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Abstract— The growing interest in pulse-mode processing by cortex and as a means to understand cortical circuitry and
neural networks is encouraging the development of hardware cortical computation (for a review see [2]). The pattern of
implementations of massively parallel, distributed networks of connectivity described in these feed—back models is refiect

Integrate-and-Fire (I&F) neurons. We have developed a reconfj- . .
urable multi-chip neuronal system for modeling feature selectivity in the local recurrent connections of our VLSI network of

and applied it to oriented visual stimuli. Our system comprises SPiking neurons: similar orientation cooperate througbrkd
a temporally differentiating imager and a VLSI competitive excitation and different orientations compete throughbglo
network of neurons which use an asynchronous Address Event jnhibition.
Representation (AER) for communication. Here we describe the  geyera| hardware models of orientation selectivity haenbe
overall system, and present experimental data demonstratinghe . .
effect of recurrent connectivity on the pulse-based orientatin proposed in the past [3]-{7]. Our approach differs frpm thos
selectivity. of [3], [5] in that our system decouples the sensing stage
from the computational stage. In this way the computational
. INTRODUCTION stage can be more modular and more easily expanded. Also,
Neuromorphic systems are composed of mixed anadr computation depends on the collective dynamics of a
log/digital VLSI devices that emulate biological systenas f population of neurons, rather than the explicit implemgoita
sensory processing. We propose a neuromorphic system thiat complex function for the receptive field, such as edge
reproduces a specific functionality of neocortical protess enhancement by high-pass filtering [4], or Gabor functi@}s [
modules: the processing of visual input by the neuronali@sc [7]. Our approach is flexible, because it depends only on the
of the mammalian visual cortex. Despite significant diffexes connection pattern among many similar processing elements
in function across the various cortical areas, the pattérn the neurons. Thus, the computational part of the system is
neuronal connections within each area is remarkably similaot explicitly designed for orientation selectivity. Iesd, it
This regular structure suggests that the cortex may usemadels a more generwortical modulethat can be applied to
common core processing circuit, @anonical microcircuit the detection of other features, and to other sensory il
that can be tuned to perform specific tasks [1]. The canonicelg. audition).
microcircuit, and its later extensions, emphasize the ofle The system we developed is an evolution of the one
first order recurrent connections between cortical neuromgsoposed by Liu et al. [6] in which neurons tuned to the
These recurrent connections between thresholded newpns same retinal position but different orientations are on the
port cooperative-competitive processing, in which nekgor same chip. It differs from that of Liu et al. because it uses
of neurons participate collectively in the generation of arecurrent excitation in addition to recurrent inhibitiomda
appropriate interpretation of their sensory input. Thepatt it models several orientation selective neurons geneyadin
of a given neuron depends dynamically on the activity ohore realistic network in which neurons with similar preéat
all neurons in the network. As a result, these networks ameientation cooperate, and neurons tuned to differenntaie
able to perform complicated non-linear operations, sudfhe@s tions compete. As in [3], [4], [7] we use the Address Event
winner-take-all function. The computational abilitiessarg Representation (AER) scheme for the communication between
from competition are especially useful for feature eximct our neuromorphic VLSI chips.
and pattern classification problems. We are interestedpn ca
turing the principle of cooperative-competitive procegsin a [l. THE ORIENTATION SELECTIVITY SYSTEM COMPONENTS
general purpose module that could be used to build complexThe system consists of two neuromorphic VLSI chips, a
VLSI perceptive systems. PCI-AER board [8] and supporting hardware (see Fig. 1). The
In this paper we present a specific application, in whiaheuromorphic chips are an address-event temporally differ
a VLSI recurrent network of spiking neurons, interfaced ttating imager (TMPDIFF chip) and a recurrent competitive
a vision sensor, is used to implement orientation seldgtivinetwork of integrate-and-fire neurons and dynamic synapses
Several theoretical recurrent models have been proposedIEBNVTA chip). The PCI-AER board is a custom device which
explain the origin of orientation selectivity in primarysval provides a communication bridge between the AER and the
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Fig. 1. AER vision system setup. The PCI-AER board routeputuévents Fig. 2. Chip architecture. Squares represent excitatoyya( inhibitory (1)

of the TMPDIFF chip in response to visual stimuli to the IFWTAiland synapses, trapezoids represent I&F neurons. The I&F neurmmdransmit
monitors the activity of both chips. The PC controls the LCDesa for their spikes off-chip and/or to locally connected synagses text for details).
stimulus presentation, the PCI-AER board and the DAC board.

OFF type depending on the sign of the change since the
PCI bus of a host computer. It supports a real-time routingst event. Pixel output consists of the stream of ON and
programmable connectivity, and monitoring and stimulatiooFF events. The imager, more thoroughly described in [10],
of address events. Each PCI-AER board can host up to fqﬂ], consists of an array of 32x32 pixels, a y-arbiter, an x-
sender and four receiver chips, and multiple PCI-AER boarggyiter and a common address bus with two encoders [12].
can be shared on the PCI bus. The supporting hardwa(g event occurring in a pixel is communicated to the outside
comprises a custom Digital to Analog Converter (DAC) boargk the chip as an 11-bit address that encodes the pixel X-Y
[9] for setting the analog biases of the neuromorphic chaps, |ocation and the polarity (ON or OFF) of the event. Events
LCD screen for presenting visual stimuli, and a workstatiogre processed asynchronously in order of their arrival time
for hosting and controlling the PCI-AER board, programmingase of colliding events the latter are queued. The imager is
the DAC board and controlling the LCD screen. real-time device, which means that an event is communicated
Even though the system described here comprises only ty@hin 100ns of its occurrence. The AER communication
chips, itis can be easily extended to include multiple insés  system is particularly well suited for this application hase

of the same IFWTA chip, or of analogous AER chips, using dedicates the full communication bandwidth to the active
more ports of the PCI-AER board, or more PCI-AER boardgixels of the imager and preserves timing information.

B. The IFWTA chip

A. The TMPDIFF chip The architecture of the IFWTA chip is shown in Fig. 2. It is
The TMPDIFF chip implements the sensing stage of ourtwo-dimensional array containing a row of 32 Integratd-an
system. The chip produces asynchronous address-eventsife (I&F) neurons, each connected to a column of afferent
response to temporal changes in brightness. The streamsyfiaptic circuits. Each column contains 14 AER excitatory
events encodes contrast changes rather than absoluténdlumsynapses, 2 AER inhibitory synapses and 6 locally connected
tion intensities. The retinal computation is optimized &iwer (hard-wired) synapses. When an address-event is recehed, t
relevant information and to discard redundancy using higiynapse with the corresponding row and column address is

temporal and low spatial resolution, similar to the biot@di stimulated. If the address-events routed to the neurogriate
magnocellular pathway. As the TMPDIFF chip responds ontg the neuron’s voltage threshold for spiking, then thatrosu
to temporal changes in log intensity, static scenes prodoce generates an address-event which is transmitted off-dtip.
output. Image motion produces spike events that represent AER input synapses can be used to implement arbitrary
ative changes in image intensity. This operation in comtirsu network architectures, by (re)mapping address-eventsheéa
form is represented mathematically by the following tenapor PCI-AER board.
relation on the pixel illumination': Synapses with local hard-wired connectivity are used to
realize a competitive soft winner-take-all (WTA) network
4 log I = dl/dt (1) Wwith nearest neighbor and second nearest neighbor returren
I interactions (see Fig. 2 and Fig. 3): 31 neurons of the array
This temporal derivative is self-normalized. By this nhotmasend their spikes to 31 local excitatory synapses on theaglob
ization, the derivative encodes relative contrasts rathan inhibitory neuron; the inhibitory neuron, in turn, stimtéa the
absolute illumination differences. Contrasts are deteeaiibby local inhibitory synapses of the 31 excitatory neurons;heac
differences in reflectance of objects independent of olverakcitatory neuron stimulates its first and second neighbors
scene illumination. The events generated by TMPDIFF aom both sides using two sets of locally connected synapses.
changes in Eqg. 1 that exceed a threshold and are ON Tdre first and second neighbor connections of the neurons at
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Fig. 3. Schematic representation of the connectivity patterplemented Fig. 4. Integrated response of the silicon retina to orieffieshing bars. Gray
by the internal hard-wired connections (closed boundamditmn). Empty levels represent the average pixel activity (ON eventsy ¢lre monitoring
circles represent excitatory neurons and the filled ciref@esents the global period.
inhibitory neuron. Solid/dashed lines represent exaiyditahibitory connec-
tions. Connections with arrowheads are monodirectionlthal others are
bidirectional. . . .

we activated the recurrent connectivity to implement thexife

back model maintaining all other parameters unchangeeerhr

the edges of the array are connected to pads. This allo#@$s of local synapses were used: first neighbor excitatory
us to leave the network open, or implement closed bounddfy e€xcitatory synapses to simulate the mutually excitatory
conditions (to form a ring of neurons [13]), using off-chipconnections among cells with similar preferred orientgtio
jumpers. inhibitory and excitatory synapses connecting the global i
All of the synapses on the chip can be switched off bfyibitory neuron to the excitatory neurons and vice versa to
appropriately setting the external bias voltages that robntSimulate the mutual inhibition among cells with different
their synaptic weights. This allows us to inactivate eittrer Preferred orientation.
local or the AER synaptic connections, or to use them in someQOrientation tuning curves (i.e. graphs of neural resporsse v
arbitrary combination. A detailed description of the IFWTAStimulus orientation) are typically measured in experitaen

chip was presented in [14]. related to the characterization of orientation selegtivit
visual cortical neurons. We applied the same analysis to our
I1l. ORIENTATION SELECTIVITY EXPERIMENTS data: the recorded activity of the IFWTA neurons was used to

. : . ) . compute the mean firing rate of each neuron in response to
Orientation selectivity is achieved by appropriately maRpe stimuli and tuning curves were obtained by plotting éhes
ping feed-forward connections from the TMPDIFF pixels tQa¢5 for each neuron as a function of orientation (see Fig. 5)

the IFWTA chip neurons (via the PCI-AER board), and by the TMPDIFF central pixels are mapped to all neurons,

activating the local recurrent connections on the IFWTA chipyarefore each IFWTA neuron is also receiving input events

The feed-forward mapping is set so that each IFWTA neurQphen, jis non-preferred orientation is presented to theaeti

is excited by all the pixels of the TMPDIFF chip belonging @rpe effect of this “base line” input is clearly visible in the

a central bar with a specific orientation. We implemented 3Leq_forward model, where the activity of the IFWTA neurons

sets of mapping tables that map 31 differently oriented bagg,ny reflect the input from the retina. In this case, the

onto the 31 excitatory neurons of the IFWTA chip. frequencies in the tuning curves are greater than zero for
In our experiments we displayed to the TMPDIFF chigy| grientation and a maximum is observed at the preferred

flashing oriented white bars on a dark background usiRgientation. In the feed-back model the “base line” agfivit

an LCD display. The activity of the TMPDIFF chip wasjs gyppressed and the activity in response to the preferred

monitored by the PCI-AER board and transmitted (via thgentation is amplified.

PCI-AER board mapping tables) to the IFWTA chip. We \ye fitted the tuning curves to quantitatively estimate the

time-stamped and logged both the TMPDIFF and IFWT¢tect of recurrent connectivity on the response of theraie
address-events for data analysis. To characterize themsyse jon, selective neurons. We used a von Mises function asgittin
collected the system’s activity in response to orientechft®  ¢,ction [15], defined as

bars with 30 different orientations. Each flashing bar was

displayed for approximately 40 seconds, flashing at a rate of M(0) = Agkleos2(0=¢)—1] 2)
about 3Hz. The monitoring of the address-event data lasied f ] ) ] )

25 seconds, starting 5 seconds after stimulus onset. F;gurg/hereA is the vglue of the function at the_ preferred one_ntatlon
shows the integrated response of the TMPDIFF chip to the 89 @ndk is a width parameter, from which the half-width at
orientations as grayscale images. half-heightf, 5 may be calculated (in radians) as:

_ We _repeated the same experime_nt_ for two different cqndi- 0o.5 = 0.5arccos[(In0.5 + k) /k]; k > —0.5ln0.5 (3)
tions, in terms of the local connectivity of the IFWTA chip.

In the first condition the biases of the IFWTA chip were se€fhe von Mises function approximates a Gaussian in shape
to implement a purely feed-forward model: local recurrerdver a biologically likely range of values of. A least-
synapses were inactive and the neurons’ input was comypletstjuares fitting of the data to the von Mises function was
determined by the activity of the retinal pixels. Subsedyen used to estimate the parameters of the tuning curve of each
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Fig. 5. Tuning curves for the feed-forward (dashed line) #relfeed-back
(solid line) model of orientation selectivity. The mean frequy (Hz) of each
neuron is plotted as a function of stimulus orientation. Top keft graph

shows the activity of the inhibitory neuron, the other gmghow the activity
of the excitatory neurons (a bar representing the retinalpimapped to the
neuron, i.e. its preferred orientation, is shown in each)plo

Feed-forward Model | Feed-back Model
Mean STD Mean STD
A (Hz) 10 2 19 4
0o0.5 (degrees) 21 2 19 2
Baseline activity (Hz) 1.7 0.6 0.07 0.11
Preferred orientation
error (degrees) 3 2 3 2
TABLE |

MEAN AND STANDARD DEVIATION (STD) OVER THE POPULATION OF31
ORIENTATION SELECTIVE NEURONS

tuning based on recurrent connectivity patterns. The VLSI
neurons can detect the orientation of a visual stimulus, and
have a response tuning similar to that observed in the mam-
malian visual cortex. The system is able to implement ahyjtr
mappings of spikes from the neuromorphic sensors to the
IFWTA chip neurons, and strengths of the local recurrent
connections on the IFWTA chip can also be modulated.
This flexibility will allow us to explore further the range
of collective processing possible in these circuits, anplyap
them to other tasks of feature detection in vision, and other
modalities.
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