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Abstract The cyanobacterium Synechocystis sp. PCC
6803 harbours 47 histidine kinases (Hiks). Among these are
hybrid histidine kinases with one or two response regulator
domains as well as numerous Hiks with several sensory
domains. One example is the hybrid histidine kinase
Slr1759 (Hik14) that has two PAS domains arranged in tan-
dem linked to a predicted GAF domain. Here, we show that
a Slr1759 derivative recombinantly expressed in Esche-
richia coli has a Xavin cofactor. Using truncated Slr1759
variants, it is shown that the Xavin associates with the Wrst
PAS domain. The cofactor reconstitutes the activity of D-
amino acid oxidase apoprotein from pig kidney, indicating
that the Xavin derivative is FAD. Furthermore, the Slr1759
histidine kinase domain indeed undergoes autophosphory-
lation in vitro. The phosphorylated product of a recombi-
nant Slr1759 derivative is sensitive to acids, pointing to a
histidine residue as the phosphate-accepting group.

Keywords Hybrid histidine kinase · FAD · PAS domain · 
Synechocystis

Introduction

Histidine kinases play a central role in the perception and
processing of environmental signals in bacteria, cyanobac-
teria, fungi and plants, and ultimately impact gene expres-
sion and processes like phototaxis, chemotaxis, and
virulence in bacteria (Chang and Stewart 1998; West and
Stock 2001). In the so-called two-component systems,
sensor histidine kinases combine with cognate response
regulators. Signal-dependent autophosphorylation of a
conserved histidine residue within the histidine protein
kinase domain is followed by phosphoryl transfer to a con-
served aspartate residue within the response regulator. As a
result, the response regulator interacts with downstream
signaling components or directly acts on promoters of tar-
get genes (Mascher et al. 2006; Gao et al. 2007).

The cyanobacterium Synechocystis sp. PCC 6803 har-
bours 47 genes encoding predicted Hiks many of which are
implicated in stress reactions (Mizuno et al. 1996; Murata
and Suzuki 2006) including responses to cold stress
(Suzuki et al. 2001), high salt (Marin et al. 2003), high
osmolarity (Mikami et al. 2002), heavy metals (Lopez-
Maury et al. 2002) or low phosphate (Hirani et al. 2001), as
well as in manganese homeostasis (Ogawa et al. 2002;
Yamaguchi et al. 2002) or phototaxis (Shin et al. 2008). We
have previously characterized the slr1759 mutant con-
structed in the Murata laboratory (Suzuki et al. 2000;
Nodop et al. 2006). It is insertionally inactivated in slr1759
encoding the hybrid histidine kinase Hik14 and also does
not express slr1760 encoding a response regulator that is
part of an operon with slr1759 (Nodop et al. 2006). Thus,
Slr1759 and Slr1760 presumably represent a two-compo-
nent system encoded by linked genes.

In cultures that were inoculated at low cell density and
aerated with 2% CO2, growth of the Hik14 mutant was
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strongly delayed compared to WT. Under these conditions,
the pH drops and the equilibrium between CO2 and HCO3

¡

is shifted towards CO2. Thus, the mutant presumably is less
able to cope with acidiWcation of the medium and the more
energy-demanding metabolisation of CO2. Further charac-
terization of the mutant pointed to an enhanced respiratory
activity and a slightly reduced photosynthetic activity,
implicating Slr1759 in the coordination of carbon assimila-
tion, pH homeostasis, respiration and photosynthesis
(Nodop et al. 2006).

Slr1759 is a multidomain hybrid histidine kinase
(Fig. 1). Based on its transmembrane segments and a
CHASE (cyclases/histidine kinases associated sensing
extracellular) domain, an extracellular sensory domain,
Slr1759 is predicted to be membrane-anchored. Indeed,
upon subcellular fractionation of Synechocystis sp. PCC
6803 cells Slr1759 was found associated with the cytoplas-
mic membrane consistent with a potential involvement in
pH sensing (Nodop et al. 2006).

Immediately downstream of the CHASE domain
Slr1759 contains two PAS (PER/ARNT/SIM) domains
with adjacent PAC (PAS-associated) domains. PAS
domains are sensors that monitor changes in light, redox
potential, oxygen or small molecules in the cytosol (Taylor
and Zhulin 1999). Downstream of the PAS/PAC domains,
Slr1759 harbours a GAF (cyclic guanosine monophosphate
associated factor) domain that is present in cGMP-speciWc
phosphodiesterases, cyanobacterial adenylate cyclases, for-
mate hydrogen lyase, and the phytochrome photoreceptors
(Martinez et al. 2002).

The C-terminal half comprises a histidine kinase domain
(HisKA) with the conserved histidine residue as predicted
primary phosphoacceptor and the ATP-binding HATPaseC
(histidine kinase-, DNA gyrase B-, phytochrome like-ATP-
ase) domain followed by two putative response regulator
(RR) domains and a histidine phosphotransfer (Hpt)
domain. The two RR might act as alternative acceptor sites,
allowing input from multiple phosphate donors that are
triggered by diVerent stimuli.

Here, we demonstrate that Slr1759 is able to autophos-
phorylate in vitro and has a Xavin cofactor attached to its
Wrst PAS domain. Furthermore, we show that this Xavin is
FAD as it reconstitutes the activity of a D-amino acid oxi-
dase apoprotein. Slr1759 is the Wrst cyanobacterial histidine
kinase for which an association with FAD has been shown
experimentally.

Materials and methods

Bacterial strains and DNA manipulation

E. coli strains DH10B and BL21 (DE3) (Novagen, Madi-
son, WI) were cultivated in LBG (LB + 1 g/L glucose)
medium. Cloning was performed according to standard pro-
cedures (Sambrook et al. 1989). Plasmids, strains, and oli-
gonucleotide primers for PCR ampliWcation with Pwo
polymerase (Roche Applied Science, Munich, Germany)
are listed in Table 1.

Expression and puriWcation of Trx-His6- 
and GST-His6-tagged truncated Slr1759 variants

Recombinant proteins were expressed with the pET vector
system (Novagen, Madison, WI). The fusion proteins carry
either an N-terminal thioredoxin domain (Trx) or N-termi-
nal glutathione S-transferase (GST)-tag for enhanced solu-
bility, and one or two His6-tags (Table 2). PCR-derived
DNA fragments of slr1759 encoding single or multiple
domains of Hik14 were cloned into pET vectors. The integ-
rity of the resulting plasmid constructs was conWrmed by
sequencing. BL21 (DE3) strains harbouring the diVerent
variants were grown in LBG medium supplemented with
150 �g/mL Ap to an OD600 of 0.5–1.0. Protein expression
was induced with 1 mM isopropyl-�-thiogalactoside
(IPTG), and growth was continued for an additional 20 h at
15°C to minimize the formation of insoluble protein. After
harvesting and adding the protease inhibitors PMSF

Fig. 1 Constructs for 
expression of recombinant 
Hik14 protein variants. 
Predicted domain structure of 
Slr1759 based on InterProScan 
(http://www.ebi.ac.uk/Tools/
InterProScan/) (top) and 
truncated Slr1759 derivates 
recombinantly expressed 
in E. coli
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(1 mM), benzamidine (1 mM) and benzonase (0.5 U/mL,
Roche), cells were passed twice through a prechilled
French press (SML Aminco, Urbana, Il) at 137.9 MPa. The
cell-free extract was clariWed by centrifugation for 30 min
at 12,000g. This cleared lysate was subjected to aYnity
puriWcation either on nickel-nitrilotriacetic acid resin (Ni-
NTA; Qiagen, Hilden, Germany) according to the manufac-
ture’s instructions. Slr1759-Var II was puriWed either via its
His6-tag or via its GST-tag on glutathione sepharose resin
(GE Healthcare, Munich, Germany).

[�-32P] ATP autophosphorylation assay

Slr1759 autophosphorylation assays were done as previ-
ously described (McCleary and Zusman 1990; Nishiwaki
et al. 2000). PuriWed recombinant protein was added to the
standard phosphorylation buVer (50 mM Tris-HCl pH 7.5,
100 mM KCl, 2 mM dithiothreitol, and 0.15 mM �-32P
ATP). Reactions were stopped by adding SDS sample
buVer and loaded onto a 10% SDS polyacrylamide gel
(acrylamide:bisacrylamide 121:1). Gels were dried and
scanned on a Typhoon 8000 PhosphorImager (GE Health-
care).

Chemical stability measurements were performed as
described in McCleary and Zusman (1990). Following elec-
troblotting of the gel-separated proteins onto a PVDF mem-
brane, the membrane was incubated in 1 M HCl, 2 M
NaOH, 0.8 M NH2OH pH 6.8 or 50 mM Tris-HCl pH 7.5,
respectively.

Determination of FAD

The identiWcation and quantiWcation of FAD was done by
reconstitution of D-amino acid oxidase (D-Aox) activity.

D-Aox apoprotein was prepared from commercially avail-
able pig kidney D-Aox (Sigma, Munich, Germany). In
order to remove its cofactors, 10 mg lyophilized protein
(30 U) was dissolved in 1 mL 10 mM sodium phosphate
buVer pH 7. Subsequently, 1 mL H2O, 0.7 mL saturated
ammonium sulphate solution and 0.8 mL 0.1 M HCl were
added. After gentle mixing, the assay was centrifuged for
10 min at 25,000g. The FAD-containing supernatant was
discarded and the resulting protein pellet was resuspended
in 1 mL 10 mM sodium phosphate buVer pH 7. The wash-
ing step was repeated once or twice.

To extract the cofactor of Slr1759-Var I (Table 2),
0.2 mL of the aYnity-puriWed protein was mixed with
20 �L 1 M H2SO4 and incubated for 30 min on ice. After
centrifugation for 10 min at 20,000g, the FAD-containing
supernatant was removed and neutralized with 20 �L 2 M
NaOH. This supernatant was used for all subsequent recon-
stitution assays in a Clark-type O2 electrode. The reaction
mixture contained 0.5 mL 0.2 M Tricine-NaOH pH 8,
50 �L of D-Aox apoprotein, and the extract from the
recombinant protein in a total volume of 3 mL. Once the
mixture showed constant oxygen content, the assay was
started by the addition of 0.3 mL 0.1 M D-alanine. A cali-
bration curve was produced using 1–50 �M FAD.

Linear tetrapyrrole binding

Truncated Slr1759 variants harbouring the GAF domain
were tested for the autocatalytic attachment of the linear
tetrapyrroles biliverdin IX� (BV) and phycocyanobilin
(PCB). In order to obtain holoproteins, E. coli BL21 (DE3)
cells were cotransformed with the plasmids Slr1759-Var II,
Var III or Var IV and pAT-BV encoding heme oxygenase 1
from Synechocystis sp. PCC 6803 (for production of BV) or

Table 1 Oligonucleotides used 
to PCR-amplify partial sequenc-
es of slr1759 from Synechocystis 
sp. PCC 6803 genomic DNA for 
subcloning into pET vectors

Primer Protein AmpliWed 
product (bp)

DNA sequence 5� ! 3�

slr1759-F1
slr1759-R7a

Slr1759-Var I 386 TAGCCATGGAAAAAACCGCCCT
AAACCGGCCGTCACTTTCGC

slr1759-F12
slr1759-R12

Slr1759-Var II 2,178 ACCACTAGTCAGGAATTAGCCGTG
ATCCTCGAGAATCCGCCGGT

slr1759-F19
slr1759-R19

Slr1759-Var IV 661 ATCATGGCCAGGAATTCACC
GTCTGGATATCACTGACCGT

Introduced or native restriction 
enzyme sites are underlined

Table 2 Characteristics of truncated Slr1759 variants expressed in E. coli BL21 (DE3)

Protein Tag Amino acids MM (kDa) Domains Solubility/colour

Slr1759-Var I Trx-His6 335–455 32.7 1.PAS-PAC Soluble/yellow

Slr1759-Var II GST-His6 329–1,048 108.7 1.PAS-HATPase_c Soluble/yellow

Slr1759-Var III Trx-His6 581–1,041 71.6 GAF-KinA Soluble/colourless

Slr1759-Var IV Trx-His6 567–781 43.9 GAF Soluble/colourless
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pAT103 (for production of PCB) under control of an IPTG-
inducible Plac promoter as described before (Gambetta and
Lagarias 2001; Tasler et al. 2005). For coexpression, the
medium contained 50 �g/mL Ap and 25 �g/mL Km. Pro-
tein synthesis was induced using 500 �M IPTG to provide
suYcient amounts of recombinant Slr1759 variants and
chromophore. During production and puriWcation of holo-
proteins all steps were carried out under green safelight or
in the dark.

Results and discussion

Recombinant Slr1759 harbours a Xavin cofactor in its Wrst 
PAS domain

To characterize the predicted domains of Slr1759, truncated
recombinant proteins were constructed (Fig. 1; Tables 1, 2)
and expressed in E. coli.

Slr1759 variants either harbouring the two PAS domains
or extending from the Wrst PAS domain to the HATPase
domain, to the GAF domain, or to the response regulator
domains fused to the thioredoxin-tag were recovered in an
insoluble form. The membrane pellets obtained from the cor-
responding E. coli cells showed a prominent yellow colour
(not shown), pointing to the presence of a Xavin cofactor.

When the Trx-tag was exchanged by a GST-tag, the Wrst
PAS domain by itself could be recovered in a soluble form
(Slr1759-Var I). The cleared lysate again showed a yellow
colour, suggesting that a Xavin cofactor is associated with
the PAS domain. The absorption spectrum displayed bands
around 375 and 450 nm which were very similar to the
Xavin reference (Fig. 2). The 450-nm band exhibits a Wne

structure that indicates binding of this Xavin chromophore
to the protein (Kleiner et al. 1999).

The Xavin cofactor is FAD

The identity of the Xavin cofactor (riboXavin, FMN or FAD)
was determined using reconstitution of D-Aox activity that
depends on FAD (Rao et al. 1967; Casalin et al. 1991). Apo-
enzyme from pig kidney D-Aox was incubated with an
acidic extract of aYnity-puriWed Slr1759-Var I, and the O2

consumption during oxidative deamination of D-alanine was
monitored. Since the extract of Slr1759-Var I reconstituted
D-Aox activity of the apoprotein, we conclude that the Wrst
PAS domain of Slr1759 contains FAD. The FAD content of
aYnity-puriWed Slr1759-Var I protein corresponded to 0.11–
0.26 �mol cofactor per 1 �mol protein (Table 3). The FAD
content could not be increased by supplementing the cul-
tures with riboXavin. Therefore, the low ratio of FAD to
PAS domain presumably is due to loss of FAD during the
puriWcation. In fact, some FAD was found in the Xow-
through of the aYnity column that retained the protein.

The amount of FAD in the recombinant protein deter-
mined by the D-Aox apoprotein assay corresponded to the
FAD amount calculated from the absorption spectra using
the molar extinction coeYcient of FAD (� = 11,300
M¡1 cm¡1 at 450 nm). This implies that besides FAD no
FMN is present in Slr1759-Var I.

When the second PAS domain was expressed in E. coli,
FAD was found in the crude lysate but was lost upon fur-
ther puriWcation, suggesting that the second PAS domain
may harbour a loosely bound FAD (not shown).

PAS domains that harbour FAD have been found in the
redox sensing proteins Azotobacter vinelandii NifL and
E. coli Aer; the latter senses O2 indirectly as changes in the
electron transport system. Although not enough PAS
domains have been characterized in suYcient detail to

Fig. 2 Absorption spectra of fractions obtained during puriWcation of
Var I. Native protein of Slr1759-Var I after aYnity puriWcation (con-
tinuous line), cofactor extracted from aYnity-puriWed Slr1759-Var I
protein (dashed line). For comparison, absorption of 10 �M FAD-solu-
tion is shown (dotted line)
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Table 3 FAD content of recombinantly expressed Slr1759-Var I puri-
Wed on Ni2+-NTA

QuantiWcation of FAD was done by reconstitution of D-Aox apopro-
tein activity (see “Materials and methods”). The Slr1759-Var I protein
was recovered in three consecutive fractions E1–E3 from the Ni2+-
NTA column
a The Xavin content of Slr1759-Var I was also determined from the
absorbtion spectrum on the basis of the molar extinction coeYcient for
Xavin. The value was 49 �M. This implies that besides FAD, there is
no FMN in the sample

Sample FAD content Protein content FAD:
protein

pmol/mL �M mg/mL �M

Var I-E1 42.96 12.37 1.54 47a 0.26:1

Var I-E2 27.24 39.23 11.15 340 0.11:1

Var I-E3 40.06 52.38 7.15 220 0.24:1
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correlate cofactor binding with amino acid residues (Hefti
et al. 2004), we note that several residues that based on the
NifL crystal structure contribute to FAD binding are also
found in the Wrst PAS domain of Slr1759 (Key et al. 2007;
Taylor 2007) (Fig. 3). Overall, it shares 31% identity with
the N-terminal PAS domain of NifL and 35% identity with
the Aer PAS domain. In analogy to these, Slr1759 may be
involved in sensing the energy status or changes in the
redox poise within the cell via FAD.

Autophosphorylation of Slr1759

To investigate whether Slr1759 indeed autophosphorylates
at the predicted histidine kinase-like domain, puriWed
Slr1759-Var II, which comprises the predicted histidine
kinase domain linked to the two PAS/PAC domains was
incubated with [�-32P]-ATP. Phoshorylation of the protein
was detected a few minutes after the start of the reaction
and increased up to 45 min (Fig. 4a). To determine the opti-
mal temperature range of the enzyme, the phosphorylation
assay was performed for 30 min at temperatures ranging
from 0 to 60°C (Fig. 4b). The highest level of autophos-
phorylated protein was obtained at 25°C. The amount of
phosphorylated Slr1759 increased with rising concentration
of [�-32P]-ATP substrate with a maximal activity obtained
at 0.6 mM (Fig. 4c). The addition of increasing amounts of
unlabeled ATP decreased the yield of 32P labeled protein
(Fig. 4d).

To obtain information on the phospho-accepting amino
acid, chemical stability of the phosphorylated protein was
tested. The phosphoester bond was stable under basic con-
ditions but labile under acidic conditions, pointing to histi-
dine as phospho-accepting amino acid (Fig. 4e).

The GAF domain of Hik14 does not bind linear tetrapyrrole

GAF domains can bind linear tetrapyrroles via a thioether
bond of a conserved cysteine (Martinez et al. 2002). In
order to investigate whether the GAF domain of Slr1759 is
able to bind a linear tetrapyrrole cofactor, Slr1759-Var III
harbouring the GAF and the histidine kinase domain and
Slr1759-Var IV harbouring only the GAF domain were
expressed in pigment-producing E. coli cells and subjected
to a spectrophotometric analysis. Neither Slr1759-Var III

nor Slr1759-Var IV showed a change in absorbance when
coexpressed with the pigment biosynthesis genes (data not
shown). Therefore, it seems unlikely that the GAF domain
of Slr1759 binds linear tetrapyrrole(s). In line with this, no
change in the red–far-red diVerence spectrum could be
recorded in crude lysate or in solutions containing the par-
tially-puriWed protein, not even when supplementary bili-
verdin or phycocyanobilin were added (data not shown). In
a phylogenetic tree of all GAF domains of Synechocystis,

Fig. 3 Alignment of the Wrst PAS domain of Slr1759 upon the
FAD-binding PAS domains of Azotobacter vinelandii NifL and E. coli
Aer. The alignment was performed using the ClustalW software
(http://www.ebi.ac.uk/Tools/clustalw2/index.html). Asterisks indicate

residues identical between Slr1759 and NifL (top) and between
Slr1759 and Aer (bottom), respectively. Conserved Asn, Trp and Tyr
residues implicated in FAD binding (Key et al. 2007; Taylor 2007) are
in bold

* * *         *   *   *     *         *  * * *    *              *   *                *     * *   *   *       * *   *         *  *  *   *       *          * *             * *
ISITDLKANILYANRAFRTITGYGSEEVLGKNESILSNGTTPRLVYQALWGRLAQKKPWSGVLVNRRKDKTLYLAELTVAPVLNEAGETIYYLG-MHRDTS NifLISITDLKANILYANRAFRTITGYGSEEVLGKNESILSNGTTPRLVYQALWGRLAQKKPWSGVLVNRRKDKTLYLAELTVAPVLNEAGETIYYLG MHRDTS NifL
VAITDTEGVITYVNDKFVEVSGYSREELIGNTHRLVSSGYHSPEFFQQFWQTIRAGKVWHGQINNRAKAGNTYWVDSTVVPFLDDNGNPYQYLAIRFEITS  Slr1759
MSTTDLQSYITHANDTFVQVSGYTLQELQGQPHNMVRHPDMPKAAFADMWFTLKKGEPWSGIVKNRRKNGDHYWVRANAVPMVRE-GKISGYMSIRTRATD  Aer

* *         * *     * *  * *   * * * *      * *   *     * *                    *        *   *       *      *   *       * *   *  *     *  * *         * *           *          *       * *

Fig. 4 Autophosphorylation activity of Slr1759. Recombinant
Slr1759-Var II was incubated with [�-32P] ATP under the conditions
indicated. a Time course: aliquots were withdrawn at the time points
indicated. b Temperature dependence of histidine kinase activity.
Incubation was performed for 30 min at the temperatures indicated.
c Dependence of phosphorylation activity on [�-32P] ATP concentra-
tion. d Competition by unlabelled ATP. Increasing concentrations of
unlabelled ATP were added to the assay mixture containing 0.15 mM
[�-32P] ATP. e Chemical stability of the phospho-modiWed amino acid
residue. The gel-separated phosphorylation products were transferred
onto a PVDF membrane and subjected to treatment with the chemicals
as indicated. NT no treatment. To resolve the phosphorylated product
on polyacrylamide gels, it was necessary to use a low degree of cross-
linking. The phosphorylated product merely entered standard gels,
perhaps due to the formation of higher molecular weight adducts upon
phosphorylation
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Slr1759 clusters together with Hik4 (Sll1228) and Hik26
(Slr0484) which have not yet been investigated for tetrapyr-
role binding (Ikeuchi and Ishizuka 2008).

Conclusion

Proteins with complex domain structures linking multiple
sensory domains are prevalent in cyanobacterial genomes,
presumably reXecting the need to mediate their numerous
responses to a suite of environmental cues in the respective
habitats. The multiple sensory domains of Slr1759 may
enable this hybrid histidine kinase to perceive diVerent
input stimuli via its cognate cofactors.

Interestingly, a correlation between the number of PAS
domains and the number of proteins participating in elec-
tron transport reactions has been noted in bacterial genomes
(Zhulin and Taylor 1998). Synechocystis sp. PCC 6803
with its photosynthetic and respiratory electron transport
chains has 17 PAS-containing proteins with a total of 47
PAS domains, while the heterotrophic Helicobacter pylori
with its simple electron transport chain has no PAS domain
proteins at all (Zhulin and Taylor 1998). Our Wndings that
Slr1759 has an FAD attached to its Wrst PAS domain may
point to an involvement of this hybrid histidine kinase in
redox perception related to the coordination of photosyn-
thetic and respiratory activity.
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