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ABSTRACT

The growing interest in pulse–based neural networks is
encouraging the development of hardware implementations
of massively parallel, distributed networks of Integrate–and–
Fire (I&F) neurons. We have developed a mixed–mode (ana-
log/digital) VLSI device that comprises a reconfigurable net-
work of I&F neurons and adaptive synapses. The synapses
receive input spikes and the neurons transmit output spikes
(events) using an asynchronous Address–Event Represen-
tation (AER). In this paper we describe the network archi-
tecture, present experimental data demonstrating the char-
acteristics of the single elements on the chip, and show that
a competitive network configuration has Winner–Take–All
(WTA) behavior and produces spike synchronization.

1. INTRODUCTION

Networks of I&F neurons have been shown to exhibit a wide
range of useful computational properties, including feature
binding, segmentation, pattern recognition, onset detection,
input prediction, etc. [1]. These types of networks are very
well suited for VLSI implementation. Recent and grow-
ing interest in pulse–based neural networks, together with
the emergence of a standard that allows VLSI neurons to
communicate using asynchronous pulse–frequency modu-
lated events (spikes), have led to the development of a large
number of VLSI implementations of networks of I&F neu-
rons (see the ISCAS04 invited session on spiking neural
networks). The asynchronous communication protocol is
based on the Address–Event Representation [2, 3]. In this
representation input and output signals are real–time, dig-
ital events that carry analog information in their temporal
structure (interspike intervals). Each event is represented
by a binary word encoding the address of the sending node.
On–chip arbitration schemes are used to handle event “col-
lisions” (cases in which sending nodes attempt to transmit
their addresses at exactly the same time). Systems contain-
ing more than two AER chips can be assembled using addi-
tional off–chip arbitration. These off–chip arbiters can also
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use lookup–tables and processing elements to remap, time–
stamp and perform digital operations on address–events [2,
4].

In this paper we present an AER chip comprising a net-
work of I&F neurons and dynamic synapses. The I&F neu-
ron circuit is described and fully characterized in [5]. The
circuits implementing the synapses are of two types [6, 7].
Both types integrate input spikes, producing biologically
plausible dynamics: one type is compact and exhibits short–
term depression, while the other is larger, but can exhibit ei-
ther short–term depression or facilitation, depending on its
parameter settings. The parameters that control the synap-
tic dynamics and their strength are global and can be set by
external voltage references.

The AER input synapses and AER output neurons offer
the possibility of implementing networks of arbitrary topol-
ogy when the device is interfaced to a dedicated PCI–AER
board [4], able to log, monitor, map and generate address–
events. In addition to externally addressable AER synapses,
we included synaptic circuits with hard–wired on–chip con-
nectivity to implement a competitive network topology. The
circuits used on this chip are to a large extent technology in-
dependent and the network could be scaled up to arbitrary
size.

2. NETWORK ARCHITECTURE

The architecture of the VLSI network of I&F neurons is
shown in Fig. 1(a). It is a two–dimensional array containing
a row of 32 neurons, each connected to a column of affer-
ent synaptic circuits. Each column contains 14 AER exci-
tatory synapses, 2 AER inhibitory synapses and 6 locally
connected (hard–wired) synapses. When an address–event
is received, the synapse with the corresponding row and col-
umn address is stimulated. If the address–events routed to
the neuron with the corresponding column address integrate
up to the neuron’s voltage threshold for spiking, then that
neuron generates an address–eventwhich is transmitted off–
chip. Arbitrary network architectures can be implemented
using off–chip look–up tables and routing the chip’s output
address–events to one or more AER input synapses. The
synapse address can belong to a different chip, therefore,
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Fig. 1. (a) Chip architecture. Squares represent excitatory (E) and inhibitory (I) synapses, trapezoids represent I&F neurons.
The I&F neurons can transmit their spikes off–chip and/or to locally connected synapses (see text for details). (b) Schematic
representation of the connectivity pattern implemented by the internal hard–wired connections (closed boundary condition).
Empty circles represent excitatory neurons and the filled circle represents the global inhibitory neuron. Solid/dashed lines
represent excitatory/inhibitory connections. Connections with arrowheads are monodirectional, all the others are bidirec-
tional.

arbitrary multi–chip architectures can be implemented.
Synapses with local hard–wired connectivity are used

to realize a competitive (WTA) network with nearest neigh-
bor and second nearest neighbor interactions (see Fig. 1):
31 neurons of the array send their spikes to 31 local excita-
tory synapses on the global inhibitory neuron; the inhibitory
neuron, in turn, stimulates the local inhibitory synapses of
the 31 excitatory neurons; each excitatory neuron stimulates
its first and second neighbors on both sides using two sets of
locally connected synapses. The first and second neighbor
connections of the neurons at the edges of the array are con-
nected to pads. This allows us to leave the network open,
or implement closed boundary conditions (to form a ring of
neurons [8]), using off–chip jumpers.

All of the synapses on the chip can be switched off. This
allows us to inactivate either the local synaptic connections,
or the AER ones, or to use local synapses in conjunction
with the AER ones. In addition, a uniform constant DC
current can be injected to all the neurons in the array. The
amplitude of this current can be set through a global bias
voltage.

The chip was implemented using a standard 0.8 µm
CMOS technology. The layout of the whole array, including
the AER input and output sections covers an area of about
1.1 × 1.9 mm2. The layout of one column of the array, in-
cluding the I&F neuron, the 16 AER synapses and the 6 lo-

cal ones covers an area of about 31×1500 µm2. Only about
6% of this area is occupied by the neuron (31 × 86 µm2).

In theory this network can scale up to any arbitrary size,
both in terms of the number of neurons, and the number of
synapses. In practice the network size is limited by the AER
bandwidth available. If we consider a network of neurons
configured via the PCI–AER board with 30% connectivity
(a typical figure used in modeling studies), in which (typi-
cally) only 10% of the neurons fire at a mean rate of 100Hz,
the speed of the (non–optimized)AER circuits implemented
on the current chip limits the maximum number of possible
neurons to approximately 1000. Using the same 0.8 µm
CMOS technology used for the current device, an array of
1000× 300 I&F neurons and synapses would require a sili-
con area of approximately 31 × 20 mm2.

3. EXPERIMENTAL RESULTS

To verify the correct behavior of the circuits on the chip
we injected the same DC current to all the neurons in the
array and measured the network’s response properties as
a function of different configuration parameters (such as
the strengths of different synaptic weights). In these ex-
periments we did not stimulate the neurons via the AER
synapses (that have been tested previously and shown to
function correctly).
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Fig. 2. Network response to homogeneous constant input
current with all synaptic connections disabled. Left panel:
raster plot of the network activity. Right panel: mean output
frequencies. The differences in mean output frequency are
due to device mismatch effects both in the input transistors
and in the I&F neuron circuit elements.

3.1. Basic experiments

Initially we performed a set of basic experiments to test the
functionality of the main building blocks of the chip: the
neurons; the synapses; and the AER sections.

In a first experiment we switched off all the local hard–
wired connections, injected a constant DC current to all the
neurons and monitored their spiking activity using the PCI–
AER board. In Fig. 2 we show a raster plot of the expected
regular firing observed. The differences in mean firing rate
are due to device mismatch effects both in the input transis-
tors and in the I&F neuron circuit elements.

In a second experiment, we tested the competitive net-
work topology (without lateral interactions) by switching
on the connections in both directions between the excita-
tory neurons and the global inhibitory neuron. In this case,
in addition to the constant DC current, the excitatory neu-
rons integrate inhibitory inputs that tend to decrease their
output firing rates, while the global inhibitory neuron inte-
grates its excitatory inputs that increase its mean firing rate.
The membrane potential of all the neurons in the array can
be measured through an on–chip voltage scanner, which al-
lows either all the neurons in parallel to be probed (multi-
plexed in time) or only one neuron at a time. In Fig. 3 we
show the membrane potential of one of the excitatory I&F
neurons in the network, next to the membrane potential of
the global inhibitory neuron.

3.2. Network behavior

In these sets of experimentswe activated the network’s hard–
wired connections to implement two different types of com-
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Fig. 3. Membrane potentials. Left panel: membrane po-
tential of one of the excitatory I&F neurons in the network.
The neuron integrates a constant DC current while receiving
inhibitory spikes from the global inhibitory neuron. Right
panel: membrane potential of the global inhibitory neu-
ron. This neuron integrates the same constant DC current
while receiving excitatory inputs from all the active excita-
tory neurons in the array.

petitive networks with lateral connections. In both cases
we activated the hard–wired connections from the excita-
tory neurons to the inhibitory one and the connections from
the inhibitory neuron to the excitatory ones, stimulated the
network by injecting a constant DC input current to all the
neurons, and used the PCI–AER board to monitor the net-
work spiking activity.

In the first experiment, symmetric nearest neighbor lat-
eral connections were activated. Even in this extremely sim-
plified case, with constant homogeneous inputs and sym-
metric connectivity, the network was able to produce a clas-
sical WTA behavior. Although all neurons should receive
the same input current, due to device–mismatch effects, one
neuron wins the competition and suppresses, through the in-
hibitory neuron, all other ones, while exciting nearest neigh-
bors (see Fig. 4). As the coupling between neurons was set
to be relatively strong, the excitatory and inhibitory neurons
synchronized their spiking activity.

In the second experiment we activated both first and sec-
ond neighbor excitatory connections. When the strength
of these connections is asymmetric and global inhibition is
strong enough, the network generates a traveling wave of
activity, as shown in Fig. 5. Global inhibition allows the
winning neurons to suppress all the others and the asym-
metric lateral excitation propagates the activity in one direc-
tion. The neurons at the edge of the array were connected to
form a ring [8], so that the wave could propagate cyclically
through the array.

In both experiments the spiking activity of the neurons
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Fig. 4. WTA behavior. Left panel: raster plot of the network
activity in response to a constant DC input current with lat-
eral excitatory (first neighbor) connections, excitatory to in-
hibitory connections and global inhibition activated. The
neuron with address 1 is the global inhibitory neuron. Right
panel: mean output frequencies.

is highly synchronized. This is a consequence of the param-
eters used in these experiments. These are extreme cases,
used to characterize the architecture with its hard–wired com-
petitive network topology, in which the input is a simple
homogeneous constant current, and the strength of the con-
nections is set to relatively high values, to amplify the small
differences in neuronal activity due to mismatch parameters.

4. DISCUSSIONS AND FUTURE WORK

In this paper we have presented a reconfigurable VLSI ar-
ray of AER neurons and synapses with additional on–chip
connectivity that implements a competitive network topol-
ogy. We demonstrated the correct behavior of the main
blocks present on the device and showed how, even using
the simplest possible input stimulus, the local hard–wired
competitive network can give rise to interesting behaviors
such as WTA functionality, spike synchronization and trav-
eling wave generation. So far, we have used a simple con-
stant DC current as the input to the network. In future work,
we will take advantage of the PCI–AER board to stimu-
late the network with Poisson distributed spike trains, or
with address–events generated by neuromorphic vision [9]
or auditory sensors. Having multiple instances of the same
synaptic circuit for each neuron will allow us to explore the
effect of adaptation to several competing stimuli. We will
use this device to implement real–time models of selective
attention systems [5]; we will also study the network’s abil-
ity to generate traveling waves, persistent activity (even af-
ter the input stimulus is removed), binding by synchroniza-
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Fig. 5. Traveling wave. Left panel: raster plot of the net-
work activity in response to a constant DC input current
with asymmetric excitatory first and second nearest neigh-
bor connections and with global inhibition. The neuron with
address 1 is the global inhibitory neuron. Right panel: mean
output frequencies.

tion, and other behaviors observed in cortical circuits.
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