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Abstract

Cooperative competitive networks are believed to play a central role in cortical
processing and have been shown to exhibit a wide set of useful computational
properties. We propose a VLSI implementation of a spiking cooperative compet-
itive network and show how it can perform context dependent computation both
in the mean firing rate domain and in spike timing correlation space. In the mean
rate case the network amplifies the activity of neurons belonging to the selected
stimulus and suppresses the activity of neurons receiving weaker stimuli. In the
event correlation case, the recurrent network amplifies with a higher gain the cor-
relation between neurons which receive highly correlated inputs while leaving the
mean firing rate unaltered. We describe the network architecture and present ex-
perimental data demonstrating its context dependent computation capabilities.

1 Introduction

There is an increasing body of evidence supporting the hypothesis that recurrent cooperative compet-
itive neural networks play a central role in cortical processing [1]. Anatomical studies demonstrated
that the majority of synapses in the mammalian cortex originate within the cortex itself [1,2]. Sim-
ilarly, it has been shown that neurons with similar functional properties are aggregated together in
modules or columns and most connections are made locally within the neighborhood of a 1 mm
column [3].

From the computational point of view, recurrent cooperative competitive networks have been in-
vestigated extensively in the past [4-6]. Already in the late 70’s Amari and Arbib [4] applied the
concept of dynamic neural fields' [7, 8] to develop a unifying mathematical framework to study
cooperative competitive neural network models based on a series of detailed models of biological
systems [9-11]. In 1994, Douglas et al. [5] argued that recurrent cortical circuits restore analog sig-
nals on the basis of their connectivity patterns and produce selective neuronal responses while main-
taining network stability. To support this hypothesis they proposed the cortical amplifier* model
and showed that a network of cortical amplifiers performs signal restoration and noise suppression
by amplifying the correlated signal in a pattern that was stored in the connectivity of the network,
without amplifying the noise. In 1998, Hansel and Sompolinsky presented a detailed model for cor-

'In the dynamic neural fields approach neural networks are described as a continuous medium rather than a
set of discrete neurons. A differential equation describes the activation of the neural tissue at different position
in the neural network.

2The cortical amplifier consists of a population of identical neurons, connected to each other with the same
excitatory synaptic strength, sharing a common inhibitory feedback and the same input.
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Figure 1: The chip architecture. Squares represent excitatory (E) and inhibitory (I) synapses, trape-
zoids represent I&F neurons. The synapse can be stimulated by external (AER) inputs and by local
events. The I&F neurons can transmit their spikes off-chip and/or to the locally connected synapses
(see text for details). The local connectivity implements a cooperative competitive network with first
and secon dneighbors recurrent excitatory connections and global inhibition. The first and second
neighbor connections of the neurons at the edges of the array are connected to pads. This allows us
to leave the network open, or implement closed boundary conditions (to form a ring of neurons), us-
ing off-chip jumpers. The global inhibitory neuron (bottom left) receives excitation from all neurons
in the array and its output inhibits all of them.

tical feature selectivity based on recurrent cooperative competitive networks [6] where they showed
how these models can account for some of the emergent cooperative cortical properties observed in
nature.

Recently it has been argued that recurrent cooperative competitive networks exhibit at the same
time computational properties both in an analog way (e.g. amplification or filtering) and in a digital
way (e.g. digital selection) [12]. To demonstrate the digital selection and analog amplification
capabilities of these type of networks Hahnloser et al. proposed a VLSI chip in which neurons are
implemented as linear threshold units and input and output signals encode mean firing rates. The
recurrent connectivity of the network proposed in [12] comprises self-excitation, first and second
neighbors recurrent excitatory connections, and global inhibition. We are particularly interested in
the use of these types of networks in spike based multi-chip sensory systems [13] as a computational
module capable of performing stimulus selection, signal restoration and noise suppression. Here we
propose a spike-based VLSI neural network that allows us to explore these computational properties
both in the mean rate and time domain.

The device we propose comprises a ring of excitatory Integrate-and-Fire (I&F) neurons with first
and second neighbors recurrent excitatory connections and a global inhibitory neuron which receives
excitation from all the neurons in the ring. In the next Section we describe the network architecture,
and in Section 3 and 4 we show how this network can perform context dependent computation in
the mean rate domain and in the time domain respectively.

2 The VLSI Spiking Cooperative Competitive Network

Several examples of VLSI competitive networks of spiking neurons have already been presented in
literature [14—19]. In 1992, De Yong et al. [16] proposed a VLSI winner-take-all (WTA) spiking
network consisting of 4 neurons with all-to-all inhibitory connections. In 1993, a different VLSI
WTA chip comprising also 4 neurons was proposed, it used global inhibition to implement the WTA
behavior [17]. More recent implementations of spiking VLSI cooperative competitive networks con-
sist of larger arrays and show more complex behavior thanks also to more advanced VLSI processes
and testing instruments currently available [14, 15,18, 19].
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Figure 2: Raster plot for the suppression experiments. (a) Feed-forward network response. The
left panel shows the raster plot of the network activity in response to two Gaussian shaped, Poisson
distributed, input spike trains, with mean firing rates ranging from 0 to 120 Hz. The right panel
shows the mean frequencies of the neurons ion the feed-forward network. The feed-forward network
response directly reflects the applied input: on average, the neurons produce an output spike in
response to about every 6 input spikes. Note how the global inhibitory neuron (address number 1) is
not active. (b) Cooperative-competitive network response. The left panel shows the raster plot of the
network activity in response to the same input applied to the feed-forward network. The right panel
shows the mean output frequencies of the neurons in the cooperative-competitive network. The
recurrent connectivity (lateral excitation and global inhibition) amplifies the activity of the neurons
with highest mean output frequency and suppresses the activity of other neurons (compare with right
panel of (a)).

Most of the previously proposed VLSI models focused on hard WTA behaviors (only the neuron that
receives the strongest input is active). Our device allows us to explore hard and soft WTA behaviors
both in the mean rate and spike timing domain. Here we explore the network’s ability to perform
context dependent computation using the network in the soft WTA mode.

The VLSI network we designed comprises 31 excitatory neurons and 1 global inhibitory neuron [15].
Cooperation between neurons is implemented by first and second neighbors recurrent excitatory
connections. Depending on the relative strength of excitation and inhibition the network can be
operated either in hard or soft WTA mode. On top of the local hardwired recurrent connectivity the
network comprises 16 AER? synapses per neuron.

The chip was fabricated in a 0.8 um, n-well, double metal, double poly, CMOS process using the
Europractice service.

The architecture of the VLSI network of I&F neurons is shown in Fig. 1. It is a two-dimensional
array containing a row of 32 neurons, each connected to a column of afferent synaptic circuits. Each
column contains 14 AER excitatory synapses, 2 AER inhibitory synapses and 6 locally connected
(hard-wired) synapses. The circuits implementing the chip’s I&F neurons and synapses have been
described in [22].

When an input address-event is received, the synapse with the corresponding row and column ad-
dress is stimulated. If the input address-events routed to the synapse integrate up to the neuron’s
spiking threshold, then that neuron generates an output address-event which is transmitted off-chip.
Arbitrary network architectures can be implemented using off-chip look-up tables and routing the
chip’s output address-events to one or more AER input synapses. The synapse address can belong
to a different chip, therefore, arbitrary multi-chip architectures can be implemented.

Synapses with local hard-wired connectivity are used to realize the cooperative competitive network
with nearest neighbor and second nearest neighbor interactions (see Fig. 1): 31 neurons of the array

3In the Address Event Representation (AER) input and output spikes are real-time digital events that carry
analog information structure [20]. An asynchronous communication protocol based on the AER is the most
efficient for signal transmission across neuromorphic devices [21].



40 35¢
—e—Baseline —e—Baseline

35} kN - +-Weak Inhibition 30h -+ Weak Lateral Excitation

N K ~+ Strong Inhibition 1 N -+ -Strong Lateral Excitation
230t ] 2 4
% . £ 25,
S b b 8 &
h ' !
< P & 20p
[] ¥ ' 'I 0] a
E 204 ey E
g 15& A 8 150
= ' = H
E ! : £ 10}
S 1oLt s 1075
= 10 ' > '.
d '
504 5r1
' s H

O( 3 =< =4 - ra L + . s
5 10 15 20 25 30 5 10 15 20 25 30
Neuron address Neuron address
(@) (b)

Figure 3: Suppression as a function of the strength of global inhibition and lateral excitation. (a)
The graph shows the mean firing rate of the neurons for three different connectivity conditions and
in response to the same stimulus. The continuous line represents the baseline: the activity of the
neurons in response to the external stimulus when the local connections are not active (feed-forward
network). The dashed and dotted lines represent the activity of the feed-back network for weak
and strong inhibition respectively and fixed lateral excitation. For weak inhibition the neurons that
receive the strongest inputs amplify their activity. (b) Activity of the network for three different
connectivity conditions. The continuous line represents the baseline (response of the feed-forward
network to the input stimulus). The dashed and dotted lines represent the activity of the feed-back
network for weak and strong lateral excitation respectively and fixed global inhibition. For strong
lateral excitation the neurons that receive the highest input amplify their activity.

send their spikes to 31 local excitatory synapses on the global inhibitory neuron; the inhibitory neu-
ron, in turn, stimulates local inhibitory synapses of the 31 excitatory neurons; each excitatory neuron
stimulates its first and second neighbors on both sides using two sets of locally connected synapses.
The first and second neighbor connections of the neurons at the edges of the array are connected to
pads. This allows us to leave the network open, or implement closed boundary conditions (to form
a ring of neurons [12]), using off-chip jumpers.

All of the synapses on the chip can be switched off. This allows us to inactivate either the local
synaptic connections, or the AER ones, or to use local synapses in conjunction with the AER ones.
In addition, a uniform constant DC current can be injected to all the neurons in the array thus
producing a regular “spontaneous” activity throughout the whole array.

3 Competition in mean rate space

In our recurrent network competition is implemented using one global inhibitory neuron and co-
operation using first and second nearest neighbors excitatory connections, nonetheless it performs
complex non-linear operations similar to those observed in more general cooperative competitive
networks. These networks, often used to model cortical feature selectivity [6, 23], are typically
tested with bell-shaped inputs. Within this context we can map sensory inputs (e.g. obtained from
a silicon retina, a silicon cochlea, or other AER sensory systems) onto the network’s AER synapses
in a way to implement different types of feature maps. For example, Chicca et al. [24] recently
presented an orientation selectivity system implemented by properly mapping the activity of a sili-
con retina onto AER input synapses of our chip. Moreover the flexibility of the AER infrastructure,
combined with the large number of externally addressable AER synapses of our VLSI device, allows
us to perform cooperative competitive computation across different feature spaces in parallel.

We explored the behavior of the network using synthetic control stimuli: we stimulated the chip via
its input AER synapses with Poisson distributed spike trains, using Gaussian shaped mean frequency
profiles. A custom PCI-AER board [24] was used to stimulate the chip and monitor its activity.
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Figure 4: (a) Mean correlation coefficient among input spike trains used to stimulate the neurons of
our network. The figure inset shows the pairwise correlations between each input source. (b) Mean
correlation coefficient of output spike trains, when the cooperative-competitive connections of the
network are disabled (feed-forward mode). Note the different scales on the y-axis and in the inset
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Figure 5: (a) Correlation coefficient of output spike trains, when only global inhibition is enabled;
(b) Correlation coefficient of output spike trains when both global inhibition and local excitation are
enabled.

Suppression of least effective stimuli was tested using two Gaussian shaped inputs with different
amplitude (in terms of mean frequency) composed by Poisson trains of spikes. Two examples of
raw data for these experiments in the feed-forward and recurrent network conditions are shown in
Fig. 2(a) and 2(b) respectively. The output of the network is shown in Fig. 3(a) for two different
values of the strength of global inhibition (modulated using the weight of the connection from the
excitatory neurons to the global inhibitory neuron) and a fixed strength of lateral excitation. The
activity of the recurrent network has to be compared with the activity of the feed-forward network
(“baseline” activity plotted in Fig. 2(a) and represented by the continuous line in Fig. 3(a)) in re-
sponse to the same stimulus to easily estimate the effect of the recurrent connectivity. The most
active neurons cooperatively amplify their activity through lateral excitation and efficiently drive the
global inhibitory neuron to suppress the activity of other neurons (dashed line in Fig. 3(a)). When
the strength of global inhibition is high the amplification given by the lateral excitatory connections
can be completely suppressed (dotted line in Fig. 3(a)). A similar behavior is observed when the
strength of lateral excitation is modulated (see Fig. 3(b)). For strong lateral excitation (dashed line
in Fig. 3(b)) amplification is observed for the neurons receiving the input with highest mean fre-
quency and suppression of neurons stimulated by trains with lower mean frequencies occur. When
lateral excitation is weak (dotted line in Fig. 3(b)), global inhibition dominates and the activity of all
neurons is suppressed.



The non-linearity of this behavior is evident when we compare the effect of recurrent connectivity
on the peak of the lowest hill of activity and on the side of the highest hill of activity (e.g. neuron 23
and 11 respectively, in Fig. 3(a)). In the feed-forward network (continuous line) these two neurons
have a similar mean out frequency (~ 12 Hz), nevertheless the effect of recurrent connectivity on
their activity is different. The activity of neuron 11 is amplified by a factor of 1.24 while the activity
of neuron 23 is suppressed by a factor of 0.39 (dashed line). This difference shows that the network
is able to act differently on similar mean rates depending on the spatial context, distinguishing the
relevant signal from distractors and noise.

4 Competition in correlation space

Here we test the context-dependent computation properties of the cooperative competitive network,
also in the spike-timing domain. We stimulated the neurons with correlated, Poisson distributed
spike trains and analyzed the network’s response properties in correlation space, as a function of its
excitatory/inhibitory connection settings.

Figure 4(a) shows the mean correlation coefficient between each input spike train with the spike
trains sent to all other neurons in the array. The figure inset shows the pair-wise correlation coeffi-
cient across all neuron addresses: neurons 7 through 11 have one common source of input (35Hz)
and five independent sources (15Hz) for a total mean firing rate of 5S0Hz and a 70% correlation; neu-
rons 17 through 21 were stimulated with one common source of input at 25Hz and five independent
sources at 25HZ, for a total mean firing rate of S0Hz and a 50% correlation; all other neurons were
stimulated with uncorrelated sources at 50Hz. The auto-correlation coefficients (along the diagonal
in the figure’s inset) are not plotted, for sake of clarity.

When used as a plain feed-forward network (with all local connections disabled), the neurons gen-
erate output spike trains that reflect the distributions of the input signal, both in the mean firing rate
domain (see Fig.2(a)) and in the correlation domain (see Fig.4(b)). The lower output mean firing
rates and smaller amount of correlations among output spikes are due to the integrating properties
of the I&F neuron and of the AER synapses.

In Fig.5 we show the response of the network when global inhibition and recurrent local excitation
are activated. Enabling only global inhibition, without recurrent excitation has no substantial effect
with respect to the feed-forward case (compare Fig.5(a) with Fig.4(b)). However, when both compe-
tition and cooperation are enabled the network produces context-dependent effects in the correlation
space that are equivalent to the ones observed in the mean-rate domain: the correlation among
neurons that received inputs with highest correlation is amplified, with respect to the feed-forward
case, while the correlation between neurons that were stimulated by weakly correlated sources is
comparable to the correlation between all other neurons in the array.

Given the nature of the connectivity patterns in our chip, the correlation among neighboring neurons
is increased throughout the array, independent of the input sources, hence the mean correlation
coefficient is higher throughout the whole network. However, the difference in correlation between
the base level and the group with highest correlation is significantly higher when cooperation and
competition are enabled, with respect to the feed-forward case. At the same time, the difference
in correlation between the base level and the group with lowest correlation when cooperation and
competition are enabled cannot be distinguished from that of the feed-forward case. See Tab. 1 for
the estimated mean and standard deviation in the four conditions.

These are preliminary experiments that provide encouraging results. We are currently in the process
of designing an equivalent architecture one a new chip using an AMS 0.35um technology, with 256
neurons and 8192 synapses. We will use the new chip to perform much more thorough experiments
to extend the analysis presented in this Section.

5 Discussion

We presented a hardware cooperative competitive network composed of spiking VLSI neurons and
analog synapses, and used it to simulate in real-time network architectures similar to those studied by
Amari and Arbib [4], Douglas et al. [5], Hansel and Sompolinsky [6], and Dayan and Abbott [25].
We showed how the hardware cooperative competitive network can exhibit the type of complex



Table 1: Difference in correlation between the base level and the two groups with correlated input
in the feed-forward and cooperative-competitive network

Cooperative
Feed-forward competitive
network network

Highest correlation group | 0.029 £ 0.007 0.04+0.01

Lowest correlation group | 0.0094+0.006 | 0.010+£0.007

non-linear behaviors observed in biological neural systems. These behaviors have been extensively
studied in continuous models but were never demonstrated in hardware spiking systems before. We
pointed out how the recurrent network can act differently on neurons with similar activity depending
on the local context (i.e. mean firing rates, or mean correlation coefficient).

In the mean rate case the network amplifies the activity of neurons belonging to the selected stimulus
and suppresses the activity of neurons belonging to distractors or at noise level. This property is
particular relevant in the context of signal restoration. We believe that this is one of the mechanisms
used by biological systems to perform highly reliable computation restoring signals on the basis of
cooperative-competitive interaction among elementary units of recurrent networks and hence on the
basis of the context of the signal.

In the mean correlation coefficient case, the recurrent network amplifies more efficiently the correla-
tion between neurons which receive highly correlated inputs while keeping the average mean firing
rate constant. This result supports the idea that correlation can be viewed as an additional coding
dimension for building internal representations [26].
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