to observe a general pattern for the Haldane linearisation of the recom-
bination dynamics, we construct the transformation for further cases (with regard to
the number of sites and corresponding alleles), allowing for any possible recombination
event [35].

2 sites, m and n alleles

In this case, we have m ·n gametes that form the (natural) basis of the genetic algebra:
a1 = [1, 1], a2 = [1, 2], . . . , amn = [m,n] Again, 0 ≤ θ ≤ 1 describes the probability for
a crossover between the two sites, and multiplication is specified by the following rule:

[i, j] × [k, l] =
1

2

(
[i, j] + [k, l]

)
+

1

2
θ
(
−([i, j] + [k, l]) + [i, l] + [k, j]

)

for all 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n.

We then apply the following transformation to obtain a new basis:

w1 = [1, 1] = a1 ,

wj = [1, 1] − [1, j] = a1 − aj for j = 2, . . . , n ,

wkn+1 = [1, 1] − [k + 1, 1] = a1 − akn+1 for k = 1, . . . ,m− 1 ,

wkn+j+1 = [1, 1] − [1, j + 1]− [k + 1, 1] + [k + 1, j + 1] ,

= a1 − aj+1 − akn+1 + akn+j+1 k = 1, . . . ,m− 1 , j = 1, . . . , n− 1 .

This transformation can be also described by the following transformation matrix (in
lexicographical order):




1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1




︸ ︷︷ ︸
m×m

⊗




1 0 0 · · · · · · 0
1 −1 0 · · · · · · 0
1 0 −1 · · · · · · 0
...

...
...

...
...

...
...

...
...

...
1 0 0 · · · · · · −1




︸ ︷︷ ︸
n×n︸ ︷︷ ︸

(mn)×(mn)

.
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Here, ⊗ denotes the tensor product for matrices, also known as Kronecker product [27].
Multiplication via the new basis is now specified by

w1 × w1 = w1 ,

w1 × wj =
1

2
wj for j = 2, . . . , n ,

w1 × wkn+1 =
1

2
wkn+1 for k = 1, . . . ,m− 1 ,

w1 × wkn+j+1 =
1

2
θwkn+j+1 for k = 1, . . . ,m− 1 and j = 1, . . . , n− 1 ,

while all other matings yield 0. Thus, the basis {w1, . . . , wmn} is indeed a Gonshor
basis. The population in terms of the Gonshor basis is then given by

p = w1 + α2w2 + . . .+ αmnwmn with αi ∈ R .

With regard to p2, resulting from the above multiplication , the dynamics of the mn−1
coefficients α2, . . . , αmn is a nonlinear one. The mapping of the coefficients is given as
follows:

αj 7→ αj for j = 1, . . . , n and j = n+ 1, 2n + 1, . . . , (m− 1)n + 1 (5.16)

αkn+j+1 7→ (1− θ)αkn+j+1 + θαj+1αkn+1 k = 1, . . . ,m− 1, j = 1, . . . , n− 1 .(5.17)

The dynamics can be linearised by taking into account (m − 1)(n − 1) additional pa-
rameters, namely

βj,k = αj+1 · αkn+1 for k = 1, . . . ,m− 1 and j = 1, . . . , n − 1 ,

such that these additional parameters are mapped to themselves.

The dynamics can then be described by a (2mn−m−n)× (2mn−m−n)-matrix (after
ordering the parameters in a respective way):1(m−1)+(n−1) ⊕

(1(m−1)(n−1) ⊗

(
1− θ θ
0 1

))
,

where ⊕ denotes the Kronecker sum of two matrices [27].

For the transformation to the Gonshor basis, we chose the type a1 = [1, 1] as allocated
character (since w1 = a1). If a1 mates with non-a1 types that either have allele 1 at
site 1 or allele 1 at site 2, recombination does not produce anything new. This is true
for altogether (m − 1) + (n − 1) types, and thus explains the identity matrix of size
(m − 1) + (n − 1) (compare (5.16)); for all other (m − 1)(n − 1) types recombination
with a1 results in mixed gametes. The respective explanation for the decisive block of
the second matrix together with (5.17) should then be obvious.



100 Outlook: The general recombination model

3 sites: n1,n2,n3 alleles

Considering the model with three sites, we have to include three different recombination
probabilities for the three possible partitions of the sites {1, 2, 3} into two parts: Par-
tition (1|23) (probability θ1), partition (12|3) (probability θ2) and the partition (13|2)
which corresponds to a double-crossover event (probability γ).

As a start, we again consider the natural basis consisting of all possible gametes: a1 =
[1, 1, 1], a2 = [1, 1, 2], . . . , an1n2n3

= [n1, n2, n3], where multiplication is given by

[a, b, c] × [d, e, f ] =
1

2

(
[a, b, c] + [d, e, f ]

)
+

1

2
θ1
(
−[a, b, c] − [d, e, f ] + [a, e, f ] + [d, b, c]

)

+
1

2
θ2
(
−[a, b, c] − [d, e, f ] + [a, b, f ] + [d, e, c]

)

+
1

2
γ
(
−[a, b, c] − [d, e, f ] + [a, e, c] + [d, b, f ]

)
.

As before, we search for a corresponding Gonshor basis via

w1,1,1 = [1, 1, 1] ,

w1,1,k = [1, 1, 1] − [1, 1, k] for k = 2, . . . , n3 ,

w1,j,1 = [1, 1, 1] − [1, j, 1] for j = 2, . . . , n2 ,

wi,1,1 = [1, 1, 1] − [i, 1, 1] for i = 2, . . . n1 ,

wi,j,1 = [1, 1, 1] − [1, j, 1] − [i, 1, 1] + [i, j, 1] for i = 2, . . . , n1 and j = 2, . . . , n2 ,

wi,1,k = [1, 1, 1] − [i, 1, 1] − [1, 1, k] + [i, 1, k] for i = 2, . . . , n1 and k = 2, . . . , n3 ,

w1,j,k = [1, 1, 1] − [1, j, 1] − [1, 1, k] + [1, j, k] for j = 2, . . . , n2 and k = 2, . . . , n3 ,

wi,j,k = [1, 1, 1] − [1, 1, k] − [1, j, 1] − [i, 1, 1] + [1, j, k] + [i, 1, k] + [i, j, 1] − [i, j, k]

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 .

With the notation of a transformation matrix this corresponds to




1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1




︸ ︷︷ ︸
n1×n1

⊗




1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

...
...

...
1 0 · · · · · · −1




︸ ︷︷ ︸
n2×n2

⊗




1 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1




︸ ︷︷ ︸
n3×n3

.

Like in the case with two sites, it is easily verified that the above basis indeed specifies a
Gonshor basis. For a population p = α1,1,1w1,1,1+α1,1,2w1,1,2+ . . .+αn1,n2,n3

wn1,n2,n3
,
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the coefficients αi,j,k ∈ R evolve in the following way:

α1,1,1 7→ α1,1,1 ,

α1,1,k 7→ α1,1,k k = 2, . . . , n3 ,

α1,j,1 7→ α1,j,1 j = 2, . . . , n2 ,

αi,1,1 7→ αi,1,1 i = 2, . . . n1 ,

αi,j,1 7→ (1− θ1 − γ)αi,j,1 + (θ1 + γ)α1,j,1 · αi,1,1 i = 2, . . . , n1 , j = 2, . . . , n2 ,

αi,1,k 7→ (1− θ1 − θ2)αi,1,k + (θ1 + θ2)α1,1,k · αi,1,1 i = 2, . . . , n1 , k = 2, . . . , n3 ,

α1,j,k 7→ (1− θ2 − γ)α1,j,k + (θ2 + γ)α1,1,k · α1,j,1 j = 2, . . . , n2 , k = 2, . . . , n3 ,

αi,j,k 7→ (1− θ1 − θ2 − γ)αi,j,k + θ1 · αi,1,1 · α1,j,k + θ2 · α1,1,k + γ · α1,j,1 · αi,1,k

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 .

The dynamics can then be linearised by adding (n1 − 1)(n2 − 1) + (n1 − 1)(n3 − 1) +
(n2 − 1)(n3 − 1) + 4(n1 − 1)(n2 − 1)(n3 − 1) additional parameters:

α1,j,1 · αi,1,1 7→ α1,j,1 · αi,1,1 for i = 2, . . . , n1 and j = 2, . . . , n2 ,

α1,1,k · αi,1,1 7→ α1,1,k · αi,1,1 for i = 2, . . . , n1 and k = 2, . . . , n3 ,

α1,1,k · α1,j,1 7→ α1,1,k · α1,j,1 for j = 2, . . . , n2 and k = 2, . . . , n3 ,

αi,1,1 · α1,j,k 7→ αi,1,1

(
(1− θ2 − γ)α1,j,k + α1,1,k · α1,j,1(θ2 + γ)

)

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 ,

α1,1,k · αi,j,1 7→ α1,1,k

(
(1− θ1 − γ)αi,j,1 + α1,j,1 · αi,1,1(θ1 + γ)

)

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 ,

α1,j,1 · αi,1,k 7→ α1,j,1

(
(1− θ1 − θ2)αi,1,k + α1,1,k · αi,1,1(θ1 + θ2)

)

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 ,

αi,1,1 · α1,1,k · α1,j,1 7→ αi,1,1 · α1,1,k · α1,j,1

for i = 2, . . . , n1, j = 2, . . . , n2 and k = 2, . . . , n3 .

The resulting linear dynamics is depicted more clearly with the matrix notation:1(n1−1)+(n2−1)+(n3−1) ⊕ 1(n1−1)(n2−1) ⊗

(
1− θ1 − γ θ1 + γ

0 1

)

⊕ 1(n1−1)(n3−1) ⊗

(
1− θ1 − θ2 θ1 + θ2

0 1

)
⊕ 1(n2−1)(n3−1) ⊗

(
1− θ2 − γ θ2 + γ

0 1

)
⊕1(n1−1)(n2−1)(n3−1) ⊗




1− θ1 − θ2 − γ θ1 θ2 γ 0
0 1− θ2 − γ 0 0 θ2 + γ
0 0 1− θ1 − γ 0 θ1 + γ
0 0 0 1− θ1 − θ2 θ1 + θ2
0 0 0 0 1



.

We can see a clear structure in this matrix which describes the dynamics after linearisa-
tion. The allocated character is again a1 = [1, 1, 1] (since w1 = a1) and recombination
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cannot produce a mixed gamete if a1 mates with non-a1-types that have only one site oc-
cupied by an allele different from 1. This is the case for (n1−1)+(n2−1)+(n3−1) types
(i.e. only allele at site 1 is different from allele 1, only allele at site 2 is different from al-
lele 1 and only allele at site 3 is different from allele 1, respectively) and may therefore

explain the first unity matrix. The next block 1(n1−1)(n2−1) ⊗

(
1− θ1 − γ θ1 + γ

0 1

)

refers to the sites 1 and 2 in case they are occupied by alleles different from allele
1 while site 3 should be occupied by allele 1. Again, with respect to a1 = [1, 1, 1]
recombination can only produce something new if both alleles at the sites 1 and 2 of
the mating partner are different from 1. This is the case for (n1 − 1)(n2 − 1) types.
The probability that a recombination event between the sites 1 and 2 takes place is
θ1+γ. Analogously, this holds with respect to the sites 1 and 3 and with respect to the
sites 2 and 3, respectively (explaining the next two blocks). The last block concerns
types where all three sites carry alleles different from 1 ((n1− 1)(n2 − 1)(n3− 1) types)
together with the respective recombination probabilities.

4 sites: n1, n2, n3, n4 alleles

The four-site case follows along the same lines as the previously discussed cases. With
regard to the transformation matrix for three sites, for the transformation to a Gonshor
basis in the four-site case, a fourth n4 × n4-matrix of the same kind has to be added.
For Haldane linearisation (n1 − 1)(n2 − 1) + . . . + (n3 − 1)(n4 − 1) + 4(n1 − 1)(n2 −
1)(n3−1)+ · · ·+4(n2−1)(n3−1)(n4−1)+14(n1−1)(n2−1)(n3−1)(n4−1) additional
parameters are needed.

The resulting linear dynamics is then described by a matrix that has the same structure
as the matrices we have seen above. It is built in the same recursive manner, meaning
that the first block consists of a unity matrix that refers to types where only one allele is
different from allele 1 (if again type [1, 1, 1, 1] is allocated). Then the blocks that refer to
types with two sites occupied with alleles different from allele 1 follow (same structure
as in the 3 site case) etc., again with the respective recombination probabilities. The
new block in this matrix is the last one that refers to [1, 1, 1, 1] mating with types
that have all four sites occupied with alleles different from 1. Just as in the detailed
discussion of the single-crossover dynamics in discrete time in Chapter 3, for the first
time product terms (that refer to two non-trivial segments) as eigenvalues of the linear
dynamics can be observed (compare Section 3.3) [35].

What can we infer from this algebraic approach? We show how recombination dynam-
ics is described by genetic algebras, and demonstrate (at least up to four sites) a way
to construct the Gonshor basis as well as Haldane linearisation. As can be already seen
with three sites, the dimension of the problem increases rapidly. In particular, the num-
ber of additional parameters (for the linearisation procedure) depends on the number
of alleles. In contrast, our previously described ansatz for the general recombination
dynamics, compare Section 5.2, is allele-independent and therefore of lower complexity.
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Instead, the number of linearisation parameters is restricted by the number of possi-
ble partitions of the sites. This shows that the dimensional increase for the algebraic
approach is unnecessarily high, i.e. the allele information can be skipped.

The ansatz of genetic algebras considers all allele combinations and the structure of the
block matrix, which describes the linearised dynamics, is built in a recursive manner
(taking into account all subsets of sites). Thus, as can be already observed with the
above examples, the algebraic setting uses a lot of redundant information. For example,
see the matrix for three sites: all information is given by the 5 × 5 matrix of the last
block.

Thus, although algebras contribute an interesting approach in population genetics our
less formal approach seems - at least for the recombination dynamics - more promising.





Chapter 6

Summary and Discussion

In this work, we have investigated the dynamics of an ‘infinite’ population that evolves
due to recombination alone. To this end, we assumed discrete (non-overlapping) gen-
erations and restricted ourselves to the special case of single crossovers. The dynamics
is described by a large system of nonlinear and coupled difference equations that are
difficult to treat. Therefore, we rewrote the arising equations with the help of specific
recombination operators in a more compact way. This not only helped to explore the
recombination dynamics but also allowed for an allele-independent formulation of the
equations.

Previous results had shown that the corresponding single-crossover dynamics in contin-
uous time admits a closed solution [3]. This astonishing result is in accordance with a
‘hidden’ linearity in the system that is due to the independence of links. The fact that
crossovers at different links occur independently manifests itself in the product struc-
ture of the coefficient functions of the solution ensuing from the linear action of the
nonlinear recombination operators along the solution of the recombination equation.
Additionally, as shown in [3], certain transformation operators, which are indepen-
dent of the recombination parameters, can be found that linearise and diagonalise the
dynamics.

Since the overwhelming part of published literature deals with discrete-time models,
one aim was to find out whether, and to what extent, these continuous-time results
carry over to single-crossover dynamics in discrete time. This was investigated in detail
in Chapter 3 where we showed that the discrete-time dynamics is significantly more
complex than the continuous-time one.

For up to three sites, the discrete-time dynamics behave similarly to the continuous-
time dynamics, but with four or more sites they differ in an important way. The main
reason for the arising difficulties lies in the fact that the key feature of the continuous-
time model, the independence of links, does not carry over to discrete time. This is
due to interference whereby the occurrence of a recombination event in the discrete-
time model forbids any further crossovers in the same generation. As a consequence,
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the iteration for the coefficient functions aG(t) is (in contrast to the continuous-time
model) nonlinear from four sites onwards and therefore does not allow for an explicit
solution. Furthermore, whilst in continuous time all recombinators RG act linearly
along solutions of the corresponding dynamics, in discrete time this is only true for
certain subsets G ⊆ L.

Thus, the diagonalising transformation operators TG from the continuous-time model
are insufficient to diagonalise the discrete-time dynamics. Nevertheless, we could show
that these transformation operators at least linearise the discrete-time dynamics and we
used this result to transform the recombination equations into a solvable system with a
two-step procedure: first linearisation via the TG operators, followed by diagonalisation.
Unfortunately, the coefficients of the second step must be constructed via recursions
that involve the recombination probabilities. However, once this is done for a given
system, it allows for an explicit solution valid for all times.

A similar approach has already been pursued by Dawson [14, 15] (following the idea
of Bennett [7]), who also presented an appropriate diagonalising transformation for
the more general recombination equation (without the restriction to single crossovers)
and which includes parameters that must be determined recursively. Unfortunately,
the corresponding derivations are relatively technical and fail to reveal the underlying
mathematical structure. It was our aim to improve on this and add structural insight.
Furthermore, Dawson restricted his model solely to diallelic loci while our ansatz is
allele-independent. The transformation agrees with the one of Dawson [14, 15] when
translated into his framework.

After having solved the diagonalisation problem and equipped with the structural in-
sights gained in Chapter 3, we set out in Chapter 4 to find an explicit solution to the
dynamics whilst avoiding the need to perform a transformation. We stated a stochas-
tic process of recombination, a specific Wright-Fisher process, that converges to our
deterministic model as the population size tends to infinity (infinite population limit).
We then traced the recombination process backwards in time, i.e. as the time reversal
of the Wright-Fisher process. Since we assumed a population in the infinite population
limit, we could ignore genetic drift and thus backtracked the history of one type in the
present population with respect only to recombination. We showed that each possible
history can be explained with a binary tree, which we call the ancestral recombina-
tion tree, and thus corresponds to the outcome of a particular stochastic process (the
segmentation process) with respect to the recombination model. We then developed
a method to state the probability for a certain tree topology under this process. A
key factor in this process was to make use of another weaker kind of independence,
namely the independence of the segments produced by recombination, which allowed
us to state the probability for a tree topology via certain subtrees. Ultimately, each co-
efficient function could be stated as the sum over the probabilities for all corresponding
tree topologies and - for the first time - we could present an explicit solution for the
discrete-time recombination dynamics.

Finally, we gave an outlook for the general recombination model in Chapter 5. Here,
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the initial studies suggested that the general recombination model can be explored with
the same methods that we had developed in Chapter 3 (constructing a diagonalising
transformation) and Chapter 4 (using the time-reversal tree producing process to in-
fer an explicit solution). The restriction on single-crossovers always leads to ordered
partitions of the sites and thus recombination events (and the recombinator) can be
described via links (since this implies the respective partition of sites due to the or-
dered structure). This simplification is lost for the general recombination model, where
the recombinators have to be defined via the possible partitions (and the composite
recombinators via refinements of partitions). In spite of these complications, we could
show that the overall structure (e.g. independence of segments, arising tree structures)
of the solution remains the same, and therefore the extension of the problem seems to
be more a problem of notation than of the mathematics itself. We concluded the out-
look by adumbrating how to treat recombination dynamics in the framework of genetic
algebras. This suggested that the ansatz of genetic algebras seems to be unnecessarily
complicated - although the approach still has to be completed and may be useful for
extensions of the recombination model (see below).

Concerning further research on recombination dynamics, it would be interesting to ex-
plain the simple structure of the continuous-time single-crossover solution via ancestral
recombination trees. The corresponding approach is explained in Chapter 5, but the
simplicity of the coefficient functions is not immediately evident. Furthermore, the
investigation of the general recombination model (building on the results of Chapter 5)
has to be finished.

After the dynamics of recombination has been studied in isolation, a logical next step
would be to include additional evolutionary forces into the model (e.g. mutation or
selection). Ideas on how this might be achieved with our ansatz are given in [3]. Also,
the approach of genetic algebras might find application when considering other factors
in addition to recombination. This is due to the fact that it is often possible to con-
struct a more ‘complex’ algebra, which models several evolutionary forces, via ‘simpler’
algebras, where each algebra only considers a single factor. The construction of new
algebras can be achieved by forming linear combinations, tensor products, duplications
and linear mappings of existing algebras [69].

Another interesting area regarding recombination concerns itself with the effects of gene
conversion. While (single -) crossover events lead to the reciprocal exchange of the
leading and trailing regions, gene conversion results in the non-reciprocal replacement
of the region in between the flanking regions (see also Figure 2.2). The ability to
distinguish between crossover and gene conversion events is currently of great interest
since these factors have different effects on the measures of linkage disequilibrium (LD)
[39, 66]. Patterns of LD are in turn important to infer information about sequence
variation and population history and are also used for gene mapping. With regard to
our (general) recombination model, gene conversion refers to special partitions, i.e. to
non-crossing partitions of the sites. This would also be interesting from a mathematical
point of view since these partitions constitute another mathematical research area in
themselves [63].
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