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Abstract

Robots that are able to provide services to human users in personal context are known as
personal service robots. They are attracting more and more attention, as enriching and
easing people’s lives are their general missions. Acquisition of spatial representations is
crucial for such a robot to move around in a human-shared environment, provide services
and interact with the user about the environment. With methods developed in the field of
autonomous exploration it is possible for a mobile robot to build a metric representation
from sensor data, while exploring an initially unknown environment. However, due to the
limited perceptual abilities of the robot and dynamic changes in the environment over time,
challenges still pose for robots. Besides, in order to facilitate the communication about the
environment, a mapping between the spatial understanding of the user and the robot has
to be built in a service context.

To acquire a spatial representation, exploration strategies are necessary for the robot to
move around in the environment and gain information from the surroundings. The term
Human-Robot Joint Spatial Exploration is used for a framework that allows the human user
to influence the robot’s exploration of the environment and the environment representation
built by the robot. By interactively gathering information, individual spatial knowledge
from the user’s point of view is expected to be integrated into the built environment repre-
sentation. Therefore, how to make the robot interactively learn from the human user and
build a spatial representation incorporating the gathered information is the central problem
of this thesis. A Home-Tour is assumed as the initial scenario for information gathering. In
the interactive guided tour the user presents the environment to the robot, while the robot
learns various models of the environment with the help of the user. A link between the
spatial representation built by the robot and human understanding of the environment is
able to be created.

The major contribution of this thesis is a framework that enables a mobile robot to inter-
actively acquire an environment representation. We first present the interactive Home-Tour
scenario assumed as the starting point of the integrated solution to the central problem.
Benefits and challenges of this solution are discussed as well. Then, a hybrid person-
following behavior that facilitates the joint exploration of the environment for the robot
and the guide-person is described. The robot is able to choose an appropriate behavior ac-
cording to strategies designed on the basis of spatial context and relative person’s positions
with respect to the robot. Afterwards, a metric map of the surroundings can be built by the
robot during the joint exploration. Because of the guide-person perceived by the robot in
the Home-Tour, the violation of the static world assumption used in the mapping process
has to be pointed out. Consequently, we provide a technique to reduce the negative im-
pact on the mapping process, resulting from the guide-person. Finally, a topological graph
built upon the metric representation is discussed. Human navigation strategies and spatial
concepts achieved by the robot in the interactive learning process are incorporated in the
graph-based environment representation.

Based on the idea of interactive information gathering, an integrated system is imple-
mented. Experimental results achieved from individual modules validate their effective-
ness respectively. By means of a user study, the robustness and practicality of the system
consisting of these modules are verified as a whole in real world scenarios.
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1. Introduction 1

1. Introduction

If I have seen further it is only by standing on the
shoulders of giants.

[Isaac Newton, 1642–1727]

Acquisition of an environment representation is one of the fundamental problems in mobile
robotics. Recently, mobile robots envisioned to coexist with humans and used to perform
tasks for human users have attracted more and more attention from researchers. Generally
such a robot is known as a personal service robot, whose purpose is to educate, entertain,
assist or protect in a domestic or an office-like environment [104]. Examples of personal
service robots designed for these goals are shown in Fig. 1.1.

In general, a personal service robot can be thought of as a mobile robotic platform situated
in the physical world (in domestic or office context1) shared with its user. By equipping the
robot with hardware, e.g. robot sensors, actuators, microphone, manipulators, etc., and
corresponding software components on this platform, the robot is able to gather informa-
tion from the environment and interactively from the human user. Exploiting the gathered
information the robot can work for its user according to concrete situations.

To provide services, the robot needs to move around and work in an environment initially
unknown to it. Therefore, acquiring an environment representation containing certain
knowledge of the surroundings is crucial for the robot before performing a task assigned by
the human user. Leaving the robot alone and making it autonomously explore the environ-
ment to build a representation of the surroundings might be a solution. However, there are
at least two points amiss:

. How to support the autonomous acquisition of spatial knowledge for a personal
service robot?
Completing the task of building an environment representation alone, the robot has to
face the so-called integrated exploration problem [101, 43]. In other words, the robot
needs to create the map of the surroundings and simultaneously localize itself in this
built map, while making local decisions on where to move next [17, 138]. It is a quite
complicated issue, as the three mentioned problems have to be dealt with at the same
time. Unfortunately the three tasks are dependent on each other (see section 1.2
for details). Moreover, the efficiency of solving the integrated exploration problem
in a real world scenario would be influenced directly by the adopted exploration
strategy and the environment in which the robot is operating. Besides, to enable an
efficient communication about the environment between the robot and the user, the
built environment representation needs to correspond to spatial understanding of the
human user in a service context. Therefore, from where the robot can learn human

1Indoor environments are what will be discussed predominantly in this thesis. However, the working areas of
personal service robots can be extended to outdoors, such as gardens, garages, normal streets, etc., where
the robots have to face more complicated surroundings.

Bielefeld University
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(a) (b) (c)

Figure 1.1.: Examples of personal service robots. (a) ASIMO, a humanoid robot created by
Honda. The robot’s size was chosen to allow it to operate freely in the human
living space and to make it people-friendly. (b) Fujitsu Service Robot (enon)
that is able to serve in multiple applications, including providing guide informa-
tion, assistance, transporting items, patrolling, and surveillance. (c) PR2 (Per-
sonal Robot 2) provided by Willow Garage is an open and robust robot platform
designed for performing useful work for human users.

spatial knowledge and incorporate them into the environment representation built by
itself is crucial.

. Why not invite people into an interactive scenario?
Recently, Hawes et al. [73] proposed an idea of gathering information from world
wide web. Based on this idea the robot tried to identify what kind of rooms the robot
was visiting according to the knowledge gathered from web, while autonomously
exploring its environment. However, definitions of rooms found in web do not nec-
essarily correspond to spatial understanding of individual human users. In addition,
due to limited perceptual abilities of a robot unperceivable obstacles and potential
hazards arising from, e.g. unexpected passers-by, are still challenges for the robot
moving around in a human-shared environment. Thus, the robot is expected to ex-
tend its knowledge by gathering information interactively from its own user. A very
effective way to introduce people in a previously unknown indoor environment is in a
guided tour scenario. In other words, a person follows a guide, while the guide shows
the person around and explains items. It would be an appropriate way for the robot
to gain necessary information. In order to perform tasks given by the user, thus to
interact with the user about the environment, the built spatial representation needs
to be not only useful for the robot but also understandable to the user. With the help
of an interactive scenario human spatial knowledge is possible to be integrated in
the environment representation, except for the perceived sensor data, e.g. odometry
and laser data. Advantages become obvious for the process of information gathering,
since on the one hand the robot is able to gain its knowledge of the currently explored
environment from the individual user. On the other hand, the gathered information
may be adjusted by the user in the interactive scenario. Therefore, the participation
of the human user is preferred. The user would perform an interactive scenario as a

Fang Yuan



1. Introduction 3

guide for his or her personal robot.

Considering these questions an interactive Home-Tour scenario which will be described in
section 1.1 has been designed. In this scenario the user guides a robot through an arbitrary
indoor environment, while presenting general information to the robot, such as the names
of rooms, objects in the environment, any comments to the environment, etc.. From the
robot’s perspective, during the Home-Tour it can build a map [146, 147] by means of the
perceived metric information of the surroundings, create a conceptual spatial representa-
tion [56, 168] or a cognitive map [156] with the help of the user, and even obtain some
friendly warnings or reminders like “You are not allowed to enter this room!” or “Please take
care of the door sill!”2. This corresponds more or less to what humans would like to do
for somebody who is going to work in their house, e.g. a new employed butler. By this
means, the robot can learn about the surroundings in the interactive Home-Tour scenario
influenced by human ontology [5].

Apart from designing a comprehensive spatial model of the surroundings, first of all, the
robot is assumed to behave in an indoor environment inhabited by its user. How should the
robot follow or accompany the human user and move around in this environment to perform
tasks assigned by its user? What should be taken into account for the acquisition of spatial
knowledge in such an interactive scenario? How could make the robot move around safely
in highly dynamic and populated spaces, e.g. an unconstrained person’s home. These
issues are going to be discussed emphatically in this thesis, and will be elaborated on in the
following. Let’s begin with the interactive Home-Tour scenario.

1.1. Home-Tour with a Mobile Robot

The basic idea of an interactive Home-Tour scenario can be specified as follows: a typical
customer has purchased a robot delivered ready-to-use with all necessary capabilities for
assisting in the household. Before the robot can provide any service, it has to familiarize
itself with the working environment. As private environments are distinct from each other,
little knowledge can be obtained in advance. Therefore, the robot is assumed without any
a priori information about the new environment and has to adapt to it. Moreover, partial
changes of the environment because of e.g. disarranged or newly bought furniture are
inevitable. The robot needs to gather information of the current environment. Besides,
considering the discussion of the two questions posed at the beginning of this chapter, the
robot should interactively learn about the environment from the human user and incor-
porate the gathered information into the built spatial representation. In the interactive
Home-Tour scenario the robot is able to learn basic information about the surroundings,
while following3 the user. On the one hand, sensor data perceived by the robot can be
obtained from the environment. On the other hand, spatial knowledge, e.g. names of dif-
ferent regions [86], locations [84], objects [153] and their spatial and temporal relations,
as well as useful or helpful information from the user’s perspective, is expected to be gained
by the robot. Once the robot has acquired the knowledge about the surroundings, it can
navigate the known part of the environment, autonomously explore the environment in
order to fill any knowledge gaps[73], communicate and disambiguate with its human user
about the environment[153], and provide services to the user.

2In the current work such warnings are not taken into account though, it would be important for further
investigation in the context of robot’s social behaviors.

3See details in chapter 2 for the proposed following behavior.
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4 1.1. Home-Tour with a Mobile Robot

(a) (b)

Figure 1.2.: Two generations of robot BIRON. a) shows the mobile robot BIRON I and
the hardware components. Robot BIRON II with its hardware components is
illustrated in b). From top right: Pan-/Tilt-camera, interfacial microphone,
Pioneer 5DOF arm, and laser range finder.

(a) (b)

Figure 1.3.: A regular apartment with standard furniture and the mobile robot BIRON.
BIRON I placed in the living room is shown in (a), while (b) illustrates the
new generation BIRON II in the dining room.
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1. Introduction 5

The designed Home-Tour scenario has been conducted with the mobile robot BIRON (BIele-
feld Robot companiON) in a regular domestic environment, e.g. the BIRON apartment
equipped with standard furniture [97], or an office environment [164]. Robot BIRON has
been developed continuously at the Bielefeld University since eight years with the aim of
providing personal services in a domestic environment. The first generation BIRON I [66]
is illustrated in Fig. 1.2(a). It is based on the Pioneer2 PeopleBot from MobileRobots4,
Inc. (formerly ActiveMedia). The robot uses one laser range finder mounted at the front
at a height of approximately 30cm for the perception of the surroundings in front of it.
Measurements are taken in a horizontal plan covering a 180◦ field of view. The color video
camera is mounted for visual perception of the scene and for detailed focusing on per-
sons, areas, and objects. For localization of sound direction two interfacial microphones
are mounted on the robot’s body at the height of about 107cm. A 3D Time-of-Flight (ToF)
camera [159], the SwissRanger SR3000 is fixed under the pan-tilt camera to acquire the
depth information from the environment in real time 5. All computation can be done on-
board using two 2GHz dual core processors mounted on the back of the robot and one
1.5GHz Pentium Mobile notebook connected via W-LAN.

The second generation BIRON II (see Fig. 1.2(b)) based on the research platform GuiaBotTM

developed also by MobileRobots. The robot platform customized and equipped with sen-
sors allows analysis of the current situation in a human-robot interaction (HRI) scenario.
In order to achieve a system running autonomously in a real world scenario, two piggyback
laptops providing the computational power are mounted on the platform. BIRON II is a
consequent advancement of the BIRON platform, which has been under continuous devel-
opment since eight years. The robot base is a two-wheeled PatrolBotTM with two passive
rear casters for balance. Similar to BIRON I, a laser range finder inside the robot base at a
height of about 30cm, a pan-tilt color camera on the top of the robot, as well as two interfa-
cial microphones on the robot’s body are mounted. In addition, the robot is equipped with
a Pioneer 5 degrees-of-freedom arm for lightweight manipulation and referential gestures.
The upper part of the robot’s body houses a touch screen as well as the system speaker
used for speech output in user interaction. Thus, on the one hand basic functions of the old
platform BIRON I can be conveniently transplanted to BIRON II. On the other hand, new
modules may be integrated into the new platform as well.

Fig. 1.3(a) and Fig. 1.3(b) illustrate the real BIRON apartment and the robot platform
BIRON I and BIRON II respectively. Recently the robot has been evaluated several times in
the real world [116] with naive subjects, who did not have to be experts in robotics. Gath-
ering the experience and lessons from the experiments in practice, ToBI (Team of Bielefeld)
has successfully participated in the RoboCup@Home of the RoboCup German Open 2009
and 2010 in Hannover and Magdeburg respectively, and the world championship RoboCup
2009 6 and 2010 7 in Graz, Austria and Singapore respectively. Fig. 1.4(a) and Fig. 1.4(b)
shows the arena in Hannover and Graz.

RoboCup@Home focuses on real world applications and HRI (Human-Robot Interac-
tion) with autonomous robots. As a new league inside the RoboCup competitions,
RoboCup@Home aims at promoting the development of robotic technology assisting and
providing services to humans in everyday life, which is a general goal for personal service
robots. Subdomains of technology under RoboCup@Home are e.g. HRI and cooperation,

4See the home page www.mobilerobots.com for details.
5See section 4.3.2 for details of the SwissRanger camera, which extends the perception area of the 2D laser

to 3D. It is important for obstacle avoidance in unconstrained indoor environments.
6www.robocup2009.org/
7www.robocup2010.org/
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6 1.1. Home-Tour with a Mobile Robot

(a) (b)

Figure 1.4.: BIRON II in RoboCup competition. (a) shows the arena of the competition in
RoboCup German Open 2009. A dining room-like environment of the arena in
the world championship RoboCup 2009 is illustrated in (b).

navigation, spatial representation and understanding, object recognition and manipulation,
adaptive behaviors, system integration and standardization, etc.. Since ultimate scenarios
should be conducted in the real world, the arenas of the two RoboCup competitions were
decorated similar to a real indoor environment, as illustrated in Fig. 1.4(a) and Fig. 1.4(b).
Objects made of glass like tea table can easily escape from some distance sensors, such as
laser range finder and Time-of-Flight (ToF) camera [55]. Thus, it was difficult for the robot
to avoid such unperceivable obstacles. In addition, the arrangement of the arena could be
changed at random according to competition items. How the arena would look like was
kept secret to all the teams. Hence, the robot had to be capable of learning models of the
environment in a real world scenario, e.g. the Home-Tour. Otherwise, the robot cannot
correctly perform tasks when it only worked on the basis of a static map of the surround-
ings. In the near future the arena of RoboCup@Home will not be limited in a basic home
environment consisting of a living room, a kitchen, etc., but involve other places of daily
life like a shop or a garden area. In fact, RoboCup@Home offers a good test opportunity
for a personal robot aiming to perform tasks for the human user. The achievements ob-
tained from the four RoboCup competitions have shown the basic navigation capability of
the robot platform that will be discussed in the following of this thesis.

In general, the salient differences between a personal service robot and a robot applied
in other areas are the object of service and the working environment. As the personal
service robot is assumed to behave around humans in the common society, the environment
representation built by the robot should correspond to human spatial understanding and
be understandable to the human user. Hence, the human user needs to be considered in
the learning process of the environment for the robot. With the help of the human user
the robot is able to move around in the environment. By this means, where to go in the
exploration of the unknown environment is solved. Besides, human spatial knowledge,
e.g. where which room is and human navigation strategies implicitly contained in human
movement trajectories, can be integrated into the environment representation built by the
robot. Thus, how to facilitate interactive information gathering and exploit the gathered
information to build a spatial representation becomes the central problem. It is exactly the
meaning of the Home-Tour scenario, which provides the opportunity for the human user
and the robot to interact with each other and cognize their common real world.
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1. Introduction 7

1.2. Background Knowledge and Related Work

In the frame of the interactive Home-Tour scenario the robot accompanying its user is able
to gather information about the new surroundings with the help of the guide-person. In
the following the basic definitions for this thesis are given concretely:

Pose A robot’s pose (x, y, θ) is defined in a world coordinate system with the pure 2D
position (x, y) and the robot orientation θ.

Goal A robot’s goal is defined with a 5-tuple (x, y, θ, goal_radius, angle_diff), where
(x, y, θ) shows the robot’s pose, and the distance tolerance as well as the angle differ-
ence to the set robot orientation are constrained with goal_radius and angle_diff
respectively8. In this thesis a goal may be sent to the robot in order to perform the
person-following behavior (see section 2.2.2), to reach a location defined in the fol-
lowing, or may be selected from the observed pathways of the guide-person (see
section 4.2).

Location A Location is a 2D point in an indoor environment, at which the guide-person
names the region where he or she is according to human spatial concepts. Locations
indicated by the guide-person and labeled with room (region) names in a Home-Tour
scenario, e.g. kitchen, living room, hallway, etc., form the nodes of a topological envi-
ronment representation. Thus, path planning and re-planning that will be discussed
in section 4.2.1 can be implemented.

Path A path planned for a robot consists of a set of goals leading the robot from its current
pose to the final goal, namely a specific location or a goal defined with (x, y, θ).

Note that various environment models involved in this work are built in two-dimensional
space. In the learning process three basic problems or tasks have to be dealt with or per-
formed, i.e. “What does the world look like?”, “Where am I?” and “How can I reach the goal?”.
Answering these problems is one of the most important capabilities and preconditions for a
personal service robot to perform tasks assigned by its human user successfully. The three
tasks are described in the following.

Mapping – “What does the world look like?”

Autonomous mapping in robotics addresses the problem of representing physical en-
vironments interpreted through sensor data. Therefore, the main challenges of a
mapping process generally arise from the two central aspects, i.e. the representation
of the surroundings and the sensors that enable a robot to gather information from
the outside world.

Firstly, each sensor equipped on the robot is subject to measurement errors, not only
for sensors (e.g. laser or sonar range finder) perceiving external information of the
world, but also for sensors (e.g. dead-reckoning or odometry) providing internal
information about robot movement, which accumulate errors over time.

Secondly, all environment entities that are being mapped might build a configuration
space with extremely high dimensions. It would be very complex and difficult to
tackle, especially when the map needs to be built in real time.

Despite sensor errors, enabling a robot to recognize a place previously entered and
an object previously perceived is important for map update. Making a decision on

8In order to check whether a goal is reached, goal_radius and angle_diff are especially effective in
practice. When the robot reaches a goal, stop the robot.
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8 1.2. Background Knowledge and Related Work

whether it is a new feature that should be added into the map or a re-recognized
feature already existing in the map is crucial for the correction of the currently built
map. It might be ambiguous for humans as well, when the environment is unknown
or looks very similar in different places. Such ambiguities will occur when the robot
closes a loop [64, 115] or matches the consecutively perceived sensor data [99]. This
problem is generally known as the correspondence problem or the data association
problem[114, 67].

Since the main task of mapping is to build a representation of the real world, changes,
the scale and the complexity of the environment can all influence the mapping pro-
cess. Early researches on mapping in large and non-stationary environments can be
found in, for example, [61] and [1, 8] respectively.

Besides, range limitations generally existing in robot sensors (e.g. laser range finder)
compel the robot to move around in the unknown environment in order to gain more
information, other than staying at the start position and perceiving only a part of the
surroundings. Once the robot moves, a path planning approach that enables the robot
to explore the environment and the accuracy of the pose estimation according to the
incomplete map model are of the greatest importance for robotic mapping.

Localization – “Where am I?”

Localization is the problem of estimating the current pose of the robot from sensor
perception with respect to a world frame, i.e. the given map. For a personal service
robot which should work reliably in an indoor environment, it needs to know where
it is in order to provide services to the human user. As internal sensors (e.g. the
odometry) accumulate errors over time, the robot has to infer its pose with the help
of external sensors mounted on it, such as laser, camera, etc.. How to deal with the
errors arising from robot perception and the representation of the surroundings is
therefore crucial for a localization task. The solution of the mobile robot localization
problem is various considering the main dimensions of this problem [152], as will be
summarized as follows:

Local Localization It is also referred to as the position tracking problem [94, 65],
in which the initial pose of the robot is known. Pose estimation is therefore
confined to the region near the true robot’s pose and can therefore typically be
approximated with a unimodal distribution (e.g. a Gaussian). In general, the
increment error of robot motion should be relatively small for one step of the
movement. Hence, the robot’s pose would be corrected in time when a new
perception has been received.

Global Localization In contrast, global localization [20, 89] assumes that no a pri-
ori information of the starting robot’s pose is given. As a result the uncertainty
of robot’s pose has to be unbounded at the beginning. A more difficult problem
can arise when the robot has failed to localize in the environment, but it believes
that it’s current pose estimation is accurate. Moreover, most of the state-of-the-
art approaches cannot ensure the correctness of robot localization. Thus, for
truly autonomous robots how to make them recover from such failures becomes
essential [42, 150, 63].

Passive Localization Sometimes it is difficult for a robot to localize itself when it
stands still at the same place and obtains the same knowledge about a part of
the surroundings over time. Without the consideration of movement control in
order to facilitate robot localization, the robot can only observe the environment
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1. Introduction 9

passively. It is actually a pure localization problem and generally known as
passive localization [51, 90].

Active Localization Although the majority of approaches did not take into account
the problems such as “where to move” and “where to look”, some researchers have
aimed to the active localization [49, 79] problem. In their proposed approaches
robot control has been partially or fully integrated into the localization process,
in order to make the robot localize itself more efficient and robust. In practice
whether the robot can move to the right location is probably crucial for the suc-
cess of localization especially in situations, e.g. a symmetric corridor illustrated
in Fig. 1.5. In this environment it would be impossible for the robot to achieve a
unique correct pose estimation, unless it leaves the corridor and drives into one
of the opening rooms arranged asymmetrically.

Localization in Static or Dynamic Environments Assuming that the environ-
ment does not change over time (static), the necessary estimated quantity is
the robot’s pose. A lot of work has focused on localization in static environ-
ments [93, 21, 162]. However, most of the environments in the real world
are dynamic, e.g. people, movable furniture, doors, daylight, etc.. In general,
techniques dealing with localization in dynamic environments need to model dy-
namic objects perceived by the robot and filter them out when updating the pose
estimation. Alternatively non-stationary objects have to be incorporated in the
states of the environment and estimated together with robot’s pose. The former
group of approaches are relatively easy to be implemented. Fox et al. [50, 52]
have evaluated their approach in an environment populated with people. Sensor
data can be filtered, so that the damaging effect of sensor readings corrupted by
humans or unexpected changes in the environment is reduced. Therefore, the
key to solve the localization problem rests in how to detect external unmodeled
dynamics. In contrast, adding dynamic entities into the state vector may suffer
from the computational complexity [157, 161], since an unknown number of
dynamic objects have to be taken into account except for pose estimation.

Path planning – “How can I reach the goal given the current location?”

Fundamentally path planning addresses the problem concerning the selection of ac-
tions [152]. A planned path can be summarized as a sequence of subgoals leading
to the final goal and a list of movement (actions) to be executed sequentially for
each subgoal. The status of robot movement is fed back with sensor information (e.g.
speed, acceleration, pose, force, etc.) over time, so that the control loop can compare
the sensor measurements to the reference values given in the action command that
will be executed at next step. Note that in this thesis subgoals and goals for a planned
path were given in terms of the definition at the beginning of this section. Navigating
to a given goal was the task assigned to the robot.

Once a path is going to be computed, a map of the environment and robot’s pose
with respect to this map need to be available. A goal defined in the map is necessary
for this plan as well. In general, the uncertainty may exist in many aspects, such as
the representation of the surroundings, pose estimation of the robot, robot’s actions,
robot perception, etc. [124, 157]. Moreover, the discrepancy between the built map
and the real world [68] is inevitable due to dynamic objects in the environment, e.g.
doors and people walking by, and errors during the mapping process. Hence, the
major questions of path planning are centered on the following areas.
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10 1.2. Background Knowledge and Related Work

Figure 1.5.: A sketch map containing several positions, at which the robot obtains the same
sensor perception. Various situations are illustrated with the robot depicted
with a red circle and the corresponding sensor perception depicted with a blue
area in front of the robot.

Firstly, how to model the uncertain elements? In fact, much work assumed that the
map of the environment and the robot’s pose were known precisely and robot mo-
tion (action) had a deterministic effect on path planning. According to this assump-
tion a path from the current robot’s pose to a given goal can be computed with a
graph-based search algorithm (e.g. the A? algorithm [37] and a breadth-first search
in a graph [103]), on the basis of a navigation function defined in the so-called
configuration space9 C (such as the NF1 algorithm that is described in the book of
Latombe [92] and will be introduced in section 4.3.1), or by learning reactive rules
for planning in terms of the salient states [32], etc.. However, once the uncertainty
is taken into account, the complexity of the planning task has to be dependent on
the non-deterministic factors. When the robot’s pose can be sensed at all times, i.e.
the robot’s state is fully observable, the uncertainty rests in robot motion. Such a
paradigm that is able to generate a control policy including non-deterministic aspects
in state transition is known as Markov Decision Processes (MDPs) [106]. In a more
general situation the uncertainty of robot perception has to be considered as well.
In other words, the robot’s state can be estimated up to a certain degree (partially)
due to the noisy sensor data. This case is generally referred to as Partially Observable
Markov Decision Processes (POMDPs) [125, 109]. A family of techniques generating
a control policy for the MDPs or POMDPs problem are on the basis of the iterated
computation of a value function10. Rewards and penalties for all possible actions lead-
ing from the robot’s position to the goal are evaluated by the value function under

9The C–space gives all poses of the robot available in its working environment. The pose can be defined with
x, y, z for translation and α, β, γ for rotation, the parameters of joints for robot arms in industrial areas,
etc..

10An early description of value iteration goes back to the work of dynamic programming from Bellman [6].
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uncertainty in robot motion (MDPs [22]) or in both robot perception and robot mo-
tion (POMDPs [72, 170]).

Secondly, how to react or replan according to dynamic objects in the environment? Since
the global plan generated on the basis of the built map may become invalid because
of dynamic obstacles, a local strategy handling with the objects that have not been
modeled in the map is needed for the robot to complete the given plan or task. There-
fore, most of the current systems for path planning, e.g. the motion generation that
will be introduced in section 4.3.1, shall combine a high-level global plan [128, 19]
with a local collision avoidance approach continuously reacting to obstacles perceived
by robot sensors, such as the Dynamic Window Approach (DWA) [48], Nearness Dia-
gram (ND) [107], Vector Field Histogram (VFH) [14], etc..

Figure 1.6.: Elementary tasks lying in robotic exploration and the combined problems [101]
in the overlapping area marked with A, B, C and D respectively. (A) SLAM,
(B) active localization, (C) classic exploration and (D) integrated exploration.

In general, the three processes introduced above are the basic issues in the frame of map-
based navigation for mobile robots [45, 105]. Truly autonomous mobile robots need mech-
anisms to navigate purposefully in an a priori unknown environment [3]. However, as
known from the description of the three basic tasks they are actually closely related. Firstly,
planning a path towards a goal is tightly coupled with the current robot’s pose and the
knowledge of the environment at least between this pose and this goal. Next, the environ-
ment representation is needed to estimate the robot’s pose, and conversely given a set of
observations the robot needs to know from which locations these observations have been
made, so as to build a map of the environment. Mapping, localization, path planning and
their overlapped tasks are illustrated in Fig. 1.6 with different regions. As it is infeasible
to provide a robot with the corresponding representations for every possible environment,

Bielefeld University



12 1.2. Background Knowledge and Related Work

it is assumed that no a priori knowledge about a particular environment is available for
the robot. Hence, one of the most important assignments for a mobile robot is to gather
information of the environment with sensors and create a spatial representation. Since the
perception of the surroundings is always related to the current pose of the robot, on the
one hand, without localization it is impossible to add new features from the environment
into the common world frame and go on updating the map. On the other hand, without the
common world frame in which the environment is represented localization alone is also in-
credible, as the robot needs a reference frame to estimate its pose. Therefore, the problem
of Simultaneous Localization And Mapping (SLAM) [38] is often known as a chicken and egg
problem, which cannot be handled separately. Designing a control policy which can facili-
tate the pose estimation in a known environment is the goal for active localization [18]. If
the control policy is created for building the representation of the surroundings with known
robot’s pose, it is a solution of exploration for mapping [135]. The central area which cov-
ers the three basic problems is generally referred to as integrated exploration and becomes
more challenging [137]: where should the robot go subsequently to obtain information from
the environment and localize itself in the built representation effectively and efficiently?

One of the basic capabilities of a personal service robot operating in an indoor environment
is to solve the integrated exploration problem. In order to solve this problem, Human-Robot
Joint Spatial Exploration (HRJSE) is proposed in this thesis to build a framework that allows
people to help the robot complete the exploration of the environment initially unknown to
it and makes the robot interactively learn from people to build a spatial representation. On
the basis of this concept, human-robot interaction is able to be integrated with a general
robotic mapping process. As the information incorporated in the spatial representation for
the robot is dependent on the individual user in the individual environment, an appropri-
ate interactive scenario is needed for the robot to acquire the corresponding information
from the user. Motivated by the two questions posed at the beginning of this chapter, the
Home-Tour introduced in the last section is assumed as an initial scenario for the robot to
interactively gather information from the human user. By this means, the robot is expected
to acquire a representation of an indoor environment which is not only useful for the robot
to perform the basic tasks, e.g. localization and path planning, but also contains spatial un-
derstanding and navigation strategies of the human user. Various solutions to the integrated
exploration problem based on a predefined exploration strategy have been proposed, such as
the popular frontier-based exploration strategy used to identify areas of interest tending to
lie on the edge of the explored and the unexplored regions [101, 163], which does not take
into account the localization issue, the active loop-closing strategy detecting opportunities
to actively close a loop [137], the information gain-based exploration strategy seeking a
compromise between making the robot re-enter already visited areas to reduce the pose
uncertainty and guiding the robot to unknown regions [138], etc.. In contrast to these so-
lutions, a robot is capable of achieving an exploration strategy from the user in the context
of the framework HRJSE.

Recently building a spatial representation for a robot in an interactive scenario has become
a more and more attractive research direction. Many of the environment representations
are based on the framework of (Hybrid) Spatial Semantic Hierarchy [86, 100] built from
a metric map to an intermediate level, in which the environment is segmented into un-
known regions, and finally up to a conceptual map, where human spatial concepts and
understanding are integrated in the map with the help of human-robot interaction. Bee-
son et al. [5] have proposed a robotic chauffeur reasoning about the spatial organization
with the route instructions (e.g. “rotate right”, “go forward five meters”, etc.) obtained
from human passengers. However, compared to the interactive human joint Home-Tour the
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activity of the robot would be impaired, if the robot can only passively obey the explicit
descriptions for the route from human passengers. Besides, person’s trajectories containing
human navigation strategies (see section 4.2) were throughly ignored. The interactivity
between a human user and a robot has been emphasized in the work of Zender et al. [169]
and Topp [153] in an indoor environment. Compared to a sequence of detailed movement
dictates the robot can track and follow the potential guide-person under some predefined
hypotheses and communicate with the person to gather more comprehensive information
about the environment in a guided tour. Similar with the Home-Tour the robot was able to
build an environment representation together with its human user. However, the environ-
ment representation based on a metric map consisting of the line features extracted from
the straight structures, e.g. the walls, in an indoor environment can provide a rather sparse
description of the surroundings. Such a metric line map is not sufficient to fully support
navigation actions, as details for free space in the environment cannot be provided in the
built map. In addition, the navigation capability of the robot may be limited, as the path
leading the robot to a set goal was computed on the basis of a static navigation graph. This
graph was built with the nodes selected coarsely from the robot trajectory. Therefore, this
thesis focuses on building a topological environment representation based on an occupancy
grid map, which does not rely on predefined feature extractors. Furthermore, the grid map
is able to provide a more robust and accurate mapping process especially in cluttered indoor
environments. Besides, a person-following behavior of the robot in the interactive Home-
Tour scenario, as well as human navigation strategies implicitly contained in the observed
human movement trajectories are taken into account in this work.

More recently the Autonomous City Explorer project [4] has aimed to create a robot capable
of navigating unknown urban environments without the use of GPS data or a priori map
knowledge. The robot found its way to the set goal by repeatedly asking the pedestrians
for movement directions towards this goal. By this means, the robot was able to explore an
unknown outdoor environment with the help of human passers-by and enrich its knowledge
about the surroundings. Hence, on the basis of the similar idea, i.e. exploiting humans to
complete tasks assigned to a mobile robot, HRJSE would be appropriate as well for such an
exploration in an outdoor environment. Of course, different strategies that should be used
to perform individual scenarios, i.e. the Home-Tour and the scenario for asking the way,
have to be proposed.

1.3. Contributions

This thesis seeks a solution based on Human-Robot Joint Spatial Exploration (HRJSE) to
the problem concerning autonomous acquisition of spatial representations for a mobile
robot operating in a human-shared environment and providing services to the human user.
An interactive scenario, i.e. the Home-Tour scenario described in section 1.1, is therefore
regarded as the cornerstone of information gathering, in order to make the robot not only
learn models of the environment, but also exploit the information of the surroundings
gathered from a guide-person.

In order to build the proposed framework, the integral parts and the extendibility of the
whole system are described as follows:

. Person-following [131, 28] is a key issue for a robot to interactively acquire spatial
representations with the help of the human user. Keeping up with the correct guide-
person the robot is able to complete the interactive Home-Tour and obtain the infor-
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mation from both the environment and the human user. Hence, how should the robot
move when accompanying the user becomes crucial to achieve success in acquiring
the environment representation interactively [58, 164].

. Once the robot can follow the guide-person to perform an exploration of the unknown
environment, building a metric representation incrementally and estimating the pose
of the robot with respect to the environment representation are the next task that
the robot has to face. An occupancy grid map-based SLAM (Simultaneous Localiza-
tion and Mapping) [31, 144] approach that should be appropriate for the interactive
guided tour is therefore needed for the robot to acquire a basic (metric) environment
representation.

. In general, a metric representation is the basis and the prerequisite for most of the
current work that focused on building a hierarchical environment representation un-
derstandable and useful not only for the robot but also for the user in an interactive
scenario, such as the guided tour or the Home-Tour [169, 153]. Therefore, a par-
tially hierarchical structure for the environment model proposed by Topp [153] is
able to be built on the occupancy grid representation adopted in this thesis as well.
By this means, different spatial concepts, e.g. regions and objects belonging to the
corresponding regions, can be integrated into the metric environment representation.
This conceptual environment model would be beneficial to the robot, when the robot
provides services to the human user.

. After building a metric environment representation the woken up situation, in which
the robot is switched on in an arbitrary position and needs to localize itself in this
previously built map, may occur in a practical scenario. Hence, the capability of
global localization [151, 15] is necessary for the robot, and this shall make the whole
system more robust in practice.

. To provide services, thus to move around and complete tasks assigned by the human
user in the environment, planning a path leading the robot from the current pose to
any reachable goal defined in the environment representation is necessary. There-
fore, a path planning component based on not only the built map of the environment
but also the knowledge gained interactively from the guide-person [166] has been
integrated into the system. By this means, path planning is expected to benefit from
human navigation strategies. Besides, a 3D capable navigation and obstacle avoid-
ance system [165] is crucial especially when the potential hazards are unperceivable
to the robot.

Considering the aspects discussed above three essentials consist the central of the frame-
work HRJSE in this thesis. At first, a person-following behavior is needed to make the
robot keep up with the human user and therefore explore the unknown environment. Once
the robot can move around, a metric representation of this environment is able to be built
incrementally. With the help of the interactive Home-Tour additional information can be
gathered from the human user as well, apart from the knowledge obtained directly from
the environment. By this means, an environment representation incorporating human spa-
tial concepts and understanding can be built by the robot. Thus, the main contributions of
this thesis follow below:

. A framework of HRJSE based on navigation capability of the robot and hybrid envi-
ronment model for interactive acquisition of a spatial representation.

. Where to move in the Home-Tour? A novel person-following behavior which takes into
account spatial context and person’s positions relative to the robot.
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. What to look at? A robust technique for map building that tackles the dynamic obsta-
cles particularly perceived in the Home-Tour, i.e. the guide-person.

. What to obtain from the guide-person? A path planning approach that benefits from
human spatial concepts and navigation strategies, as well as environment informa-
tion.

1.4. Organization of this Thesis

The organization of the thesis follows rather closely the way to solve the central problem
of this thesis, i.e. how to make a mobile robot interactively learn from its human user and
build a spatial representation incorporating the gathered information?

Chapter 2 – Person-Following

The person-following behavior making the robot keep up with the guide-person in the
Home-Tour is discussed. Considering the spatial context and the relative position of the
human interactive partner with respect to the robot, a novel following behavior that enables
the robot to automatically switch between three basic approaches in the interactive Home-
Tour is designed and described in detail in chapter 2.

Chapter 3 – Map Building in a Home-Tour

Assuming that the robot can follow the user in the initially unknown environment, one
of the most important tasks for the robot is to perceive the surroundings and build a ba-
sic representation of the environment, i.e. a metric map. An occupancy grid map based
environment representation built by a RBPF-SLAM approach is selected and introduced in
chapter 3. An extension of the state-of-the-art SLAM approach is proposed as well in this
chapter, in order to reduce the negative effect of the guide-person perceived by the robot
all along the Home-Tour on a mapping process.

Chapter 4 – Path Planning Adopting Human Strategies

Once an environment representation has been achieved by the robot, both the robot’s pose
and the surroundings can be illustrated in a common global coordinate frame. A goal can
be defined as well in this frame for the robot. In the context of the interactive Home-Tour,
making use of the knowledge gained from an analysis of the observed human trajectory
robust path planning is expected to be achieved. The trajectory of the guide-person is
stored in a graph, and a topological environment representation can be built upon the
metric map. A map- and person’s trajectory-based path planning approach is presented in
this chapter. The general idea of multisensor-based motion generation is introduced as well
in order to deal with the problem of safe navigation in an unconstrained 3D environment.

Chapter 5 – Evaluation

Overview of the experimental design including procedure of the user study and system ar-
chitecture of the implemented system for interactive acquisition of spatial representations
is presented. The user study was conducted by the subjects who used the robot platform for
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16 1.4. Organization of this Thesis

the first time, in order to validate the robustness of the designed person-following behavior
in the interactive Home-Tour, the practicality of the mapping process and the advantages
of the proposed hybrid path planning approach combining the built environment represen-
tation with human navigation strategies. Experimental data collected for the assessment
of individual system components, observations from a subject’s perspective and evaluation
results of the integrated system are discussed in this chapter.

Chapter 6 – Conclusions and Future Considerations

Chapter 6 summarizes the main aspects of the presented work. Conclusions that drawn
from the results achieved in this work and future considerations potentially beneficial to
the current system are discussed as well.

Fang Yuan
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2. Person-Following

Recalling the basic idea of Human-Robot Joint Spatial Exploration (HRJSE), people have
been invited in an interactive scenario, namely the Home-Tour introduced in section 1.1.
In the Home-Tour the robot follows its human user in an indoor environment, while the
user explains the surroundings to the robot. Thus, the robot can interactively learn and
gather information from the user. To perform the Home-Tour and interactively acquire a
spatial representation, the robot needs to keep up with the guide-person. Person-following
actually builds a connection between the movement of the robot and the guide-person.
By this means, the robot is able to move around in the environment and complete the
interactive Home-Tour scenario. A person-following module is regarded as the basis for
interactive acquisition of an environment representation, as on the one hand, it provides an
opportunity for the robot not only to explore the unknown environment, but also to learn
about the environment from the human user. On the other hand, it is possible for the robot
to incorporate the interactively gathered information into the spatial representation built
by itself. With the help of the Home-Tour scenario an additional exploration strategy1 would
not be necessary for the robot. Nevertheless, before building an environment representation
and providing services to the user, the robot needs to know how to follow or accompany
the guide-person.

Gockley et al. [58] proposed two person-following approaches, i.e. direction-following,
where the robot always attempted to drive directly towards the current position of the
tracked person, and path-following, where the robot tried to follow the person’s path. They
demonstrated that the direction-following behavior was more human-like and more closely
matched the expectations of humans than path-following. However, people would proba-
bly change their following behaviors in the light of concrete situations in practice, rather
than using a unique behavior. Imagine two persons walking in a building passing narrow
passages, doors and open spaces. Their behaviors and relative positions are probably influ-
enced by concrete situations in the environment. In narrow passages they have to walk in
line, while in open spaces they prefer walking side-by-side to ease communication. There-
fore, using a unique person-following behavior is generally not appropriate considering
various contexts in the environment. The robot needs to change its behavior according to
the contexts and keep a close watch on the person’s movement, so as to effectively follow
the guide-person in the human-robot joint exploration.

In narrow spaces the trajectory of the guide-person would lead the robot to avoid obstacles,
when the robot reaches goals on the person’s trajectory one after another. However, in open
spaces the robot should walk with the person side-by-side in order to facilitate communica-
tion between the person and the robot about the environment. Besides, moving towards the
guide-person can be regarded as an efficient way to keep up with the person, because the
robot is able to react to the movement of the person as soon as possible. Thus, three elemen-
tary following behaviors have been designed, i.e. path-following, parallel-following and
direction-following. By combining the elementary behaviors, an adaptive context-aware

1Note that the exploration strategy mentioned here is used for the robot in the Home-Tour to build a spatial
representation. Due to dynamics of the environment and completeness of the built environment represen-
tation, additional exploration strategies are necessary.
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and effective following behavior, considering narrow spaces, facilitating human-robot inter-
action, and exploiting the human as a knowledgeable navigator, is expected to be achieved.
However, different partially contradicting goals have to be considered. That is a trade-off
between keeping up with the guide-person robustly in highly relative movements while per-
ceiving the unknown environment, being engaged in communication, as well as avoiding
obstacles and following the person in appropriate distance.

The remainder of this chapter is organized as follows: In the next section related work on
person tracking and following will be discussed. Two prerequisites for a person-following
behavior, i.e. person tracking and robot motion control, are described in section 2.2, before
core strategies of the adaptive context-aware person-following combining three elementary
behaviors is discussed in section 2.3. Afterwards, the elementary following behaviors are
presented in section 2.4. Thus, the robot is able to automatically switch between these
behaviors, according to core strategies dealing with various situations in a Home-Tour sce-
nario. Finally the designed following behaviors are concluded in section 2.5.

2.1. Related Work

An important prerequisite of person-following is person tracking. In general various per-
son trackers can be categorized into the following two groups: single-sensor-based meth-
ods, namely uni-modal anchoring, and multi-sensor-based methods, namely multi-modal
anchoring. In the first group many researchers have used vision as the main sensor for
person detection and tracking. Skin color detection [131], optical flow-based person track-
ing [119] and stereo vision-based approaches [7] are the most common methods belonging
to this group. However, once the robot moves, the variation of lighting conditions in a real
environment is prone to make a camera-based algorithms unreliable. In addition to camera-
based algorithms many approaches using the laser sensor to look for leg hypotheses have
been proposed by e.g. Montemerlo et al. [111]. In their work conditional particle filters
were used to estimate the location of people conditioned upon the distribution of robot’s
poses over time in a previously mapped environment. Schulz et al. [129] used sample-
based joint probabilistic data association filters to track people. However, only using laser
information is not necessarily sufficient. It is difficult for a robot to confirm the correct
target to be followed at the beginning, especially when several candidates, e.g. people or
something else with two legs, are standing in front of the robot. Besides, active sensors,
such as RFID [88] or other transmitters would be also viable for a person-following task,
but people have to wear extra devices and this might be inconvenient in many applications.

Due to the shortages when applying a single sensor, multi-sensor-based approaches have
been proposed as well. Feyrer and Zell [44] used a potential field for sensor-based fusion of
vision and laser range data. Darrell et al. [30] defined some combination rules to fuse the
results of individual algorithms from multiple visual modalities. Nevertheless, the robot
is probably confused, when merely the face and leg information is available without an
explicit instruction like “follow me!” from the real guide-person. Considering the disad-
vantages mentioned above, the multi-modal anchoring system (see section 2.2) from the
work [91] combining camera, laser and microphone data is adopted.

Obtaining the position of the guide-person a robot can move to a goal computed in terms
of this position, in order to keep up with this person. Since 10 years there have been many
researchers engaging in the area of person-following. Most approaches performed the so-
called direction-following [131], where the speed of the robot was generally adjusted by a
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feedback of the control loop proportional to the distance between the robot and the person
(see e.g. [24] and [28]). Thus, the robot can follow up the person as soon as possible,
while maintaining space to avoid collisions. Calisi et al. [23] integrated appearance models
and stereo vision for people tracking on the basis of a fixed stereo camera. They assumed
that the robot had an a priori map of the environment and used laser-based Monte Carlo
Localization (MCL) [2] to estimate the pose of the robot. However, this integrated approach
is not appropriate for an unknown environment containing dynamic obstacles. Another
drawback of this tracking system is that it is unable to distinguish the people and the
objects in the background, when the colors of their clothes and the objects were similar
to the target person.

In contrast to the approaches mentioned above, Gockley et al. [58] developed two person-
following behaviors, i.e. path-following and direction-following. They tried to find out
quantitative and qualitative difference between the two methods of person-following. Krui-
jff et al. [85] proposed a conceptual representation of the environment with situated dia-
logue in a guided-tour. However, the key module applied for person tracking was based on
the laser sensor. Leg patterns were detected from the surroundings. The robot followed
the trajectory of the guide-person like a path-following behavior and preserved a certain
distance to avoid disturbing this person. More recently a situation-aware following behav-
ior was proposed by Zender et al. [167]. In principle the robot moved directly towards
the guide-person, except for some specific situations, e.g. in a doorway or in a corridor,
given in a known environment map. Therefore, the robot can be aware of these situations
and use the predefined strategy. Since an known environment representation recording
detailed spatial knowledge and organization is necessary for this approach, it is impractical
for a Home-Tour scenario, in which no a priori information about the environment is avail-
able. Considering the discussion about person tracking as well, we have developed the so
called parallel-following behavior in addition to the path-, and direction-following behav-
ior, so that the person and the robot can also walk approximately side-by-side in the light
of spatial context. Note that some work has been done toward a side-by-side movement of
a robot with a person [121]. Combining the velocity obstacle approach [46] with virtual
target tracking, robot’s speed (heading and velocity) can be computed and varied according
to the movement of the accompanied person and the state of the environment. However,
under the assumption that current positions and velocities of the robot and obstacles were
given, the velocity obstacle approach would not be appropriate for the robot especially in a
highly dynamic environment, e.g. a human-shared environment. In contrast, the reactive
navigation approaches integrated in our robot systems (see section 4.2.3 and 4.3.1) are
more effective and practical than the velocity obstacle approach. Furthermore, a hybrid
approach based on the three elementary following behaviors have been designed. By this
means, the robot is able to automatically switch its behavior according to the environment
and positions of the followed person relative to the robot.

2.2. Person Tracking and Motion Control

Before introducing the adaptive context-aware person-following behavior, two prerequisites
have to be discussed. At first, the robot needs to know which person should be kept up
with, and then it can try to track the person. In addition, how to reach a goal in a person-
following process without collisions must be considered. Dangerous situations for not only
people in the vicinity but also the robot should be prevented by controlling the robot’s
speed.
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(a) (b)

Figure 2.1.: The test environment for the person tracking system on the simulation platform
Stage. a) shows the plan drawn from the BIRON apartment equipped with
standard furniture. This plan, the robot, the four pairs legs of people simulated
with small hexagons in front of the robot and the laser plane simulated with
the light blue area are illustrated in (b). Notice that the color bitmap a) is read
by Stage and represented with a black white environment model.

2.2.1. Multi-Modal Person Tracking

To perform a person-following behavior the robot needs to search all potential guide-
persons around it and distinguish between different interaction partners. In the laser plane
pairs of legs generally form characteristic patterns. These patterns can be detected [54]. In
order to avoid including other objects forming the patterns similar to human legs, a pan-tilt
camera is used to detect and recognize person’s face. In addition, the stereo microphones
are used to locate the direction of sound sources [57]. The person who intends to guide
the robot around the new environment can directly give speech instructions2. The robot
will prepare to respond to a person, only when the pair of legs, the face as well as the
sound source of this person are anchored at the same time by the corresponding sensors.
Note that the person detected by the three signals, namely the legs, the face and the sound
source, is assumed as a potential interaction partner, as a speech information is yet needed
for the robot to make the ultimate decision on which person should be followed.

Fig. 2.1(a) shows the the plan of the BIRON apartment containing standard furniture, while
Fig. 2.1(b) illustrates this plan simulated on Stage3. Because of a conversion of the input
plan a black white environment model is obtained. Black lines and areas in this figure
correspond to obstacles which the robot need to avoid. Four pairs legs of the persons
simulated with small hexagons are marked with different colors in front of the robot. The
180◦ perception area of the laser sensor is illustrated with light blue. Search, Tracking
and Person Lost are basic states of the state machine in the person tracking system. The
state machine is switched to Tracking when person-following is triggered. Outputs of the
person tracking system obtained from Fig. 2.1(b) are illustrated in Fig. 2.2. The simulated

2English and German instructions are available for the current system.
3Stage is a 2D multiple-robot simulation platform from the Player project. With this simulator the robot sensors

and actuators, as well as objects can be simply simulated in a two-dimensional bitmapped environment
instead of a run on a real agent. For details please see http://playerstage.sourceforge.net/.
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Figure 2.2.: Results of the person tracking system corresponding to the situation illustrated
in Fig. 2.1(b).

person currently tracked by the robot is shown with the red line, while the other three
candidates indicated with black lines stay in state Search. Person’s positions outputted
by the tracking system are expressed with polar coordinates in the robot frame. Angular
coordinates are defined in rad from−π

2
to π

2
. A 0 rad or 0◦ angle indicates that the person

stands right ahead the robot. Notice that each candidate has an identifying number shown
nearby. Hence, positions of all candidates recorded in the tracking system can be obtained
according to the respective numbers. Once the guide-person is fixed, person-following is
triggered. The red line indicates the currently tracked person till the robot loses the target
and the state machine of person tracking is switched to Person Lost. Only the information
of the tracked person and the legs belonging to this person are illustrated with the red and
blue bar under the main graphic window shown in Fig. 2.2, because the camera and the
microphones are not simulated by Stage.

The person tracking system would lose the guide-person when the person moves relatively
quickly with respect to the robot in a short time, or the person is outside the perception
area of the laser sensor, i.e. a semi-circle with radius 8m for the current system. When
the tracked person is lost, the state machine of person tracking is switched to Person Lost.
The guide-person will be prompted by the robot. The robot will restart to follow the guide-
person when the person standing in front of the robot is identified by the tracking system
with face, voice and legs information. Afterward, person-following is triggered with a
speech command4 sent by this person.

4See section 5.1.2 for details about prompt of the robot and speech commands of the guide-person.
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2.2.2. Motion Control

Assuming that the position of the person in the robot frame is known from the output of
the person tracking system, the person’s position can be calculated in a global coordinate
system, in which the current robot’s pose is expressed. This position in the global coordinate
system is defined as a goal for the robot in direction- and path-following (see section 2.4.2
and 2.4.3 respectively), while a robot’s goal in parallel-following (see section 2.4.4) is
computed on the basis of this position. As defined in section 1.2 a robot’s goal is given
by a 5-tuple (x, y, θ, goal_radius, angle_diff) in the global coordinate system, where
(x, y) shows the 2D goal-position. The goal-direction is marked with θ. The distance
tolerance as well as the angle difference to the set goal is defined by goal_radius and
angle_diff respectively. The global coordinate system mentioned above is dependent on
the coordinate system in which the robot’s pose is defined. For the Home-Tour scenario pose
estimation of the robot is given in the world frame defined by the mapping process (see
chapter 3). Alternatively robot’s pose can be obtained directly from the intrinsic sensor,
e.g. the odometry. Although the accumulated error of odometry increases with the moving
distance of the robot, if the goal with respect to the current robot’s position is not far and
can be updated frequently5, the robot is able to keep up with the guide-person [164].

After a robot’s goal is computed according to the current person’s position, the robot needs
to move towards this goal without collisions. As introduced in section 1.2, in general
motion planning approaches consist of global planning on the basis of a priori knowledge
of the environment and local reactive planning based on sensory information. Under the
assumption that the environment is initially unknown to the robot, a global path plan would
be impractical at the beginning of a Home-Tour scenario. When the robot has completed
the exploration of the environment with the help of the guide-person, a global path can be
planned for the robot, as an environment representation has been available (see chapter 4
for details). Therefore, a reactive navigation approach that enables the robot to avoid
obstacles and reach goals computed in the Home-Tour is needed for a person-following
behavior.

Another issue to consider is the fact that person’s legs tracked in the laser plane would
normally be interpreted as obstacles. However, for the following behaviors proposed in this
thesis it is required that the robot reaches goals computed according to positions of the
person. Hence, reaching goals and avoiding obstacles have to be both considered for the
robot performing the Home-Tour. It is needed for the reactive navigation approach used in
the proposed person-following behaviors not to be impeded by the presence of the person
as an obstacle6.

2.3. Adaptive Context-Aware Following Behavior

Recalling the introduction of the elementary following behaviors presented at the beginning
of this chapter, no one behavior is generally suitable in various situations in the interactive
Home-Tour. Nevertheless, each elementary behavior has its own characteristic, which is
appropriate in a certain situation. In view of human-human following behaviors generally
changed according to contexts in the environment, this section aims at designing adaptive
context-aware person-following by combining the three elementary following behaviors.

5See section 2.4 for strategies of the elementary person-following behaviors.
6See section 4.3.1 and section 4.2.3 for the introduction of the obstacle avoidance approach integrated in

BIRON I and BIRON II respectively.
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To achieve this goal, core strategies taking into account the advantages of the elementary
behaviors in specific situations are discussed in the following.

2.3.1. Core Strategies

Recently combining different following behaviors to enable a robot to accompany a guide-
person has been proposed as a long-term goal by Gockley et al. [58]. In addition, an
accompanying behavior has been implemented in [121] taking into account situations like
narrow doors and narrow hallways. However, positions and velocities estimated for all
obstacles perceived by the robot are difficult to be achieved especially in highly dynamic
indoor environments.

In general, the key problem of the hybrid approach, i.e. the adaptive context-aware fol-
lowing behavior, proposed in this thesis lies in how to combine the advantages of the three
elementary behaviors according to the information obtained from the surroundings, i.e. dis-
tance to obstacles measured by the laser range finder mounted on the robot7. Considering
that person’s legs are tracked by the laser scanner as well (see section 2.2.1), environ-
ment and person information can be gained both from the laser plane. As a large person’s
angle with respect to the robot orientation probably results in the state transition Person
Lost especially when relative movements exist between the person and the robot8, a front
field (FF) is defined in the laser plane to give an early warning. The guide-person should
be kept in FF as far as possible, in order to prevent the person tracking system from losing
the guide-person. Therefore, the laser plane is divided into three parts, i.e. one front field
and the rest two side fields. Core strategies are different as well, depending on whether the
guide-person is tracked in the defined front field FF.

Another issue to consider in the core strategies is the appropriateness of the elementary
behaviors in certain situations. The robot may keep up with the guide-person more ef-
ficiently when direction-following is adopted, because the robot always tries to move in
the direction of the current person’s position. The angle to the person with respect to
the robot orientation can be reduced as well, considering the characteristic of direction-
following. Therefore, direction-following is regarded as the most effective behavior to keep
the guide-person in FF. Path-following would be more proper, when the guide-person is
passing narrow passages, or obstacles are perceived in the vicinity. Hence, it is regarded as
the safest behavior as the robot follows the path that the guide-person has just passed by. In
contrast to direction- and path-following, the robot should accompany the person to ease
communication when free spaces can be detected on at least one side of the person, e.g.
the robot moves through wide passages or in open spaces. Free spaces found around the
current position of the guide-person is a precondition for the choice of parallel-following9.

Besides, situations in an indoor environment, e.g. open spaces, wide, narrow and door-like
passages, cluttered regions, are especially considered with characteristics of the elementary
behaviors. Fig. 2.3 shows the core strategies in switching behaviors. Unexpected dynamic
obstacles, e.g. passers-by, might pass between the person and robot in a real world scenario.
Considering the ability of reactive navigation (see section 4.2.3 and 4.3.1), in general the
robot is able to avoid obstacles in highly dynamic environments. Hence, obstacle avoidance

7See section 1.1 for the introduction of the robot platform.
8As mentioned in section 2.2.1, the person tracking system would lose the guide-person when the person is

outside the perception area of the laser, i.e. a semi-circle area.
9Note that obstacles are checked in the laser plane according to the defined three parts and the area around

the guide-person for parallel-following. See the description of the core strategies later on.
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is not a special issue taken into account in the core strategies. Potential hazards between
the robot and person defined with circle OCP in Fig. 2.3 are not especially checked either. In
terms of the appropriateness of the elementary behaviors, as well as person’s positions and
obstacles perceived in the defined three parts of the laser plane, basic rules are elaborated
on as follows:

. The perception area, i.e. the laser plane, is divided into three parts, as shown in
Fig. 2.3(a). One front field (FF) defined with 2α illustrates a region, in which the
guide-person should stay as much as possible. Actually α gives a threshold of the
person’s angle in the robot coordinate system, so that a large angle between the
person and the robot can be reduced as soon as possible by choosing an appropriate
behavior. Except for the front field FF two side fields LSF and RSF are defined as well.
Especially when the robot is guided to move through a narrow passage, obstacles lying
near the robot are probably detected in the two side fields.

. The area occupied by the guide-person (OCP) is represented with a circle centered
on the current person’s position P . rP gives the radius of circle P according to the
distance between the two legs of the person detected by the person tracking system.

. The check-regions on the left and right side of OCP with respect to the robot orienta-
tion are marked with CR_PL and CR_PR respectively. Free spaces are checked in the
two regions for the choice of parallel-following. The two yellow boundaries on the
left and right side of OCP are tangent to circle P . The areas detected in CR_PL and
CR_PR are given by angle γ in the laser plane. The calculation of γ is illustrated in
Fig. 2.3(b) in detail. The two boundaries PLL and PLR on the left side of circle P are
tangent to circle PL. Notice that PLR is tangent to circle P as well. Similarly the two
tangents of circle PR on the right side of circle P are depicted with PRL and PRR.
Angle γ can be calculated simply with the following equations:

θ = arctan
r√∣∣∣−→RP ∣∣∣2 − |rP |2 with

∣∣∣−→RP ∣∣∣ > |rP | (2.1)

γ = 2θ. (2.2)

In order to reserve free space for the robot when it reaches the goal PL or PR, ra-
dius r is chosen according to the real size of the robot. The check-regions in CR_PL
and CR_PR illustrated in Fig. 2.3(a) are therefore defined with sector areas SEC_PL

and SEC_PR respectively. The radiuses for the two sectors10 are both
∣∣∣∣∣∣−−→RPL∣∣∣+ r

∣∣∣.
As a condition for using parallel-following, no obstacles in SEC_PL and SEC_PR are
checked by the laser sensor.

. When the person moves in front field FF, facilitating human-robot interaction is con-
sidered combined with specific situations in the environment. The robot conserva-
tively chooses path-following in case obstacles in LSF and RSF are both near to it,
e.g. when the robot is guided in a narrow passage, obstacles are likely to be de-
tected both in LSF and RSF. Otherwise, free space is found at least on one side of the
robot. Path-following, direction-following and parallel-following may all be regarded
as candidates. If the guide-person is going through a door-like passage, obstacles are
in proximity to the person. These obstacles are probably detected in both CR_PL and
CR_PR, namely the sector areas SEC_PL and SEC_PR depicted with yellow lines in

10According to the geometrical relation of the robot R, the person’s position P and the centers of the two circles
PL as well as PR, it is simply to obtain that

∣∣∣−−→RPL

∣∣∣ =
∣∣∣−−→RPR

∣∣∣.
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Figure 2.3.: Description of the core strategy with which the robot can switch following be-
haviors autonomously. (a) illustrates the perception area of the robot R, the
current person area OCP, the predefined check-regions LSF and RSF on the left
and right side of R, and FF in front of the robot, as well as the check-regions
CR_PL and CR_PR defined by γ on the two sides of OCP. The calculation of γ
is showed in (b) at length. The check-regions on the two sides of the person
are illustrated with the two yellow sector areas SEC_PL and SEC_PR.

Fig. 2.3(b). Path-following is therefore chosen for the robot. By this means, the robot
is able to follow behind the guide-person, and adjust from an improper behavior,
e.g. parallel-following, as soon as possible11. If free space can be detected in CR_PL
and/or CR_PR (keeping in mind that free space is detected at least in one side field
of the robot), e.g. the robot moves through wide passages or in open spaces, parallel-
and direction-following are candidates. Note that the computation and decision of a
robot’s goal are carried out in parallel-following. When no goals can be computed by
parallel-following, core strategies temporally choose direction-following12 on the one
hand. On the other hand, check-information gathered from parallel-following is con-
currently inquired, so that parallel-following can be chosen once a goal is computed.

. When the person is out of the front field, the robot needs to bring its target back
to FF again. Direction- and path-following can be selected, as the relative angle be-
tween the robot and the person possibly increases when parallel-following is adopted.
Direction-following will be carried out, as long as no hazards lying in the whole laser
plane, i.e. LSF, RSF and FF, can be detected in the vicinity. Otherwise, cluttered ob-
stacles are implied near the robot, and path-following will be performed for the robot
to follow the path chosen by the guide-person.

The guideline for design of the adaptive context-aware following behavior is made by com-
bining safe navigation with specific situations in an indoor environment and appropriate-

11In principle interactive navigation enables the robot to avoid obstacles detected in the laser range finder with-
out switching behaviors. However, the overall goal is to produce an effective, situation-adequate following
behavior, exploiting human spatial knowledge, considering narrow spaces and facilitating interaction.

12As a goal in parallel-following is computed on the left or right side of the person with respect to the person’s
movement direction (see section 2.4.4), it is possible that parallel-following is chosen according to the
current spatial context, but the robot has to wait for an appropriate goal (see algorithm 2).
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ness of the elementary behaviors. Adopting the core strategies the robot was able to change
its behaviors according to the guideline in the user study conducted by inexperienced sub-
jects in real world scenarios13.

2.4. Elementary Person-Following Behaviors

The two important prerequisites for a person-following behavior have been discussed in the
section 2.2. In this section elementary person-following behaviors constituting the adap-
tive context-aware behavior are elaborated on. Behavior changes for a mobile robot in a
person-following scenario have been discussed in [58] and [121]. Imagine a human-human
following scenario, their behavior might be changed sometimes to adapt spatial restrictions,
such as narrow passages and open spaces. In order to facilitate and support communica-
tion between the guide-person and the robot in the interactive Home-Tour, changes of the
robot’s behavior according to spatial context need to be taken into account in a real environ-
ment. Considering human-human following schemes and specific situations in an indoor
environment mentioned in section 2.3.1, three basic behaviors, i.e. direction-, path- and
parallel-following, are assumed as the elements capable of constituting a more complex
person-following behavior.

2.4.1. General Strategies

Before the individual person-following behaviors are discussed in detail, common strategies
adopted in all behaviors are firstly extracted. In this way, the characteristic (distinction) of
one basic behavior would become more prominent compared to the others.

Departure and Arrival Except for the pure person-following phases that will be described
in the next sections, departure and arrival are designed for the individual behaviors.
When should a person-following behavior start (departure) and how should the robot
react when the guide-person halfway stops (arrival) are two episodes belonging to the
whole person-following process. The same rules for departure and arrival are used in
the three basic person-following behaviors. The robot starts to follow a person (depar-
ture), if the person standing in front is identified by the person tracking system, and
person-following is triggered. In order to prevent the guide-person from dangerous
situations, the robot just turns to the person without translational movements as long
as the distance to this person is greater than a threshold TShortDis. According to
the study of interpersonal distances in human-human interaction (HHI) by Hall [69],
personal distance implying that extremities can be used to get in contact with each
other is limited in the interval [46cm, 122cm]. Moreover, the level of familiarity of
one person with another is marked by the exact distance. Although the results of in-
terpersonal distances are based on HHI, it has been generally concluded that human
participants preferred personal distance when interacting with a robot [77]. There-
fore, threshold TShortDis is set to 1.2m for the three basic following behaviors in the
user study (see section 5.2.1.).

Arrival deals with what the robot should do if the distance between the robot and
the person is less than threshold TShortDis defined for departure. During a Home-
Tour Arrival can occur, e.g. when a speech command for stopping the robot is sent

13See details in section 5.2.1.
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from the guide-person and accepted by the robot, or the guide-person stops to show
the environment while keeping a short distance (within TShortDis) to the robot. For
Arrival the robot speed is set to zero, so that the robot can brake in time and does
not cause danger to the guide-person. Once the translational speed of the robot has
been reduced to zero, a rotational speed is set in order to make the robot turn to the
person until the angle of the person with respect to the robot is less than angle_diff
defined in section 2.2.2. The sequence of actions, i.e. the robot brakes and turns to
the person, is called short distance behavior. Only rotation is allowed for the robot in
short distance behavior unless the person moves far from the robot, i.e. the distance
between the person and the robot exceeds threshold TShortDis.

Interpolated Robot’s Pose As positions of the person with respect to the robot frame and
global robot’s poses are output with different frequency, at first, the robot’s pose at
each time stamp is interpolated to the time point when a person’s position is obtained,
applying equation 2.3 and 2.4.

−−−−−−−−−→
RPosetPerson =

−−−−−→
RPoset1 +

(−−−−−→
RPoset2 −

−−−−−→
RPoset1

)
· λ (2.3)

λ =
tPerson − t1
t2 − t1

with t1 < tPerson ≤ t2 (2.4)

WhereRPosetPerson , RPoset1 andRPoset2 is the pose of the robot at time stamp
tPerson, t1 and t2 respectively. Then the person’s position is computed in the world
frame according to the interpolated robot’s pose at the time stamp tPerson, as if the
two data streams were synchronized.

Go back to Robot In the interactive Home-Tour the robot follows the guide-person gener-
ally along the movement direction of the person. However, the person is allowed to
go back to the robot if it is necessary, e.g. the person would like to come back to see
what happened, when the robot moves too slowly. For safety the robot would stop
and turn to the person (similar with short distance behavior) and wait for the next
goal in terms of the movement of the person. The criterion judging whether a person
moves back to the robot, is explained in Fig. 2.4, assuming that the guide-person has
moved from P1 to P2 in the world frame14. All positions of the person P satisfy-
ing the following inequation are regarded as go back to robot starting from person’s
position P1 at a previous time stamp.∣∣∣−−→RP1 −

−→
RP

∣∣∣ > T with T > 0 and
∣∣∣−−→RP1

∣∣∣ > ∣∣∣−→RP ∣∣∣ , (2.5)

where R is the position of the robot in the world frame and T is the minimal dis-
tance between P1 and a p inside the gray circle area illustrated in Fig. 2.4. Notice
that person’s position P2 marked in this figure is an element of the set defined by
equation 2.5.

Stop the Robot due to Person Lost Sometimes it is inevitable that the multi-modal per-
son tracking system loses the target, particularly when the relative speed between the
person and the robot is high, or the person is outside the range of robot sensors (the
laser plane in our case). The state in the state machine of the person tracking will
transit to Person Lost. Theoretically when the person is lost by the tracking system,
the last person’s position stored as a goal for the robot should be sent out. It is espe-
cially important for path-following, in which the robot reaches goals extracted from

14The position of the person is updated about 10Hz. Because the person is unlikely to move far in 0.1s, P2

is recorded as a real movement of the person only when
∣∣∣−−−→P1P2

∣∣∣ is greater than a predefined threshold.
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R

P1

P2

T

Figure 2.4.: Geometric representation of equation 2.5 judging go back to robot. The robot
is depicted with the red R. Assuming that the person has moved from P1 to
P2. The gray area inside the circle with radius

∣∣∣−−→RP1

∣∣∣ − T illustrates possible

positions of the person satisfying this criterion.

the path of the person one after another. By this means, the robot is able to keep
up with the lost person as far as possible. After the robot reaches the last person’s
position, it stops to wait for the presence of the guide-person. A process of person re-
recognition [75] by means of face identification combining the pattern information
of people’s clothes has been proposed15. The robot would try to find out the person
whom it has just followed from one or several candidates, and then interact with the
person according to the result of the person re-recognition module.

However, the last goal computed before Person Lost is confirmed by the person track-
ing system probably informs a spurious position not on the real path of the person16.
That is because the person tracking system outputs the same person’s position for
some time, before the ultimate Person Lost is confirmed. It is important for the track-
ing system to find corresponding target with respect to the last tracked position in
a short time span17, which is crucial as well for the robot to perform the interactive
Home-Tour. Note that Person Lost cannot be determined only by the same person’s
positions output by the person tracking system, because the same situation occurs
when no relative movement exists between the person and the robot. Therefore, an
online detection is difficult to be performed18. In order to keep the tracking ability
and prevent spurious positions of the person, the robot simply stops to wait for the
subsequent instructions given by the person, when Person Lost occurs.

15The module of person re-recognition has been conceptually evaluated with the pan-til camera equipped on
BIRON I (see Fig. 1.2(a)) and BIRON II (see Fig. 1.2(b)). In the immediate future it will be completely
integrated in the robot system.

16An example is illustrated in Fig. 5.8 in section 5.2.1.
17Please see [91] for details.
18Person Lost was recorded in the user study presented in chapter 5. See section 5.2.1 for an offline detection.
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2.4.2. Direction-Following

The simplest method of following a person is to make the robot drive in the direction of the
guide-person. In order to design an efficient behavior, a goal for the robot is defined at the
current person’s position. Moreover, robot’s goals are updated as soon as the guide-person
moves. Thus, the robot is able to react to the person’s movement as fast as possible.

Fig. 2.5 illustrates some implementation details to achieve the direction-following behavior
proposed in this work. A goal for the robot is defined with the position (Px, Py), at
which the person currently is. By means of the goal-orientation θ computed from the
current robot’s position to the current person’s position, the robot always tries to move in
the direction of the person. In principle the person’s position should be computed in the
world frame as a new robot’s goal, as soon as the person moves. However, the goals that
are really sent to the robot do not need to be updated so frequently as the frequency (circa
10Hz) of the person tracking system, because the person cannot move far in such a short
time (circa 0.1s). Hence, a threshold of time difference TT imeDiff is defined to reduce
the unnecessary high frequency of the goals sent to the robot. When the robot moves in
proximity of the person, the short distance behavior described in the last section will be
performed to make the robot brake and turn to the person. After the robot faces to the
person, i.e. the person stands still and the angle tolerance angle_diff is reached, no
goals need to be sent out anymore until the person moves again. The robot starts to follow
the person (departure), as introduced in the last section.

R

PersonGoal
Px , PyPx , Py ,

World x

y



Figure 2.5.: A robot’s goal (Px, Py, θ) computed in the world frame for direction-
following. The current person’s position (Px, Py) obtained from the person
tracking system is transformed into the world coordinate system. θ shows the
direction from the robot to the person in the world frame.
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30 2.4. Elementary Person-Following Behaviors

2.4.3. Path-Following

In comparison to direction-following, path-following enables the robot to move along the
path taken by the guide-person. Considering human navigation strategies no obstacles
would lie on the person’s path in a following scenario19. Therefore, the trajectory of the
person can be regarded as a safe path for the robot20. Note that the trajectory (the path)
of the person consists of a set of positions that the person has passed by. The robot should
reach all positions selected from the person’s trajectory, i.e. all robot’s goals, one after
another when performing path-following. Selecting goals from person’s path effectively
and making the robot follow the path taken by the person as closely as possible need to be
both taken into account. In principle all person’s positions output from the tracking system
constitute the complete person’s path. However, not all person’s positions are necessarily
computed as robot’s goals due to goal_radius defined in section 1.2 for the robot. All
robot’s goals are stored in a queue RobGoal. Basic considerations are outlined as follows:

R

ppg1x1, y1
RobGoal1
x1, y1 ,1

World x

y

1

RobGoal2 ppg2x2, y 2

ppg3 x3, y3
RobGoal3

x2 , y 2 ,2

x3 , y3 ,3
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Figure 2.6.: Computation of goal-direction in path-following. The corresponding person’s
positions and robot goals are marked with the same subscripts. The orientation
of the first goal θ1 shows the direction from robot to ppg1. The direction θ2
from ppg1 to ppg2 is calculated for the goal RobGoal2. Assuming that the
person approximately moves straight, i.e. θ is smaller than θMinDirChange,
ppg2 is removed fromRobGoal and the direction from ppg1 to ppg3 is calcu-
lated for the new goal RobGoal3

. Recalling goal_radius, the robot reaches the goal-position when it is inside
goal_radius. In other words, all goals lying inside the circle defined by

19In an extreme case unexpected dynamic obstacles might move between the guide-person and the robot.
However, reactive navigation would make the robot avoid such obstacles.

20Note that obstacles like thresholds are no hazards for people, but they might be walls for most robots and
cannot be detected. Such situations should be taken into account in future work.
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goal_radius are equivalent to the robot. Therefore, adding a new goal is restricted
by a threshold of minimal distance TMinDist between the two adjacent positions
on the person’s trajectory21 computed in a global coordinate system (ppg in algo-
rithm 1). Thus, useful information representing the person’s path can be extracted in
the context of the designed path-following.

. In order to select robot’s goals from the person’s path more effectively, whether the
guide-person goes straight is checked. When the person does not change the move-
ment direction much, i.e. the trajectory of the person can be regarded approximately
as a straight line, two end positions of this line are sufficient for the robot to follow
the person’s path. Hence, a threshold of minimal movement angle θMinDirChange

is defined. As illustrated in Fig. 2.6 when θ is greater than θMinDirChange, ppg3
will be computed. Otherwise ppg2 will be removed from RobGoal and ppg3 will be
added as a new goal (see algorithm 1).

. As introduced in section 2.4.1 the robot stops and turns to the guide-person when
go back to robot is detected. Therefore, all goals are deleted from RobGoal, if it is
detected that the person moves back to the robot. The robot observes the next step
of the person’s movement, and does not have to reach the goals on the person’s path
back to it.

. Except for goal-positions, goal-directions are important for the robot to move along
the person’s path. Direction from the last to the current goal-position is computed as
the orientation of the current goal. By this means, all previous movement directions
of the guide-person till the current goal can be achieved. For the first goal extracted
from the path of the person, direction from the robot to this goal is calculated. As
illustrated in Fig. 2.6 θ1 shows the orientation of the first goal, while θ2 for goal
RobGoal2 shows the direction from ppg1 to ppg2.

The complete implementation of the process of goal selection is summarized in algorithm 1.
As the robot has to spend time on reaching the goals extracted from the path of the guide-
person one after the other, path-following might be not so efficient as direction-following.
Besides, an updated person’s position does not influence the moving direction of the robot
until the old goals are reached. For instance, the robot may not react quickly to the person’s
turns, as the robot has to turn at the location where the person turned rather than at the
same time as the person did. Therefore, the possibility of Person Lost should be higher
than when direction-following is adopted. Nevertheless, following the path of the person
would be beneficial to the robot. As shown in Fig. 1.2(a) the laser sensor is equipped at a
height about 30cm for the perception of a half-plane 22. All obstacles out of the laser plane
become potential hazards to the robot. Fig. 2.7 shows two experimental runs performed on
BIRON I in a lab-environment. All the obstacles which the laser can perceive are colored
with black areas. The outline of a table laid in the lab is represented with a rectangle, but
only the four small legs of the table can be perceived by the robot. On the one hand, the
robot was able to successfully avoid the table using path-following as shown in Fig. 2.7(b).
On the other hand, adopting direction-following the robot collided with the table at the
end of the experiment. As illustrated in Fig. 2.7(a) when the person was at the position P5,
a collision with the table occurred at the robot’s position R5. Besides, objects absorbing
light (e.g. black cases) or transparent obstacles (e.g. glass windows) are hazardous to a

21Note that minimal distance TMinDist was used to collect real person’s positions during path-following in
the user study. See the evaluation of person-following in section 5.2.1.

22Applying an additional sensor, e.g. the SwissRanger camera described in section 4.3.2, the robot can perceive
the 3D environment partially. However, transparent objects are still unperceivable to SwissRanger.
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Algorithm 1 Goal Selection in Path-Following
Input: Person position in global (ppg) // world frame shown in Fig. 2.6
Input: Radial coordinate of person in robot frame (r)

Require: Queue RobGoal // store goal-position (ppg) and goal-direction
Require: Threshold TShortDis given // for departure and arrival
Require: Threshold TMinDist given // minimal distance between two adjacent goals
Require: Variable dist // distance between current ppg and last ppg in RobGoal

while true do
if new ppg is computed then

if not go back to robot then
if r > TShortDis then

if RobGoal is not empty then
compute dist // remember threshold TMinDist

end if
if RobGoal is empty then

insert ppg and goal-direction into RobGoal // θ1 in Fig. 2.6
else if dist < TMinDist then

return // select goals according to TMinDist

else if RobGoal.size==1 then
insert ppg and goal-direction into RobGoal // θ2 in Fig. 2.6

else
if person goes straight then

delete last ppg, insert new ppg and goal-direction into RobGoal
else

insert ppg and goal-direction into RobGoal // see Fig. 2.6
end if

end if
else

short distance behavior
end if

else
clear queue RobGoal

end if
else

return // wait for new ppg
end if

end while

robot due to the limited perception abilities. Carefully moving along the trajectory of the
guide-person is therefore necessary for the robot to avoid such unperceivable obstacles.

2.4.4. Parallel-Following

The last elementary following behavior is the so-called parallel-following. The basic idea
stems from the observation of a human-human following scenario in open spaces or wide
passages. Gockley et al. [58] have aimed in the long run for robotic assistants that could
accompany a person side-by-side. A model for side-by-side accompaniment has been im-
plemented by Prassler et al. [121] for a robotic wheelchair in the context of transportation
services, e.g. transportation of disabled or elderly people, or transportation of patients in a
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(a) (b)

Figure 2.7.: Comparing direction-following (a) with path-following (b). The two experi-
ments were performed by BIRON I in the same environment. The start points
of the robot and the person are depicted with R0 and P0 respectively and the
corresponding positions of the robot and the person during the following are
labeled with the same number.

hospital. Following these ideas, parallel-following is incorporated in the adaptive context-
aware behavior discussed in section 2.3. By this means, the robot is able to walk with the
guide-person side-by-side in order to facilitate interaction, while taking available free space
into account. Therefore, how to compute a robot’s goal set around the current position of
the guide-person becomes the key problem of parallel-following.

In order to approximate a side-by-side person-following behavior, a path parallel to the
person’s trajectory needs to be computed. In other words, person’s movement direction
that should be kept approximately by the robot and goal-positions deviated from original
person’s path are two points considered in the computation. Besides, whether a goal can be
computed on the left or right side of the person is still uncertain without further information
obtained from the surroundings, i.e. free space detected by the laser scanner. Hence, two
potential robot’s paths lying on both sides of person’s trajectory are taken into account.

Fig. 2.8 shows the method proposed to achieve such a robot’s goal in parallel-following.
Two adjacent person’s positions P1 and P2 are recorded to calculate the movement direc-
tion of the guide-person. As illustrated in Fig. 2.8(b), a local coordinate system is defined
with the origin P2, i.e. the current person’s position, and axis xL showing the movement
direction from the last person’s position P1 to the origin P2. According to axis xL deviation
from the current person’s position P2 on the original person’s path can be expressed with
radius r and angle α in local coordinate system {xL, yL} at first, and then transformed
into the world coordinate system. Two potential robot’s goals GL(r, α) and SGL(r,−α)
are set symmetrically to axis xL (see α and −α in this figure). In contrast to two adja-
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Figure 2.8.: Computation of the potential goals defined with GL(r, α) and SGL(r,−α)
for the robot in parallel-following. With respect to the direction of axis xL,
namely the goal direction for the robot, GL and SGL lies on the right and left
side of the guide-person respectively. (a) depicts the initial state, in which only
the most current position of the person is stored for the robot. (b) illustrates
the goals computed during the person-following process.

cent person’s positions observed by the robot during the parallel-following behavior, before
this behavior is started by TShortDis defined in section 2.4.1, the most current person’s
position is stored. Fig. 2.8(a) shows the two possible goals GL and SGL defined in the
local coordinate system, where the origin is the current person’s position P , and xL shows
the direction from the robot to P . Note that the positive direction of xL illustrated in
Fig. 2.8(a) is not necessarily consistent with the movement direction of the person at the
next step. However, goals computed according to Fig. 2.8(b) will correct robot heading, as
soon as the guide-person moves away from the robot and parallel-following is triggered. In
terms of the decision policy that will be introduced later in this section, whether a goal is
available for the robot can be determined. The intersection angle θ from the world axis xW
to the local axis xL gives the goal direction of the robot. Thus, the robot can move right or
left behind the person with respect to person’s movement direction.

After two candidates of a robot’s goal are computed according to the current person’s po-
sition, which candidate should be chosen needs to be determined. As the information of
the surroundings, i.e. distance to obstacles, is represented in the laser plane, checking free
space for the two potential goals is regarded necessary for goal decision. Candidate lying
in free space is chosen as the ultimate goal for the robot. When free space can be detected
for both candidates, according to the angle of the person in robot frame the unique goal
for the robot is able to be chosen (see Fig. 2.9(b)). If the person walks on the left side with
respect to the robot orientation, the potential goal on the right side behind the person is
chosen as the final goal for the robot. Thus, the relative position between the person and
the robot can be kept. In other words, the robot does not have to move on the left side of
the person, i.e. keep the person on the right side, when the person is already on the left
side of it.

Fig. 2.9(a) illustrates in detail how to compute the regions checked for the two candidates in
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Figure 2.9.: Decision policy of robot’s goals in parallel-following. The robot, the guide-
person and the two potential goals are marked with R, P , G and SG respec-
tively. (a) illustrates the general criteria for goal decision. The occupied areas
of the guide-person and the two potential goals are represented with the cir-
cles centered on P , G and SG respectively. The radius of circle P is marked
with rPerson according to the distance between the two legs of the person,
while rGoal gives the radius of circles G and SG in terms of the real size of
the robot. The two sector regions SEC_G and SEC_SG depicted with blue and
yellow dashed lines show the check-areas excluding the area occupied by the
person in the laser plane. When obstacles are detected inside SEC_G or/and
SEC_SG, the corresponding goal(s) is(are) not available for the robot. A spe-
cial case, i.e. no obstacles are detected in both SEC_G and SEC_SG, is shown
in (b). With respect to the guide-person P and the moving direction, goal G
lying on the right side is chosen as the final goal, as the person stands on the
left side relative to the current robot’s orientation.

the laser plane. Areas occupied by the two potential goalsG and SG, as well as the current
person’s position is depicted with circle centered on G, SG and P respectively. Radius
rPerson of circle P is obtained23 according to the distance between the two legs of the
person detected by the person tracking system. In order to reserve free space for the robot
when G or SG is reached, radius rGoal is chosen on the basis of the real size of the robot.
Thus, two tangents of the respective circles in the robot frame can be computed. Three
regions for P , G and SG are obtained. Notice that these regions may overlap each other.
Regions checked for the two potential goals G and SG exclude the circle area occupied by
P , since the person should not be regarded as a real obstacle during a person-following
process. Moreover, the short distance behavior defined in section 2.4.1 will be performed
to stop the robot, when the distance between the person and the robot is shorter than
TShortDis. The computed sector region checked forG and SG is shown in Fig. 2.9(a) with
SEC_G (the region depicted with blue dashed lines) and SEC_SG (the region depicted with

23Checking the area occupied by the person is applied as well in the mapping process discussed in section 3.2.
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Figure 2.10.: Parallel-following performed in Stage. The robot’s trajectory depicted with
gray approximately forms a parallel curve with respect to the green path il-
lustrating the movement of the guide-person. The robot chooses the goals on
the side, in which there are no obstacles.

yellow dashed lines) respectively. The radius of the sector region SEC_G is
∣∣∣∣∣∣−→RG∣∣∣+ rGoal

∣∣∣,
recalling the circle area reserved for the robot. G will be chosen as the ultimate goal for
the robot, when no obstacles are detected by laser scanner inside SEC_G. Analogically for
SG, free space is checked in the sector region with radius

∣∣∣∣∣∣−−−→RSG
∣∣∣+ rGoal

∣∣∣.
In the special case, i.e. G and SG are both available for the robot, the unique goal can
be determined according to the angle of the guide-person with respect to the robot. As
illustrated in Fig. 2.9(b) θ lying in the interval [−π

2
, π
2
] shows the angle of the person in the

robot coordinate system. A positive threshold TGoalSideChange is predefined considering
the consistency of robot’s movement24. Axis xL divides the whole plane into the left and
right plane with respect to its positive direction. According to the person P and the moving
direction, i.e. the positive direction of axis xL,G is on the right side as αG is in the interval
(0,−π). In contrast, SG is on the left side asαSG lies in the interval (0, π). G is picked up
as the final goal, since the person is on the left side (θ is greater than TGoalSideChange) with
respect to the orientation of the robot, and G lies on the right side. Analogically SG will
be selected, if θ is smaller than−TGoalSideChange. When the person stands in front of the
robot in the middle area, i.e. θ lies in the interval [−TGoalSideChange, TGoalSideChange],
the goal on the side consistent with the previous one will be chosen.

Except for the criteria for goal decision discussed above, how to enable the robot to keep up

24It should be avoided when the robot often changes the trajectory on the right and left side behind the guide-
person.
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with the person effectively needs to be taken into account. As a robot’s goal is set around
the current person’s position, the robot does not drive in the direction of the guide-person.
It is more challenging for the person tracking system not to lose the target. Robot’s goals
are therefore updated as soon as a new movement direction of the guide-person, e.g. the
direction from P1 to P2 illustrated in Fig. 2.8(b), is observed. By this means, the robot is
able to react to person’s movement as soon as possible. Considering the computation effi-
ciency the movement direction of the person is recorded only when the person changes the
position exceeding a threshold25 TPersonChange. Once the potential goals are computed,
the real goal chosen for the robot is determined according to the decision policy illustrated
in Fig. 2.9.

The implementation of goal decision illustrated in Fig. 2.9 is presented in algorithm 2.
This behavior is called parallel-following, since the goals defined with r, α and θ (see
Fig. 2.8) may approximately form a curve parallel to the trajectory of the guide-person.
Theoretically the curve consisting of the robot’s goals is parallel to the path of the guide-
person only when the perceived person’s trajectory is a straight line. In addition, as the
robot’s goals are defined on both sides behind the guide-person, and a goal on one side
is chosen according to the decision policy (see Fig. 2.9), the entire path of the robot may
intersect with the trajectory of the guide-person. Fig. 2.10 illustrates the parallel-following
behavior simulated in Stage. The gray curve depicting the movement trajectory of the robot
lies on the right side26 of the green person’s path. Notice that all the goals on the right side
of the two potential goals are selected for the robot, since obstacles, namely the walls in
the simulated environment, are on the left side according to the movement direction of the
guide-person.

Adopting the parallel-following behavior the robot is able to enter the area around the
person flexibly. Frequently updating the goals for the robot, the robot can keep the moving
direction consistent with the movement of the guide-person. By this means, the robot is
able to move approximately parallel to the person. An issue to be considered is that parallel-
following is restricted by the free space available nearby the person. It cannot be used alone
in the Home-Tour. Therefore, the adaptive context-aware following approach presented in
section 2.3 is necessary for the robot.

2.5. Summary

Person-following enables the robot to keep up with a guide-person and complete a human-
robot joint exploration. Moreover, as will be discussed in section 4.2 locations, i.e. room
names indicated by the guide-person, can be obtained by the robot during an interactive
Home-Tour scenario. These locations form the nodes of a topological representation of the
environment.

In this chapter two prerequisites for the person-following behavior, i.e. person tracking and
robot motion control were introduced at first. The guide-person is identified and tracked in
the interactive Home-Tour with face and voice information, except for person’s legs detected
in the laser plane. Reactive navigation and obstacle avoidance in dynamic cluttered indoor
environments is needed as well for the robot to follow the person, which cannot be impeded
by the presence of the guide-person.

25Note that this threshold was used to collect real person’s positions during parallel-following in the user study.
See the evaluation of person-following in section 5.2.1.

26With respect to the movement direction of the simulated guide-person.
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Afterwards, the adaptive context-aware following approach integrating three elementary
behaviors was presented. By dividing the perception area of the robot, i.e. the laser plane,
into different parts, various situations in an indoor environment have been taken into ac-
count in the core strategies combining characteristics of the elementary behaviors with the
gained person information. Using the core strategies an effective person-following behav-
ior exploiting the human-user as a knowledgeable navigator, considering narrow space and
facilitating interaction, has been implemented. In section 5.2.1 the evaluation results of the
proposed person-following approach achieved in a user study will be discussed.

At last, three elementary person-following approaches constituting the adaptive context-
aware behavior are discussed. General strategies available for all the elementary following
behaviors are introduced. Robot’s reaction to the situations, in which the robot is in prox-
imity to the guide-person, the person is checked to go back to the robot, or the person is
lost by the person tracking system, are discussed. Path-following has been regarded as a
smart solution for obstacle avoidance, especially when the robot needs to navigate in nar-
row spaces or unperceivable obstacles lie on the robot’s path. However, the robot cannot
promptly react to changes of the person’s movement, as the goals extracted from the per-
son’s path have to be reached one after another. Therefore, direction-following is designed
for the robot to keep up with the guide-person as soon as possible. The drawback of this
behavior has been shown in Fig. 2.7 in comparison with path-following. Parallel-following
is proposed to find goals for the robot nearby the guide-person and track the movement
direction of the person. By this means, the robot can move approximately side-by-side with
the person in wide passages or open spaces to facilitate interaction, while taking available
free space into account.
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Algorithm 2 Goal Decision in Parallel-Following
Input: G computed in world frame // one potential goal, see Fig. 2.9(a)
Input: SG computed in world frame // the other potential goal, see Fig. 2.9(a)
Input: Person position P computed in world frame
Input: Robot’s position in world frame (R)
Input: Radial coordinate of person in robot frame (rp)
Input: Angular coordinate of person in robot frame (ap)
Input: Laser scan

Require: Left and right laser border for P: LB_PL, LB_PR // see Fig. 2.9(a)
Require: Left and right laser border for G: LB_GL, LB_GR // see Fig. 2.9(a)
Require: Left and right laser border for SG: LB_SGL, LB_SGR // see Fig. 2.9(a)
Require: Sector region checked for G: SEC_G
Require: Sector region checked for SG: SEC_SG
Require: Positive threshold TGoalSideChange // when SEC_G and SEC_SG are both free
Require: Radius rPerson // circle area occupied by person
Require: Radius rGoal // circle area occupied by robot’s goal
Require: Distance between R and G: DistRG
Require: Distance between R and SG: DistRSG

while true do
if new P, G and SG are computed then

compute LB_PL and LB_PR with rPerson and rp // see Fig. 2.9(a)
compute DistRG and DistRSG
compute LB_GL, LB_GR, LB_SGL and LB_SGR with rGoal, DistRG and DistRSG
compute radius DistRG + rGoal and DistRSG + rGoal for SEC_G and SEC_SG
determine SEC_G and SEC_SG excluding circle area of person with radius rPerson
check free space in SEC_G and SEC_SG with laser scan
if SEC_G and SEC_SG both free then

if ap ≥ TGoalSideChange then
select the goal on the right side // correspond to G in Fig. 2.9(b)

else if ap ≤ −TGoalSideChange then
select the goal on the left side // SG in Fig. 2.9(b)

else
select the side consistent with last one

end if
else if SEC_G free but SEC_SG not then

select G as goal
else if SEC_SG free but SEC_G not then

select SG as goal
else

send no goal is available to core strategies, return // remember section 2.3.1
end if

else
return // wait for available P, G and SG

end if
end while
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3. Map Building in a Home-Tour

As mentioned in previous chapters, one of the important tasks for a robot during the in-
teractive Home-Tour is to build a representation of the new environment for itself. Since
the problem “where to move in the Home-Tour?” has been solved by the person-following
behavior proposed in the last chapter, the robot can explore the unknown environment and
perceive the surroundings. This chapter is devoted to building a metric map of the envi-
ronment in the guided tour. Considering that the details of the environment are crucial for
the robot performing a navigation task, an occupancy grid map built with a SLAM (Simul-
taneous Localization And Mapping) approach on the basis of a Rao-Blackwellised Particle
Filter [35] (RBPF) is selected as the metric representation of the surroundings. Moreover,
without predefined feature extractors needed to be appropriate for some known structures
of the environment, an occupancy grid-based spatial representation should be more robust
for cluttered indoor environments. The key idea and the kernel technique of the RBPF-
SLAM is introduced in section 3.1. A problem that can specifically occur in a mapping
process during a Home-Tour is the dynamic obstacle resulting from the guide-person. Due
to the guide-person who may be perceived by the robot all along a Home-Tour and regarded
as dynamic obstacles, the Markov assumption [143], sometimes known as static world as-
sumption, is violated. This violation negatively affects not only the mapping process, but
also the estimation of the robot’s poses. Therefore, a practical solution dealing with the
special dynamic objects, as well as the evaluation results achieved from a simulated envi-
ronment are presented in section 3.2.

3.1. Introduction of SLAM with Rao-Blackwellisation

Simultaneous Localization And Mapping (SLAM) is a general problem for a mobile robot
placed at an unknown location in an unknown environment. The ability of building a con-
sistent map of the environment incrementally and estimating the location simultaneously
within the map makes a mobile robot truly autonomous [38]. SLAM has been formulated
and solved dominantly as a probabilistic problem

p(x0:t,m | u1:t, z1:t), (3.1)

i.e. if it is possible to concurrently estimate the robot’s trajectory x0:t and the environment
map m given the movement u1:t and perception z1:t up to the current time step. The
quantities and basic models are defined in the following:

. xt describes the robot state at the time step t. Especially for the RBPF-SLAM (Rao-
Blackwellised Particle Filter SLAM) application the robot’s pose (x, y, θ) constructs
the robot state. xt1:t2 = {xt1, xt1+1, ...xt2} denotes the set of robot states from
time step t1 to t2 with 0 ≤ t1 ≤ t2.

. The control actions which are executed from the time step t1 − 1 to t2 − 1 and
make a robot change its state from xt1−1 to xt2 are denoted with ut1:t2 , where
ut1:t2 = {ut1, ut1+1, ...ut2} and 1 ≤ t1 < t2. Particularly when 1 ≤ t1 = t2, the
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control action ut1 or ut2 is applied at time step t1 − 1 to drive the robot from state
xt1−1 to state xt1 .

. The motion model, which specifies the effect of the control action ut on the state
xt−1 and describes the probability distribution of the state transition from xt−1 to xt
on the basis of the control ut, is generally given as follows:

p(xt | xt−1, ut). (3.2)

. The robot perception from state xt1 to xt2 is given with zt1:t2 , where t1 ≤ t2 and
zt1:t2 = {zt1, zt1+1, ...zt2}.

. In general, for a metric map m the environment can be represented either by a set
of landmarks detected in the environment, i.e. m = {m1,m2, ...mN}, where N is
the total number of objects in the environment, or by the occupancy grid, in which
the environment is discretized into a high resolution grid, namely small cells, and the
probability of being occupied by an obstacle is assigned to each cell.

. The observation model describes the likelihood of an observation zt from a robot
state xt in the built map m, as shown in the following equation:

p(zt | xt,m). (3.3)

The key idea of RBPF-SLAM is to divide the complete joint posterior presented in equa-
tion 3.1 into a pose estimation and a map update process with the following factorization:

p(x0:t,m | u1:t, z1:t)
product rule

= p(m | x0:t, u1:t, z1:t) · p(x0:t | u1:t, z1:t) (3.4)
independent

= p(m | x0:t, z1:t) · p(x0:t | u1:t, z1:t). (3.5)

Assuming that m is independent from the control actions u1:t given the sequence of robot
states x0:t and the corresponding robot perception z1:t, the first part of equation 3.5 can
be obtained. This problem is generally known as mapping with known poses [146]. The
posterior about the map p(m|x0:t, z1:t) can be computed analytically, given the knowledge
of x0:t and z1:t. In the built map the estimation of robot’s poses is feasible, when the
sequence of control actions and robot perceptions are known, as presented in the second
part of equation 3.5. This factorization, which offers a solution of SLAM with efficient
computation, is referred to as Rao-Blackwellisation [35]. The name is related to the Rao-
Blackwell formula [26].

In fact, equation 3.5 provides a basic probabilistic framework. Hence, a solution to the
SLAM problem involves finding an appropriate representation for the both generative mod-
els, namely the state transition model and the observation model shown in equation 3.2
and 3.3 respectively. The localization and the mapping problem described in equation 3.5
needs to be tackled effectively. One class of approaches to solve the SLAM problem are
based on Kalman filters [81] (KFs), which represent the joint posterior shown in equa-
tion 3.1 with Gaussians. Linear Gaussian systems [123] are assumed, i.e. the motion and
the observation model needs to be linear with additive Gaussian noise, and the initial un-
certainty of robot state has to be Gaussian [146]. Considering nonlinearities, e.g. robot
motion and perception, existing in almost all practical systems, linearization techniques
based on Taylor series expansion are applied on original KFs. Such extended techniques
are generally known as Extended Kalman Filters [80] (EKFs), which have been developed
in indoors [27], outdoors [60], subsea [160] applications, etc. to build an environment
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representation and make the robot localize itself in the built map [38]. However, linear
Gaussian assumptions, which may be not appropriate for real models are essentially re-
tained by those approaches. In contrast, sample (particle)-based approaches, which are
generally referred to as particle filtering [25] or sequential Monte Carlo sampling [36],
directly represent the non-linear process model and non-Gaussian distribution of the robot
state. Each sample or particle with its weight is an instance of the estimated robot state in
the real world1. Therefore, particle filtering based on Rao-Blackwellisation is assumed as a
robust approach to deal with non-linear and non-Gaussian systems.

For RBPF (Rao-Blackwellised Particle Filter) the estimation of the posterior shown in equa-
tion 3.1 is approximated by the distribution of the samples populated in the real world.
Notice that the probability distribution of the map illustrated in equation 3.5 is conditioned
on the robot’s trajectory x0:t rather than a single pose xt. This actually indicates the inde-
pendence of the map states as well, because the observations are conditionally independent
given the known history of pose states [38]. Consequently, each particle represents a poten-
tial robot’s trajectory instead of a single robot’s pose, and an individual environment map is
associated with the corresponding particle. Assuming that the set of particles at time step
t − 1 is X0:t−1 = {x(1)

0:t−1, x
(2)
0:t−1, ...x

(N)
0:t−1}, where N is the number of particles, and

each particle x(i)
0:t−1 has its own weight w(i)

t−1 and its own map p(m | x(i)
0:t−1, z1:t−1), the

recursive mapping and localization process based on RBPF for the next time step t can be
exemplarily described as follows [59]:

. The set of particles X0:t at the time step t is generated by drawing samples based
on the generation X0:t−1 from a proposal distribution π(x0:t | u1:t, z1:t). Usually a
probabilistic motion model, such as the Gaussian odometry model proposed in [41]
for our case, or the improved proposal distribution described in [59], is used as the
proposal distribution.

. Particles are weighted according to importance sampling principle, as introduced
in [34].

w
(i)
t =

p(x
(i)
0:t | u1:t, z1:t)

π(x
(i)
0:t | u1:t, z1:t)

(3.6)

The computed weights arise from the difference between the target distribution
p(x0:t | u1:t, z1:t) which is generally not be able to directly sample from and the
proposal distribution which is selected close to the target as far as possible and easy
to sample.

. Particles are drawn with replacement proportional to their weight, i.e. the sample
x
(i)
0:t is selected with probability w(i)

t . This process is generally referred to as resam-
pling [33], which realizes sampling from the approximation of the target distribution.

. For each particle, the associated map p(m | x(i)
0:t, z1:t) is updated on the basis of the

robot trajectory and the history of observations.

For the resampling step, although the particles with low weight can be removed, parti-
cle degeneracy or depletion is inevitable. As shown in [36], most of the particles prob-
ably have a weight close to zero. The so-called Effective Sample Size (ESS) introduced
in Kong et al. [83] is generally known as a suitable measurement of degeneracy, which is
defined as:

1See the brief introduction to particle filters in appendix A.
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ESS =
1∑N

i=1

(
w

(i)
t

)2 . (3.7)

ESS takes values in the interval [1, N ]. A resampling process is invoked only when ESS is
below a threshold NT . In an extreme case, all samples are replaced by a single particle
carrying the largest weight. Thus, ESS tends to 1. This implies that the number of particles
in use is one. Typically NT is set to N/2 [34].

Apart from the trajectory of the robot, namely the robot state represented by a set of
weighted samples, the map representation is the other point that still needs to be discussed.
In general, two types of environment representations on the level of metric maps2 have
been proposed. Feature- or landmark-based representations are attractive because of their
compactness. In a feature-based representation the Cartesian coordinates of the set of fea-
tures extracted from the environment, such as points [149], line segments [134], geometric
models [95], key-points extracted by SIFT (Scale-Invariant Feature Transform) [130], etc.,
are stored in the map. EKF-based map update fusing new observed data into the map
for each particle is generally applied, after the data association problem (see section 1.2),
i.e. to determine whether the currently obtained features (landmarks) are fit into the map
built so far, has been solved. Solutions to the probabilistic SLAM problem that are based
Rao-Blackwellisation and apply extended Kalman filters combined with data association ap-
proaches for map estimation constitute the kernel of the so-called FastSLAM introduced by
Montemerlo et al. [110, 112]. As the metric map consists of features (landmarks) extracted
from the environment, FastSLAM relies on predefined feature extractors under the assump-
tion that some structures in the environment are known in advance. Furthermore, except
for the strong assumption of linear Gaussian systems the features (landmarks) are assumed
to be uniquely identifiable by EKF approaches. Once these assumptions are violated, EKFs
may diverge [53].

In contrast, a free space representation of the environment, which illustrates the portion
of the environment that is accessible for the robot, does not rely on predefined landmarks.
It uses raw sensor data to represent free space and arbitrary objects in the environment.
The occupancy grid map developed by Elfes and Moravec [113, 40] is the most popular
approach to this idea. In this case, the environment is discretized into a grid with a high-
resolution. Each grid cell is assigned a value implying the probability of the occupancy
covered by an obstacle. As the environment can be represented finely with the occupancy
grids [144], the built map is capable of supporting navigation actions more sufficiently in
comparison to a sparse description of the environment [169], e.g. feature- or landmark-
based maps. Besides, the information contained in an occupancy grid map can be computed
with entropy-based measurements that are generally used for the uncertainty of a belief,
as will be discussed in the next section. For some existing exploration strategies, such as
frontier-based strategies [163], the active loop-closing approach [136], etc., entropy-based
measurements computed from an occupancy map have been widely used. In summary, con-
sidering the capability of dealing with non-linear and non-Gaussian systems, the feasibility
of direct application of particle filters with the help of Rao-Blackwellisation, the robustness
against predefined feature extractors, the detailed description of the objects and free space
in the environment, as well as the available measurements of uncertainty in SLAM, grid
mapping with Rao-Blackwellised Particle Filters (RBPF) is chosen in this thesis.

2Except for metric maps representing objects with coordinates, topological framework focuses on place iden-
tities and their spatial relations [87]. On the basis of metric and topological environment representations,
more complicated structures, such as multi-hierarchical semantic maps [56], cognitive maps [156], concep-
tual spatial representations [169], etc., have been proposed since recent years.
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Figure 3.1.: The valid and invalid laser range applied for the mapping process during the
Home-Tour. The robot R and its orientation are shown with red. The valid
laser range inside the semi-circle is restricted to 8m away from the robot. Fur-
thermore the occupied area of the guide-person that is defined with the center
P and the radius rP is regarded as invalid.

3.2. Mapping during the Home-Tour

Recalling the idea of Human-Robot Joint Spatial Exploration (HRJSE), knowledge of the sur-
roundings can be gathered by a mobile robot in an interactive scenario. Furthermore, an
environment representation incorporating human spatial understanding is able to be built.
Therefore, human inhabitants sharing an indoor environment with the robot are regarded
as a prerequisite to realize a human-robot joint exploration. The interactive Home-Tour
actually provides an opportunity for the robot to explore the unknown environment with
the help of a guide-person. On the one hand, once the robot is able to move around in
the environment, building a metric representation of the surroundings is possible. On the
other hand, additional information can be obtained from the guide-person, as will be dis-
cussed in section 4.2. However, the guide-person tracked by the robot violates the Markov
assumption, namely the static world assumption generally used in a solution of the SLAM
problem [27, 64, 145]. Of course, human inhabitants should not be forced to leave the envi-
ronment in order to meet this assumption. In addition, making the robot interactively learn
from the human user and build a spatial representation is the central problem discussed in
this thesis. Thus, the problem of interactive acquisition of an environment representation
lies in how to reduce the negative impact of the perceived guide-person3 on a mapping
process.

3In our case the legs of the guide-person are detected and tracked by the person tracking system introduced
in section 2.2.1 on a laser plane. The maximum perceiving distance of the laser sensor is assigned 8m for
the current system.
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(a) (b)

Figure 3.2.: The test environment for the proposed technique to tackle the problem arising
from the perceived person’s legs in the mapping process. a) shows the plan
drawn partially from the BIRON apartment equipped with standard furniture.
b) shows the plan displayed on Stage. Notice that the color bitmap a) is read by
Stage and represented with a black white environment model. The start pose
of the robot, the two small green hexagons simulating the pair of person’s legs
in front of the robot, as well as the light blue area simulating the laser scan of
the robot are shown in this figure.

Mapped Person 
Legs

More Information

Background

Mapped Person 
Legs

(a)

Less Information

Mapped Person 
Legs

Background

(b)

Figure 3.3.: Comparison of the grid maps built with and without the proposed technique. a)
shows the mapping result including the person’s legs in the laser scans. How-
ever, when regarding the person’s legs perceived in the laser plane as invalid,
the built map is illustrated in b). Some examples of the recorded person’s legs
are shown with red arrows in a) and b) respectively. The probability of the
unperceivable grid cells, such as the background and the invalid laser range,
is set to 0.5. Due to the invalid laser range different map information can be
obtained in the two cases, as the areas shown with a blue arrow in a) and b)
illustrate.
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3.2.1. Basic Idea

In order to deal with the specific situation occurring in a guided tour, i.e. the guide-person
perceived by the robot, the area occupied by the tracked person needs to be found and
removed from the perception area of the robot (the laser plane in our case) during the
mapping process. The person area is defined with a circle centered on the person position
P with radius rP 4, as illustrated in Fig. 3.1. The person tracking system introduced in
section 2.2.1 provides polar coordinates of person positions in the robot coordinate system.
The two borders shown in yellow and tangent to the circle area can be computed to find the
corresponding laser points. All laser points inside the two borders are regarded as invalid.
Thus, the robot may follow the guide-person, build the environment representation and
localize itself in this representation, when the invalid laser points are not used in the map-
ping process. If this technique is adopted, the violation of the Markov assumption arising
from the guide-person should be reduced. Furthermore, false laser readings resulting from
person’s legs5 are expected to be excluded from the built map as far as possible. A better
pose estimation of the robot should be achieved.

3.2.2. Evaluation on a Simulation Platform

To verify our hypothesis that by reducing the negative impact of the guide-person a better
map can be achieved, the map built in the Home-Tour as well as the estimated robot’s poses
were evaluated on a 2D simulation platform Stage. A population of mobile robots, sen-
sors and objects in a two-dimensional bitmapped environment can be simulated by Stage6.
Fig. 3.2(a) shows the plan of the partial BIRON apartment containing standard furniture.
In Fig. 3.2(b) the plan is shown on Stage. Due to a conversion of the input image a black
white environment model is shown in Fig. 3.2(b). The black areas in this figure are walls,
and the robot can move everywhere else. The simulated pair of person’s legs that can be
tracked in the laser plane, namely the light blue area, are illustrated as well in Fig. 3.2(b)
with the two small green hexagons in front of the robot. Performing the adaptive context-
aware following behavior discussed in section 2.3 the robot was able to move around in
the simulated environment. Hence, the surroundings can be perceived by the robot with
the laser sensor and the environment representation can be built as well on the simulation
platform Stage. Note that only when the speech command “Follow me!” from the mini-
dialog module7 was sent out, the target detected by the person tracking system can be
confirmed. Since the occupied areas of the two green hexagons (a simulation of the guide-
person) were detected by the person tracking system and regarded as invalid in the laser
plane during the simulated Home-Tour, the corresponding laser points were not taken into
account in the mapping process. The built map was recorded step by step. Besides, the two
necessary inputs of the RBPF-SLAM approach, i.e. the pairs of the increment odometry data
and laser scans including the information of the person’s legs were stored. By this means,
the same mapping process except for the use of different laser data can be reproduced.
Therefore, the environment representations built with and without the proposed technique
can be compared with each other.

4The size of the guide-person is given with rP . Theoretically it can be obtained according to the distance
between the two person’s legs detected by the person tracking system introduced in section 2.2.1.

5Of course person’s legs are actually perceived by the laser sensor. However these information should not be
added into the environment representation.

6see more information in section 2.2.1
7See the introduction of the mini-dialog module in section 5.1.2.
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The built environment representations with laser scans including and excluding the person’s
legs are illustrated in Fig. 3.3(a) and Fig. 3.3(b) respectively. As mentioned at the end of
section 3.1, in a grid map each grid cell is assigned a value implying the probability of the
occupancy covered by an obstacle. Black implies occupied with high certainty, while white
corresponds to free with high certainty. No Person Lost was detected in the experimental
run8. Many gray points resulting from the person’s legs, namely the two green hexagons
illustrated in Fig. 3.2(b), can be found in Fig. 3.3(a). Some examples are shown with
red arrows as well. Notice that in Fig. 3.3(b) the person’s leg depicted on the map and
shown with a red arrow arises from the fact, that during this Home-Tour one of the legs
of the guide-person was occasionally out of the defined person area at that place and thus
recorded by the mapping process.

Map information

In order to measure the uncertainty of the built map, entropy-based measurements were
selected. The entropy of one cell mxy in an occupancy grid map m can be computed with
the following binary entropy function, since each grid cell is a discrete random variable
with a Bernoulli distribution, where the two possible outcomes of the random variable are
occupied or not.

H(mxy) = −p(mxy) ln p(mxy)− (1− p(mxy)) ln(1− p(mxy)) (3.8)

Where x and y inmxy gives the index of this grid cell in x- and y-direction. The maximum
entropy value for mxy is attained when p(mxy) = 0.5. This is the maximum uncertainty
obtained from the unobserved grid cells or the cells lying in the area of invalid laser scans.
However, the minimum uncertainty, namely the maximum certainty can be obtained, when
a cell is certainly occupied or free. Assuming statistical independence between the grid
cells, the entropy of the whole map m can be computed as follows:

H(m) =
∑
∀x,y

H(mxy). (3.9)

Although the entropy of a grid map m has been widely used as a measurement provid-
ing information in maps [138], the drawbacks that have been discussed in [10] lie mainly
in the contribution to the computed entropy from the unobserved grid cells. On the one
hand, as shown in equation 3.9, the entropy of the whole map is dependent on the given
extent of the map, which contains all the unobserved cells with their maximum value of
uncertainty. Hence, it is difficult to sift the pure contribution obtained from the actually
observed cells. On the other hand, the resolution of the grid map can also influence the un-
certainty measurement due to the fact that the entropy of the map containing unobserved
areas must increase, when the resolution of the map increases. Considering these draw-
backs the information (I) of a map m can be computed with the following entropy-base
measurements.

I(mxy) = 1−H(mxy) (3.10)

I(m) =
∑
∀x,y

I(mxy) (3.11)

Where H(mxy) has been defined in equation 3.8. Note that the information of the whole
map I(m) becomes irrelevant to the given size of the map, as the cell mxy with the oc-
cupancy probability 0.5 has the minimum value, i.e. the null information. Hence, such

8One experimental run was performed on Stage, while the laser data including and excluding the person’s
legs were reused in the mapping process to build respective maps.
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cells do not have contribution to I(m). Furthermore, the maximum information of a cell
is obtained with the occupancy probability 0 for free or 1 for occupied.

Before we show the map information computed from the both built maps illustrated in
Fig. 3.3, expected results should be discussed firstly. Since the grid cells lying in the area of
the tracked guide-person are regarded as invalid, their occupancy probability is set to 0.5.
Null information is contributed by these cells. These invalid cells could be observed again
only when the person area moves. A comparison of the map information is illustrated
in the areas shown with the blue arrows in Fig. 3.3(a) and 3.3(b). When the perceived
person’s legs are added into the built map, the whole map information would increase.
Hence, the information computed from map 3.3(a) should be more than that computed
from map 3.3(b). Our assumption is verified in Fig. 3.4. The map information I(m) was
computed every 20 iterations in the map process and stored in a log file. At the beginning of
the experiment, e.g. from step 0 to step 50 in the log file, there is little difference between
the two curves, as the person-following behavior was not started by the speech command
“Follow me!”. Therefore, the original laser scans were used. After “Follow me!” had been
sent out by the mini-dialog module (see section 5.1.2), the proposed technique was trig-
gered. In Fig. 3.4 the red curve shows the map information computed by using the proposed
technique, while the blue one was obtained when the original laser scans were used. As

Figure 3.4.: Computed information of the built map according to equation 3.11. The results
obtained by applying and not applying the proposed technique are illustrated
in the red and the blue curve respectively. The information of the map is stored
every 20 iterations in the mapping process.

illustrated in this figure the blue curve lies above the red one on the whole. Recalling the
gray points illustrated in Fig. 3.3(a) the additional information arising from the grid cells
occupied by the guide-person has been added into the environment representation. How-
ever, this additional map information does not reflect the real environment, because they
are only the temporary imprints left by the guide-person. Therefore, this map information
is actually false and should be removed from the environment representation. With the help
of the proposed technique the false information can be reduced, as the discrepancy between
the two curves in Fig. 3.4 illustrates. In other words, at the price of relatively less informa-
tion about the surroundings, false information arising from the tracked guide-person can
be excluded from the built environment representation as much as possible.
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Figure 3.5.: Average information of the built maps computed from the six runs on Stage.

In order to verify the conclusion drawn from a unique experiment run five additional ex-
periments were performed in the same simulated environment, except that different guide-
paths were used. 266 steps of the mapping process were recorded in the log files for all the
six runs. The same frequency, i.e. all 20 iterations in the mapping process, was used as be-
fore. For each step, the average map information was computed from the six runs. Besides,
the exploration of the whole environment shown in Fig. 3.2(b) was limited to complete
inside 266 steps. In other words, the robot has been guided throughout the environment
before the 266-th step. Note that for the evaluation of pose uncertainty, results achieved
from the six experimental runs will be discussed later on. The average information of the
built maps is shown in Fig. 3.5. Comparing to the result illustrated in Fig. 3.4, consistent
conclusion can be drawn. Applying the proposed technique, the information computed
from the built maps is though less than what can be obtained by using the original laser
scans, false information arising from the guide-person can be rejected as far as possible.

Performing a path planning task

Another issue to consider is the negative impact of the gray points shown in Fig. 3.3(a)
on a path planning task. Particularly when the spurious obstacles mapped in the environ-
ment representation lie between the current robot position and a given goal, a map-based
planning approach probably fails to find a path. An example is given in Fig. 3.6. The envi-
ronment maps illustrated in Fig. 3.3(a) and Fig. 3.3(b) were used for the map-based path
planning approach NF1 [92]. Because of the spurious obstacles on the way from the cur-
rent robot’s position to the given goal, NF1 cannot find a path in the map built without the
proposed technique, as illustrated in Fig. 3.6(a). In contrast a path depicted in green has
been planned for the robot, as Fig. 3.6(b) shows. Notice that comparing to Fig. 3.6(a) the
lighter orange circle shows the estimated robot poses obtained directly from the mapping
process, while the darker orange circle overlapping on the lighter one was computed on the
basis of the estimated robot’s poses. An interpolation was combined with the incremental
odometry data in order to obtain a higher frequency of the poses of the robot, considering
that the accuracy of the incremental odometry data were acceptable for a short time step.
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(a) (b)

Figure 3.6.: The map-based path planning approach NF1 applied for the two maps shown
in Fig. 3.3(a) and Fig. 3.3(b) respectively. The start, current and goal position
of the robot is depicted with the green, orange and blue circle respectively.
All these positions are given in the world coordinate system defined in the
corresponding maps. The robot’s goal is set on the similar location for the both
maps. Because of the false obstacles lying on the way to the set goal, no path
can be found in a). However, a path depicted with green is found in b).

Pose uncertainty

Apart from building a metric map in the Home-Tour, estimating the poses of the robot, i.e.
the robot’s path in the incrementally built map is the other task of a SLAM approach. The
estimated robot’s poses and the relevant information are therefore stored in a log file as well
in the same experimental run on Stage for the two cases, i.e. RBPF-SLAM with and without
the proposed technique. Considering the consistency with the computed map information
the same frequency, namely all 20 iterations in the mapping process, was adopted. Since
a mean pose vector and the corresponding covariance matrix9 are the two of the most
widely used quantities for a probabilistic representation of robot’s poses [152], these two
quantities are selected to estimate the pose uncertainty of the robot. Fig. 3.7 shows the
square root of the determinant of the pose covariance matrix for the two cases. The red
curve illustrates the determinants of the pose covariance matrices when the disturbance
from the guide-person has been reduced by our proposed technique, while the blue one
was obtained when the original laser scans were used in the experiment. Notice that the
red curve lies below the blue curve on the whole. In general, on the one hand, the pose
uncertainty of the robot should increase when the robot is exploring an unknown area of
the environment, as the ascending parts of the both curves are shown in Fig. 3.7. On the
other hand, as the descending parts of the both curves illustrate, by revisiting a known area
of the environment or by perceiving some parts of the known environment the robot would
be more certain about its locations. Besides, the invalid areas occupied by the guide-person
may affect the estimation of covariance matrices, because the real perception area of the

9In our case the mean pose of the robot is represented with a three dimensional vector µ(x, y, θ) containing
the robot’s position (x, y) and the orientation θ, while the corresponding covariance Σ is a 3 × 3 matrix
that is symmetric and positive-semidefinite.
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Figure 3.7.: Square root of the determinant of the pose covariance matrix in the two cases.
The result curve obtained with our proposed technique lies below the blue
curve at large.

Figure 3.8.: Position error of the robot during the simulated Home-Tour in the two cases.
The red curve presents a better result than the blue one achieved without our
proposed technique.

Fang Yuan



3. Map Building in a Home-Tour 53

Figure 3.9.: Angle error computed during the experimental run on the simulation platform
Stage for the two cases. The red curve illustrating the result obtained with the
proposed technique lies below the blue curve at large.

Figure 3.10.: Average curve of the square root determinant of covariance matrices achieved
from the six runs on Stage.
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Table 3.1.: Statistic results computed from Fig. 3.7, Fig. 3.8 and Fig. 3.9.

Reduced percent Reduced percentMean Std-deviation
of mean of variance

Sqrt-det
inc. legs

3.50× 10−5 4.01× 10−5

28.6% 22.4%
Sqrt-det
exc. legs

2.50× 10−5 3.11× 10−5

Position-error
inc. legs [m]

0.122 0.108
67.2% 75.9%

Position-error
exc. legs [m]

0.040 0.026

Angle-error
inc. legs [rad]

0.043 0.030
62.8% 50.0%

Angle-error
exc. legs [rad]

0.016 0.015

robot is actually reduced. Nevertheless, the mean and the standard deviation computed
from the red curve are both less than the results achieved from the blue one. The reduced
percentage of the mean and the deviation is 28.6% and 22.4% respectively, as shown in
table 3.1.

Figure 3.11.: Average position error obtained from the six runs on Stage.

As mentioned above, the covariance pose estimation of the robot is computed on the basis
of the perceived sensor data and the built map. However, actual pose error of the robot
cannot be obtained directly from the covariance matrices, since the covariance matrices do
not provide any reference value of robot’s pose. Therefore, mean position and orientation
of the robot estimated in the mapping process, as well as odometry data obtained directly
from Stage were recorded during the simulated Home-Tour on Stage. In addition, position
error of the robot, i.e. the distance between the estimated and the odometry positions,
and angle error of the robot, namely the absolute difference10 between the estimated and
10Note that only the acute angle intersected between the estimated and the odometry angle of the robot is

considered and the angle error is therefore limited in the interval [0, π].
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Figure 3.12.: Average angle error computed from the six runs on Stage.

the odometry orientations of the robot, were stored. Considering the two parameters of
the position model defined in Stage11, namely odom and gps, the latter was used in the
experiment in order to get perfect knowledge about where the robot was in the simulation.
Note that using position model odom noise can be added in the odometry recordings, and
the odometry data will become increasingly inaccurate as the simulation goes on. Although
this situation is closer to the reality, perfect odometry providing accurate poses of the robot is
chosen because the odometry data can be regarded as the ground truth, which are necessary
for the computation of pose error. By this means, conclusions of the proposed technique
can be drawn from the experiment performed on the ideal simulation platform. Besides,
the proposed technique has been integrated in the current system (see section 5.1.2) and
evaluated in a user study conducted by inexperienced subjects. Evaluation results will be
discussed in section 5.2.2. Fig. 3.8 and Fig. 3.9 shows position and angle errors of the robot
respectively. Robot localization benefits from the proposed technique, as the red curves in
the two figures illustrate. The negative effect arising from the perceived person’s legs are
illustrated by the blue curves of the two figures. Statistic results shown in table 3.1 verify
again the superiority of our approach. The reduced percentage of mean and deviation for
position errors are 67.2% and 75.9% respectively, while for angle errors a 62.8% reduction
for the mean and a 50% reduction for the deviation is achieved.

As mentioned before in the discussion of map information, additional five experimental
runs were performed in the same simulated environment with different guide-paths. Aver-
age values of sqrt (square root) determinant of the covariance matrices, position errors, as
well as angle errors computed step by step from the six experiments performed on Stage are
shown in Fig. 3.10, Fig. 3.11 and Fig. 3.12 respectively. Comparing to the results illustrated
in Fig. 3.7, Fig. 3.8 and Fig. 3.9 respectively, errors in pose estimation of the robot during
the mapping process can be reduced when the proposed technique is used.

Furthermore, statistic results calculated from Fig. 3.10, Fig. 3.11 and Fig. 3.12 are pre-
sented in table 3.2. In contrast to the results of table 3.1 obtained by one experiment,
consistent results can be achieved from the six runs, i.e. due to the disturbance of the
perceived person’s legs in the Home-Tour, pose errors of the robot will increase.

11See more information about the position model in the web page of Player/Stage Manual http://www-
users.cs.york.ac.uk/ jowen/player/playerstage-manual.html.
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Table 3.2.: Statistic results computed from the Fig. 3.10, Fig. 3.11 and Fig. 3.12.

Reduced percent Reduced percentMean Std-deviation
of mean of variance

Average sqrt-det
inc. legs

5.70× 10−5 3.72× 10−5

49.5% 48.9%
Average sqrt-det

exc. legs
2.88× 10−5 1.90× 10−5

Average position-
error inc. legs [m]

0.178 0.079
48.3% 51.9%

Average position-
error exc. legs [m]

0.092 0.038

Average angle-
error inc. legs [rad]

0.066 0.027
50.0% 44.4%

Average angle-
error exc. legs [rad]

0.033 0.015

3.3. Summary and Discussion

Simultaneous Localization And Mapping (SLAM) is a basic problem in robotics, which has
been discussed for over 20 years. In this chapter, I proposed an extension to a state-of-the-
art SLAM approach [9] that improves its performance in interactive mapping. The basic
idea of Rao-Blackwellisation-based SLAM approaches was introduced firstly. By applying
Rao-Blackwellisation it is possible to reduce the sample space. A two-step process, i.e. an
incremental mapping process with known poses and the pose estimation in the built map,
is therefore feasible.

Next, the negative effect arising from the perceived guide-person was discussed. Both the
mapping process and the pose estimation of the robot may be influenced, because the per-
son’s legs are tracked by the robot and regarded as dynamic obstacles all along the Home-
Tour. Considering the person detection and tracking system introduced in section 2.2.1, I
presented a robust technique, in which the area occupied by the guide-person can be de-
tected in the laser scans. The corresponding laser points were regarded as invalid for the
SLAM approach. As the regions occupied by the guide-person were removed from the per-
ception area of the robot as far as possible, they cannot contribute any information to the
built map. The total information of the environment gathered with the proposed technique
is less than what can be obtained using the original laser scans. Nevertheless, dynamic
obstacles arising from the person’s legs may be excluded from the built environment repre-
sentation as far as possible. On the one hand, pose estimation of the robot computed in the
incrementally built map is disturbed by the dynamic obstacles, i.e. the guide-person. On
the other hand, map-based path planning approaches probably fail to find a path for the
robot due to the false obstacles added into the environment representation.

At last, I discuss the evaluation results of the proposed technique achieved from one exper-
iment and from six experiments on the simulation platform Stage. Consistent conclusions
have been drawn. Applying the proposed technique less information computed from the
environment actually results in a more accurate environment representation, since most of
the false obstacles arising from the simulated person’s legs can be rejected by the mapping
process. Hence, negative effect of the false obstacles on a map-based path planning ap-
proach can be reduced, assuming that the environment is static. Besides, the localization
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process performed in a relatively static map may provide more accurate pose estimation
of the robot, because the disturbance of the guide-person is moderated. Recalling that the
areas occupied by the guide-person are regarded as invalid in the laser plane, the corre-
sponding laser points are used neither for the mapping process nor for the pose estimation
of the robot. A finer definition of the area actually occupied by the guide-person (in our
case, the two or occluded person’s legs in the laser scans) would reduce the number of the
invalid laser points. Thus, the extended perception area might benefit a SLAM approach.
However, the results of the experiments validate the effectiveness of our technique, apart
from verifying the negative effect resulting from the perceived guide-person on the RBPF-
SLAM approach.

Note that the mapping process discussed in this chapter was performed in a simulated
small-scale indoor environment, i.e. the BIRON apartment partially simulated by Stage.
The pose uncertainty of the robot may be decreased, when the robot re-enters known ter-
rains during the Home-Tour, as those local valleys of the two curves in Fig. 3.7 illustrate. In
contrast to SLAM in small-scale environments, many aspects, such as improving the com-
putational efficiency [62], closing multiple nested loops [11], some problems of standard
particle filters in large-scale mapping discussed in [102], etc., have to be considered for
the solution to the SLAM problem in a large-scale environment [16]. However, in theory
the results shown in this chapter verified the feasibility of our approach in a small-scale
home environment, because the robot may naturally revisit some known areas or at least
perceive the part of them under the guidance of the person. Besides, an occupancy grid
representation in a small-scale environment and the relatively small number of particles
required on the robot’s path actually moderate the computation and memory problems in
comparison with large-scale SLAM. In chapter 5 the robustness of the proposed technique
will be validated on our robot platform in a real environment.
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4. Path Planning Adopting Human
Strategies

One of the tasks performed in a Home-Tour, i.e. building a metric environment representa-
tion, has been discussed in the last chapter in detail. So far, the map of the environment
initially unknown to the robot has been built in a human-robot joint exploration. Using
this environment map how to reach a goal defined in the map has to be solved, so that
the robot can move around in the environment and provide services to its user. The ca-
pability of safe navigation in the environment is necessary for a service robot placed in a
person’s home. However, natural human-inhabited environments still pose significant chal-
lenges for robots despite the impressive progress that has been achieved in the field of path
planning and obstacle avoidance. These challenges mostly arise from the fact that (i) the
perceptual abilities of a robot are limited, thus sometimes impeding its ability to perceive
relevant obstacles (e.g. transparent objects), and (ii) the environment is highly dynamic
due to e.g. movable objects and humans. Recalling the idea of Human-Robot Joint Spatial
Exploration and the interactive Home-Tour scenario, an integrated solution building upon
the analysis and use of implicit human knowledge in path planning to these challenges
will be elaborated on in the following in this chapter. The knowledge gained interactively
from the guide-person is therefore incorporated in the environment representation, except
for the information gathered from a standard robotic mapping process. By this means, a
topological representation can be built.

As introduced in section 1.2, in general path planning answers the question “How can I
navigate to a goal position from my current location?”. Most of the established approaches
assumed that a priori knowledge of the environment was available (usually a 2D map repre-
sentation denoting obstacles and free spaces1). They tried to compute a plan towards a goal
for the robot [105]. These approaches are purely map-based, without the consideration of
any prior experience in navigating the environment. Generally, planning algorithms can be
classified in two types. The first is to compute a path from the robot’s start position to the
goal deterministically [29], using a navigation function, such as NF1 introduced in [92].
In contrast, the other type of approaches tackle the problem probabilistically, which try to
plan a sequence of actions, i.e. a path, associated with all possible positions of the envi-
ronment to the goal [128]. Probabilistic nature of robot motion and perception [72, 170]
are considered explicitly in the planning domain. Such a plan is generally referred to as a
universal plan [105].

As discrepancies resulting from dynamic obstacles, e.g. movable doors and people, almost
always exist between the a priori map and the real environment, local strategies dealing
with dynamic environments are necessary for the robot to execute the computed path. Sev-
eral classical approaches have been proposed to continuously react to obstacles perceived
by robot sensors, e.g. DWA (Dynamic Window Approach) [48] achieving optimal actuator
commands by searching in a velocity space, VFH (Vector Field Histogram) [14] employing

1Note that very recently, using the Microsoft Kinect (see http://www.xbox.com/en-US/kinect) based on the
design by PrimeSense (see http://www.primesense.com/), 3D scene information is achieved from a contin-
uously projected infrared structured light.
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a two-stage data-reduction process to represent the world model with a polar histogram
and select the most suitable steering direction among this histogram with a low polar ob-
stacle density, ND (Nearness Diagram) [107] describing an environment (robot and goal
location, obstacles, as well as free space) with sectors centered on the robot’s location and
designing actions of the robot according to predefined situations. More recently, reactive
navigation solved with the help of a parametrized space, namely a trajectory parameter
space has been proposed by Minguez et al. [108] and extended by Blanco et al. [12]. On
the basis of trajectory parameter spaces, decoupling the problems of kinematic restrictions
and obstacle avoidance is feasible. Furthermore, the robot is able to efficiently carry out
the long-term (global) plan, while reacting to unexpected obstacles quickly.

However, a major drawback of the path planning approaches mentioned above should not
be left unconsidered. Due to the limitation of robot perception, potential hazards may not
be all contained in the built representation of the environment. Besides, the computational
complexity has to be taken into account especially for the calculation of a universal plan
in real time. Therefore, we propose a path planning approach that not only relies on the
static configuration of the environment but instead utilizes the knowledge gained from an
analysis of human pathways. A combination of human-aware and map-based path plan-
ning, dynamic re-planning abilities, and dynamic obstacle avoidance will be discussed in
this chapter. People sharing the environment with the robot should be taken into account
under the assumption that path planning might benefit from human strategies. Following
the path selected by the guide-person in the Home-Tour no unconquerable obstacles should
be left for the robot, when the environment is assumed to be static. Thus, robust path plan-
ning is achieved. In addition, avoiding potential dynamic hazards, e.g. movable objects
and people near the doorway, is expected to be considered by the person guiding the robot
in the Home-Tour, and thus benefits the robot as well. Consequently, people are invited
in the designed Home-Tour, in which the robot can not only explore the environment and
build a map effectively (see chapter 2 and chapter 3 respectively), but also observe the be-
havior of the guide-person during the exploration of the environment to positively affect its
own navigation abilities. Note that in an unconstrained environment the two-dimensional
perceptual space of a fixed mounted laser is not sufficient to ensure safe navigation. 3D
capturing techniques are therefore necessary, especially when dynamic obstacles out of the
2D laser plane obstruct the path planned for the robot.

The remainder of this chapter is organized as follows. After discussing the most recent
work on path planning in the context of an interactive scenario in section 4.1, details of
path planning and the re-planning scheme are explained in section 4.2. Besides, results
of the proposed path planning and re-planning approach achieved in an empirical study
are presented as well at the end of section 4.2. Considering dynamic obstacles that may
become potential hazards for the robot, a multisensor-based motion generation is discussed
in section 4.3, before the summary and discussion of this chapter in section 4.4.

4.1. Related Work

In 2007, Gockley et al. [58] were one of the the first to propose that knowledge about
paths of a human guide could be exploited by robots needed to make regular trips between
specific locations in hospital environments. Path planning for a mobile robot in a domes-
tic environment has been widely studied, e.g. by Topp [153] and Zender et al. [169]. In
both work a robot followed a person during a guided tour. The geometric features of the
environment representation are lines extracted from straight structures like walls, without
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details of small objects. Therefore, the built map is not necessarily sufficient for navigation
actions. The so-called Navigation Nodes leading the robot to a goal were selected from the
robot trajectory and kept sparse. The robot’s path computed from these coarse navigation
nodes was based on a static graph, in which the shortest route was found. Their repre-
sentation does not contain any information about the actual pathways that people walked
along. It creates new nodes only if no node exists within a distance of approximately 1m.
Moreover, the choice of sparse nodes for path planning might neglect details of people’s
movement, i.e. strategies of the guide-person. These strategies could be helpful for obsta-
cle avoidance, e.g. going through a door, or avoiding objects that might not be perceived by
robot sensors. The robot may get into trouble as well, when it is far from those Navigation
Nodes and without connection to them, or the connections between the neighboring nodes
are cut off by dynamic obstacles. Therefore, appropriate approximation and representation
of person’s trajectories, an occupancy map-based path planning approach and the capability
of re-planning are key for robust navigation in an unconstrained indoor environment.

Recently Sisbot et al. [133] have proposed a human aware motion planner (HAMP). In their
work the robot’s path was calculated according to the recognized status of people, obstacles
distributing in the near of people, as well as a known environment representation. In order
to achieve a socially acceptable robot behavior in a human-shared environment, the path
planned for the robot took people into account. However, accurate human postures, such
as standing and sitting, the field of view and the gaze direction of a person required by their
approach are not necessarily recognized stably and in time in practice. Besides, due to the
limitation of robot perception the computed path may be infeasible. In contrast, exploiting
the knowledge gained interactively from the guide-person unperceivable obstacles may be
avoided.

On the basis of the insight obtained from the observation that how people can safely nav-
igate through crowds, the freezing robot problem2 can be solved by engaging in joint col-
lision avoidance3. By this means, the robot was able to proceed through crowd to reach
the given goal. However, observations of all dynamic agents are needed for this approach,
which are difficult to achieve precisely by robot sensors from crowds in a real world sce-
nario.

4.2. Path Planning

Considering the disadvantages of pure map-based approaches, static trajectory-based sys-
tems, the human aware motion planner, as well as the approach for unfreezing the robot
discussed above, a graph-based planning and re-planning approach using the information
gathered interactively in the guided tour has been designed. The graph is built on the basis
of pathways selected by the guide-person during the Home-Tour. Since the search space
of the graph is constrained to the person’s trajectory, no path can be computed especially
when the robot is far from the pathways of the guide-person. Therefore, a map-based path
planner has been integrated into the proposed approach as a supplement. Besides, dynamic
objects obstructing the path planned for the robot can be detected in the built occupancy
grid map discussed in chapter 3. Thus, the robot is expected to benefit from human navi-
gation strategies considering the following points:

2When every path planned for the robot is expected to make a collision, the robot stands still or performs
unnecessary evasive action to avoid crowd. See [154] for details.

3It is called social forces model in [74].
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. On the basis of the person’s trajectory a robust path can be computed, as no obstacles
that cannot be overcome by the robot should be left on the way.

. The robot follows a conventional path that would be expected by people as well.

. The trajectory of the robot would be predictable, since the path computed for the
robot has been selected by the guide-person in the Home-Tour.

Besides, the re-planning process will be triggered when the current plan is obstructed by
dynamic obstacles.
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Figure 4.1.: Data flow of the proposed path planning and re-planning approach. Direc-
tions of the data flow are shown with arrows. Outputs of the components are
commented nearby the corresponding arrows.The person’s trajectory during an
interactive scenario and the environment map are both observed by the path
planning module, in order to compute or re-compute a path for the robot.
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The data flow centered on the component Path Planning and Re-planning marked with
yellow is presented in Fig. 4.1. Recalling the person-following behavior discussed in chap-
ter 2, the guide-person is tracked by the component Person Tracking and Attention during
the Home-Tour. Person positions are expressed with polar coordinates in the robot’s local
frame. Combining the local person’s positions with global robot’s poses estimated in the
mapping process (see section 3.2), the person’s trajectory is represented in the built map
as well. In terms of the built environment representation and the person’s trajectory a
sequence of actions, i.e. the set of robot’s subgoals, are computed by Path Planning and
Re-planning. Notice that the set of robot’s goals computed by Person Tracking and Atten-
tion are used to perform the Home-Tour, while the subgoals sent from Path Planning and
Re-planning4 constitute the global path computed for the robot after the guided tour when
a location (see definition in section 1.2) is sent to the robot. In order to execute the path
computed or re-planned for the robot, a component of obstacle avoidance is necessary.
Checking the current robot’s pose, perceived laser data and the sequence of subgoals, actu-
ator commands, i.e. translation and rotation speed, are sent out.

For the proposed path planning approach it is assumed that the person’s trajectory repre-
sents basic behavior information of the guide-person. Thus, following the pathway of the
guide-person, the robot actually adopts human navigation strategies. As will be elaborated
on in the following section, the person’s positions selected from the trajectory are recorded
to build a graph. Recalling the definition of location given in section 1.2, human spatial
concepts, e.g. rooms (regions) in the environment, are able to be incorporated as well in
the built graph representation. Paths connecting the regions are computed from the trajec-
tory of the guide-person. By means of the locations and paths connecting these locations, a
topological graph can be built upon the occupancy grid environment representation during
the interactive Home-Tour. Thus, Path Planning and Re-planning can be carried out accord-
ing to the topological representation, while taking into account the information obtained
from the metric representation, i.e. free spaces and obstacles represented in the occupancy
map.

4.2.1. Graph Creation

Movement trajectory of the guide-person is observed and recorded by the robot during the
guided tour. Person Tracking and Attention shown in Fig. 4.1 provides person’s positions
with respect to the robot frame. Combining the global robot’s poses estimated in the built
occupancy grid map, the person’s trajectory can be computed in this map, i.e. the world
frame. The naive path planning approach is to make the robot follow the person’s positions
stored in the guided tour in chronological order. By this means, the robot follows the
person’s trajectory exactly. Then a path from A to B can be found, only if the guide-person
has gone directly from A to B before. Thus, trajectory changes are not possible, as shown in
Fig. 4.2(a). Besides, human paths containing unnecessary detours (see Fig. 4.2(b)) cannot
be detected. Hence, utilizing the original human trajectory needs to be compromised with
the basic requirement for path planning, i.e. making the robot to reach a given goal. In
other words, following the human trajectory as far as possible, sticking to the trajectory of
the guide-person if possible and changing trajectories to reach a goal must be all taken into
account. Derivation of the proposed solution begins with building a graph based on the
recorded person’s trajectory.

4Note that the subgoals can be computed by either the built graph (see section 4.2.1) or a map-based path
planner ( see section 4.2.2).
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Figure 4.2.: Human trajectories (black) and robot’s paths (red): In a) the original human
trajectories are from A to C and from B to D. If the robot intends to navigate
from A to B, a trajectory switch is necessary. In b) the person went from A, via
B, C and D to E. If the robot navigates from A to E, the robot does not need to
take the detour over C (unless there is an obstacle between B and D, which can
be avoided using the path via C).

At first, the set of nodes in the graph are investigated. All positions recorded in chrono-
logical order for one guide-person in the Home-Tour are inserted as the set of nodes N
into a graph GPerTraject, where N = {N1, N2, · · · , Ni, Ni+1 · · · , Nn}, i is the sub-
script and n is the number of the nodes5. Note that N1 and Nn records respectively the
start and end person’s position in the Home-Tour. The creation of edges in the graph will
be discussed later on in this section. Assuming that m locations L1, · · · , Lj, · · · , Lm
are specifically shown to the robot one after another, the corresponding person’s posi-
tions firstly recorded at the m locations are denoted as NSL1, · · · , NSLj · · · , NSLm ,
where SL1, · · · , SLj, · · · , SLm represents the respective subscripts of the nodes in graph
GPerTraject. Considering the start and end position of the guide-person, i.e. N1 and Nn,
m+ 2 key nodes N1, NSL1, · · · , NSLm, Nn are selected from graph GPerTraject. Thus,
n nodes in graph GPerTraject can be divided into m+ 1 subsets defined as follows:

N = {Nsub1, · · · , Nsubj , · · · , Nsubm+1
}, (4.1)

where

Nsub1 = {N1, · · · , NSL1−1} (4.2)

Nsubj = {NSLj−1, · · · , NSLj−1} with 1 < j < m+ 1 (4.3)

Nsubm+1
= {NSLm, · · · , Nn}. (4.4)

In other words, the whole graph GPerTraject that comprises the n nodes is divided into
m + 1 graph layers GLayer1, · · · , GLayerm+1 , according to the corresponding subsets.
Each graph layer records the person’s positions of the corresponding sub-trajectory. Each
nodeNi of the graphGPerTraject can be assigned to a corresponding layerGLayer(Ni) =

GLayerk , where k ∈ {1, · · · ,m+1}, whenNi ∈ GLayerk6. Actually graphGPerTraject
can be regarded as graph union or graph join of all graph layers [70], since no edges have

5Note that whether the person’s positions are different from each other is not checked. In other words,
different nodes may store same person’s positions.

6Note that a node with the same coordinate might be passed by the guide-person not only once. For such
nodes they might belong to different graph layers.
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been connected between nodes yet. Furthermore, the whole person’s trajectory consisting
of set N can be correspondingly segmented into m + 1 sub-trajectories. Recalling equa-
tion 4.2, the first sub-trajectory represents the subset of person’s positions from the first
node recorded after the Home-Tour starts, i.e. N1, to the last node recorded before the first
location L1 is shown to the robot, i.e. NSL1−1. The last sub-trajectory, which represents
the subset of person’s positions from the first node recorded after the last location Lm is
indicated by the guide-person to the last node recorded before the Home-Tour is completed,
is given in equation 4.4 The rest sub-trajectories are given in equation 4.3, where one sub-
trajectory begins at the first node recorded when location Lj−1 is shown to the robot, i.e.
nodeNSLj−1 , and ends at the last node recorded before the subsequent location Lj is indi-
cated to the robot, i.e. nodeNSLj−1. Considering the fine resolution of the occupancy grid
map (0.05m in our case) a relative rough virtual grid with a predefined resolution is laid
over the built map, in order to store person’s position effectively. Furthermore, the number
of graph nodes is limited to one per virtual grid cell.

The connection of graph nodes is created simply under the restriction of distance. In other
words, newly added nodes get connected by an edge to all neighbor nodes whose grid cell
distance is smaller than a certain threshold7. By this means, on the one hand nodes lying
on different graph layers might be connected, when they are near to each other. On the
other hand, no edge might be connected between nodes on the same layer, when they are
far from each other. The complete graph GPerTraject can be therefore created with an op-
eration resembling graph join of multiple layers. However, the edges of graph GPerTraject
are built in terms of the predefined restriction of distance. Edge weight ω(Ni, Nj) is ini-
tially set to the euclidean distance between the connected points Ni, Nj . The A? search
algorithm [71] is applied on the graph GPerTraject to find the least-cost path if it exists.
According to the initial weights of the edges the shortest distance path will be found.

Layer 1

Layer 2 Trajectory change

Trajectory change

A
B

Figure 4.3.: Two layers created from the corresponding human sub-trajectories. Light blue
nodes belong to layer 1, while dark blue nodes belong to layer 2 including the
two black nodes A and B. Two possible paths from A to B are depicted with
red and green edges. The graph search algorithm would prefer the green path,
since the red one contains two expensive layer (sub-trajectory) changes.

However, the shortest path is probably not consistent with the path originally chosen by the

7Note that obstacles between two connected nodes are not checked by graph creation, but instead effectively
in the re-planning process. See next section for details.
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guide-person, as some details of the person’s trajectory might be ignored by A?. In order
to make the robot follow the trajectory of the guide-person as far as possible, timestamp
ts(Ni) memorizing when node Ni is added into the graph is taken into account. Consid-
ering the fact that a long time span between two nodes implies that they are not neighbors
on the original human path, the difference of the timestamps between two selected nodes
is computed. If the timestamp difference is greater than a defined threshold Θt, the initial
edge weight will be multiplied by a penalty factor αt.

In addition, frequent changes between different human sub-trajectories should be avoided.
The robot ought to follow one sub-trajectory as long as possible, unless trajectory switches
are necessary for the robot to reach a goal. As described above, instead of building one
graph recording all person’s positions, multiple graph layers are created (see Fig. 4.3).
Edges connecting nodes from different layers are allowed. Nevertheless, they will suffer
from a multiplied penalty factor αl on the basis of the initial edge weights. This, again,
makes graph layer changes rare, although not impossible.

In summary, the path computed by A? is a compromise between the shortest distance way
leading the robot to a goal and an imitation of human behavior watched by the robot during
the Home-Tour. Thus, the edge weight ω(Ni, Nj) between two nodes Ni, Nj of the graph
GPerTraject is defined as follows:

ω(Ni, Nj) = pt(Ni, Nj) · pl(Ni, Nj) ·
∣∣∣∣∣∣−−−→NiNj

∣∣∣∣∣∣ , (4.5)

where

pt(Ni, Nj) =

{
αt if |ts(Ni)− ts(Nj)| > Θt,
1 otherwise

(4.6)

and

pl(Ni, Nj) =

{
αl if GLayer(Ni) 6= GLayer(Nj).

1 otherwise
(4.7)

Note that αt > 1 and αl > 1. In section 4.2.3 we will show that the proposed path
planning and re-planning approach is a trade-off allowing the robot both to benefit from
qualities of human navigation and to autonomously make decisions on the switch of graph
layers.

4.2.2. Re-planning

A path planned for the robot consists of a set of subgoals leading to a goal. A precise plan
computed by means of a static environment representation may be inappropriate to be exe-
cuted due to dynamic obstacles, such as people or movable furniture. Using the laser sensor,
component Obstacle Avoidance shown in Fig. 4.1 is able to make the robot circumvent ob-
stacles on the way to subgoals. Whenever a subgoal near to a dynamic obstacle cannot be
reached within a certain time period, the robot tries to go to the next subgoal that could lie
in free space. Thus, Obstacle Avoidance is expected to overcome temporal obstacles, such as
passers-by, or objects obstructing the path not completely, and drive the robot to the goal
using the current plan.

If the effort of reactive navigation (component Obstacle Avoidance) is not successful8, the
current plan is marked invalid. Obstacles between the robot and the current subgoal are

8When the robot cannot reach the current and the next subgoal within a certain time period, it is assumed
that Obstacle Avoidance fails.
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Figure 4.4.: Finding dynamic obstacles on the grid map. Free grid cells are depicted in
white, occupied cells in black. An obstacle is detected, since the occupied cells
(orange) outweigh the free cells (yellow) in the ellipse area between the robot
and the subgoal.

checked in the built occupancy grid map. For this purpose, grid cells contained in an
ellipse covering the area between the robot and the subgoal are inspected, as Fig. 4.4
illustrates. When the percentage of occupied cells in this area exceeds a threshold, it is
assumed that obstacles have obstructed the current plan. Re-planning is therefore triggered.
Since the value of a grid cell indicates the occupied probability of this cell, in order to
avoid recognizing false occupation of temporal obstacles, only the cells with high value
are regarded as occupied. Considering the failure of reactive navigation and the detected
obstacle between the robot and the subgoal, this subgoal is marked as an unreachable node
Nur. Given the radius of the robot, all neighbors of the Nur inside this radius are marked
as unreachable as well. A?-search is then repeated, ignoring those unreachable nodes.
If no obstacle can be detected in the path found by A? but Obstacle Avoidance still fails,
map-based path planning is used for path planning as the last resort9.

Furthermore, map-based path planner can be seen as a general fall back strategy whenever
A? cannot find a path from the graph GPerTraject discussed above. This is the case if
either no connection between the start and the target node can be found in the graph, or
the robot’s position is far away from any node of the graph. The second case mainly occurs
when the robot is manually placed at a location, where it has not been before, or it is
exploring autonomously. While the robot is following the NF1 path, A? constantly tries to
find a path switching back to the behavior computed from the graph GPerTraject as soon
as possible.

Considering the graph-based path planning approach and re-planning strategies discussed
above, the robot is expected to benefit from both map-based path planning and navigation
strategies of the guide-person. Thus, the robot is able to effectively solve the planning
problem “How can I navigate to a goal position from my current location?” posed at the

9Due to errors in robot sensors and the mapping process, as well as the real response of the robot to actuator
commands, such a situation might occur in practice.
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(0.0, 0.0, 0.0)

(a)

(0.0, -2.0, 0.0)

(b)

Figure 4.5.: Test of ND on the simulation platform Stage. The pairs of the simulated legs
shown in Fig. 2.1(b) form now the U-shape and the cluttered obstacles in (a)
and (b) respectively. The start position of the robot is depicted with red. The
red arrow shows the start orientation of the robot. Moving along the gray
trajectory the robot can successfully reach the goal within the predefined goal
tolerance.

beginning of this chapter.

4.2.3. Empirical Study

The proposed approach has been studied on the robot platform BIRON II in a real envi-
ronment resembling an apartment with real subjects. NF1 [92] was used to compute a
global path based on the built occupancy grid map10. In order to make the robot avoid
obstacles, Nearness Diagram (ND) navigation [107] was integrated in BIRON II. ND aims
to make the robot get out of the troublesome situations, such as the obstacles forming U-
shape (see Fig. 4.5(a)) or a very dense and cluttered scenario illustrated Fig. 4.5(b). To
compute collision-free motions for a robot in a complex environment, ND divides the per-
ception area into sectors with respect to the robot center and describes the robot, the goal
location, the obstacles as well as the free space with a set of situations. Afterwards, actions,
i.e. the translational and rotational velocities, corresponding to the assigned situation are
specified with a decision tree according to the given criteria. By this means, difficulties lying
in reactive navigation can be well solved, as the available situations in ND have overlapped
most of the problematic cases in cluttered indoor environments.

As an environment representation and locations recorded in the built map are necessary for

10See a short introduction for NF1 in section 4.3.1.
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1.6 m

0.8 m

D1 D2

Start Pose

End Pose

Figure 4.6.: Occupancy grid map of the environment. Two doors D1 and D2 open during
the Home-Tour, a table whose four legs can be perceived by the robot and the
start as well as end pose of the robot are depicted on the map.

our path planning approach, the test scenario was divided into two parts. At first, a person
guided the robot in the initially unknown environment and showed different locations to
the robot. Afterwards, the robot was required to navigate to the learnt locations. Besides, in
order to validate the robustness of the re-planning process, a dynamic object was purposely
laid on the way to the goal to obstruct the path planned for the robot. In the following the
experiment procedure will be discussed in detail.

Fig. 4.6 illustrates the grid map of the environment built after the guided tour, and the
start as well as end pose of the robot. The gray-scale indicates the probability whether
the grid cells are occupied by obstacles perceived from laser sensor. As explained in sec-
tion 3.1, white corresponds to free with high certainty, while black implies occupied with
high certainty. Since the guide-person has to be regarded as an obstacle by ND during the
Home-Tour, the strategy described in section 3.2.1 was adopted in the test scenario. By this
means, the occupied area of the person was defined with the help of the component Per-
son Tracking and Attention illustrated in Fig. 4.1 and removed from the laser plane. A table
about 1.60m×0.80m×0.72m is depicted with a blue rectangle. As the laser range finder
can perceive a plane in front of the robot at a certain height, only the four legs of the table
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A

B

C

D

Figure 4.7.: Multiple graph layers created during the interactive Home-Tour scenario. Dif-
ferent colors illustrate different sub-trajectories of the guide-person from one
location to another, as described in section 4.2.1.

can be perceived by the robot. The two doors D1 and D2 were opened, while the robot
was following the guide-person. The effective elementary following behavior discussed in
section 2.4.2, i.e. the direction-following process, was used in the empirical study11.

The multiple graph layers illustrated with different colors were created (see Fig. 4.7), when
different locations were shown to the robot. As discussed in section 4.2.1, each layer stores
the person’s positions from one location to another, if the locations exist. For example, the
green sub-trajectory provides the movement information of the guide-person from location
A to B, while the violet graph layer illustrates the set of person’s positions from D to the
end position of the guided tour because no subsequent location was shown to the robot.
When the sub-trajectories of the person interweave each other, edges connecting nodes
from different layers are allowed according to the distance restriction for edge creation
mentioned in section 4.2.1. As illustrated in Fig. 4.7, nodes on the blue, yellow and green
graph layer between location C and B are connected by edges with high cost. Thus, switches

11In this section only the proposed path planning approach is evaluated. A complete evaluation of the system
containing person-following behavior, map building process and path planning is presented in chapter 5.
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(a) (b)

Figure 4.8.: The path computed by the graph-based approach presented in section 4.2.1 and
the map-based approach NF1. a) shows the red path found in the built graph.
Notice that the path with a small detour results from the edge weights defined
in equation 4.5. Compared to the red path containing navigation strategies of
the guide-person, the green path from NF1 crossing the table is illustrated in
b).

of graph layers necessary for the robot to reach a location are allowed.

The route of the guide-person started from A, via B, C, D, and ended in proximity to the start
location A. The region between A and D corresponds to the aisle of the real environment.
Since the robot followed the person and traveled through some places of the environment
only once, the uncertain (gray) areas, such as the aisle between the two open doors D1
and D2 can be found in Fig. 4.6. Those cluttered gray points in front of the robot’s start
position were created before the guide-person had been detected by the person tracking
and attention system. In other words, the perceived legs of the unidentified person were
recorded on the occupancy grid map. Once the guide-person was identified, no such points
were added again into the grid map for the subsequent guided tour.

After perceiving the new surroundings the robot should be able to reach a goal set in the
free space of the already explored environment. This is also a precondition for a domestic
service robot. In this study the robot was required to return to location C from its end
pose. The path leading the robot to the goal is computed using the approach described in
section 4.2.1 and illustrated in Fig. 4.8(a). Since the guide-person did not move directly
from A to C, no graph layer containing the sub-trajectory of the guide-person between these
two locations was available. Therefore, layer switch was necessary for the robot to find a
path. In order to compare the path computed from the proposed and the NF1 approach,
the two trajectories are illustrated in red and green respectively in Fig. 4.8(b). As can
be expected, the map-based path planning approach NF1 finds a shortest way (the green
path) to location C without the consideration of the unperceivable table, while the red path
contains navigation strategies of the guide-person.

Afterwards, the robot tried to reach the subgoals on the way that the guide-person had
passed by to C, i.e. the red path illustrated in Fig. 4.9(a). However, the door D1 lying on
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(a) (b)

Figure 4.9.: Comparison of the planned and re-planned path. a) shows the planned path on
the base of the built map during the Home-Tour. Tuning edge weights defined
in equation 4.5 the blue dashed shortcut would be an alternative neglecting
potential obstacles in the region shown by the green arrow. Once the new
obstacle D1 had been added in the grid map and detected by the robot, re-
planning was started. The resulting path is illustrated in b).

the robot’s path was closed purposely, in order to disturb the current plan. As discussed
in section 4.2.2, when the local approach ND was not successful, and the robot was aware
of the new obstacle D1 obstructing the path in front, re-planning was started. The re-
planned path computed from the graph and the closed door D1 added into the grid map
are shown in Fig. 4.9(b). After the robot had successfully reached location C using the
re-planned path, it was commanded to go back to A. Notice that the two built grid maps
illustrated in Fig. 4.9(a) and Fig. 4.9(b) distinguish from each other in some details, e.g.
the aisle between the two doors and the area inside the room. Compared to Fig. 4.9(a),
the uncertain (gray) regions become relatively certain (white) in Fig. 4.9(b), as the robot
entered or perceived these areas again. In addition, a shortcut marked with the blue dashed
in Fig. 4.9(a) can be achieved by tuning edge weights defined in equation 4.5. However,
potential hazards that can be avoided with the red path may exist in the area shown by the
green arrow.

One of the advantages of the proposed path planning approach has been illustrated in
Fig. 4.8(b), when obstacles are unperceivable to the robot. Besides, it is meaningful to
compare the plan computed from NF1 and our approach in a fair situation. In other words,
the obstacles on the way to the set goal can be perceived by the robot entirely. Therefore,
the robot’s position and orientation were marked in the experiment, when the robot went
back to location A. The same goal B was sent to the robot following the path computed by
our approach and NF1. Since the post-closed door D1 was mapped in the environment rep-
resentation, the map-based plan obtained this information as well. The result is illustrated
in Fig. 4.10. As NF1 tries to find a shortest path, the green trajectory leads the robot near
to obstacles, e.g. the wall in the aisle and the door D2 marked in Fig. 4.6. In contrast, more
free spaces were considered by the guide-person for safely planning, as the red trajectory
shows, especially in the area of the aisle. In addition, the guide-person tried to keep dis-
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Figure 4.10.: Comparison of the path computed from NF1 and our approach for the robot
from A to B given in Fig. 4.7. The green path from NF1 is close to obstacles,
while the red path reveals navigation strategies of the guide-person.

tance in the doorway of D2, where potential hazards, e.g. movable people or unexpected
objects, might arise.

Notice that only the four thin legs of the table illustrated in Fig. 4.6 can be perceived by the
robot. Adopting navigation strategies gained from the guide-person such an unperceivable
obstacle should not impede the robot in performing navigation tasks. However, in a dy-
namic environment such a movable table may be placed on the path planned for the robot,
which becomes a potential hazard. Therefore, two dimensional perceptual space of a fixed
mounted laser is not sufficient to ensure safe navigation in an unconstrained environment.
A motion generation taking 3D perception into account is meaningful and necessary. In the
following section a solution will be discussed in detail.

4.3. Multisensor-based Motion Generation

As mentioned at the end of the last section, unconstrained human-inhabited environments
still pose significant challenges for robots. Apart from effective interaction skills, personal
service robots are expected to navigate safely and effectively in a human-shared environ-
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ment. Several established motion planning and obstacle avoidance techniques are for-
mulated in planar domains. They frequently rely exclusively on two-dimensional sensory
input [148, 60]. However, an indoor environment, e.g. a home or an office, contains
many objects which cannot be appropriately sensed and represented in this way. Thus,
these approaches may lead to difficulties in collision avoidance [78]. For example, tables
are large obstacles for robots (except miniature appliances like floor sweeping devices),
but a laser scanner mounted parallel and close to the ground can only perceive the four
legs (see Fig. 4.6). In this case, the robot is possibly to be misled through the midst of
dinner. One solution to this issue is the use of 3D sensors, e.g. stereo vision, sweeping
laser scanners, or time-of-flight (ToF) cameras. Consequently, there are ongoing research
projects investigating full 3D mapping, localization, motion planning, and obstacle avoid-
ance [139, 140, 149]. However, for an overwhelming majority of robots, indoor environ-
ments are still essentially two-dimensional. Existing 2D techniques are quite sufficient,
when the three-dimensional world information is appropriately prepared according to their
requirement. The feasibility of using a SwissRanger for navigation tasks has been presented
in [159, 39], where the authors have focused on the ToF technology. A comparison of robot
navigation systems either using a standard 2D laser scan or a SwissRanger camera has been
discussed in [159]. Furthermore, the suitability of 3D ToF technology for robot navigation
has been verified in [39]. The SwissRanger’s limited field of view can be overcome by
using several SwissRanger cameras. However, the number of Swissrangers parallel used
is currently limited to three, as each camera has to work at its own modulation frequency.
Otherwise, distance measurements obtained from different cameras may be impact on each
other. Nowadays using the Microsoft Kinect mentioned at the beginning of this chapter 3D
point cloud based SLAM [76] and obstacle avoidance [158] is becoming more common. By
this means, the problem of 3D information capturing is able to be addressed more appro-
priate than using SwissRanger cameras.

In contrast to the work mentioned above, a solution fusing the 2D laser data and the com-
plete 3D ToF data into a common representation is proposed. Fig. 4.11 gives an overview
of sensor fusion. Each data stream has different characteristics (frame-rate, noise, and pre-
cision). By means of the sensor fusion, advantages of the two sensors, i.e. a wide field
of view and accurate measurements of laser scans and 3D information of the environment
achieved by a SwissRanger camera, are expected to benefit the robot. Considering the laser
and SwissRanger data fused on the laser plane, a 2D motion generator is thoroughly com-
petent to perform a navigation task. Besides, an approach of ToF camera calibration, i.e.
determination of the position and orientation of the camera in the laser frame, has been
proposed, so that the corresponding 3D points can be represented in the laser and camera
coordinate system.

4.3.1. Motion Generation

In general, path planning and obstacle avoidance deal with the problem “how to move
towards a goal?” and the problem “how to move safely?” respectively [132]. The motion
generation discussed in this section is based on the approach controlling ten autonomous
tour-guide robots during a five-months exhibition in 2002 [118, 117]12 The map-based
approach NF1 provides a global plan for the robot on a two-dimensional grid [92], while a
flexible path representation based on the elastic bands formulation [122] is combined with
the Dynamic Window Approach (DWA) [48]. By this means, the global path planned by
NF1 can be smoothed by the elastic bands. Moreover, the robot is able to react unexpected
12See http://libsunflower.sourceforge.net/ for details.
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Figure 4.11.: Overview of sensor fusion. An available navigation component is reused by
means of the obstacle information fusing 2D and 3D data.

obstacles according to the actuator commands computed from DWA. Fig. 4.12 summarizes
how planning and controlling of the available navigation component are interwoven to
achieve smooth goal-directed behavior, while avoiding collisions. In the following the main
components of the motion generation will be briefly introduced13. Furthermore, the basic
idea of the integration with 3D data will be discussed.

Global Path Planning The global plan created by NF1 is a list of global grid cells that
lead from the robot’s position to the goal. As can be seen in Fig. 4.13, such plans
are constrained to lie along integer multiples of 45◦. These corners are smoothed out
using the elastic strip, as explained below. In the motion generation system, the NF1
grid is repositioned at each re-planning step, so that it forms a corridor from robot to
goal. By this means, grid effects can be minimized. Moreover, the computation time
of the wavefront propagation can be bounded. The elastic band, which translates and
adapts the plan for execution, is initialized by placing circles (termed bubbles) in the
centers of the grid cells. This band starts at the robot’s position and proceeds towards
the goal, while skipping cells that are already covered by the preceding bubble.

13See the work of Philippsen [117] for a detailed description of the motion generation system.
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Figure 4.12.: Motion planning and control loops of various temporal and spatial scopes are
integrated into the motion generation system. A global goal position is sent
to the motion planner. The output is in the form of actuator commands sent
to the motor control level.

Plan Adaptation Plan adaptation reduces the amount of re-planning by changing the path
according to changes in the environment and the motion of the robot. In order to
maintain a feasible homotopic path, the adapted plan might deviate from the plan.
The initial plan inherits some of the grid effects from the NF1 path, notably the non-
smooth directional changes which are integer multiples of 45◦. However, the first
iteration of plan adaptation already significantly smooths the elastic band. During
each iteration, bubbles are pushed away from obstacles (in order to increase free
space around the path) and attracted to their neighbors (to remove slack and elim-
inate sharp corners). The first bubble always follows the robot’s position, and the
last bubble is fixed on the goal. New bubbles are inserted along the band whenever
the overlap between two successive bubbles is too small to let the robot pass, and
spurious bubbles are pruned from the band whenever their predecessor and succes-
sor already overlap sufficiently. Fig. 4.14 illustrates the interaction between NF1 and
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Figure 4.13.: NF1 example.

elastic band.

Obstacle Avoidance The plan adaptations performed by the elastic band are able to an-
ticipate general direction changes in order to circumvent most collision. However, it
cannot guarantee obstacle avoidance because it runs at a slower (non-realtime) rate
than the motor controllers and obstacle detectors. Moreover, it does not take into ac-
count robot kinematics and dynamics, which leads to tracking errors that could force
the robot to leave the safety zone of the bubbles. Additionally, even when no global
path is available (during re-planning or temporary blockage) the robot must guaran-
tee safe motion. The process responsible for obstacle avoidance takes into account
vehicle kinematics and dynamics by determining which motion commands are avail-
able at each instant (bound by acceleration and velocity constraints), and predicting
how the robot would move for each candidate control within the reachable velocity
region. Motions that would result in collisions are discarded, while an optimization
process is used to choose among the remaining safe velocity commands.

In order to allow sensor fusion and implement an upper bound on computation time,
the local space around the robot is discretized into an obstacle grid. Furthermore,
for each grid cell which motions would lead to a collision with an object inside the
cell, similar to [126], are pre-computed. As the velocity space is discretized as well,
the total effort for the DWA computations has a constant known upper bound, which
allows us to guarantee real-time execution. Besides, the pre-computed collisions elim-
inate the need for subsequent complex operations. The required data structures are
summarized in Fig. 4.15.

Integration with 3D Data The motion generation system depicted in Fig. 4.12 uses planar
geometry for representing and reasoning about obstacles and movements. The en-
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Figure 4.14.: Example re-planning sequence involving NF1 and elastic band: two moving
obstacles (labeled A and B squeeze the bubbles until the robot would not fit
through their overlapping region anymore. This event triggers an invocation
of the NF1 planner, which produces a new path beset with grid effects. This
new path is transformed into a new elastic band, which now leads around the
region that became blocked.

vironment is considered to be projected onto the ground plane on which the robot
moves. The main sensory input comes from a laser scanner with beams that are
parallel to the ground. This results in fast robust computations based on reliable
high-resolution laser readings, but neglects the true three-dimensional nature of the
environment.

There are several possible ways to integrate 3D perception into the presented motion
generation system. Given that the shape of BIRON (see Fig. 1.2(a) and 1.2(b)) can
be approximated by an upright cylinder without gravely mis-representing its naviga-
tional constraints, there is little to be gained from extending the motion generation
components to three dimensions. Instead of incurring the added computational costs
and the effort of changing a smoothly running system, projecting all available sensory
data into the plane of motion is chosen.

Assuming that the navigational component remains two-dimensional, we are now
faced with the question of how to fuse the projected 3D data into the planar com-
ponents. There are basically two possibilities. Either insert point-cloud data into
the grids of NF1 and DWA’s lookup table, and adapt the elastic band to use general
point-clouds. This requires changing the data structures that are fed into those com-
ponents and possibly extending the rasterization algorithms. Or transform the fused
data into a virtual laser scanner which allows us to reuse all existing data structures
and concentrate all change to the entry point of sensory data.

For the sake of minimally invasive changes to a working system we have chosen the
latter approach, bearing in mind that robots which, unlike BIRON, deviate signifi-
cantly from a cylindrical shape would require more elaborate techniques. The result-
ing data fusion and reduction can be summed up as follows:
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Figure 4.15.: Look-up operations in the dynamic window. Obstacles are stored in a two-
dimensional grid, where each cell stores associated velocity obstacle informa-
tion in a collision table. To reduce the amount of memory taken up by this
four-dimensional lookup-structure, the collision table is compressed using a
variant of the Lloyd-Max algorithm.

. capture and preprocess 3D point clouds

. project 3D data points into laser plane

. cluster projected points into bins that correspond to the laser beams

. in each bin, find the point which is closest to the robot

. use the distance to the closest point as (virtual or real) laser reading

4.3.2. Data Fusion

As already discussed, a computationally expensive 3D motion control is not needed for a
service robot working in a two-dimensional environment. Hence, instead of attempting to
implement full 3D motion control, a fusion of 3D ToF data and laser data in the domain
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(a) (b)

(c) (d) (e)

Figure 4.16.: (a) SICK LMS, (b) example laser scan, (c) SwissRanger SR3000, (d) example ampli-
tude image, and (e) example 3D point cloud.

of laser scans has been proposed to create the so-called virtual laser. Fig. 4.16(a) and
Fig. 4.16(b) show the 2D SICK laser range finder equipped on the robot platform. The
laser sensor provides a 2D data stream at a frequency of about 10Hz. The laser scans
the scene within a 180◦ arch in intervals of 0.5◦ measuring distances with an accuracy of
approximate 10mm. Objects in the environment can be perceived by the laser scanner
at a height about 30cm. In order to extend the perception area limited on the 2D laser
plane, a 3D Time-of-Flight (ToF) camera, in our case the SwissRanger SR3000 (Fig. 4.16(c))
developed by Swiss Center for Electronics and Microtechnology (CSEM) [159], is mounted
on top of the robot below the pan-tilt camera (see Fig. 4.17(a)). This camera independent
of texture and lighting conditions provides 3D data up to 30 fps. 176 × 144 CMOS active
pixel sensors measure distances between the optical center of the camera and the real
3D world points via the time-of-flight of a near-infrared signal. Additionally, each sensor
delivers an amplitude value indicating the amount of light reflected by a world point. The
amplitude value can be used to rate the quality of the provided distance measurement.
Fig. 4.16(d) presents an example of an amplitude image and Fig. 4.16(e) the corresponding
3D point clouds.

In order to fuse the ToF data with the 2D laser data, firstly, the 3D camera data are trans-
formed into the coordinate system of the laser. Afterwards, the transformed camera data
are projected on the xz-plane, i.e. the laser plane. Re-sampling this projection in bins of
0.5◦ in a 180◦ arch and choosing the minimum value per bin produce a kind of ToF laser
stream. This data stream encodes information of objects like tables that is not presented
in the regular laser stream. Finally, the original laser stream and the ToF laser stream
are merged into a virtual laser stream. Camera calibration aligning the camera coordinate
system to the laser coordinate system and the method generating the virtual laser will be
discussed in the following.

Calibration In order to realize the fusion of 3D ToF data and laser data, firstly, it is needed
to determine the position and orientation of the ToF camera in the laser coordinate
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Figure 4.17.: (a) head of BIRON I with the ToF camera mounted below the pan-tilt cam-
era, (b) the calibration setup, (c) the ToF view of the calibration pattern as
amplitude image, and (d) as 3D point cloud. The red crosses mark the hand
chosen points in the pattern. The central marker on the pattern is skipped.

system set as the reference coordinate system. As illustrated in Fig. 4.17(b), the trans-
formation of the coordinate system from the laser plane to the ToF camera is given by
a rotation and a translation [~R,~t]. To determine the parameters of this transforma-
tion an extrinsic calibration is required. As the two sensors are inherently different,
none of the established calibration methods is directly applicable. For robustness ex-
plicit calibration is used. Hence, a special calibration pattern with dedicated markers
that can be both detected in the laser scan and the amplitude image of the ToF sensor
was built. The pattern looks like a table with legs mounted right below some visual
markers attached on top of it. The laser can detect the four legs and return the re-
spective xz-coordinates of the visual markers. As the height of the calibration pattern
and the laser plane are known, the 3D coordinates ~p1,L, ~p1,L, ~p3,L, ~p4,L ∈ R3 of the
markers can be computed in the reference coordinate system14, i.e. the laser plane.

The second step of calibration is to determine the coordinates ~p1,S, ~p2,S, ~p3,S, ~p4,S ∈
R3 of the visual markers in the SwissRanger coordinate system. The markers are vis-
ible in the amplitude image, which can either be detected automatically or selected
by hand (red cross markers in Fig. 4.17(c)). In the ToF data each 2D pixel corre-
sponds to a 3D point in the camera frame, as illustrated in Fig. 4.17(d). Thus, the 3D

14It is assumed that the laser plane is parallel to the floor.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.18.: (a) Scenario: table in front of BIRON; (b),(c) view of the SwissRanger camera
on the table ((b) amplitude image and (c) 3D point cloud); (d) a laser scan
of the scenario where only the four legs marked with red points are visible;
(e) the SwissRanger 3D points of (c) projected in the laser plane and the
minimum value per bin marked in red; (f) the original laser and the minimum
distances extracted from SwissRanger data; (g) computed virtual laser.

coordinates of the markers can be extracted.

In the ideal case it holds that

∀i ∈ {1, 2, 3, 4} : ~pi,L = ~R · ~pi,S + ~t, (4.8)

but on noisy data the following mean square objective function has to be mini-
mized [127]:

fmin(~R,~t) =
1

4

4∑
i=1

‖ ~pi,L − ~R · ~pi,S − ~t ‖2 . (4.9)

The optimization problem for [~R,~t] can be solved using Singular Value Decomposi-
tion (SVD) [98, 155] with ~mL and ~mS being the centroids of the point sets {~pi,L}
and {~pi,S}, respectively:

~K =
4∑
i=1

(~pi,L − ~mL)(~pi,S − ~mS)T
SVD

==== ~V ~D~UT (4.10)

~R = ~V ~UT (4.11)
~t = ~mL − ~R~mS. (4.12)

Three non-colinear 3D points are sufficient to uniquely compute the transformation.
In other words, three rotation angles and three translation parameters can be deter-
mined, while ensuring ~R to be a rotation but not a reflection. Four markers of the
pattern are used to compute the transformation. Experimental results that will be
discussed in section 4.3.3 verify the robustness of the proposed extrinsic calibration.

Integration as a virtual laser Using conventional laser-based navigation in a situation
shown in Fig. 4.18(a), a collision to the table is inevitable when a goal behind the
table is sent to the robot. This navigation error is due to the erroneous information
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obtained from the laser. As Fig. 4.18(d) illustrates, free space in front of the robot is
perceived by the laser scanner except for the table’s legs marked with red points.

To overcome this problem the ToF 3D points (see Fig. 4.18(b) and 4.18(c)) are ex-
ploited to achieve more information about the table. First, several pre-processing
steps need to be performed on the 3D ToF point clouds. By means of the pre-
processing, the 3D points are smoothed, and the bad measurements are rejected if
their amplitude values do not meet the criteria given in [142]. Afterwards, the points
are transformed into the laser coordinate system according to equation 4.11 and 4.12,
i.e. ~p

′
k,S = ~R · ~pk,S + ~t, where ~pk,S is the k-th point in the camera coordinate sys-

tem, while ~p
′
k,S is the point transformed in the laser plane. As the transformed point

cloud contains measurements of the floor and objects higher than the robot top, these
points can be discarded according to their y-coordinates.

The remaining points {~p ′l,S(x, y, z)} are projected into the laser plane, transformed
to polar coordinates {~p ′l,S(r, θ)}, where r =

√
x2 + z2 and θ = cos−1(x/r). By

means of θ, each point can be assigned to one of the 361 bins defined as follows:
[0, 1

720
π), [ 1

720
π, 3

720
π), . . . , [717

720
π, 719

720
π), [719

720
π, π]. Considering that more than

one point can be accumulated in one bin, for each bin the point with the smallest
radius r is regarded as the minimum distance MinDisSRi extracted from Swis-
sRanger data for bin i. Finally, these minimum distances and the original laser
points are fused to a virtual laser, where the smaller distance of MinDisSRi and
DisLaseri from the original laser is chosen as the virtual laser point for bin i.
Fig. 4.18(e) to Fig. 4.18(g) illustrate the steps described above. Thus, the virtual
laser is able to output data stream with the frequency of the original laser.

4.3.3. Experimental Results

To evaluate the effectiveness of the proposed approach, the motion generator (see sec-
tion 4.3.1) integrated in BIRON I was used to perform the same navigation task in the same
environment. The original laser and virtual laser was adopted respectively in five experi-
mental runs. Hence, ten trails were performed. In the ten experimental runs the robot was
started in the same pose (0.0m, 0.0m, 0.0rad). A table about 1.00m× 0.70m× 0.73m
was placed in front of the robot as a main obstacle on the way to the set goal. The
shortest distance from the start position of the robot to the table’s edge is about 1.63m.
The goal (2.5m, 0.0m, 0.0rad) behind the table was set for the ten runs with the same
goal_radius15. The RBPF-SLAM approach introduced in section 3.1 was started as well
during the ten trail runs to record the map of the environment and the robot’s path esti-
mated in the built map.

Fig. 4.19 shows the occupancy grid map built in the two of the ten trail runs, in which
the original laser and virtual laser was used respectively. The robot is represented with a
yellow circle16. The center of the circle is the robot’s position, and a black arrow points
out the robot orientation. The start and end pose of the robot is depicted on the built map.
Each green curve illustrates a robot’s path estimated by a particle according to the map.
The uncertainty of the estimated robot’s poses are displayed with blue error ellipses. The
semimajor axis and the semiminor axis of the error ellipses are derived from the covariance
15goal_radius is a distance tolerance to determine whether a goal is reached. It was set 0.3m for the

experiment. See the definition in section 2.2.2
16Note that the circle is only for visualization. The radius of the circle is not relative to the real size of the

robot.
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(a)

(b)

Figure 4.19.: Comparing the motion generation with real and virtual laser in the same en-
vironment. (a) the robot makes a collision with the table, as the real laser
provides only the four thin legs of the table and a relative large free space in
the middle of the both front legs. (b) shows the trajectory of the robot with a
successful obstacle avoidance, when the virtual laser fused the pure laser and
3D information from SwissRanger was used.
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matrices of the robot’s poses. These ellipses are centered on the best estimated path17. The
table placed in front of the robot is outlined with a rectangle. The four legs of the table,
which are the only parts of the table perceivable in the laser plane, are marked with four
small squares. Besides, the x-axis parallel to the start orientation of the robot and the y-
axis of the world coordinate system are drawn on the map to point out the two directions
of the world frame. The actual origin of the world coordinate system is the start position of
the robot.

When the robot used the original laser scans, it moved straightforward and tried to go
through the table due to the large free space perceived between the two front legs, just as
Fig. 4.19(a) illustrates. Although the robot took the goal (2.5m, 0.0m, 0.0rad), it was
manually stopped in time in this trail run, so that the robot would not really crash into the
table. In contrast, using the virtual laser the robot saw the table. Fig. 4.19(b) shows the
robot moving around the table and reaching the goal successfully.

Furthermore, it can be observed that the robot’s path is not smooth but zig-zag. This is
because the robot tried sereral times to correct its direction towards the goal when moving
around the table (see Fig. 4.19(b)). The reason hiding behind this phenomenon is due
to the limited field of view of the SwissRanger. Since the goal behind the table was sent
to the robot, the motion generator drove the robot in the direction towards this goal as
far as possible, when available free space was detected. According to the current setup of
the SwissRanger (see Fig. 4.17(a)), the 3D data projected on the laser plane approximately
covers an angle range between 70◦ and 120◦, as Fig. 4.18(e) shows. Therefore, outside this
angle range the original laser data are used. In other words, the information of the table
obtained from the SwissRanger is probably ignored by the virtual laser. For the virtual laser
used in the experiment, movement commands driving the robot towards the goal need to
be computed by the motion generator. The zig-zag robot’s path leads to various durations
in the experiment though, the robot can reach the goal set for all trails. Considering the
problem of false path adaption, the SwissRanger should be controllable. Thus, the view
direction of the camera can be changed towards the robot’s goal. Obstacle information in
this field of view is provided instead of sending a real rotation command to the robot. Using
the data fused by the laser sensor and the movable SwissRanger, unnecessary zig-zag plans
should be avoided. Incorporating SwissRanger information in the mapping process should
be a more ideal solution. By this means, the perceived obstacle can be still remembered
by the robot, although it is out of the field of view of SwissRanger. However, errors in
SwissRanger need to be taken into account, so that false obstacles can be reduced as far as
possible.

4.4. Summary and Discussion

Navigating to a given goal is one of the most important capabilities especially for a service
robot working in a human-shared environment. Natural human-inhabited environments
still pose significant challenges for robots despite the impressive progress that has been
achieved in the field of path planning and obstacle avoidance. In view of the fact that
these challenges mostly arise from the limited perceptual abilities of a robot, as well as
the environment that is highly dynamic being populated by human beings, analysis and
exploitation of human spatial knowledge should be taken into account. In the context of
Human-Robot Joint Spatial Exploration, it is possible for the robot to interactively learn from

17The best estimated path is associated with the most likely particle.
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the guide-person, and incorporate the gathered information into the built spatial represen-
tation. Thus, an integrated solution dealing with these challenges has been achieved.

In this chapter, at first I presented a path planning approach on the basis of a graph with
multiple layers, representing the movement trajectory of the guide-person in the interactive
Home-Tour. Considering navigation capabilities implicitly contained in human pathways,
following human-like paths the robot is able to avoid unperceivable obstacles and potential
hazards. The trajectory of the guide-person actually leads to a collision free path for the
robot under the assumption of static environment. A robust path planning approach is
therefore achieved, by means of which the robot follows a conventional path expected by
people. In addition, the robot’s path would be predictable, as the robot follows the path
chosen by the guide-person. For the graph-based approach, efficiency, effectiveness and
person’s trajectory have to be considered synthetically in order to compute a robot’s path.
Therefore, edge weights combining multiple factors need to be defined. Distance to the
goal, timestamp along person’s trajectory and switch of graph layers have been taken into
account. Since the ultimate goal for path planning is to find a path from any location to
any other location in the free space of the environment, the map-based approach NF1 has
been integrated into the system as a supplement. Thus, the limitation of the graph-based
approach, i.e. it is almost impossible to get a trajectory of the guide-person covering any
free space of the environment, can be overcome.

Afterwards, I discussed the problem of dynamic objects in path planning. Especially when
unexpected dynamic obstacles obstruct the path, a re-planning process will be triggered,
trying to compute another plan. This integrated approach enables the robot to move safely,
while still effectively navigating in the environment. The results achieved in an empirical
study are discussed as well. Different graph layers are created in terms of locations shown by
the guide-person. The robot can reach the visited locations by means of the path computed
on the basis of the person’s trajectory. Unperceivable obstacle, i.e. the table shown in
Fig. 4.8(b), was avoided by the robot. Furthermore, free spaces and potential hazards were
considered by the guide-person, as Fig. 4.10 illustrates. Thus, exploiting pathways of the
guide-person containing human navigation strategies is beneficial to the robot. Besides,
the re-planning capability of the robot verifies the robustness of the proposed approach
performed in a real world scenario.

At last, a data fusion technique extending a purely two-dimensional motion generator to a
3D capable navigation system is presented. As locations of unperceivable obstacles can be
changed, it is dangerous for a robot performing a navigation task. The extension is realized
by means of the virtual laser fusing original laser scans and 3D camera data into a common
two-dimensional frame. Thus, the available motion generator presented in section 4.3.1 is
minimally invasive. Moreover, obstacles out of the original laser plane can be avoided by
the robot. The main advantages of the approach lie in the robustness and computational
modesty. Fusing the two sensors working asynchronously, the virtual laser is able to produce
a data stream at a high rate, which enables reliable robot motion in dynamic cluttered
environments.

As the proposed path planning approach is based on the analysis of the observed human
trajectories, the implication containing in the person’s trajectories should be taken into
account. Trajectories interwoven with or closed to each other are generally caused by
repeated movements of the person through the same areas. Merging these trajectories
can refine the graph and make the path planning and re-planning process more efficient.
Besides, according to the information obtained from the environment, an assessment of the
observed person’s trajectories might be meaningful to determine the intention of the human
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behavior. E.g. unnecessary detours of the guide-person occurring in an interactive Home-
Tour scenario could be detected by the assessment. Furthermore, this hypothesis is expected
to be clarified in the interactive scenario in a manner of inquiry. Considering that the robot
shall perform navigation tasks by means of the built map, it needs to localize itself on the
known environment representation. Hence, a component of global localization (GLOC) has
been integrated in the robot system as well, which will be introduced in section 5.1.2.

For the proposed data fusion approach, at first, without laser scanner using 3D ToF camera
alone might be an alternative. However, the limited field of view of the camera would
not be suitable in a cluttered home environment in spite of mounting a movable camera.
When multiple cameras are equipped, signals from the individual cameras would probably
interfere each other. The accuracy of measurements is therefore affected. In addition,
keeping the person tracking system (see section 2.2.1) integrated in the robot system in
mind, laser scanner is necessary for the robot to complete the Home-Tour.

Next, instead of the SwissRanger camera, an additional 2D laser sensor can be equipped
on top of the robot to overlook the surroundings. In contrast to the horizontal field of
view (47.5◦) and the vertical field of view (39.6◦) of a SwissRanger SR3000 [39], the
perception area of laser scans is still limited to a two-dimensional plane.

The field of application of the presented novel calibration of the 2D laser scanner and the
3D ToF camera reaches far beyond the presented one. For instance, it allows to compute 3D
positions for all laser ranges, which is useful for precise object positioning to compensate
the noise in the depth perception of the ToF camera. An enhancement to overcome the lim-
itations of a cylindrical robot model would be a more elaborate environment representation
used in the motion generation subsystem. Navigational constraints due to the robot’s shape
and characteristics of the mounted sensors need to be both taken into account. However,
the proposed approach enables the robot to successfully pass doorways and avoid crashing
into different types of furniture in the Home-Tour scenario.

In order to make the virtual laser more robust against noise, sensor readings in each bin
should be weighted by their distance to the neighbor point. Minimum distance readings
with neighbors far away should not be considered. Moreover, only meaningful structures
extracted in the 3D ToF data [141] should be projected in the laser plane.

Besides, the camera data projected on the laser plane might be utilized for a pure mapping
process, while the robot’s pose can be estimated by the RBPF-SLAM approach using the
original laser. By this means, objects outside the laser plane can be represented on the
camera map. However, noise of the 3D camera and the relatively narrow horizontal field of
view (47.5◦) compared to the laser (180◦) might negatively influence the online mapping
process.

Note that the path planning and obstacle avoidance component integrated in BIRON I
and introduced in section 4.3.1 is different from the variant18 discussed in section 4.2 and
integrated in BIRON II. Due to the relatively long time delay of the control loop in robot
actuators, the implemented obstacle avoidance strategy combining DWA and elastic band
is substituted by Nearness Diagram (ND) on the new robot platform BIRON II. Hence, the
motion generator presented in section 4.3.1 is not evaluated in the current system shown
in section 5.1.2. Nevertheless, the virtual laser fusing the 2D laser data and the 3D ToF data
is transplantable to BIRON II, as two-dimensional laser scans are needed for ND as well.
Furthermore, real world experiments on platform BIRON I have shown the effectiveness of
the proposed virtual laser.

18See component Path Planning and Re-planning, as well as Obstacle Avoidance (ND) shown in Fig. 4.1.
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5. Evaluation

According to the basic idea of Human-Robot Joint Spatial Exploration (HRJSE) introduced
in section 1.2 the interactive Home-Tour is assumed as an initial scenario of information
gathering. The Home-Tour scenario provides an opportunity for a service robot to explore
an unknown environment and interactively learn from a human user. Thus, metric infor-
mation of the surroundings obtained from perceived sensor data and knowledge gained
from human user can be integrated in the spatial representation. The framework of inter-
active acquisition of an environment representation can be built on the basis of HRJSE and
the available Home-Tour scenario. The central modules that construct this framework, i.e.
the person-following behavior, the mapping process and the path planning approach, have
been discussed in chapter 2, chapter 3 and chapter 4 respectively. The proposed approaches
have been tested in a simulated environment or on a mobile robot platform. The test re-
sults discussed in the corresponding chapters have verified the functionality of the modules.
However, whether the integrated framework as a whole is appropriate and convincing for
solving the main problem, i.e. acquisition of environment representation in an interactive
scenario, has not been discussed in detail yet. The proposed and implemented approaches
must undergo serious evaluation, in order to validate their feasibility in practice. Therefore,
the system consisting of the three modules needs to be run as a whole and evaluated on the
robot platform in a real world scenario.

The main objectives of the evaluation corresponding to the framework of interactive acqui-
sition of an environment representation can be condensed as follows:

. How performs the person-following behavior presented in chapter 2 according to
spatial context in real world scenarios?

. In section 3.2.1 a strategy has been proposed to detect and remove the false informa-
tion arising from the perceived person’s legs in a mapping process. Evaluation results
of the mapping process performed in a simulated environment have been discussed
in section 3.2.2. To characterize the performance under real constraints, how are the
environment representations built with and without the strategy in comparison to the
results obtained from the simulated environment?

. How performs the proposed path planning approach according to the map built in a
real world Home-Tour scenario.

The three points are associated with the individual modules working together in the whole
system. Besides, behaviors of the subjects guiding the robot in real world scenarios will be
shortly discussed. Of course, the goal of evaluation is not only to confirm the appropriate-
ness of the proposed methodologies, but also to identify their drawbacks and limits.

As the focus of this chapter is the assessments of the three modules working together for
interactive acquisition of an environment representation, firstly, experimental design for
the user study will be introduced. Next, I will present and analyze the evaluation results
of the individual function modules from a system perspective. Afterwards, I turn to a brief
discussion of the observation from a subject’s perspective. Summary and insights arising
from the evaluation will be presented at the end of this chapter.
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Figure 5.1.: The ground truth map built for the user study. This map was built by driving
the robot platform BIRON II with a joystick. The gray background indicates the
areas that cannot be perceived by the robot. Each grid cell of these areas is set
to the maximum uncertainty 0.5. Free space with high certainty corresponds
to the white areas, while the black areas imply occupied with high certainty. A
transverse and a vertical aisles, three open doors, a large room and a narrow
passage are shown on the environment map. Three regions are marked with
R1, R2 and R3 on this map as well.
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Introduction of your task

The mobile robot whose behavior will be evaluated called BIRON. Your task is 
as follows: please take BIRON a tour around the environment depicted below 
and show the 4 rooms to it.
 
Besides, BIRON can understand the following commands:

● "Follow me" will make BIRON come after you.
● "This is the hallway/bedroom/living room/kitchen" will make BIRON 

remember the name of the room where it currently is.  
● With "Stop" you can say to BIRON anytime, when it should stop. 

Enjoy yourself! 

                                

Figure 5.2.: Introduction of the task assigned to the subjects. A brief description about
what a subject should do and a sketch map of the environment are given. The
start and the end position for each trial run is depicted with two red circles
respectively. Four predefined locations (hallway, bedroom, living room and
kitchen) are marked on this sketch as well. A table is laid between location
kitchen and location hallway.
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5.1. Experimental Design

In order to evaluate the acquisition of spatial representation in an interactive scenario, the
system consisting of the three individual modules needs to be run as a whole in the Home-
Tour. The procedure and the general information of the user study is introduced at first.
Next, an overview of the implemented system will be given in section 5.1.2. All relevant
software components will be introduced in detail.

5.1.1. Procedure

The scenario of the user study was an interactive Home-Tour through a portion of a floor
in an office building. The integrated system (see section 5.1.2) has been evaluated on the
new mobile robot platform BIRON II introduced in section 1.1 in this environment with
real subjects. On the basis of the RBPF-SLAM approach introduced in section 3.1 a grid
map of the environment can be built, as illustrated in Fig. 5.1. Three open doors, a trans-
verse and a vertical aisles, a large room and a narrow passage are marked on the map. As
will be discussed in section 5.2.1, according to the existing spatial context and the robot’s
trajectory recorded in an experimental run the environment is divided into three regions
R1, R2 and R3. The areas that the robot cannot perceive are regarded as the background
of the environment. Grid cells in these areas obtain the maximum uncertainty 0.5. Instead
of building the map in a guided tour, the robot was controlled with a joystick and moved
slowly through the environment. By this means the environment can be perceived in de-
tail. This map is regarded as a ground truth map. In comparison with the occupancy grid
map built in the same environment during a Home-Tour and shown in Fig. 5.9, the black
areas implying obstacles and the white areas corresponding to free spaces are more clearly
recorded in the ground truth map. The purpose of creating the ground truth map will be
explained in the next section.

Different experimental runs were performed in this environment. The user study was con-
ducted by eight subjects who were found randomly on the campus of the university Biele-
feld. All participants in the user study used the robot platform for the first time and seven
of them had no background of mobile robots. Before an experiment was started, the corre-
sponding subject had received a brief introduction of the task shown in Fig. 5.2. The main
task assigned to the subjects was to guide the robot through the given environment. Three
types of commands were available to control the robot and send locations predefined in the
environment to the robot. A mini-dialog system (see section 5.1.2) was necessary for both
the robot and the guide-person to perform the interactive Home-Tour. A sketch map of the
environment, in which the start and the end position for each trial run, as well as the four
predefined locations are marked, is illustrated in Fig. 5.2 as well. Notice that a table is laid
between location kitchen and location hallway on purpose, in order to fully evaluate the
proposed path planning approach. As all subjects were not familiar with the mobile robot
and the sketched environment, we answered their questions, when they had any doubt
about the task and the new surroundings. Time consumption discussed later on was there-
fore influenced. Of course, any detail of the system, the parameters of the robot movement,
e.g. maximum speed, as well as the goals of the study presented at the beginning of this
chapter were not revealed to the subjects until after their experiments were finished. How
the guided tour would be performed, such as the route of the tour, was entirely free to the
subjects.

After the subjects had made sure of their task, and the mobile robot platform had been
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made ready at its start position, i.e. all system components had been successfully started,
the robot needed to localize itself in the ground truth map illustrated in Fig. 5.1. Thus,
the trajectory of the guide-person and the robot were recorded in a common frame. The
person-following behavior performed in the eight experiments can be compared with each
other and evaluated (see section 5.2.1). The component of global localization (GLOC) will
be introduced in the next section. In addition, the subjects were allowed to take the brief
introduction illustrated in Fig. 5.2 during the experiment. Subsequently, no prompts from
our side were given to the subjects during the rest of the experiment, unless dangerous
situations for the guide-person would occur or the robot would collide with any objects in
the environment. However, no such situations occurred in all eight experimental runs. Of
course, if the person was not sure which command should be chosen, a kindly reminder
was provided.

Each subject conducted the Home-Tour once in the user study. The eight subjects were
all able to guide the robot from the start position to the end position and solve the task
described in the brief introduction successfully, although bystanders may pass in the envi-
ronment now and then. The main distinction of the performance was the behavior of the
guide-person. The subjects walked in a forward-, a backward- or a mixing-manner in the
user study. It took some time to answer the questions posed by the subjects though, time
consumption including instruction and system preparation was quite consistent and ranged
between 15 minutes and 20 minutes (mean 16.38m and standard deviation 1.49m). After
the trial runs five of the subjects who walked in a backward-manner in the experiment were
asked about the reason (see section 5.3).

5.1.2. System Architecture

The user study was conducted by eight guide-persons on the robot platform BIRON II,
as shown in Fig. 1.2(b). In the following the implemented system and the components
additionally integrated for the user study will be discussed.

The relevant system components and connections between them are illustrated in Fig. 5.3.
The modules constructing the core of the implemented system are marked with yellow.
The adaptive context-aware person-following behavior, the mapping process and the path
planning approach have been discussed in detail in chapter 2, chapter 3 and chapter 4
respectively. The Person Tracking and Attention System (PTA) sub-system introduced in
section 2.2.1 provides person positions with respect to the robot coordinate system. These
person positions output by PTA are necessary for the three yellow modules and the separate
GLOC.

For the evaluation of the integrated system, GLOC played an important role in the assess-
ment of person-following and path planning. As mentioned in the last section, in order to
compare the results of the person-following behavior performed in the eight trial runs, a
common frame, in which the trajectory of the robot and the person are recorded, is neces-
sary. Since all the experiments were carried out in the same environment, a ground truth
map (see Fig. 5.1) was built by controlling the robot to move step by step in the environ-
ment. This ground truth map is regarded as the common frame for different experiments.
Thus, the robot can localize itself in this ground truth map using the separate GLOC. More-
over, all robot’s poses and person’s positions from different trial runs were defined and may
be compared with each other in this frame. The separate GLOC was used only for the eight
trial runs in the user study. Besides, as discussed in section 4.4 reusing the map built in a
Home-Tour is practical for the robot when the environment is assumed static or the change
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Figure 5.3.: Overview of the implemented system. Directions of the data flow are shown
with arrows. The outputs of the components are commented nearby the cor-
responding arrows. The three modules constituting the core of the system are
marked with yellow. Module Mini-DLG is responsible to the communication
between the robot and the guide-person, which sends signals to trigger the
corresponding modules. A separate module GLOC used for the evaluation of
the person-following behavior was started only for the eight trial runs. SLAM
integrated in module SLAM and GLOC was chosen to built the environment
map in the user study, while GLOC of this module was used only for the evalu-
ation of the proposed path planning approach on Stage.

of the environment is trivial. Therefore, GLOC has been integrated in the mapping process
as well, i.e. module SLAM and GLOC illustrated in Fig. 5.3. This GLOC will be performed
when an available map of the environment built in a trial run of the user study can be
found by Module Selection. Otherwise, the RBPF-SLAM approach introduced in section 3.1
will be executed. Note that Module Selection just checks whether a map is available for
SLAM and GLOC. Whether this map is corresponding to the real environment will not be
checked. Especially for the user study the robot was guided by the subjects and chose SLAM
in module SLAM and GLOC to build the respective map of the environment for each trial
run. Since a map of the environment was available, the simulation platform Stage can be
started. Moreover, GLOC in module SLAM and GLOC was chosen and the robot can local-
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Figure 5.4.: Global localization tested on the simulation platform Stage without the de-
signed mini-exploration. a) shows the start pose of the robot in a symmetric
environment when omitting the small obstacle. This obstacle added on pur-
pose is pointed with a black arrow. The perceived area of the laser sensor is
illustrated with light blue in front of the robot. The result of localization is
given in b), when the robot stands still at the start position. Two groups of blue
particles center on the two hypotheses of robot’s pose in terms of the perceived
sensor data. Compared to the start pose of the robot illustrated in a), correct
pose estimates are marked as well.

ize itself in the environment map. Thus, path planning can be assessed with Stage as will
be discussed in section 5.2.3. In comparison to the separate GLOC used for the eight trial
runs, GLOC integrated in module SLAM and GLOC was used only for the evaluation of the
proposed path planning approach in the simulation platform Stage.

In general, GLOC is responsible for a global localization task when the map of the environ-
ment is given. As mentioned in section 4.4 the ability of global localization is necessary for
the robot when the environment map is built in the Home-Tour. The robot needs to reuse
the built map and perform navigation tasks without the help of the human user. There-
fore, GLOC has been integrated to make the current robot system more robust. The global
localization approach integrated in GLOC is based on particle filters. Integrating the ideas
of adaptive sample size (KLD-sampling [47]), auxiliary particle filters [120] and rejection
sampling [96] Blanco et al. [13] have proposed this approach and implemented in the
MRPT library [9]. Recalling the problem illustrated in Fig. 1.5 multiple hypotheses of the
robot’s pose are probably obtained, if the robot stands still. In other words, the informa-
tion perceived by the robot does not sufficient to determine its pose uniquely. Therefore,
the robot needs to move around in the environment and tries to disambiguate the multiple
hypotheses of the pose estimate. Fig. 5.4 and Fig. 5.5 illustrate an example in a simulated
environment. Notice that it is difficult for a robot to get a correct pose estimate in the
symmetric parts of the simulated environment, unless the added obstacle is perceived. Ac-
tually the obstacle added into the environment on purpose becomes a landmark for robot
localization. If the robot did not move and stood still at the start position, in terms of the
perceived sensor data two hypotheses of the robot’s pose were obtained and illustrated with
the two groups of particles (see Fig. 5.4(b)). In contrast, when the robot moved around
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Obstacle Making 
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Asymmetric
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Figure 5.5.: Global localization tested on the simulation platform with the designed mini-
exploration. a) shows the end pose of the robot, when it localizes itself in the
environment. The light blue region in front of the robot shows the perception
area of laser sensor. b) illustrates the result of localization, when the mini-
exploration is performed. The robot is quite certain about its position, after the
obstacle has been perceived. As the majority of particles are centered tightly
around the correct position, the robot is stopped.

and perceived the landmark that cannot be seen in the other group of the estimated poses,
the particles converged to the unique and correct hypothesis (see Fig. 5.5(b)). Hence, the
idea of a mini-exploration has been integrated in GLOC, which can help the robot to localize
itself correctly in the environment.

Note that the assignment of the mini-exploration is to send movement commands to robot
actuators. Fig. 5.6 illustrates the computation of a robot’s goal. Firstly, the perception area
of the laser sensor is divided equally into n sectors1 with the same field angle 180◦/n. The
minimum distance to an obstacle is computed for each sector, and the n minima are sorted
for all the sectors. The maximum distance ri is chosen from the n minima for sector i,
in which the robot’s goal G is computed. Thus, G can be defined in the polar coordinate
system centered on the origin of the robot,. The pole is the origin of the robot, and the
polar axis is the orientation of the robot. The radius and the polar angle of goal G is l and
α defined respectively with the following equations:

l = k × ri with 0 < k < 1 (5.1)

α =
180◦

n
× (i−

1

2
) with n ≥ 1, (5.2)

where the factor k enables the robot’s goal to keep away from the obstacles in sector i and
the angle α is chosen in the middle of sector i. In addition, goal G defined in the polar
coordinate system needs to be transformed in a global frame and sent to the component
Obstacle Avoidance for local navigation. After the robot has been certain about its pose, the
task of the mini-exploration is successfully completed and the robot should stop. Therefore,
a criterion for stopping the mini-exploration is necessary, which is given with the following

1In our case n is assigned to 6 for the user study.
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Figure 5.6.: Goal decision for the mini-exploration strategy. The laser plane is equally di-
vided into n sectors. The robot is shown with R, and its orientation is marked
with the red arrow. For the n sectors the minimum distance to obstacles is
recorded with r1, r2, . . . , rn respectively. Robot’s goal G is selected in the
sector in which the distance to obstacles ri is maximum. G is set in the mid-
dle of sector i, which can be computed in the robot’s polar coordinate system
according to radius l and polar angle α.

inequation: √
det (ΣRobotPose) < TLocUncertainty, (5.3)

where ΣRobotPose is a 3 × 3 covariance matrix for the estimation of robot’s poses, and
TLocUncertainty is a predefined threshold. Once the robot is assumed to localize itself in
the environment2, i.e. the inequation 5.3 is fulfilled, it will stop and wait for movement
commands sent by other components, such as Person-Following.

Furthermore, a mini-dialog module has been designed as a state machine, in order to fa-
cilitate the guided tour performed in the user study. Five states of the mini-dialog system,
namely Initial State, Follow, Stop, Go To and Person Lost, are defined, as Fig. 5.7 illustrates.
State transitions are triggered by speech instructions shown nearby the corresponding ar-
rows, while the corresponding responses are written inside the state circles.

Note that in the user study the mini-dialog system started at state Initial State, at which
the robot did not get any speech instruction from the guide-person. When the movement
command “Follow me!” is sent by the person and accepted by the robot, Initial State will be
translated to state Follow. Compared to the system architecture shown in Fig. 5.3 Person-
Following will be triggered, after the acceptance of “Follow me!” is sent from Mini-DLG.
Notice that Path Planning and Re-planning will be triggered as well, as the path planning
approach discussed in section 4.2 is based on the observed trajectory of the guide-person.

2Note that the problem of recovering from catastrophic localization failures still challenges the proposed
mini-exploration. See e.g. the robust algorithm Mixture-MCL discussed in the work of Thrun et al. [151].
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Figure 5.7.: The mini-dialog module designed for the user study. The dialog system starts
at the Initial State, from which state Stop, Follow and Go To can be reached in
terms of the corresponding speech instructions commented nearby the arrows.
The corresponding responses are written inside the state circles. At state Follow
and Stop the guide-person may show locations labeled by specific loc_name to
the robot. State Person Lost will be reached, when the signal person lost from
PTA is true.

The guide-person may show the locations specified with locame to the robot at state Follow
or Stop. The indicated locations, such as the livingroom shown in Fig. 5.2, are stored in
module Path Planning and Re-planning. The speed of the robot will be set to zero by module
Obstacle Avoidance when the command “Stop!” is obtained. The state of Mini-DLG will be
changed to Person Lost, when the guide-person is lost by the Person Tracking and Attention
System (PTA) at the state Follow. A prompt “Sorry, I cannot see you. What should I do?” will
be sent out. By this means, the guide-person can know the current situation of the robot
and select a proper movement command to continue the trial run.

State Go To is designed to perform a path planning task. A path will be planned for the
robot from the current robot’s pose to a location which has been shown by the guide-
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person. Note that in the user study the robot did not really carry out such a task, as the
planned path can be computed and illustrated in the simulation platform Stage in terms
of the online collected data (see section 5.2.3). Nevertheless, whether the set location is
reached successfully should be considered. Various situations have been taken into account,
e.g. the goal was reached successfully, the goal location has not been shown, or the goal
cannot be reached in a predefined time limitation. Thus, different responses are provided
as shown in Fig. 5.7 inside state Go To.

The SwissRanger camera was not integrated in the robot platform for the user study, as
illustrated in Fig. 1.2(b). However, the feasibility of the motion generation based on virtual
laser has been validated in section 4.3.3. As illustrated in Fig. 5.3 the ND approach has
been integrated in the current system for local navigation tasks. Due to the consistent input
data, i.e. the laser data, the proposed virtual laser is 100% compatible and transparent for
the current Obstacle Avoidance (ND) module.

5.2. Assessment of Individual Modules in the Integrated
System

As introduced at the beginning of this chapter, the system consisting of the three core mod-
ules has run as a whole in the user study. In Fig. 5.3 an overview of the system components
and the connections between them has been illustrated. In terms of the experiment proce-
dure presented in section 5.1.1 eight subjects have conducted the robot platform BIRON II
in the user study. Though some problems occurred during the experiments, the subjects
can solve them by themselves. E.g. if the robot was not able to understand an instruction
given by a guide-person, she or he tried to repeat the command again till the robot replied.
Or when the subjects were lost by the Person Tracking and Attention System (PTA) and got
the prompt “Sorry, I cannot see you. What should I do?” from the robot (see Fig. 5.7), seven
persons of the eight subjects chose the command “Follow me!” to continue the guided tour.
Only one subject was not sure to use this command until a confirmation was received from
our side. Moreover, all subjects were able to accomplish the task illustrated in Fig. 5.2
without causing any dangerous situations either for the surroundings or to themselves. No
technical or system problems occurred during the various trial runs, e.g. no signals from
robot sensors and hardware control, no response from the system, system restart, etc..

Apart from the information of the whole system obtained from the user study, in the fol-
lowing I will focus on the evaluation of individual modules constituting the core of the
implemented system. Consistent results of the mapping process and the path planning
approach discussed in section 3.2 and 4.2.3 respectively were achieved from the user study.

5.2.1. Person-Following

The adaptive context-aware person-following behavior discussed in section 2.3 was adopted
in the user study. Recalling the general information given in section 5.1.1 the robot can suc-
cessfully follow the subjects in the user study. Qualitatively, the proposed person-following
behavior is competent to accomplish a Home-Tour scenario in a real environment. Hence,
in the following a quantitative assessment of the person-following behavior will be mainly
discussed.

Raw data collected from different trial runs are introduced at first. Next, the raw data
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need to be pre-processed, so that the data really used for the person-following behavior
are sifted out and the spurious trajectory of the guide-person can be removed. Afterwards,
quantitative measurements extracted from the pre-processed data are used to assess the
person-following behavior. A discussion of the evaluation results will be given at last.

Raw data

Adopting the adaptive context-aware following behavior, the robot can switch its behavior
according to the core strategies given in section 2.3.1. Spatial context, i.e. the perceived
surroundings and the relative position of the robot and the guide-person, provides the basis
for the change of the robot’s behavior. Therefore, built environment map, trajectory of the
person and poses of the robot are necessary for the evaluation of person-following. As the
origin of the environment map is the start pose of the robot, both the poses of the robot
and the positions of the person can be represented in the map built in the individual trial
runs. However, a comparison of results obtained from different built maps, i.e. different
world coordinate systems, is not possible. A common frame is therefore necessary, so that
trajectory of the person and the robot from different trial runs can be represented in this
frame. Since all the eight trial runs were carried out in the same environment sketched in
Fig. 5.2, a ground truth map of this environment (see Fig. 5.1) was built by controlling the
robot with a joy stick. With the help of the separate GLOC illustrated in Fig. 5.3 the robot
can localize itself in this map. Moreover, the trajectory of the guide-person and the robot
can be recorded in this map as well. Thus, a common frame for analyzing and assessing
the person-following behavior in the user study was available. Pairs of robot’s poses and
person’s positions were stored one after the other in chronological order as a part of raw
data. Hence, information of the person-following behavior can be recorded as detailed as
possible. In other words, the poses of the robot and the positions of the person which were
both sent out at a frequency circa 10Hz were completely recorded.

On the basis of the common frame, i.e. the ground truth map of the environment, both
trajectories of the person and the robot can be represented in this map. However, the in-
formation of behavior changes of the robot has not yet been taken into account. Therefore,
which following behavior the robot chose and where this behavior was used needed to be
recorded as well. The selected behaviors were marked for all pairs of the poses of the robot
and the positions of the person collected in each trial run. Besides, polar coordinates of the
guide-person output by Person Tracking and Attention (PTA) express positions and orienta-
tions of the person with respect to the robot. It is important to record these information3,
because behavior changes are dependent on relative positions of the robot and the per-
son. As mentioned in section 2.4.1, state Person Lost in PTA was recorded as well for the
pre-processing that will be discussed in the next section.

In summary, a time-stamped sequence of tuples comprising person’s positions directly mea-
sured by PTA, state Person Lost in PTA, robot’s poses and person’s positions transformed
into the global coordinate frame (the ground truth map), as well as the selected person-
following behaviors is recorded as raw data. The raw data were regarded as a reference of
the assessment. Fig. 5.8 shows the raw data collected from the second experimental run and
represented on the ground truth map (see Fig. 5.1). Trajectories of the robot and the person
are both depicted in the ground truth map with the thick and the thin curve respectively. In
order to annotate the robot’s behavior, different colors are applied for the trajectory of the

3Note that person’s positions with respect to the robot coordinate system can be also computed in terms of
the person’s and robot’s positions in the ground truth map.
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Figure 5.8.: Person-following behavior represented on the ground truth map. The raw data
of the second experiment are used. Robot’s and person’s trajectory is depicted
with thick and thin curve respectively. The robot’s trajectory is illustrated with
red, green and blue. The three colors represent the parallel-, the direction-
and the path-following behavior respectively. The corresponding parts of the
person’s trajectory are marked with the same color. Examples for the corre-
sponding pairs on the two trajectories are shown. The location at which Person
Lost occurred in this experiment is illustrated with the black dashed ellipse.
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Figure 5.9.: Map built during the second experiment. In contrast to Fig. 5.8 the correspond-
ing mapped pair of person’s legs are illustrated. The changed door positions
are marked as well.
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robot. Red, green and blue parts of the trajectory indicate parallel-, direction- and path-
following behavior respectively. The three colors are marked for the corresponding parts
of the trajectory of the person as well. Examples for the corresponding pairs of trajectory
parts are illustrated with different colored pairs of arrows in Fig. 5.8. The map built in this
experimental run is shown in Fig. 5.9. In comparison with Fig. 5.8 uncertainty of the occu-
pancy grids becomes higher in the human guided Home-Tour, keeping in mind that white
grids imply free space, while black ones correspond to obstacles. Besides, small changes in
the environment, e.g. the open or closed door, are illustrated as well in Fig. 5.8 and 5.9.

Pre-processing of the raw data

Notice that the location at which the guide-person was lost is marked with the black dashed
ellipse4 in Fig. 5.8. It can be easily detected from the raw data, as Person Tracking and
Attention (PTA) sent the same person angle computed from the last track step till the person
was really lost5. The thin blue part of the curve inside the ellipse leads the guide-person
against the wall, because the robot went on moving while the wrong orientation of the
person was sent by PTA. This part of the curve does not reflect the real movement of the
person and is regarded as a spurious trajectory part of the person. Moreover, these spurious
person positions may influence the selection of the robot’s behavior6. Therefore, a pre-
processing should be done for the raw data, so that the trajectory of the person before the
state in PTA is changed to Person Lost can be detected and deleted.

Besides, the zigzag person’s trajectory, i.e. the thin curve, is notable in the ground truth
map. It is mainly due to the delay of person’s positions sent by PTA7. Thus, noised move-
ment trajectory of the guide-person is presented. Smoothing the person’s trajectory ob-
tained from the raw data is necessary. According to the two thresholds defined for path-
and parallel-following in section 2.4.3 and section 2.4.4 respectively, the person’s positions
that were really used for the person-following behavior should be taken into account8.
Therefore, except for obliterating the tracks resulting from Person Lost, the distance be-
tween two neighboring person positions was checked. The result of the pre-processed raw
data is shown in Fig. 5.10. The part of Person Lost has been removed. Note that the person’s
trajectory was smoothed by the distance threshold given in path- and parallel-following be-
havior respectively, instead of the use of a smoothing filter. By this means, on the one hand
person’s positions really used for behavior selection were completely preserved. On the
other hand, the thin trajectory of the person becomes relatively smooth compared to the
corresponding trajectory in Fig. 5.8. In terms of the pre-processed data and the map built
in each trial run, all behavior changes of the robot can be explained by the core strategies
discussed in section 2.3.1. In the following I will discuss the results of the person-following
behavior achieved from the pre-processed data.

4Note that the person’s legs can be added into the map built with the technique discussed in section 3.2, when
Person Lost occurs. See the results of the mapping process in section 5.2.2.

5Please see [91] for details.
6Recalling the general strategies presented in section 2.4.1, Person Lost is difficult to be detected in an online

person-following process. In order to reduce the negative impact of the false person’s positions on behavior
selection, an offline detection is discussed.

7The positions of the person are interpolated on the basis of the history of the person’s legs detected by
the laser sensor, the person’s face detected by the camera and the person’s voice located by the stereo
microphones. See [91] for details.

8Note that for direction-following no restrictions of person’s positions were applied. Therefore, all person’s
positions were recorded for direction-following.
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R1

R2
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Figure 5.10.: The person-following behavior recorded in the second experiment. The trajec-
tories of the guide-person and the robot are represented on the ground truth
map. Applying the pre-processing of the person’s trajectory the thin curve be-
comes relatively smooth with respect to Fig. 5.8. The definitions of the thick
and the thin curve, as well as the three colors are the same with Fig. 5.8. The
region R1, R2 and R3 corresponds to the transverse and vertical aisles, the
large room and the narrow passage respectively illustrated in Fig. 5.1.
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Figure 5.11.: Distance between the person and the robot in the second experiment.

Study I: Relative positions of the person and the robot

As mentioned in section 2.3.1 keeping up with a guide-person has been regarded as the
most important issue for a person-following behavior. In other words, on the one hand
the guide-person should not move far away from the robot, while the robot is not allowed
to be in close proximity to the guide-person in order to prevent dangerous situations. On
the other hand, the angle of the person with respect to the robot should not be very large.
Hence, the relative positions of the person and the robot, i.e. distance and relative angle
between the person and the robot, are selected as quantitative measurements to describe
their positional relation. By this means, the ability of the proposed following behavior in
keeping spatial relation of the guide-person and the robot can be assessed.

As the most current pair of robot’s pose and person’s position were stored one after an-
other in chronological order, the Euclidean distance between the positions of the person
and the robot can be computed. Person angles defined in robot coordinate system were
obtained directly from PTA. The second experiment is chosen as an example and shown
in Fig. 5.10. Fig. 5.11 illustrates the distance between the guide-person and the robot
step for step. As discussed in section 2.4.1 threshold TShortDis was defined for depar-
ture and arrival of all basic person-following approaches. In terms of Hall’s study about
interpersonal distances [69] a distance lying in the interval [46cm, 122cm] is referred to
as personal distance. Extremities can be used to get in physical contact with each other.
Moreover, the concrete distance marks the level of familiarity of one person with another.
Hall’s study about interpersonal distances was based on human-human interaction (HHI)
though, it was generally concluded by Hüttenrauch et al. [77] that human participants pre-
ferred Hall’s personal distance (46cm to 122cm) when interacting with a robot. Hence, in
the user study TShortDis was set to 1.2m, which implied a personal distance, for the robot
platform BIRON II aiming at providing personal services to a human user.

The third row of table 5.1 shows the mean 0.984m and the standard deviation 0.296m
of the recorded distances between the person and the robot for the second experiment.
The computed mean distance lies in the interval [46cm, 122cm], and the difference be-

Bielefeld University



106 5.2. Assessment of Individual Modules in the Integrated System

Table 5.1.: Statistic results of distance between person and robot, as well as relative angle
of the person with respect to the robot computed from individual experiments.

Mean Distance Std-deviation of Mean Angle Std-deviation of
[m] Distance [m] [degree] Angle [degree]

E1 1.149 0.422 2.499 16.785

E2 0.984 0.296 −1.296 23.974

E3 1.197 0.382 −5.545 32.680

E4 0.990 0.220 −1.926 35.093

E5 1.099 0.448 1.394 24.831

E6 1.175 0.408 0.597 26.435

E7 1.189 0.446 1.631 31.043

E8 1.435 0.469 0.609 31.785

tween threshold TShortDis and the computed mean distance is 0.216m. Therefore, on the
one hand the mean distance 0.984m computed from the second experiment supports the
argument about the distance between human participants and the robot drawn by Hütten-
rauch et al.. On the other hand, the distance between the guide-person and the robot can be
effectively controlled by the proposed person-following behavior performed in a real world
interactive scenario. As shown in the third row of table 5.1, although the person angles
with respect to the robot coordinate system have the deviation 23.974◦, the mean angle is
−1.296◦ in the second experiment. As explained in section 2.2.1 a zero person angle indi-
cated that the person stood right in front of the robot. Adopting the core strategies given in
section 2.3.1 the robot always tried to keep the guide-person in its front field FF. Besides,
the short distance behavior introduced in section 2.4.1 made the robot turn to the person
once the distance to the person was inside threshold TShortDis. Thus, the effectiveness of
the proposed core strategies and the short distance behavior is verified by the relative small
mean angle.

In the following the distance between the person and the robot, as well as person an-
gles with respect to the robot coordinate system will be computed for each experiment.
Table 5.1 shows the computed mean distance and mean angle, as well as the standard de-
viation of the distances and the angles for each experiment. Seven mean distances are in
the range of Hall’s personal distance, i.e. from 46cm to 122cm, except the mean distance
143.5cm obtained from the last experiment. The mean person angles computed for each
experiment are relative small and comparable. Furthermore, the computed mean values
and the standard deviations for all the eight experiments are given in table 5.2. The mean

Table 5.2.: Statistic results of distance between person and robot, as well as relative angle
of the person with respect to the robot computed from all eight experiments.

Mean Distance Std-deviation of Mean Angle Std-deviation of
[m] Distance [m] [degree] Angle [degree]

1.146 0.411 −0.393 28.446

distance 1.146m and the mean person angle −0.393◦ are generally consistent to the re-
sults obtained from the individual experiment. Therefore, the conclusions drawn from the
second experiment are verified by all trial runs in the user study.
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Study II: Context and choice of a following behavior

Apart from the basic requirement for a person-following behavior, i.e. keeping up with the
guide-person, choosing a following behavior in terms of the spatial context is the character-
istic of the following behavior proposed in this work. As mentioned at the end of the section
introducing the pre-processed data, all behavior changes of the robot can be explained by
the core strategies given in section 2.3.1. Considering general situations in a domestic en-
vironment, such as open space, narrow and wide passages, etc., a relation between spatial
context and the choice of a following behavior is expected to be built. According to the
core strategies of the proposed following behavior, parallel-following is rather appropriate
for open space and wide passages, while path-following is chosen preferably in narrow
passages.

Based on these rather intuitive ideas the environment should be divided into regions in
terms of spatial context, so that the selected one or multiple following behaviors can be
analyzed in a relatively small and typical area. As illustrated in Fig. 5.1 the aisles, a large
room with rather open space and a relative narrow passage exist in the environment for
the user study. According to these available situations and the recorded robot’s path, the
environment is divided into three regions as shown in Fig. 5.1 and Fig. 5.10. Comparing the
two figures region R1 is corresponding to the transverse and vertical aisles. Notice that the
area in which a table is laid is excluded from R1, because the robot did not move through
this area in the user study. The two black dashed lines defining this area are selected in
terms of one side of door D1 and D2 respectively. Besides, region R2 and R3 is chosen
according to the large room and the narrow passage respectively. The exact boundaries
between region R1 and R2, region R2 and R3, as well as region R3 and R1 are selected
in terms of the start position of the robot for a following behavior newly selected by the
robot. E.g. the start position of the robot on the part trajectory of path-following is chosen,
so that the region R2 and R3 is divided by the transverse black dashed line going through
this position, while the vertical black dashed line goes through the robot’s position at which
parallel-following begins. These region boundaries marked with black dashed lines are
regarded as a reference on the ground truth map for the pre-processed data achieved from
all trial runs. Since the robot’s positions defining these boundaries have been recorded in
the second experiment, the robot’s trajectories stored in all experiments can be precisely
divided according to the predefined regions R1, R2 and R3.

Dividing the environment in terms of the available spatial context and the robot’s trajectory,
the percentage of the following behaviors selected by the robot can be computed for each
region with the following equation:

Fij% =
Pij

Qj
× 100% with i ∈ {1, 2, 3} and j ∈ {1, 2, 3}, (5.4)

where Fij% stands for the percentage of the following behavior i in region j. Pij repre-
sents the number of points in the robot’s trajectory stored for behavior i in region j, while
Qj is the total number of points in the robot’s trajectory recorded in region j.

Table 5.3 shows the analysis of the second experiment. The percentage of the following
behaviors selected in the three regions are computed according to equation 5.4. Notice that
in region R2 and R3 parallel-following and path-following is uniquely chosen by the robot
respectively. Actually this result is not a big surprise, as on the one hand in terms of the
data collected from this experiment the start robot’s position for a new following behavior
defines the corresponding new region. On the other hand, according to the core strategies
discussed in section 2.3.1 parallel-following and path-following is the behavior that should
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Table 5.3.: Analysis of following behaviors selected in the defined three regions for the
second experiment.

Parallel-Following Direction-Following Path-Following
Region1 60.55% 4.59% 34.86%

Region2 100.00% 0.00% 0.00%

Region3 0.00% 0.00% 100.00%

be chosen in the large room (R2) and through the narrow passage (R3) respectively. In
contrast, three basic following behaviors are selected in region R1, i.e. the aisles in the
environment. Direction-following is rarely chosen by the robot, which implies that the
guide-person is generally kept in the front field (FF) of the robot. However, parallel- and
path-following are both appropriate for R1 according to the spatial context. Restricted by
the width of the aisles and the relative person’s position with respect to the robot, one of
the two following behaviors can be chosen. Note that the width of the aisles ranges from
1.1m to 2.1m. Hence, parallel-following cannot be performed in the relative narrow parts
of the aisles. In addition, when the guide-person moves in the middle of the aisles no goals
can be computed as well on the left and right side of the person for some parts of the
aisles because of the detected walls. Looking back the results shown in table 5.3 and the
recorded person’s and robot’s trajectory in Fig. 5.10 the percentage of parallel-following is
higher than path-following, as the guide-person did not always move in the middle of the
aisles, especially in the transverse aisle.

Although the relation between the spatial context and the selected following behaviors can
be well explained for the second experiment, whether consistent results can be achieved
for all the eight experiments? To answer this question the selected following behaviors in
the defined three regions are recorded for the remaining seven experiments. An average
measurement can be computed for the eight experiments using the following equation:

FMij% =
PT ij

QTj
× 100% with i ∈ {1, 2, 3} and j ∈ {1, 2, 3}, (5.5)

where FMij% stands for the mean percentage of following behavior i chosen in region j.
PT ij represents the total number of points in the robot’s trajectory stored for behavior i
in region j, while QTj is the total number of points in the robot’s trajectory recorded in
region j.

The analysis of all eight experiments is shown in table 5.4. The percentage of the follow-
ing behaviors selected in the three defined regions is computed according to equation 5.5.
Compared to the results of the second experiment shown in table 5.3 the same following
behavior, i.e. parallel- and path-following, is predominantly chosen in region R2 and R3
respectively. Notice that the order of the selected three following behaviors, i.e. parallel-,

Table 5.4.: Statistics of following behaviors selected in the defined three regions for all eight
experiments.

Parallel-Following Direction-Following Path-Following
Region1 46.65% 12.17% 41.18%

Region2 89.15% 3.88% 6.97%

Region3 9.76% 6.62% 83.62%
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path- and direction-following in region R1 is consistent with the second experiment. How-
ever, the choice of parallel- and path-following is comparable, as the both following be-
haviors might be performable in the aisles. In summary, using the adaptive context-aware
following behavior discussed in section 2.3 parallel- and path-following would be predomi-
nantly chosen in region R2 (the large room) with open space and R3 (the narrow passage)
respectively for a guided tour in the same environment. However, the selection of follow-
ing behaviors in region R1 (the aisles) is dependent on the width of the aisles at different
locations and the relative position of the person in the robot coordinate system.

Discussion

Using the proposed adaptive context-aware following behavior the robot was able to follow
the guide-person in each trial run successfully. Thus, the task assigned to the subjects can
be all accomplished. Besides, behavior changes can be explained by the data collected from
the eight experiments. In general, the feasibility of the proposed person-following behavior
has been verified.

The two studies focused on quantitative assessments of the following behavior. Keeping
up with the guide-person is regarded as the most important issue for a person-following
behavior in the interactive Home-Tour scenario. This is the center of study I. Although the
Home-Tour was conducted by the inexperienced subjects, the mean distance between the
person and the robot can be well kept according to threshold TShortDis defined in the
proposed following behavior. As shown in table 5.2 due to the threshold TShortDis set to
1.2m, the mean distance is generally kept about 1.2m in the user study. Apart from the
mean distance between the person and the robot that can be controlled by the proposed
following behavior, the relative small mean angle of the person in the robot coordinate
system has been achieved for all experiments. In other words, the robot tried to turn to
the interaction partner, i.e. the guide-person, in all trial runs. In view of the fact that the
inexperienced subjects used the robot platform for the first time, both the distance between
the person and the robot and the relative angle of the person with respect to the robot are
varied in the user study. As illustrated in table 5.2 the deviation of the distance and the
relative angle is 0.411m and 28.446◦ respectively. Nevertheless, the relative position of
the person and the robot can be controlled as a whole by the proposed following behavior
in real world scenarios. Thus, the capability of keeping up with the guide-person has been
verified in study I.

Study II focused on the relation between the spatial context and the selected basic follow-
ing behaviors. As discussed in study I the small relative angle of the guide-person can be
achieved by the proposed following behavior. Direction-following is therefore rarely chosen
in the user study, which is independent on the spatial context. In rather open and narrow
spaces, e.g. the large room (region R2) and the narrow passage (region R3) illustrated
in Fig. 5.1, parallel- and path-following is predominantly to be chosen by the robot re-
spectively. In contrast, multiple following behaviors may be appropriate for a region when
the spatial context is varied, e.g. the aisles (region R1) illustrated in Fig. 5.1. The robot
needs to change its behavior according to the currently observed spatial context. Hence, a
predominant following behavior cannot be achieved in such a region.

Besides, it is notable that the two parts of path-following in the robot’s trajectory (the thick
blue parts) are actually not through door D1 and D2, as Fig. 5.10 illustrates. Parallel-
following had been chosen before the robot moved through the doors, as free space nearby
the guide-person had been detected. By this means, the robot is able to switch to a behavior
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appropriate for the spatial context currently perceived by the robot as soon as possible.

5.2.2. Map Building

Creating an environment representation is one of the tasks performed in the Home-Tour.
On the basis of the built map the robot is able to navigate in the environment and provide
services to its human user(s). However, the guide-person perceived by the robot violates
the static world assumed in the RBPF-SLAM approach introduced in section 3.1. Therefore,
the person’s legs detected by the robot are removed from the laser plane. By this means,
negative effect arising from the guide-person is expected to be reduced as far as possible.
The results achieved in a simulated environment have proved the benefit of the proposed
technique for the built map and pose estimation of the robot. In this section the proposed
technique will be assessed in a real environment. Besides, the results of the user study will
be compared with what have been achieved from the simulated environment.

As mentioned in section 3.2, the map built by using the proposed technique can be stored
for each experimental run. Laser scans used in the mapping process are distinguished from
the original ones. The environment representations built in the two cases are therefore
different. In order to show the difference of the map built in the two cases, the map
information I(m) defined with equation 3.11 is selected as one measurement. In principle
the maps built on the basis of the laser scans containing and removing the detected person’s
legs can be both recorded, when an additional mapping process using the original laser
data runs parallel. Nevertheless, extra burden has to be added to the system, which may
negatively influence the performance of the online Home-Tour scenario. A more practical
and economical way is to store the necessary sensor data, i.e. the odometry and laser
data, in a rawlog file. Note that the most current pair of odometry and laser are stored for
each loop of the mapping process as the input of the RBPF-SLAM approach introduced in
section 3.1. By this means, the complete mapping process can be equally replayed offline,
using the data stored in the rawlog file. Moreover, the results of the mapping process
achieved from the sensor data collected in different experimental runs can be compared
fairly.

Apart from the map built in the Home-Tour pose estimation of the robot is the other task of
the RBPF-SLAM approach. In contrast to the mapping process performed on the simulation
platform Stage, no ground truth of robot’s poses is available in the real environment. There-
fore, absolute pose error of the robot cannot be achieved in the user study. Nevertheless, the
results illustrated in Fig. 3.11 and Fig. 3.12 have validated the advantage of the proposed
technique for pose estimation in the simulated Home-Tour. The other measurement selected
in the user study is the square root of the determinant of the pose covariance matrix (see
section 3.2). Localization errors can be analyzed on the basis of the pose covariance matrix
estimated on the built map.

According to the two measurements selected for the user study, i.e. the map informa-
tion I(m) and the square root of the determinant of the pose covariance matrix, three
studies are designed as follows. First, the information of the built map is computed with
and without the proposed technique for each experiment. The difference of the built maps
can be illustrated and analyzed with the map information I(m) computed in the user study.
Afterwards, a map-based path planning approach is performed on the map built with and
without the proposed technique. The capability of the built maps in performing a path
planning task can be compared with each other. At last, pose covariance matrices of the
robot are analyzed in order to assess the localization error estimated on the basis of the
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Figure 5.12.: Comparison of the grid maps built during the second experiment with and
without the approach proposed in section 3.2. a) shows the mapping result
using the original laser scans, while b) illustrates the built map excluding
the area occupied by the person from the laser scans. The probability of
unperceivable grid cells, such as the background, is set to 0.5. Examples
of mapped person’s legs are shown with red arrows in a) and b). Besides,
examples of more and less information gained in the two cases are illustrated
with the blue arrows in a) and b).

built map. Analyzing the selected two measurements and comparing the results of the built
map in the user study, more general conclusions can be drawn from the following three
studies.
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Figure 5.13.: Computed information of the map built in the second experiment according
to equation 3.11. The blue and red curve illustrates the result achieved with-
out and with the technique proposed in section 3.2 respectively. The map
information is stored every 20 loops of the mapping process.

Study I: Map information

As discussed in section 3.2 the uncertainty of obstacles and free space in the built grid
map can be computed by map information I(m). Fig. 5.12 shows the maps built during
the second experiment without and with the technique proposed in section 3.2. When the
detected person’s legs are left in the laser plane, i.e. the original laser is used in the mapping
process, they have to be mapped. As marked with the red arrows in Fig. 5.12(a) many gray
points are depicted on the path of the guide-person, which indicate the mapped person’s
legs. In contrast, the gray points arising from the perceived person’s legs cannot be easy
found in Fig. 5.12(b), since the area occupied by the person has been detected and removed
from the original laser plane. One pair of the mapped person’s legs are denoted by the red
dashed ellipse for the second experiment. Recalling the location of Person Lost illustrated
with the black dashed ellipse in Fig. 5.8, the mapped person’s legs are due to the Person
Lost occurred once in this experiment. After the guide-person had been re-recognized by
the robot, the detected person’s legs were removed again from the laser plane. Thus, no
mapped person’s legs can be clearly made out on the rest path of the guide-person.

The computed map information I(m) in terms of equation 3.11 for the second experiment
is shown in Fig. 5.13. At the beginning of the both curves little difference can be made
out, as the component Person-Following was not started. The original laser was used by
the mapping process. When the speech command “Follow me!” was accepted by the mini-
dialog module and the pair of the person’s legs were detected in front of the robot, the
proposed technique was triggered. In Fig. 5.13 the blue curve shows the map information
computed by using the original laser scans, while the red one was achieved when the pro-
posed technique was used. Note that the occupancy probability of the background as well
as the detected person area is set to 0.5. As discussed in section 3.2 zero map information
can be gained from the grid cells with occupancy probability 0.5. Therefore, the robot got
relatively less information about the environment using the proposed technique, because
false information resulted from the guide-person was removed from the built map as far as
possible. Examples of the more and less information for the two cases are shown by the
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Figure 5.14.: Average map information computed from eight experiments.

blue arrows in Fig. 5.12(a) and Fig. 5.12(b) respectively. Compared to the maps built in
the simulated environment (see Fig. 3.3 in section 3.2) consistent conclusions about the
map information can be drawn from the user study performed in the real environment. In
other words, using the proposed technique less information gained from the environment
is better than adding false information arising from the guide-person into the built map.

In order to verify the results achieved from one experiment, i.e. the second experiment,
map information is computed for the rest seven experiments. Fig. 5.14 illustrates the av-
erage map information computed from the eight experiments. As the log file steps of the
individual trial runs are not necessarily the same, the steps from the beginning of one exper-
iment to the minimum steps recorded from the eight runs9 are selected for the computation.
The results achieved from the second experiment are consistent with the computed aver-
age map information. Removing false information arising from the guide-person, average
map information is shown with the red curve. However, when adding these false informa-
tion into the built map, the average map information illustrated with the blue curve lies
over the red one as a whole. Notice that little difference can be found at the beginning
of the two curves, as the original laser scans were used in the mapping process. Once the
guide-person was identified, the proposed technique was triggered. Thus, the blue curve
gradually exceeds the red one.

Study II: Performing a path planning task on the built map

In order to provide services, the robot needs to move around and navigate in the environ-
ment. Certain knowledge about the surroundings, e.g. an environment map, is therefore
necessary for the robot. Using the proposed technique the environment map can be built
incrementally in the interactive Home-Tour. Now whether the built map is capable of per-
forming a path planning task is the center of this study.

The map-based approach NF1 is used on the two maps shown in Fig. 5.12(a) and

9In our case the eighth experiment recorded the minimum log file steps, namely 177 steps. Therefore the
log file steps for the computation of the average map information are limited to 177 for all the eight
experiments.
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(a) (b)

Figure 5.15.: Results of global path planning using NF1 on the map built during the second
experiment and shown in Fig. 5.12(a) and Fig. 5.12(b) respectively. The start,
current and goal position of the robot is marked with green, orange and blue
circle respectively. All these positions are computed with GLOC introduced in
section 5.1.2 on the corresponding maps. The robot’s goals are set in close
proximity to each other on the two maps. In b) the path illustrated with
green curve leads the robot from the current position to the set goal, while no
path can be found in a) due to the false obstacles resulting from the mapped
person’s legs.

Fig. 5.12(b) respectively. The results of performing a path planning task are illustrated
in Fig. 5.15. On the one hand, the robot get into trouble on the map containing many false
obstacles arising from the guide-person. No path can be found from the current robot’s
pose depicted with the orange circle to the set goal denoted with the blue circle (see
Fig. 5.15(a)). On the other hand, as illustrated in Fig. 5.15(b) a green path has been
planned on the map, in which false obstacles are removed by the proposed technique as far
as possible. Notice that the start pose of the robot in the trial run is depicted with a green
circle. The current robot’s poses and the robot’s goals are set in close proximity on the two
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Table 5.5.: Statistic results of sqrt determinant of covariance matrices recorded in eight
experiments.

Reduced percent Reduced percentMean Std-deviation
of mean of variance

Sqrt-det
inc. legs

4.67× 10−4 1.60× 10−3

24.1% 46.1%
Sqrt-det
exc. legs

3.54× 10−4 8.63× 10−4

maps, in order to fairly compare the NF1 approach in both cases.

Thus, the assumption proposed in study I, i.e. less map information is better than adding
false information into the map, is proved. Besides, the capability of the map built by re-
moving the false information in performing a path planning task is verified.

Study III: Pose uncertainty

Due to the lack of a ground truth reference of robot’s poses, absolute localization error is
difficult to be obtained in the real environment. However, the error of the robot’s pose
can be estimated on the basis of the built map. Pose uncertainty can be analyzed by the
covariance matrix of the robot’s pose. Hence, the square root of the determinant of the pose
covariance matrix is computed and recorded step by step for all the eight experiments. By
this means, the mean value and the standard deviation of the square root of the determinant
can be computed for the user study.

As shown in table 5.5 the reduced percentage of the mean and the deviation is 24.1%
and 46.1% respectively, when using the technique proposed in section 3.2. Therefore, the
perceived dynamic obstacles arising from the guide-person result in relatively high pose
uncertainty of the robot. The same result achieved in a simulated environment has been
discussed in section 3.2.

Discussion

From the reported findings in the three studies it can be concluded that the results achieved
in the user study are consistent with what have been obtained in a simulated environment.
Because of the negative influence arising from the guide-person in the Home-Tour, false
information has to be added into the built environment representation. Using the proposed
technique the false information can be reduced as far as possible. The less information
gained from the environment is more beneficial to the robot, in comparison with the more
information containing the false obstacles arising from the guide-person.

This assumption can be proved when a path planning task is performed on the built map.
Due to the false obstacles mapped on the environment representation, no path can be
found, although no obstacles lie between the current robot’s position and the goal. Besides,
compared to the robot’s pose estimated with the laser scans removing the detected legs of
the guide-person, false obstacles result in relatively high pose uncertainty of the robot. The
absolute pose error of the robot is increased as well, as the result achieved in a simulated
environment in section 3.2 has indicated.
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5.2.3. Path Planning

For a personal robot providing services to its user(s) one of the most important capabilities
is to reach a given goal from the current robot’s pose. This is exactly the task of path
planning. On the basis of the built environment representation during the interactive Home-
Tour, a planning approach adopting human navigation strategies has been proposed in
section 4.2. The results achieved in an empirical study have been discussed in section 4.2.3.
compared with the map-based approach NF1 the path planning and re-planning capabilities
of the proposed approach have been validated on the map built in a guided tour.

In contrast to the empirical study in which the robot was guided by a person who was
familiar with the robot system, the proposed path planning approach was performed in
the user study conducted by the subjects who used the robot platform for the first time.
Furthermore, instead of the direction-following behavior (see section 2.4.2) chosen in the
empirical study, the adaptive context-aware following behavior discussed in section 2.3
was used in all eight trial runs to build the environment representations. Besides, the
map built in the empirical study was not reused. Therefore, as a complementary study the
benefit of the combination of the map- and person’s trajectory-based approach is the focus
of the evaluation under the assumption that the environment is static and known to the
robot. On the one hand, exploiting the knowledge gained from an analysis of the person’s
trajectory, human navigation strategies would be beneficial to the robot. There should be
no unconquerable obstructions along the path of the robot for it to reach its goal, since this
path was computed from the person’s trajectory. Especially when the obstacles on the way
are unperceivable, the pathways of the guide-person are valuable to the robot. On the other
hand, as the person’s trajectory cannot cover all free space of the environment, map-based
approach may be necessary suppose the robot is far from the pathways of the guide-person.
The robot may get into trouble, when the path can be computed only on the basis of the
person’s trajectory.

With the help of the component SLAM and GLOC illustrated in Fig. 5.3 the map of the
surroundings can be reused. The robot is able to localize itself in the environment map.
Starting the map built in the user study on the simulation platform Stage, a path planning
task can be performed on the built map. Thus, the proposed path planning approach can
be compared with the map-based approach NF1 on Stage.

In order to assess the capability of the proposed map- and person’s trajectory-based ap-
proach in performing a path planning task, first, experimental data collected in the user
study are introduced. On the basis of the experimental data the proposed path planning
approach can be assessed on the simulation platform Stage. Afterwards, the map built in
one experiment of the user study is reused. The robot needs to localize itself on this map.
The necessity of the combination of the map- and person’s trajectory-based approach is
shown before a discussion of the study.

Experimental data

The proposed path planning approach is based on the trajectory of the guide-person. Hence,
positions on the person’s trajectory in the user study were recorded. Note that the recorded
person’s positions were transformed into the respective global coordinate frames defined
by the map built in each experimental run. Locations, i.e. kitchen, hallway, etc., illustrated
in Fig. 5.2, indicated by the guide-person were recorded on the person’s trajectory as well.
As discussed in section 4.2.1 a graph representation with multiple layers can be created
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A Closed Door

An Open Door

Table

D1

D2

Bedroom

Hallway

Living
Room

Kitchen

Start Person's
Position 

End Person's
Position

Mapped 
Person's Legs

A New Room

Start 
Robot's Pose

End 
Robot's Pose

Background

Figure 5.16.: Map built during the fourth experiment. An open and a closed door, a new
room compared to Fig. 5.9, as well as the mapped person’s legs are marked
with black arrows. The start and end position of the person, the start and end
robot’s pose, and the four locations shown to the robot during this experiment
are marked. One table and two open doors D1 and D2 are illustrated as well.
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on the basis of the person’s trajectory and the indicated locations. Graph nodes, namely
the positions on the person’s trajectory, corresponding graph layer assigned to each node,
timestamp of each node, edges of the graph nodes, as well as the weights of the edges
computed with equation 4.5, 4.6 and 4.7 need to be stored. In summary, a time-stamped
sequence of person’s positions (graph nodes) expressed in the respective built maps, Loca-
tions shown to the robot, corresponding graph layer assigned to the nodes, edges as well
as edge weights are recorded as experimental data for all trial runs. Since the map built in
each experimental run has been stored for the assessment of the mapping process (see the
last section), the proposed map- and person’s trajectory-based path planning approach can
be performed on the simulation platform Stage with the collected experimental data.

Global localization

Starting the map built in one experiment of the user study on Stage, the robot needs to
localize itself on this map. Fig. 5.16 shows the grid map built in the fourth experiment.
Compared with the map built in the second experiment (see Fig. 5.9), the positions of the
two doors are changed. Because of the open door marked with the black arrow, some
free space of the new room can be perceived by the robot. The mapped person’s legs are
illustrated inside the dashed ellipse. The recorded start and end position of the guide-
person, as well as the four locations indicated to the robot in the fourth experiment are
marked on this map. Notice that a table about 1.60m× 0.80m× 0.72m is depicted with
a blue rectangle in the corridor region, which was laid in the environment. Only the four
legs of the table can be perceived by the robot, due to the limited 2D perception of the
laser at a certain height. The two doors D1 and D2 were open during this experiment. The
background indicating the areas not perceived by the robot is shown as well in Fig. 5.16.
Note that the built maps as well as the trajectories of the guide-person are recorded for
all the eight experiments. The fourth experiment is chosen as an example to show the
capability of the proposed path planning approach. The same results can be equivalently
achieved from any other experiment.

Since the proposed path planning approach can be performed on the simulation platform
Stage, the robot needs to firstly localize itself in the map, and then navigate to a given
goal. In this study the robot is started in the room which the robot did not enter in the
fourth experiment. With the help of GLOC combined with the mini-exploration, the robot
is stopped when it localizes itself in the map. The environment map built in the fourth
experiment (see Fig. 5.16) is started on Stage, as shown in Fig. 5.17. The start and end pose
of the robot is illustrated in this figure as well. Due to the requirement of a map started on
Stage10, the background illustrated in Fig. 5.16 has to be removed. The foreground needs
to be extracted, and thus details of the environment map are not all shown in Fig. 5.17, e.g.
the legs of the table laid in the vertical aisle. However, the influence of the trivial change
in the environment map can be ignored by GLOC. As the size of the map is consistent with
the real surroundings, the robot simulated on Stage can perceive approximately the same
as what it shall sense in the real environment.

GLOC is performed due to the detected environment map. Fig. 5.18 shows the distribution
of particles recorded at three time steps. In terms of Fig. 5.17(a) the robot’s start position
is marked in Fig. 5.18(a). As the robot is globally uncertain in the start position, the
samples are uniformly distributed through the free space of the map. Fig. 5.18(b) illustrates
the distribution of particles, when the robot moves approximately 1.5 meters with respect

10See details in the web page http://www-users.cs.york.ac.uk/ jowen/player/playerstage-manual.html.
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(a) (b)

Figure 5.17.: The start and end pose of the robot localizing itself on the map built during
the fourth experiment. The robot is started in the room which it did not
enter during the guided tour, as shown in a). Performing the mini-exploration
introduced in section 5.1.2 the robot ends at the location illustrated in b).

to the start robot’s position. GLOC has disambiguated the robot’s position according to
the perceived sensor data, so that most particles center around three positions. The true
and false estimated robot’s positions are marked as well with the black arrows. Finally,
the ambiguity is resolved after another 4 meters of robot motion in the vertical aisle. As
shown in Fig. 5.18(c) the robot knows where it is. Compared to the end pose of the robot
illustrated in Fig. 5.17(b), the majority of particles are now centered tightly around the
correct position. Note that in the initialization of GLOC a large number of particles (40,000
in our case) are uniformly distributed in the environment. Nevertheless, with the help of
KLD-sampling [47] a small number of samples are chosen if the density is focused on a small
part of the state space. Otherwise, a large number of samples will be chosen if the state
uncertainty is high. The computational complexity can be therefore drastically reduced,
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once the robot’s pose is disambiguated by the mini-exploration. Besides, the estimated
robot’s pose can be updated more frequently due to a small number of samples.

Person’s trajectory-based approach vs. map-based NF1

As illustrated in Fig. 5.18(c) the robot has localized itself on the environment map. A path
planning task can be performed now. In order to assess the capability of the combination of
the map- and person’s trajectory-based approach, the robot is driven back in close proximity
to the robot’s start position shown in Fig. 5.17(a) with a joystick integrated in Stage. As the
recorded person’s trajectory does not cover the room in which the robot is started, map-
based path planning is necessary for the robot to navigate to a goal defined in the built
map. Location hallway marked in Fig. 5.16 is set as the goal for the robot. The task of
path planning is performed by the proposed path planning approach. The necessity of the
combination of the map- and person’s trajectory-based approach can be therefore shown.

As the robot is started far from the person’s trajectory, map-based NF1 needs to be used.
The path from the start robot’s position to the hallway is shown with the purple curve in
Fig. 5.19(a). Notice that the path based on the trajectory of the guide-person is adopted,
as soon as a plan from the current robot’s position to the set goal can be computed from
the graph built with multiple layers (see section 4.2.1). In other words, the path from this
robot’s position to hallway is computed by the person’s trajectory-based approach. The red
curve in Fig. 5.19(b) illustrates this path. Fig. 5.20(a) shows the red path as well as the

Robot's Position

(a)

Robot's Position

Start Pose 
of the Robot

False Robot's 
Position

False Robot's 
Position

(b)

Robot's Position

(c)

Figure 5.18.: Global localization on the map built in the fourth experiment. a) at the begin-
ning the set of particles (40,000 samples in our case) is initialized with a uni-
form distribution (projected into 2D). b) Most samples are centered around
three doorways after approximately 1.5 meters of robot motion with respect
to its start position. c) the robot knows where it is after another 4 meters of
robot motion in the vertical aisle.
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Start Robot's
Position

Hallway

(a)

Hallway

Dividing Point

(b)

Figure 5.19.: The NF1 path and the path planned on the basis of the person’s trajectory.
The purple curve in a) shows the NF1 path from the robot’s start position
to the given goal hallway. The red curve in b) illustrates the path based on
the trajectory of the guide-person. This red path found from the built graph
begins at the dividing point and ends at the hallway.

graph with different layers built from the person’s trajectory. As discussed in section 4.2.1,
a new graph layer depicted with a different color will be created when a new location is
indicated to the robot. The two graph layers beginning at the start person’s position and
the last location (the kitchen in our case) and ending at the first location (the hallway in
our case) and the end person’s position respectively are depicted as well.

Note that path P computed by the proposed approach consists of two parts. Fig. 5.20(b)
illustrates the path P actually planned for the robot. The purple part indicates the NF1 path
adopted by the robot at the beginning, while the red part used by the robot afterwards is
planned by the person’s trajectory-based approach. The robot’s position at which the path
to the hallway can be computed on the basis of the person’s trajectory is regarded as the
dividing point of the two parts of path P . Because of the discrepancy between the planned
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Start Person's 
Position

Dividing Point

End Person's 
Position

Kitchen

Hallway

Bedroom

Living Room

(a)

Start Robot's
Position

Dividing Point

Hallway

(b)

Figure 5.20.: The graph built from the person’s trajectory and the actual path computed
using the approach discussed in section 4.2. a) shows the created graph and
the corresponding path computed according to this graph. The red path has
been already illustrated in Fig. 5.19(b). The start and end position of the
guide-person, as well as the four locations shown to the robot are marked.
The path actually planned for the robot is illustrated in b). Two parts of this
path are shown with the purple and red curve. The dividing point of the two
parts is marked with the black arrow.

path and the actual robot’s trajectory, the dividing point shown with the black arrow in
Fig. 5.20(b) is slightly different from the end point of the purple one. The location hallway
marked in Fig. 5.20(a) records the person’s position in which the guide-person indicated
the hallway to the robot. However, the goal sent to the robot is the robot’s position in
which the indication of a location was accepted (replied) by the robot11. Therefore, the
planned red path to the hallway ends at the position distinct from the location marked in

11See the mini-dialog module introduced in section 5.1.2 for details.
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Fig. 5.20(a)12.

Notice that the NF1 path shown in Fig. 5.19(a) leads the robot to location hallway through
the vertical aisle. In contrast to this NF1 path the robot has to make a detour when fol-
lowing the red path shown in Fig. 5.19(b). However, this detour is crucial for the robot.
The necessity of the switch to the person’s trajectory-based path, i.e. the red path shown
in Fig. 5.19(b), is illustrated in Fig. 5.21. On the one hand, the table placed in the vertical
aisle of the environment cannot be perceived by the robot except for the four legs. A crash
to this table is therefore inevitable when completely using the NF1 path. On the other hand,
this table has been perceived by the guide-person during the Home-Tour. Hence, the robot
can reach the given goal when passing through the two doors D1 and D2. In other words,
the NF1 path consisting mostly of straight line segments generally provides a shortest way
to the goal, while navigation strategies of the guide-person, e.g. avoiding obstacles unper-
ceivable to the robot, going through the two doors D1 and D2, are represented with the red
path. The real movement trajectory of the robot should be a little different from (probably
smoother than) this red path, as the robot’s goals are selected from this path according to
a predefined distance threshold.

Discussion

The results so far show the capability of the proposed approach in performing a path plan-
ning task under the assumption of a static environment. The necessity of executing both the
map- and the person’s trajectory-based approaches has been shown in a real scenario. Due
to the limitation of robot perception, following the pathways of the guide-person human
navigation strategies are beneficial to the robot. It is crucial for the robot especially when
obstacles are not perceivable.

According to results discussed in this section, pose estimation of the robot was able to
converge at the correct position when mini-exploration was applied. However, the problem
of efficient localization discussed by Fox et al. [49] should be considered. By this means,
the robot tries to actively navigate and sense in the environment, in order to increase the
efficiency and robustness of localization. Apart from human navigation strategies, moving
on conventional pathways of the guide-person the robot’s path would be expected as well
by this person. Moreover, the movement trajectory of the robot would follow a predictable
pattern, as it is the path that people would like to take. Nevertheless, how to exploit
person’s trajectories needs to be investigated more thoroughly due to the individuality and
variety of human pathways. Appropriate movement patterns adaptive to spatial context are
expected to be learned from the guide-person in the interactive Home-Tour and exploited
by the robot.

5.3. Observations from a Subject’s Perspective

As mentioned at the end of section 5.1.1, the subjects walked in a forward-, a backward-
or a mixing-manner during the guided tour. The five subjects who watched the robot and
walked backwards during the guided tour were asked about this. Their answers were not
completely same though, the reasons were consistent. As they did not know how the robot
would move, they had to walk carefully and chose a backward-manner in order to see the
robot clearly. Hence, the majority of the subjects (62.5% in our case) preferred a walking
12We choose the robot’s position as a goal, as the robot has really reached that position in the guided tour.
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Table

NF1 Path

Person's Trajectory-
Based Path

D1

D2

Dividing Point

Hallway

Start Robot's
Position

Figure 5.21.: Comparison of the map- and the person’s trajectory-based path illustrated
with purple and red respectively. The table and the two open doors D1, D2
are depicted as well.
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manner different from the one usually adopted in a human-human interactive scenario, i.e.
walking in a forward-manner. For the rest three subjects S8 of the eighth trial run walked
forwards at the beginning. As he moved much faster than the robot, he then looked at the
robot and carefully went backwards. In contrast, S2 and S4 walked all along relatively
slowly, and their speeds were comparable to the robot13. They both went forwards in the
respective trial run except for a few necessary adjustments, e.g. S2 paused for a moment
to make the robot keep up with him, while S4 turned her head to see the robot now and
then. In summary, all subjects were able to successfully guide the robot in the environment
and show locations given in Fig. 5.2, while paying attention to robot’s movement.

5.4. Insights and Discussion

Based on the idea of Human-Robot Joint Spatial Exploration an integrated system that en-
ables a mobile robot to acquire a spatial representation in an interactive scenario has been
built. The assessment of the individual components presented in section 5.2 has validated
that they are appropriate for the integrated system working in a real environment with real
subjects. Since the mobile robot platform has been evaluated in the user study conducted
by inexperienced subjects, the feasibility and practicality of the proposed system as a whole
can be verified from a technical point of view.

The presented system starts from the process of adaptive context-aware person-following
making the robot keep up with the guide-person, and ends at building an environment
representation. Therefore, the three components constructing the core of the system in-
teract with each other. Firstly, the person-following process influences the mapping and
localization (SLAM) process, as a metric map can be built when the robot moves around
in the environment. Moreover, the path planning approach is based on the trajectory of
the guide-person observed in the person-following process. Next, the robot’s goals sent to
the person-following process as well as the person’s trajectory observed by the robot are
computed on the basis of robot’s poses estimated in the built map. Besides, the proposed
path planning approach and the integrated global localization approach GLOC are influ-
enced as well by the built environment representation. Thus, insights gathered from the
user study and the performance of the integrated system as a whole should be discussed in
three aspects, namely map building, person-following and path planning.

Note that building an environment representation in an interactive scenario is different
from a pure mapping process, as the robot is guided by a person. Robot movement and
perception during the exploration of the initially unknown environment are dependent on
the guide-person. Despite Person lost that occurred in the Home-Tour, the task assigned
to the subjects in all trial runs was able to be accomplished with the help of the robot’s
responses sent by the Mini-DLG module. Compared with the ground truth map built by
controlling the robot with a joystick, the robot was not able to perceive the new environ-
ment so thoroughly and repeatedly in a guided tour. In order to make the robot perceive
the environment in detail as far as possible, the maximum speed of the robot was limited
at a relatively low level. The certainty of the map shown in Fig. 5.1 is higher than the one
shown in Fig. 5.9. Nevertheless, the feasibility of the map built during the Home-Tour has
been validated to perform a path planning task.

The negative impact arising from the detected person’s legs can be reduced as far as possi-
ble, when removing the false information from the built map. Therefore, learning dynamic

13The maximum translational and rotational speed of the robot is set to 0.4m/s and 25◦/s respectively.
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objects in a mapping process would be beneficial to the built environment representation
and pose estimation of the robot in this representation. One possible disadvantage for the
mapping process should be pointed out, i.e. perception area of the robot has to be reduced
because of the invalid sensor area occupied by the guide-person. However, the robot can
perceive the removed area as soon as the guide-person moves.

Considering the statistics computed from the data collected in the user study, the adaptive
context-aware following approach appears quite promising in the interactive (Home-Tour)
scenario. Using the adaptive context-aware following behavior proposed in this thesis the
robot was able to successfully keep up with the guide-person in all experimental runs, so
that the task assigned to the subjects were all accomplished. All behavior changes of the
robot can be explained in terms of the core strategies given in section 2.3.1. The capability
to keep up with the guide-person and the relation between the spatial context and the
selected following behaviors has been discussed in study I and study II respectively. The
competence of the proposed following behavior in accomplishing the interactive Home-Tour
has been proved by the assessment.

The core strategies of the person-following behavior are based on the spatial context cur-
rently perceived by the robot. By this means, the robot is able to change its behavior accord-
ing to the most current information gained from the environment. However, the knowledge
that has been obtained from the environment, i.e. the built map, may become another basis
of changing the robot’s behavior. Especially when the interactive Home-Tour continues and
the robot riches its knowledge gained from both the environment and the guide-person, a
more comprehensive strategy is expected. In other words, the complete knowledge learned
in the Home-Tour should be considered for the selection of robot’s behavior.

Note that the position computed around the guide-person controls the movement of the
robot in parallel-following. The movement direction of the person is implied in the direction
of the vector consisting of two consecutive robot’s goals. Except for the computation of
robot’s goals, robot speed can be computed in terms of the estimated moving speed of the
guide-person. Hence, how to control both the position and the speed of the robot to perform
parallel-following still needs further investigation. Besides, a number of issues remain to
be investigated when taking social aspects of human-robot interaction into account. A
more thorough study is therefore necessary to evaluate the acceptance and benefit of the
proposed multiple person-following behavior from a user’s perspective. Adaption of the
person’s and the robot’s behavior might be evaluated as well in such an interactive person-
following scenario.

As a complementary study to what have been done in section 4.2.3, the proposed path
planning approach was evaluated on the map built with the person-following approach dis-
cussed in section 2.3. To perform a more general path planning task the robot was started
in a region which was not entered but merely perceived by it. Although the feasibility of
GLOC has been verified in the study, the capability of recovering from localization failures is
necessary for more complex scenarios. Besides, considering dynamic obstacles generally ex-
isting in a real environment re-planning is still an open issue. As discussed in section 4.2.3
the proposed re-planning approach will be triggered when dynamic objects, such as doors
can be recorded in the mapping process. Therefore, apart from a static environment rep-
resentation built in the Home-Tour a mapping process gathering current information from
the environment might be useful to deal with dynamic obstacles. Extending the perception
area of the robot, e.g. integrate the Time-of-Flight camera or make use of the Microsoft
Kinect mentioned in section 4.3, more potential hazards can be perceived by the robot.
However, due to the limitation of robot perception, how to deal with unexpected and un-
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perceivable objects outside the perception area of robot sensors in path-planning needs
further investigation.
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6. Conclusion and Future Considerations

The important thing is not to stop questioning.
[Albert Einstein, 1879–1955]

A long term goal of research in robotics has been to make robot that would provide services
to human, thereby, improving our daily lives. For such a personal service robot, its capabil-
ity to acquire an environment representation is fundamental and necessary to be developed.
The ability of a robot to harmoniously coexist and work in a human-shared environment is
possible only when the built representation corresponds to human spatial understanding.
To acquire a spatial representation, thus to explore the environment, it is rather natural
for the robot to accompany the human user while the user presents the environment to
the robot. In such a human-robot joint exploration, the human spatial knowledge is incor-
porated in the environment representation built by the robot. Consequently, based on the
idea of Human-Robot Joint Spatial Exploration (HRJSE) this thesis focused on an integrated
solution to the problem of interactive acquisition of spatial representations.

6.1. Summary

Starting from this idea, the interactive Home-Tour was chosen as the basic scenario in this
research to realize a human-robot joint exploration. To acquire an environment represen-
tation in the Home-Tour, the robot needs to keep up with the correct guide-person while
learning models of the environment. Thus, the train of thought of acquiring a spatial rep-
resentation formed gradually. Three integral parts, i.e. person-following, map building
during the Home-Tour and path planning adopting human navigation strategies, were inte-
grated in the system. By this means, a topological representation of the environment can be
built incrementally. Information gained from both the surroundings and the guide-person
can be incorporated in the representation as well.

The person-following behavior dealing with the problem “where to move in the human-robot
joint exploration?” was proposed at first for the robot to complete the Home-Tour conducted
by a guide-person. Three elementary person-following methods, namely direction-, path-
and parallel-following, were designed as the components constituting a more complicated
behavior, i.e. the adaptive context-aware following behavior. This hybrid following ap-
proach derived from the observation of human-human following schemes enables the robot
to switch between these elementary following methods according to the current spatial con-
text, e.g. free space, and the relative position of the interacting person. Keeping up with
the guide-person is regarded as the guideline of the strategies of behavior switch, bearing
the characteristics of the three elementary behaviors in mind.

Given the adaptive context-aware following behavior, the robot was assumed to be able to
keep up with the guide-person and perform the Home-Tour. Next, building a metric map

Bielefeld University



130 6.2. Concluding Discussion and Future Considerations

of the environment during this guided tour was discussed. Considering the importance
of mapping details and recording dynamic objects, occupancy grid map is chosen as the
basic environment representation. It is meaningful, especially when the robot performs
navigation tasks. The guide-person perceived by the robot in the Home-Tour has to be
regarded as dynamic obstacles and mapped on the grid representation. In order to reduce
this negative impact on the mapping process, the areas occupied by the person are detected
and marked as invalid on the laser plane. Thus, the really useful information obtained
from the surroundings is available for the mapping process, and the disturbance of the
guide-person can be restrained.

On the basis of the metric environment representation built incrementally in the Home-Tour,
both the robot’s poses and the person’s positions can be expressed in a common world co-
ordinate system. Afterwards, a path planning approach was presented considering human
navigation strategies that can be extracted from an analysis of the movement trajectory of
the guide-person. The points selected from the observed human pathways form the nodes
of the graph with multiple layers. New graph layer is created once a new location has
been indicated by the guide-person. Therefore, a topological representation can be built
upon the metric environment map. The environment is represented with separate locations
forming the topological nodes. These nodes are connected by the paths found in the graph.
Re-planning is triggered, when dynamic objects obstructing the path already planned for
the robot are detected on the occupancy grid map. Besides, a multisensor-based motion
generation enabling a 3D capable navigation for the robot was proposed. It is compati-
ble with the current robot platform due to the same two-dimensional data input of path
planning and obstacle avoidance.

The integrated solution proposed in this thesis to the problem of acquiring an environment
representation was evaluated in a user study conducted by the subjects who used the robot
platform for the first time. The user study was conducted in a real environment resembling
an apartment with dynamic objects, such as movable doors, and passers-by. In order to
prove the robustness of the system as a whole, no explanation of the hardware and software
of the robot platform as well as the goal of the experiments was told to the subjects, except
for the brief task introduction shown in Fig. 5.2. Various spatial arrangements were thought
about in the test environment, e.g. aisles, rooms with narrow and open space, etc., so as to
assess the designed person-following behavior.

All necessary data (see section. 5.2) were recorded in each experimental run. Hence, the
complete user study can be replayed offline, and different environment representations
built in the experiments are able to be compared with each other. A mini-dialog module
was designed to facilitate the communication between the robot and the guide-person in
the Home-Tour. With the help of GLOC combined with the mini-exploration strategy the
robot is capable of localizing itself globally in the built map. By this means, the built spatial
representation can be reused by the robot started at an arbitrary position in the free space
illustrated on the environment map. The robustness and feasibility of the system has been
as a whole verified by the successful performance of the task assigned to all inexperienced
subjects.

6.2. Concluding Discussion and Future Considerations

The general idea of Human-Robot Joint Spatial Exploration provides an opportunity for a
mobile robot to acquire spatial representation with the help of the human user. Especially
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for a personal service robot sharing an environment with human inhabitants and perform-
ing tasks given by the user, it is necessary to take into account human spatial understanding
and concepts in the acquisition process of the spatial representation. By this means, com-
munication about the environment between the robot and user can be facilitated. In the
interactive Home-Tour scenario the robot is guided by the user through an arbitrary indoor
environment. It is able to explore the environment and learn about the surroundings. Not
only the information obtained from the raw sensory data but also the spatial knowledge
gained from the human user can be incorporated in the built spatial representation. Thus,
direct participation of the human user into the environment exploration of the robot is re-
garded as a solution of map acquisition. Human spatial understanding may be provided by
a human user explicitly with language, e.g. the user presents the environment to the robot,
or implicitly contained in human behaviors, e.g. the movement trajectory of the human
user observed by the robot.

A person-following behavior enables the robot to keep up with the guide-person during the
interactive Home-Tour and move around in the environment. The unknown environment is
therefore explored by the robot. Afterwards, a metric environment map is built, keeping in
mind the negative impact of the guide-person on the mapping process. Besides that, on the
basis of the built metric map an environment representation incorporating human spatial
knowledge can be achieved in the Home-Tour. According to this environment representation
navigating to a given goal can be solved as well. Hence, in this thesis a person-following
behavior, a mapping process and a path planning approach were assumed as the basic
aspects for a system design to realize Human-Robot Joint Spatial Exploration, particularly
for indoor applications on the basis of the Home-Tour idea.

A person-following behavior A person-following behavior is generally used for a mobile
robot in an interactive scenario, e.g. the Home-Tour. The ability of the proposed multiple
person-following behavior to accomplish the interactive Home-Tour has been verified in the
user study. Evaluation results achieved from the analysis of the data collected from all trial
runs have proved the behavior switch according to spatial context. Furthermore, a relation
between the selected behaviors and the arrangement of the environment can be found, as
discussed in section 5.2.1.

Despite the encouraging results achieved in the user study major challenges for the adaptive
context-aware following approach still lie in the following questions: (i) how to extract an
appropriate description of a person-following behavior, and (ii) except for an assessment
from a technical point of view, how to evaluate the performance of the designed person-
following behavior from a user’s perspective.

As a final evaluation of the following behavior should be given by the human user, a wide
and detailed investigation is needed. By means of the further investigation, a more definite
design for a person-following behavior could be obtained, and a robot’s behavior preferable
to the user is expected to be achieved. Apart from building an accurate theoretical model,
the real performance of the robot behavior needs to be taken into account especially for
a complex mobile robot platform working in a real world scenario. It directly affects the
assessment of the human user. Hardware control, e.g. robot speed, the reliability of the
communication between software components and robot sensors, the errors arising from
the individual hardware and software components, etc., can influence the accuracy and the
smoothness of the designed robot behavior. However, as summarized in section 5.3 people
probably pay close attention to the robot behavior. Therefore, the approach proposed in
this thesis can be regarded as a step towards the person-following behavior that is able
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to facilitate human robot interaction in a real world scenario and take into account the
situations in the environment.

Mapping in an interactive scenario Exciting progress has been achieved in the field of
robotic mapping. A mobile robot is able to create and update a metric map of an unknown
environment. The built map is generally based on the extraction of features, e.g. points,
lines, objects, etc., from the environment or a free space representation, such as the occu-
pancy grid map adopted in this thesis. However, robotic maps do not necessarily correspond
to human spatial understanding and concepts. A special issue that needs to be considered
in a mapping process during the Home-Tour is the guide-person who has to be regarded as a
dynamic obstacle. The Markov assumption, sometimes referred to as static world assump-
tion is therefore violated. Using the technique proposed in section 3.2 the negative impact
on the built metric map can be reduced as far as possible. In addition, without the need
of feature extraction often dependent on the assumption that an environment exhibits an
known structure, the occupancy grid representation obtained directly from robot sensors
shall be more robust in cluttered indoor environments. The free space representation of the
environment is especially useful to plan a path for the robot.

Although the results achieved in the user study do not provide negative impact of dy-
namic objects on the proposed mapping process, mapping in dynamic environments is still
a challenging issue. Except for the tracked guide-person, other passers-by, doors and mov-
able furniture in an indoor environment may violate the assumption of a static world as
well. Hence, learning models of moving objects is meaningful for a personal service robot
to safely and successfully navigate in a human-shared environment, while effectively per-
forming tasks assigned by human user(s).

As a step towards spatial understanding in 3D space, recently some mapping techniques
have attempted to create a three-dimensional spatial model for an unconstrained environ-
ment. These approaches may be crucial especially when the environment is composed of
several floors lying one above the other, or it contains non-flat structures like ramps. A thor-
ough 3D representation is not necessarily needed for a robot moving in a 2D environment.
However, objects out of the 2D robot perception area should be taken into account, since
safe navigation may fail due to the unperceivable obstacles, as discussed in section 4.3.
The ability of 3D perception is important for the service robot, as the objects that would be
manipulated by the robot performing a task exist indeed in a three-dimensional space.

In addition, adopting exploration strategies, e.g. actively closing loops, re-entering visited
places, exploration for unknown terrain, etc., may support the robot to gain further in-
formation about the environment, especially when the achieved environment models are
incomplete and the environment changes over time. The results achieved in the user study
have verified the practicality of the maps built in the different trial runs in performing
the proposed person-following behavior and planning a path for the robot. Nevertheless, it
would be necessary to use such exploration strategies to inspect errors in a mapping process
and improve the quality of the map especially in large scale environments. The Home-Tour
should not be negatively influenced, when the corresponding explanation of the robot’s
behavior can be conveyed to the guide-person in time.

Incorporating human spatial knowledge Integrating human spatial knowledge about
the surroundings into a general robotic mapping process may enrich the metric represen-
tation including robot centric information. In the context of personal service robots an
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environment representation containing information gathered from raw robot sensor data
and human spatial understanding can facilitate the communication about the environment
between the user and the robot. This environment representation is therefore expected to
be beneficial to the robot providing services to its user.

An interactive scenario would be helpful for both the robot and its user, as on the one hand
the robot may learn about the environment with the help of the user during this scenario.
On the other hand, it provides an opportunity to the user to interact with the robot and
know the new friend. Information conveyed by natural language, such as an introduction
of various rooms, aisles, objects belonging to these introduced regions, etc., contains spatial
understanding and concepts of the human user(s). Besides, human behaviors, e.g. gestures
like fingertip pointing, a nod or hand touch, perceived human pathways in the interactive
guided tour, etc., as well as the corresponding meaning hiding behind these behaviors
should be useful for the robot to extend its knowledge about the environment.

Using the concept location defined in this thesis information indicated explicitly by the
human user can be integrated into a robotic mapping process. Combining the analysis of the
observed human movement trajectory a topological environment representation based on a
metric map has been built. However, considering tremendous spatial knowledge of humans
about the surroundings, how to effectively exploit the multifarious information obtained
by the robot in an interactive scenario, and how to extract an appropriate environment
model from these information become more challenging for the future work. The ability
of interactively acquiring all possible information (language, behavior, etc.) from the user
would help the robot to resolve ambiguities and effectively build a spatial representation
integrating human spatial understanding. This built environment model would support the
interaction with the human user about the environment, and thus facilitate the robot to
accomplish tasks assigned by the user.

Future considerations Challenges mainly arising from the limited abilities of the robot
in perception, interpretation and representation have been discussed in this section. How-
ever, the overall framework presented in this thesis appears promising in solving the prob-
lem of interactive acquiring a spatial representation. Research in the directions of recog-
nizing human behaviors in an interactive scenario and questing their implications accord-
ing to actual situations will hopefully help to materialize a more flexible adaptive system.
Inconsistent representation of the surroundings and ambiguities in the environment repre-
sentation are expected to be avoided for both the human user and the robot. Thus, a spatial
representation adequate to real applications in our everyday life could be built by the robot.
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A. A Brief Introduction to Particle Filters

Particle filters are a broad and popular class of Monte Carlo algorithms for the solution
of optimal estimation problems in non-linear non-Gaussian scenarios. In comparison with
standard approximation methods, such as the popular Extended Kalman Filter [80], the
principal advantage of particle methods is that they do not rely on any local linearisation
technique or any crude functional approximation. The price that must be paid for this
flexibility is computational: these methods are computationally expensive. However, thanks
to the availability of ever-increasing computational power, these methods are already used
in real-time applications appearing in fields as diverse as chemical engineering, computer
vision, financial econometrics, target tracking and robotics.

A particle filter is a nonparametric implementation of the Bayes filter and is frequently used
to estimate the state of a dynamic system. The basic idea is to represent a posterior by a
set S of N weighted random samples (particles), so that the discrete distribution defined
by the samples approximates the desired one.

S =
{

(s[i], ω[i])|i = 1, · · · , N
}

(A.1)

Where s[i] is the state vector of the i-th sample and ω[i] the corresponding importance
weight. Each sample represents one potential state the system might be in. The sample set
approximates the probability distribution

f(x) ≈
N∑
i=1

ω[i] · δs[i](x), (A.2)

where δs[i](x) is the Dirac delta function concentrating at the state s[i] of the i-th sample
and fulfilling the following equations

δx0(x) =

{
+∞ if x = x0

0 otherwise
(A.3)

and ∫ +∞

−∞
δx0(x)dx = 1. (A.4)

ω[i] is a positive value, and the sum over all weights is 1 as the integral of f(x) over all
values x is equal to 1.∫ +∞

−∞
f(x)dx =

∫ +∞

−∞

(
N∑
i=1

ω[i] · δs[i](x)

)
dx

=

∫ +∞

−∞
ω[1] · δs[1](x)dx+ · · ·+

∫ +∞

−∞
ω[N ] · δs[N](x)dx

equationA.4
=

N∑
i=1

ω[i]

= 1 (A.5)
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Such a set S of samples can be used to approximate arbitrary distribution. Fig. A.1 depicts
distribution f(x) and its corresponding sample set. In general, the more samples that

Figure A.1.: The distribution function and its approximation by samples with uniform
weights. The samples are illustrated with the vertical bars under the function.

are used, the better the approximation. The problem that is needed to be dealt with is
to compute the expectation that x ∈ A, where A is a region. Defining a function B
which returns 1 if its argument is true and 0 otherwise, the expectation can be computed
as follows:

Ef [B(x ∈ A)] =

∫ +∞

−∞
f(x) ·B(x ∈ A)dx

=

∫
A
f(x)dx. (A.6)

Considering the sample-based representation the integral of f overA can be approximated
by counting all of the particles that fall into the region A,

∫
A
f(x)dx ≈

1

N

N∑
i=1

B(s[i] ∈ A). (A.7)

Recalling equation A.3 and A.4 the distribution function f can be expressed by

f(x) ≈
1

N

N∑
i=1

·δs[i](x), (A.8)
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as ∫
A
f(x)dx =

∫
A

1

N
·
N∑
i=1

δs[i](x)dx

=
1

N
·
∫
A

N∑
i=1

δs[i](x)dx

=
1

N
·
N∑
i=1

B(s[i] ∈ A) (A.9)

and ∫ +∞

−∞
f(x)dx =

∫ +∞

−∞

1

N
·
N∑
i=1

δs[i](x)dx

=
1

N
·N

= 1. (A.10)

Thus, we have obtained an alternative representation of the distribution function f com-
pared to quation A.2.

Figure A.2.: The target distribution f and the importance density g. The samples drawn
from g are illustrated with vertical bars under this function.

However, the true probability distribution which the particles sample from is generally
unknown or not in a suitable form for sampling. In order to deal with this problem an
importance density1 is introduced, so that the distribution that we want to approximate

1Proposal density or instrumental density is used in some literature interchangeably.
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Figure A.3.: The samples drawn from the importance density g are weighted according to
equation A.14 and normalized. After weighting the envelope of the resulting
sample set approximates the target distribution f .

can be obtained by sampling from a different distribution, namely the importance density.
This techique is known as importance sampling. It is a fundamental Monte Carlo method.
Assuming that g is the importance density which can be sampled from and f is the target
density, we show that it is possible to approximate f by drawing samples from g. The
expectation that x ∈ A for f can be expressed by

Ef [B(x ∈ A)] =

∫
A
f(x)dx

=

∫ +∞

−∞
f(x) ·B(x ∈ A)dx

=

∫ +∞

−∞

f(x)

g(x)
· g(x) ·B(x ∈ A)dx

=

∫ +∞

−∞
ω(x) · g(x) ·B(x ∈ A)dx, (A.11)

where ω(x) is a weight function. In addition, we require that

f(x) > 0 =⇒ g(x) > 0, (A.12)

in order to ensure that a state that might be sampled from the target distribution does not
have zero probability under the importance density. According to equation A.8 g(x) can be
approximated by

g(x) ≈
1

N

N∑
i=1

·δs[i](x) (A.13)
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as well. Therefore, equation A.11 can be rewritten as follows:

Ef [B(x ∈ A)] =

∫
A
f(x)dx

≈
∫ +∞

−∞
ω(x) ·

1

N
·
N∑
i=1

δs[i](x) ·B(x ∈ A)dx

=
1

N
·
N∑
i=1

∫ +∞

−∞
ω(x) · δs[i](x) ·B(x ∈ A)dx

=
1

N
·
N∑
i=1

ω(s[i]) ·B(s[i] ∈ A)

=
1

N
·
N∑
i=1

ω[i] ·B(s[i] ∈ A). (A.14)

Thus, importance sampling provides an estimate of the target distribution f . The character-
istics of this estimate has been discussed in [34].

This derivation describes the basic procedure of a particle filter algorithmus. We can sample
from an arbitrary distribution g to approximate the target distribution f by assigning a
weight to each sample in terms of equation A.11. The sample-based representation of
the importance density g and the assigned importance weights depending on the target
distribution f are shown in Fig. A.2 and Fig. A.3 respectively. Although the envelope of the
weighted samples approximates the target f , a normalizer is needed to sum up all weights
to 1.

Notice that the weighted samples shown in Fig. A.3 do not provide samples approximately
distributed according to f . A resampling step at which N samples are drawn in terms of
the weights for each sample is therefore necessary in order to obtain approximate samples
from the target distribution. Various resampling schemes have been introduced e.g. in [82],
[25] and [34]. After resampling, the weights of all samples are set to 1

N
, as the weights,

namely likelihoods, have been replaced with frequencies by drawing samples in terms of the
weights.

Summarizing the discussion above, the particle algorithm allows us to recursively estimate
the particle set St at the time step t on the basis of the estimation of St−1 at the previous
time step according to the following three basic steps:

. Sampling: Drawing or sampling from the importance density, so as to creat the next
generation of particles S

′
t based on the previous particle set St−1.

. Weighting: Compute the weight of each particle in the set S
′
t.

. Resampling: Resample the weighted set of particles S
′
t in terms of the sample

weights. Set the weights of all particles to 1
N

in order to obtain the new set St.
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