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Abstract

The vision of robots supporting the human in daily life encouraged research in the area
of mobile robots in the recent past. The robots are meant to share the same environment
and they are supposed to deal with the same requirements like the human in order
to be able to assist the human in his tasks. But, the dynamic and highly complex
human environment makes it affordable to implement algorithms, which enable the
robot to deal with the arising requirements. Thereby, such algorithms are based on
sensing and interpretation of the environment. Here, the following thesis applies by
achieving a solid basement for the robot’s situation awareness. Situation awareness can
be divided into four categories, whereas the first three categories sense and interpret the
environment and the fourth predicts the gathered knowledge into the future in order
to adapt the aspired actions. The thesis provides a solution to the first three categories,
which implement the perceptual part of situation awareness.

The first category deals with the sensing of the environment. Here, a complete scene
analysis by building an articulated scene model by observation of the Vista space is pro-
posed. The model inherits different abstract scene parts, which are the static back-
ground, movable objects like e.g. chairs and moving objects like humans, which are all
revealed by a single model building process. The second category deals with a temporal
linking of information, which is especially difficult on a moving platform. In addition to
a map, the most important information for a mobile robot is the information of positions
and walking paths of present humans. Utilising the dynamic movements of humans the
robot is able to calculate a safe path through the environment. Here, a dynamic human
detection and tracking system is introduced, which is able to create temporal links between
human occurrences even in the presence of challenging ego motion and scene changes.
The third category of situation awareness is implemented through a top-down visual
attention system, which directs the focus of attention onto desired objects, humans or
locations. As the main purpose of a mobile robot is the interaction with the human, it
is proposed to use a human model in combination with the top-down directed visual
search. The model represents more precise the diverse appearance of the human. This
way, the robot is able to recover aspired humans or interaction partners, if they were
absent for a short time.

For each category experiments are conducted to show the performance of my solutions.
The results show that each category implementation provides solid and stable informa-
tion, which support the robot in achieving a broad situation awareness.
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1 Motivation

During the last years, household and industrial robotics have been attracting notice to
researchers and a rising number of consumers in order to support the human in his/her
daily life. But, the human-friendly environments make great demands on technical
systems. Especially robots mostly rely on very specific algorithms, dealing only with a
rough picture of their environment. If robots are meant to provide human-like capabili-
ties in a human-like environment, cognitive inspired algorithms are required. Humans
have developed outstanding capabilities in perceiving and understanding highly com-
plex and dynamic environments and situations. Their perceptual system and cognitive
competences permit the ability to deal with daily life and the achievement of diverse
tasks. One such important human capability is situation awareness.

“Situation awareness is the continuous extraction of environmental information
along with integration of this information with previous knowledge to form a
coherent mental picture, and the end use of that mental picture in directing further
perception and anticipating future need”
Dominguez, Vidulich, Vogel, & McMillan, 1994 [56]

In short, the quotation emphasizes the fact that situation awareness is an important
aspect for the human being to realize what is happening around. Thereby, it divides
situation awareness in four main categories. First, one has to extract information from
the environment (“continuous extraction of environmental information”). The human incor-
porates this analysis of the surrounding already in his/her early years in order to get
useful and important information. Children e.g. observe the actions of their parents to
learn which parts in a room can be moved or where they can open a door. Second, a
temporal link has to be established in order to extract more information than through
simple observation (“integration of this information with previous knowledge”). For instance,
it is a daily subject for humans to detect and track other moving entities in order to
prevent collisions or accidents. An employee on the way to work e.g. has to drive
safely through the traffic without colliding with other road users and at work he/she
has to navigate through the office and not collide with any other person. Thereby, the
human uses his/her capabilities to segment other entities and to establish a temporal
link between each occurrence. Predicting the recognised movement in the future the
human can safely avoid collisions. The third category directs the focus of attention on
specific areas in order to extract more detailed information from these areas (“use of that
mental picture in directing further perception”). Thereby, attention is a process of restricting
the incoming information to the most relevant information. Humans use this ability
unconsciously as well as consciously to direct their focus of attention to specific areas
being of special interest or have strong attractiveness. In this way the processing can
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Figure 1.1: Situation awareness for a mobile robot. The following thesis proposes algorithms which implement
different parts of situation awareness for a mobile robot. Here, robot Biron analyses and segments the
incoming information in order to extract scene information as well as humans present in the scene. Tracking
of all humans is applied, which reveals the current and former positions of all humans in the scene even
in the presence of ego motion of the robot. To focus on one interaction partner biologically inspired visual
attention is implemented enabling the robot to keep the focus on one entity.

be reduced and restricted to the most important information. Using the information
from the environment, the temporal links between entities and directing the focus of
attention, it is possible to predict future actions, which enable the fourth category of
the quotation (“anticipating future need”). The prediction should adapt the own actions
best to the actions from others and the sensed environment. Summing up, the first
three categories form the important perceptual parts of situation awareness enabling the
human to sense the world around (see Fig. (1.1)), whereas the last category is important
for future planning strategies.

The coordination of the required skills does not form any problem for the human if
he/she wants to achieve situation awareness. But, the transformation of these skills
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to technical systems rises a challenge, because technical systems naturally neither have
software nor algorithms to handle the incoming data in a right and efficient way. Here,
the following thesis applies by asking the following research question:

• How can perceptual situation awareness be achieved on a mobile robot?

Deriving from this general question and regarding the different categories of situation
awareness the following additional research questions arise:

• How can a robot system be able to sense and perceive the environment without restricting
the perception onto specific objects?

• How can a robot system be aware of humans and their movements during ego motion?

• How can a robot system direct its attention onto specific areas like a desired interaction
partner?

The thesis takes the questions into consideration and proposes solutions to realise all
three categories of perceptual situation awareness.

The transfer from human capabilities in situation awareness to robot sensing is not
directly feasible. First, the robot needs some kind of sensor for the perception of its
environment. Second, the information has to be processed in a way that the robot can
extract the essential information to build a mental picture of the environment.

One informative way of sensing is the visual perception. Known from the human
eyes, vision provides rich information about structures, texture and colour of a scene.
Considering the view of both eyes or different views from one moving eye, it is possible
to extract additional depth information. The human uses the depth information exten-
sively for e.g. path planning strategies. Depending on the distance to other entities,
he/she varies his/her velocity and direction of the movement. Using only the 2D image
information, the velocity of objects moving in the same direction or in the opposite
direction are not directly detectable. Hence, additional distance information supports
the detection of the accordant movement. The combination of digital cameras with
additional distance information should provide a richer set of information, which can
be used by a robot to gather information for his situation awareness.

Next, the visual information has to be processed to gain useful information out of the
pure signal input. Figure 1.1 shows the different steps provided by this thesis to solve
this task. Again, the human is the prototype for a good system being able to detect
different parts of a scene. The first part extracts information about the environment.
More precise, it extracts static non-changing parts like walls or cupboards, changeable
parts like doors, chairs or other objects and, above all, other humans. Humans could
be both potentially more dangerous for safe navigation compared to stationary objects
and be a possible interaction partner. Here, the robot has to use algorithms which are
reproducing these capabilities. Especially, the possibility to handle three dimensional
data should be incorporated in order to reflect best the described human skills.

Motion tracking not only describes the second part of situation awareness, it is important
for many computer vision problems starting from static camera scenarios like surveil-
lance of a special area and ending with the most complex problem of moving cameras on
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some kind of platform. Motion tracking on an autonomous moving platform has several
restrictions. First, the computational power is limited and second, the ego motion of the
platform restricts the usage of most typical vision algorithms. In this thesis a mobile
robot platform is used and concludingly, these complex problems have to be addressed.
All robots that share environments with humans need to detect and track humans to
avoid collisions and to ensure that the human does not become part of their background
scene model. This is important for building a map of the environment, which helps the
robot to localize itself, specific regions or objects. Finally, the robot needs some kind
of memory and memory management to store the gathered information. Changes in
the scene or appearing and disappearing persons have to be detected and related to the
knowledge from the past.

In a human-robot interaction many situations arise, where the robot has to concentrate
on specific objects or interaction partner. Here, it is of main importance that the robot
is able to keep the focus of attention on the desired scene part. The direction of the
attention enables the robot to extract further information out of these regions or to keep
the interaction up with a desired interaction partner.

This thesis aims at providing algorithms, which enable a mobile robot to build a co-
herent mental picture of the important aspects of its surrounding. More precisely,
solutions to implement the first three categories of situation awareness on a mobile robot
are presented. The first solution enables a robot to extract efficiently comprehensive
information from the environment by building a newly developed articulated scene model.
The second proposed solution establishes temporal links between moving entities even
in the presence of ego motion. Last, an algorithm based on biological inspired visual
attention is presented, which provides an efficient way to restrict the visual processing to
areas, which are most important to achieve situation awareness. All proposed solutions
accomplish a stable and broad basis for future systems, which could implement the
last category of information prediction. In the following, the aspired scenario and the
used mobile robot platform are presented. Thereafter, the arising problems are further
described and defined. Finally, it is stated how this thesis contributes to current research
and a short outline will be presented.

1.1 Scenario Description

For a few decades now, the interest in household robotics made to assist the human in
his/her daily life has been increasing. Special interest lies in the independent acting of
the robots, because everyone should have the opportunity to use such robots at home
without special knowledge of the technology. Therefore, the robots need the capability
to securely move around in the human-like environment where they have to deal with
the extra requests of highly dynamic surroundings. Persons move in narrow rooms or
corridors, the background is often strongly cluttered and things might be rearranged.
The solution to this problem is to facilitate situation awareness for robots [70]. My thesis
is meant to work on an autonomous mobile robot which thereby can achieve situation
awareness through implementation of the first three categories.
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The development of the robot Biron (BIelefeld Robot CompaniON) started at the Biele-
feld University in 2002. Its purpose is the interaction with humans. The robot platform
is produced as a mobile robot where the base is a PatrolBot, which is 59 cm in length, 48
cm in width and 38 cm in height. The drive is a two-wheel differential drive with two
passive rear casters for balance. Its solid foam-filled 19 cm diameter wheels are at the
centre of rotation. The robot’s weight is about 50 kilograms with batteries and the robot
is manoeuvrable with 1.7 millimetres per second maximum translation and 300 degrees
rotation per second. The robot uses several sensors like a laser range finder with 180
degrees, a pan-tilt camera unit, microphones and an interchangeable depth sensor. The
depth is calculated either by stereo, by time of flight or by a mixture ensemble.

Figure 1.2: Human-Robot-Interaction. Robot Biron

helps humans in their natural environment

The idea is to purchase a mobile robot for assisting the human in a private home
environment, called home-tour scenario. Thereby, the robot has to pass through groups
of humans, cluttered rooms and corridors. In order to move safely the robot has to
detect obstacles and moving objects to calculate a safe path through the environment.
Incorporating the detected object movements the robot could additionally apply smooth
interaction spatial concepts and implicit body movements in such a way that the robot
will be enhanced in reacting to social signals.

1.2 Problem Description and Definition

In general, situation awareness in a scene can be achieved by using one or several sensors
under different conditions. The use of one camera or a calibrated pair of cameras to
acquire depth is the most common case. There is also the possibility to acquire the
desired information through a bundle of cameras, which observe a common scene. Here,
I present the usage of active 3D cameras. The fast processing speed of these cameras
enables the use on a mobile robot platform. The 3D cameras additionally provide an
intensity image, which is subject to the same restrictions like usual 2D cameras. In all
cases the algorithms have to deal with different and changing lightning conditions as
well as with highly dynamic scenes.

The first category of situation awareness addresses the problem of what information
should be of relevance when being incorporated in a scene-model. Here, traditional
approaches try to build specific categories for each possibility. Yet, the possibilities are
not predictable and the number of potential categories produce an invincible overhead.
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Typically, objects and background scene fuse in the eye of the sensory input and it is
hard to reveal each individual and the correct background scene. In order to deal with
unknown and dynamic environments algorithms have to be developed that identify
interesting objects on their own, differentiate between them and reveal the nature of the
background scene.

The objects are interesting for the robot, as it could learn something about them or
interact with them. The background scene is very important for a mobile robot, because
it needs static and non-changing scene information to successful navigate through the
human environment. If the algorithm is able to deliver such a complete picture of the
viewed scene, the robot implements the first category of situation awareness.

One solution to the second category of situation awareness deals with the detection and
tracking of humans in the scene in order to establish a temporal link between each entity.
The detection and tracking of other possible moving objects is a complex problem on a
moving platform. The cameras on the robot change their position due to ego motion and
simultaneously the objects perform their own movements. Due to the ego motion many
simplifications of the scene are not possible. The most common simplification is the
subtraction of background [182], which reduces the complexity of the algorithm as only
the foreground has to be analysed. This enhances the object detection and the tracking
of objects as the foreground often consists only of the searched objects. If the camera
is moving, this assumption is not true as not only the objects are moving, but also the
background. One additional constraint of mobile platforms is related to the changing
scene conditions. During the movement the position of the light sources relative to the
robot are changing, which has a strong effect on the image intensity and illumination.

Directing the attention focus is essential for a mobile robot to adjust the sensor to the
important input data. The third category of situation awareness is difficult to implement
in a technical system, as the prototype origins from the human visual attention system.
Theoretical models do exist in literature, but the approaches have to be adapted to
a technical system. Hence, attention has to be achieved through adapted biological
approaches which perform similar to the known attention from e.g. humans.

Here, it is required to copy the important weighting mechanisms, which weight a feature
higher than others, especially if this feature has some kind of importance. A feature has
got importance, if it is apart in a particular area, if it has got a strong colour contrast, if it
has got a noticeable shape or if the feature is moving. The weighting of features is only
the first step. If the focus should be directed onto a specific object, the discriminative
features for this object have to be determined. Again, a weighting mechanism is needed
in order to weight the features due to their distinction between object and background.
Here, a most ideal weighting approach has to be found to discriminate even complex
objects, like humans, from other humans or the background.
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1.3 Contribution of this Thesis

In this thesis solutions for three of four parts for situation awareness on a mobile robot
are presented which deliver an integrated solution to the perceptual parts of situation
awareness. The fourth category of anticipating future needs is not addressed in this
thesis. The presented algorithms handle with complex and actual topics in robotics,
which results in a solid knowledge basis for further development in this area. The
proposed system-modules implement state of the art algorithms, which are enriched
with new methods and combined in a new and efficient way. In particular, the individual
contributions are described as follows:

• The algorithms deal with two-dimensional and three-dimensional data simultane-
ously in order to achieve better and more stable results. The multi-dimensionality
provides rich information to achieve a comprehensive situation awareness.

• All presented algorithms are designed to deal with the requirements of a mobile
robot scenario in terms of processing speed and inter-process communication.

• The first part implements a newly developed articulated scene model which effec-
tively incorporates information about the three-dimensional static background,
movable objects and the human itself in one model Thereby, the robot uses the
beneficial Vista-space, which describes everything viewable from the current point
of view.

• The second part shows a fast and reliable solution to establish temporal links
between human entities. Thereby, the complex problem of a mobile platform is
addressed by a frame-based detection and a dynamic particle filter. The detection
is speeded up by an interplay of a newly developed u-v-disparity pre-detection and
a distance adaptive version of the reliable state-of-the-art Histograms-of-oriented-
Gradients based support vector machine classifier. The tracking is done by a newly
designed dynamic particle filter with multi-dimensional observation model, which effec-
tively incorporates image features and three-dimensional data. The dynamic of
the system results from the effectiveness of the interplay of detection and tracking,
managed by a novel implemented hypotheses management, which also handles oc-
clusions and cluttered scenes.

• Directing the focus of attention is done in the third part. A biological inspired top-
down attention calculation is enriched with a human-parts model, which improves
the directing of the attention focus.

The results show that each part is able to deliver important information for the robot’s
situation awareness. The articulated scene model extracts humans as well as static and
movable scene parts out of the present observation. The mobile tracking part accounts
the need for a mobile detection and tracking of humans even in the presence of ego
motion. In this thesis a cognitive vision algorithm is shown which realises situation
awareness through additional biologically inspired visual attention turning the focus of
attention to a specific human in order to e.g. find a person again after a longer absence.
All algorithms are fast and reliable enough to run directly on the mobile robot.



1.4 Overview

Chapter 2 describes the theoretical basement for the proposed systems. This includes
the sensory input, the detection of humans and their appropriate tracking. Each part
is expanded with additional information about algorithms working also in the three
dimensional case. In Chapter (3) the algorithm proposal for a local scene analysis in
3D is presented. The Chapter (4) describes a solution, which enables a mobile robot
to detect and track multiple humans during motion. In Chapter (5) the biologically
inspired cognitive visual attention system for directing the attention focus is presented.
All chapters include a detailed introduction to the employed algorithms as well as to
each system’s results. Finally, Chapter (6) finishes with a conclusion and a short outlook
for further research.



2 Visual Basis for Situation Awareness

Situation awareness (SA) requires the ability to perceive the environment. Beside the
static environment dynamic objects like humans are of main interest, as the first and
second categories of SA rely partially or completely on the detection and tracking of
moving entities. This is the most important input information for a mobile robot, as the
human is a dynamically moving object, which could be e.g. an obstacle or an interaction
partner. Other information like the background, action spaces or interesting objects are
also addressed, but the focus lies on the visual perception of the human. Detection and
tracking are generally important tasks in technical systems, as the detection is the essen-
tial step to be aware of something present and the path of a moving object provides rich
information for many purposes. On the one hand a lot of data can be annotated and as-
sociated easily by tracking, like annotating video streams or analysing traffic scenarios.
On the other hand many real-time critical tasks like surveillance [115] [47] [85], human-
robot interaction [28] [172] [128] [111] [74] [160] [179] [60], driver assistance [89] [10],
perceptual user interfaces [37], smart rooms [216] [123] [103], augmented reality [66], or
object-based video compression [54] can be solved by detection and tracking.

In the following I describe the typical concept of detection and tracking systems to
achieve situation awareness. Comparing different systems, which use detection and
tracking, it becomes evident that most of them are designed through the following
composition (see Fig. (2.1)). First of all, each system uses a sensory input to gather
information about the environment. The information has to be processed in order
to detect all appropriate targets and to build hypotheses. The system has to build a
distinct model in order to distinguish each hypothesis from the background and other
hypotheses. Using this information a tracking step reveals each position of the object
over time. Additionally, the system has to deal with new, occluded or disappeared
objects and has to keep track of the known hypotheses in subsequent frames. Finally,
the system should deliver some kind of output, which is usually a trajectory for each
found hypothesis, the actual position and the size of present objects.

In literature a large number of detection or tracking algorithms exist, but in a combined
system there are additional requests for the different parts. They have to be working
in real-time in order not to thwart the complete calculation. They have to provide
their information in a common status and they have to add a communication layer
to distribute their information. Last, a synchronisation is important to assign the correct
data to each module at the correct time. The algorithms introduced in this chapter do
not consider these requests, but my presented solutions in the subsequent chapters do.
Anyway, the ongoing chapter provides a basic knowledge about each part of a typical
detection and tracking system.

Visual input provides rich information about appearance, structure and light in the
scene. Hence, the thesis is based on visual perception. In order to provide a solid
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Sensor Preprocessing Detection Tracking

Figure 2.1: Typical tracking system approach. Most tracking systems are based on the presented system
approach. The data is delivered by sensory input, which is pre-processed in different ways. Afterwards,
objects are detected, which are handed over to the tracking, which continuously tracks the object in the
subsequent frames.

knowledge on the basis of visual perception, the underlying sensory input is described
in the ongoing chapter. Here, the aim is to use 3D information in addition to the usual
visual perception to represent better the environment and to enhance the presented
techniques (e.g. regarding the false-positive detection rate cf.Sec. (4.7.4)). Accordingly,
the different methods of acquiring 3D information are also introduced. Thereafter, a
detailed introduction in visual detection and tracking of moving objects with special
emphasis on humans is given in order to provide all essential information which is
needed to build a complete awareness system.

2.1 Description of Sensor Set-ups

Mobile robots need first of all a sensory input to gather information about the environ-
ment in order to achieve SA. This could be any type of sensor like a laser, sonar, lidar
or a video camera. Additionally, a robot system could use several sensors to combine
their information to a more meaningful one. This could be an amount of identical
sensors or a mixture of sensors. This work is based on visual input, which constrains
the following descriptions to the visual input by cameras. Vision is chosen, because it
delivers manifold information like appearance, colour and shape, which is advantageous
compared to the point information from laser, sonar or lidar. Cameras usually have the
disadvantage of projecting the 3D world onto a 2D image plane. The third dimension
is lost and the other dimensions are projectively distorted. But, a mobile robot needs
to perceive its environment in 3D in order to successfully avoid collisions and to better
discriminate between different objects. Utilizing additional 3D data the missing depth
information from usual camera vision can be compensated. Hence, despite the basic
knowledge about monochrome cameras the following sections give an overview about
the principles of 3D vision, which is needed to reconstruct object trajectories in 3D.

2.1.1 Monochrome Vision

Most of the developed algorithms in computer vision are based on a single or mono-
chrome camera input, because one do not has to deal with set-up calibration or data
transformation from one sensor into the other. Digital cameras provide their data as
Gray level or colour information, whereupon in this thesis I do not go into camera
optics, light reflectance properties or sensor qualities, which all can be found in the
accordant literature [63] [90] [198] [211]. Here, I describe the basis of projection and
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calibration of a sensor, because it is an important step to gather reliable information
from it. The calibration is needed to transform a projected 3D world point using an
ideal pinhole camera model into real camera coordinates considering the pixel sensor
spacing and the relative position of the sensor plane to the origin.

Before I explain the calibration itself, it is important to mention the 3D to 2D projection
using an idealized camera pinhole model. In computer vision the most common pro-
jection is the perspective projection. Here, 3D points xk are projected onto an image
plane p = (u, v) by dividing the points x, y, z components by the depth z. Using
inhomogeneous coordinates in Euclidean geometry this can be written as

p = Pz(xk) =



−bx/z
−by/z

1


 (2.1)

,with b distance from the optical centre to the principal point on the image plane. The
more common usage are the homogeneous coordinates in order to circumvent the non-
linear formulation of perspective projection in Euclidean geometry [211]

p =



−b 0 0 0
0 −b 0 0
0 0 1 0


 xk (2.2)

The projection of a 3D point removes the distance dimension, which is not possible to
recover without the use of additional information. This disadvantage can be recovered
using additional calibrated cameras, different viewpoints or range sensors, to mention
the most common possibilities. They allow the calculation of the sensor-based depth or
disparity value d. Then, it is possible to use the inverse of a 4x4 projective matrix (see
Sec. (2.1.2)) to recalculate the 3D point coordinates.

The calibration of a camera is an important step, because it represents more precisely
the physical assembling of a real camera compared to the ideal camera pinhole model.
Incorporating a calibration, the spacing of the sensor and its relative position to the
camera are considered. Fig. (2.2) is meant to clarify the point.

Camera Model | 377

! ere are many other kinds of distortions that occur in imaging systems, but they typi-
cally have lesser e" ects than radial and tangential distortions. Hence neither we nor 
OpenCV will deal with them further.

Figure 11-4. Radial distortion plot for a particular camera lens: the arrows show where points on an 
external rectangular grid are displaced in a radially distorted image (courtesy of Jean-Yves Bouguet)

Figure 11-5. Tangential distortion results when the lens is not fully parallel to the image plane; in 
cheap cameras, this can happen when the imager is glued to the back of the camera (image courtesy 
of Sebastian ! run)
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Here, (x, y) is the original location (on the imager) of the distorted point and (xcorrected, 
ycorrected) is the new location as a result of the correction. Figure 11-4 shows displace-
ments of a rectangular grid that are due to radial distortion. External points on a front-
facing rectangular grid are increasingly displaced inward as the radial distance from the 
optical center increases.
! e second-largest common distortion is tangential distortion. ! is distortion is due to 
manufacturing defects resulting from the lens not being exactly parallel to the imaging 
plane; see Figure 11-5.
Tangential distortion is minimally characterized by two additional parameters, p1 and 
p2, such that:*

x x p y p r xcorrected = + + +[ ( )]2 21 2
2 2

y y p r y p xcorrected = + + +[ ( ) ]1
2 2

22 2

! us in total there are " ve distortion coe#  cients that we require. Because all " ve are 
necessary in most of the OpenCV routines that use them, they are typically bundled 
into one distortion vector; this is just a 5-by-1 matrix containing k1, k2, p1, p2, and k3 
(in that order). Figure 11-6 shows the e$ ects of tangential distortion on a front-facing 
external rectangular grid of points. ! e points are displaced elliptically as a function of 
location and radius.

* ! e derivation of these equations is beyond the scope of this book, but the interested reader is referred to 
the “plumb bob” model; see D. C. Brown, “Decentering Distortion of Lenses”, Photometric Engineering 32(3) 
(1966), 444–462.

Figure 11-3. Radial distortion: rays farther from the center of a simple lens are bent too much com-
pared to rays that pass closer to the center; thus, the sides of a square appear to bow out on the image 
plane (this is also known as barrel distortion)
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Figure 2.2: Physical sensor set-up. If the sensor is not parallel to the image plane, the image results in
tangential distortion. Additionally, the projection of an object (here a square) undergoes a distortion due
to possible inaccuracies of the lens. ((Images found in [36]))
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The projection centre of the 3D point onto the sensor does not have to meet the image
centre, because the sensor could be shifted to the image plane. This fact can be adjusted
by integrating the real projection centre cx, cy into the calculation. Additionally, the
projection does not fall directly onto the lens, but instead on the sensor lying a small
distance behind. This small distance is called the focal length f . Both values are expressed
in pixel coordinates.

To map a 3D point on the camera image plane, the following equation is used

p =
[
R|t
]

xl (2.3)

with the extrinsic parameters R (Rotation) and t (translation). The mapping from the
camera coordination system into the sensor coordination system is given by the camera
matrix K

K =




fx s cx

0 fy cy

0 0 1


 (2.4)

where s is called skew and encodes any possible skew between the sensor axes due
to the sensor not being mounted perpendicular to the optical axis. In practice, the
skew is mostly set to s = 0. The optical centre is often set to the middle of the image
(cx, cy) = (W/2, H/2), which can result in a usable camera model with only a single
unknown, the focal length f.

The parameters of the matrix K are called the intrinsic camera parameters. They can be
computed through known 3D points, which can be found using a calibration pattern
(e.g. a chessboard with known size). The principles and different algorithms to calibrate
a camera can be found in [211]. In this work, the calibration method of Bouguet [34] is
used.

The complete projection from a world point to the sensor is summarized with

p = K
[
R|t
]

x = Pxk (2.5)

,with the projection matrix P

P = K
[
R|t
]

(2.6)

combining the intrinsic and extrinsic camera parameters in one image formation process.

The described idealized camera model assumes a linear projection model, where straight
lines in the real world project to straight lines in the image. This assumption does mostly
not apply to real cameras, because they have some kind of distortion in their lens [198].
This leads to a visible curvature in the projection of the straight lines. The distortion
can be divided into the two most important radial and tangential distortion (In fact,
there are some more distortions, but their effect is much lower). The radial distortion
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effects that coordinates of projected points are shifted towards or away from the image
centre by an amount proportional to the radial distance. The tangential distortion arises
from manufacturing defects, which cause in a not exactly parallel lens to the imaging
plane. The distortion artefacts have to be removed to apply the described camera model
formulas (further information can be found in [90]).

With the principles of projective geometry and the knowledge about single camera
calibration it is possible to build exact mathematical models for the transformation from
one camera into another or from one viewpoint to another to be able to reconstruct
three dimensional structures. The following section gives an overview of the specific
mathematics and algorithms needed for the reconstruction.

2.1.2 Stereo Vision

Three-dimensional information is essential for a mobile robot in order to interact safely
with his rapid changing environment. Usual monochrome cameras do not provide
depth data, because this information is lost in the projection process. Hence, further
steps are necessary to get depth or 3D information from monochrome cameras. On the
one hand, depth information could be gathered through photometric approaches (shape
from shading, shape from shadow, photoclinometry, photometric photo and shape from
polarisation) or by the spread function of the optical system (shape from focus, shape
from defocus). On the other hand, 3D information can be calculated by geometrical
approaches, which minimise the Euclidean back-projection error [211]. Here, the use of
two cameras, called stereo vision, and their geometrical correlation is described.

Stereo vision is well known from our human visual perception. We look at the world
around us with two eyes, which enables us to perceive depth from the difference in
the appearance from the left and right eye. Near objects have a bigger shift in both
images than objects far away. This shift is called disparity and it is inversely proportional
to the world distance from the observer. The calculation of the disparity of points is
accomplished by searching for corresponding points in each image and measuring their
distance. With the known intrinsic and extrinsic camera parameters (here, extrinsic
means the rotation and translation between both camera centres) the 3D world coordi-
nates can additionally be applied. The details of the stereo process can be divided into
the following 4 steps:

• Undistortion: Mathematically remove radial and tangential lens distortion

• Rectification: Align for the angles and distances between cameras. The output are
row-aligned and rectified images

• Correspondences: Search the same features in the left and right images. The out-
come is a disparity map, where each value means the difference in x-coordinates
on the image plane of the same feature in each image (for horizontal aligned
cameras)

• Re-projection: Calculate the 3D world position through the disparities and the
known camera set-up parameters.
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Figure 2.3: Epipolar geometry. (a) One epipolar line corresponding to one ray. (b) Corresponding epipolar
plane ((Images found in [198]))

The first step is described in Sec. (2.1.1). The other three steps are further explained in
the following.

To explain the rectification it is important to describe first the epipolar geometry, which
motivates the rectification in order to speed up the search for correspondences. Figure
2.3 shows how one point x0 projects to an epipolar line segment in the other image. If
the point p projects on the point x0 in the first camera and we know the camera centres
c0, c1 and the extrinsic parameters as well, it is possible to project the camera centre c0

into the image plane of the second camera. The projection point e1 is called epipole. The
back projection of the second camera centre c1 in the first image is the correspondent
epipole e0. Connecting the epipoles with the projection points x0, x1 and extending these
lines to infinity results in a pair of corresponding epipolar lines. The epipolar lines are the
intersections of the epipolar plane with the image planes (see Fig. (2.3) b). The epipolar
plane is defined through the camera centres c0, c1 and the point p. [90]

The epipolar geometry can now be used to find corresponding points in both images.
The epipolar constraint [90] defines that each corresponding point has to project onto the
accordant epipolar lines. This constraint limits the search for corresponding points to
the epipolar lines. The step of rectification uses the knowledge about the camera set-up
to horizontally align the epipolar lines, which restricts the search to the same horizontal
line. This process uses an image warping, which rotates, translates and scales one
camera image into the other in a way that the camera centres are the same and both
cameras look perpendicular at the same scene, see Fig. (2.4). The warping information
is encoded in the essential matrix E and the fundamental matrix F (further details can
be found in [90]). The essential matrix is a pure physical transformation of the image
centres and the fundamental matrix additionally encodes the camera parameters (E
operates in physical and F in image pixel coordinates).

The resulting rectified geometry allows to write the inverse relationship between 3D
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Figure 2.4: Transformation of one camera centre into another camera centre. Utilizing a rotation matrix R and a
translation T, the camera centre Ol can be transformed into Or.((Image found in [36]))

distance Z and disparity d

d =
f b
Z

(2.7)

with f focal length and b distance between the camera centres (also called baseline). The
corresponding points in the images (l,r) can be found through

ur = ul + d(ur, vr), vr = vl (2.8)

with u, v pixel coordinates in the left and right image. The resulting values from the
found correspondences can be stored in the disparity map d(u, v).

The process of finding correspondences can be solved with sparse feature-based algo-
rithms like optical flow [95] or dense stereo algorithms, whereupon most of the stereo
algorithms in literature can be divided in two main categories, the local and global
methods.

The local methods use a sliding-window based approach, where the disparity value is
calculated through the best match of the intensities of a target window and search win-
dows. Many algorithms try to optimize the search with the sum-of-squared-distances
(SSD) algorithm.

Global methods minimize a global cost function with explicit smoothness assump-
tions to seek the disparity values. The main distinction between these methods is the
minimization procedure. Expectation minimization [29], graph cuts [35] or simulated
annealing [144] are some example methods, which are used in literature.

Finally, after the disparity map has been applied, it is possible to re-project the im-
age points onto 3D world coordinates using formula 2.7 and the inverse projection of
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formula 2.5 (using rectified images).

Q
[
u v d 1

]T
=
[
X Y Z W

]T
(2.9)

with scaling factor W and projection matrix Q

Q =




1 0 0 −cx

0 1 0 −cy

0 0 0 f
0 0 −1/Tx (cx − c′x)/Tx


 (2.10)

with T translation between the cameras and all parameters from the left camera except
c′x, which is the image centre of the right camera (if the principal rays intersect at infinity,
then cx = c′x and the lower right term is equal to 0). Stereo vision has been in the focus
of research for a long time, because several cameras provide the possibility to recalculate
the depth information of the projective scene geometry. In the next section, the extension
with more than two cameras is described.

2.1.3 Multi-Camera Set-up

The use of more than two cameras offers two advantages. First, taking more than two
images results in several disparity maps, which can be used to enhance the result of the
consolidated disparity map. One possibility is the sum of summed-squared-difference
(SSSD) [156]. Second, more cameras can deal with different views around the scene,
which can remove occlusion artefacts and deliver a complete 3D scene [114]. Scene Flow
is a closely related topic, where the optical flow is extended to 3D scene flow. The
scene flow is calculated through multiple cameras similar to the stereo correspondence
problem [203].

Stereo or multi camera vision offers the calculation of depth data of the scene. But, the
calculation is erroneous and restricted to structured areas. Plain walls or e.g. the sky
are hard to process for stereo algorithms. Additionally, a multi-camera set-up requires
a solid calibration in order to deliver reliable results. Here, the use of other sensors than
usual intensity cameras offers high potential to get superior results more easily. The
calculation of the correspondences of the intensity values consumes a lot of processing
time, which additionally pushes the use of other vision sensors on a mobile robot.

2.1.4 Active Cameras for 3D Vision

Active vision names the use of active sensors. This could be a controlled movement or
the active emission of light. As the interest lies on the active range finding, time-of-flight
sensors are another possibility to measure the distance of a scene. One of the famous
active cameras is the Swissranger sensor.



2.1. Description of Sensor Set-ups 17

Figure 2.5: Mesa Swissranger. Time-of-flight sensor
for active vision

The Swissranger SR4000 (see Fig. (2.5)) provided by Swiss Center for Electronics and
Microtechnology (CSEM) [209] delivers a matrix of distance measurements independent
from texture and lighting conditions. It consists of 176× 144 CMOS pixel sensors which
are able to determine actively the distance between the optical centre of the camera
and the real 3D world point via measuring the time-of-flight of a near-infra-red signal.
Besides a distance value matrix, the camera provides per frame a matrix containing
amplitude values. The amplitude value indicates the amplitude of the reflected near-
infra-red signal received by the sensor and implies therefore the amount of light reflected
by a world point. A small amplitude corresponds to a small amount of light reflected
and therefore indicates a weak signal.

Several researchers have already developed preprocessing and calibration techniques
dealing with noise arising from the different reflectance properties and characteristics
of the ToF cameras, like additional infra-red light in the scene, and measurement errors
at edges (so-called “flying pixels”). Schiller [174] proposed an automatic calibration of
the entire 3D ToF signals using a bunch of different cameras. Colour information is
also used by Huhle [101] for outlier detection and smoothing using Non-local Means
filter [41]. Smoothing techniques relying only on the ToF data are amplitude threshold-
ing with a fix value [145], removing of “flying pixels” at edges via detecting iteratively
geometric outliers taking into account the 2D neighbourhood [100], and correcting the
amplitude values using distance values and vice versa [158].

One disadvantage of the 3D time-of-flight sensor is the reflectance characteristic. Glasses
or black regions do not mirror the light and hence, the run time of the light beam can
not be measured for these areas. But, the advantages of fast and reliable 3D information
outweigh mostly the bad reflecting characteristics. The sensor does not provide colour
information. The lack of colour information is often compensated through an additional
calibrated colour camera, yielding a colour image with connected distance information
[101]. But, the distance information is sparse due to the small resolution of the sensor.
Hence, the use of different sensors in one calibrated set-up, providing colour and depth
information for each pixel, would reach the optimum. In the next section, such a sensor
is introduced, which offers high potential for mobile robotics.
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2.1.5 Sensor Ensemble

Generally, a sensor ensemble offers broader possibilities for the detection and tracking
of objects, because different sensors can represent the characteristics of objects more
explicit. A thermo-graphic camera e.g. could detect creatures, human beings [207] or
running cars [93] more easily. The combination with a range camera delivers the 3D
position of the object. Additionally, the sensors could be distributed, what removes the
effects of occlusions [47]. This benefit comes with a high cost, as the different sensors
need a calibration to provide their information in a common representation. Usually, a
pattern with a known size is used, which is placed such that it is viewed in every sensor.
Then, a calibration technique known from stereo vision could be used from sensor to
sensor. If 3D sensors are used, one possibility is the use of point cloud registration
techniques like iterative closest points (ICP) or more advanced approaches like the use
of surfaces, to iteratively converge the sensor data [97].

One upcoming sensor, which incorporates multiple sensors in one casing, originates
originally from the gaming sector. Microsoft offers an external device for its gaming
console XBox, which contains a bundle of sensors and a pan-tilt unit (see Fig. (2.6)).
The sensors consist of a RGB colour camera, an infra-red light source, an infra-red
camera, 3D microphones and a three axis accelerometer. The infra-red emitter projects
a light pattern into the scene, which is used by the infra-red camera to calculate depth
information through triangulation. The colour camera and the depth sensor run at 30
Hz or 15 Hz with 320x240 resolution and 640x320 respectively. The colour camera can
additionally provide a resolution of 1024x768 with about 10 Hz. The depth calculation
is able to provide a depth resolution up to 10 meter with a measurement error about
10 centimetre at 3.5 meter and 50 centimetre at 10 meter. The device is provided by
PrimeSense, who developed the sensor for the project Natal by Microsoft to play games
without controllers. Therefore, the device has an included computing board, which has
e.g. the ability to detect human players and to track hands [185]. But, the detection is
restricted to a an attached camera, while the implemented algorithms are not able to
handle ego-motion.

Figure 2.6: Kinect Sensor provided by Microsoft and
developed from PrimeSense. The Kinect sensor is
equipped with a RGB camera, an infra-red emitter
and sensor, 3D microphone and Accelerometer

The driver software provides the possibility to calibrate the internal sensors and to
trigger the capture time, which adjusts the different data onto each other. The light
emitter projects a point pattern, which is encoded by the camera through the infra-red
image and the triangulation of the distances of the projected points. Thus, it is possible
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to get a colour image, a depth image and a colour encoded 3D point cloud from the
sensor for further usage. All data is provided in real-time at about 15 Hz.

Comparing all different sensor types, it becomes evident that the usage of an active 3D
camera enhances the possibilities on a mobile robot. Hence, the introduced solutions
apply both, the Swissranger and the Microsoft Kinect camera. All parts in this thesis are
able to handle any sensory input as long as it provides a colour image and 3D data.

2.2 Object Detection

After introducing possible sensor set-ups, it is essential to describe further processing
steps for the incoming data. Thereby, the essential step for an autonomous tracking
system is the detection of interesting objects. The human is capable of detecting many
complex objects or humans in a scene at once, but using machine vision, the capabilities
are even nowadays limited. The problem is based on the variability and complexity of a
scene. Complex classes of objects are hard to detect, because they are mostly non-rigid
and they have extreme variations in their shape. The matching against a database is
e.g. possible only for classes with low variability within the class (e.g. street signs), but
it is hard to accomplish for objects with a high variability (e.g. humans). The class of
humans is particularly challenging for a number of reasons:

• Humans can be located at every image position with various poses, clothing and
different articulations of body parts.

• Humans are mostly found in strongly cluttered background, whereas the clutter
covers appearance and depth.

• Humans are hard to detect as they can be very small in the image due to their
distance to the observer and thus, look very similar to background objects like
trees, poles or narrow openings.

• As humans are dynamic objects they are often detected by their movement. Any-
way, motion is barely usable on a moving platform.

If one is not trying to analyse the complete scene in order to look for each possible
object, the problem can be reduced and defined. Hence, most detection algorithms are
looking for a specific type of object. If the interesting class is known and each image is
scanned for its occurrence, the problem is called object detection.

Definition 1 (Object detection) :
Object detection is the process of determining regions, which contain a specific object.

Generally, a detector can be based on the sliding-window approach, which moves a search
window over the image and analyses any possible sub-window. These approaches are
likely to be slow and error-prone. More advanced approaches try to find likely regions,
which could contain the searched object. The problem in object detection are regions,
which look similar to an object, which leads to false-positives. On the other hand, a
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desired object can be partially occluded or moved into shadows, which would lead to
a miss-detection or false-negative. A reliable detector tries to minimize the false-positive
rate and to maximise the true-positive rate.

In the following, I give an introduction into object detection algorithms with static cam-
eras and subsequent, with moving cameras to give an overview of the actual literature
in this field.

2.2.1 Object Detection ideal for Static Cameras

The use of static cameras is mostly found in surveillance scenarios, where some kind
of area is observed for security reasons. Especially in the united states or in the united
kingdom is a big interest in surveillance to prevent terrorist acts or crime. Using video
surveillance, it is possible to detect moving blobs, e.g. humans, and to track them
through the entire observed area. Static cameras abet the use of background subtraction
(Sec. (4.1)), where it is possible to subtract the background to segment such foreground
blobs.

Background Subtraction

Background subtraction is a powerful tool to extract moving objects, but it also has to
take the following points into consideration:

• Illumination changes (e.g. clouds)

• Motion changes (e.g. camera oscillation, tree branches)

• Changes in the background (e.g. parked cars, removed chairs)

The basic method of background subtraction is frame differencing

| f ramet − f ramet−1| > Thresh (2.11)

The subtraction only relies on the previous frame, which is sensitive to slow motion, the
frame rate and the threshold Thresh. Another approach is to model the background as
an average of the last frames

Bgt+1 = α ∗ f ramet + (1− α) ∗ Bgt (2.12)

Both simple approaches can be further adapted by selecting each pixel as fore- or
background and adaptively update it as background or skip it as foreground.

Bgt+1(u, v) = α ∗ f ramet(u, v) + (1− α) ∗ Bgt(u, v) (2.13)

if f ramet(u, v) background

Bgt+1(u, v) = Bgt(u, v) (2.14)

if f ramet(u, v) foreground
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It is also possible to fit a Gaussian [217] or a mixture of Gaussian [188] over the histogram
of background values. More extended algorithms make use of codebooks [117] mod-
elling the pixels either separately from each other or incorporating nearby pixels using
subspaces [150]. For a lot of approaches a static background is mandatory. However,
Sheikh and Shah introduced an approach that is able to cope with uniformly moving
background like a river or a tree [183].

Optical Flow

Different to subtracting the static parts the moving parts can be calculated in order to
reveal the moving objects in the scene. A widely used technique is to compute the dense
Optical Flow using each 2D image pixel. The optical flow is the distribution of apparent
velocity of moving brightness patterns in an image and arises both from the relative
objects’ and the viewer’s motion [82]. The flow of a constant brightness profile

I(x, y, t) = I(x + dx, y + dy, t + dt)

= I(x + vx · dt, y + vy · dt, t + dt) (2.15)

⇒ ∂I
∂x
· vx +

∂I
∂y
· vy = −∂I

∂t
(2.16)

is described by the constant velocity vector ~v2D = (vx, vy)T. Usually, the estimation
of optical flow is founded on differential methods. They can be classified into global
strategies which attempt to minimize a global energy functional [95] and local methods,
that optimize some local energy-like expression. A prominent algorithm developed by
Lucas and Kanade [136] uses the spatial intensity gradient of the images to find a good
match using a type of Newton-Raphson iteration. They assume the optical flow to be
constant within a certain neighbourhood N which allows to solve the Optical Flow
Constraint Eq. 2.16 via least square minimization.

3D Background Subtraction

If 3D data is available, z-keying is a simple algorithm to segment foreground data from
the background. The image is cropped by depth data, where only those pixel rest in the
foreground, whose depth is shorter than a specific cut-off [113]. Z-keying was first used
for video conference applications and to exchange the background.

The other mentioned background algorithms could also be extended to work with 3D
data, which enhances the possibilities of the background subtraction. Care should be
taken for noise, which occurs more often in specific depth data than in intensity image
data.

2.2.2 Object Detection for Static and Moving Cameras

The following algorithms are not restricted to static cameras, but work also on moving
cameras. The most important differences in these cases are that the algorithms do not
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rely on previous frames or on motion of the object. Instead, the techniques search for
the desired object only in the actual frame, which enables the use of the algorithms on a
mobile platform. For the following algorithms I assume that the image does not contain
motion blur, which could violate the detection process.

Many detection algorithms are based on the sliding window approach [159] [204] [205]
[52] [180] [181] or make use of evidence aggregation to build hypotheses [64] [149] [131]
[64] [6] [7].

Sliding window detection systems perform an exhaustive scan over the image for each
possible location or scale of the object. In each window a feature component extracts
essential features, which encodes the visual appearance of the object. A successive
classifier component decides independently for each window if it contains the searched
object or not. This two part principle of a feature component and a successive classifier
is valid for most detection algorithms. Hence, the following algorithms are additionally
ordered to first describe the possible feature components and adjacent, the classifiers
used.

Evidence aggregation uses the possibility to segment an object in different parts, where
each part calculates a vote for the object. Hypotheses are build out of the joint assembly
of each particular vote.

Feature Component

Figure 2.7: Haar-wavelets. The top row shows the
three orientations - vertical, horizontal, and diag-
onal - of the 2D wavelets. The bottom row illus-
trates the difference between the standard wavelet
shift and our quadruple density transform. (Image
found in [159])

First, some sliding window detection systems are presented. One early approach used
overlapping Haar-Wavelets to train a polynomial Support vector machine (SVM) [159].
The feature patterns consist of three types of rectangle patterns (Fig. (2.7)). The patterns
are horizontally or vertically adjacent and they have the same size and shape. Each
feature corresponds to the difference between the sum of the pixels in the black and
white rectangular regions. In contrast to the traditional wavelet transform, where the
wavelets do not overlap, the authors propose to achieve a better spatial resolution by
shifting only 1

4 of the the wavelet size, yielding an over complete dictionary of wavelet
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Figure 2.8: Detection Results. Some sample results using frontal, rear and side training images and a Haar-
Wavelet pedestrian detector. (Image found in [159])

features. In order to search for the object with their classifier, they achieved scaling
by incrementally resizing the image and running the sliding window detector over each
scaled image version, instead of the usual sliding window approach. In their paper, they
also describe an on-line version of their algorithm running with 10 Hz in combination
with the Daimler Chrysler Urban Traffic Assistant. To achieve the fast processing rate they
reduced their set of Haar-Wavelets to a small set containing only the most important
features. They additionally reduced the set of support vectors and finally, they use Gray-
level images instead of colour images. An important speed up arises in the combination
with the Daimler Assistant, which delivers interest regions what narrows the required
search windows a lot. Some example detection results of the described classifier can be
seen in Fig. (2.8).

Another use of wavelets is presented in [204] from Viola and Jones. They propose the
use of Haar-like Wavelets in addition with a cascade of AdaBoost classifiers. Initially
invented as a face detector, the classifier can be trained on each object type due to its
simple feature patterns. The first key for their fast detector is based on the computation
of the features. Viola and Jones proposed to use an Integral Image, which allows to
rapidly compute the sum of the pixels in one rectangular. The second key of their
algorithm is found in a learned cascade of feature detectors. The idea is to first segment
the interesting regions with a small set of features, which are rechecked by additional
and more accurate classifiers. The cascade quickly removes any region, which does not
have a particular similarity to the searched object (a more detailed explanation can be
found in Sec. (2.2.2)).

An extension to the previously described algorithm can be found in [205]. The authors
added motion information to the spatial information of one single detector. The detector
has a low false positive rate and can detect humans at very small scales (as small as 20x15
pixels). The system is trained on full human bodies and thus, can not detect partially
occluded persons. Additionally, the system requires a static camera, which disables it
for the requirements of this work.

Templates are also feasible for detecting objects. A template K with m, n pixel can be
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matched against each possible sub window I

corr =
1

mn ∑
u,v

Ku,v ∗ Iu,v with(u, v) ∈ [1 . . . m]× [1 . . . n] (2.17)

The correlation corr is equal to 1, if the template perfectly matches and 0, if it is a
total mismatch. The template matching is expensive due to its comparison at every
single image position. Gavrila employs a hierarchical Chamfer matching strategy to
overcome this problem [78]. The templates and the image are binarised to employ a
distance transformation, where the value corresponds to the distance to a pixel with a
value > 0. This leads to a continuous similarity measure, where a coarse-to-fine search
grid is sufficient. Additionally, a hierarchical template structure saves time through
the reduction of template equations. Utilizing about 1000 training examples, Gavrila
achieves a detection rate about 75% - 85% per frame with maximum 2 false positives.

Figure 2.9: Multi region training. Utilizing a gradi-
ent image, Shashua et al. propose to divide the
region into 9 subregions and additionally, 4 pair
combinations (10,11,12,13) to train multiple classi-
fiers with AdaBoost. (Image found in [181])

In recent work many authors propose to employ statistics on image gradients for peo-
ple detection. Shashua [181] uses edge orientation histograms in conjunction with
AdaBoost, which shows reliable results in conjunction with a pre-selection of interest
regions and clutter removement strategies (see Fig. (2.9)).

One prominent approach to detect objects are the Histograms of Oriented Gradients
from Dalal and Trigs [52]. Inspired from the Scale Invariant Feature Transformation ap-
proach, the authors show that the use of local orientation histograms combined with
local normalisation schemes works very well in the application of human detection.
The algorithm works as follows: The input image is normalised in gamma and colour.
Afterwards, gradients are computed utilising simple 1-D masks without smoothing. The
authors show that smoothing decreases the detection rate as well as complex derivative
masks. Next, the image window is divided into small spatial regions (“cells”). Each
spatial region accumulates a local 1-D histogram of edge orientations over the pixels of
the cell. The vote of each pixel is weighted by a function of the gradient magnitude
of the pixel. The authors propose to use fine orientation coding and coarse spatial
binning, which in numbers is about 9 orientation bins spaced over 0◦ − 180◦. For
better invariance to illumination or shadowing, the intensity values of neighbouring
cells are accumulated over larger spatial regions (“blocks”) in order to normalize all
cells in each block using the specific results. These normalised descriptor blocks are
called Histograms of Oriented Gradients descriptors. These blocks densely overlap in
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Figure 2.10: Histograms of Oriented Gradients. (a) Average training gradient over all training examples. (b)
Maximum positive weight of the SVM in each block. (c) Likewise for the negative SVM weights. (d)
Original image. (e) Computed R-HOG descriptor. (f) R-HOG descriptor weighted with positive SVM
weights. (g) Weighted with negative SVM weights respectively. (Image found in [52])

the detection window. Using the combination of all blocks as a feature vector in a
linear SVM results in the proposed human classifier. The proposed calculation has
the advantage of capturing very characteristic local gradient or shape structure using
local representations with an easily controllable degree of invariance to local geometric
and photometric transformations. Of course, this is only applicable for translations
or rotations much smaller than the local spatial or orientation bin size. The strong
normalisation over each block ensures photometric transformations. The final detector
and some other example images are shown in Fig. (2.10).

The calculation of these big amount of low level features for statistical analysis of the
image makes it affordable to use many training samples in order to train properly the
SVM. Especially, if even more features are used the high-dimensionality of the feature
space becomes nearly intractable. Consequently, other authors propose to reduce the
feature space with dimensionality reduction techniques. Schwartz et al. propose to
use HoG-features with additional colour and texture information and to reduce the
feature space with Partial Least Squares (PLS) analysis [180]. The idea of PLS is to
construct predictor variables (“latent variables”), which are a linear combination of the
original variables summarized in a matrix. Additionally, PLS provides a class label
as output and hence, it provides a vector with response variables (one for each class).
The dimensionality reduction is performed by projecting the feature vector onto some
weight vectors, obtaining a latent vector as result, which is used in classification.

In the following, I give a broad overview over further state of the arts techniques, which
can be studied in detail in the given literature. Like Schwartz et al. Mu et al. propose to
use colour information, but instead of extending the HoG features they use a variation
of local binary patterns to overcome the lack of colour information in HoG. Zhu et
al. further improved the work of Dalal and Triggs by using different block sizes in a
rejection cascade using HoG features [223]. The work from Tuzel et al. also improved the
results from Dalal and Triggs by using low-level features such as intensity, gradient, and
spatial location combined by a covariance matrix [202]. The covariance matrices are not
feasible with SVM’s since they do not lie in a vector space. Hence, the authors propose
a classification by LogitBoost classifiers combined with a rejection cascade designed to
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Figure 2.11: Part-based-model. From left to right: Example detection using a part-based-model. The model
is defined by a coarse template and a spatial model for sub parts, which have a higher resolution. The
features are based on HoG features, which are trained using each individual part of the detector. (Image
found in [65])

accommodate points lying on a Riemannian manifold. Chen and Chen [45] combine
intensity-based rectangle features and gradient-based features using a cascaded struc-
ture for detecting humans. Wu and Nevatia [218] describe a cascade-based approach
where each weak classifier corresponds to a subregion within the detection window
from which different types of features are extracted. The features are a combination of
edge-lets [33], HOG descriptors [52], and covariance descriptors [202]. Maji et al. [141]
apply HoG features as well, but in a multi-level version and a histogram intersection
kernel SVM based on the spatial pyramid match kernel [127].

The other feature component part is evidence aggregation. Here, the features are not
segmented from one sub window, but they are extracted from several parts, which are
again combined in one part-based model. The part-based models have a long history
in computer vision as object detectors and as human detectors as well. Here, the
illustrated approaches are all utilized in human detection. Again, the part-based models
can be divided in two major directions. The first one uses low-level features to model
individual parts of the object and the second one models the topology of the human
body. In the following, some recent part-based human detectors are briefly described
(cf.[32] [131] [7]).

Mikolajczyk et al. [149] [148] divide the human body into different parts and utilise a
cascade of detectors for each part. Based on deformable parts, Felzenszwalb et al. [64]
[65] simultaneously learn part and object models and apply them to person detection,
among other applications (see Fig. (2.11)). Applying logical reasoning, Shet and Davis
exploit contextual information, augmenting the output of low-level detectors [184]. Tran
and Forsyth [200] propose a mixture of two stages of part-based methods and win-
dowing approaches. First, a window including the person is detected and a possible
configuration of the person is estimated. Second, features for each part are extracted
from the estimation. In a similar way, Lin and Davis [133] extract pose-invariant features
in order to simultaneously detect and segment humans, while descriptors are calculated
based on human poses. In [83] different people are tracked in crowded scenes by a
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learned torso classifier. A codebook representation is used as recognition technique,
where appearance clusters are built from edge based features, which are shared among
several object classes. Especially, the basic edge based features are shared by several
object classes, while the features of the image are arranged in an efficient tree type
hierarchical design. The human torsos are thereby represented by clusters of features.
The hierarchical clustering detection offers minor occlusion of edge features of the torso.
In [6] [173] [7] the authors detect the approximate articulations of humans through local
features that model the appearance of individual body parts. Using a hierarchical Gaus-
sian process latent variable (hGPLVM) they incorporate prior knowledge on possible
articulations and temporal coherency within a walking cycle.

Classifier Component

After extracting one or several features a classifier has to decide, whether the actual win-
dow contains the object or not. Two popular choices are Support vector machines (SVM)
or decision trees in conjunction with the AdaBoost framework. Other choices are relying
on biologically inspired neural networks or different machine learning approaches,
which excess the focus of this work and which are consequently not mentioned here.
The interested reader is referred to [58] for further reading.

The Support vector machines provide a set of supervised learning methods, which
predict, for a given input of two classes, to which class the input the belongs. A support
vector machine learns a classifier margin out of labelled examples, which is a process of
finding a separating hyperplane or set of hyperplanes with the largest margin to each
class. The maximum of the distance to the corresponding classes assumes to build a
better generalisation. Here, I give a short introduction in support vector machines, for
further reading take a look in [58] or [42].

The name for support vector machines arise from the important parts of the training
data. Some examples are closer to training examples from the other class and hence,
are more important in the decision process. The training patterns, which are (equally)
close to the separating hyperplane are called support vectors. The original formulation
of SVM’s stated the problem in a finite dimensional case, which can be resolved using a
linear classification margin. But, it can happen that the problem is not linearly separable
(e.g. the XOR-problem). This leads to a mapping from lower dimensional data to higher
dimensions using Kernels. The needed cross product from the linear separable case can
be defined through a kernel function, which permits to classify non-linear separable
data. Generally, the data can be of any type, i.e. scalar, vector or intensity features.

Adaptive Boosting or AdaBoost is a machine learning algorithm invented by Freund
and Schapire [72]. The first usage as a classifier was presented by Viola and Jones
[204]. The algorithm is based on boosting, which improves the accuracy of any given
learning algorithm by adding new component classifiers to form an ensemble whose
joint decision rule has arbitrarily high accuracy on the training set [58]. In short, the idea
is to train several weak classifiers, which work in conjunction better than one classifier
on its own. AdaBoost is a variation on boosting as weak learners can be added as long
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as a desired training error is achieved. Additionally, the training patterns are weighted
due to their “difficulty”. If a chosen pattern is misclassified, the weight is increased and
if a pattern is correct classified, the weight is decreased. A higher weight ensures that a
pattern will be used again and conversely, a pattern with a low weight will be skipped in
further training iterations. This constrains the classifier to learn the important features
out of the database, which separate the classes most. Summing up, the cascades yield
a speed optimisation, AdaBoost has few parameters to tune and can be combined with
any classifier to find weak rules.

The idea of Multi-Layer-Neural-Networks is to learn the non-linearity in the data at
the same time as the linear discriminant, which divides the data in different classes.
The area of neural networks is very large and most of the introduced algorithms do
not rely on networks. Hence, I present in short the idea of the most famous approach
of the multi-layer network trained through the back-propagation algorithm. Different
layers of neurons provide a non-linear decision boundary. The problem is to find a
good configuration of layers and neurons and a fitting parameter set, which can learn
the accordant boundary of the provided data. The advantage of neural networks is the
handling of raw data, i.e. no explicit feature extraction process is needed. Instead, the
network learns the important features directly out of the data.

Here, I presented a lot of approaches for detecting humans, which could be utilized to
segment a hypotheses out of image data. Histograms of oriented gradients and part-
based models showed high potential in the detection rate, while background extraction
or moving foreground detection are not promising on a mobile platform.

In the following, systems have to keep track of found hypothesis in order to build a
knowledge base of each movement of a human in the scene. This can be done by
detecting each hypotheses from frame to frame and to correlate all detections with each
other (tracking by detection) or through a particular tracking algorithm, which is not
based on global category features, but on individual features for each hypotheses (object
tracking). The object tracking approach offers a more stable tracking, as the features more
distinguish each object from the background than the global detection. In the following
section, I give a general introduction in the possibilities of tracking algorithms.

2.3 Visual Tracking

Visual tracking has got the function to recover the position of a target over time. This
can be e.g. the 2D image position or the placement of the object in real world. Tracking
is very important for this work, because the gathered knowledge has to be put in a
temporal continuity. Hence, tracking is defined by the following statement:

Definition 2 (Object Tracking) :
Tracking is the process of creating temporal links of the occurrences of a moving object, which
recovers the object’s path.
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In this section the most important tracking algorithms are described without guarantee
of completeness, because of the broadness of this discipline. Tracking is studied by
many researchers with elusive methods over many years, which has to be restricted to
fit into this work. Hence, the section first defines the possible compositions of a tracker
and subsequent, it provides the most important configurations in literature.

“Two major components can be distinguished in a typical visual tracker. Target
Representation and Localisation is mostly a bottom-up process which has also
to cope with the changes in the appearance of the target. Filtering and Data
Association is mostly a top-down process dealing with the dynamics of the tracked
object, learning of scene prior, and evaluation of different hypotheses.”
Comaniciu 2003, [49, p. 1]

In each tracking problem the combination and weighting of bottom-up and top-down
parts have to be reconsidered in order to track a target robust and efficient. In some
applications it is an advantage to rely more on target representation than on dynamics,
while in other scenarios it could be more robust to consider the motion of a target.
Target representation is e.g. better in face tracking in crowded scenes and considering
the dynamics would benefit in aerial surveillance, where target and camera motion are
more important. Additional requirements are necessary, if the system should run in
real-time, because only a small amount of the processing power can be assigned to the
tracking itself. Preprocessing stages or high-level tasks such as detection, recognition
or reasoning consume much available processing time. Therefore, the computational
complexity of a tracker should be kept as low as possible.

The first step in a tracker is to define a target model. This model can reach from simple
point representations to complex feature models. Generally, existing feature tracking
techniques fall into two areas: Correspondence based techniques and texture correlation
based techniques. Correspondence based techniques extract a set of features from frame
to frame and try to establish a connection between each corresponding feature in two
subsequent sets. On the other side, texture correlation based techniques extract features
from a window and try to find globally a best fit in the subsequent image.

Tracking is done most powerful, if the chosen features discriminate most between the
object and the actual background. In [48] it is proposed how the features could be
chosen by computing a log likelihood ratio of class conditional sample densities from
object and background. The feature selection algorithm is embedded in a mean shift
tracking algorithm that adaptively selects the top-ranked features. Of course, more
complex features require often more computation time, which also has to be considered.
Hence, the features should be chosen problem dependant in a way that the tracking is
also fast and most robust.
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2.3.1 Feature Tracking

One typical correspondence based technique is point tracking. Point tracking is known
from optical flow (Sec. (2.2.1)), where points like corners or other descriptive points
are temporal related. More sophisticated approaches like SIFT (Scale-invariant feature
transform) [135] or SURF (Speeded up robust features) [18] incorporate a small neigh-
bourhood of the point, which ensures that the feature is more stable for matching and
recognition. The drawback of such simple features are the impracticality to extract more
stable region features and the correspondence complexity, which point belongs to which
in the ongoing frame.

To overcome these drawbacks, most trackers use a complete region, where features can
be directly extracted. Blob tracking is one the first attempts to track an image region.
In [69] they describe a way to establish a temporal relationship between different blobs.
They use a coarse to fine resolution of the image to build up a graph of correspondences
to track not only large and slow objects, but also small and fast ones. They show
interesting results over some video-sequences (see Fig. (2.12)).
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Figure 6: Segmentation and tracking of the players and the ball in professional racquetball video. The frames
on the left are the original composite output frames. At the right of each frame, a binary mask corresponding
to the players and the ball blobs and trajectories is shown, as manually extracted from the output frames,
in order to highlight the result data lost to publication artifacts (color to grey scale conversion, compression
and printing).

6 Summary and perspectives

This paper introduced a new real-time blob tracking algorithm. Use of multi resolution, following a coarse-
to-fine hypothesis generation, propagation and refinement process, allows to reliably track not only large,
slow blobs, but also small fast blobs as well. The algorithm has been implemented and integrated in an
extensible, real-time testbed system. It has been tested in a variety of surveillance scenarii (indoors and
outdoors, live and recorded) and has produced state-of-the art (or better) results on standard test datasets.
It has also been tested on professional tennis and racquetball videos, producing unprecedented real-time
tracking results on the ball.

The specifics of the algorithm as presented are characterized by their simplicity, making it especially
suitable for integration in real-time systems. More elaborate similarity measures could be used, involving
for example blob shape, color distribution, etc. Hypothesis propagation and refinement could certainly be
made significantly more complex. Such improvements would probably improve the quality (e.g. by reducing
further the number of hypotheses generated) and confidence of the data produced at this low level tracking
stage, and are certainly worth investigating.

Trying to address higher level issues (such as trajectory fragmentation and blob split/merge) at this stage
would then be very tempting. This work however is motivated by the belief that a robust system can be
achieved by combining a collection of “imperfect” modules, rather than in a one stage approach (with one
do-it-all algorithm). The presented algorithm is viewed as the second earliest stage in a robust video analysis
system, coming right after segmentation. The real-time testbed must be pushed up the semantic ladder, by
designing relevant algorithms and developing the corresponding modules.
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Figure 2.12: Multi-Resolution Blob tracking. In each
frame two players and the ball of a racquetball
game are tracked. At the bottom the ground truth
is manually labelled. (Image found in [69])

More about Blob tracking could be found in [105]. They use a cylinder model to track
multiple persons with a multi-blob likelihood function.

2.3.2 Multiple Feature Tracking

If one feature is not sufficient to describe and track the object, a mixture of several
features could produce relief. The easiest approach consists of calculating several fea-
tures and trying to find correspondences between them in time. The multiple feature
tracking could consist of different types of features. In [12] the authors propose to track
objects through a colour based particle filter and an adaptive template tracker, where
the priority between both cues could be dynamically switched. Here, it is important to
mention that each additional feature increases the computation time, which should be
avoided for real-time systems. Ensemble Tracking e.g. is a collection of weak classifiers
combined to a strong classifier using Adaboost. The strong classifier is trained to
separate back- and foreground. The maximum or best position of the object is found
using mean shift. Coherence is achieved through updates with new weak classifiers
matching the actual object condition [11].



2.3. Visual Tracking 31

2.3.3 Template Tracking

One easy way of target tracking is to use templates. The algorithm uses a snapshot or
image snippets from a database in order to compare them to each sub-window of the
search-image. The best match is computed by the difference of the intensity of each
point from the template to each point from the search images. The bast match is taken
as actual position, if the difference is above a certain threshold. The tracking could
be speeded up, if only the sub-windows in a specific area around the object are taken
into account. An efficient and robust version of the Lucas-Kanade template matching
algorithm is presented from [178], which estimates robust parameter over many frames
and corrects the template drift.

2.3.4 Kernel Tracking

Kernel tracking is an important method to regularise target representations by spatial
masking with kernels, which creates spatially-smooth similarity functions suitable for
gradient-based optimisation [49] [8] [88]. The optimisation is often induced by sim-
ilarity between target model and target candidates measured using some metric like
the Bhattacharyya coefficient [49]. Comaniciu et al. propose background weighted
m-bin colour histograms, with a target model q̂ = {q̂u}u=1...m and target candidate
p̂(y) = { p̂u(y)}u=1...m. Thereby, the target model is represented by an ellipsoidal region
in the image, which weights pixel farther away from the centre less by using again an
isotropic kernel. The similarity function defines a distance between the target and the
candidate model. It has the form ρ̂(y) ≡ ρ[ p̂(y), q̂] and is masked with an isotropic
kernel in the spatial domain in order to transform ρ̂ to a smooth function in y. The used
metric is the Bhattacharyya coefficient ρ̂(y) = ∑m

u=1
√

p̂u(y), q̂u. The current location of
the target is then found by minimising the distance as a function of y. The localisation
starts from the last known position and searches the neighbourhood. Through the usage
of the kernel, the gradient information provided by mean shift can be used. Han et al.
combine kernel density tracking with the mixture of Gaussians approach in order to
get a non-parametric method with variable components [88]. The outcome is a tracking
system, which can handle multi-modal densities while modelling the target appearance
online. Thereby, the update rate of the density representations is critical for the tracking
process and the system is not ideal for full-occlusion sequences.

2.3.5 Tracking using Filters

One of the most common formulations of the filtering and data association approaches is
through the state space approach in order to model discrete-time dynamic systems [15].
The information about an object is modelled by the state sequence {xk}k = 0, 1, ... and
its evolution over time by the dynamic equation xk = fk(xk−1, vk), with vk noise. The
dynamic equation is typically specified by a motion or transition model, which transfers
the state xt−1 from the previous step to the current moment xt. For each time step there
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are measurements {zk}k = 1, ..., which are related to each state through the measure-
ment function zk = hk(xk, nk), with nk as noise. Both noise values {vk}k=1,..., {nk}k=1,...
are expected to be independent and identically distributed.

Tracking using filters is defined as the estimation of the state xk given the actual mea-
surements z1:k and the dynamic equation. This is equivalent to the calculation of the
probability density function (pdf) p(xk|z1:k). The recursive Bayes Filter is the theoreti-
cally optimal solution for this problem. It possesses two essential steps. The first step is
called the control update or prediction. In this step the actual state xk is calculated from
the prior state xk−1 and the probability that the dynamic equation induces a transition
from xk−1 to xk. Next, the update step computes the posterior pdf p(xk|z1:k), which
means the probability that the current state is xt given the actual measurement zk. The
algorithm is recursive as the posterior is calculated by the knowledge about previous
states. This requires an initial state {x0}, which should centre all probability mass on a
correct value {x0} and assign zero probability anywhere else. It is possible to start with
an unknown value {x0} as well, resulting in an uniform distribution or to start with a
partially knowledge expressed by non-uniform distributions. In the field of tracking,
the first case is the most common, as we have a target model, which we try to track over
the time.

In literature exists quite a variety of techniques and algorithms that are all derived
from the Bayes Filter, where each technique relies on a different assumptions regarding
the state transition probabilities, the initial belief and the measurement [199]. The
different filters model the approximation of the posterior distribution in a different
way, which has an important impact on the complexity and the approximation of the
algorithm. Therefore, if one is choosing an approximation, following properties should
be considered.

• Computational efficiency: How time consuming is the finding of a solution

• Accuracy of the approximation: Which distributions can be approximated with
the selected algorithm

• Ease of implementation: Code maintenance and implementation time should be
kept in mind.

If the noises {vk}k=1,..., {nk}k=1,... are Gaussian and the functions fk, hk are linear, the
Kalman Filter (KF) [210] provides the ideal solution [15]. The posterior is also Gaussian
in this case. The presentation of the posterior as a Gaussian is characteristic for many
tracking problems as the Gaussian is uni modal and has only one maximum with a lower
probability around it and the searched object has one true state and a small margin of
uncertainty. A Gaussian has the following form:

p(x) = det(2π ∑)−
1
2 exp{−1

2
(x− µ)T ∑−1(x− µ)} (2.18)

The Gaussian density p(x) is described by the mean µ and the covariance ∑, which is
symmetric and positive-semi definite.
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If the functions fk, hh are not linear, there is one possible solution using the Extended
Kalman Filter (EKF) [15], which uses linearisation to model the posterior density still as a
Gaussian. An alternative is the Unscented Kalman Filter (UKF) [110]. Another possibility
is the use of sequential monte-carlo methods or respectively particle filters [104].

Kalman Filter

The Kalman Filter was invented in the 1950s by Rudolph Emil Kalman [112]. The
discrete Kalman Filter can only deal with continuous state spaces and it is not applicable
to discrete or hybrid state spaces [210].

Kalman Filters are beliefs at time t, represented by the mean µt and the covariance ∑t.
Three properties must hold in order to represent the posteriors as Gaussian.

(i) The probability for the next state p(xt|ut, xt−1) must be linear in its arguments with
added Gaussian and white noise εt, which is expressed in the following equation.

xt = Atxt−1 + Btut + εt (2.19)

xt and xt−1 are vertical state vectors and ut is the control vector. At and Bt are
matrices with according size, such that the state transition function becomes linear
in its arguments.

(ii) The measurement probability p(zt|xt) must also be linear in its arguments, with
added Gaussian noise

zt = Ctxt + δt (2.20)

Ct is a matrix, with the dimension of the measurement vector. δt corresponds to
the measurement noise, which is a Gaussian with zero mean.

(iii) The initial belief bel(x0) has to be normal distributed.

Considering the three assumptions in addition to the Markov assumptions, the posterior
bel(xt) is always a Gaussian, for any time t. The assumption that the noise is both white
and Gaussian means that the noise is not correlated in time and that its amplitude can
be modelled by an average and a covariance [36]. For the mathematical proof take a
look in [199]. Using these assumptions it is possible to build a model for the state of the
system that maximises the a posteriori probability of previous measurements.

The Kalman-Filter estimates the process state by two equations, the time update equation
and the measurement update equation (see Fig. (2.13)). The time update equation projects
the current state and error covariance forward in time to obtain the a priori estimates
for the subsequent time step. The measurement step incorporates the measurement into
the a priori estimate to obtain an improved a posteriori estimate. Both equations are
often called predictor and corrector equations.

If the process to be estimated and (or) the measurement relationship to the process
is non-linear, the original Kalman-Filter can not be applied. One possible solution
is provided by the extended Kalman-Filter (EKF) or the unscented Kalman-Filter (UKF).
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Figure 2.13: Kalman-Filter cycle. The time update
predicts the current state and error covariance to
the next time step. The measurement update corrects
the initial estimate by incorporating the measure-
ment (Image found in [210])
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Figure 1-1. The ongoing discrete Kalman filter cycle. The time update 
projects the current state estimate ahead in time. The measurement update 
adjusts the projected estimate by an actual measurement at that time.

The specific equations for the time and measurement updates are presented below in Table 1-1 and 
Table 1-2.

Again notice how the time update equations in Table 1-1 project the state and covariance estimates 
forward from time step  to step .  and B are from (1.1), while  is from (1.3). Initial 
conditions for the filter are discussed in the earlier references.

The first task during the measurement update is to compute the Kalman gain, . Notice that the 
equation given here as (1.11) is the same as (1.8). The next step is to actually measure the process 
to obtain , and then to generate an a posteriori state estimate by incorporating the measurement 
as in (1.12). Again (1.12) is simply (1.7) repeated here for completeness. The final step is to obtain 
an a posteriori error covariance estimate via (1.13).

After each time and measurement update pair, the process is repeated with the previous a posteriori 
estimates used to project or predict the new a priori estimates. This recursive nature is one of the 
very appealing features of the Kalman filter—it makes practical implementations much more 
feasible than (for example) an implementation of a Wiener filter [Brown92] which is designed to 
operate on all of the data directly for each estimate. The Kalman filter instead recursively 
conditions the current estimate on all of the past measurements. Figure 1-2 below offers a complete 
picture of the operation of the filter, combining the high-level diagram of Figure 1-1 with the 
equations from Table 1-1 and Table 1-2.

Table 1-1: Discrete Kalman filter time update equations.
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(1.10)

Table 1-2: Discrete Kalman filter measurement update equations.
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The EKF overcomes the linearity assumption and represents the state probability and
measurement probabilities by non-linear functions g and h:

xt = g(utxt−1) + εt (2.21)

zt = h(xt) + δt (2.22)

The functions Eqn. (2.19) and Eqn. (2.20) are generalised through this model by replacing
the matrices At and Bt with g in Eqn. (2.21) and the matrix Ct with h in Eqn. (2.22). But
the Bayes filter does not possess a closed-form solution for the non-linear functions.
Hence, performing a belief update exactly is usually impossible. Instead, the extended
Kalman Filter approximates the true belief by a Gaussian [199]. The difference of the
EKF and UKF are explained with the following citation.

“A central and vital operation performed in the Kalman Filter is the propagation of
a Gaussian random variable (GRV) through the system dynamics. In the EKF, the
state distribution is approximated by a GRV, which is then propagated analytically
through the first-order linearisation of the non-linear system. This can introduce
large errors in the true posterior mean and covariance of the transformed GRV,
which may lead to sub-optimal performance and sometimes divergence of the filter.
The UKF addresses this problem by using a deterministic sampling approach. The
state distribution is again approximated by a GRV, but is now represented using
a minimal set of carefully chosen sample points. These sample points completely
capture the true mean and covariance of the GRV, and when propagated through the
true non-linear system, captures the posterior mean and covariance accurately to
the 3rd order (Taylor series expansion) for any non-linearity. The EKF, in contrast,
only achieves first-order accuracy. Remarkably, the computational complexity of
the UKF is the same order as that of the EKF.”
Wan 2002, [206, p. 1]

In general the use of EKF or UKF in the area of object tracking is advantageous compared
to the standard KF, because of the better approximation of the underlying posterior. A
successful proposal of contour tracking using unscented Kalman-Filter in conjunction
with HMM’s is shown in [96].
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Particle Filter

Another technique for tracking is the particle filter (PF), also known as Sequential Monte
Carlo methods (SMC). The particle filter is especially useful to represent multiple hy-
potheses simultaneously. This is e.g. needed, if the tracked object is occluded and
the tracker has no measurement for a specific amount of time. The particle filter is a
non-parametric implementation based on the Bayes-Filter. The idea of particle filters
is to represent the posterior bel(xt) by a set of random state samples drawn from this
posterior, which approximate the final state. Due to the non-parametric design the
particle filter can represent much broader space of distributions than e.g. the Kalman-
Filter based on Gaussians.

The samples of the posterior distribution are called particles

Φt = xi,t with i = 1 . . . M (2.23)

Each particle xi,t is a complete instantiation of the state at time t. The number of particles
M in the set Φt is often large to approximate reliably the belief bel(xt).

xi,t with i = 1 . . . M (2.24)

If the number of particles is very large M ⇒ ∞ the particle filter is proportional to the
Bayes filter posterior.

Like the Kalman-Filter the particle filter constructs the belief bel(xt) recursively from the
previous belief bel(xt−1). The particle set Φt is constructed from the set Φt−1 one time
step before. Thereby, each particle has got an importance factor

wi,t = p(zt|xi,t)wi,t−1 (2.25)

which incorporates the measurement zt into the particle set. The importance factors can
be interpreted as weight of a particle, where the complete set represents the Bayes filter
posterior bel(xt). The weights are initialised with 1 in the first step and recalculated
dependent on the accordant measurements. If the particles are all kept and only re-
weighted, many particles would end up in regions with low probability. Accordingly,
the particles are re-sampled corresponding to their importance called Sequential Impor-
tance Resampling (SIR) [84]. If an importance weight is low, the particle is replaced by
a particle copy of a particle with high importance. This forces particles back to the
posterior bel(xt). Fig. (2.14) clarifies the sequential importance re-sampling.

The typical procedure of a particle filter is as follows:

(i) Generate a hypothetical state xi,t for time t based on the particle xi,t−1 and the
control ut (cf.Kalman Filter) for each particle i = 1 . . . M. This includes sampling
from the next state distribution

p(xt|ut, xt−1) (2.26)
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Figure 2.14: Particle filter importance re-
sampling. One time stamp in the particle
filter process. The first step (drift) keeps only
the important particles with high weight.
The next step (diffuse) re-samples from the
best particles and the final step (measure)
incorporates the new measurement in order
to estimate the posterior of the actual state.
(Image found in [104])

10 Isard and Blake

Figure 4. Sample-set representation of shape distributions: the sample-set representation of probability distributions, illustrated in one dimen-

sion in Fig. 3, is illustrated here (a) as it applies to the distribution of a multi-dimensional curve parameter x. Each sample s(n) is shown as a

curve (of varying position and shape) with a thickness proportional to the weight πn . The weighted mean of the sample set (b) serves as an

estimator of the distribution mean.

Figure 5. One time-step in the Condensation algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps in the Condensation algorithm.

(ii) Calculate the importance factor wi,t for each particle xi,t in order to incorporate the
measurement zt.

(iii) Use Sequential Importance Re-sampling to better approximate the true posterior
bel(xt)

The first step arranges the sampling of the particles, where the transition probability,
see Eqn. (2.26), models the drawing of the particles.

One particle filter technique, which uses SIR with transition prior as importance func-
tion, is the Condensation algorithm [104]. The authors applied the Condensation al-
gorithm to the problem of tracking curves in dense visual clutter. They use learned
dynamical models for their filter, which propagate together with visual observations the
particle set over time. The Fig. (2.15) shows three exemplary results for the Condensation
algorithm.22 Isard and Blake

Figure 16. Tracking a flexing hand across a cluttered desk: representative stills from a 500 field (10 s) sequence show a hand moving over a

highly cluttered desk scene. The fingers and thumb flex independently, and the hand translates and rotates. Here theCondensation algorithm

uses N = 1500 samples per time-step initially, dropping gradually over 4 fields to N = 500 for the tracking of the remainder of the sequence.

The mean configuration of the contour is displayed.

Figure 17. Tracking with camouflage: the aim is to track a single camouflaged moving leaf in this 12-s sequence of a bush blowing in the wind.

Despite the heavy clutter of distractors which actually mimic the foreground object, and occasional violent gusts of wind, the chosen foreground

leaf is successfully tracked throughout the sequence. Representative stills depict mean contour configurations, with preceding tracked leaf

positions plotted at 40ms intervals to indicate motion.

Figure 2.15: Tracking result from Condensation.
The Condensation algorithm is applied for
curve tracking. The images show three re-
sults for the hand model, where the algorithm
uses 500-1500 samples per time stamp.(Image
found in [104])

Many other particle filters exist in literature [109] [153] [116] [140] [132]. Rao-Blackwellized
particle filter are e.g. used for motion estimation as alternative to Structure from Motion
(SfM) [2]. Variational particle filter are applied for multi object tracking [109]. They
use a mixture of a non-parametric contour model and a non-parametric edge model to
represent the object using kernel density estimation. The Auxiliary particle filter (APF)
tries to deal with tailed observation densities by using auxiliary variables and reference
points [163].

“The APF is a lookahead method, where at time n we try to predict, which samples
will be in region s of high probability masses at time n + 1.”
Doucet 2008, [57, p. 23]
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Hence, the auxiliary particle filter uses an intermediate step, which measures the likeli-
hood at some points beforehand. Thereafter, the conditional samples are drawn.

2.3.6 Tracking by Multiple Models for Adaptive Estimation

Interacting multiple models (IMM) [30] have shown good results in the case of motion
uncertainties [146] [108]. The idea is to use more than one motion model in order to
represent different possible motions. Each motion model is incorporated in an elemen-
tal filter (e.g. Kalman), which are merged to calculate the final posterior state. The
probability that the object changes its displacement mode is encoded in a transition
probability matrix (TPM). One cycle of an IMM is composed of several parallel steps
[43]. The new data z is used with the previous state P(xt−1) to update each filter. The
TPM is also updated in this step according to the likelihood of observation with filter
internal prediction. The final state is computed by a fusion of each filter and the TPM.
IMM’s have also been successfully applied in the area of human tracking [62] [43]. An
IMM estimator performs significantly better than a Kalman filter, if the manoeuvring
index λ of a target is above a certain threshold.

λ
∆
=

σT2

σw
(2.27)

σT2/2 relates to the motion uncertainty and σw to the observation uncertainty. Intu-
itively, the higher the uncertainty the more the tracking benefits from a versatile tracker.
(cf.[16, p. 281])

Actual work in literature is about automatic online estimation of the transition prob-
ability matrix [43] in order to create a parameter set for the IMM fitting on the real
data.

2.3.7 Tracking by Joint Probabilistic Data Association Filter

In the case of diverse measurements, whose origin is uncertain, data association is of
main interest. Especially in the case of noisy data or multiple objects in the scene data
association cares for selecting measurements, which update the state of the target of
interest. Additionally, it is important to determine, if the filter has to be modified in
order to account for the data association uncertainty [14]. As filter mostly Kalman or
Extended Kalman filter are applied. The difference of data association compared to a
Kalman filter is located in a few additional steps (Valid for single object tracking. Multi
object tracking acquires additional steps):

(i) The measurement has to be validated at each time

(ii) For each validated measurement, an association probability has to be computed to
weight the measurement in the combined innovation.

(iii) “The final updated state covariance accounts for the measurement origin uncertainty.”[14,
p. 90]



In literature, there exist different data association algorithms, which are namely the
probabilistic data association filter (PDAF), joint PDAF (JPDAF) for multiple objects
[165], mixture reduction PDAF (MXPDAF), particle filter (PF) and multi-hypothesis
tracker (MHT).

There exist also the approach of connecting IMM and JPDAF into one system, which
simultaneously avoids track coalescence through JPDAF and tracks multiple manoeu-
vring targets through IMM [31].

2.4 Summary

In this chapter I described the visual basis for the subsequent algorithms and meth-
ods. The sensory part described the data acquisition process, especially how three
dimensional data and two dimensional projective images are created. I stated actual
human detection algorithms, where Histograms of oriented Gradients showed a high
classification rate and good stability. The detection process is generally time consuming
due to the sliding window approach or the feature calculation complexity. Here, the
thesis proposes solutions to circumvent this overhead. Finally, I presented the most im-
portant tracking algorithms, where each tracker has particular strength in certain areas.
The most promising capabilities are shown by the particle filter, because the particle
distribution accounts best for the uncertainties arising in a mobile robot scenario. Ego
motion, fast changing movements and occlusions have to be considered in order to keep
reliably track of each entity. In the following Chapter (3) a solution to realise the first
category of situation awareness is presented. The system is based on 3D data and uses
a particle filter for tracking in order to build a coherent model of the environment. In
Chapter (4) I state a solution for the second category of situation awareness on a mobile
robot, where the good detection characteristics of the Histograms of oriented Gradients
approach are further refined and the particle filter tracking process is extended to 2D and
3D data simultaneously. In both parts data association is assured due to a hypotheses
management, where all incoming measurements are correctly associated to each present
entity. Chapter (5) does not rely on detection and tracking, but is shows how the
outcome can be utilised to direct further perception.



3 Acquiring 3D Scene Models in Vista Spaces

Embodied agents, both humans and mobile robots, have to perceive, to analyse and
to segment an observed scenery into meaningful parts to deal with and communicate
about the unknown and dynamic environment. Here, I want to present a 3D scene
analysis approach, which enables mobile robots to solve such problems by gathering
broad knowledge about their environment only by observation of the scenery. This
implements the first part of a situation awareness described in the first chapter.

The following research questions arise:

• How should the environment be modelled in order to represent all information in it?

• Which parts are the most important for a mobile robot?

• How can the model be updated with new information?

• How can the model support the perception of every single part?

In general, the robot needs information about different parts of the world. First, the
robot has to detect and track humans as possible interaction partners or to learn their
typical movement pathways. Second, the static scene parts like walls, cupboards or
tables have to be segmented to give a broad knowledge about the room structure for
e.g. navigation purposes [221] or room classification [197]. In contrast to other typical
background modelling approaches [189] [117] [150], the suggestion is to distinguish as
well between static objects and objects like chairs, teddy bears or other smaller objects
that can be moved by an agent. Instead of building a complex ontology of human
environments to describe which parts may be moving or could belong to the static
background and equipping the robot with strong detectors for every possibility, it is
obviously better to learn an articulated scene model on the basis of scene observation. This
bottom up learning of a spatial awareness enables a mobile robot to extract essential
knowledge about the environment which can only be achieved by observation. The
articulated scene model is composed of the following three scene parts.

Definition 3 (Articulated Scene Model) :

• Static scene (never changing parts)

• Moving entities (e.g. humans or robots)

• Movable objects (e.g. chairs, doors)

This model is updated in one single and simultaneous computation. The figure 3.1 is
meant to give an example. On the left the accordant frame of the scene is presented and
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on the right an example of a 3D articulated scene model is shown. Coloured in black is
the static background, in orange and brown are two articulated objects and in green the
actually tracked human is displayed.

(a) 2D amplitude image (b) 3D point cloud

Figure 3.1: Articulated Scene Model. In the left image the frame of an example sequence is shown. In (b) two
detected articulated scene parts are shown (cupboard door, water can) in red and orange, which emerge
after a few seconds of observation, if the specific object is moved by an agent. The Gray 3D points belong
to the background and the green points to the currently tracked person.

Usually, the observation of an environment refers to the large-scale-space [124] [151],
where a main property is the necessity of locomotion to perceive the space, which could
be, e.g. , a complete flat or apartment. In the proposed system the observation is applied
on the so called vista space, which describes the visual field only by slightly moving the
gaze.

Definition 4 (Vista Space) :
The vista space is a part of the world, which can be viewed at the same moment only be slightly
moving the gaze.

This means that the system relies on the perception of a single room or parts of a
room and that the robot does not move during the perception of one vista space. As
the robot should not analyse externally one vista space, the short observation time
limits the number of available frames. By the use of the vista space one can derive
the assumption that the farthest measurement in the scene describes the background.
If an object appears in front of previously seen static parts, one can assume a moved
object, while upcoming observations of more distant points indicate a removed object.

Assumption 1 (Vista space assumption) :
The farthest measurement in the scene describes the background.

As vista space models deliver complementary information to large-scale space models
the combination of both model types into a common representation e.g. using the Hy-
brid Spatial Semantic Hierarchy (HSSH) of [19] will form the foundation for modelling
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spatial knowledge of the entire environment an agent interacts with. However, in the
following the focus relies on the analysis of the vista space as the system could be used
in the home-tour scenario [46], in which a user guides the robot around his flat and
particular vista space situations arise.

The robot needs a meaningful sensory input to perceive the environment, which in the
following case is achieved by using a time-of-flight 3D camera. The 3D data is extended
with additional 3D velocities using optical flow. The use of a 3D sensor translates the
problem to an inherent 3D interpretation task.

The proposed system builds the articulated scene model only by observing the 3D
scenery for a few seconds, thereby segmenting the environment into different parts
and incorporating the already gained knowledge. The humans in the observed scene
are detected by consideration of velocity information and a weak object model suitable
for many different kinds of objects. The human is tracked by a hybrid particle filter with
mean shift, which enables the robot to keep track of the movements of the human. The
calculated trajectories supply a broad knowledge about the typical movement areas in
the scene and additionally, the robot gets the required positions of possible interaction
partners.

In contrast to other background modelling strategies, the articulated parts of the scene
are separated from the static scene. Usually, the articulated parts are incorporated again
into the background model after the objects become static again. Even with a strong
detector the articulated objects are hard to detect as they could have any shape or size.
Here, the articulated parts are detected through the vista space assumption revealing
the objects by an intelligent modelling process through observation.

The static scene is composed of the remaining parts after excluding the persons and
the movable objects. Through the exclusion of dynamic parts the static scene is very
reliable for navigation or scene classification as many potentially changing parts have
been already removed.

However, the main advantages of the proposed system are based on the parallelism
and the generality of the detection of the different parts of the articulated scene model.
Through the detection and exclusion of moving persons and movable objects the build-
ing of the static scene is much more robust. On the other hand the knowledge about
the static scene enhances the detection of humans as the static background could be
subtracted and the detection can be limited to dynamic parts of the current observa-
tion. The static scene again is used in the assumption of the vista space to detect the
articulated scene parts. In contrast to the existing approaches, movable objects can be
detected without the explicit detection of a particular object’s movement but through
the knowledge about the static scene and the information from observation.

The contribution of the proposed model is a solid basement of information for situation
awareness, which could be used by the robot as input for further processing. In the
following, I want to present some ideas or possible applications for the articulated scene
model. The possibilities are comprehensive as the model is a good starting point for
several learning or interaction scenarios. As mentioned before, the tracked persons
or moving objects could be directly associated as interaction partners. On the other
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hand, the information about their movements can be used as data for typical movement
areas or pathways, which could be used for navigation purposes of the robot. The
articulated parts apparently enable the robot to recognize objects, which are handled
by the human or more simply, which objects are movable. This knowledge could be
utilized in a tabletop learning scenario, where each object put onto the table could
be easily recognized as a new object independent from its topology or appearance.
Again, using the whole information about the recognized objects and the appearance
and disappearance areas the robot gets an idea about the action spaces of these objects.
If it is a door, the robot could see the articulation or the opening range of the door as
an action area. Several other scenarios are imaginable, but as the main contribution is a
solid basement of knowledge for a mobile robot I skip further suggestions how to use
the articulated scene model in a specific application.

The presented thesis has been developed in cooperation with my colleagues Agnes
Swadzba and Joachim Schmidt. The work has been previously published in [194]
[26] [27] [195] [25]. My particular focus in this thesis lies on the human detection and
tracking in combination with the articulated scene model.

The chapter is structured as follows. First, related work is presented in Sec. (3.1) to
give an overview of other research in the field of scene analysis. The proposed system
in general is described in the subsequent Sec. (3.2). The preprocessing of the sensor
data is explained in Sec. (3.3) and the computation of the scene flow in Sec. (3.4).
The detection and tracking of moving entities is described in Sec. (3.5), followed by the
description how to build the static parts and how to detect the movable parts of the
articulated scene model (Sec. (3.6)). In the end, I shall explain the experiments and
present the results of the algorithm on several self-created data sets in Sec. (3.7).

3.1 Introduction in Scene Analysis

Research on dealing with dynamic scenes has become more and more important since
the manual analysis of the huge amount of video data provided by video surveillance
is not suitable any more. Diverse methods have been developed to model the back-
ground that can be subtracted from the current image to extract the moving foreground
(Sec. (2.2.1)). The problem of a moving camera has to be considered, if the approaches
for detecting moving regions developed in a surveillance scenario are transferred to
a robotic scenario. This can be done directly by an ego-motion compensation [177],
by visual navigation [130] or by detecting moving objects through inconsistencies in
a scene motion field arising from a optical flow computation [119]. Another problem
in robotics scenarios is the short observation time and the unknown environment so
that a previous training of the background is not possible. Therefore, Hayman and
Eklundh [91] developed a Bayesian model for incorporating the possibility that the
background has not yet been uncovered.

Besides from moving persons also movable objects are interesting for a robot. Movable
objects are characterized by occasional relocation and longer static periods. In classical
background subtraction approaches such objects will be integrated into the background
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model after relocation thus cannot be detected any more [162]. Sanders et al. [169] try
to solve this problem by integrating pixel information over time. The pixel history is
clustered to temporal coherent clusters, the so-called temporal signatures, which allows
to detect quasi-static objects under the condition of these objects having arrived and
departed from the scene. As movable objects belonging to the class of scene structuring
elements like a chair are of special interest for a robot some approaches try to find such
scene elements through analysing the human activity instead of detecting them directly.
For example, trajectories can be segmented to actions using Hidden Markov Models
(HMMs) [162] concluding that the location of an action point to an object associated
with an action like, e.g. , “sitting down” is coupled with a chair. Alternatively, clustering
of motion histograms computed per scene cell allows an image segmentation providing
interesting indoor scene regions like a sofa [53]. The analysis of trajectories of moving
objects can reveal – besides image regions that correspond to scene elements – general
semantic regions like junctions or paths that do not match a specific movable object.
Analysing person trajectories in indoor rooms could reveal semantic regions like a
grouping of table and chairs [122]. Analysing person activities and car trajectories
in outdoor environments could provide models of roads and paths [208], “walkable”
ground surfaces [39], or routes, paths, and junctions [142]. A detailed review of further
methods for understanding scene activity is given in [44].

In the case of detecting movable objects, e.g. , a door, which motion is caused by a
human manipulation [169], trajectories of such objects reveal their possible articulation.
Inspired by articulated body models, Sturm and colleagues [191] developed techniques
for learning kinematic models of scene elements like table or drawer. As tracking of such
objects is a challenging problem they bypass it in their paper through attaching markers
to test objects. In their last paper [190] they have presented an automatic tracking of
a planar surface from a cupboard door or a drawer front for observation situations
restricted to a close-up view of the surface.

The proposed articulated scene model aims to combine background modelling with
detection of semantic scene elements. As the focus relies on the modelling of dynamic
3D scenes the assumption that static measurements which are furthest away determine
the scene background allows an elegant way to model the background especially in
robotic scenarios where observation times are short. Subtracting the background in
3D reveals directly quasi-static/articulated objects without special requirements like an
object has to arrive and depart [169] and independent from their shape or size or the
human activity connected to them. Detecting arbitrary articulated scene elements using
human activity requires recognition abilities of a lot of different daily-life activities
which means that a huge database of all possible actions is needed for training. The
approach provides for 3D data a bypass to this exhaustive learning problem.
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Figure 3.2: System overview articulated scene model. The articulated scene model is calculated for each vista
space. The model is updated from frame to frame by observing the scenery. Utilizing the model from the
previous frame and the sensor data from the current frame the updated model can be calculated by two
steps. First, the entity tracking detects and tracks moving objects by shifting an elliptical model through
the potential dynamic points Dpot

t . The potential points are all points, which are not conform to the known
static background. Second, the static scene and the articulated objects are adapted. Therefore, all found
moving objects are subtracted and the produced potential static points Spot

t are analysed with the vista
space assumption to separate movable objects from the updated static scene.

3.2 Proposed System Overview

The robots purpose is to interact with the human and to work with him in the same
environment, but the environment is naturally not static and the human moving in front
of the robot is inhibiting the background modelling process. Therefore, the robot should
acquire knowledge about its surrounding by detecting and tracking moving objects,
modelling the static background without these persons and perceiving scene changes
in the vista space. In the process the robot observes its environment passively, which
means the robot camera stays static for a few seconds to gather information before the
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robot changes its view and observes the next vista space.

The algorithm is designed to calculate an articulated scene model M for each of the vista
spaces (see fig. 3.2). The model consists of the dynamic parts D, the static background S
and the observed articulated scene parts O. The model for one vista space is updated as
long as the robot does not change its view. The model Mt−1 is updated by propagating
it to the next frame at time t. In each frame the following processes are accomplished to
update the model:

(i) Model propagation: The model Mt−1 from the previous frame is propagated to
the current frame

(ii) Perception & Preprocessing: The actual sensor input is preprocessed and anno-
tated with velocities

(iii) Entity Tracking: Moving objects are detected and tracked to exclude them from
the static scene

(iv) Scene Modelling: The background and the movable objects are adapted

The preprocessing cares for the 3D data smoothing and velocity computation Vt based
on optical flow resulting in 6D data as sensor input for frame t. The next step is to
detect and track the moving parts, named as Entity Tracking. Thereby, the detection and
tracking of moving persons is supported by the knowledge of the actual static scene st−1

generated out of all previous frames and vice versa.

In a first step, the known static scene points n from the previous frame

St−1 = {~si
t}i=1...n (3.1)

are subtracted from the current scene

Ft = {~f i
t}i=1...n. (3.2)

The remaining potential dynamic points

Dpot
t = Ft − St−1 (3.3)

are annotated with the velocity data Vt. Based on the potential dynamic points Dpot
t new

objects are detected. Using a clustering algorithm and a simple elliptical object model,
the moving objects are found and subsequently tracked with a hybrid particle filter with
mean shift. The potential points

εt ⊂ Dpot
t (3.4)

which belong to a dynamic object are passed to the current articulated scene model Mt.

In the scene modelling step these points εt are subtracted from the actual frame Ft to
identify the potential static points

Spot
t = Ft − εt (3.5)

in the current frame. By applying the vista space assumption and utilizing the knowl-
edge St−1 from the last frame the movable objects Ot that form the articulated scene parts



46 3. Acquiring 3D Scene Models in Vista Spaces

can be detected and the static background St can be updated, simultaneously. Both are
passed to the current articulated scene model Mt, which is propagated again to the next
frame.

The updating of the vista space ends if the robot changes its view and during the motion
of the camera from one vista space to an other the model computation is stopped. At
this moment the outcome from the articulated scene parts Ot are all the areas where
a movable object is newly detected by the vista space assumption. From the moment
the robot observes a new vista space the building of the next articulated scene model
begins. By incorporating the motion of the robot the vista spaces can be merged to
build a global knowledge base. Here, the motion information from a laser-based SLAM
approach [221] is utilised.

(a) (b)

(c) (d)

Figure 3.3: Raw data acquired of the Time-of-Flight sensor. (a) amplitude image, (b) distance image, (c) Not
preprocessed 3D point cloud, and (d) preprocessed 3D point cloud.
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3.3 Preprocessing of the Input Data

The system uses the Swissranger SR4000 provided by Swiss Center for Electronics and
Microtechnology (CSEM) [209]. Besides the distance value matrix (Fig. (3.3(b))), the
camera provides per frame a matrix containing amplitude values (Fig. (3.3(a))). The
sensor and several preprocessing techniques are described in Sec. (2.1.4). The applied
preprocessing techniques are proposed in [196].

The distance image is smoothed with a distance-adaptive median filter, which uses for
each pixel a different mask size (e.g. 3× 3, 5× 5, or 7× 7) depending on the distance
value of the pixel. Generally, pixels with larger distance value are filtered with smaller
filter masks, and vice versa, so that significant structures at large distances are not
blurred, and at the same time, noisy surfaces at small distances can be smoothed. As
the amplitude value refers to the quality of the distance measurement, points with
a small amplitude value are removed from the final 3D point cloud. The threshold
needed adapts automatically to different reflectance properties in different scenes as it
is a fraction of the mean amplitude value per frame. Further, edge points (so-called
“flying pixels”) arising in the case where light from the fore- and the background hits
the same pixel simultaneously are rejected if the amount of near neighbours in the 2D
neighbourhood is insufficient. Last, 3D coordinates are generated out of the distances
with regard to a 3D camera coordinate system. With the assumption of ideal perspective
projection, the known position of the principal point, pixel sizes, and focal length, the
3D coordinates can be computed from the distances via ray proportions in triangles.
As a result the computed 3D points are organized regularly in a 2D matrix. Figures
(3.3(a)) to Fig. (3.3(c)) show a frame of the 3D ToF camera consisting of an amplitude
image, an distance image, and the raw 3D point cloud. Fig. (3.3(d)) presents the resulting
3D point cloud after applying the described preprocessing techniques.

In order to distinguish between static parts of the scene and moving persons or objects
the motion in the 3D point cloud has to be determined. In the following an image
based method for motion computation is presented which can be applied here easily by
treating the point cloud as planar depth maps or images [194].

3.4 3D Motion Computing using Optical Flow

Optical flow (Sec. (2.2.1)) is used to initially detect moving objects in a scene. Therefore,
the usual 2D optical flow is extended to 3D optical flow through the use of a 3D sensor.
Here, a hierarchical implementation of Lucas’s and Kanade’s 2D optical flow algorithm
written by Sohaib Khan 1 2 is taken as basis.

As the Swissranger camera provides normal 2D intensity images based on the amplitude
values it is possible to reduce the 3D correspondence problem to a 2D correspondence
problem and to compute the optical flow for each frame Fi of a sequence of ToF images

1http://www.cs.ucf.edu/∼khan/
2http://server.cs.ucf.edu/∼vision/source.html
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(F1,F2, ...) based on data of two consecutive frames (Fi,Fi−1). Each pixel of frame Fi
is annotated with a 2D velocity vector ~v2D = (vx, vy)T as shown in Figure 3.4(a) which
results into pixel correspondences between frame Fi and frame Fi−1. As 3D information
is available for each pixel these pixel correspondences can be directly transformed into
3D point correspondences (~pi

k,~pi−1
l ) which can be used to compute 3D velocities ~v3D =

(vx, vy, vz)T = ~pi
k − ~pi−1

l . Figure 3.4(b) presents a 3D point cloud of one frame of a test
sequence annotated with 3D velocity vectors. The processing from 2D optical flow on
2D images to real 3D velocities is supported by the used hardware. As the Swissranger
camera provides good distance measurements velocities with reliable values especially
in the z component can be determined. This is usually not suitable for many other
camera set-ups like stereo rigs or multi-camera systems. The velocity annotated 3D
point cloud results in 6D data.

(a) (b) (c)

Figure 3.4: Velocity processing with the optical flow method. (a) 2D velocity vectors (b) 3D velocity vectors
from combining 2D velocities and point correspondences in consecutive images, (c) the latter smoothed
component wise by a median filter. Each 3rd velocity vector is displayed and colour coded with respect to
its length: red denoting a big motion vector and blue a small one.

Due to the low resolution of the camera and inaccuracies of the optical flow erroneous
velocity vectors at changing depth steps are computed. To get rid of those outliers a
5× 5 median filter is applied separately to the three components vx, vy, vz of the flow
vector ~v3D. In Figure 3.4(c) the smoothed result of the 3D velocity field of Figure 3.4(b)
can be seen.

3.5 Detection and Tracking of Dynamic Objects

The dynamic scene analysis involves the detection and tracking of moving objects, which
on the one hand enhances the segmentation of the different scene parts and which is on
the other hand useful for the understanding of the scene as the trajectories of the objects
give a broad picture of the movements in the actual vista space.

The basic algorithm is based on the implementation of [176]. The algorithm is extended
with several further improvements like a new elliptical model, a more sophisticated
motion model and several improvements in the hypotheses management like a more
stable tracking over several frames.
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Using the 3D point cloud and the annotated 3D velocities, the scene is simplified by
applying a 6D hierarchical clustering technique. The segmentation is enhanced through
the incorporation of the velocity information in the early clustering stage, because it
enables the segmentation of neighbouring objects, like a person walking in front of a
wall. The first step of the algorithm is to span small contiguous regions in the cloud of
the 6D points, based on features for spatial proximity and homogeneity of the velocities.
A hierarchical clustering technique is applied using the complete linkage algorithm
[21], which, choosing a small branching factor in the hierarchical tree, deliberately over-
segments the scene, generating many small motion-attributed clusters (see figure 3.5(a)).
Each calculated cluster is annotated with the 2D position of its centroid projected on the
ground plane, a weight factor accordant to the number of included points and the mean
velocity of all these points.

From here on, persons and objects are represented by an upright ellipse of variable
radius, which is a suitable model for the moving entities in the presented scenarios (here,
humans). The object hypothesis h(a) is characterized by a six dimensional parameter
vector

a = [x, y, vθ , vr, rx, ry] (3.6)

where x and y are the centroid on the ground plane, rx, ry the radii of the main axes and
vr the magnitude and vθ the direction of the velocity of the ellipse.

The next step is the detection of the moving objects. Here, the elliptical model is
advantageous for the detection as the velocity computation is noisy and many points
between the found clusters have different velocities. The detection only needs a few
clusters denoting a moving object and afterwards, using the elliptical model, all cluster
which are lying in the ellipse are added to the moving object. This means, that the
hypothesis covers mostly the full moving object even if the velocity data is noisy. To
generate a hypothesis, an ellipse is shifted through the small clusters searching for
meaningful collections of clusters with similar velocities. Grouping close clusters to-
gether, a hypothesis is found if the weight of all clusters together is higher than a certain
threshold. Here, 20 close points moving in a similar direction are sufficient. Afterwards,
each cluster integrated into a hypothesis is marked as an already found object.

All found hypothesis are additionally annotated with an id to identify them over the
observation time. The detection by moving needs the object to move at least one time
and afterwards, it is capable to track the object even if it is not moving any more.

All extracted hypotheses from the current frame are merged with the ones tracked from
the previous frame resulting in one hypotheses matrix for each frame.

The tracking of the hypotheses is calculated like follows. The K hypotheses in the
current frame t are tracked based on the position, velocity and size of each hypothesis
in the previous frame ht−1

k (a), utilized in a hybrid kernel particle filter with mean shift
[176]. The particle filter creates a set of new hypotheses st

k(h) for each tracked object,
called particles, and distributes them with a first order motion model (Υ) mixed with a
random Gaussian noise (Ω) (see figure 3.6(a)). The mixture is particular reasonable for
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(a) Clustering (b) Probability distribution

(c) Found object (d) Trajectory

Figure 3.5: Human detection and tracking steps. The images explain the tracking algorithm. The blue points
belong to the static scene St−1. The dynamic pixels Pt are plotted in orange. (a) At a first stage the dynamic
points are clustered, generating small motion attributed regions. (b) The objects are detected and tracked
using the observation function (see Eq. 3.23). The probability of the particle distribution is plotted in green.
(c) The maximum of the observation function denotes the found object (shown as green box). (d) The
resulting object trajectory is plotted in cyan. The blue ellipse contains the object at the actual position.

the movements of a human, because it covers straight movements in a certain direction
as well as rapid movement changes.

The linear movement is represented by a prediction of particles with the following
motion equation (a = [x, y, vθ , vr, rx, ry] is the current state and a′ = [x′, y′, v′θ , v′r, r′x, r′y]
represents the state at t− 1).
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(a) Particle distribution (b) Mean shift

Figure 3.6: Particle distribution. (a) The particle distribution follows a motion model and a random distribu-
tion to cover all possible motions of a human. The figure shows the distribution of the particles in the XY
plane. The movement of the object is in positive X direction. The particles are distributed in the accordant
direction and for random movements as well. (b) The distributed particles are weighted and then shifted
with mean shift to recover the best possible object position. (Here, shown for a random distribution)

x = NmΥx + NrΩx (3.7)

y = NmΥy + NrΩy (3.8)

vθ = NmΥvθ
+ NrΩvθ

(3.9)

vr = NmΥvr + NrΩvr (3.10)

rx = r′x + rnd(r′x, A1) (3.11)

ry = r′y + rnd(r′y, A2) (3.12)

The variables (Nm, Nr), with Nr = 1−Nm, control the amount of linear movement model
and random Gaussian noise. The variables A1− A2 define the magnitude of a Gaussian
process noise rnd(a, b) with a, b as mean and variance. The random Gaussian motion
model is defined as

Ωx = x′ + rnd(x′, A3) (3.13)

Ωy = y′ + rnd(y′, A4) (3.14)

Ωvθ
= v′θ + rnd(vθ , A5) (3.15)

Ωvr = v′r + rnd(v′r, A6) (3.16)

with A3− A6 controlling the magnitude of a Gaussian process noise. The first order
motion model is calculated like following
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Υx = x′ − v′rsin(v′θ) + v′rsin(v′θ + ṽrot) (3.17)

Υy = y′ + v′rcos(v′θ)− v′rcos(v′θ + ṽrot) (3.18)

Υvθ
= v′θ + ṽrot + γ̃ (3.19)

Υvr = v′r + rnd(v′r, A7) (3.20)

with

ṽrot = rnd(0, A8) (3.21)

γ̃ = rnd(0, A9) (3.22)

, where A8 − A9 are defining again the magnitude of a Gaussian random variable. This
mixture distribution of particles covers the potential movement of most moving objects
as it follows linear and random movement.

In order to identify the new position of each hypothesis the particles are rated with
an underlying observation. The observation is based on the relative position, relative
velocity and weight of all clusters within the ellipse of each hypothesis weighted with
Gaussian kernels.

ρ(sk) = Kr(sk) ∑
l∈sk

Kd(l, sk)Kv(l, sk) (3.23)

Kr(sk) = exp

(
− r(sk)

2

2H2
r,min

)
− exp

(
− r(sk)

2

2H2
r,max

)
(3.24)

Kd(l) = exp

(
−‖d(l)− d(sk)‖2

2 H2
d

)
(3.25)

Kv(l, sk) = exp
(
−‖v(l)− v(sk)‖2

2 H2
v

)
(3.26)

with (3.24) keeping the radius in a realistic range, (3.25) reducing the importance of
clusters further away from the cylinder centre, and (3.26) masking out clusters having
differing velocities. The functions r(·), d(·), and v(·) extract the radius, the 2D position
on the ground plane and the velocity of a cluster l or a hypothesis sk. The kernel
widths H are determined empirically. Eq. 3.23 is also called the observation function
ρ(sk) of the particle filter. The outcome is a density approximation based on the object
hypothesis and the attributes of the associated clusters, with the maxima corresponding
to the actual objects (Fig. 3.5(b)).

Several mean shift iterations refine the particles to concentrate at the local maxima of
the distribution, which decreases the needed amount of particles (see figure 3.6(b)).
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1: Input:
2: {- Ft = {~f i

t} (current frame)}
3: {- St−1 = {~si

t−1} (current background)}
4: {- εt (current dynamic clusters)}
5: {Output:}
6: {- St = {~si

t} (new background)}
7: {- Ot (movable objects)}
8:
9: for i = 1 to n do

10: if ~f i
t /∈ εt ∧ |~vi

t| < θv then
11: if |~si

t−1 − ~f i
t | < θd then

12: ~si
t =~si

t−1 +
1
w (~f i

t −~si
t−1) ;

13: {w: # accumulated values}
14: else
15: if |~f i

t | > |~si
t−1| then

16: ~si
t =

~f i
t ;

17: else
18: ~si

t =~si
t−1;

19: Ot = Ot ∪ ~f i
t ;

20: end if
21: end if
22: end if

23: end for

Figure 3.7: Algorithm per time step t for background adaptation and movable object detection.

Individual particles selected from these best modes of the distribution represent the
objects found in the current frame (Fig. 3.5(c)).

For each tracked object hypothesis, all 3D points associated with this object are back
projected in the 2D amplitude image and used for computing a 2D convex hull of the
tracked object. All points within this 2D polygon are marked as non static points and
are finally excluded from the reconstruction step. The convex hull inherits also points,
which were potentially not incorporated in the clustering process due to bad reflectance
properties or other circumstances, which do not allow a valid 3D value for this point.

3.6 Adaptive Background Modelling

So far I proposed methods to distinguish between static and moving parts in a scene.
In the following, the calculated moving objects are extracted and the static parts of
the observation are analysed. By applying the vista space assumption and utilizing
the knowledge from the last frame the movable objects that form the articulated scene
parts can be detected and the static background can be updated, simultaneously. The
basis of the vista space assumption that the most distant measurement in the current
view describes the background has to be expanded due to noise of the the 3D sensor.
Therefore, I introduce a threshold θd above which a change in the distance is significant
and does not arise from noise (here, θd = 10cm given by the noise level of the camera).

The algorithm presented in 3.7 is applied to each time step of the observation to calculate
the updated static scene St = {~si

t} and the movable objects Ot. Therefore, the algorithm
uses as input the current frame Ft = {~f i

t} and the last known static scene St−1 = {~si
t−1}

and the dynamic clusters εt from the previous frame. The dynamic clusters contain the
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3D points from the moving objects of the tracking module. These points are removed,
before the update process takes place.

The static scene is updated in line 12, if the difference of a known static point si
t−1 to

the actual frame point ~f i
t is below the sensor noise level θd. Then, the static point and

the current point are accumulated to a new static point ~si
t with improved reliability.

Otherwise, it has to be determined if a new static scene point is detected in line 16 or
the point belongs to a movable object in line 19. The vista space assumption is used
to identify the matching case. All points belonging to movable objects are saved in a
separate list, where the time of detection and the number of times the points has been
seen are considered. Clustering these points in space and time the different objects can
be separated. Consequently, objects can only be separated if they appear at a different
point in time or at least at different places.

3.7 Experiments and Results

The evaluation of an articulated scene model does not follow typical standard reports
as it is not feasible to build a complete ground truth model. Hence, I split up the
different parts of the model and I compared the static scene to a ground truth model
and to some simple background modelling techniques to give quantitative results. In
the following, the proposed system MADAPT is evaluated by comparing the results to
the naive approach of only summing up the images and building the mean for each
pixel (MMEAN). It is also compared to the neglecting of moving pixelsMMPIX and last,
toMTRACK [194] where only dynamic objects are determined through tracking without
background model feedback and no distinction is made between static background and
static movable objects. All methods are checked against a ground truth static scene
model MGT, which has been taken without any movable or moving object for each
sequence. The articulated parts and the trajectories of the moving objects are presented
qualitatively in illustrations.

(a) MGT (b) MMEAN (c) MMPIX (d) MTRACK (e) MADAPT

Figure 3.8: Results of scene Ss2,r1 for the evaluated algorithms. In the front the reconstructed 3D static scenes
and in the back the accordant 2D images can be seen. (a) shows the ground truth. In (b) the reconstruction
by simple averaging, in (c) the reconstruction by excluding moving pixels, and in (d) the reconstruction by
tracking objects is shown. In the 2D image the wrong reconstruction can be seen as a ghost of the person
moving in the scene. (e) shows the result using the here proposed method. The colours encode the error of
the model if compared to the ground truth – blue means small and red means big error.
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Ss1,r1 Ss1,r2 Ss1,r3 Ss1,r4 Ss1,r5 Ss1,r6

MMEAN 103± 177 106± 204 124± 222 157± 284 142± 278 147± 262
MMPIX 64± 121 74± 184 79± 185 111± 216 99± 230 95± 193
MMTRACK 71± 166 108± 209 75± 189 97± 212 79± 308 98± 219
MADAPT 18± 59 19± 47 21± 61 24± 78 24± 68 21± 55

Ss2,r1 Ss2,r2 Ss3,r1 Ss3,r2 Ss4,r1 Ss4,r2

MMEAN 95± 187 108± 147 89± 105 85± 183 219± 403 321± 639
MMPIX 71± 155 80± 118 63± 145 61± 125 163± 328 299± 635
MMTRACK 84± 182 85± 140 71± 141 134± 712 51± 165 74± 218
MADAPT 20± 96 16± 37 20± 58 22± 52 14± 26 75± 319

Ss4,r3 Ss4,r4 Ss5,r1 Ss5,r2 Ss6,r1

MMEAN 234± 451 246± 594 117± 161 713± 1013 182± 284
MMPIX 229± 588 229± 588 70± 132 654± 1016 182± 284
MMTRACK 356± 677 246± 601 71± 152 674± 1014 207± 317
MADAPT 18± 64 98± 404 19± 90 471± 1008 55± 146

Table 3.1: Evaluation of four reconstruction methods on 17 sequences (mean error ± mean variance). The
error shown in the table is computed as mean Euclidean distance over all model points to the corresponding
ground truth points. The mean error is given in mm as well as the mean variance. The high error in Ss5,r2
results from a wide range view, where the sensor produced a high amount of noise.

The underlying data sets S are self-created and they show different challenging dynamic
scenes. The human shows different moving behaviours or stops moving, which makes
it difficult to detect him as not static. Furthermore, the human interacts with the
environment as he cleans up Ss3, moves chairs, searches a teddy bear Ss2, opens and
closes doors Ss4 and rearranges teddy bears Ss1, water cans Ss5 and plantsSs6. Each run
i of a sequence belonging to one scenario j is labelled with Ssj,ri.

In Fig. (3.8) the resulting static scenes for one example vista space are presented. The
figure shows the resulting 3D static scene from the different background modelling
techniques and the 2D image created from this model. The colours encode the error of
the models compared to the GT, where blue denotes a small error and red a big error.
The naive background modelling strategies failed in removing the person correctly in
all frames, which results in a big error at those positions of the 3D point cloud, where
the person is still visible. This gets apparent as a ghost appears at the same positions in
the 2D image. The approach presented in this paper reliably removes the person, which
provides a sound background model. Tab. (3.1) shows an analysis of the arising errors
from the background modelling strategies. The first value is the mean euclidean distance
in mm over all pixel compared to the ground truth and the second value denotes the
corresponding standard deviation. The presented errors affirm the viewable impression
from Fig. (3.8) as MADAPT results in the lowest error rates. The rates are promising
with an error mostly at 2 cm and never above 10 cm. Even in scene Ss4,r4, where sparse
static points in the door can be detected, the result of the proposed method is much
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more robust than the naive approaches, where the mean error is always above 20 cm. A
mostly low standard deviation stands for good results in each point as well. Higher error
rates (Ss5,r2) could occur due to noise arising from the 3D sensor, if the observed scene
has some disadvantageous characteristics. The sensor has increasing noise per distance
and it is sensitive to reflecting and black surface. You can see this in the mentioned
figure in the open door in frame 1 and 26.

Fig. (3.9) gives some examples of the detected articulated scene parts. The found objects
are colour-coded in the image and they are separated from the background to show the
variability in detecting diverse objects due to the model independent approach.

Figure 3.9: The images show diverse objects detected by the method. All presented objects have been moved
around by the human in the scene. Different colours encode different objects. The pictures show nicely the
huge variability in detecting movable objects due to the model independent approach.

The objects can be marked directly in the 2D image (see Fig. (3.10)), which could be used
by further processes to calculate more precise information like the shape or texture of
the objects.

Figure 3.10: Two examples showing the segmented movable objects in a 2D image. The first and the third image
are the original images and the second and fourth show the marked object. The coloured areas belong to
different recognized objects, which have been moved at least one time.

In Fig. (3.11) an example of a combination of two subsequent vista spaces is presented.
Here, I transform the vista spaces into the same world coordinate system by incorpo-
rating the movement of the robot. The two images in the back belong to the different
vista spaces. In the second image all trajectories from one observation of a vista space are
plotted. One human walked three times back and forth. His movements are consistently
tracked. Two other example vista spaces and their resulting trajectories are shown in
Fig. (3.12(a))- 3.12(b) using two different views.
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(a) Combined vista spaces (b) Tracks from human movements

Figure 3.11: Combination of vista spaces and human trakcs. (a) Subsequent vista spaces can be combined by
a transformation of the particular spaces in one world coordinate system. The transformation is extracted
out of the motion of the robot. (b) All tracks of a human walking behind a table (in cyan). The human
walked three times back and forth.

(a) Trajectory (b) Trajectory

Figure 3.12: Trajectories of humans. In (a)-(b) tracking results of the proposed system are shown (in cyan).
In both views the red pixel denote the dynamic and the blue ones the static parts of the scene. The right
scene is taken from Ss2,r1 (see figure A.1(a))



(a) Ss6,r1 (b) Ss7,r1

Figure 3.13: Articulated scene model results. (a)-(b): For all recorded sequences the learnt background model
(blue points) and the detected movable objects (orange points) are shown. In the bottom left three selected
images of the sequence characterize the tide of events from bottom to top finishing with the last frame in
the background.

Finally, the articulated scene model for each of the sequences is plotted in Fig. (3.13). In
the bottom left a film-strip gives an idea of the presented sequence, starting at the bottom
and ending with the big picture in the background. The corresponding frame numbers
are shown in the bottom right in each image. The static background model relates to
the blue 3D points and the found articulated parts correspond to the coloured areas,
whereas different colours encode different objects. The results of the other sequences
are shown in the appendix Chapter (A).

3.8 Conclusion

In this chapter I presented an efficient approach to analyse dynamic scenes directly in
3D. The vista space assumption enables a mobile robot to segment knowledge about the
static background, the moving entities and which objects are movable combined in one
articulated scene model out of its observations. The gathered knowledge builds a good
basement for many following research areas like object learning, navigation or just as
an attention on human action spaces. In the future, it is possible to integrate the static
3D background model in a SLAM approach to realize a better and safer navigation. It is
also imaginable to investigate more work in the detection of the articulations of several
objects, like the opening range of a door or the typical movement areas of humans to
develop an understanding of safe movement areas or where to pay attention.
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In the following chapter I am going to describe a modular software system, which
enables a mobile robot to implement the second category of situation awareness. The
second category is characterised by a temporal linking of information, which relates
actually gathered information with previous knowledge.

The second category is most important for a mobile robot, because other moving entities
can only be safely avoided, if the robot has knowledge about their previous movement.
The temporal linking generates a trajectory, which denotes the past movement of an
entity. Using the past positions it is possible to predict a future movement and hence,
avoiding collisions by incorporating this movements in the own planning strategy.

Here, the temporal linking is of main interest in order to provide the information for
other subsequent planing strategies. General questions arise concerning the implemen-
tation of a system for the second category of situation awareness:

• What data is needed for the robot in order to get information about the movement of present
humans?

• How could the humans be detected fast enough to ensure an accurately timed reaction of
the robot?

• How could a stable temporal linking be achieved even during occlusions?

• How could the entering or leaving of a person be detected?

• How is it possible to deal with ego movements of the robot?

In this thesis a solution to the described problems of detecting and tracking humans on
a mobile platform is presented.

I present a complete system approach, which uses multi-dimensional data in order to
provide as much information as possible about the present humans. Like mentioned
above, the real-world trajectories of the humans are the most important information for
a mobile robot. Hence, 3D information is of essential significance to get the real world
movement. In order to deal with the special need for a real-time calculation on a mobile
robot, several pre-processing steps are proposed. The different steps restrict the search
space for the detection of the humans efficiently (see Fig. (4.1)). This facilitates a fast and
reliable detection. If a person is detected he/she has to be recognised in every frame in
order to get his/her position at every time step. This is realised by a tracking module,
which cares for the temporal linking of each person. An additional intermediate layer
merges all gathered information in order to get a more stable result. This layer also
analyses, if a person enters or leaves the scene and triggers the creation and deletion of
hypotheses. Generally, it is assumed that a person has left, if he/she leaves the apparent
area for at least a few frames.
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The proposed system approach is designed to deal with ego motions of the robot by
detecting the persons frame-wise and tracking the persons with a dynamic particle
filter. Thereby, the system detects persons and keeps track of them even during own
movements.

Figure 4.1: Detection and Tracking of a human. The scene is simplified
through a floor elimination (in red). Afterwards, the human is
detected and tracked (green and blue rectangle). In red the person
is segmented from the background. The information about humans
present in the scene and their movements is an essential knowledge
for mobile robots in order to interact safely with their environment.

The system implements state of the art algorithms, which are enriched with new features
and combined in a new and efficient way. Additionally, the whole system is designed
to work fast enough to process enough frames for an efficient tracking on real data on
the robot.

The system generally adheres to the system approach presented in Chapter (2). This
means, that the proposed system includes a perception module (cf. Sec. (2.1)), a detection
module (cf. Sec. (2.2)) and a tracking module (cf. Sec. (2.3)). Additionally, the system
deploys a self-developed hypotheses management.

In contrast to the previous chapter, the sensors are now moving during the action, which
entails a new chapter of problems (described in Sec. (4.1)). Despite occurring motion
blur and fast changing lightning conditions a lot of simplifications could not be applied
any more. Background subtraction is not feasible with a moving camera and thus, the
scene can not be simplified to the foreground. Motion calculation of image features
through optical flow delivers indeterminate motion information as the whole image is
moving instead of single parts in the image. In opposition to the system described in
chapter 3, the following system uses target-oriented algorithms to handle the described
problems due to a moving camera. In detail, the detection is based on single frames
instead of subsequent frames and the tracking is able to deal with the movement of
the robot. Again, depth information is used to enrich the feature set. Despite more
informative trajectories in 3D, the additional gain of depth information is an enhanced
stability for tracking.

In the following an outline of the chapter is presented. In the next section I am going
to describe the essential differences of stationary computer vision systems compared to
moving vision systems Sec. (4.1). Afterwards, current relative systems are introduced,
which implement all steps of a complete tracking system (Sec. (4.2)). The systems give
a picture of state-of-the-art in the area of person tracking on a mobile platform. The
subsequent section introduces my system proposal and gives an overview of the func-
tionality of each module. Afterwards, the different modules are explained in Sec. (4.4),
Sec. (4.6) and Sec. (4.5). Finally, I give a detailed analysis of the algorithm in the results
(Sec. (4.7)).
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4.1 Request of Static and Moving Cameras

In this thesis I am presenting several ways of gathering visual information for situation
awareness on a mobile robot. In the previous chapter, the aspects of a moving camera
were circumvented by the use of the Vista space. In this chapter, the robot is moving
during the action. Hence, the system has to deal with the demands of a moving
camera. Here, I define the differences of a static and a moving camera, what clarifies
the necessary usage of specific algorithms and techniques applied.

In the image of a static camera the intensity values of the background pixels usually
underlie only small changes, because the background is not changing. On the other
hand, the intensity values of foreground pixels, which here means moving objects, vary
in their intensity values. Therefore, it is possible to establish simple threshold filters,
which filter all points with a low difference in their intensity values (cf.Sec. (2.2.1)). This
leads to remaining blobs in the image, where only moving objects retain. Accordingly, it
is possible to detect motion in the image, which represents an easy detector for dynamic
objects.

In the case of a moving camera the intensity values of all pixels change due to the
motion of the camera. Consequently, movements in the scene can not easily be detected.
Only an error prone preprocessing step of aligning the images and compensating the
ego motion can enable the frame differencing for moving cameras. Visual odometry
[118] [147] [3] is used to find features in both images and to calculate a homography
or projection matrix, which warps the images onto each other. The projective warping
induces small errors, which is reflected in the frame differencing process.

The next distinction between static and moving cameras is located in the placement of
objects. An object can only be detected relative to the camera. If the camera is static,
the relative coordinate system is equal to the world coordinate system. This fact is not
true for a moving camera. The detection at each time step is relative to the camera,
but a tracking process needs to know where to find the object in the next frame. The
prediction of the object’s position is dependent on the movement of the camera. If the
camera is e.g. rotating, the prediction of the tracker has to incorporate this rotation in
order to know that the object exhibits an additional rotational movement.

In a nutshell, three important facts have to be considered in the case of a moving camera:

• The scene and objects therein rapidly change their appearance due to lightening
changes

• Frame differencing without further preprocessing is not possible for moving cam-
eras

• The motion of the camera has to be incorporated in the tracking of objects
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4.2 Tracking Systems on a Mobile Platform

In this section I state mobile tracking systems published in literature. Different to
Sec. (2.3) not only the tracking part is of importance, but rather the complete process
of detection and tracking of humans running on a mobile platform. The systems are
explicitly described to give an overview of the state of the art in this area. All systems
are build on the presented system approach of Chapter (2), which consists of sensor
input, a detection module and a subsequent tracking part.

The early approaches of mobile tracking systems were often based on laser data [128]
[179]. Laser data provides an easy approach to detect obstacles in a specific height of a
scan line. Although restricted to the scan line, some algorithms achieve feasible results.
Combined with additional sensors, laser information can be utilised to detect and track
humans in the scene.

Many systems, which are mentioned in the literature, are modelled to detect and track
only one specific person in order to follow this person to an arbitrary area. The ideas
and algorithms have some parts in common with multiple target tracking, but they
underlie less requests like detecting objects in different depths or they often do not
handle occlusions. This special subject is also addressed, but with a minor focus.

Tracking multiple objects in clean highway or engineered situations has been studied
quite successful in literature [23]. But, multiple person or object tracking on a mobile
platform in a dynamic environment still poses considerable challenges for all state-of-
the-art approaches. Accordingly, there exist only a few systems, which attempt to solve
this high complex problem. Here, I state two different approaches, which are based on
motion detection on the one hand and object specific classifiers on the other hand.

Additionally to the robot systems, I present the most important driver assistance sys-
tems, which try to analyse the environment in order to detect other road users. The
intelligent driver assistance area is very related to the object detection and tracking on
a mobile robot. Hence, the presented approaches in literature achieve fruitful results,
adaptable also for mobile robots.

4.2.1 Laser-Based Tracking Systems

Schulz et al. presented in 2001 a first version of their human detection and tracking
system based on laser data. The authors equip the mobile robot Rhino with two laser
scanners at the height of 40 cm to sense the surrounding. The person detection is done
in two steps. First, two subsequent scans are aligned in order to segment moving and
non-moving parts of the scan. Second, the remaining parts are analysed if they fit one of
two different patterns describing typical leg positions of humans walking. To track the
determined objects the authors apply a variant of Joint Probabilistic Data Association
Filters (JPDAF) [51]. Instead of using a Gaussian assumption of Kalman-Filter based
JPDAFs the authors propose to use a sample-based version. The use of the JPDAF is
meant to track different humans with one tracker and additional occlusion handling. In
their experiments they show practical results, where the robot could track up to four
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Figure 2: Multi-modal anchoring of persons.

ternational Conference on Computer Vision Systems (ICVS) 2003, Graz. There we demon-

strated the robot’s capabilities in multi-modal human-robot interaction, i.e., detection and

tracking of multiple persons as well as detecting and eventually following communication

partners (a video is available at [1]).

5 Color-based Torso Recognition

In order to supply the anchoring framework presented in section 4 with information about the

torso position of an observed person, camera images of size 256×192 are analyzed to fi nd an
image area that matches a previously learned model of the torso color. Now the direction of a

person relative to the robot can be extracted based on the camera orientation and the position

of the torso within an image. A mixture of Gaussians is used to represent the torso color as

such a parametric model is well-suited for effi cient modeling of previously unknown color

distributions. Previous applications using a mixture of Gaussians in order to track a coke

can [10] or faces [11] under varying lighting conditions have demonstrated the flexibility of

applying a parametric model.

For color representation we use the LUV color space [15] as it is perceptually uniform.

This allows us to apply a homogeneous distance criterion for calculating the fi t between

an observed color and the color model. Initialization of the color model is performed after

successfully detecting for the fi rst time the face of the person that is being tracked. Using the

anchoring framework, the distance of the person is known and a position 35 cm below the face

position can be transformed into image coordinates. At this position in the image an elliptical

image area is selected for creating the initial mixture model. The parameters of the individual

components of the Gaussian mixture are calculated using a k-means clustering algorithm. For

modeling a typical torso (the color of the clothing), a mixture with three components has

been shown to provide good results. The number of mixture components has to be increased

appropriately for colorful clothing which exhibits a large variety of different colors.

Figure 4.2: Perceptual anchoring. Different percepts describe the presence of a human. The torso colour is
used to track a specific human. (Image found in [76])

people in an office environment. There are no comments about the computation speed
of the algorithm.

Another approach of detecting people is the combination of laser data with other sensors
like cameras. A common method is the combination of different cues coming from each
sensor, which are integrated to a person hypothesis. Like above, a laser is designated
to detect legs in the near field of the robot. As the purpose of a mobile robot is the
interaction with humans, many researchers make use of face detection in addition to leg
detection [67] [172] [20].

The robot Biron used in this work also has a human detection system, which uses
several percepts to detect humans around him [76]. Leg detection, face detection, torso
colour and a speaking analysis from a 3D microphone are fused in an anchoring process,
where each percept adds a probability that a human is present. The torso colour is used
to track a specific human during the interaction.

Typical laser data has the disadvantage that objects farther away are only detected with
a low amount of laser points and hence, objects and background or even noise can not
be distinguished. Objects, that are not seen in the scan line can not be detected, which is
often a problem with tables. In the following, the detection and tracking with cameras
is deeply investigated, because it promises better results due to the richer information
of the sensor.
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4.2.2 Person Following Tracking Systems

Many mobile robots are build to track one specific human in order to follow this person
to an arbitrary area. One of the first human tracking systems on a mobile robot was
presented in 1995 from Huber et al. [99]. This early system used an in-artificial model
of people to detect them in the depth image. In the mentioned work the tracking was
simply done by finding the nearest position of a candidate in the next stereo image.

Simple, but efficient approaches are often based on colour or shape. [175] offers a mobile
robot platform, which tracks a human target based on the colour of its shirt. As colour
model the normalised colour components (NCC) are used.

rnorm = b R
R + G + B

c, gnormb
G

R + G + B
c (4.1)

For each colour they calculate the mean µ and the variance σ in the specified search
region of the human torso. This forms a rectangular area in the NCC colour space,
which meets the colour of the tracking region. In order to track the human body, every
pixel is analysed, if it fits the searched colour. After some noise deletion the largest blob
is chosen as the actual body area. The mean and the variance of the colour components
are adapted over time through a simple adaptive filter vt+1 = (1− α)ṽ + αvt, with vt+1

as new value and ṽ as actual measurement. This model constrains the system to track
humans with a uniform coloured shirt. To circumvent this fact, the authors combine
their colour based approach with contours. Therefore, a canny edge filter is applied,
which results in binary edge image. The rectangular image region of the person is
taken as input and all edges within this region are taken as contour model. The contour
model may evolve up to a certain threshold over time. In order to find the best fit of the
model, all transformations of actual contour models are compared to the person model
using the generalised Hausdorff-distance [102]. Both, colour and contour are merged by
restricting the contour areas to similar colour regions.

The person following behaviour is based on disparity from stereo images and the dis-
placement of the person relative to the image centre. The robot tries to keep the distance
to the person equal and steers left or right if the angle α changes.

αx =
]c
2 − x
]c
∗ 2 ∗ arctan(

ccdsize(x)
2 ∗ f

) (4.2)

where ]c is the number of columns, ccdsize(x) the size of the CCD-chip and f the focal
length. The system provides a simple tracking approach, which uses no detection and
which is only valid for really simple scenes. The work of [67] added a detection based
on faces combined with colour, motion and contour information, which overcomes the
restriction to manually label the initial person. In their work they additionally build a
background map, which is used to avoid collisions of the robot with the environment.
The work of Beymer [28] used a similar approach, which builds occupancy grids to find
people and to build a background model. The tracking is done with low resolution
stereo to hold the distance to the tracked person.
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It is shown that a multi-modal approach is very efficient for the detection and tracking
of people [76] [171] [86], especially if the person is interacting with the robot. Face, voice
or movement detection are possible features to represent the presence of a human.

All mentioned systems often rely on the detection of faces or legs. These features are
only existent, if the human is in front of the robot in a near distance. For the face, the
person has to gaze at the robot and the leg-detector needs the human in a frontal- or
rear-view to see both legs. Furthermore, the systems are only able to track one person
at a time. For a following scenario this is sufficient, but for a situation awareness of the
surrounding, the robot has to perceive all present humans and their movements from a
greatest possible distance.

Summing up, the tracking of one specific person is not as difficult as the tracking of
several different persons due to the lack of occlusions, less computational effort and
the absence of a need for a hypotheses management. Additionally, the size of the
person does not change very much, because the distance to the robot does not vary.
The detection of the specific person is limited to the near-field and mostly, the person
directly interacts with the robot, which makes it possible to use features as faces or legs.

4.2.3 Motion Detection Tracking Systems

Some interesting works try to compensate the ego motion of the robot or to learn a
specific flow field of the movement to detect other ways of movements in the scene.
Ego motion compensation is needed, if the camera moves during the data acquisition
process. Perrone [160] e.g. learns the motion flow of the ego motion of the robot and
separates target motion from background motion through the learned neural network.
The optical flow is characterised, if it belongs to the own motion or to a target (Fig. (4.3)).

Figure 4.3: Motion on a moving platform. Motion
different from the learned ego motion flow field
(white arrows) indicates other moving objects. (Im-
age found in [160])

Shirai [8] where all moving objects are first identified;

from these the humans are distinguished and are then

able to be tracked. By contrast the Pfinder system [9]

first creates initial representations for the humans in the

scene. The tracking procedure updates these represen-

tations. The majority of methods falling into either cat-

egory recognise some aspect of the “appearance” of the

human. Our approach is different in that the human is

identified by the characteristics of its motion. Thus the

flow of motion in the scene is used to both pinpoint the

human and track its movement. 

The person identification problem would be greatly

simplified if we could somehow subtract out the image

motion caused by translation of the robot. Any “anom-

alous” image motion that deviates from the predicted

motion is likely to arise from motion of the person

walking in the scene or another moving robot. Systems

which estimate self motion, i.e. the robot motion have

been developed [10-12]. 

Our approach has some similarities with each of these

systems. In Montemerlo et al.’s [12] system the robot

must keep track of its own location in the map it com-

putes of its environment and also track the location of

any people in its vicinity. Separate particle filters are

used to estimate the locations of the robot and each per-

son, and Brownian motion is used to model the typical

motion of a person. Our system is also concerned with

keeping track of a human’s location within the robot’s

map. However we are not only concerned with where

the robot moves but how the object being tracked

moves so we can identify it as “human”. 

Franz [10, 11] models the motion sensitive tangential

neurones in the fly brain to detect self motion. His sys-

tem, unlike ours, uses 2-D motion sensors based on the

gradient method [4]. However it has problems obtain-

ing accurate translation estimates. The difficulties with

translation estimates could be overcome if the robot

could accurately measure its velocity. In practice this is

not possible. Overcoming the inaccuracies that accu-

mulate in robot mapping due to wheel slippage has

been one of the great challenges in robotics research for

some time.

Our system uses self-motion estimation templates

based on neurones in the medial superior temporal

(MST) area of the primate brain [13, 14]. The Perrone

and Stone model is able to extract the relative depth of

points in the environment from the 2-D image motion

generated during forward translation of an observer.

Over a succession of frames, any motion caused by ob-

jects not fixed in the environment (e.g. walking people)

will stand out in the “3-D space” output of the model’s

depth detecting system. Until recently, the model has

only been able to be tested with theoretical vector flow

field inputs. However we have now developed a 2-D

motion sensor (see section 2) that can be used as a

front-end to the model and which enables the model to

be applied to image sequences.

2. 2-D Motion Sensors Based on Biologi-
cal Principles

We have developed motion sensors based on the prop-

erties of motion sensitive neurones in the primate brain

[1]. These are more selective to the speed of the move-

ment than standard approaches to image motion meas-

urement [4] and they do not suffer from the

correspondence problem associated with feature track-

ing methods. The sensors are built up from two special-

ly designed spatiotemporal filters (S and T). The S type

has low-pass temporal frequency tuning and the T type

has band-pass tuning. The spatial frequency tuning of

the two types also differs slightly in a specific way. In

the spatiotemporal frequency domain (u, ω), these two

filters overlap along a line that is oriented in (u, ω)

space. The outputs of the two filters are combined us-

ing the following equation:

α and δ are constants which fine tune the properties of

the sensor. The sensor is tuned to a particular speed v.

The resulting sensor has been called the Weighted In-

tersection Mechanism (WIM) model [1], because it

maximises the response of the sensor along the line of

intersection of the two (S and T) filters in spatiotempo-

ral frequency space. This line happens to correspond to

the location of the spectrum of an edge moving at a par-

ticular speed v [15]. The sensor is therefore very speed

selective and is better at discriminating different edge

speeds compared to other systems based just on spatio-

temporal filtering (e.g., motion energy models). A

number of these basic WIM sensors can be combined

to produce an overall 2-D motion sensor that is very se-

Fig. 2 Motion in a scene. The dark arrows show

background motion generated from the motion

of the camera. The white filled arrows show the

motion of the human.
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Thereby, Perrone uses the characteristics of the human motion. This is only possible
for lateral walking humans and a straightforward moving robot, because of the learned
robot and human motion model.

Another way of compensating the ego motion is presented by Jung [111]. Assume a
robot is located at (x, y, α) at time t. The data D is acquired at the same time. After
some movement of the robot, the sensor is located at (x + ∆x, y + ∆y, α + ∆α) with
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data D′ at time t + ∆t. Both data D and D′ can not be compared directly, because
they are in a different coordinate system. Hence, data D should be transformed in the
coordinate system from D′ with transformation T. Jung et al. propose to estimate the
transformation T in a direct matter by corresponding image features. In most cases
the scene is not static, which causes errors in the estimation process, because some
part of scenery has been moved differently compared to the background. Therefore,
the estimation process needs an outlier detection algorithm, which filters all features
from moving image objects. Jung uses the point tracker from Kanade-Lucas-Tomasi
(KLT) [136], which is a promising standard technique in computer vision. The algorithm
computes feature correspondences Ft and Ft+1 for all subsequent image frames. The
search window for each feature is chosen very small, assuming slow robot motion.
Using the correspondence set S =< Ft, Ft+1 >, the ego motion of the camera is estimated
by a bilinear transformation model.

[
f t+1
x

f t+1
y

]
=

[
a0 f t

x + a1 f t
y + a2 + a3 f t

x f t
y

a4 f t
x + a5 f t

y + a6 + a7 f t
x f t

y

]
(4.3)

The transformation for image It to the image It+1 is defined as Tt+1
t . The cost function

for least square optimisation is given by

J =
1
2

N

∑
i=0

( f t+1
i − Tt+1

t ( f t
i ))

2 (4.4)

with N number of features. The feature set has to be separated in moving and non-
moving features, before the final transformation is calculated. The first step is the
computing of an initial estimate T0 using the whole feature set. Second, the feature
set is partitioned into two subsets

{
fi ∈ Fin if| f t+1

i − Tt+1
0,t ( f t

i )| < ε

fi ∈ Fout otherwise
(4.5)

Finally, the transformation T is calculated with the subset Fin only. The building of
subsets and the transformation can work correctly, as shown in Fig. (4.4). The problem
with this calculation is the assumption that only a small amount of features is moving
in the picture. If there is too much motion in the image or there are not enough static
background features, the main motion can not be estimated and thus, the separation of
the features fails. Of course, the parameter ε has to be chosen correctly to filter out the
moving points.

If the assumption is working, the frames can be handled as if the robot did not move.
Hence, frame differencing can be applied for the transformed image It and the image
It+1. The difference in the frames results in moved particles and noise, which separates
from the background. The authors propose to use a probabilistic detection algorithm
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B. Transformation Estimation
Once the correspondence F =<F t−1, F t > is known, the

ego-motion of the camera can be estimated using a transfor-
mation model and an optimization method. We have studied
three different models: affine model, bilinear model, and a
pseudo-perspective model.

Affine Model :[
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]
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Bilinear Model :[
f t

x

f t
y

]
=

[
a0 f t−1

x + a1 f t−1
y + a2 + a3 f t−1

x f t−1
y

a4 f t−1
x + a5 f t−1

y + a6 + a7 f t−1
x f t−1

y

]

Pseudo-perspective Model :
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When the interval between consecutive images is very small,
most ego-motions of the camera can be estimated using an
affine model, which can cover translation, rotation, shearing,
and scaling motions. However, when the interval is long, the
camera motion in the interval cannot be captured by a simple
linear model. For example, when the robot moves forward,
the features in the image center move slower that those near
the image boundary, which is a projection operation, not a
simple scaling. Therefore, a nonlinear transformation model
is required for those cases. On the other hand, an over-fitting
problem may be caused when a model is highly nonlinear,
especially when some of the selected features are associated
with moving objects (outliers). There is clearly a trade-off
between a simple, linear model and a highly nonlinear model,
and it needs more empirical research for the best selection.
We used a bilinear model for the experiments reported in this
paper.

When the transformation from the image I t−1 to the image
It is defined as T t

t−1, the cost function for least square
optimization is defined as:

J =
1

2

N∑

i=1

{
f t

i − T t
t−1

(
f t−1

i

)}2 (1)

where N is the number of features. The model parameters
for ego-motion compensation are estimated by minimizing the
cost. However, as mentioned before, some of the features are
associated with moving objects, which lead to the inference of
an inaccurate transformation. Those features (outliers) should
be eliminated from the feature set before the final transfor-
mation is computed. The model parameter estimation is thus
performed using the following two-step procedure:

1) compute the initial estimate T0 using the full feature set
F .

2) partition the feature set F into two subsets Fin and Fout

as: {
fi ∈ Fin if |f t

i − T0
t
t−1(f

t−1
i )| < ε

fi ∈ Fout otherwise
(2)

Fig. 5. Outlier feature detection: Outliers are marked with filled circles, and
inliers are marked with empty circles.

3) re-compute the final estimate T using the subset Fin

only.
Figure 5 shows the partitioned feature sets: Fin is marked with
empty circles, and Fout is marked with filled circles. Note
that all features associated with the pedestrian are detected as
outliers. It is assumed for outlier detection that the portion of
moving objects in the images is relatively smaller compared
to the background; the features which do not agree with the
main motion are considered as outliers. This assumption will
break when the moving objects are very close to the camera.
However, most of the time, these objects pass by the camera
in a short period (leading to transient errors), and a high-level
probabilistic filter is able to deal with the errors without total
failure.

C. Frame Differencing
The image It−1 is converted using the transformation model

before being compared to the image I t in order to eliminate
the effect of the camera ego-motion. For each pixel (x, y):

Ic(x, y) = It−1
(
T t

t−1
−1

(x, y)
)

(3)

Figure 6 (c) shows the compensated image of Figure 6 (a); the
translational and forward motions of the camera were clearly
eliminated. The valid region # of the transformed image is
smaller than that of the original image because some pixel
values on the border are not available in the original image
It−1. The invalid region in Figure 6 (c) is filled black. The
difference image between two consecutive images is computed
using the compensated image:

Id(x, y) =

{
| (Ic(x, y) − It(x, y)) | if (x, y) ∈ #
0 otherwise

(4)

Figure 7 compares the results of two cases: frame differencing
without ego-motion compensation (Figure 7 (a)) and with ego-
motion compensation (Figure 7 (b)). The results show that
the ego-motion of the camera is decomposed and eliminated
from image sequences. The full description of the frame
differencing process is given in Algorithm 1.

IV. MOTION DETECTION IN 2D IMAGE SPACE

The Frame Differencing step in Figure 2 generates the
sequence of difference images, I0

d , I1
d , · · · , It

d, whose pixel

Figure 4.4: Motion subsets. The features are divided
in two subsets. The one set belongs to self-moving
objects (filled red circles) and the other to the
background (green empty circles). (Image found
in [111])

to get rid of the noise. The posterior probability distribution Pm(xt+1) over the state
x = [x, y,~x,~y] is calculated as follows.

Pm(xt+1) = ηt+1P(It+1
d |xt+1)

∫
P(xt+1|xt)Pm(xt)dxt (4.6)

P(It+1
d |xt+1) is a perception model and P(xt+1|xt) a motion model, which have to be

used for updating the probability. The perception model is implemented in a generic
form as step function with limited evaluation range. The motion model is assumed to
be a constant velocity model, because the object’s motion is not known a priori. The
authors propose to estimate the posterior probability distribution recursively utilizing
an adaptive particle filter. The weight of each particle st

i = [xt
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i ,~x
t
i ,~y

t
i ] is determined by

wt
i =

1
m2
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∑
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∑
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Id(xt
i − j, yt

i − k) (4.7)

The motion model is used to update the position of the particles by the motion of each
specific tracked object. The particle filter is designed to change its number of used
particles. This is implemented by a kd-tree, which influences the number of particles by
its size. The kd-tree is additionally used to cluster the particles by transforming them
into a lower-resolution, uniform-sized grid. Each grid with a particle density higher
than a certain threshold is selected as a candidate. All candidates are clustered by
their connectivity, where each cluster represents an object. Finally, the statistics of the
particles in the cluster are calculated by summing up the characteristic of each particle.

Instead of using one particle filter for tracking all objects, the authors implement mul-
tiple particle filter in their system. They create one additional particle filter, if the last
particle filter converges to a new object. If a particle filter diverges, the particle filter is
destroyed. This shelters the risk of false associations or wrong deletions of hypotheses.
A hypotheses management would provide a better way to regulate the creation and
deletion of hypotheses (cf.Sec. (4.5)).

To track objects in 3D, a laser range finder is added to their system. The laser data
is projected into the camera image using the standard pinhole model. The depth of
tracked objects is acquired through partial information from the laser data. In general,
this procedure is very expensive, because the different sensors have to be calibrated and
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(a) t = 13 (b) t = 21 (c) t = 34

(d) t = 13 (e) t = 21 (f) t = 34

Fig. 15. Moving object tracking from Robotic helicopter: The upper row shows the input image sequence with manually-tracked objects, and the lower row
shows the particle filter outputs and clustering results.

(a) t = 57 (b) t = 119 (c) t = 195

(d) t = 57 (e) t = 119 (f) t = 195

Fig. 16. Moving object tracking from Segway RMP: The upper row shows the input image sequence with manually-tracked objects, and the lower row
shows the particle filter outputs and clustering results.

TABLE I
PERFORMANCE OF MOVING OBJECT DETECTION ALGORITHM

Platform Frames Motions Detected True + False + Detection Rate Avg. Error

Robotic helicopter 43 35 28 28 0 80.00 % 11.90
Segway RMP 230 220 215 211 4 95.90 % 21.31
Pioneer2 AT 195 172 158 146 12 84.88 % 15.87

Figure 4.5: Results from [111]. The table shows the overall performance of the system presented from Jung
and Sukhatme. (Table found in [111])

synchronised. In this thesis sensors are used, which circumvent the overload through
the use of active cameras, which directly provide additional distance information.

The authors show their system performance on different platforms, which are a robotic
helicopter, a segway and a pioneer2 robot. The system reaches 5 frames per second on
a low resolution image of 320x240 pixels. The tracking results are compared to manual
labelled tracks of the objects. The exact results of their evaluation are shown in Fig. (4.5).
Frames is the number of total frames, motion is the number of moving objects, detected the
count of detected objects, True+ is the number of correct detected objects and False+ the
number of false-positive objects. Detection Rate shows the percentage of moving objects
correctly detected, and Avg. Error is the average Euclidean distance in pixels between
the ground truth and the output of tracking algorithm. The qualitative system results
are shown in Fig. (4.6).
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(a) t = 35 (b) t = 56 (c) t = 191

(d) t = 35 (e) t = 56 (f) t = 191

Fig. 17. Moving object tracking from Pioneer2 AT: The upper row shows the input image sequence with manually-tracked objects, and the lower row shows
the particle filter outputs and clustering results.

linear and angular motions. The combination of these motions
causes complicated ego-motions even when the robot is driven
on a flat terrain or when the robot stops in place. The robot was
driven on the USC campus during the daytime when there are
diverse activities in the environment including walking people
and automobiles.

The tracking performance is analyzed for three different
cases. As explained in Section IV-D, if one of the following
two conditions is not satisfied, a single particle filter fails to
track multiple objects even though it supports multi-modality
in theory: (1) all objects should be introduced before a particle
filter converges, and (2) the convergence speed of a particle
filter should be sacrificed by using a “bad” perception model.
The first two cases are when one or both conditions can not
be satisfied. In the first case, there are three people walking
by, but the people are introduced in the input image sequence
one by one, which violates the first condition. In the second
case, there are two groups of automobiles passing by, and
they are introduced sequentially with a big time interval
between them. In addition, the automobiles move fast enough
so that the convergence speed of a particle filter cannot be
sacrificed, which violates the second condition. The results
for both cases show how the multiple particle filter approach
overcomes the limitation of a single particle filter. The stability
of this approach is also clear. In the last case, it is observed
how multiple particle filters behave when two people walk in
different directions and intersect in the middle.

The computation was performed on a Pentium IV (2.1 GHz)
computer, and the image resolution was fixed to 320x240
pixels. The maximum number of particle filters was fixed
to five, and for an individual particle filter, the range of the
number of particles was set to (1000 ∼ 5000). The number

of frames processed per second varies based on how many
particle filters have been created, but roughly 10 frames were
able to be processed.

2) Experimental Results: The snapshots of the multiple
particle filter tracking multiple moving objects are shown in
Figure 18–20. The upper rows of the figures show input image
sequences and manually-tracked moving objects in the images.
The manually-tracked objects are marked with rectangles. The
lower rows show particle filters and the covered area (the
minimum rectangular region enclosing each ellipsoid that is
generated by the particle clustering algorithm) by each particle
filter. Only converged particle filter is visualized on the images.
Each particle filter is drawn with different colored dots, and
the covered areas are marked with rectangles.

The experimental result of the first case is shown in Fig-
ure 18. The estimation process starts with a single particle
filter. When the first person enters into the field of view of
the camera as in Figure 18 (a), the particle filter converges
and starts to track the person as in Figure 18 (d), and a new
particle filter is created to explore the remained area. When
the second person enters as in Figure 18 (b), the new particle
filter converges and starts to track the second person as in
Figure 18 (e), and another particle filter is created. This process
is repeated whenever a new object is introduced. At the end
when three people are in the input image as in Figure 18 (c),
the total number of particle filters becomes four; three filters
for people and one extra filter to explore.

Figure 19 shows the experimental result of the second case.
The estimation process is performed in the same way with the
first case. Whenever a new automobile is introduced, a new
particle filter is created. When the automobile leaves from the
field of view of the camera, the particle filter that tracks the

Figure 4.6: Experimental
results from [111]. The
upper row shows the
manual labelled moving
objects. The lower row
shows the system result.
The accordant frame
number is printed
below each image.
(Image found in [111])

The approach of estimating the ego motion and detecting humans by motion is limited
to specific motions (cf.Perrone) or the scene has to consist mostly of static parts, which
can be used to detect the ego motion (cf.Jung). Wrong estimates of the ego motion
result from wrong feature correspondences or frames, where the specific requests are
not fulfilled. Other systems [59] try to compensate the risk of estimating a wrong ego
motion by adding an additional Kalman filter. But, this also compensates only a few
frames and can not avoid some failures due to wrong estimates, if e.g. a person is
walking directly in front of the camera and there is no static data available. Hence, the
detection of persons by motion is hazardous or unstable in some cases and should be
avoided.
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4.2.4 Mobile Robot Tracking Systems

In the following, I present related work to mobile robot tracking systems, which fulfil
all requirements of a mobile tracking system. This includes a person detection, the
handling of occlusions and the tracking of several targets in the scene.

I do not consider systems, which use a static human detection and tracking on a mobile
platform like in the previous chapter or like [17]. In e.g. [17] an autonomous mobile
robot is exploring the city in order to reach a certain target. The authors use human
detection and tracking in order to achieve a conversation with pedestrians. But, the
detection and tracking is based on background subtraction and needs the robot to be
static. In their case, the robot is standing still, waiting for pedestrians walking by. Here,
I only describe systems, which are able to detect and track humans during ego motion.

One popular mobile tracking system is presented from Bastian Leibe, Andreas Ess et al.
[61] [59] [60] [130] [131], which evolved over many years to the actual reference system.
The system is designed to track multiple persons, or additionally, cars in outdoor
environments. Here, the tracking of dynamic obstacles is meant to deliver important
information for a path planing algorithm. The system uses camera images from a
mounted stereo cam on a mobile platform. The authors propose an approach, which
uses camera position, stereo depth data, ground-plane estimation, object detections and
trajectories based on visual information. The tracking information is used to predict
future motions from dynamic objects in order to incorporate this information in a static
occupancy map. Fig. (4.7) shows the system proposal.

Figure 4.7: System set-up from [59]. Flow
diagram of the system presented from
Leibe, Ess et al. . (Image found in [59])
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Fig. 3. (a) Flow diagram for our vision system. (b) Graphical model for
tracking-by-detection with additional depth information (see text for details).

probabilistically using a Bayesian network (see Fig. 3(b)).
This network is constructed for each frame and models the
dependencies between object hypotheses oi, object depth di,
and the ground plane π using evidence from the image I, the
depth map D, a stereo self-occlusion map O, and the ground
plane evidence πD in the depth map. Following standard
graphical model notation, the plate indicates repetition of
the contained parts for the number of objects n.

In this model, an object’s probability depends both on its
geometric world position and size (expressed by P (oi|π)),
on its correspondence with the depth map P (oi|di), and
on P (I|oi), the object likelihood estimated by the object
detector. The likelihood P (πD|π) of each candidate ground
plane is modeled by a robust estimator taking into account
the uncertainty of the inlier depth points. The prior P (π), as
well as the conditional probability tables, are learned from a
training set.

In addition, we introduce temporal dependencies, indicated
by the dashed arrows in Fig. 3(b). For the ground plane, we
propagate the state from the previous frame as a temporal
prior P (π|πt−1) = (1−α)P (π)+αP (πt−1) that stabilizes
the per-frame information from the depth map P (πD|π).
For the detections, we add a spatial prior for object locations
that are supported by tracked candidate trajectories Ht0:t−1.
As shown in Fig. 3(b), this dependency is not a first-
order Markov chain, but reaches many frames into the past,
as a consequence of the tracking framework explained in
Section III-B.

The advantage of this Bayesian network formulation is
that it can operate in both directions. Given a largely empty
scene where depth estimates are certain, the ground plane
can significantly constrain object detection. In more crowded
situations where less of the ground is visible, on the other
hand, the object detector provides sufficient evidence to assist

ground plane estimation.

B. Tracking, Prediction

After passing the Bayesian network, object detections
are placed into a common world coordinate system using
camera positions estimated from visual odometry. The ac-
tual tracking system follows a multi-hypotheses approach,
similar to the one described in [17]. We do not rely on
background modeling, but instead accumulate the detections
of the current and past frames in a space-time volume. This
volume is analyzed by growing many trajectory hypotheses
using independent bi-directional Extended Kalman filters
(EKFs) with a holonomic constant-velocity model. While
the inclusion of further motion models, as e.g. done in [27],
would be possible, it proved to be unnecessary in our case.

By starting EKFs from detections at different time steps,
an overcomplete set of trajectories is obtained, which is
then pruned to a minimal consistent explanation using model
selection. This step simultaneously resolves conflicts from
overlapping trajectory hypotheses by letting trajectories com-
pete for detections and space-time volume. In a nutshell, the
pruning step employs quadratic pseudo-boolean optimization
to pick the set of trajectories with maximal joint probability,
given the observed evidence over the past frames. This
probability

• increases as the trajectories explain more detections and
as they better fit the detections’ 3D location and 2D
appearance through the individual contribution of each
detection;

• decreases when trajectories are (partially) based on
the same object detections through pairwise corrections
to the trajectories’ joint likelihoods (these express the
constraints that each pedestrian can only follow one
trajectory and that two pedestrians cannot be at the same
location at the same time);

• decreases with the number of required trajectories
through a prior favoring explanations with fewer tra-
jectories – balancing the complexity of the explanation
against its goodness-of-fit in order to avoid over-fitting
(“Occam’s razor”).

For the mathematical details, we refer to [17]. The most
important features of this method are automatic track initial-
ization (usually, after about 5 detections) and the ability to
recover from temporary track loss and occlusion.

The selected trajectories H are then used to provide a
spatial prior for object detection in the next frame. This
prediction has to take place in the world coordinate system,
so tracking critically depends on an accurate and smooth
egomotion estimate.

C. Visual Odometry

To allow reasoning about object trajectories in the world
coordinate system, the camera position for each frame is
estimated using visual odometry. The employed approach
builds upon previous work by [8], [20]. In short, each
incoming image is divided into a grid of 10 × 10 bins,
and an approximately uniform number of points is detected

First of all, they calculate a 3D map through structure from motion [50]. Utilizing the
depth map the pose of the camera is estimated and updated through time by visual
odometry. Therefore, the image is divided in a grid of 10x10 bins. In each bin a similar
amount of Harris Corners is calculated. The information from the tracker is incorporated
to mask out bins, which belong to a possible moving target (see Fig. (4.8)). All remaining
features are analysed with RANSAC to estimate the camera movement. The trajectory
is smoothed with the last 15-18 frames utilizing Bundle Adjustment. Additionally, the
authors implement a failure detection mechanism, which uses a Kalman-Filter estimate
instead of the visual odometry. It is not mentioned, when this mechanism applies, but
one could assume that it is used, if the estimates are too different.

The next step is the simultaneous detection of the ground surface and possible human
targets. The system uses the presumption that every interesting object has to reside on
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Figure 4.8: Visual Odometry Masking.
The moving of the robot is calculated
through visual odometry. Harris
Corners are used as corresponding
features (left). Corners on known
targets are masked out (right). (Image
found in [59])

Fig. 4. Visual odometry and occupancy maps are only based on image
parts not explained by tracked objects, i.e. the parts we believe to be static.
Left: original image with detected features. Right: image when features on
moving objects (green) are ignored.

in each bin using a Harris corner detector with locally
adaptive thresholds. The binning encourages a feature dis-
tribution suitable for stable localization. To reduce outliers
in RANSAC, we mask out corners that coincide with predicted
object locations from the tracker output and are hence not
deemed suitable for localization, as shown in Fig. 4.

In the initial frame, stereo matching and triangulation
provide a first estimate of the 3D structure. In subsequent
frames, we use 3D-2D matching to get correspondences,
followed by camera resection (3-point pose) with RANSAC.
Old frames (t′ < t−15) are discarded, along with points that
are only supported by those removed frames. To guarantee
robust performance, we introduce an explicit failure detection
mechanism based on the covariance of the estimated camera
position, as described in [8]. In case of failure, a Kalman
filter estimate is used instead of the measurement, and the
visual odometry is restarted from scratch. This allows us to
keep the object tracker running without resetting it. While
such a procedure may introduce a small drift, a locally
smooth trajectory is more important for our application. In
fact, driftless global localization would require additional
input from other sensors such as a GPS.

IV. OCCUPANCY MAP AND FREE SPACE PREDICTION

For actual path planning, the construction of a reliable
occupancy map is of utmost importance. We split this in
two parts according to the static scene and the dynamically
moving objects.

Static Obstacles. For static obstacles, we construct a
stochastic occupancy map based on the algorithm from [2].
In short, incoming depth maps are projected onto a polar
grid on the ground and are fused with the integrated and
transformed map from the previous frames. Based on this,
free space for driving can be computed using dynamic
programming. While [2] integrate entire depth maps (in-
cluding any dynamic objects) for the construction of the
occupancy map, we opt to filter out these dynamic parts. As
in the connection with visual odometry, we use the tracker
prediction as well as the current frame’s detections to mask
out any non-static parts. The reasons for this are twofold:
first, integrating non-static objects can result in a smeared
occupancy map. Second, we are not only interested in the
current position of the dynamic parts, but also in their future

locations. For this, we can use accurate and category-specific
motion models inferred from the tracker.

Dynamic Obstacles. As each object selected by the tracker
is modeled by an independent EKF, we can predict its
future position and obtain the corresponding uncertainty C.
Choosing a bound on the positional uncertainty then yields an
ellipse where the object will reside with a given probability.
In our experiments, a value of 99% resulted in a good
compromise between safety from collision and the need to
leave a navigable path for the robot to follow. For the actual
occupancy map, we also have to take into consideration the
object’s dimensions and, in case of an anisotropic “footprint”,
the bounds for its rotation. We assume pedestrians to have
a circular footprint, so the final occupancy cone can be
constructed by adding the respective radius to the uncertainty
ellipse. In our visualization, we show the entire occupancy
cone for the next second, i.e. the volume the pedestrian is
likely to occupy within that time.

Based on this predicted occupancy map, free space for
driving can be computed with the same algorithm as in [2],
but using an appropriate prediction horizon. Note that in case
a person was not tracked successfully, it will still occur in
the static occupancy map, as a sort of graceful degradation
of the system.

V. DETAILED IMPLEMENTATION

The system’s parameters were trained on a sequence with
490 frames, containing 1’578 annotated pedestrian bounding
boxes. In all experiments, we used data recorded at a
resolution of 640×480 pixels (bayered) at 13–14 fps, with a
camera baseline of 0.4 and 0.6 meters for the child stroller
and car setups, respectively.

Ground Plane. For training, we infer the ground plane
directly from D using Least-Median-of-Squares (LMedS),
with bad estimates discarded manually. Related but less
general methods include e.g. the v-disparity analysis [15].
For tractability, the ground plane parameters (θ,φ, π4) are
discretized into a 6×6×20 grid, with bounds inferred from
the training sequences. The training sequences also serve to
construct the prior distribution P (π).

Object Hypotheses. Our system is independent of a spe-
cific detector choice. In the experiments presented here, we
use a publicly available detector based on a Histogram-of-
Oriented-Gradients representation [5]. The detector is run
with a low confidence threshold to retain the necessary
flexibility—in the context of the additional evidence we
are using, final decisions based only on appearance would
be premature. The range of detected scales corresponds
to pedestrian heights of 60–400 pixels. The object size
distribution is modeled as a Gaussian N (1.7, 0.0852) [m],
as in [14]. The depth distribution is assumed uniform in the
system’s operating range of 0.5–30 [m], respectively 60 [m]
for the car setup.

Depth Cues. The depth map D for each frame is obtained
with a publicly available, belief-propagation-based disparity
estimation software [10]. All results reported in this paper

a common ground plane in the scene. Thereby, the scene is modelled with a Bayesian
Network. This network is constructed for each frame and it models the dependencies be-
tween object hypothesis, their corresponding depth and the ground plane. The ground
plane is estimated from previous estimates and the actual depth measurement. The
probability to detect a searched object at some place is computed through its position,
size and depth and additionally through a classifier and the candidate trajectories from
the last time steps. Thereby, the size is modelled as a Gaussian and as classifier the
authors use the Histogram of Oriented Gradients approach.

The tracking of the detected objects is applied through tracking by detection. All
detected objects are marked with their global position in a space-time volume. At each
time step Kalman-filters are started from each detection resulting in an over complete
set of trajectories. The trajectories are finally resolved through a global optimisation
step, which tries to maximise joint probability. Some results of the system are presented
in Fig. (4.9).
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Fig. 5. Left, middle: Performance plots of our system on two test sequences. We plot the overall recognition performance, as well as the obtained
performance within a range of 15m, the range that we consider important for autonomous driving at low speeds (30 km/h). Right: Precision of the tracker
prediction for increasing prediction horizon. Data was recorded at 12–14 fps.

Fig. 6. Example tracking results for Seq. #1. For each image, we show the actual tracking results as well as an overhead view of the dynamic
occupancy map.

entire system is implemented in an integrated fashion in
C/C++, with several procedures taking advantage of GPU
processing. For the complex parts of Seq. #3 (15 simultane-
ous objects), we can achieve processing times of around 400
ms per frame on an Intel Core2 CPU 6700, 2.66GHz, nVidia
GeForce 8800 (see Tab. I). While the detector stage is the
current bottleneck (the detector was run offline and needed
about 30 seconds per image), we want to point out that for
the HOG detector, real-time GPU implementations exist [30],
which could be substituted to remove this restriction.

Component GPU CPU Time
Detector × 2 × 30 s

Depth map (old) × 2 × 20 s
Depth map (new) × 2 × 20 ms
Bayesian network × 150 ms
Visual odometry × × 40 ms

Tracker × 150 ms

TABLE I
PROCESSING TIMES OF THE VARIOUS COMPONENTS IN OUR SYSTEM.

VII. CONCLUSION

In this paper, we have presented a mobile vision system for
the creation of dynamic obstacle maps for automotive or mo-

Figure 4.9: People detection and tracking. In the upper row the 2D images of the particular frames are shown.
In the bottom row the birds-eye-view of the found tracks is plotted. (Image found in [59])

In [77] they show an extension to their system, which adds articulation information to
the tracks of the single persons. They implement their tracking with a Gaussian Process
articulated tracking approach based on global pedestrian silhouettes learned from a
data set. This restricts their detection to humans with a low walking speed and with
a known articulation. They show in their results, that the system is able to detect also
the articulation of persons at a reliable detection rate if the camera is static. In the case
of a moving camera they show only qualitative results, which permits the assumption
that the system is not as stable as in the static case. The quantitative results of their
current system are presented in [61]. The tracking rate of persons is at 73 % (shown
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for one sequence with 999 frames length) with 1 false positive per image. The rate
slightly increases, if the detection range is restricted to 15 meter. The authors report
detection improvements through a ground plane assumption and by using better stereo
data. Additionally, other authors report good results, but on the cost of computation
time. The computational efficiency of the system in [61] is reported as not fully real-time
capable. They spot the Histograms of oriented Gradients detector as bottleneck for their
system. As a solution they propose an implementation on a graphic card, which speeds
up the computation by parallelisation. In my thesis I show another possibility to speed
up the calculation of the Histograms of oriented Gradients detector by a fast and reliable
pre-detection step.

The system from Leibe, Ess et al. delivers promising results and it represents the current
state of the art reference system in the area of mobile tracking systems. In my thesis, I do
not claim to achieve better results than their system, which is not possible to compare
anyway. I focus on a system, which is able to detect and track humans in near and
far positions and even during occlusion, while running in real-time on a mobile robot.
Hence, the focus is slightly different, but emerging in similar results.

Few other systems exist in literature, like the system from N. Belotto, which uses multi
sensor fusion to detect legs through a laser and to identify persons by their colour
histograms from a video camera [20]. The system from Abd-Almageed et al. [1] uses
partial similar approaches like the proposed system in this thesis with some variation in
single modules. Their detection is based on the v-disparity, which reasonably restricts
the image search space. The v-disparity is also used in this thesis and thus, will be
discussed in Sec. (4.4.1). In short, the v-disparity is utmost useful to detect both the
floor and possible ceiling. In their work, the remaining image parts after removing
the floor and ceiling are clustered through mean shift. On each region the authors
utilise a combined human detector of Histograms of Oriented Gradients and a cascade
of boosted features (based on the work of Zhu [223]). Instead of SVM, they use a simple
Fisher linear discriminant.

4.2.5 Vehicle Tracking Systems

Finally, I indicate related work to advanced driver assistance systems. They provide
similar solutions like the algorithms running on mobile robots, but they have to deal
with the specific requirements of outdoor and traffic scenarios. Hence, the algorithms
are comparable and I want to give an overview of this related area. Driver assistance
systems aim at warning and assisting the driver in dangerous situations, where the usual
driver would cause an accident. This includes appropriate protective measures, which
should turn on, if the driver is inattentive. Initially, these systems were based on simple
mechanisms like seatbelts. Afterwards, new and more complex systems were developed,
like the adaptive cruise control, which holds the car in its lane. Most important is
the progress in pedestrian protection systems to avoid injuries in vehicle-to-pedestrian
accidents.

Daimler research e.g. is working on pedestrian detection since the late 90’s [78] [212]
[213]. The quite actual system PROTECTOR [80] is able to detect pedestrians based on
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stereo vision. In their system they use several closely coupled modules, which narrow
down the image search space for each subsequent module. The first important step is
the reduction of regions of interest (ROI), which reduces computation time a lot. Gavrila
et al. propose the use of a calibrated pair of cameras, which delivers a sparse disparity
map. In this disparity map a shape-based pedestrian detection [78] delivers person
hypotheses. The shape-based detection is generally a template matching based on the
chamfer distance transform. The templates are arranged in a hierarchy, where whole sets
of templates can be efficiently matched. Each hypothesis is classified in pedestrian and
non-pedestrian by a neural network with local receptive fields [212]. A verification step
uses the flat world assumption in order to fit a second order polynomial over the dense
disparity values in each hypothesis area. The parameters are chosen according to the
measured depth at the corresponding distance. If the area contains more background
or other depth values than the expected, the area is discarded. To overcome gaps in
detection the authors use an α− β tracker on a 2.5-D bounding box around the object.
The system showed a good performance of slightly above 60% detection rate with up
to 5 false detections per minute and fast processing time. Fig. (4.10) shows an example
detection of the proposed system.

Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle

Figure 14. PROTECTOR system results: stereo preprocessing, detections and trajectories.

Figure 4.10: People
detection and tracking.
(Image found in [80])

Research on pedestrian detection has employed different areas of monocular vision[181]
[138] [9], stereo vision [80] [129] [187], LIDAR [164] or thermal imagery [40] in the last
years. A detailed overview can be found in [81].

In 2004, Grubb et al. published their work on 3D vision sensing for improved pedestrian
safety [87]. They developed a system, which uses stereo vision to detect and track
pedestrians on a moving vehicle. From stereo vision they build a disparity map, which
is used to detect the objects in the v-disparity image. The hypotheses are classified
in pedestrian and non-pedestrian by shape classification with SVM’s. The used shape
models were taken from front, rear and side poses. The hypotheses are tracked by a
Kalman filter. Their average detection rates are about 83% with average false detection
rate at 0.4%.

One recent system from Bajracharya et al. describes an interesting approach to detect
humans on a moving vehicle [13]. The authors propose to use geometrical features
to detect upright standing people in depth data. First the stereo data is projected on
a two-dimensional polar-perspective grid (The authors state that the polar-perspective
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grid better preserves the coherency of the stereo range data than a traditional Cartesian
map). Afterwards, the data is preprocessed by a 3D box of 1 m x 2 m x 4 m to reduce
the possible number of region candidates. Each possible region is classified by further
geometric features in human and non-human. Tracking is implemented as region of
interest association by the 3D position and the Bhattacharyya distance of a colour (RGB)
histogram. Fig. (4.11) shows the detection performance of the system. The omitting
of a texture based classifier results in some false detections due to the similarity of the
geometric dimensions of some objects to humans (see the bus in the shown Fig. (4.11)).

Figure 4.11: People detection and tracking. Yellow
boxes with a green overlay show the detections
of the system. Cyan boxes are missed detections.
There is a false detection on the bus. (Image found
in [13])

Ess 2007, Sequence #1 Ess 2007, Sequence #2 Ess 2007, Sequence #3

Fig. 7. Examples of detections (yellow boxes, with green overlay of segmented people) and misses (cyan boxes) for sequences from [26]. The false
detection in the sequence 3 example is due to a reflection in the window.

Fig. 8. Examples of detections (yellow boxes, with green overlay of segmented people) and misses (cyan boxes) for sequence 2 from [1]. There are false
alarms on the car in the left image and the bus in the middle image. The misses are generally due to lack of stereo coverage or excessive clutter.
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Summing up, most actual systems running on robots or other platforms rely on depth
data, which reduces the amount of false positives compared to pure 2D images [28] [80]
[13] [81] [60] [173]. In literature, there exist quite a lot of mono approaches, which deal
only with a 2D image frame. However compared to the correspondent 3D approaches,
all authors report an enhancement using depth data. Consequently, the approaches in
this work rely on depth data. All presented approaches are not able to detect only
partially visible humans and they do not cope with near and far persons. Additionally,
the related systems are partially only able to track one person in order to follow him/her.
In this thesis a tracking system is presented, which accounts for partially seen humans as
well as near and far persons. Additionally, the proposed algorithms are able to handle
multiple persons simultaneously. In the results it is shown that my system approach
is able to deal with all mentioned requirements of human detection and tracking on a
mobile robot platform also considering the computation speed.

4.3 A Modular Person Tracking System

In order to achieve the second category of SA on a mobile platform a system has to
incorporate different abilities in order to detect and track correctly all present persons.
Despite the correct detection and association of humans, the system has to deal with
short occlusions, different lightning conditions and the movement of the robot. If only
one aspect of these conditions fails, the tracking is not guaranteed. Consequently, the
proposed system takes these conditions into consideration and implements different
methods, which solve these requirements. The occlusions are handled by the tracking
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Figure 4.12: Tracking System Design. The sensory input delivers RGB, distance and 3D information as
observation O. Additionally, the robot provides SLAM information S about the global positioning of itself.
All sensory data O is used to detect and track humans in the scene. After removing floor and ceiling a
pre-detection based on u-v-disparity delivers efficient hypothetical windows P = pi with i = 1 . . . N, where
an object with similar 3D dimensions is present. Verification of these areas is done with an Histograms of
oriented Gradients (HoG) based support vector machine. If the human is very close a Near-HOG is applied,
which is trained only on the upper body. Else a Far-HOG full human body detector is used. All verified
detections V are handed over to the hypotheses management (HM), where all incoming information is
meaningful merged. The HM cares for creating and deleting hypotheses. If a new person is detected, the
HM informs the tracking module to create a new particle filter tracker for each new person. Additionally,
the information about all current hypotheses H is delivered in order to adapt the particle filter target model
to the current size of the object. The tracker itself informs the HM about his actual tracks T. The HM also
incorporates the mapping information S from the robot in order to provide global consistent hypotheses.
Finally, the HM provides the tracking information for a visual output.

module, where the tracker preserves the specific object, even it is shortly occluded.
Additionally, the tracker updates dynamically its observation model in order to refresh
its picture of the object and to keep track of it even under varying lightning conditions.
The tracking itself incorporates the movement of the robot and updates its prediction
model accordingly. Summing up, the system is designed to detect humans both fast and
independent from the ego motion of the robot.

4.3.1 System Overview

The proposed system architecture is presented in Fig. (4.12). It shows the different
engineered modules and their connections. The system runs on the mobile robot Biron

, which is presented in section 1.1. The robot needs a meaningful sensory input, which is
achieved by a multi-sensor set up. The sensor set up consists of a RGB camera, an infra-
red camera and an infra-red emitter. All sensors are devised in the Microsoft Kinect
camera for the XBox Sec. (2.1.5). The infra-red camera measures depth data from a light
pattern. The depth image is calibrated onto the RGB image and synchronised with at
most 16 milliseconds difference. Hence, the robot is able to use colour, depth and 3D
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information as observation O. As the robot is moving and the tracked positions of the
humans are related to the robot position at the certain time step, it is required to transfer
the positions into world coordinates. Therefore, the actual world position of the robot
is acquired through a simultaneous localisation and mapping (SLAM) approach [221].
The SLAM is working on the data of a Laser-range-finder, which is installed on the basis
of the robot. At each time step the actual position Sx,y and view angle Sθ of the robot are
incorporated into the tracking results in order to save the world position of each entity
as well.

The next step consists of processing the data O to segment and detect all humans
currently in the scene. Humans are a very dynamic category with many different
poses, clothes and appearances. Humans also look differently depending on the view
from the front, back or side. Hence, it is complicated to detect humans in all different
situations. In Sec. (2.2) several methods to detect humans are presented. Nearly all
of these approaches only detect humans using frontal or back views. One possibility
is to train several classifiers in order to detect humans from different poses. But, the
execution of a classifier is expensive and the execution of several classifiers would slow
the system down. Here, the detection of the side, back and front views is applied
through an additional pre-detection algorithm.

The pre-detection algorithm has two advantages. First, the heavy computation time of
the classifier can be drastically reduced, because only windows from the pre-detection
have to be classified instead of the whole image. The following citation originates from
the driver assistance area, but explains the importance of the search window reduction.

“For example, a typical exhaustive scan on a 640x480 image can provide from
200,000 to 1,000,000 ROIs, depending on the sampling step and the minimum
ROI size. In contrast, sampling just the estimated road can reduce this number to
20,000-40,000, again depending on the density of the scan. Furthermore, stereo-
based segmentation could further reduce this number by at least a factor of 10,
depending on the content of the scene.”
Geronimo 2010, [81, p. 1243]

Hence, the search space for a subsequent classifier is immensely reduced by a 3D based
pre-detection. The second benefit of the pre-detection is due to the reduction of false-
positive detections. This derives from the additional use of three-dimensional features.
The 3D features constrict the classifier to reasonable regions and prevent false detections
due to similarity of the background to the pure 2D image features from a human.

Pre-detection can be accomplished through several methods. The ground plane can be
estimated and only objects on this plane considered [60] [79] or geometrical features can
be calculated and only objects with accordant size retained [13], to name two examples.
Both presumptions speed up the detection process and are consequently used in this
work. A preprocessing step measures the ground plane Γground and ceiling plane Γceiling
and removes these parts from the processing by defining a mask, which is applied
from each process module. Here, the ground plane assumption can not be applied as
adoption for a possible hypothesis location like proposed in some literature, because
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the humans are often directly in front of the robot and are only viewed from hip to
face. But the removal of the accordant areas reduces the amount of features to inspect.
The geometrical features can be used to examine and classify only areas, where an
object has similar 3D dimensions like the searched object. It is important to mention,
that the dispose of geometrical features requires an additional classifier. Otherwise,
the detection includes many false positives (cf.[13]). I consider this fact by applying an
additional verification step, which stabilises the process.

Using the depth data and the width and height (see Sec. (2.1.2)) the dimension of the ob-
ject can be calculated and compared to the search dimensions. Here, an approach based
on u-v-disparity 1 [22] [125] [126] [192] [152] with a probabilistic detection equation is
applied.

All pre-detected regions pi with i = 1 . . . M with adequate size and good probability of
being a searched object are passed to the classifying step. The windows are scaled to the
classifier size and the window is verified, if the detection can be passed to the hypothesis
generation. If the probability of the sub-window is over a certain threshold, the detection
pi is verified as vj with j = 1 . . . M. In this thesis, the state-of-the-art Histograms of
oriented Gradients (HoG) classifier in conjunction with a linear SVM is applied. The HoG
classifier shows very good results compared to the actual literature (see Sec. (2.2.2)) and
it is the best human detector in the near range [55]. The low computation speed, which is
often described in literature, is compensated by the pre-detection step. The hypotheses
management also associates all incoming information from each module to the known
hypotheses. As the pre-detection and tracker are not bound to a frontal or back view of
the human, the system is able to keep track of the human independent of the view of the
human. Hence, it also circumvents the need for different classifiers for each perspective.

The hypotheses management has got the important function to manage the construction
and removing of hypotheses hi with i = 1 . . . N. During the process, the hypotheses
management merges all new detections and tracks to update the known hypotheses. It
also triggers the initialisation of a new tracker for each newly created hypothesis. A
hypothesis is generated, if an object is newly detected and verified and which could not
be associated to an already known hypothesis. The deletion of a hypothesis is initiated,
if a person is not verified for a specific amount of time (here, at least once all 30 frames).

Getting a signal from the hypothesis management, the tracking module starts a new tra-
cker ti with i = 1 . . . N. In this thesis, a particle filter with an adaptive multi-dimensional
observation model is applied, which also implements a human alike transition model.
The tracker offers the possibility to track objects even during short occlusions and it
makes the tracking process more robust, if e.g. the object should not be detected.

The tight binding of all modules facilitates a very effective tracking system, where
all relevant information is incorporated into the detection and tracking process. This
produces essential tracking information for the situation awareness of a mobile robot.

1u and v are the coordinates of a pixel in the (u,v) image coordinate system
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4.3.2 System Integration on a Mobile Robot

All system modules are implemented in C++ using the vision framework icewing and
the open computer vision library opencv. In general, the system is able to run on several
platforms because of its modularity. Here, the experiments are accomplished on the
mobile robot Biron (see Sec. (1.1)). The complete robot system is running on two
standard laptops. All components are communicating via the XML Based Framework
for Cognitive Vision Architectures (XCF) [215]. The overall performance and results of
the system are shown in Sec. (4.7).

4.4 Object Detection Module

The first step to a meaningful picture of the environment around the robot is to detect
the humans in the scene. Here, a two stage detection algorithm is applied, which is
both reliable and fast. This is achieved through the efficient combination of a fast pre-
detection step with an accurate classifier.

4.4.1 Pre-Detection through U-V-Disparity

The pre-detection step provides a speed up of the subsequent classifier by restricting
the hypothesis windows to a minor number. But, all unknown hypotheses have to be
detected already by the pre-detection step in order to classify correctly all humans in
the scene. If the pre-detection misses a new detection, the accordant human can not be
verified any more. Thus, to really speed up the process without corrupting the results,
the pre-detection has to be on the hand fast and on the other hand reliable.

My proposition here is the usage of the u-v-disparity [22] [125] [126] [152] [192], which
offers two enhancements. First, the floor and the ceiling can easily be removed and
second, possible hypotheses can be detected fast and reliable through their geometrical
properties.

The u-v-disparity can be computed from an available disparity map I∆ (see Sec. (2.1.2),
cf.[125]), computed from e.g. a stereo image pair or a depth sensor. Let H be the
function, which transforms the image variable I∆ to the value in the v-disparity map Iv∆

H(I∆) = Iv∆ (4.8)

The function H accumulates the points with the same disparity value that occur on an
image line i. For the image line i in the v-disparity map Iv∆, the abscissa uM of a point
M corresponds to the disparity ∆M and its grey level iM to the number of points with
the same disparity ∆M. A value P in the line i maps to the position iM as follows

i : iM = ∑
PεI∆

δvP,iδ∆P,∆M (4.9)
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Figure 4.13: Virtual example for u-v-disparity. (From left to right) In the upper row the left and right camera
image and the disparity image are shown. Additional, the image in color in presented. In the bottom row
the u-disparity and the v-disparity are calculated. Applying a threshold and hough transform, the strongest
lines can be extracted. Using the depth value ∆M of a line in the u-disparity image a corresponding line
with the same ∆M in the v-disparity can be found. The line in the u-disparity image directly denotes the
width and the v-disparity the height of the object. (Images found in [126])

with δi,j as Kronecker delta.

This mapping can be done in both rows and columns, where u-disparity corresponds to
the accumulation in ~u and v-disparity to accumulation in ~v. Both disparity mappings
are useful for different purposes. The images in Fig. (4.13) clarify this statement. In the
upper row, the original left and right image are shown. On the right is the disparity
image and the original image in colour. The accumulation of disparity values per
column is presented at the bottom left, which represents the u-disparity. The next
image corresponds to the accumulation of disparity values per row, called v-disparity.
Applying a threshold on the u-v-disparities, only the strong lines remain. Hough
transform reveals lines, which denote the width (u-disparity) and height (v-disparity) of
all distinctive objects in the scene.

A nice characteristic of the v-disparity lies in the presentation of the floor and ceiling.
They are presented as oblique lines (2, 11 in the bottom right image). Using these lines,
it is possible to remove the floor Γ f loor and ceiling Γceiling from the image in order to
reduce the possible hypotheses locations. Both planes can be removed by applying a
height-threshold to the (x, y, z) data of the scene. The height threshold is defined by two
straight lines, which represent the height of floor and ceiling at each depth. Both lines
are defined by the following line equation with gradient m and the point of intersection
n with the axis of ordinates.

y = m ∗ x + n (4.10)

This assumption is only valid for a horizontal aligned camera, which is assumed to be
true in the presented robot scenario. The error due to non-alignment is smaller than
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the error from the re-projection of the 2D image points to 3D. Otherwise the floor and
ceiling have to be removed by two planes instead of two lines.

Let g be a straight line that is running through two points P1(x1|y1) and P2(x2|y2), in
which x1 and x2 are different. Then, the gradient m of the line g can be calculated
through the theorem of intersecting lines

m =
∆y

∆x
=

y2 − y1

x2 − x1
(4.11)

Afterwards, the point of intersection n can be broken down by inserting the known
variables. The values are taken from the found lines in the v-disparity image. Using
the lines, every 3D point is checked, whether it lies above or below the ceiling and floor
line. If the point resides above the ceiling line or below the floor line it is marked as
unnecessary. Fig. (4.14) displays all marked points in red. All points, which are not
correctly re-projected into 3D, are additionally added to the mask.

Figure 4.14: Floor and ceiling removal. The floor and
ceiling are removed by a height threshold, which is
applied for each 3D point. The height threshold is
calculated by two straight lines. Here, the floor,
ceiling and irregular 3D points are removed (in
red).

After removing floor Γ f loor and ceiling Γceiling, the objects have to be extracted. In
literature, they propose to utilise Hough transform to find lines in the u-v-disparity
images. Here, I propose to use a fast version of the connected components algorithm
[94]. This approach is advantageous compared to Hough lines, because the depth of the
object can be directly calculated and also dispersive objects can be detected. The speed-
up of the usual connected components algorithm is achieved through an undirected
graph in conjunction with disjunct datasets. The usage of disjunct datasets postulates a
pure incremental graph without the possibility to remove edges. The time complexity
for the whole process is O(V + Eα(E, V)), where E is the total number of edges in the
graph and V is the number of vertices. α is the inverse of the Ackermann function 2.

The connected components algorithm is generally used with two stages. First, the
connected components are labelled line by line. An additional id image is created,
where the background is zero and each connected component gets its own id. The id’s
are allocated with the following neighbourhood ( 1© corresponds to the current pixel
position. The image borders are separately handled):

2The Ackermann function has explosive recursively exponential growth. Therefore its inverse function
grows very slowly.
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3 4 5

2 l1
If the pixel value of 1© is above a threshold (~10, for removing noise) it is taken into
consideration. The neighbours are analysed from 2-5, if already an id exists. If an id
different from zero is found, the current position gets the same id. Additionally, it is
checked, if other id’s around are different from zero and different from the actual id.
Thereby, the different id’s are inserted as children in the graph. If no neighbour is
different from zero, but the actual position has got an object, a new id is assigned.

If the whole image is passed through, the second stage of breaking down the id’s to
the real connected components is started. Each id is substituted with its representative,
which corresponds to the smallest id from each branch of the graph. The outcome is an
image, where all connected components have the same id and the background has the
value zero.

Figure 4.15: Distance adaptive ID-connector. Due to
the sensor noise, objects in far distance collapse
into several unconnected lines with different dis-
tance. The distance adaptive ID-connector connects
these lines dependent on their global and relative
distance.

For this thesis, the Microsoft Kinect camera is used, which directly measures the depth
in centimetres instead of disparity values. Hence, the measurement error is growing
with rising distance due to the detach in resolution of the structured light pattern. This
results in lines, which are possibly not connected, but belong to the same object (see
Fig. (4.15)). In respect to this fact, a distance adaptive id connector stage is proposed. To
avoid multiple detections for the same object, an additional processing stage connects
the already found connected components although they are not directly connected. The
optional stage runs before the second stage of substituting the id’s and iterates through
all found components. Dependent on the distance of the object to the camera, an upright
search beam looks at a few pixel with increased distance in the same column. If several
lines are behind each other, it is assumed that the lines belong to the same object.
Of course, the detection of an object close to a wall is hindered, but the affect of the
lower amount of detection windows on the speed of the subsequent classifier weights
definitely higher. Here, 4 different depth areas are used, where objects with a gap of 2,
4, 6 or 10 lines still belong together.

After the id image is calculated and all connected objects are detected, a pre-detection pi
is created for each connected object. So far, only the width and depth of the object can be
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extracted out of the u-disparity image. The width directly corresponds to the maximum
distance in the x-dimension of the connected component. The depth calculates from the
maximum offset in the y-dimension.

The height can be calculated from the v-disparity image. But, the lines are not always
unique assignable to each other, if e.g. two objects have the same depth. The v-disparity
is meaningful, if the scenery is on a plate without walls. Here, corridor data is used,
where the walls are present at each depth step (see Fig. (4.16)). Thus, the height of
persons can not be directly extracted.

Figure 4.16: V-Disparity. The v-disparity can not be
used for the calculation of the object’s height, if the
scenery takes place in a corridor. The walls are vis-
ible as upright lines. This hinders the association of
an object line with a found object in the u-disparity
image.

Instead, I propose to calculate the height directly in the original disparity image. The
height is estimated by using the width uw,i and position (ui, vi) of each object. A proofing
algorithm tests each row from bottom vmax to top vmin, if in the corresponding line a pixel
with the depth of the object is present. vmax corresponds to the image height and vmin
is zero in the brute force approach. Using the maximum length of the correspondent
area in the v-disparity image fastens the search. The proofing algorithm starts from ui
and runs until ui + uw,i for each line. The bottom is found, if a pixel has a similar depth
value like the object. Similar means, the object’s value plus minus a threshold (here,
about 0.1 meter). The height of the object is reached, if no pixel with similar depth value
can be found in a line.

Finally, a bounding box (u, v, uw, vh) and the real world values x, y, z, xs, ys, zs are deter-
mined for each pre-detection pi from the gathered information. These pre-detections are
probabilistically matched against the geometrical dimensions of the human wH, hH, dH.
The width xs, depth zs and height ys of the object have to be similar to those of a human
(The human size is chosen as 0.7x1.65x0.7 metre).

widthprob =
1

σw
√

2π
exp

(
−1

2

(
xs − wH

σw

)2
)

(4.12)

heightprob =
1

σh
√

2π
exp

(
−1

2

(
ys − hH

σh

)2
)

(4.13)

depthprob =
1

σd
√

2π
exp

(
−1

2

(
zs − dH

σd

)2
)

(4.14)



82 4. A 3D Tracking System on a Moving Platform

σw, σh, σd are the standard deviations for the correspondent probability distributions. If
the object’s dimensions are similar to those of a human, the final probability is calculated
as follows:

pprob,i = widthprob ∗ heightprob ∗ depthprob (4.15)

If the probability pprob,i is satisfactory, the pre-detection is preserved. Else, the pre-
detection is removed from the set. The remaining values are handed over to the classifier,
which makes a final determination whether the object is a human or not. In Fig. (4.17) an
example of the pre-detection is shown. All objects with similar dimensions to a human
are marked with a red rectangle. In the upper left corner the minimum depth of the
object is denoted, while in the lower right the maximum distance of the object is shown.

Figure 4.17: u-v-disparity human detection. The pre-
detection searches for objects with similar size di-
mension compared to a typical upright standing
human. The size is calculated through the u-v-
disparity. All found objects are marked with a
red rectangle. In the upper left and lower right,
the minimum and maximum depth of an object is
denoted. Areas with similar dimensions are also
found by the pre-detection.

4.4.2 Detection Verification

The pre-detections pi with i = 1 . . . M are each validated by a classifier. The classifier is
meant to filter out false positive from the reduced set of possible windows. Here, the
Histograms of oriented Gradients are used in conjunction with a linear SVM, because it
shows best detection results in near distance human classification (cf.Sec. (2.2.2)).

The input windows are first checked for their size, because the width and height have
to be reasonable to inherit the searched object. If the window is too small or too low,
the region is classified as non-human. Else, the windows are resized to fit the detector
window size and subsequently classified.

The scenario requires some more effort to recognise humans in all instants. As the
purpose of the robot is to interact and communicate with humans, the robot often has
little space between itself and the human. Furthermore, if the robot moves along a
corridor the space is limited and thus, the crossing with humans happens in close
distance. Therefore, a distance adaptive human classifier stage is proposed. Is the
human pre-detected in close distance only the upper part of the body is classified.
Should the human be farther away the standard full human body classifier will be
applied. Accordingly, two classifiers are trained, one for the close distance and one
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Figure 4.18: Distance-adaptive classifier verification. The classifier is chosen distance dependent due to the
opening angle of the camera W and the height of the sensor H. Is the person is only partially visible the
near classifier is activated and should the person be fully visible the far classifier is chosen. Hence, D
resolves, which classifier is used for the verification step.

for the increased distance. The classifiers switch depending on the opening angle of the
camera W and the height of the sensor H (see Fig. (4.18)). The far classifier is chosen
when the distance z of the object is greater than D.

D = tan(90−W/2) ∗ H (4.16)

D is calculated under the assumption that the camera is horizontally and vertically
aligned. Small aberrations to this assumptions do not effect the calculation, because a
small security value of a few centimetres is added to D.

If a window is classified as human (close or far), the pre-detection pi is marked as
verified and copied to the current verified detections v (see Fig. (4.19)). Finally, all pre-
detections p and verifications v are committed to the hypotheses management.

Figure 4.19: Detection verification. All hypotheses
from the pre-detection (see Fig. (4.17)) are verified
through the Histograms of oriented Gradients clas-
sifier. All verified detections are marked with a
green rectangle.

Additionally, if the pre-detection detects an object, it separates the foreground object
from the background. This is done by a k-means algorithm with 2 centres of mass. One
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for the back- and one for the foreground. All pixels in the detected sub-window are
segmented due to their distance information. The resulting foreground is additionally
marked with a connected component algorithm in order to provide an easy contour
describing only the foreground. Utilising this information, the tracking is able to use
only pixel information from the foreground without mixing it with the background.

4.5 Hypotheses Management

The hypotheses management has got the important function to manage the construction
and removing of hypotheses hi with i = 1 . . . N. A hypothesis h is constructed, if a pre-
detection p is verified a specific number of times as v. Here, the pre-detection and
classifying are robust and the number can be set to one or two.

A hypothesis consists of the following information

hi = [u, v, x, y, z, uw, vh, xs, ys, zs,~δ,~δworld] (4.17)

with (u, v) image and (x, y, z) relative world position, (uw, vh) rectangle size in image,
(xs, ys, zs) world size in each dimension and the known positions ~δ,~δworld as trajectory.
The positions for the trajectory are saved as world positions ~δworld and relative positions
to the robot ~δ. Then, the trajectory can be analysed related to the ground truth and each
track can be shown in a world map. All relative hypothesis positions are transformed
into world coordinates using the following equations:

xworld = z ∗ sinϕ + x ∗ cosϕ (4.18)

zworld = z ∗ cosϕ− x ∗ sinϕ (4.19)

where ϕ corresponds to the viewing direction of the robot or the camera, respectively.
The height y of the hypothesis is kept, because it does not change during the transfor-
mation from relative to world coordinates. xworld and zworld are still relative to the robot,
but in world coordinates. Hence, the current position of the robot has to be added to
the positions in order to get the world position relative to the origin. The position of the
robot (xslam, zslam) is acquired through the global mapping, running on the robot.

xorigin = xworld + xslam (4.20)

zorigin = zworld + zslam (4.21)

During the tracking process the hypotheses management assigns new pre-detections p,
verifications v and tracking results t to the existing hypotheses. A known hypothesis is
merged with the new information, if it has the closest distance from all hypotheses to
the new information and if the distance is below a threshold. The threshold is chosen
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as 0.5 meter, which has shown to be sufficient and stable for merging the information.
The size and positions are merged using the update formula

hi = α ∗ hi + (1− α)h′i (4.22)

with h′i as known hypothesis and hi as actual measurement. The update rate α is chosen
dependent on the reliability of the input. The pre-detection has low confidence, which is
marked with a low value for α, while the verification has high information input, which
is rated with a high α.

The tracking information t is incorporated by using only the position information with-
out the size, because the actual tracker does not adapt the size on its own. The size of
the tracker is changed by the hypotheses management, which informs the tracker about
the current known size of the object. This is reasonable, because the pre-detections and
verifications determine the size already. This saves computation time on the side of the
tracker.

If a new hypothesis hi is initialised, the hypotheses management informs the tracking
module, that a tracker ti has to be started.

Does a person leave the scene, the hypothesis has to be deleted after a short time. The
hypothesis is kept for a few frames, because the person could return into the scene or
be revealed after an occlusion. Should a hypothesis hi be not detected or verified for
a specific amount of time, the hypothesis is removed and the tracker is informed that
the tracker ti has to be deleted. Here, the value of 30 frames or two seconds shows a
stable performance. Hypotheses are not deleted during occlusions in this time, but are
successfully removed, if the person leaves the view space. Thereby, the tracker does not
update its state, if its confidence is too low. Thus, the tracking process does not create
indeterminable results, even if the person is already gone.

4.6 Tracking Module

If a new hypothesis hi is created, the hypotheses management informs the tracker about
the presence of a new person. Then, the tracker initializes a new tracking process
ti for the accordant hypothesis. Thereby, the tracker has got a tracking process for
each hypothesis on its own. Here, I propose the use of a dynamic particle filter with
multidimensional observation model. The particle filter is advantageous compared to
other tracking processes, as it can deal with occlusions and non-linear state spaces
(cf.Sec. (2.3.5)). This way, a stable tracking process is achieved even in the occurrence of
ego motion.

In contrast to Sec. (3.5), the state of each hypothesis t(a)i does not describe an elliptical
model. Here, it is represented by a point, which consists of the actual relative position
and velocity.

a = [x, z, vx, vz] (4.23)
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The coordinates (x, z) represent the position of the object on the ground plane and
(vx, vz) corresponds to the velocity of the object. Position and velocity values are
relative to the robot. The state a does not contain any information about the size of the
object, because the size is dynamically adapted by the simultaneous detection process.
The tracker incorporates the current size into its calculations by adapting the target
model. This reduces the dimensionality of the state space and offers a faster calculation
procedure.

The target model σ of a hypothesis should characterize best the tracked object. Here, I
propose the use of both 2D image features and 3D position in order to handle occlusions
and similar object appearances. The hypotheses management provides all necessary
information included in the hypothesis hi. The particle state is initialised using the
included 3D information. Applying the 2D image rectangle of the hypothesis, the target
model is calculated. The 2D image features consist of a colour histogram, where the
HSV colour space showed more stable results than the RGB space in the presence of
illumination changes [170]. To remove the intensity changes, only trimmed H-channel
and S-channel are included in the histogram representation. Chromatic information is
not reliable, if the component is too small or too big and hence, pixels on this situation
are not included in the histogram. Each target model σ is comprised by bh, bs bins for
hue and saturation.

Let ci=1...n be the positions of pixels, which are used to create the target model σ. The
pixels are taken from the foreground, which originates from the contour information of
the detection process. Each location of a pixel is associated by f ({ci}) to a bin of the
histogram corresponding to the colour of the pixel, with the function f : R2 → {1 . . . m}.
Each histogram bin calculates like follows

σbin =
1
n

n

∑
i=1

f (ci) (4.24)

Once the target model is calculated and the state from the hypothesis is saved, the
particle filter is created in order to track the human in the subsequent frames. In each
frame the target model σ is compared to each measured colour model π using the
Bhattacharyya coefficient [4]

ρ(σ, π) =
m

∑
bin=1

√
σbin, πbin (4.25)

The coefficient ρ gives a similarity measure of the colour models in the range of [0, 1],
where 1 relates to a perfect fit and the similarity decreases with dropping value. The
resulting similarity is again weighted with the similarity of the estimated object position
(x̂, ẑ) and the measured object position (x̃, z̃). The similarity is weighted by the euclidean
distance

P = C ∗ ρ ∗ K((x̃, z̃), (x̂, ẑ)) (4.26)
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with

K((x̃, z̃), (x̂, ẑ)) =
1

σ
√

2π
exp


−1

2

(√
(x̃− x̂)2 + (z̃− ẑ)2

σ

)2

 (4.27)

as Gaussian weighting kernel and C as a normalisation constant (to get a probability
between[0, 1]). This calculation aims to achieve an appearance and localization de-
pendent weighting where both the position and the colour model have to match the
accordant track. One of the weighting factors reduce the similarity in the case of a
bad estimation in order to avoid mismatches. The concatenation is especially useful,
if an object is occluded by an object with similar appearance. The distance weighting
resolves the wrong match where the appearance would join the occluding hypothesis. If
two objects are very near, the appearance gives the key evidence to separate both objects.

The particle filter represents each hypothesis by a set of particles Φt at time t. Each
particle xj,t with j = 1 . . . P relates to a complete copy of the hypothesis hi (cf.Sec. (2.3.5)).
The particle sampling follows the same sampling strategy like in Sec. (3.5). The particles
are redistributed according to a random movement and a forward movement motion
model. This covers most possible movements of a person including the movement of
the robot.

In order to calculate the probability distribution, each particle is back projected into
the 2D image. The measurement Zt is incorporated through the image information. A
rectangular region around the projected position can be determined using the known
size of the object. For each particle the underlying colour histogram and the world
position of the rectangular region are calculated. The world position is determined as
average in the middle of the rectangular region. The weight of each particle is estimated
with Eqn. (4.26). The final position of the current particle state t(a)i is estimated as
weighted mean of all its particles.

t(a)i,t+1 =
1
P

P

∑
j=1

Pj ∗ xj,t(a) (4.28)

Afterwards, the tracker updates its internal target model using the final position. Thereby,
the colour histogram σ is updated using the standard update formula (with σ′ as new
measurement).

σ = α ∗ σ′ + (1− α)σ (4.29)

If the overall probability of all particles is very low, the update step is skipped in order
to prevent false incorporation of wrong target features.

Finally, the outcome of each tracker ti including its current probability are postulated to
the hypotheses management. Fig. (4.20) shows an example output of the predicted par-
ticles as purple rectangles back-projected into the image. The green rectangle represents
the actual state of each hypothesis.
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Figure 4.20: Particle Tracking of each hypothesis. For
each verified hypothesis a particle filter is created.
Each sampled 3D position is back-projected into
the image and shown as purple rectangle. The
green rectangle represents the actual state.

4.7 Experiments and Results

In the following a deep and comprehensive analysis and evaluation of the proposed
mobile tracking system and each of its components is presented. First, the self-recorded
datasets are introduced comprehending difficult and dynamic scenes. Thereafter, a
qualitative and a quantitative analysis of the complete system is conducted in order to
show the capabilities and performance of the system. Here, it is not possible to compare
the outcome to other systems, because on the one hand other systems are not publicly
available and on the other hand the robotic platform and its sensors are very specific.
Additionally, the focus of this thesis relies on the realisation of an awareness system
running in real-time on a mobile robot, which can not be compared to offline systems
which are not restricted to small computational resources. Instead, the detection and
the tracking modules are individually investigated in multiple subsections due to their
enhancement compared to other approaches in literature. The focus of this thesis lies on
the speed and reliability of the complete system whereby each module on its own has
become reduced importance.

4.7.1 Evaluated Datasets

The datasets used for evaluation should represent best the aspired scenario in Sec. (1.1)
and concern the specific requirements of narrow rooms or corridors and persons near
and far from the robot. In order to show the capabilities of the system to track persons
even during the occurrence of ego-motion I generated 12 data sets in the corridors and
the entrance hall of our research laboratory. Each dataset consists of 360-2140 frames
recorded with the Microsoft Kinect Camera directly on the robot with ~15 frames per
second and 640x480 pixel resolution. The datasets include one or several persons, which
enter and/or leave the scene randomly. Hence, the system has to cope with the creation
and deletion of hypotheses all over the scene. All characteristics from a real interaction
scenario are incorporated in the scenes. The scenes show persons, which are near and
far (see Fig. (4.21(a)) and Fig. (4.21(b))), moving and non-moving and they could be
occluded or partially seen. The persons show different articulations and different poses,
which enhances the need of a strong detection and tracking algorithm. Additionally,
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the scenes involve clutter and very challenging lightning conditions. The light sources
are spots on the ceiling creating strong intensity gradients and shadows. The brightness
of the scenes change rapidly from very dark to bright (see Fig. (4.21(b))). The robot
itself is moving in all sequences. The movement contains fast forward movements and
many rotations. Especially the rotations are very difficult to handle, which is taken into
account by the presented system.

(a) (b) (c)

Figure 4.21: Difficult scene conditions. Persons can be near (a) or far (b). In the case of (b) the person is too
far for the distance sensor (c). In (b) spot lights on the ceiling create strong intensity gradients and dark
and bright areas. The gradient illumination on the wall clearly pops out.

In order to compare the reliability of the vision tracking system with another inde-
pendent sensor, the laser data is recorded. Depending on the laser data, the SLAM
data for navigation purposes is also backed up. Using the SLAM data it is possible to
create world coordinates from the detections, which transforms all data in a common
coordination system.

A ground truth of the trajectories of each human in the scenes is created in order
to provide a comparison for the system results. The ground truth is generated by
hand, where each fifth frame is manually labelled and the intermediate frames are
interpolated. The ground truth consists of a bounding box around each person and
the corresponding 3D position of the centre of the bounding box, assuming that the
centre represents the 3D position of the object. The ground truth is only created for
persons up to 10 meter, because the sensor capabilities are reached at this distance (see
Fig. (4.21(c))). Some example pictures of the datasets are shown in the appendix B.

4.7.2 Qualitative Results of the Proposed System Approach

The qualitative results visually demonstrate the system results through images of the
trajectories. The trajectories are connected points of detection, which represent the
pathway of each entity over time. Therefore, the trajectories are consistent with the
temporal linking of information, which describes the second category of situation aware-
ness. Hence, if the trajectories meet the real movements of the persons in the scene,
the presented system satisfies the aspired function of creating temporal links between
already known information.

The following images (Fig. (4.22) to Fig. (4.24)) show a snippet of the tracking of some
sequences (the remaining sequences are shown in appendix B). The images illustrate
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(a) Set 1 (b) Set 3

Figure 4.22: Qualitative tracking analysis. The pre-detection is presented in the lower right of each set. All
detected areas are frames with a red rectangle. In the lower right, the verified persons have a green
rectangle. If a person is correctly detected, a particle filter is initialised (purple rectangles, seen in the
upper right). The green rectangles represent the state of each particle filter. In the upper left, the trajectory
is plotted in a birds eye view. The 3D points of the actual camera view are also plotted.

the performance of the complete system by representing each step in an own image.
The pre-detection starts in the lower left where each pre-detected area is denoted with
a red rectangle. The hypotheses are handed over to the verification step in the lower
right where true objects have to be verified. If they are already verified, they have to
be approved in at least every 30th frame in order to monitor that the hypothesis is still
valid. If a region is verified as a human, a particle filter is started, which is shown in
the upper right as purple rectangles. The green rectangles represent the actual state
of each hypothesis. The arising trajectory is painted in the upper left as green line in
a three dimensional plot viewed from above. The already detected positions of each
entity are transformed into world coordinates in order to save the global movement of
each person. Thereby, it is possible to transform the elapsed points of detection into the
current coordination system of the robot. This is important, as the robot coordination
system permanently changes due to ego motion. Hence, the green trajectory is relative
to the position of the robot in every frame, which means that the trajectory does not
directly reflect the world movement of the tracked person, but the position relative to the
robot at the specific time. Because the robot is moving and rotating itself, the trajectory
can inherit rapid movement and direction changes. The 3D plot also shows the 3D scene
of the actual frame relative to the robot, where the 3D points are superimposed with the
associated colour information from the calibrated colour camera.

The first Fig. (4.22) shows two sets where the first set includes many rotations of the
robot, but the trajectory appropriate represents the position of the person. Even the
second person in the background is correctly detected and tracked. The second set
shows that the system is able to detect and track a person reliably coming from far away
to near to the robot. During the movement the person changed his appearance from
fully visible to partially seen and walked beneath some spot lights at the ceiling, which
changed the colour representation of the person a lot. The marker partially seen on the
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clothes of some persons are not used in the whole processing.

(a) Set 6 part 1 (b) Set 6 part 2

Figure 4.23: Qualitative tracking analysis. The pre-detection is presented in the lower right of each set. All
detected areas are frames with a red rectangle. In the lower right, the verified persons have a green
rectangle. If a person is correctly detected, a particle filter is initialised (purple rectangles, seen in the
upper right). The green rectangles represent the state of each particle filter. In the upper left, the trajectory
is plotted in a birds eye view. The 3D points of the actual camera view are also plotted.

(a) Set 11 (b) Set 12

Figure 4.24: Qualitative tracking analysis. The pre-detection is presented in the lower right of each set. All
detected areas are frames with a red rectangle. In the lower right, the verified persons have a green
rectangle. If a person is correctly detected, a particle filter is initialised (purple rectangles, seen in the
upper right). The green rectangles represent the state of each particle filter. In the upper left, the trajectory
is plotted in a birds eye view. The 3D points of the actual camera view are also plotted.

The second Fig. (4.23) shows two parts of the same scene. This scene represents twofold
important actions. In the left image, two persons walk in different directions, while the
robot is moving forward. Each track from far to near or from near to far is correctly
created. The second image shows two tracks where one person occluded the other,
but both tracks are accurately revealed. This shows the system’s capability of tracking
persons even under occlusions.
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Fig. (4.24) shows the detection and tracking of a short sequence, where the robot rotates
itself and the person is moving directly in front of the robot. Finally, the image of set
12 shows the detection and tracking of several persons walking side by side. In this
sequence the two persons on the left first walked directly in contact far from the robot.
This leads to only one detection of a present human, because of the noisy depth in
the far distance and the connection of both persons. At the moment, where one person
walked a bit in front of the other, the second track is started as both persons are detected
independent from each other.

The following images show the trajectories of the persons compared to the ground truth
labelled trajectories. In each figure the current relative distance from robot to person
is denoted on the y-axis, while the relative difference in lateral position corresponds to
the x-axis. The different colours equate to the different id’s, while the red colour always
represents the ground truth. Comparing the calculated trajectories to the ground truth,
they show very similar characteristics (cf.Fig. (4.25)).

Fig. (4.25) presents the trajectory results from set 1, 2, 3, 6, 11 & 12. In set 1 a person
is walking in front of the robot with increasing distance (blue). Above 10 meter the
tracking system shortly removes the hypothesis due to missing measurements. At the
moment the person returns into the sensor range it is again tracked, but with a new id
(green). The track very well fits the ground truth. In set 2, the robot moves and rotates,
but all persons are correctly tracked. Other examples are given with set 3,6,11 & 12.
Even during occlusion the tracking performs very well (cf.set 6). In set 12 all but one
person are tracked over the whole pathway (in cyan). The detection and tracking fails
partially, because of the pre-detection.

The resulting world trajectories are also shown in an example in Fig. (4.26). It shows
only trajectories with a length of at least 30 frames or two seconds in order to remove all
false positives. The robot trajectory is shown in dashed red with blue arrows denoting
the viewing direction. The different persons are shown in different colours representing
their Id’s. All trajectories are complete, even during occlusions and show the full paths
of the persons.

The qualitative analysis reveals that the system performs very well in detecting and
tracking persons from a mobile platform. The persons are fast detected and stable
tracked in nearly all cases. Even if a person overtakes the robot and changes rapidly
his/her appearance and size due to the visibility of the body the system performs
successfully. Anyway, a few errors are related to false positives, which pass the classifier
without being a real person. However, all false detections only persist a short period of
time, which makes it easy to filter them out afterwards. In two cases persons are only
partially tracked, because the detection fails. This is related to the pre-detection, which
is based on the geometrical dimensions of the objects. Here, one person pushes himself
on the wall in order to make room for the robot or other persons. Thus, the person fuses
with the wall for the eye of the pre-detection (see Fig. (4.27)). In the most right image,
the resulting ids are marked in terms of colour. The person and a part of the wall are
merged as one object (shown in green).

Summing up, the detection and tracking is visually very stable with a few false detec-
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Figure 4.25: Trajectory set 1, 2, 3, 6, 11 & 12. The ground truth is denoted in red, the persons in different
colours. Each colour represents a different ID. In the upper right, the ID change is due to the restriction of
the sensor, because the person is shortly further away than 10 meter. In the upper left image, 5 persons are
correctly tracked. In set 3 and 6 are all persons correctly tracked even during occlusions. In set 11 and 12
are small errors visible and in set 12 is one person only partially tracked (cyan), because the person walks
in contact with the wall, which hinders a pre-detection by the system. In general, most persons are reliably
tracked.

tions and some small errors. The detailed analysis of the reliability of the tracks and the
correct number of false detections is fulfilled in the subsequent section.
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Figure 4.26: World Trajectories set 6. The pathway of the robot is shown in dashed red, with blue arrows
denoting the viewing direction of the robot. The persons are shown in different colours, where each colour
represents a different Id.

(a) Colour image (b) u-disparity (c) detected id’s in colour

Figure 4.27: Detection error. The person walks in touch with the neighbouring wall, which leads to a miss
in the pre-detection due to the wrong geometrical dimensions. (a) Colour image of the person at the wall
(b) U-disparity image of the same scene (c) The detected id’s in colour. The person is coloured green. The
wrong assignment leads to a too big elongation in depth, which strongly reduces the possibility of being a
person.

4.7.3 Quantitative Analysis of the Proposed System Approach

The quantitative analysis provides detailed information about the measurable parts
of the system. Here, the trajectories have to be compared to the ground truth with
respect to the distance error and variance. Additionally, the false positives (FP), the true
positives (TP) and the missed humans (false negatives, FN) are enumerated in order
to calculate the detection rate in the presence of false positives. The detection rate is
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calculated as

Detection rate =
TP

TP + FN
(4.30)

A detection or track is voted as TP, if a hypothesis is created and kept. Additionally,
the distance of the track to the ground truth (distance in all dimensions x, y, z) has to
be in an acceptable range. Here, the maximum distance is 1 meter to be robust against
inaccuracies in the ground truth (the current state of the art system [61] also uses 1
meter). If a hypothesis is farther away, it is rated as FN and FP as well. All detections
and tracks, which are not associated to a ground truth track are counted as FP. In the
analyses I do not account for identity switches, which occur if a person is occluded
longer than a predefined period. Here, I compare the ground truth to all tracking
segments belonging to the particular person. This is applicable, as an identification of
persons not observed for a specific amount of time is not implemented in the system.

The following Tab. (4.1) reveals the detection rate of the system for each data set. The
detection rate is between 76% and 99.68% and at 90% in average, which is a very good
result considering the difficult sequences and the presence of ego-motion. The false
positive rate, which is at 0.0733 FP per frame in average, is in a definitely acceptable scale
for all data sets. Like mentioned in Sec. (4.7.1), the spot lights at the ceiling produce a
light pattern, which looks very similar to the human in the eye of the classification and
which is responsible for most false detections. Some false detections also occur due to
the near-detector, which is trained with only a few training examples (35 positive and
70 negative examples).

Dataset Frames FP TP FN
Detection

rate
1 700 0,068 708 114 0.8613
2 1200 0,122 879 33 0.9638
3 360 0 215 6 0.9729
4 1257 0,103 949 74 0.9728
5 1700 0,161 2112 107 0.9518
6 2140 0,061 1260 4 0.9968
7 1400 0,026 999 56 0.9469
8 1280 0,016 741 222 0.7695
9 1350 0,112 557 102 0.8452
10 1320 0,055 624 21 0.9674
11 700 0,021 745 155 0.8278
12 625 0,134 506 155 0.7655
avg 1170 0,073 858 87 0.9035

Table 4.1: Detection rate for each data set. For each data set the number of frames, the false positives per
frame (FP), true positives (TP) and false negatives (FN) are enumerated in order to calculate the detection
rate for each specific data set. The detection rate is very good and the false positive rate is definitely
acceptable.
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Next to the detection rate, the distance of the tracked human to the labelled ground
truth is of main interest. The following plot demonstrates the error for each person in
each frame (all underlying data can be found in the appendix B).
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Figure 4.28: Mean error and standard deviation for each person. For each set and each person therein the mean
error and standard deviation are shown. The error calculates through the distance from the measurement
in each dimension to the ground truth.

The shown mean error and standard deviation for each single person in Fig. (4.28) are
calculated through the squared distance of each single dimension error.

Mean =
√

x2
m + y2

m + z2
m (4.31)

Std =
√

x2
std + y2

std + z2
std (4.32)

In average the mean error is at 0.04 meter in x-dimension (xm), 0.07 meter in y-dimension
(ym) and 0.07 meter in z-dimension (zm). The standard deviation is also very low. It is
at 0.04 meter in x (xstd), 0.05 meter in y (ystd) and 0.09 meter in z (zstd) (cf.Chapter (B)).
The combined mean error is averaged at about 0.1 meter and the standard deviation
at 0.11 meter. Only five of 33 persons have a slightly bigger mean error and standard
deviation due to failures in their tracking. Generally, the failures origin from attractions
of similar objects. But, the error also results from objects far away, because the sensor
noise rises with increasing distance. The following plot (Fig. (4.29)) shows the difference
of the tracked object position compared to the ground truth in relation to the distance
of the person to the robot. In the beginning at frame 90 to frame 100 is a small error
visible, where the tracking moved slightly into another object. From frame 500 to 700
the person is far away from the robot (> 5 meter), which results in a noisy measurement.
The imprecise measurement itself produces a light noise in the data, visible as little
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jumps (see Z-error in Fig. (4.29)). This error curves match the trajectory presented in
Sec. (4.7.2). There, the tracked object positions vary more from the ground truth for a
farther distance. Although the error is higher for humans farther away the outcome is
still precise enough to keep track of the persons.
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Figure 4.29: Distance error per frame dependent on the distance, Set 2 Person 1. The x-dimension represents the
accordant frames, while the y-dimension relates to the relative distance to the robot. In the upper plot the
distance of the person to the robot is shown. In the lower plots the colours represent the x (blue, lateral
distance), y (green, height distance) and z (red, distance) distance errors. Between frame 500 and 700 the
person is far away (>5 meter) which results in a bigger error noise for the depth component (z, red).

Unfortunately, the system proposal is not directly comparable to the current state of
the art system from Ess, Leibe et al. [61], but it shows similar results. The quantitative
results of their current system are presented in [61]. The tracking rate of persons is at
73 % (shown for one sequence with 999 frames length) with 1 false positive per image.
The rate slightly increases, if the detection range is restricted to 15 meter. The authors
report detection improvements through a ground plane assumption and by using better
stereo data. Their computational efficiency is reported as not fully real-time capable. In
contrast, my system proposal reaches 74 % to 99 % on a different data set with strong
ego motion and operates in real-time. Like introduced, the results arise from different
data under different scene conditions and hence, it only corroborates the belief that
my system proposal achieves comparable results to the current state of the art system,
but with faster computation time. Additionally, they assume that the exit and enter
zones are always at the image borders, which is not needed for my system proposal.
Here, people could enter the scene through doors in the middle of the scene, which
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requires a stronger hypotheses management. As a last enhancement of my system the
possibility to detect humans at a very short as well as far distance to the robot should
be mentioned. Summing up, the tracking is very precise for most of the persons in all
sets. Some persons show partially a bigger error due to distractors in the background
or failed tracks. But in general, the difference to the ground truth is very low and the
tracking is very reliable. The false positive rate is mostly below one false detection every
6th frame. In order to analyse also each part individually, the detection and tracking are
each inspected in the following.

4.7.4 Enhancement through Pre-Detection

The pre-detection step has been included in order to speed up the overall system
performance. A time analysis of each module revealed that the detection and validation
step consumes most of the system time (see Tab. (4.2)) This meets the declarations made
in literature [81].

Module Time (in ~ms)
Detection 195
Hypo. management 2
Tracking 23

Table 4.2: System time without pre-detection. The table presents the time (in ~ms) per module. The detection
is without pre-detection and only based on a HoG-classifier.

The presented system uses two classifiers in order to detect humans far away and
humans only partially seen in front of the robot. A detailed time analysis of the far
detection algorithm is presented in Tab. (4.3) and of the near detection algorithm in
Tab. (4.4) (all times are an average over a complete sequence).

Window
shift

Window
scaling

time (in ~ms) detection rate false positives

4 1,05 1089 0.83 % 228
8 1,05 369 0.625 % 144
8 1,1 195 0.65 % 54
8 1,2 122 0.52 % 18

Table 4.3: Far-HoG detection results. The detection results are dependent on different parameters. To get a
reliable detection the window shift and scaling have to search most of the image. If the parameters are too
broad, the detection misses many hypotheses.

All runs are performed on the same machine (Pentium IV, dual core 2.8 Ghz). The
window shift corresponds to the difference in pixels, which is added to each new
detection window. After a complete run of the detection window over the image, the
window is scaled by the window scaling parameter. Then the detection is started again
over the whole image with the new scaled window. This process iterates until the
window scales greater than the original image. In Tab. (4.3) and Tab. (4.4) it is shown
that the detection can be done fast to some degree, but at the cost of fewer detections.
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Window
shift

Window
scaling

time (in ~ms) detection rate false positives

4 1,10 709 0.76 % 8235
8 1,05 410 0.74 % 6562
8 1,10 207 0.74 % 5760

Table 4.4: Near-HoG detection results. The detection results are dependent on different parameters. To get a
reliable detection the window shift and scaling have to search most of the image. The detector is not well
trained, which leads to a very high false positive detection rate and a good detection rate.

If the parameters are chosen best for the detection, the overall time is infeasible for the
detection on a mobile robot. It is getting even worse, if more than one classifier is used
like proposed in this thesis.

To speed up the detection process a pre-detection step is proposed. Thereby, the pre-
detection has to be fast and reliable in order to detect all present humans. The reliability
is shown in the presented results above (cf.Sec. (4.7.3)) and in Tab. (4.5). If the person
resides in the range of the sensor and does not merge with other objects, all persons
in each frame are correctly detected. The false positive rate originates from the near
detector, which sometimes produces a false validation. But, the focus of this analysis
relies on the speed-up of the detection process.

Pre-
detection (in

~ms)

HoG on
window (in

~ms)

Overall time
(in ~ms)

detection
rate

false
positives

22 25 47 0.92 % 66

Table 4.5: Pre-detection + HoG verification. The overall detection time results from the pre-detection and the
HoG based verification on the selected windows. The complete detection time is much faster than the
original sliding window based detection (cf.Tab. (4.3)). Additionally, the detection rate is much higher due
to the information from the pre-detection.

To compare the speed of the usual sliding window detector with the pre-detection based
version, the time of the complete detection process has to be considered. The time is
composed of the time of the pre-detection and the subsequent window verification. Both
times are given in Tab. (4.5) (all times are an average over a complete sequence).

The results show that the pre-detection speeds-up the complete detection process with-
out a loss of accuracy. Rather, if the window is verified the pre-detection enhances the
subsequent detection rate (If a window is verified, all subsequent pre-detections without
verification are counted as detection for the same object) by reducing the false-positive
rate and increasing the true-positive rate. The detection rate rises up to 92% for the
analysed sequence.

4.7.5 Analysis of the Proposed Tracking Algorithm

In this section the design of the tracker is questioned. The proposal of a combined 2D
and 3D approach is thought to be more stable and robust against occlusions or simple
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3D point associations. In order to show the enhancement of additional 3D information,
the following sequence is taken as an example (Fig. (4.30)). The figure shows three
images, with each two trajectories. The left image corresponds to the ground truth (GT)
of each person’s movement. The image in the middle shows pure 2D tracking and
the right image my combination of 2D and 3D tracking. The blue line in each image
corresponds to the first person. The green line describes the second person coming from
the right. In the red circle the occlusion takes place. It is clearly seen that the pure 2D
tracker attaches to the wrong person and all subsequent tracking goes wrong. In the
right image the tracking correctly follows the right persons. Even during the occlusion
the additional 3D data avoids a wrong association and leads to a successful tracking
over the whole sequence.
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Figure 4.30: Enhancement through 3D information. The left image shows the ground truth trajectories of two
persons (blue & green). In the sequence an occlusion takes place and the pure 2D tracking fails which is
shown in the middle. In the right, the additional 3D information correctly associates each track to the right
person.

This example shows the importance of additional 3D data, which reduces errors due
to wrong assignments by comparing also the 3D position of each hypothesis and the
known tracks. The subsequent section gives a further comparison of the proposed
tracking algorithm compared to other tracking mechanisms, which also shows the good
quality of the proposed tracking algorithm.

4.7.6 Comparison with State-Of-The-Art Tracking Algorithms

In the following the tracking part is compared to actual tracking algorithms published in
literature in order to show the good design and capabilities of the tracker. Unfortunately,
it is hard to find public available datasets including 2D image data as well as 3D data
with additional tracking results from an actual tracking system. Hence, the tracker is
compared without the 3D component to another 2D tracking system. The datasets and
the tracking results from the reference system are public available at the homepage of
the university of Bonn 3 (see Fig. (4.31)).

The authors present an adaptive real-time particle filter with an ensemble classifier
based observation model [120]. Generally, they use a condensation particle filter with a

3http://www.iai.uni-bonn.de/ kleind/tracking/
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Fig. 2. The test sequences A. - I. . First row: each first frame with the region that was given the algorithms for initialization (green rectangles). Second
row: an example frame with manually marked ground truth used for evaluation. See also the accompanying video.
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Fig. 3. Results on tracking the target object with four different observation models on the test sequences A. - I. . Plotted against the y-axis is the fraction
of the intersection to the union between the rectangular area of the manually marked ground truth and the estimates of the systems. For better comparison
to other group’s results one can consider a score above 1/3 as correct match and below as miss.

classifier are a little bit more precise in following the
variation of the size of the person in the images.

E. Partial Occlusion (Person 2)

The person is stationary, but the camera moves so that the
person gets half occluded and visible again. The noticeable
valley in the graph is caused by this partial occlusion of
the person. We marked only the visible parts of the person
as ground truth, while all approaches tend to estimate the
person’s position and size behind the occluding object.

F. Full Occlusion of a Non-rigid Object (Person 3)

A person walks along a corridor and becomes fully
occluded by a pillar three times. In these situations it is
important to stop adapting the models if the object is not
visible. Fortunately, it turned out that a simple confidence
threshold on the classifier response is sufficient to handle
such situations for our adaptive approaches (cf. Fig. 4). Note
that the short oscillation in Fig. 4 between the first two full

occlusions is caused by another person crossing. Interest-
ingly, our non-adaptive approach is also very precise and
superior to color histogram and component-based tracking.
Likely this is because the person is seen from the side during
the whole sequence and his upper part of the body appears
constantly the same. The regular spike pattern shown by all
approaches is because the ground truth width pulsates with
every step of the person. The per particle adaptive classifier
again is best to imitate this transformations.

G. Appreciable Viewpoint Changes (Rubik’s Cube)

The camera pans around a Rubik’s Cube from left to right
and then flies over it. This causes heavy changes in shape
and color of the object. Before the camera starts to move,
adaptive and non-adaptive Haar-like center-surround feature
based classifiers perform equally well and are superior to
the other approaches. While our non-adaptive classifier starts
to fail when viewpoint changes become larger, the adapting
ones retain a good performance. Thanks to the rather uniform
background, color histogram and component-based tracking
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Figure 4.31: Bonn data set. The data set includes different scene conditions. They inherit a moving
camera, object scaling, clutter, partial and full occlusions, viewpoint changes and rapid changing lightning
conditions. (Images found in [120])

first order autoregressive motion model. The state x is described by a vector

x = (x, y, w, h, vx, vy, C)T (4.33)

with x, y position of a rectangle with width and height w, h, vx, vy the velocity of the
rectangle and C as the particle’s object classifier. The object classifier decides between
background and foreground. The particles are weighted accordant to a continuous
exponential function of a target rectangle (x, y, w, h). The observation model is based on
a rectangular model, which is divided into four sub-rectangles. In each sub-rectangle
Gentle AdaBoost is used to pick out the best features based on a weighted set of training
examples. As features the authors propose simple Haar-like centre-surround features
varying in size, relative position and RGB colour channels (see Fig. (4.32)).

Figure 4.32: Observation model build of an ensemble of weak-classifiers. The
object rectangle is divided into four sub regions, in which the best
features are used for tracking. (Image found in [120])

lower confidence. The influence of exponential weighting is
adjusted by λ. We chose λ = 20 as suggested in [11].

The observation model is the most important component
since it assesses which hypotheses should be followed and
which ones will die out. We will now explain, how the
classifier-based model operates and how it is adapted over
time.

III. THE ENSEMBLE CLASSIFIER BASED OBSERVATION

MODEL

Ensemble techniques like boosting have become popular
for classification during the last years, because it was shown
that such classifiers can be precise and operate very fast
[12][13]. To adapt these techniques to real-time tracking they
must be optimized for very short learning times as well.

A. The Initial Classifier

Gentle AdaBoost [14] is used to build a strong classifier
consisting of a weighted linear combination of n weak
classifiers. In our case, weak classifiers are simple threshold
classifiers on Haar-like center-surround features varying in
size, relative position and RGB color channels. Because the
representation of the tracked object is a rectangle flexible
in position, size and aspect ratio, we define features relative
to an object coordinate system that is transformed to image
coordinates for feature computation as illustrated in Fig. 1.
These kind of features based on differences of average inten-
sities in upright rectangular regions can be computed in con-
stant time using integral images [13]. Results from queries
located between image pixels are interpolated bilinearly. We
restrict the number of possible features to choose from to a
pool of 539 in order to speed up the learning process. In our
case, AdaBoost iteratively picks out the n = 32 best features
based on a weighted set of training examples. For the initial
classifier, the only positive example is given by the user and
the negative examples are then randomly sampled from the
remainder of the first frame. This way the observation model
incorporates target and background information.

We introduce a new spatial constraint to the normal
boosting algorithm and force AdaBoost to choose a spatially
distributed set of weak classifiers. Therefore, we enforce
that each quarter of the object window (top left, top right,
bottom left, bottom right) is covered by one quarter of the
weak classifiers chosen by the algorithm. To distribute the
weak classifiers in this way during the iterative selection
process, we reduce the pool of candidate classifiers to the
ones centered in the quarters that have not yet reached their
limit of n

4 weak classifiers. Although this constraint can
prevent AdaBoost from selecting the optimal combination
of weak classifiers for a given training set, we think that this
spatial spreading strengthens the classifiers robustness and
precision. For the same reason we prevent AdaBoost from
choosing the same feature twice within one classifier.

B. Adapting the Observation Model

To adapt the observation model of a particle, we re-train
its classifier from frame t− 1 to t based on updated training

Fig. 1. The observation model is an ensemble of boosted weak classifiers
on center-surround features.

sets. Because it would be inefficient to store the image data
of all past frames and always calculate the feature results
again when needed, we represent training examples as the
set of all its feature results directly. Note that this is only
possible because our pool of features is rather small. After
the first frame particles start to evolve differently. However,
at every step t in time the current particles will have some
common ancestors due to resampling. Like in a pedigree,
the further one looks back in time, the more of the current
particles share common ancestors. We utilize this fact by
sharing the past training data of akin particles if possible.

From the current frame, we treat the estimate of the
system or respectively the state of the particle as new positive
training example and the remainder of the frame as source
for new negative examples. Every observation model has a
maximum capacity for positive and negative examples (we
used posmax = 20 and negmax = 100). Until posmax

positive examples are obtained, we simply add the new
ones. Thereafter, we always discard the positive example,
the observation model from t − 1 is most certain about,
and keep all others. This approach has two positive effects:
first, we introduce new object appearances to the classifier
fast, this way. Second, the diversity of training examples
will be increased for particles, whose target prediction is
largely wrong. A rather inconsistent and diverse training set
will produce less confident classifiers. This way, particles
with the most self-similar history of positive examples will
receive a higher rating from their classifiers and will have
more successors after resampling.

As a special case, we always keep the positive example
from the first frame given by the user in order to avoid the
template drift problem [15][10]. Additionally, we always ini-
tialize this given first positive example with a higher weight
when (re-)learning the classifier. The negative examples are
treated differently. We replace the oldest "negmax

50 # ones
with randomly generated strong negative examples from the
current background. This way the classifier is adapted to
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The observation model is updated by each new frame (if the confidence is above a
threshold), where the detected state and the background are additionally taken as
positive and negative learning examples. Finally, the classifier is retrained using the
updated set of examples.

The outcome of their algorithm is compared to hand-labelled ground truth data by
calculating the overlap between both rectangles. If the overlap is above 33.33% the
rectangle is marked as hit. The following Tab. (4.6) compares the outcome of their
algorithm with the best parameter set to the proposed tracking algorithm in this chapter.
Additionally, the tracker are compared to another histogram based tracker and a multi-
component tracker (cf.[120]). It is important to emphasize that my proposed tracker is
trimmed to fit the pure 2D data.
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Seq
]

Frames
Histogram

Mult.-
Comp.

best H.-cs (in %)
My approach (in

%)
A 601 70.73 63.24 65.06 81.56
B 628 67.02 50.73 79.01 94.92
C 403 47.58 63.71 91.33 23.70
D 946 63.35 76.39 75.21 99.79
E 304 78.21 77.42 86.32 99.67
F 452 44.43 40.02 68.32 81.72
G 715 46.27 49.62 77.30 91.77
H 411 62.19 86.50 95.79 99.76
I 1016 68.94 47.63 75.02 81.69
avg. 60.97 61.70 79.26 83.84

Table 4.6: Comparison of the proposed tracking algorithm with a tracker presented in [120]. The sequences are
taken from the internet in order to compare the tracking results (green > red). In one case (seq. C) the
camera zooms rapidly out, which can not be handled by the proposed tracker alone. As the proposed
tracker is scaled through the complete system approach, the tracking does not perform very well in this
case. In all other sequences my proposed tracking algorithm performs better than the best tracker in [120].

Comparing the results, my proposed algorithm performs better in 8 of 9 sequences.
In the case of scaling (seq. C) my tracker does not perform very well. This is evident,
because the tracker itself does not contain any scaling parameters. Instead, the scaling is
achieved through the complete system approach. In all other sequences (moving camera,
clutter, partial and full occlusions, viewpoint changes and rapid changing lightning
conditions) the proposed particle filter works superior. Using 3D data would again
improve the outcome of the tracker (cf.Sec. (4.7.5)).

4.7.7 Comparison with a laser based Person Tracking

The robot Biron is also equipped with a laser range finder. A previous attempt to
detect and track humans in the scene utilised its provided scan line in order to find legs.
Assigning ids to the detections it is possible to track leg pairs as human entities. This
method is widely used in literature and provides meaningful data. But, the confident
detection of leg pairs is only possible for humans not farther away than 3-5 meter.
Additionally, the detection is error-prone due to table legs or other similar objects. The
following plots (Fig. (4.33)) should demonstrate the enhancement of using 3D vision to
detect and track humans.

In the left image the relative trajectories to the robot are plotted and in the right image
the same trajectories are shown in world coordinates. Both sensors are not calibrated to
fit the same coordination system, but the sensors are physically aligned to some degree.
Here, this suffices as the analysis should only reveal the strengths of both systems. If
both sensors are used in a combined system the sensors have to be calibrated.

In both images it is clearly visible that the laser based person tracking is not able to track
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(a) relative trajectories (b) world trajectories

Figure 4.33: Comparison with laser based person tracking. Both images show the trajectory of the person in
data set 2. In the left image the trajectories are plotted relative to the robot. In blue the ground truth
trajectory of the person gained from the visual data is presented. In green the result of the proposed
tracking in this thesis is denoted. In red the revealed trajectories of the laser tracking are shown. In the
right image the trajectories are plotted in world coordinates. The robot trajectory is plotted in dotted blue.
In both images it is clearly visible that the laser based person tracking is not able to track the person in a
further distance.

the human up to the same distance like the vision based tracking. This fact origins from
the laser resolution, which is not appropriate for detecting legs in further distances. The
detection and tracking through the laser is even worse, if the object moves towards the
robot. This is best visible in the world coordinates, where the person is only shortly
tracked (short red line at -11 to -12 meter in Z-distance). The laser based system has
its strength in the viewing angle. The laser has an opening range of 180 degrees which
allows to detect and track already next to the robot. The vision based system shows its
power in further distances and better accuracy. The better accuracy is achieved through
the appearance verification using image features, which provide a more details for the
human detection.
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4.7.8 Parameter Analysis

For a technical system it is very important to provide generality and easy usage in order
to get a solution for different problems and for different scenarios. Often a solution is
presented, which is either very special for one problem or very difficult to handle due
to its amount of parameters. Here, a complete tracking system is presented, which has
to deal with complex requirements like ego motion and difficult scenes. Therefore, it is
important to make a declaration of all important parameters to show the manageability
of the system. Additionally, I state the steps needed to adapt the system to another kind
of tracking problem, which indicates the generality of the system.

The parameters of the system are depicted in dependence on the module, which imple-
ments it (see Tab. (4.7)). The total number of parameters in each module is declared in
the first column. In the second and third column the numbers are a subset of the total
amount. The second column is the most important one, as it offers the number of critical
parameters in each module. Critical means that the value has to be chosen correctly or
adapted to each new application area. The last column depicts, if the parameters are
calculated by the system. Here, all 12 data sets are evaluated with the same set of
parameters.

Module parameters critical automatic
Floor removal 2 2 2
Ceiling removal 2 2 2
Pre-Detection 7 4 -
Classification 1 1 1
Hypotheses Management 4 1 -
Tracking 8 5 -

Table 4.7: System parameters.

The floor and ceiling removal need each 2 parameters (height, gradient), which are
both important to correctly remove the floor and ceiling. Both parameters are estimated
automatically from the v-disparity image (cf.Sec. (4.4)). The pre-detection implements 7
parameters, which are the typical width, height and depth of a searched object and the
number of pixels to search for the distance adaptive object connector. One parameter
describes the minimum probability for an object to be a human. Thereby, the width,
height, depth and the minimum probability are critical as they have to represent the
object dimensions and probability correctly. The classification has usually at least two
critical parameters (Window-shift, window-scaling), which arrange the window search
for the whole image. Here, the pre-detection delivers a window, which removes the
necessity of both parameters. Hence, the classification has only one parameter, which
controls the change of the classifier (Near and far distance classifier).The accordant pa-
rameter is chosen automatically dependent on the height of the robot and the data of the
floor (cf.Sec. (4.4.2)). The hypothesis management has got 4 parameters, which care for
the assembly of all incoming information. The first three parameters are the weighting
factors for each external module (pre-detection, classification, tracking), which controls
the importance of each new information. A hypothesis from e.g. the classification has
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more weight than a hypothesis from the pre-detection. The only critical parameter
relates to the maximum distance, where a hypothesis can be merged with existing
information. Above this distance, the togetherness is implausible. The tracking is
defined by eight parameters, which are the number of particles, the mean variation
in both hypothesis directions and the velocity and its direction, the kernel width for the
distance weighting, the number of bins for the colour histogram and the update rate for
the histogram over time. Here, it is difficult to decide, which parameters are critical.
The number of particles has to be in a specific area in order to work correctly. The
same is valid for the kernel width, but both parameters are not really critical because of
their variability. The mean variations in both hypothesis directions and for the velocity
are denoted critical, because a too short variation could cause a loss of the hypothesis
through rapid movement, while a too broad variation looses preciseness and attracts
other similar objects The number of bins for the colour histogram are not definitively
critical, because the colour is merged with the distance information and it should only
preserve the filter from migrating to a false hypothesis. The update rate itself is denoted
critical, because it can ensure a more stable tracking, if the particle filter slightly adapts
the current hypothesis.

Summing up, the system has 24 parameters, whereof 15 parameters can be seen as
important or critical. 5 of these parameters are estimated by the system. In general, all
parameters have to be chosen once and afterwards, they are correct for the same kind
of problem. This is shown in the results, as all experiments are conducted with the
same set of parameters. Utilising the system in another kind of problem is possible. If
the data origins from another type of sensor, the sensor module has to be exchanged.
Additionally, it could be needed to adapt the object size in the pre-detection to the
desired object size. If other objects than humans are of interest the validation through
HoG has to be retrained. If very fast or very slow objects are in the focus, the particle
distribution of the tracking module has to be adapted.

4.8 Conclusion

In this chapter a complete system for detecting and tracking humans on a mobile robot
platform is presented. The tracking of all accordant humans in the scene achieves
successfully the second category of situation awareness. Utilising this information the
robot has got a knowledge about dynamic objects in the scene. This information is
important for the further planing of the robot.

The presented system approach deals with the requirements of a moving robot by
running in real-time and managing the ego-motion of the robot through a particle filter.
In order to achieve real-time, a pre-detection step is introduced. The pre-detection is
based on the u-v-disparity, which allows to search easily for geometrical objects and
to reduce the search space by subtracting the floor and ceiling. The pre-detection is
again fasten through an undirected graph, which allows the calculation of connected
components in short time. The reduced search set is forwarded to a verification step,
which verifies the detection as a precaution. Here, I introduce a distance adaptive



verification, which determines the classifier to choose. The decision is based on the
set-up of the robot and the distance from the camera to the observer. Because the robot
has to interact with the human in the near space and the far space as well, two classifiers
are used. The upper body classifier is chosen, if the human is near and only partially
visible. The complete human body verification is used, if the human is fully visible from
a specific distance. The verification is based on the well performing Histograms of oriented
Gradients approach. The chosen trained support vector machine decides, whether a
human is present in the sub-window or if it belongs to the background. All verified
detections are forwarded to the self-developed hypotheses management, which cares
for the creation and deletion of hypotheses. Additionally, the hypotheses management
associates new information with known hypotheses in order to incorporate each new
measurement in an efficient way. Each hypothesis is additionally tracked by an adaptive
particle filter with multidimensional observation model. The simultaneously used two
and three dimensional data provide a very efficient tracking system, which is able to
handle occlusions and fast movements. The results show that the system is working
very well in the area of human detection and tracking. Each module on its own delivers
superior results. Additionally, all modules are enhanced to provide their information
for the complete system in order to consolidate all available information. Some small
errors sill remain, if objects are not revealed through the pre-detection. Here, further
improvements are going to be implemented like a wall detection or a combination with
a mobile version of the articulated scene model.

Summing up, the presented chapter shows how to achieve the second category of
situation awareness on a mobile robot by realising a complete human detection and
tracking system. Fast detection and tracking modules work in conjunction with a
hypotheses management directly on a mobile robot in order to provide all necessary
steps for a situation awareness.



5 Attention Focus for Situation Awareness

The third category of situation awareness answers the qualification to direct the attention
focus on a specific object (see Fig. (5.1)). By directing the focus on an area or a point the
underlying data can be examined more sophisticated. This is an important feature for
a mobile robot, because the robot has to gather more information about specific objects
of interest and to regard other unimportant information. Additionally, the robot needs
to focus on special interaction partners in order to keep the conversation up, even in
the presence of other humans. Directing the attention focus also supports recovering a
human or an object which have been shortly out of view. All these abilities support a
mobile robot in the interaction with humans.

Figure 5.1: Attention on a human in the scene. (Left) Original image (middle) Attention map (right) Focus of
attention using a human model

Directing the attention focus has a biologically origin, because each creature needs
the ability to focus on a desired object or location. This ability is the result of a
long evolutionary development of effectiveness in realisation, time and quality. One
prominent example for this ability is the human visual system. It is optimised to direct
the attention on a specific area in order to extract more detailed information out of
this region. The basic principle behind this causes from the information processing
bottleneck in the human brain [5]. The visual input provides too much information to
handle. The human employs a bottom-up attention, which isolates different salient spots
in the visual field due to their accentuation. Directing the attention focus on one spot
concentrates the processing on this area. The directing of the attention is called top-down
process or guided search.

It appears reasonable to use the biologically inspired ideas of the human visual system
as a way to gather visual information for situation awareness on a mobile robot. In fact,
during the recent years much work has been invested to copy the biological concepts
onto computer systems. But, directing the attention focus is still a challenging task for
mobile robots, because the human visual system cannot be copied one-to-one.

To realise an attention system on a mobile robot, the following research questions arise:

• How can the attention be directed on specific areas using a technical system?
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• What features are general and meaningful for diverse classes of objects?

• How could a specific object be taught in order to find it again in subsequent views?

• How can the attention on a human body be modelled?

In order to realise an attention system, the human capabilities should be transferred
to the technical system as far as possible. Like described above, the human has got a
general bottom-up awareness about his surrounding. Interesting areas pop out due to
their discriminative features. Otherwise, the top-down search looks for an object, which
differs in one or several specific features. The guided search theory, presented by Wolfe
[214], combines the bottom-up feature calculation with the top-down specific search
through an activation map. The activation map weights the bottom-up features related
to their importance in the top-down search. Hence, the bottom-up attention forms the
basis for the attention system, which is extended by the top-down approach to weight
the important features describing the searched object. Therefore, both parts have to be
implemented in a technical system in order to combine and weight features to a coherent
object.

The biologically bottom-up attention relies on simple features like colour, orientation,
spatial frequency, or movement, because these features respond to different visual re-
ceptors. They are physiological suggested, because simple features are processed in the
early stages of vision and are each encoded in a different area of the brain [222]. The
simple features are ideal to describe any type of object. Because an object is mostly
described by several features, the Feature Integration Theory (FIT) is consulted. It was
introduced by Treisman and Gelade in 1980 [201]. The theory states that all simple
features are processed in parallel. To combine the information for one object, a later
process is used to integrate the information from the different brain areas. Therefore,
the presented system uses simple features like colour, orientation and spatial frequency.
Motion is not used as the system is meant to run on a mobile platform, where single
object motions are difficult to calculate. The used features are integrated in a subsequent
step in order to form conspicuity maps, which represent the contribution of each feature
to a spatial area. Afterwards, all conspicuity maps are merged in a subsequent step to
form a saliency map. The saliency map denotes the most likely place or places for
the searched object. In this way, the biologically processing stages are adopted. Fur-
thermore, the presented system uses diverse biologically motivated feature weighting
strategies. The weighting strengthens the response of features, which separate most
informative the fore- from the background.

Usually, an object dependent detection or awareness system has to learn the specific
features of an object out of many examples. Boosting or histogram based approaches
e.g. learn the appearance out of labelled data [71] (cf.Sec. (2.2.2)). In a human-robot
interaction the human is often not previously known and there are only a few frames
where the person is present. Obviously, the learning progress for each person should
require online capability. Here, the target model for a human or an object is learned in
one frame.

The target model is dynamically adapted to reliably turn the focus on the specific object.
As mentioned above, for the robot the most interesting object is the human. In order
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to get an optimal focus on a specific interaction partner, the target model should be
most discriminative. Humans have some special characteristics. On the one hand
humans have a similar appearance through the body. Each human usually stands up-
right and has got a body and a head on top. On the other hand, the clothing is often
very characteristic. Hence, the clothing could turn the essential balance to differentiate
between several humans. These two characteristics are incorporated into this thesis. The
target model is designed by two rectangular regions, which represent the head and the
body. Both regions are joined in order to discriminate between the current interaction
partner and other humans. Additionally, the features should distinguish between the
object and the background. For this reason the current background information is also
considered.

Besides the realisation of the third category of situation awareness, the contribution of
this part lies in the combination of top-down situation awareness with a human body
model. The model approach strengthens the attention focus on the desired object.

For the evaluation of the system I focus on two scenarios: First a human guides a mobile
robot around and second a scenario where a robot has to learn about objects. The main
idea is to show that the system is able to handle arbitrary objects and that the learned
features accurately differ between the fore- and background, so that the main focus of
the robot remains nearly always on the searched object. Parts of the text and the results
in the following chapter have been previously published in [24] [134].

5.1 Attention Systems in Human-Robot-Interaction

For a mobile robot the human is the main object of interest. Humans are dynamic ob-
jects, which have to be detected in order to avoid collisions and to initiate conversations
with them. The usual way of detecting humans is to detect the legs by laser data [68]
(Sec. (2.1)), face detection [143] or window based classifiers (Sec. (2.2.2)). The legs are
only visible in front or back view and the face is only visible, if the human is facing the
robot. This complicates the detection using laser data or face detection a lot. As shown
in both previous chapters, the detection of the full body shows promising results. But,
the robot also has to differ between the persons, even if they get out of sight for a
longer moment. It happens quite a large number of times that the interaction partner
shortly gets out of the view of the robot, but the interaction is still not ended. Here, the
detection and tracking systems reach their border. Thus, it is proposed to remember the
interaction partner using a top-down attention system, which identifies the person even
after longer absence. Additionally, the attention system could be used to focus on many
other objects, which is shown in the results.

The most popular approach to design a computational attention system was given by
Laurent Itti [106]. He used the feature integration theory of Treisman and Gelade [201]
in combination with several simple features in a bottom-up attention framework. The
system showed promising results, which yield to many constitutive approaches.

The first attention system on a robot was presented by Breazeal and Scassellati. They
showed an attention system for the robot Kismet, which is used in a human-robot
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interaction scenario [38]. The system is based on the proposal of Itti. They use face,
colour and motion to detect the human in front of the robot and to maintain a social
interaction with this person. The robot directs his focus by turning his head in the
direction of the human.

Many stationary bottom-up attention systems were developed over the years, where
mostly objects are of special interest [193]. Y. Nagai presented an interesting system
that uses attention to learn an action taught by a human [154]. The idea is to teach
robots like in a parent-child interaction. The used basic features vary in the different
attention systems in literature. In some cases motion is the most important feature [220].
In other areas even multi-modal cues like sound and vision are combined to reproduce
the human attention framework [168] [167].

Contrary to bottom-up saliency top-down attention deals with information about the
object and/or the background to influence a guided search for the desired object. There
are several approaches, which propose an attention control to direct the focus on special
objects [157] [73]. In [157] they use a model of attention guidance based on global scene
configuration. This means that the knowledge about the context of the scene has to be
incorporated. Studies in visual cognition showed that humans search e.g. on a table for
objects or at the ground plane for other humans. The authors used that knowledge by
learning the typical appearance areas of specific objects.
An extension of the system VOCUS (Visual Object detection with a CompUtational
attention System), developed from Simone Frintrop [73], incorporates the background
into the calculation of the foreground features. Thus, the features are weighted ac-
cording to their appearance in the fore- and background. Frintrop uses the top-down
attention in combination with a simple motion model, which assumes the object in
a close neighbourhood. In this way the system operates like a tracker for a newly
presented object. The suggestion of [166] is similar to the one from Frintrop but with
another weighting strategy. Here, the weights are learned with a Neural network
in order to learn typical feature weightings in advance. Similar to these approaches
[155] uses bottom-up and top-down attention in an integrated system with background
incorporation and calculates optimum feature weights through a signal-to-noise ratio
maximisation. All these systems are based mainly on the bottom-up feature calculation
from Itti [106][107], which is based on the theory of Koch and Ullman [121], and a top-
down weighting inspired by the guided search theory of Wolfe [214]. The learning
of an attention vector and the calculation of an object-directed attention map show
promising results. But, fast learning and real-time possibility is crucial for a human-
robot interaction and has to be kept in mind.

The use of 3D data is not common in the area of visual attention. To my knowledge the
only work in literature is from Frintrop and Nuechter et al. [75]. They propose to use
3D data from a Laserscanner and intensity data from reflectance as pre-detection for an
AdaBoost Haar-like object detector. They show some results that the attention can be
directed to specific objects without being attracted from shadows or pictures from the
same object. In this thesis depth data is not used as a direct feature, because the depth
itself does not describe an object. Edges in the depth image could describe the object,
like in [75], but the data of long corridors and halls does not provide stable depth data
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for this case (see Fig. (4.21(c))). Holes in the depth data produce unpredictable depth
edges, which would entangle the feature calculation process. Here, depth data is used to
segment the foreground from the background. The object rectangle is often not accurate,
which is further refined by a depth segmentation process. Through the foreground
segmentation the features can be differentiated more accurate from the background.
The details of the presented bottom-up and top-down attention system are described in
the following sections.

5.2 Directing the Attention Focus

In order to implement the third category of situation awareness a combination of bottom-
up features and a task-directed top-down process has to be realised. The bottom-up
features form the basis for the attention. Each feature is represented by a map, which
denotes the local importance or occurrence of the feature. Each map has got the same
size like the image and each value of a pixel corresponds to the answer of the feature
in this area. All these feature maps could be merged in order to get a saliency map,
which represents the undirected attention. Here, the attention is directed on a specific
object using a top-down process. Hence, the feature maps are weighted according to
their importance for the searched object. In order to get the discriminative features, the
rectangle region around the object is taken as foreground, while the rest of the image
is taken as background. Comparing the fore- and background, a value for each feature
map is identified, which denotes the importance of this feature to distinguish between
the object and the background.

Figure 5.2: Top-down directed search by combin-
ing features. The yellow square is searched.
To find the square the features appearance
and colour have to be combined. If the green
circle is in the focus of interest, only the shape
is discriminative. A technical system has to
reveal the discriminative features in order to
search successfully the object.

The values are combined to form an attention-vector, which is used to weight the
bottom-up maps in order to look for the object. The following example describes the
process. In Fig. (5.2) there are rectangles and squares shown in green and yellow.
In order to find the yellow square, the features appearance and colour have to be
both highly weighted. Using only one feature would not lead to a result. If we are
looking for the green circle, only the appearance is of importance. The colour does
not discriminate between the circle and the other objects. Hence, an attention system
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has to find the discriminative features, which differentiate the searched object from the
current background. The following attention system incorporates this fact in a combined
bottom-up and top-down attention feature weighting process.

The bottom-up design is inspired by the work of Itti [106] and the top-down weighting
by Frintrop [73]. Their approaches are slightly adapted in the normalisation of the
feature maps and some algorithm specific calculations. In the presented work the
insights of Sec. (2.2.2) are additionally used, that a human body can be described by
several parts [186]. A simple model is designed, which is represented by a torso and a
head region. For each region an attention-vector is calculated and they are combined to
a much more definite person-specific attention map. The learning of the attention-vector
is done in one frame. The target regions of the model have to be provided (through e.g.
the articulated scene model or the mobile person tracking) and the system calculates the
target-vectors for one frame. For the evaluation in thesis the target region is manually
provided. In the subsequent frames the focus is directed on the object by using the
target model. Additionally, the target vectors are updated by new frames in order to
keep a reliable target model. The overall system is running in real-time, which permits
the application on a mobile robot.

5.2.1 Bottom-Up Saliency

Following the guided-search theory by Wolfe [214], the bottom-up feature maps λ have
to be calculated first. The bottom-up calculation is accomplished in each frame without
any knowledge about the scene or the included objects.

The bottom-up basic feature maps Mi are a subset of λ, which consist of the following
three dimensions. Colour represents the first dimension (red, yellow, green and blue
colour). The second dimension is orientation in 0, 45, 90 and 135 degrees and the last
corresponds to the intensity (see figure 5.3). Thereby, the intensity is divided into the on
and off contrasts, whereas off means the dark parts of the scene while the on attribute
denotes the bright parts. The on and off intensity values are biologically motivated by
dark and bright sensitive receptive fields in the visual system of mammals. The colour
and orientation features origin from the visual system as well. The colour features are
weighted on the frequency of co-occurrence of light spectra. This motivates a centre-
surround computation, which will be described in the ongoing section. The orientation
maps respond to orientation sensitive receptive fields in the visual system. As humans
are complex classes, it is proposed to use additional complex features to build a more
discriminative framework. Local binary patterns have been found to be a powerful
feature for texture classification [139]. Later, it is shown that the incorporation of LBP-
features increases the discrimination between specific types of objects.

The bottom-up part consequently divides the incoming picture into the 10 basic feature
maps Mi (see figure 5.3). Inspired by the human visual system, the local features are first
weighted using a lateral inhibition. The lateral inhibition fades out features with strong
neighbours and emphasises the examined feature with weak neighbours (Neighbours
are the most similar features. For colour the neighbours are the left and right colour in
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Figure 5.3: Bottom-up feature com-
putation. The image is segmented
into 10 feature maps, which are
weighted using several biologically
inspired computation steps. Addi-
tionally, a texture descriptor LBP
is calculated. Finally, the bottom-
up process results in 24 bottom-up
feature maps

the colour circle (e.g. green has got the neighbours yellow and blue), for orientation the
immediate neighbours are the ones with the closest degree value (0 degree’s neighbours
are 45 and 135 degrees) and intensity only has got one neighbour (on-off)). The lateral
inhibition ˜C(i) determines the value for the pixel C(i) and compares it with the value of
its immediate neighbour maps Cj(i) in the same dimension (Eqn. (5.1)).

C̃(i) = C(i) + n ∗ C(i)−
n

∑
j=1

Cj(i) with: n = ] neighbours (5.1)

The following short example clarifies Eqn. (5.1). If we take C as green feature map with
pixel i (C(i) = 123) the neighbour maps Cj are yellow (C1(i) = 15) and blue (C2(i) = 81).
We calculate the lateral inhibition like following

C̃(i) = 123 + 2 ∗ 123− 96 = 273 (5.2)

The lateral inhibition consequently emphasises the underlying pixel, because the neigh-
bour maps are not as strong as the examined map.

To compute the local importance of the single features in different scales with less com-
putational effort, each map Mi is transformed into 6 images using Gaussian-pyramids
producing 60 feature maps Mij. On each map Mij a centre surround mask [219] is
incorporated to highlight the salient point features [98]. The weighting causes a discrim-
inative ratio for every pixel using the pop-out effect. The centre-surround weighting is
described in Fig. (5.4). If the corresponding feature excites the centre of a cell, the
response is high. If the surrounding is activated, the response is inhibited. The green-
red contrast and the yellow-blue contrast are found in the visual system. Hence, the
opposite colour bands are used for the centre-surround computation in this work.
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Figure 5.4: Centre-Surround computation. The visual receptive fields
fire, if the centre is activated, but not the surrounding. If only
the surrounding is activated, the field shows no response. If both
areas are addressed, the field gives a mild response. For each
feature (intensity, colour) exists an own cell. (Image adapted from
http://camelot.mssm.edu/ ygyu/)

The weighted 60 centre-surround feature maps (6 pyramid levels for 10 feature maps)
are again turned into one single map by applying the across-scale-add function. All sub-
maps are scaled and added pixel-wise. Finally, each dimension (colour, orientation,
intensity) is combined to a conspicuity map, describing the complete feature response.

It turned out that usual saliency approaches weight small points or edges higher than
complete regions due to the centre-surround computation. This is reasonable, because
a flat region does not attract the attention very well. In a human-robot-interaction the
human should reside in the focus of the robot very often. There, the interaction partner
is usually close to the robot and fills a large part of the picture. Therefore, plain features
maps without the centre-surround computation are also considered. If the person e.g.
wears a red shirt, the whole shirt could be salient contrary to the centre-surround, where
only the border areas are interesting. This is a new way of calculating the saliency map
specific for the human-robot-interaction. The 10 plain feature maps are equally added
to the set of feature maps.

Additionally to the simple features, a Local Binary Pattern (LBP) is calculated [139]. The
local descriptor is invariant to differences in the intensity and adds important local
information by building up a histogram of the comparison of the pixels with their
neighbours. Especially in cluttered scenes it is advantageous to add the LBP feature
to the region, because the basic features like colour are shared by fore- and background
simultaneously and are concludingly not always useful for the discrimination. Hence,
the uniform Local Binary Pattern is used to detect interesting structural components in
the image.

Finally, the process calculates 10 basic feature maps using centre-surround, 10 plain
feature maps and three conspicuity maps. Additionally a LBP map is computed during
the bottom-up process, resulting in 24 feature maps λ in total. Every feature map is
normalised using the number of its maxima ] ~max to make an importance scaling for
each map.

λi =
Mij√
] ~max

(5.3)

One maximum is very important, while many maxima do not discriminate and are
consequently not of interest for the attention progress. If e.g. there is a lot of blue
colour in the scene, the basic feature blue has got many maxima and is accordingly not
important for the discrimination.
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Figure 5.5: The top-down system. The top-down system consists of two parts. 1) The initialisation calculates
an attention vector for each part of the model by analysing the bottom-up features. (The calculation of
the bottom-up feature maps is equal to the system presented in fig. 5.3) 2) Through a top-down directed
weighting of the bottom-up features an object attention map is determined. By applying a maximum search
on the map, the focus of attention (FoA) is calculated.

The bottom-up saliency or object-independent attention is calculated by combining all
normalised feature maps to one saliency map.

5.2.2 Top-Down Attention

In order to direct the attention focus, the feature maps λi calculated in the bottom-up
process have to be weighted according to their importance in discriminating the object
from the background. Therefore, the following top-down process distinguishes between
the learning phase and the searching phase for an interesting object (Fig. (5.5)).

If a position x, y of a region of an object of interest with size w, h is given, the learning
phase identifies the importance of each bottom-up feature. The learning is based on
the measurement of one frame, because only one example is needed to calculate the
object-descriptive features. At the moment the initialisation of the object region is hand-
labelled, but in the future the detection and tracking system, presented in Chapter (4),
could deliver an automatic presumption of the object region. In order to calculate the
importance of each feature, the foreground is compared to the current background.
The foreground corresponds to the object region, while the background relates to the
rest of the image without the object region. Here, 3D data can be utilised to segment
the foreground more accurate from the background. The depth value from a small
rectangle in the middle of the region is taken as mean for the foreground. Z-keying is
used (cf.Sec. (2.2.1)) to remove all pixels from the foreground which are farther away
than a certain threshold. All remaining pixels are taken as foreground of the object. The
comparison of foreground and background is a vital step, because a salient feature is
only discriminative, if the background is different to it. If e.g. a person wears a red
shirt, it is usually very salient. Is the person standing in front of a red wall, the feature
is not discriminative at all. The function of the top-down process is to determine the
most discriminative features between object region and background.

Two additional maps are used to weight the features accordant to their affiliation to the
fore- or background. An excitation map E relates to the foreground, while an inhibition
map I describes the background. For each feature map λi two weighting factors ωE and
ωI are determined, which are used to weight the combination of the bottom-up features
for the computation of E and I. Each factor is normalised according to the complete
map with the size k, l.
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= 1− wE,i (5.6)

In equation 5.4 to 5.6 ωI,i and ωE,i result in values between 0 and 1, where the value
appoints if the feature describes the object (ωE ∼ 1) or the background (ωE ∼ 0)
and respectively for ωI the other way around. To get the features only describing the
foreground without the background, the weighting factors are subtracted

∂ = ωE,i −ωI,i (5.7)

If ∂ is ∼ 0 the value has got no discriminative power. If the value is above 0, the feature
is used to describe the foreground, weighted by ωI,i. If the value is below 0, the feature
corresponds to the background and is discarded. Consequently, the weighting considers
both the object region and the background to get the strongest discriminative features.

Furthermore an uniform LBP is calculated for the foreground δF and for the background
δB. The ratio δ of each LBP feature determines, if the LBP feature discriminates the
foreground from the background.

δ =
δF

δB
(5.8)

After the initialisation the system has to search for the interaction partner in each frame.
Therefore, all calculated bottom-up feature maps λ are weighted first using ωI resulting
in an inhibition map and second with ωE leading to an excitation map. The LBP features
are incorporated in a separate calculation process, following later on.

I = ∑
i

λi ∗ωI,i ∀ λi ∈ λ (5.9)

E = ∑
i

λi ∗ωE,i ∀ λi ∈ λ (5.10)
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The background is subtracted from the foreground to direct the attention only on the
desired object region. The negative values are cropped off to enable the most differing
description of the considered human to the background.

A = E− I > 0 (5.11)

Figure 5.6: Excitation and Inhibition maps.
In (a) the excitation map, in (b) the in-
hibition map and (c) the resulting at-
tention map A are shown. In the map
A, only the interesting features remain,
which highlight the searched torso.

(a) (b) (c)

In Fig. (5.6) the inhibition and excitation maps are shown. After the subtraction the shirt
clearly pops out in the attention map A. The resulting attention map A is the point
feature attention map.

To search for a specific region the point attention map A is extended to a region attention
map R (Eqn. (5.12)). Therefore, the initial size w, h of the region is needed. The region
attention map is calculated by averaging all point values inside the initial region at the
position x, y.

R =
(x+w)

∑
i=x

(y+h)

∑
j=y

A(i, j)
w ∗ h

(5.12)

Furthermore, a LBP histogram lx,y,w,h is calculated for each possible region at position
x, y with the size w, h in the actual image. This region is compared to the initial
foreground LBP histogram δF. Additionally, the difference is weighted by the ratio δ

to highlight the discriminative patterns. To create a LBP attention map LA, the value for
each point is incorporated. All values less 0 do not convey any further information and
are therefore set to 0.

LA = 1−∑
x

∑
y
((lx,y,w,h − δFx,y)

2 ∗ δ) > 0 (5.13)

To combine the region attention map R with the accordant LBP attention map LA, the
maps are added and normalised.

S =
R + LA

2
(5.14)

The resulting object attention map S describes the probability distribution for the best
matching parts of the scene to the initial region.

Because an object varies in its appearance due to lightning changes or different ar-
ticulations, the target model is slightly adapted by a learning rule. The computed
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(a) (b) (c) (d) (e)

Figure 5.7: Directed Attention. This figure presents (a) the model consisting of torso and face, (b) the torso
attention map, (c) the face attention map and (d) the LBP attention map. In the last image (e) the resulting
object attention map of the top-down process is shown. The weak object model causes a black border in
the images of LBP and result, because the model is restricted to be completely in the image.

inhibition and excitation weights are updated due to the newly calculated optimum,
if the optimum is above a threshold and the difference to the second optimum is not too
small.

ωE,i = αωE,i + (1− α)ω̂E,i (5.15)

ωI,i = αωI,i + (1− α)ω̂I,i (5.16)

The update rate α is chosen very small in order not to drift away from the original target
model. Thus, the weighting factors always represents the actual appearance of the object
related to the current background.

5.3 Weak Object Model

The human body is very complex and looks different depending on the view and on the
part of the body in focus. Thereby, the face and the torso are the most discriminative
areas, because the legs and the arms are similar over the class of a human. Hence, the
system implements more than one region per object. A weak human model consisting
of a face region F and a torso region T (see Fig. (5.7)a) is used. The face region builds the
anchor at the position x0, y0 and the torso region is calculated in a concrete distance dx, dy

to the face region. In order to calculate the directed attention for the whole model, each
region has to be processed individually and afterwards they have to be re-combined.
For each model region an own attention map is calculated through the above mentioned
inhibition, excitation and LBP map (see Fig. (5.7)b-Fig. (5.7)d). To calculate the final
object attention map O, all possible model positions are analysed. For each position the
single region maps are multiplied with each other. If the regions are partially or fully
outside the window, the saliency value is set to 0.

O(x, y) = T(x0, y0) ∗ F(dx, dy) (5.17)

with dx = (x0 + x) and dy = (y0 + y)

The maximum of O is determined to direct the focus of attention on the best matching
model in the image.
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5.4 Experiments and Results

In the experiments several scenarios are exploited, where a human and a robot interact
with each other. To show the general ability of this approach the system is tested without
any changes both in a human-robot interaction scenario and a human parent-infant
interaction.

(a) green attention (b) yellow attention (c) red attention

(d) green tracking (e) yellow tracking (f) red tracking

Figure 5.8: Object attention results. In images (a)-(c), the top-down object attention map is shown for the first
frame of each sequence. From left to right is the focus on (a) the green, (b) the yellow and (c) the red mug.
In image (d) the attention path of the green mug over several frames of the object movement is presented.
Accordant in (e) and (f) the attention paths of the yellow and red mug are shown.

In the parent-infant interaction a human subject has to show some mugs to an infant
and thereby teach the child how you stack them together. In figure 5.8 one test person
is shown, who handles the mentioned coloured mugs. In the top-down approach the
focus has been on each mug separately and generated a trajectory for the path of the
focus. In the three right images of Fig. (5.8) the plotted path is visible in green, which
in every case focused on the real position of the mug.

One can argue that the coloured mugs are easy to detect, but they demonstrate the goal
to develop a general attention system for a mobile robot, which needs to be robust as
well for easy objects as for complex objects like humans. As shown above the attention
system operates reliable and could even be used as a kind of tracker for simple objects.

To test the system for the ability to focus on human interaction partners, two sets of
each nine videos recorded in the laboratories of the Bielefeld University are used. The
videos contain typical scenes, occurring during typical human-robot interactions. The
first set shows the upside of a person, facing the robot, then guiding the robot into
another room where three persons are present (see Fig. (5.9)). This set is challenging as
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Sequence Video Correct FoA False FoA %
1 47 0 100
2 29 0 100
3 57 0 100
4 25 26 49

A 5 34 0 100
6 37 13 74
7 43 0 100
8 54 0 100
9 15 51 23

Sum 83
1 130 0 100
2 71 36 66
3 25 122 17
4 68 16 (12) 80

B 5 60 18 76
6 77 0 100
7 79 0 100
8 58 27 (27) 68
9 78 28 (28) 73

Sum 85 (95)

Table 5.1: Attention results. In table I scenario A and B are evaluated each in nine scenes. The focus of
attention (FoA) is counted for each frame, where the person is present. It is denoted how often the main
focus is equal to the real object position and how often the main focus is on another position. In scenario
B it is additionally mentioned in brackets, if the person is in the second attention focus. Finally the ratio of
the correct focus is shown.

the rooms offer different backgrounds and lighting conditions. The second set shows
again a person facing the robot, followed by different persons and ending with three
persons next to each other (see Fig. (5.9)). The difficulty in this scene is caused by the
similarity of the persons clothing and the cluttered background. To evaluate the system
each frame is counted, where the searched person is present and if the attention system
directs the main focus on it.

In Tab. (5.1) the results of the first set of sequences are shown. In most cases the FoA has
been directed on the correct person, overall in 83%. Mainly in one video the person does
not remain the main attention focus. In this sequence the person walks into another
room, stops in front of a window and only the torso remains in the attention focus.
The illumination changes from the front of the face to the back, which causes too much
difference in all initially detected face features and from there on the person does not get
into the focus any more. In table IB the second sequence is analysed. The overall correct
attention rate is at 85%. In this sequence the similar clothing of the persons causes
10% of the false FoA. In sequence B3 all three persons wear a very similar shirt and
due to the initialisation, where only the main person was present, the features are not
distinguishing between them. Here, the learning rate is too low to differentiate between
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Figure 5.9: Attention results. Each column describes one example frame, where (from top to bottom) the
face attention map, the torso attention map, the LBP attention map, the resulting object attention map and
the calculated object position are shown. The first two frames belong to set A and the last three frames
to set B. The second image from set A is motion blurred, which causes the confusion of the LBP. Anyway,
the correct position is found, because the combination of face and torso attention map lead to the correct
maxima, which indicates the robustness of the approach.

the three persons. Because the similarity leads to many maxima resulting sometimes in
a false FoA, I denoted in brackets if the person had the second maxima of the attention
map. Only in 5% the FoA is not located in the first or second maxima.

The results are promising as it is the goal to build an attention framework for a mobile
robot. If the detection should be refined, one has to take a look at the n-highest maxima
of the attention map and determine, which one is the correct person.

5.5 Conclusion

Directing the attention focus enables a mobile robot to realise the third category of situ-
ation awareness. The presented system provides a cognitive visual attention framework
with a fast learning algorithm, which enables a mobile robot to focus on objects and
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interaction partners as well. Thereby, the system design is suitable for a mobile robot in
terms of execution time and variability in object learning.

The attention system offers several advantages for a mobile robot. The one shot-learning
identifies the most discriminative features of the target region and the current back-
ground. Thereby, the new idea of dividing the searched region into several sub-regions
in a combined model enhances the search of especially humans. The resulting feature
vector from different regions result in a more definitely attention map. The system is
able to learn target models from many possible objects, like e.g. cups or even more
complex objects like humans. Thereby, the features are autonomously weighted due to
their information content and subsequently updated in order to represent as good as
possible the searched object. If e.g. two persons wear a shirt with the same colour, the
system focuses on the structure of the shirt in order to distinguish the two persons. The
system is able to handle clutter, as it incorporates the feature region and the current
background as well.

Although the attention system already shows promising results, some further steps
have to be realised in future. The initialisation of the objects should be combined
with another system in order to automatically determine the target region. Here, the
presented systems in Chapter (3) and Chapter (4) could provide the initial region. The
target model itself has to refined. At the moment the model is fixed, but in future the
model should provide automatic scaling and a more variable connection between the
attendant regions. Here, the pictorial structures provide an ideal representation for a
more flexible model [64]. As a last step it could be interesting to save the features of
the foreground in order to recalculate the top-down weights in a different scene with
another background. Here, additional information from the robot platform are helpful
to determine, if the robot has moved into a new room or more generally, if the observed
scene has changed.
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Situation awareness is an important characteristic for robots, stationary and especially
mobile ones. Mobile robots have to deal with different and dynamic requirements,
where background changes and humans walk into and out of the scene. Particularly
the humans are severely manageable. They often have different shapes and appearances
and show a dynamic motion. In the beginning I pose the question:

• How can perceptual situation awareness be achieved on a mobile robot?

The here presented thesis attends to this question by proposing solutions to the first
three categories of SA, which enable mobile robots to have a detailed and efficient
picture of their surrounding.

Chapter 3 “How can a robot system be able to sense and perceive the environment without
restricting the perception onto specific objects?”
As a solution to the first category of situation awareness I propose the use of the Vista
space in order to build an articulated scene model. This new model incorporates knowledge
about the static background, movable objects and humans in one representation, which
ideally matches to the category of extracting environmental information. Thereby, the
system uses 3D observations of the scene and consolidates the new information effec-
tively into the already known model. Due to the use of the articulated scene model the
3D background modelling of the static background can be done more reliably. This
is achieved through the simultaneous detection and tracking of humans, which are
removed from the background modelling process. The detection and tracking itself can
be done more reliable by subtracting the known background. The detected action spaces
or moved objects respectively are revealed by the modelling process and are facilitated
for further processing.

Chapter 3 outlook: The articulated scene model provides a good knowledge basis of the
surrounding, which on the one hand could be utilised for other subsequent processes
or on the other hand further refined through the interaction with the user. Subsequent
processes could use the articulated parts for object learning or the static background
for navigation purposes. Also the movements of the human are interesting for the
robot. They denote free spaces for the own movement and more apparently, the known
positions of the humans are interesting for the interaction. Especially the last point is
important for further research. The interaction manifoldly benefits from the articulated
scene model. First, the robot knows about the present users. Second, the robot gets
an idea about areas, that are changed or employed by the human. These areas are
detected and marked by the articulated scene model. Then they should be used by
the robot in order to ask the human about these areas to further improve its own
knowledge. In this way, the interaction is meaningful extended and the robot improves
its situation awareness. Further work could also be done in the direction of combining
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Vista spaces after movements of the robot. The static background models could be
merged into a global background scene model using e.g. iterative closest point (ICP)
algorithms (cf.Sec. (3.7)). The background information should also be incorporated into
the navigation process, which would stabilise the movements of the robot.

Chapter 4 “How can a robot system be aware of humans and their movements during ego
motion?”
The detection and tracking system for mobile platforms published in this thesis presents
a solution to the complex problem of the second part of situation awareness. Many
map-building approaches provide a good map of the static environment, but can hardly
deal with dynamic objects in the scene. The detection and tracking of moving entities
is most important, as they mark potential collision objects, which could not directly
be mapped in the navigation. Here, it is important to have the time sequence of
the movements to be able to predict the future movement of the objects. This thesis
addresses the complete process for building trajectories of all humans in the scene,
where each trajectory marks all occurrences of the specific human. The process includes
the measurement generation, the detection and tracking of each human and the effective
coordination of information in the whole process. Thereby, I propose the combination
of 2D and 3D data, which shows emending results. Additionally, a fast pre-detection
step using the u-v-disparity is presented, which simplifies the scene through floor and
ceiling removal and which serves as input for a distance adaptive version of the state-
of-the-art human detector. The detector verifies the pre-detections using the Histograms
of Oriented Gradients in conjunction with a linear support vector machine. The effective
combination of the pre-detection and the window-based classifier definitively speeds-
up the detection process, reduces the false-positive rate and enhances the stability of the
detection (cf.Sec. (4.7.4)). A new implemented hypotheses management incorporates all
detection and tracking information in order to estimate the hypotheses at the best. In
addition, the hypotheses management cares for the creation and deletion of hypotheses,
if a person enters or leaves the scene. The presented tracking module shows how
hypotheses could be tracked fast and robust by the use of an adaptive particle filter
with a multidimensional observation model. Again, the combined use of 2D and 3D data
demonstrates an advantage over pure 2D or 3D approaches (cf.Sec. (4.7.5)).

Chapter 4 outlook: Although the presented system shows already fast processing speed
and good results, future work in speeding-up the process by parallelism is planned.
Especially the particle filter offers high potential to render the process on a graphic
card, where each particle could be calculated on its own. It is also considered to do both
stabilise the SLAM approach and help building a 3D map of the environment. More
precisely, visual odometry could be a solution to combine the first system with the
second system presented. If the background could be removed during the movement of
the robot the problem of detecting people in connection with a wall would be obsolete
due to the background removing.

Chapter 5 “How can a robot system direct its attention onto specific areas like a desired interaction
partner?”
Directing the attention focus relates to the third category of situation awareness. The bi-
ologically inspired attention has got several advantages. A specific area can be analysed
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more intensively or an object can be searched using its discriminative features. In my
thesis I propose an attention system based on a top-down directed search, which finds
the discriminative features according to the background or other objects. It weights the
bottom-up features, yielding an attention map for the searched object. In contrast to
other attention systems, the proposed work adds a simple model in order to strengthen
the attention for a distinctive object like a human. The different parts (face and torso)
usually inherit different discriminative features, which are revealed for each region
independently. A combination process calculates an object attention map out of all areas.
The results show the good quality of the human model approach and the possibility to
direct the attention focus even on difficult objects. Hence, the third category of situation
awareness can now be achieved on a mobile robot.

Chapter 5 outlook: The model approach relies on a simple human model consisting of face
and torso. In the future, the simple model will be replaced by the pictorial structures
model. It provides a better connection between the single parts, because the connection
is more flexible. In connection with the attention system and the other presented systems
more research has to be done. An automatic initialisation of the human model by the
detection and tracking system would be ideal. Additionally, the attention system could
provide an easy solution to recover a lost trajectory or to identify a known person, if
he/she is out of view for a longer period.

Final statement: Of course, work has to be investigated in the combination of all three
perceptual categories of situation awareness into one coherent system, where all parts
gain from each other. First steps towards this direction are already done by combining
the mobile tracking system with the articulated scene model. The detection and tracking
based on the 6D clustering approach is exchanged with the mobile version of chapter 4.
But, at the moment only partial movements are possible to gather the articulated scene
model, because the background modelling process is not feasible during movement.
Here, the visual odometry will be applied to overcome this restriction. The combination
with the top-down attention system conforms to the subsequent step in order to keep
the interaction up with special interaction partners. If a conversation is started or a
target is in the focus of interest, the top-down directed learning process can be started
in order to keep the target in the focus. Utilising the information from the articulated
scene model, the target region could easily be applied and the subsequent search be
reduced to the potential dynamic points.

Finally, work has to be done in the area of the fourth category of situation awareness, the
prediction of knowledge in the future. Here, the basis for this work is presented through
my solutions to the perceptual parts of situation awareness. Prospective work has to
consider predictions of movements [92] [161] or to combine knowledge of articulated
parts with higher knowledge, gathered from e.g. a dialogue system [137].
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A Appendix

The following images represent the results of the articulated scene model, described
in Chapter (3). Each image shows a small film strip, which represents the underlying
sequence. In the background the current frame is displayed. In the foreground the 3D
data is divided into static parts (blue) and movable parts (red and orange tones) by the
articulated scene model. The articulated scene model does not differentiate between
specific objects. Everything, which has been moved by a human is detected through
observation and the vista-space assumption.
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(a) Ss2,r1 (b) Ss2,r2

(c) Ss5,r1 (d) Ss5,r2

Figure A.1: Articulated scene model results. (a)-(d): For all recorded sequences the learnt background model
(blue points) and the detected movable objects (orange points) are shown. In the bottom left three selected
images of the sequence characterize the tide of events from bottom to top finishing with the last frame in
the background.
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(a) Ss1,r1 (b) Ss1,r2

(c) Ss1,r3 (d) Ss1,r4

(e) Ss1,r5 (f) Ss1,r6

Figure A.2: Articulated scene model results. (a)-(f): For all recorded sequences the learnt background model
(blue points) and the detected movable objects (orange points) are shown. In the bottom left three selected
images of the sequence characterize the tide of events from bottom to top finishing with the last frame in
the background.
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(a) Ss3,r1 (b) Ss3,r2

(c) Ss4,r1 (d) Ss4,r2

(e) Ss4,r3 (f) Ss4,r4

Figure A.3: Articulated scene model results. (a)-(f): For all recorded sequences the learnt background model
(blue points) and the detected movable objects (orange points) are shown. In the bottom left three selected
images of the sequence characterize the tide of events from bottom to top finishing with the last frame in
the background.



B Appendix

In the following, film strips for the evaluated data sets in Chapter (4) are presented.
Each film shows different parts of the correspondent data set.

Figure B.1: Image strip for data set 1.

Figure B.2: Image strip for data set 2.

Figure B.3: Image strip for data set 3.

(a) Set 4 part 1

(b) Set 4 part 2

Figure B.4: Image strip for data set 4.
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(a) Set 5 part 1

(b) Set 5 part 2

Figure B.5: Image strip for data set 5.

(a) Set 6 part 1

(b) Set 6 part 2

Figure B.6: Image strip for data set 6.

Figure B.7: Image strip for data set 7.

Figure B.8: Image strip for data set 8.
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(a) Set 9 part 1

(b) Set 9 part 2

Figure B.9: Image strip for data set 9.

(a) Set 10 part 1

(b) Set 10 part 2

Figure B.10: Image strip for data set 10.

(a) Set 11 part 1

(b) Set 11 part 2

Figure B.11: Image strip for data set 11.
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Figure B.12: Image strip for data set 12.

Trajectory Results of the Mobile Tracking System

The following figures show the remaining trajectory snippets of the presented data
sets in Chapter (4). The images illustrate the performance of the complete system by
representing each step in an own image. The pre-detection starts in the lower left, where
each pre-detected area is denoted with a red rectangle. The hypotheses are handed over
to the verification step in the lower right, where true objects have to be verified. If they
are already verified, they have to be approved in at least every 15th frame in order to
monitor that the hypothesis is still valid. If a region is verified as a human, a particle
filter is started, which is shown in the upper right as purple rectangles. The green
rectangles represent the actual state of each hypothesis. The arising trajectory is painted
in the upper left as green line in a three dimensional plot viewed from above.

(a) Set 2 (b) Set 9

Figure B.13: Qualitative tracking analysis.
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(a) Set 7 part 1 (b) Set 7 part 2

Figure B.14: Qualitative tracking analysis.

(a) Set 8 part 1 (b) Set 8 part 2

Figure B.15: Qualitative tracking analysis.

(a) Set 10 part 1 (b) Set 10 part 2

Figure B.16: Qualitative tracking analysis.

The trajectories for all persons and each set are presented in the following. All trajecto-
ries are in relative distance to the robot. The different colours represent the different ids
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(a) Set 11 part 1 (b) Set 12 part 1

Figure B.17: Qualitative tracking analysis.

of the persons. The ground truth is also plotted in red. Most trajectories nearly fit the
ground truth. The underlying errors are shown below.
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Figure B.18: Relative Trajectories for set 4 & 5. In red all ground truth trajectories are shown. The persons are
denoted in different colours. All trajectories are in relative distance to the robot.



137

−1.5 −1 −0.5 0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

9

10

Relative Trajectories

x relative to robot (in meter)

z
 r

e
la

ti
v
e

 t
o

 r
o

b
o

t 
(i
n

 m
e

te
r)

 

 

Ground truth

First ID

Second ID

Third ID

(a) Set 7

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

8

9

10

Relative Trajectories

x relative to robot (in meter)

z
 r

e
la

ti
v
e

 t
o

 r
o

b
o

t 
(i
n

 m
e

te
r)

 

 

ID
1

ID
2

ID
3

ID
4

Ground Truth

(b) Set 8

Figure B.19: Relative Trajectories for set 7 & 8. In red all ground truth trajectories are shown. The persons are
denoted in different colours. All trajectories are in relative distance to the robot.
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Figure B.20: Relative Trajectories for set 9 & 10. In red all ground truth trajectories are shown. The persons
are denoted in different colours. All trajectories are in relative distance to the robot.

Tracking Errors of the Mobile Tracking System

The following table shows the errors of each person in all dimensions and in all se-
quences.
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Set,Person Error X Error Y Error Z Std X Std Y Std Z
1,1 0.040513 0.049438 0.049438 0.032136 0.04097 0.051873
1,2 0.088643 0.09496 0.09496 0.10649 0.069647 0.24999
1,3 0.029564 0.060525 0.060525 0.035128 0.022627 0.025935
1,4 0.024221 0.02998 0.02998 0.020474 0.032201 0.029934
1,5 0.063252 0.12083 0.12083 0.061881 0.082595 0.10025
2,1 0.025723 0.052144 0.052144 0.027377 0.039754 0.062465
3,1 0.027284 0.047988 0.047988 0.022848 0.037269 0.050266
4,1 0.021805 0.038451 0.038451 0.026933 0.03376 0.065874
4,2 0.030417 0.017102 0.017102 0.014171 0.012102 0.037419
4,3 0.030013 0.015202 0.015202 0.019466 0.011221 0.051492
4,4 0.02852 0.045849 0.045849 0.046421 0.030588 0.069269
5,1 0.038717 0.074203 0.074203 0.034066 0.053458 0.13755
5,2 0.030683 0.047202 0.047202 0.041156 0.041775 0.052775
6,1 0.026576 0.048557 0.048557 0.017519 0.031644 0.038708
6,2 0.040384 0.045265 0.045265 0.032823 0.032331 0.067292
6,3 0.043989 0.080081 0.080081 0.036359 0.055967 0.058141
7,1 0.026733 0.050603 0.050603 0.019863 0.034011 0.057314
7,2 0.0275 0.1264 0.1264 0.019986 0.12068 0.14654
8,1 0.028995 0.054423 0.054423 0.029628 0.045385 0.07704
8,2 0.03546 0.18875 0.18875 0.025157 0.10467 0.1101
9,1 0.070379 0.068492 0.068492 0.039773 0.028993 0.054139
9,2 0.051176 0.045322 0.045322 0.048664 0.01698 0.025626
9,3 0.04128 0.068151 0.068151 0.03605 0.066763 0.081341
9,4 0.04128 0.068151 0.068151 0.03605 0.066763 0.081341

10,1 0.041672 0.061332 0.061332 0.029893 0.032375 0.08209
10,2 0.040604 0.057049 0.057049 0.026173 0.048201 0.026796
10,3 0.054658 0.073577 0.073577 0.071329 0.070325 0.22102
11,1 0.028053 0.067105 0.067105 0.021008 0.056582 0.042483
11,2 0.098065 0.15555 0.15555 0.14409 0.18802 0.20711
11,3 0.10404 0.11691 0.11691 0.15783 0.089928 0.25584
12,1 0.024167 0.04893 0.04893 0.019331 0.043435 0.068789
12,2 0.038343 0.076467 0.076467 0.040198 0.053691 0.10701
12,3 0.079664 0.05758 0.05758 0.061649 0.063785 0.26902

average 0.041834 0.066252 0.066252 0.041233 0.051721 0.090083

Table B.1: Error and standard deviation in XYZ for each person.
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