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Abstract— Olfactory stimuli are represented in a high-
dimensional space by neural networks of the olfactory system.
A great deal of research in olfaction has focused on this
representation within the first processing stage, the olfactory bulb
(vertebrates) or antennal lobe (insects) glomeruli. In particular
the mapping of chemical stimuli onto olfactory glomeruli and
the relation of this mapping to perceptual qualities have been
investigated. While a number of studies have illustrated the
importance of inhibitory networks within the olfactory bulb or
the antennal lobe for the shaping and processing of olfactory
information, it is not clear how exactly these inhibitory networks
are organized to provide filtering and contrast enhancement
capabilities. In this work the aim is to study the topology
of the proposed networks by using software simulations and
hardware implementation. While we can study the dependence
of the activity on each parameter of the theoretical models
with the simulations, it is important to understand whether the
models can be used in robotic applications for real-time odor
recognition. We present the results of a linear simulation, a
spiking simulation with I&F neurons and a real-time hardware
emulation using neuromorphic VLSI chips. We used an input
data set of neurophysiological recordings from olfactory receptive
neurons of insects, especially Drosophila.

I. INTRODUCTION

The insect olfactory system is an ideal model for the study
of information processing in biological neural networks. In
particular the fruit fly Drosophila melanogaster has proved
to be a useful tool for the analysis and manipulation of
information processing mechanisms.

The first olfactory relay in insects, the antennal lobe (AL),
consists of a relatively small number (ca. 50 in Drosophila)
of functionally distinct processing units or glomeruli. These
units are zones of high synaptic convergence between the
axons of one type of olfactory receptor neurons (ORN) and
the dendrites of a few projection neurons (PN) projecting to
higher brain areas [1]. The spatio-temporal activation pattern
of the neurons in the glomeruli reliably reflects the identity of
the odor presented to the insect [2]. This odor code is con-
served between individuals. This is helpful for the systematic
comparison and pooling of experimental results.

Furthermore, genetic and physiological tools have been de-
veloped to allow both monitoring and manipulation of specific

Fig. 1. Simplified model of the AL as used in all our simulations.
Small triangles: excitatory connections. Small circles: inhibitory connections.
Weights of excitatory and inhibitory connections (gray and blue pathways)
are the only free parameters used to study the behavior of the network.

parts of the olfactory processing stream by means of insertion
of reporter proteins [3].

Glomeruli are interconnected with local interneurons (LN).
These intra-AL connections have a significant influence on the
processing of information in the AL [4], [5].

In this paper we show that we can use the same input
data set and obtain comparable results with three different
tools: a linear model, a spiking simulation and neuromorphic
VLSI emulation. The linear model can provide a complete
characterization of the parameter space, is simple in simulation
and analysis but does not take into account the temporal
dynamics observed in biology. The spiking simulation has the
advantage of including the temporal dynamics in the model
but it is computationally intensive especially for large network
simulations. The neuromorphic VLSI emulation exhibits the
advantages of the spiking simulation in a compact, low-power,
real-time system. The network architecture under examination
is based on a previous study by Silbering and Galizia [?].

II. METHODS

LNs in the Drosophila AL are predominantly GABAergic
[6] and densely connect glomeruli all across the AL [7], [8].
We modeled this with a global inhibitory neuron (blue neuron
in Fig. 1) which is excited by all sensory neurons and inhibits
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Fig. 2. Multi-chip system. LNs and PNs are allocated on two different
chips. For each chip, the layout and a picture of the real chip is shown (chips
size is 15mm2). Analog I&F neuron circuits and analog synaptic circuits
are implemented in VLSI technology (128 neurons, 4096 synapses on LNs
chip; 2048 neurons and 6144 on PNs chip). Input data matrix of Calcium
concentrations is converted into Poisson spike trains and sent to the multi-chip
network as digital events (AER protocol). The activity of all neurons can be
monitored in real-time from the same computer from which we send the input
trains.

all PNs.
Every ORN makes an excitatory synapse onto one PN only

[9]. Multi-glomerular PNs do exist in Drosophila but have
been shown to carry highly correlated signals [10].

As input to our network we used a subset of the DoOR
odorant response database [11]. In this database each odorant
is represented as an ORN activation vector of mean-rate
activity. We excluded odorants with less than 7 data points and
receptor neurons with less than 80 data points. The remaining
input matrix contains data for 137 odorants in 23 glomeruli.
The empty cells in the matrix (ca. 15%) were filled with
estimations of the receptor neurons’ spontaneous activity. All
values in the input matrix were globally normalized.

A. Linear simulation

At present most data about in vivo activation of AL networks
is from calcium imaging studies [12], [13]. This technique
produces data with high spatial but relatively low temporal
resolution. In order to simulate the Drosophila AL network
in a fashion that is both close to the experimental results in
resolution and simple in simulation and analysis we built a
simulation based on linear algebraic techniques.

Each odor is represented as a vector of ORN activation
values in n-dimensional space, where n is the number of
glomeruli in the network (23). We subjected the odor vectors to
a linear transformation of the form that modified each element
in the input vector by the summed activity in the input.

The activity of a single PN can therefore be expressed by
the following equation:

ρPN
i = ρORN

i − α
∑

k

ρORN
k (1)

where α scales the global feed-forward inhibition and the term
ρORN

k represents the activity of ORN k for the presented odor.
This enabled us to explore the glomerulus-unspecific, global
component of the AL network in the most generic terms.

Fig. 3. FF-curves. The activity of PNs is plotted against the activity of input
neurons. Small dots in the background represent all the input-output couples
(single simulation run). Large squares/triangles in foreground are the average
on each bin and vertical bars are the standard deviation. Raw data used to
produce these plots as in center column of Fig.4.

B. Spiking simulation

The spiking simulation was implemented using the Python
software package Brian [14] to simulate a population of
23 glomeruli as leaky integrate-and-fire (I&F) neurons with
exponential inhibitory and excitatory synaptic currents. These
ORNs are linked via a global inhibitory neuron to a population
of 23 uniglomerular PNs (see Fig. 1). The input matrix
described above was used to generate Poisson trains with
corresponding mean firing rates to be used as input to the
spiking network.

The parameters controlling the neural dynamics are global:
all neurons in the network have the same refractory period,
leak, etc. The synapses have near-instantaneous activation with
an amplitude equal to the connection weight. Synaptic time
constants are on the order of magnitude of 100 ms, while
the refractory period is dimensioned as to limit the maximum
firing rate to 250Hz. The only two tuning parameters were the
synaptic weights of the excitatory and inhibitory connections,
which proved to be a good compromise between the number
of available parameters and the variability of the network
performance.

C. VLSI spiking emulation

During the last decade the neuromorphic engineering com-
munity has made substantial progress by developing the tech-
nology for constructing distributed multi-chip systems of sen-
sors and neuronal processors that operate asynchronously and
communicate using action-potential-like signals (or spikes)
[15], [16]. The unique advantages of VLSI networks of spiking
neurons permit the embodiment of this platforms on robotic
devices, providing the circuits with realistic inputs which are
affected by the interaction of the robot with the environment.
In this context the robustness of the adopted model is a crucial
requirement and can be easily tested. The experiment we
describe in this section represents a preliminary step in this
direction.

Thanks to the multi-chip setup flexibility we were able to
emulate all the complexity of the modeled network in terms
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Fig. 4. Histogram of angles between activation vectors of odor pairs for the three simulations (rows) and for three values of inhibition strength (columns).
Increasing inhibition strength (from left to right) produces a shift of the angle distribution towards the 90 degrees limit, therefore increasing odor discriminability.

of number of neurons, synapses and parameters. The VLSI
spiking emulation was performed using a setup comprising
two neuromorphic chips.

The global inhibitory neuron was implemented on a chip
comprising 2048 I&F neurons and 6144 dynamic input
synapses. The silicon neurons and synapses are implemented
on a 15 mm2 standard 0.35 µm four-metal CMOS technol-
ogy chip. Each neuron can receive input current from one
inhibitory and two excitatory AER1 synapses with independent
parameters (weights and time constants). A second chip was
used for the projection neurons. The chip is composed of 128
I&F neurons, each one receiving inputs from 32 AER synapses
(2 inhibitory, 2 excitatory and 28 excitatory plastic synapses).
Only the non-plastic synapses were used in the network.

The leaky I&F circuit used in this chip [18] is compact
and optimized for power consumption, it implements spike-
frequency adaptation as well as a tunable refractory period and
voltage threshold modulation. The silicon synapses are “Diff-
Pair Integrator” circuits [19] and model the temporal dynamics
of biological post-synaptic currents.

We can interface the chip to a workstation using dedicated
boards and this allows us to stimulate the synapses on the
chips, monitor the activity of the neurons [20], and map events
from one neuron to a synapse belonging to a neuron on the
same chip or on another chip. Therefore arbitrary connectivity
patterns can be implemented.

1The Address Event Representation (AER) is one of the most common
asynchronous communication protocols used in spiking neuromorphic chips
[17]. In this representation, input and output signals are real-time digital events
that carry analog information in their temporal relationship. Each event is
represented by a binary word encoding the address of the sending node.

III. RESULTS

In order to compare the behavior of the network in the
three different approaches we focused on basic measurements
relating the input activity at the level of the ORNs with the
output of the AL network from PNs.

A. Network transfer function

Given the nature of the input vectors of mean-rate activities,
i.e. without any temporal structure, we represent the activation
dynamics of the network with the FF-curve, sometimes also
referred to as the rate-based transfer function. Each point in the
plot represents the input activity of one ORN to its glomerulus
(x-axis) and the activity of the corresponding PN neuron (y-
axis) that the ORN is directly exciting. The scatter plot of all
the activities for all odors is shown in the background of Fig.
3 while the binned average of these values is shown in the
foreground.

After a short non-linear range (below 25 Hz) the curves
show linear dynamics in a wide range, which is comparable
with values of activity typically found in Drosophila PNs [6].
Higher variability in the transfer function of VLSI neurons
is due to device mismatch present in the hardware and not
simulated in the software.

B. Odor pair separation

One hypothesis about the role of the AL in the olfactory
processing stream is to increase odor discriminability. In the
AL, all axons with the same receptor expression profile con-
verge onto a single glomerulus [1], so that the array of activity
values of each ORN for a given odor represents a vector
in a multidimensional space. Intuitively, we can consider the
Euclidean angle between pairs of vectors as a measure of odors
proximity, thus the network should increase angles to improve
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odor discriminability. This approach has the advantage over
similar measures, like for example the Euclidean distance, of
being concentration independent.

The table in Fig. 4 shows the distribution of angles (com-
puted for all possible odor pairs) for the three simulations
(rows) and for three values of inhibition strength (columns).
When inhibition is disabled (left column) the PNs angle
histogram is identical to the input (ORN) angle histogram for
the linear simulation (top graph). Small variations due to the
noise introduced by the Poisson statistic of the spike trains are
observed in the spiking simulation; more noise is observed
in the VLSI emulation because of device mismatch. When
inhibition is enabled (center column) an average increase in
angles between odors is observed in the three models. This
network effect can be increased by increasing the strength of
inhibition (right column).

These results show that inhibition could be used by the AL
to increase angles between odor pairs and therefore improve
odor discriminability. The three models show comparable
results.

IV. CONCLUSIONS

We showed results from a linear simulation, a spiking
simulation and a VLSI emulation of a simple model of the AL.
The network behavior is consistent in the three representations
and shows the ability of the model to increase the angle
between odor pairs, therefore improving odor discriminability.
The mean angle between activation vector for odor pairs
increases with increasing inhibition strength as shown by the
shift of the angle histograms toward the 90 degrees limit.

Our results show that even if the spatio-temporal activation
of the AL has an important role in odor representation [21],
the spatial activation alone can describe the influence of
the sensory olfactory system on the discriminability of odor
representations.

The spiking simulation and VLSI emulation are perfectly
suited for studying the temporal dynamics of the network. This
work lies the foundation for future studies in this direction.
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