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Chapter 1

General Introduction

My thesis is divided into four parts. I start with surveying basic facets and differences

of orthodox and evolutionary game theory which provide the methodological tools

of use. After this, I clarify the meaning of the concept of “individual preferences”

and explain the indirect evolutionary approach and its specific use in this thesis.

The remaining three chapters comprise three self-contained essays yet connected by

the same topic of indirect evolution of individual preferences in economic contexts.

1.1 Orthodox and Evolutionary Game Theory

Game theory is the mathematical analysis of interdependent decisions and outcomes,

in the sense that those who make decisions are affected by their own choices and

by the choices of others. In terms of game theory, a game is a strategic situation

in which two or more players interact with each other by choosing strategies from a

bundle of alternatives which calculate their payoffs or utilities. Accordingly, a game

can completely be represented by the triple G = (players, strategies, payoffs). Typ-

ically, such a triple represents a game in normal (or strategic) form where the players
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choose their strategies simultaneously.1

The interpretation of a game may differ with respect to peculiarities of the model

under consideration. For example, in one setting, the underlying model describes

an industry structure where players are firms which compete with each other by ad-

justing their decisions on the amount of output they will produce—or, firms adjust

their decisions on the prices of the goods they sell. In a different class of games,

one might think of players as fishermen who exploit an inshore fishery resource by

adjusting their fishing efforts. In the case that players put too much effort in the

game, the stock of fish is reduced to a level where it can hardly be recovered. But in

the case that players put too little effort in the game, they relatively fail by losing

profit comparing with their fisher colleagues. So, the difficulty of the fishermen is

to adjust their inputs by reasoning on the fisher colleague’s inputs and the recov-

ering rate of the fish stock. Of course, the situation of the fishermen is basically

a metaphor and can easily be transferred to the fundamental problems of modern

times like the environmental disasters or financial crises. This thesis explicitly and

implicitly attends to the mentioned (and other) sorts of problems by assuming in-

terdependent success in the manner of the material payoffs as given in the first two

essays.

In a different setting, the players are, for example, politicians who invest high

efforts or money to get elected at the next election. The particular investment is

the result of an evaluation process which integrates both the winning probability as

an increasing function of own input and the loss of investment. In a comparable

strategic setting, one might think of companies which invest in research and develop-

ment (R&D) since they may benefit from introducing a new product first by earning

some monopoly rent before a competitor enters the market with a similar product.

These strategic considerations describe just two specific examples of a broad class of
1My thesis focuses on simultaneous decisions. If one wants to explicitly account for a time (or

sequential) structure within the decision period, i.e. player A knows the decision of player B before
player A makes his decision, one should model games in extensive form.
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games known as “contests” where players make irrecoverable investments in order

to influence the probability of winning a certain price. The last essay of this thesis

deals with such strategic settings.

A standard analytical procedure of orthodox game theory (henceforth OGT) is

the usage of a Nash equilibrium to examine players’ strategic choices in social life.

A Nash equilibrium describes a profile of chosen strategies where no player benefits

from unilaterally changing the chosen strategy since it is a best response given the

other players’ strategies.2 However, a Nash equilibrium does not necessarily imply

that corresponding payoffs are optimal. For example, by standard assumptions of

the well-known prisoners’ dilemma, where players can behave either cooperatively or

non-cooperatively, “defection” (behaving non-cooperatively) is a Nash equilibrium

but yields suboptimal payoffs. In games with a unique Nash equilibrium, one can

rightly argue that Nash’s concept is a powerful analytical tool to calculate the ac-

tions of a game and subsequent outcomes if the players are full-fledged individuals

who know all the details of the game and their opponents and use these details to

assess their decisions. However, as the previous sentence suggests, there are two

apparent shortcomings of the Nash equilibrium concept.

First, there are sometimes many equilibria in a game that accord to the charac-

teristics of Nash’s concept. The emergence of more than one equilibrium raises the

question of which one will actually arise in a certain conflict. The existence of more

than one Nash equilibrium in games has led research in non-cooperative game theory

to develop refinement concepts which give the equilibria a stronger justification for

evaluating players’ strategies and subsequent outcomes (most exemplary is Reinhard

Selten’s concept of “trembling hand” where players play “off-the-equilibrium” with

a small probability). The attempts which aim at finding Nash’s refinements have

guided to a vast number of concepts which justifies nearly any Nash equilibrium by
2By extending John von Neumann and Oskar Morgenstern’s (1944) pioneering work on game

theory, John Forbes Nash, Jr., (1950) conceived the notion of the equilibrium concept which bears
his name and which has revolutionized game theory and economics.
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the one or other interpretation of the particular game standards like the cognitive

abilities of the players.

Second, standard requirements of the Nash equilibrium concept and many of its

refinements include a perfect, common-knowledge rationality of the players. More

precisely, the players are rational in the sense that they take all available infor-

mation into consideration and choose actions that maximize their expected payoffs

given that the other players are informed and act in the same way (which makes

common-knowledge rationality implies that all players are perfectly rational in the

same sense which subsumes, inter alia, that they know this fact). This is obviously

a very strong postulate which has provoked many researchers to reconsider the use-

fulness of this assumption and to think of alternative approaches.

As a sidestep, experimental research has shown that humans do not act accord-

ing to predictions of the strong assumptions on rationality, but rather to simple

decision rules which are, for example, inferences from learning processes in real-life

situations.3 Apart from game theory, the existence of “limited agents” is not new in

economic research. For example, Gérard Debreu (1959, p. 37) implicitely accounts

for “imperfect” agents by writing in his fundamental “Theory of Value”: “an agent

is characterized by the limitations on his choice, and by his choice criterion”. In

other words, it is the individual opportunities that count. As soon as the experi-

mental research programs manifest these findings, the rather static solutions of OGT

obtained by calculating the behavior of perfect rational individuals have appeared

to be fairly unrealistic. With these insights, equilibria are no longer necessarily

considered as designated profiles in one-shot games which appear from the synthetic

postulate of rational agents, but rather as the result of bounded rational players who

play the same strategic situation over and over. This modified economic thought is

represented by a relatively new branch of economic research which has its roots in
3Cf. Camerer (2003) for an overview. Gigerenzer and Selten (2001) use the metaphor of an

“adaptive toolbox” to explain that decision makers are equipped with a certain bundle of strategies
and that adaptive decision making arises from choosing from this particular bundle.
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theoretical biology and the Darwinian ‘survival of the fittest’ doctrine.

Starting with John Maynard Smith and Georg R. Price’s solution concept of an

evolutionarily stable strategy (ESS)4 in 1973 and, more rigorously, with the publica-

tion of John Maynard Smith’s book “Evolution and the Theory of Games” in 1982,

evolutionary game theory (henceforth EGT) has effected to attract the attention

of many economists who doubt the classical concept of rational agents to examine

human behavior in different strategic settings. Although EGT has its roots in bi-

ology, it is not defective that EGT has become of intensified interest to economics

and social sciences in general.5 This is because ‘evolution’ as processed by EGT is

not necessarily biological evolution in the sense of gene transmission. Instead, ‘evo-

lution’ may rely on cultural processes where values like conventions, norms, beliefs,

or ideologies are shaped over rather short lengths of time.

The recent development of EGT is not only substantiated by biology but also by

traditional economic game theory though. Foremost, it is by now well understood

that Nash already had a dynamical population model in mind when developing his

equilibrium concept. Likewise, Reinhard Selten’s trembling hand concept opened the

door for discovering the realm of bounded rational decision makers. This indicates

that EGT is clearly a continuation of OGT which highlights the dynamical aspects

of equilibrium selection and declines the necessity of “hyperrationality”. Moreover,

the fusion of evolutionary theory and economic theory has not come as a surprise

since both fields use game theory as an analytical tool to sketch interdependence

extensively. In fact, interestingly and somewhat ironically, as traditional game the-

ory appears maybe more suited in biology where the players are either species or

genes,6 the recent approaches of EGT appear to be approximately suited to the field
4Roughly, an ESS is an incumbent strategy in a society (“population”) that cannot be replaced

by a rare mutant strategy under the influence of evolutionary pressure.
5Beside economics, EGT plays an increasing role in psychology, anthropology, sociology, as well

as in philosophy to name the main areas only.
6In the preface of Maynard-Smith (1982), he writes: “Paradoxically, it has turned out that

game theory is more readily applied to biology than to the field of economic behavior for which it
was originally designed.”
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of behavioral economics as for evolutionary theory in the literal sense. Primarily,

this is because economic agents are humans (or, e.g., companies which are driven by

humans) who (which) are not as perfect as OGT suggests. Precisely, the advantage

of EGT is that it is modest in comparison with the rationality postulate of OGT

since it assumes agents to optimize behavior on a dynamic route of trial and error

processes without requiring the agents to be rational at all.

1.2 Individual Preferences

Traditional economic science has built upon assumptions of homo economicus, or

economic man, a rational and purely self-interested economic subject. However,

there is a growing body of evidence in different research disciplines such as psychol-

ogy, sociology, or economics that reveal the limitation of models with such assump-

tions. People often fail to maximize their own economic objectives because human

choices are not only driven by material self-interest but also by “moral sentiments”

or social norms like sympathy, compassion, guilt, or reciprocity. Many experimental

studies in economics reveal that decision makers do not act as predicted by models

of homo economicus. For example, consider the ultimatum game. The ultimatum

game is one of the most intensively studied research subjects in behavioral eco-

nomics. This is because it is simple and it is immediate to gain some insight into

the economic psychology of behavior. It works as follows. There are two parties

who have to agree on a fixed amount of money or other goods, say 100 units. The

first mover has to make an offer δ ∈ [0, 100] to the second mover who either accepts

or rejects the offer. In the case of accepting the proposer gains (100− δ) and the

responder gets δ, while in the case of rejecting the game ends with zero payoffs for

both parties. A relatively robust result throughout the experimental studies is that

if δ is less than 30 (the proposer offers less than 30% of the pie), rejection is the

usual consequence (cf. Güth et al., 1982; Camerer and Thaler, 1995; Roth, 1995,
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and references therein). In addition, a large fraction of players make “fair” offers

where both players get approximately the same. However, this is quite contrary

to what orthodox equilibrium theory predicts: the unique subgame perfect Nash

equilibrium is given by (δ = 0, accept). A similar situation, which is even simpler

than the ultimatum game, is known as the dictator game. A dictator divides an

amount of money or other goods between himself and the receiver. Robust results

can be summarized as follows. About 80% of the offers (the part which the receiver

gets) are between zero and half of the pie. Roughly 20% offer zero, and offers larger

than half of the pie are nearly never observed. Again, the usual behavior is far from

“economic man” who does not make gifts without return (cf. Hoffman et al., 1996;

Eckel and Grossman, 1998).

The crucial question is then what are the engines driving such behavior? Under-

standing the motivations of people is important because they determine the course

of action which creates our social and economic world. This is where the conception

of individual preferences is taken into consideration. In many studies, individual

preferences are equivalent to social (or other-regarding) preferences where economic

actors are concerned with the well-being of others as well as their own well-being

(cf. Sobel, 2005, and the references therein for a recent development). In other stud-

ies, individual preferences include motivations that depart from models of homo

economicus in that people have feelings of overconfidence, seek a high reputation,

follow different ideologies, or are “economic irrational” for other reasons. A main

field of individual preferences in the present thesis deals with social preferences

where individuals take others’ payoffs into consideration. In this realm, people are

said to have “interdependent preferences” if they care about others’ payoffs. An

individual has positively (negatively) interdependent preferences if the payoff of

others’ positively (negatively) enters his utility. In contrast, an individual has in-

dependent preferences if his utility does not depend on others’ payoff. In models

comprising this kind of interdependence to explain certain behavior, it is usual to

refer to positively (negatively) interdependent preferences as altruism (envy) and
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to independent preferences as egoism. Since these notions play a central part in

the following chapters, and there exist no definitions that are generally accepted in

all scientific fields where interdependent (social) preferences appear,7 it is necessary

to explain how they should be understood in the present thesis. Firstly, if I write

about social preferences, I will do so on the fundament of a trivial truism, namely

that all people, whether endowed with altruistic, egoistic, or envious feelings, want

to satisfy their own desire. For example, the altruist wants to help others and the

envious person is maybe willing to harm others just to satisfy his feeling of not

being envious anymore. If they engage in a game and if they have more than just

one choice, both types will surely choose those actions that will maximize their own

well-being (at the best of their knowledge). From this point of view, one can think

of the whole world only consisting of fundamental egoists. However, in this thesis,

it is a different level where the “evolution of preferences” happens. The fact that it

is me who wants something is banal and not really worthwhile to think about; the

essential point is what is it what I want. In other words, it is the content of our

desires which defines what type of person we are. Secondly, social preferences are

“intrinsic” motivated values which are subjective in the sense that only the person

who owns that value is in the position to judge it. For example, an altruist seeks

merely for a “warm glow” whose only utility he achieves stems from the act of giving

(cf. Andreoni, 1990). An envious person does not explicitely strive for higher own

payoffs but only for a subjective better feeling he gains from an improved relative

standing in society. In contrast, “extrinsic” motivated values are objective in the

sense of intersubjective measurable (e.g. the players strive for more money in eco-

nomic contexts). A third point is that a person is not only altruistic, selfish, or

envious but features all preferences. The specific circumstances of a strategic situ-
7For example, in evolutionary sociology and biology it is partly agreed to think about altruism

as a trait which is essentially reciprocal in the sense that the evolutionary players anticipate
(consciously or unconsciously) to gain from their “goodwill” in certain payoffs they expect from
future conflicts, cf. Trivers (1971). In other studies it is common to think about altruism as a trait
which does not claim for future benefits in the reciprocal sense, cf. Fehr and Fischbacher (2002).
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ation (a game) develop the individual preferences’ which determine the behavioral

consequences and subsequent outcomes. In fact, addressing this issue will be an

essential point in this thesis.

Beside the dimension of altruism (where envy is the negative part) there are

two other dimensions of individual preferences that appear in this thesis: strong

reciprocity and self-confidence. Reciprocity describes people’s tendency to reward

perceived kindness and to punish perceived unkindness. The adjective “strong” ex-

presses the intrinsic value of reciprocity. In particular, strong reciprocity refers to

the conception that people act reciprocal in order to satisfy their subjective fair-

ness emotions and not to expect higher economic revenues in the future (cf. Gintis,

2000). The dimension of self-confidence varies from strong underconfidence to strong

overconfidence. People are underconfident (overconfident) when they undervalue

(overvalue) their own ability in certain situations (cf. Ando, 2004). The foregoing

sentences describe how these psychological concepts should be understood in this

thesis, however, the exact meanings of these concepts are both fully described and

only palpable with the mathematical precision given by the well-being functionals

of the three essays.

1.3 Indirect Evolutionary Approach

The indirect evolutionary approach is the central tool for exploring individual pref-

erences in economic contexts in the thesis at hand. The methodology is applied

in all essays of this thesis and further illustrated there—however, by virtue of its

relevance, I give a brief introduction in this section. The indirect evolutionary ap-

proach combines traditional assumptions of economic decision making, as in OGT,

with evolutionary processes resulting from EGT. In particular, it states that people

behave rationally according to the subjective preferences they own but the success of

these preferences are measured by evolution. The immense benefit of this approach
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is that it allows the researcher to endogenize certain preferences in different contexts

instead of just assuming them as given. Hence, indirect evolution seems to be more

sophisticated than the usual direct approach (where a type is pre-programmed to

play a certain strategy)8 since subjective motivations initiate actions, and hence,

constitute the more profound basic of economic decision making. There are some

precursors of this approach (e.g. Becker, 1976), but subsequent research on individ-

ual preferences using indirect evolution stems from the methodological frame and

pioneering work of Werner Güth and Menahem Yaari and their analysis on reci-

procity in ultimatum bargaining in 1992. Seminal studies which use this approach

are, among others, Bester and Güth (1998); Possajennikov (2000); Heifetz et al.

(2007a); Leininger (2009).

There seems to be some agreement about the exact way of using the approach

of indirect evolution which is considered in most of the corresponding studies: first,

the individuals play a Nash equilibrium according to their subjective preferences.

Second, the particular Nash equilibrium play is then inserted into an objective pay-

off function which measures the fitness of the subjective preferences of the players.

Third, the ESS conception is then employed in order to derive stable biases from

the created objective function. On the one hand it is comprehensible that the most

famos solution concept of EGT is used to rationalize certain “economic irrational”

behavior by certain preferences but on the other hand there are some apparent

shortcomings of ESS in some cases which seem to be somewhat unvalued in the

literature of indirect evolution. Foremost, ESS is a static concept which helps ex-

plain whether a somehow reached population state is immune to rare mutations but

says only little about the evolving to such a state. In addition, Oechssler and Riedel

(2001, 2002) show that ESS is an insufficient concept for the purpose of studying dy-

namic stability (which referes to the question whether any sufficiently small change

of a population is such that the new population stays close and/or converges to the

former population) of the replicator dynamics (where the reproductive success of a
8Cf. Weibull (1995) for a standard textbook treatment.
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certain strategy is measured by the difference between the payoff of that strategy

and the population average payoff) if the underlying strategy space is continuous.

Since it is natural to assume that people perceive individual preferences from a

continuum and that the biological replicator dynamics shape these preferences, it

is worth considering alternative evolutionary concepts. In respect thereof, the first

two essays of this thesis deal with solution concepts, in particular refinements of

ESS, which appears more suited to the field of preference evolution. The last essay

uses ESS for finite populations on the preference level—a concept from EGT which

should not necessarily be seen as a refinement of Nash’s equilibrium concept (cf.

Schaffer, 1988).
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Chapter 2

Altruism and Envy Revisited: On
Evolutionary Stability with a
One-dimensional Continuum

Bester and Güth [Journal of Economic Behavior and Organization 34, 1998, 193-

209] take advantage of the “indirect evolutionary approach” and the evolutionary

solution concept of an Evolutionarily Stable Strategy/State (ESS) to explain the evo-

lutionary causality of altruism. However, ESS says only little about the evolving to

such a state and becomes insufficient for dynamic stability with respect to the repli-

cator dynamics if the underlying strategy space is continuous. We build on this

work by allowing envy and adopting alternative solution concepts, namely Continu-

ously Stable Strategy (CSS), Neighborhood Invader Strategy (NIS), and Evolutionary

Robustness (E R). These concepts are much in line with the one-dimensional, con-

tinuous frame of opposed preferences competing with respect to the topology of weak

convergence. The evolutionary qualities of altruism and envy are determined by the

strategic environment. Moreover, we introduce an alternative definition of altruism

and envy and show that the existence of a sophisticated perception of co-players’

well-being is immediately negligible with respect to the evolutionary fitness of that

preference.
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2.1 Introduction

A traditional assumption in economics is that agents are profit maximizers (ego-

ists). However, this view is at odds with real life evidence and results of numerous

economic experiments in several social settings. The behavior that individuals of-

ten show rather reflect so-called “other-regarding preferences”; for a comprehensive

overview of this subject, see Fehr and Fischbacher (2003), and also Sobel (2005),

along with the references therein.1 Those findings that are so contradictory to the

traditional matter of a homo economicus, whose adherent preference structure is

purely determined by economic profit, have induced many researchers to consider

altruistic and envious preferences, henceforth treated as endogenous features of a

game.2 An expedient technique in evolutionary game theory for exploring the evolu-

tionary fitness of such intrinsic motivated values is given by the approach of indirect

evolution, initiated by Güth and Yaari (1992). Given indirect evolution, the players

maximize their perceived payoffs, i.e. their subjective preferences, with a strategic

behavior that determines the objective game payoffs which, in turn, represent the

evolutionary fitnesses. In this vein, one is able to draw conclusions for the evolu-

tionary fitnesses of the underlying preferences in an indirect way.

Bester and Güth (1998) take advantage of this method to study the evolutionary

fitness of altruism in symmetric 2-person games. In their work, altruism is identified

by subjective preference functions that formulate the true well-being of the players

by an individually weighted convex combination of own and opponents economic
1The overall aim of an egoist is supposed to be profit maximization in an economic sense

(e.g. more monetary profit is better). Of course, one can think of an egoist by definition whose
motivation is independent of the underlying utility since any motivations are always personal in
the end. But this approach would only lead into trouble with the terminology of egoism (e.g. one
has to think of altruistic egoists or egoistic egoists) and would apparently effect no extra gain for
the analysis of the “evolution of preferences”.

2For a wider discussion of envy in economics see Mui (1995) and the references therein. The
study of altruism in economics is much more present in existing literature; see, e.g., the cardinal
work of Becker (1976). For further models that endogenize certain preferences like fairness, status-
concern, overconfidence, reciprocity, and morality, see, among others, Huck and Oechssler (1999),
Fershtman and Weiss (1998), Kyle and Wang (1997), Guttman (2000), and Güth and Ockenfels
(2005).
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profit. They show that a key relation is given by the influence of altruism on the

equilibrium actions of the co-players. Bester and Güth call this implication the

strategic effect of altruism. The basic prerequisite to the validity of this effect is

that preferences are (at least partially) observable, see also Güth and Peleg (2001),

Ely and Yilankaya (2001), Ok and Vega-Redondo (2001), Heifetz et al. (2007b),

and Dekel et al. (2007) for the necessity of common knowledge of preferences. The

basic findings in these papers are that other-regarding preferences are evolutionarily

viable in perfect common knowledge games and intermediate cases (e.g. the players

know the distribution of preferences in the population so that they can expect a

preference with a certain probability) but not in private information games. Follow-

ing Bester and Güth, we will stick to the assumption that preferences are common

knowledge in a perfect sense. Then, depending on the specific type of strategic game

externality, the strategic effect points out that possessing altruistic preferences can

either be harmful or profitable.3

The central issue of Bester and Güth enters into the question of the required

circumstances for the evolutionary causality of altruism. Put differently: Why does

altruism exist from an evolutionary point of view? The finding is that altruism is

evolutionarily stable in the sense of an evolutionarily stable strategy (ESS) (Maynard-

Smith and Price, 1973), i.e. an incumbent strategy that cannot be replaced by a rare

mutant strategy under the influence of evolutionary pressure, if the game exhibits

strategic complements. Otherwise, if the game exhibits strategic substitutes, only the

single egoistic preference is ESS.4

Possajennikov (2000) and Bolle (2000) adopt the basic model of Bester and Güth

but enlarge the space of available preferences by allowing the opposite of altruism,
3Of course, the strategic effect is relevant to any other-regarding preferences and not confined

to altruism. Heifetz et al. (2007b) show very broadly that the strategic (or indirect) effect of
other-regarding preferences, that influence the behavior of others in a certain manner, is generally
quite stronger than the direct effect that naturally reduces one’s own profit.

4Beside the basic finding, Bester and Güth identify two further interesting facts. Firstly, a
population full of altruists is more successful than a population full of egoists; and secondly,
concerning a game played by two different individuals, the less altruistic person is more successful.
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which is referred to as “spite” in Possajennikov and “envy” in Bolle.5 Both authors

imply the ESS-concept as well to examine the evolutionary viability of those pref-

erences. With the enlargement of the preference space, the egoistic preference does

no longer comply with the requirements of ESS; instead, in the case of strategic

substitutes, an envious preference does.

One major reason why the concept of ESS has reached such popularity is due

to the fact that the requirements of ESS are sufficient for asymptotic stability with

respect to the well-known replicator dynamics of Taylor and Jonker (1978), where

players choose from a finite number of pure strategies. However, Oechssler and

Riedel (2001) show that this fact is no longer necessarily true if the available strat-

egy space becomes continuous. Even the stronger requirements of a strict Nash

equilibrium are no longer sufficient to guarantee dynamic stability with respect to

the replicator dynamics. Thus, following the probably most natural assumptions

that preferences are available from a compact continuum and that a final popula-

tion composition is unconsciously reached through evolutionary selection (as in the

replicator dynamics) and not through rational decision making guides to the striking

fact that stronger stability concepts than ESS are needed.

If one deals with dynamic stability and/or convergence in infinite strategy games,

one has to think about the choice of the appropriate topology on the space of prob-

ability measures (which are the populations). The key question in this respect is:

When is a population evolutionarily close to another population? In the discrete

case, the choice of the appropriate topology is out of the question since two popu-

lations are always in Euclidean distance of each other. However, there are different

alternatives of closeness in the continuous case. Two major options are framed by

the strong topology (which is equal to the variational norm) on the one hand, and by
5We will refer to “envy” in this respect, partly for the sake of convenience. Also, we refrain from

a broad psychological or philosophical debate about the opposite of altruism because we believe
that the constraints of the model at hand allow for a wider range of terminologies. Thus, whenever
the term “envy” arises, the field-equivalent is “spite” in Possajennikov (2000) and remains “envy”
in Bolle (2000).
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the weak topology on the other hand. There are several arguments for both choices.6

The present paper is mainly engaged in the weak topology. Primarily, because the

weak topology respects the natural resemblance of slightly different preferences.7

In our setting, closeness is then certain in both evolutionary incidents: A large

preference-shift by a sufficiently small fraction of the population and a sufficiently

small preference-shift by a large fraction of the population.

Whilst the former happening is much in line with ESS the latter is more con-

sistent with the attributes of a Continuously Stable Strategy (CSS, introduced by

Eshel and Motro, 1981; Eshel, 1983) and a Neighborhood Invader Strategy (NIS, in-

troduced by Apaloo, 1997). A CSS includes ESS and states that a sufficiently small

homogeneous population-change from the ESS is such that strategies closer to the

ESS are fitter than the new population strategy. A NIS is a strategy that is able

to invade any sufficiently close, homogeneous neighbor via a higher fitness. From

this perspective, the strong concept of Evolutionary Robustness (E R, introduced by

Oechssler and Riedel, 2002) unifies these approaches in the weak topology. A popu-

lation is E R if it gains a higher than average payoff against all possible populations

that are close in the weak topology. Our basic intention is to apply these concepts

to the Bester/Güth game (or rather to an extended version in the sense of Bolle and

Possajennikov). We find that the equilibrium preference satisfies the supplementary

requirements.

The paper is organized as follows. The next section deals with the relevance of

the finite and continuous strategy space concerning the replicator dynamics, the is-

sue of a suitable topology, and gives a detailed presentation of the different stability

concepts under study. In section 2.3, we review how indirect evolution of preferences

works. Section 2.4 then introduces the basic evolutionary game and applies it to

the stability concepts. Section 2.5 deals with what we call “sophisticated-perceptive
6For a detailed presentation and discussion, see Oechssler and Riedel (2001, 2002).
7This is because the corresponding distribution functions of the populations are then close to

each other. See section 2.2 for details.
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preferences” which extend other-regarding preferences in the sense that the play-

ers’ take the real well-being, i.e. the subjective preferences, of others into account

and not just the other players’ economic profits. The main finding here is that

the existence of such preferences is immediately negligible regarding the indirect

evolutionary analysis. Finally, conclusions are drawn in section 2.6.

2.2 The Evolutionary Conception
The dynamics of evolutionary systems where the players choose their strategies from

a continuous set are widely studied in the adaptive (or strategy) dynamics approach

which follows the simplifying assumption that each population is homogeneous in the

strategy choice and remains so during the course of evolution (cf. Marrow et al., 1996;

Abrams, 2001). If one drops this simplifying assumption and considers a dynamical

system where the aggregate play of a population is described by a distribution on

the strategy space then one reaches (e.g.) the replicator dynamics with a continuous

strategy space. It is the latter approach and the relevance of CSS, NIS, and E R

which we mainly focus on; however, these concepts also give some insight regarding

the adaptive dynamics approach. But first, we review the ESS concept and the

replicator dynamics in the standard finite strategy space.

2.2.1 Finite Strategy Space

The most popular solution concept used in evolutionary game theory is known as

ESS, which has been introduced by the biologists Maynard-Smith and Price (1973)

for 2-person normal form games. To examine ESS, suppose that evolutionary fitness

(or reproductive success) is defined by an individual’s payoff resulting from evolu-

tionary agents repeatedly drawn at random from one large population competing

in pairwise contests. If all members of this population play an ESS, say x∗, then

a small injection of mutants exerting any (pure or mixed) deviant strategy x 6= x∗
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is initially less successful than the incumbent strategy x∗ and will eventually dis-

appear. The exact impact of ESS, for evolutionarily stable strategy, is given by the

following two well-known conditions.

x∗ is ESS iff, for all x 6= x∗, the equilibrium condition

(i) π(x∗, x∗) > π(x, x∗)

or, in the case of equity, the stability condition

(ii) π(x∗, x∗) = π(x, x∗), π(x, x) < π(x∗, x)

holds.

Note that π(x, x̂) is the payoff of the first player with strategy x in a game with

a second player playing strategy x̂.

The basic aim of ESS is to conceptualize requirements that capture the idea of a

stable population-strategy by avoiding calculations of the complicated dynamics that

are naturally entailed by evolutionary selection processes. Hence, the evolutionary

quality of ESS is static in the sense that ESS does not explain how a population

reaches an evolutionarily stable equilibrium state, but regards the question whether

a population, having reached such a state, is apt to prevent alternative strategies,

in sufficiently low frequency, from invading.

The fundamental dynamical conception of evolutionary game theory outlines evo-

lutionary selection via the replicator dynamics (see Taylor and Jonker, 1978), deter-

mined by the system of ordinary differential equations (also known as the replicator

equation),

ṗi(t) = [π(ei, P (t))− π(P (t), P (t))]pi(t), (2.1)

with a dot “·” symbolizing the derivative with respect to time t. For finite-strategy

games, the population state at moment t is given by the finite-dimensional vector

P (t) = (p1(t), ..., pn(t)) where pi(t) is the proportion of the players using pure strat-

egy ei at that instant, such that ∑ pi(t) = 1 and pi(t) ≥ 0 hold true. The expected

payoff of an individual with strategy-type i is π(ei, P (t)) = ∑n
j=1 π (ei, ej) pj (t)
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and the average payoff of the population (known as the population fitness which

is mathematically equal to the expected payoff of a randomly chosen individual)

is π(P (t), P (t)) = ∑n
j=1 π (ej, P (t)) pj (t). Thus, from Eq. (2.1), the principle of

the replicator dynamics is to benefit strategies that are above population fitness by

spreading with a rate that is proportional to resulting fitness and to diminish those

with a lower than average fitness in the same way.

There is an important link between ESS and dynamic stability of the finite repli-

cator dynamics which brings the two basic properties of evolutionary selection pro-

cesses, namely mutation (ESS) and selection (the replicator dynamics), together.

The link is sufficiently clarified in an unambiguous manner: ESS is sufficient (though

not necessary) for asymptotic stability8 with respect to the replicator dynamics in

population games with finite strategy set S = {1, ..., n}, also known asmatrix-games,

in which the distance of two populations is given in the natural Euclidean space (cf.

Hofbauer et al., 1979).

2.2.2 Continuous Strategy Space and the Issue of Closeness

However, proving dynamic stability with respect to continuous strategy spaces is

more challenging. Following the standard formulations in this regard, a population

is described by a probability measure P and identified with the aggregate play of

its members on the measure space (S,B) where B denotes the Borel σ-algebra on

the compact metric space of feasible strategies, S = [s, s].

π : S × S → R is assumed to be a bounded and Borel measureable payoff (or

fitness) function. By virtue of compactness of S, the simplex ∆ (S) is compact and

metrizable (Oechssler and Riedel, 2002), and locates all populations on S. In this

setting, a slightly different notation of ESS, for Evolutionarily Stable State, is more
8Intuitively, a population state P is asymptotically stable if any sufficiently small change of

the population composition results in a back drift toward P . A formal description of asymptotic
stability (and the weaker criterion of Lyapunov stability) is given with Definition 2.2 below.
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functional.

Definition 2.1. A population P is called an evolutionarily stable state (ESS) if for

“mutation” Q, there is an invasion barrier ε(Q) > 0 such that for all 0 < η ≤ ε

E(P, (1− η)P + ηQ) > E(Q, (1− η)P + ηQ). (2.2)

Note that E(P, P̂ ) is the average payoff of population P against the rival popu-

lation P̂ .

Strategies are now typically confined to pureness such that a personal mixed

strategy “converts” to a heterogeneous population state, i.e. at least two differ-

ent strategies are present in the population.9 In this setting, ESSs are no longer

necessarily asymptotically stable in the continuous replicator dynamics, given by

Ṗ (t)(A) =
∫
A
σ(x, P (t))P (t)(dx), (2.3)

with arbitrary subset A ∈ B of S. If A describes a single point on the real line,

then we have the standard replicator dynamics with a finite strategy space. The

differential fitness of pure strategy x playing against population P is now given by

σ(x, P (t)) : = E(δx, P (t))− E(P (t), P (t))

=
∫
S
π(x, y)P (t)(dy)−

∫
S

∫
S
π(x, y)P (t)(dy)P (t)(dx),

with δx denoting the Dirac delta distribution of the homogeneous population with

unit mass on {x} (i.e. all present individuals exhibit the same strategy x).

Furthermore, even the stronger requirements of a strict Nash equilibrium, in

which the equilibrium condition of ESS holds, are not sufficient to guarantee the

likewise weaker requirements of Lyapunov stability. Whereas even a neutrally sta-

ble state (NSS), in which the ESS condition (Ineq. (2.2)) is allowed for equity, is

sufficient for Lyapunov stability in the finite case (cf. Weibull, 1995, section 3.5).
9The original replicator dynamics of Taylor and Jonker (1978) treats personal strategies as

pure determinants, but see for example Bomze (1991) for replicator dynamics with personal mixed
strategies.
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Oechssler and Riedel (2002) show this key result by example (see their Example 1

with fitness function f (x, y) = −x2 +4xy, where the Dirac delta δ0 describes a strict

Nash equilibrium, and thus an ESS, but is not Lyapunov stable).10

The following definition specifies dynamic stability of the replicator dynamics.

Definition 2.2. Let Q∗ be a rest point of the replicator dynamics.11 Then

• Q∗ is called Lyapunov stable if for all ε > 0 there exists an η > 0 such that

‖Q (0)−Q∗‖ < η ⇒ ‖Q (t)−Q∗‖ < ε for all t > 0.

• Q∗ is called asymptotically stable if additionally there exists ε > 0 such that

‖Q (0)−Q∗‖ < ε⇒ ‖Q (t)−Q∗‖ → 0.

However, Bomze (1990) proves that the requirements of strong uninvadability are

sufficient to guarantee dynamic stability of the replicator dynamics if the variational

norm is used. Population P is strongly uninvadable if there is an invasion barrier

ε > 0 such that E (P,Q) > E (Q,Q) for all populations P 6= Q with distance

0 < ‖P −Q‖ ≤ ε. Oechssler and Riedel (2001) extend this finding by assuming a

homogeneous population P which is uninvadable, namely that conform to the ESS

requirements of Definition 2.1 but with a uniform invasion barrier ε > 0. This

result is due to the fact that the criteria of uninvadabilty and strong uninvadability

coincide in the case of homogeneous population play.

Recall, however, that in these articles the adopted topology is determined by the

variational norm where the distance between two populations P and Q is given by

‖P −Q‖ = 2supA∈B |P (A)−Q (A)| ,
10Hofbauer et al. (2009) show that this result holds likewise for the BNN dynamics where new

strategies can emerge if they yield better than average payoff. This happening is contrary to
the replicator dynamics where the support is invariant at all times (see the next footnote for a
definition of “support”).

11A rest point Q∗ of the replicator dynamics is a Nash equilibrium with exactly the support of
Q∗ as pure strategies. The support of a population P ∈ ∆ (S) is the unique (relatively) closed
subset of S whose complement has measure 0 (with respect to P ) and every open set that intersects
it has positive measure.
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(see Shiryaev, 1995, p. 360).

Yet, there is one major difficulty with respect to the informative values of studies

using this definition of closeness: If a large fraction of a population changes from

the equilibrium strategy then the new population is no longer close to the previous

one even if the change is very small on the real line, thus potentially insignificant for

the analysis at hand. For example, a population P is ε-close to another population

with Dirac delta δy only if ‖P − δy‖ =
∫
|P − δy| dx = 2 (1− P ({y})) ≤ ε. Hence,

the fraction of pure y-players in population P must conform to P ({y}) ≥ 1 − ε
2 ,

which is a very strong barrier. To carry this example further, the distance of a

homogeneous population is always maximal to a different homogeneous population

even if the corresponding strategies are highly similar.

Oechssler and Riedel (2002) argue that the weak topology is generally the more

appropriate alternative to measure the distance between populations, primarily be-

cause the weak topology regards the natural resemblance of slightly different strate-

gies.12 Formally, P (t) converges weakly to P ∗ if and only if limt→∞
∫
S πdP (t) =∫

S πdP
∗ for every bounded, continuous real function π. If the Prohorov metric is

used, then the distance of two populations is given by (cf. Billingsley, 1968, p. 238),

ρ (P,Q) = inf {ε > 0, Q (A) ≤ P (Aε) + ε and P (A) ≤ Q (Aε) + ε,∀A ∈ B}

where Aε = {x : ∃y ∈ A, |y − x| < ε}.

Thus, for the sake of closeness, it is irrelevant whether a population changes such

that a small fraction plays a very different strategy or if a large fraction changes

such that a very likely strategy is played. To make this conclusive, think of the

following situation. If there is a two-type population P that consists of y-players

and ε ∈ [0, 1]-fractional of x-players, then the distance between population P and the
12Apparently, this is generally a proper reason in favor of the weak topology but there are also

some arguments which promote the strong topology in some settings. One can think of situations
where an initial population should not be close to the mutated new population even if the bulk of
the former changes only very little on the real line since this could also be a significant evolutionary
incident (every individuum of the bulk changes his or her strategy), which should be reflected by
the topology at hand. Another, more technical, reason in favor of the strong topology is that this
topology does not require continuity of the underlying fitness function.
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Dirac measure on {x} is ρ (P, δx) = min {ε, |y − x|}. Moreover, two homogeneous

populations are close to each other if the corresponding pure strategies are close on

the real line in the Euclidean topology. By virtue of these arguments, we think that

the weak topology measures best the nature of evolution of preferences.

Remark. Throughout this paper we assume closeness and convergence with respect

to the weak topology (unless otherwise stated).

2.2.3 CSS, NIS, and E R

Intuitively, ESS is insufficient for dynamic stability in the continuous strategy case

since this concept is unique to the situation that a small fraction of the population

changes from an established strategy. From this perspective, the biological concepts

CSS (see Eshel and Motro, 1981; Eshel, 1983) and NIS (see Apaloo, 1997) enlarge the

stability analysis by regarding resistance against a mutated bulk. Both concepts are

originally analyzed for an ecological system in which the feasible strategy set evolves

according to a one-dimensional continuity of pure alternatives. This appearence is

in line with our detection of the evolution of altruism and envy assumed to be

opposed preferences in a one-dimensional continuity. Oechssler and Riedel (2002)

have introduced the strong criterion E R to unify the characteristics of these concepts

and to provide a strong argumentation for evolutionary fitness in a wide variety. By

regarding the essence of the weak topology, E R is given if both kinds of mutations

are unsuccessful, “a large change of strategic play by a small fraction of players as

well as a small change of strategic play by a large fraction of the population”.13

In what follows, we will firstly outline the formal definitions of CSS, NIS, and

E R, and then center on some consequences as discussed in the literature.14

13In Cressman and Hofbauer (2005), E R is called locally superior (with respect to the weak
topology).

14Eshel and Sansone (2003) have introduced “Continuous Replicator Stability” (which is much
alike to the conditions of NIS) to assess dynamic stability of the replicator dynamics. Though,
this approach is only sufficient if the maximal shift topology is used which is a limitation of the
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To further characterize CSS, assume in the continuous setting that the entire

(homogeneous) population δx∗ plays an ESS and then switches slightly from it by

playing a very similar strategy x = x∗ + ω with 0 < |ω| < ε. This image gives

rise to an important differentiation of two unlike types of ESSs with respect to their

capability of surviving evolutionary pressures: ESSs that are continuously stable, and

those that are not. Any ESS is CSS if a sufficiently small change of a population as a

whole is such that mutations closer to the ESS are able to invade the new population

via higher fitnesses, hence leading the population back in the direction of the ESS

(though not necessarily to the ESS itself). To define CSS rigorously, consider the

following.

Definition 2.3. Any strategy x∗ is CSS if (1) it is ESS and (2) there exists an ε > 0

such that for all x with |x∗ − x| < ε there exists a δ > 0 such that for all y with

|x− y| < δ

π(y, x) > π(x, x) if and only if |y − x∗| < |x− x∗| .

Accordingly, the criterion of CSS can be divided into two matters. The first one

is static in that any CSS is ESS. The second one gives an intuitive dynamic justifi-

cation since the higher fitnesses of equilibrium-closer strategies drive the population

toward the equilibrium. This extra condition derives from the adaptive dynamics

approach where it is termed m-stability by Taylor (1989) and convergence stability

by Christiansen (1991). For the adaptive dynamics approach, an interior CSS is an

asymptotically stable rest point (e.g. Cressman, 2009).15

Now, we focus on more operable conditions for CSS which we continue to use for

the game analysis in section 2.4. Consider the first and second order derivatives of

weak topology in that it requires additionally that the support of two populations have to be close
to guarantee closeness (see also the remark in section 5 of Cressman et al., 2006). Thereof, we
prescind from this approach.

15The population mean x evolves according to the canonical equation of adaptive dynamics,
ẋ = g (x)πx (x, x) where g (x) is a positive function that is related to the rate mutations occur and
the variance of their distribution.
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the payoff function π (x, y), namely πx, πxx, πxy, at x = y = x∗ and the following

conditions.

πx (x∗, x∗) = 0 (2.4)

and

πxx (x∗, x∗) ≤ 0. (2.5)

With Eq. (2.4) the strict case of Ineq. (2.5) is sufficient for ESS. As pointed out by

Eshel (1983), a necessary condition for any ESS x∗ to be CSS is given whenever

πxx (x∗, x∗) + πxy (x∗, x∗) ≤ 0 (2.6)

holds. The strict case of Ineq. (2.6) is sufficient for CSS.

From this specification, Eshel (1983) proposes a geometrical interpretation of

CSS. Any optimal strategy x played against strategy y can be expressed by a best

reply function x (y) = x such that πx (x (y) , y) = 0 is necessary. By implicit differ-

entiation, the first order derivative is given by

πxx (x (y) , y) · x′ (y) + πxy (x (y) , y) = 0.

Rearranging gives

x′ (y) = −πxy (x (y) , y)
πxx (x (y) , y) . (2.7)

Eq. (2.7) together with the sufficient conditions of ESS and CSS state

πxx (x∗, x∗) + πxy (x∗, x∗) < 0 ⇔ 1 + πxy (x (y) , y)
πxx (x (y) , y) > 0,

and hence, CSS is guaranteed if

x′ (y) = −πxy (x (y) , y)
πxx (x (y) , y) < 1. (2.8)

Any intersection of the best reply function and the main diagonal x = y is obviously

ESS since any strict best reply to itself is ESS, which is pursuant to the equilibrium

condition. According to Ineq. (2.8), any intersection is CSS, if the best reply

function intersects additionally ’from above’.
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A NIS (also named a good invader by Kisdi and Meszéna, 1995) exposes the

features of a strategy that is able to invade any strategy that is sufficiently close

(with respect to the Euclidean norm). However, NIS does not require ESS but a NIS

that holds for ESS is called ESNIS for Evolutionarily Stable Neighborhood Invader

Strategy (see Apaloo, 2005). A CSS is eventually not apt to invade a close neighbor.

Hence, through evolutionary dynamics it may be repelled by a very similar strategy

which is an incident that cannot happen to an ESNIS. Any ESNIS is a CSS but the

converse cannot be taken for granted in general.

A formal definition of NIS is given with the following.

Definition 2.4. Any strategy x∗ is NIS if x∗ can invade any x 6= x∗ in an ε > 0

neighborhood, i.e.

π(x∗, x) > π(x, x), ∀x with |x− x∗| < ε.

Oechssler and Riedel (2002) show that a necessary condition is given by

πxx (x∗, x∗) + 2πxy (x∗, x∗) ≤ 0. (2.9)

Analogue to the CSS condition, the strict case of Ineq. (2.9) is sufficient for NIS.

The stronger conditions of ESNIS state geometrical interpretations that are similar

to the CSS ones. We summarize these useful facts in the following Lemma.

Lemma 2.1. 1) Any ESS x∗ is a CSS, if the best reply function x(y) intersects the

main diagonal x = y at x∗ from above. 2) Any ESS x∗ is an ESNIS, if the best reply

function x(y) intersects the main diagonal x = y at x∗ with a slope smaller than 1
2 .

Proof. The first statement is due to Eshel (1983, Theorem 2). However, the proof

can also be retraced with the explanations above. The proof of the second statement

is similar. By regarding the sufficient condition of ESS, the sufficient condition of

NIS states

−πxy
(x (y) , y)

πxx (x (y) , y) <
1
2 .
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We know that x′ (y) = −πxy(x(y),y)
πxx(x(y),y) , such that x′ (y) < 1

2 is deciding.

The strong concept of Oechssler and Riedel (2002) is defined as follows.

Definition 2.5. A population P ∗ is evolutionary robust if there exists ε > 0 such

that for all Q 6= P ∗ with ρ (P ∗, Q) < ε we have E (P ∗, Q) > E (Q,Q).

E R corresponds to strong uninvadability in the variational norm. Though, E R

is much harder to attain, which is due to the larger set of mutations Q that are

ε-close to P ∗ in the weak topology. An equilibrium which is E R guarantees dy-

namic stability for the replicator dynamics in doubly symmetric games (games in

which the players’ payoff always coincide). However, Oechssler and Riedel (2002)

only conjecture that E R is sufficient for dynamic stability in the weak topology

for general π (x, y). Furthermore, there is no simple solution algorithm for checking

E R-strategies, but an approach with quadratic payoff functions is given in the Ap-

pendix.

Further implications of CSS, NIS, and E R in (evolutionary) game-theoretical

meanings are widely discussed (see the recent papers of Eshel and Sansone, 2003;

Apaloo, 2005; Cressman, 2005; Cressman and Hofbauer, 2005; Cressman et al., 2006;

Hofbauer et al., 2009; Cressman, 2009). For example, Cressman (2009) relates CSS

and NIS to classical game-theoretic solution concepts when applied to two-player

games with a continuous strategy space. A CSS x∗ in the interior of the strategy

space is equivalent to neighborhood 1
2-superiority (i.e., π (x∗, P ) > π (P, P ) for all

P ∈ ∆ (S) with 1 > P ({x∗}) ≥ 1
2 with support sufficiently close to x∗).16 Moreover,

a neighborhood strict Nash equilibrium (cf. the equilibrium condition of ESS with

x∗ close to x) which is NIS is equivalent to neighborhood 0-superiority. Also, Cress-

man (2009) identifies a dynamical consequence of CSS by considering the Cournot

adjustment process of Moulin (1984) with an interior CSS as an asymptotically sta-

ble rest point. Hofbauer et al. (2009) show the relevance of CSS and E R in several
16Strategy x∗ is globally 1

2 -superior if π (x∗, P ) > π (P, P ) for all P ∈ ∆ (S) with 1 > P ({x∗}) ≥
1
2 .
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dynamics. For quadratic fitness functions of the form π (x, y) = −x2 + axy, they

give a thorough analysis of the replicator dynamics, the BNN dynamics, and the

best response dynamics (see Table 1 in chapter 8 there). Most notably, a CSS is

asymptotically stable for the BNN dynamics and the best response dynamics. A

strategy which achieves the stronger conditions of E R is asymptotically stable for

the replicator dynamics. Cressman (2005) shows some consequences of CSS and

NIS for dynamic stability of the replicator dynamics which are unambiguous and

extensive if π (x, y) = π (y, x). However, the connections with respect to arbitrary

payoffs are much more tenuous. In this regard, Eshel and Sansone (2003) give the

NIS concept a strong meaning since they show that NIS is a necessary condition for

dynamic stability.

Some further useful implications of CSS and NIS are due to Cressman and Hof-

bauer (2005) and their measure dynamics approach in the one-dimensional con-

tinuum. They show that a homogeneous population which is not CSS cannot be

dynamically stable, but a CSS is dynamically stable if the initial distribution is close

to the CSS and the support is a compact interval with the CSS in the interior. A

somewhat stronger meaning holds for a homogeneous population which is NIS since

an arbitrary initial support (however still close to the equilibrium) is then already

sufficient.

2.3 Indirect Evolution
In this section we describe the approach of indirect evolution in detail. By doing so,

we introduce some game notations and assumptions that are valid for the remainder

of this paper.

Let Γ (S, T, π1 (x, y) , π2 (x, y) , U1 (x, y) , U2 (x, y)) denote the evolutionary sym-

metric 2-person game in the conventional setting of one infinitely large population

in which individuals are drawn randomly (with equal probability) and repeatedly to
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play a certain game at each stage.17 Sticking to the rationality-acceptation of ortho-

dox game theory, the two players, identified with subscripts on the game-functions,

are in the position to act perfectly according to their subjective preferences by max-

imizing their well-being U1 (x, y) and U2 (x, y) with equilibrium strategies x∗ ∈ S

(player 1) and y∗ ∈ S (player 2). Contrary to models of standard direct evolu-

tion, the functions that players seek to maximize are no longer equivalent to their

monetary payoffs, π1 (x, y) and π2 (x, y), which, however, drive their evolutionary

success.18 Fixing evolutionary fitness with equilibrium behavior leads to the new

fitness function with evolving preference-types α ∈ T (player 1) and β ∈ T (player

2). The fitness of player 1 is then given by f1 (α, β) = π1(x∗(α, β), y∗(α, β)).19 Hav-

ing these results allows the researcher to continue in analogy to standard direct

evolution but with evolving intrinsic, subjective values on trial. For example, Nash

equilibria preferences can be found at equilibrium behavior with the usual definition

f (α, β) ≤ f (α, α) for all different β. This technique holds likewise for all refinement

concepts on study.

Consequently, preferences that are sufficiently fit are more reproductive than less

fit preferences, such that a final population state consists of preferences gaining

most, though not necessarily maximizing (directly), evolutionary reproductive suc-

cess.

Notice that indirect fitness-detection of preferences combines traditional assump-

tions of rational decision making, like in orthodox game theory, with evolutionary

adapting concepts resulting from evolutionary game theory.
17By the infinity assumption, we can exclude further random effects which would result in

stochastic evolutionary dynamics as studied, e.g., in Güth et al. (2002).
18By virtue of the economic context we imply to the indirect evolutionary game and for the

sake of convenience, we will assume that monetary profit is the basic determinant for reproductive
success. In fact, a couple of studies show that economic success is closely related to the number
of surviving offspring (e.g. Boyer, 1989) which legitimate the replicator dynamics as the selection
process. But note that it is only important that the fitness criterion is an objective (or rather
intersubjective ackknowledged) value which represents success in the society. For example, a
higher status (without earning more money) may indicate a similar relevance.

19Since the position of the players is by no means the equilibrium fitness of player 2 can easily
be found by symmetry. This holds likewise for later analysis.
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The basic steps of indirect evolution of preferences are illustrated in Figure 2.1.

‘Rational‘ Behavior

‘Objective‘ Outcome

Evolutionary Selection

Population Composition

of Preferences in  

1

2

3

4

1+n
t

Population Composition

of Preferences in  
n

t

Figure 2.1: One Sequence of Indirect Evolution of Preferences

To avoid fundamental questions about the ’genesis’ of individual preferences, we restrict

our attention to an evolutionary process which is already in progress. At step À, individuals

play rationally (and immediately) for their perceptive well-being which possibly subsumes

an importance on others payoff. The equilibrium play then fix the objective outcome (which

is the evolutionary success) at the Ánd step. At step Â, the objective outcome determines

the evolutionary selection since the underlying evolutionary process favors a higher out-

come by spreading. Preferences that are sufficiently fit are bequeathed from one generation

to another in an accordant high continuance and generate the successive population in

evolutionary time, which is the Ãth step.

The indirect evolutionary approach has become the central reply to (experi-

mental) evidence that dispute to homo economicus models with the basic postulate

of material selfishness. However, indirect preferences evolution cannot replace exper-
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imental studies of preferences sometimes changing in very short-termed experimental

situations since evolution of preferences is a long-termed process appraising how in-

dividuals tend to act in certain strategic situations.

Since we limit ourselves to the replicator dynamics as the most right choice to

model the preference shape, we restrict the validity of indirect evolution to selection

in a genetical sense. But indirect evolution continues its importance, e.g., in social

learning processes where preferences are shaped by adaption from “role models”

(like parents or teachers).

2.4 The Model with CSS, NIS, and E R

The basic formulation of our evolutionary game is similar to Bester and Güth (1998),

but incorporates the suggestions of Bolle (2000), and, more explicitly, of Possajen-

nikov (2000).

Analogous to the notations above, let

π1(x, y) = x(ky +m− x) and π2(x, y) = y(kx+m− y) (2.10)

denote the players’ monetary payoffs, fixed by the strategy-choices x, y ∈ S =

R+
0 and the parameters m > 0 and k which is either positive or negative. These

payoffs can represent several strategic situations. For example, one can think of

a simple production game with efforts x and y where the players either exploit a

resource or contribute to a public good. The specific situation then depends on the

type of externality. Alternatively, the payoffs may represent profit functions in a

symmetrical duopoly competition with heterogeneous products and linear demand.

Accordingly, in a Bertrand market the choices x and y would define the prices while

in a Cournot market x and y would be the quantity choices. The parameter k (and

especially the sign of k) represents a basic characterization of the game. At first

we follow Bester and Güth that −1 < k < 1; however, the k is further specified
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below. Note that k determines interdependency in the following manner: A positive

k leads to ∂π1(x,y)
∂y

> 0 which means that a higher input of the respective co-player

implies a higher fitness-level, i.e. the players impose positive externalities on one

another. The opposite holds for k < 0, since in this case ∂π1(x,y)
∂y

< 0 and negative

externalities are present.

The players derive evolutionary success from their monetary profit, but they are

foremost provided to maximize their subjective well-being, given by

U1(x, y) = π1(x, y) + απ2(x, y) and U2(x, y) = π2(x, y) + βπ1(x, y). (2.11)

Unless a co-player’s profit is irrelevant, meaning a player’s attitude is egoism (α or

β = 0), the players have altruistic (α or β > 0) or envious (α or β < 0) preferences

on others profit. To avoid preferences that go somewhat beyond envy or altruism

such that the players care less about themselves than about others, we restrict the

type-parameters to the region α, β ∈ T = [−1, 1].20

Recall that the players are equipped with the capability of perfect observation

of co-players preferences. Hence, the context of our game is in situations where

individuals either know each other very well or learn preferences sufficiently fast.21

Following the indirect evolutionary approach, the players are in the position to

maximize their well-being. Formally

x∗ ∈ argmax
x

U1(x, y∗), y∗ ∈ argmax
y

U2(x∗, y), (2.12)

with resulting reaction functions

x = k(α + 1)y +m

2 , y = k(β + 1)x+m

2 . (2.13)

According to the terminology of Bulow et al. (1985), strategies are complements

to each other with k > 0 since the slope of the reaction function is then positive,
20Possajennikov and Bolle relax assumptions on game-parameters by allowing for wider ranges.

But this does not affect qualitative results of the region stated here.
21Retrace the argumentation of Frank (1987) for physical indications help explaining why this

is not only an artificial assumption.

32



meaning that a higher input of the co-player leads to a higher marginal revenue.

And strategic substitutes are determined by k < 0 with consistencies the other way

round.

The intersection point of the reaction functions represents equilibrium-play22

x∗(α, β) = m(k(α + 1) + 2)
4− k2(α + 1)(β + 1) , y∗(α, β) = m(k(β + 1) + 2)

4− k2(α + 1)(β + 1) (2.14)

which makes the impact of player A’s preference α (respective β) on player B’s

behavior y∗ (respective x∗) transparent.

By fixing the monetary payoff with the equilibrium strategies, one reaches the

new fitness function of player 1 with evolving preferences:

π1(x∗(α, β), y∗(α, β)) = f1(α, β)

= −m
2(k(α + 1) + 2)(k2α(β + 1) + k(α− 1)− 2)

(4− k2(α + 1)(β + 1))2 ,(2.15)

while the fitness function of player 2 satisfies f2(β, α) = f1(α, β). Due to the in-

direct evolutionary approach, the ESS conditions of section 2.2.1 can now be trans-

ferred to preferences such that

(i) f1(α∗, α∗) > f1(α, α∗) ∀ α ∈ [−1, 1], or

(ii) f1(α∗, α∗) = f1(α, α∗) and f1(α∗, α) > f1(α∗, α) ∀ α ∈ [−1, 1]

is deciding for α∗ to be ESS.

Calculating the first order condition yields

α = − k(β + 1)(k + 2)
βk(k − 2) + k2 − 2k − 4 . (2.16)

Any preference α∗ is an ESS candidate if it is a best reply to itself. Hence, setting

α = β = α∗ and solving for the equilibrium preference guides to ESS-candidates:

α∗1 = −k+2
2 , α∗2 = k

2−k , and corner-solutions α∗3 = −1, and α∗4 = 1. Straightforward

calculations state the following proposition which is due to Possajennikov (2000)

for a wider range of k, namely −2 ≤ k < 1, k > 2, and existing strategic interde-

pendence (k 6= 0), and to a former analysis of Possajennikov (1999) with the same
22Eqs. (2.14-2.16) coincide with Eqs. (3-5) in Possajennikov (2000).
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constraints on k.

Proposition 2.1. α∗ = k
2−k is the unique ESS preference.

Since k > 0 results in α∗ > 0, it is verified that altruism is ESS with strategic

complements. On the other hand, strategic substitutes leads to envy being ESS

because α∗ < 0 if k < 0.23 Note that with the restriction of k, ESS preferences

are always in the interior of the feasible space. An interesting aspect arises by

exploring the effect of the strategic situation on the strength of the evolutionarily

stable preference. If strategic complements approaches 1, then the evolutionary

players are nearly perfectly altruistic in equilibrium, while the situation of strategic

substitutes determines at most one-third of the whole range of envy. Figure 2.2

illustrates the relation of strategical interdependence on ESS preferences.

Remark. Heifetz et al. (2007a) have analyzed the same setting with some further

restrictions on k (or “−b” in their case; although they have used somewhat differ-

ent notations on the parameters, the game is identical), namely −2
5 < k < 1

2 and

k 6= 0, to explore whether evolutionary dynamics will evolve to the ESS preference.

They have shown that any initial population with full support on the preferences

space α, β ∈ [−1, 1] will evolve to the evolutionarily stable state under any payoff-

monotonic and regular selection dynamics.24 Recall that this preference space is the

same that we assume. As a limitation of k, they have proven that Eq. (2.15) is

strictly concave in the preferences only if k > −1
2 . In what follows, we adopt this

assumption such that we can work with a best reply function.

Since the concept of ESS is too weak in the continuous space of preferences,
23This basic finding is restricted to the more natural cases of −1 < k < 1 where own action has

got more impact on outcome than the action of the opponent. With respect to the wider parameter
range of Possajennikov (2000), an α∗ < 0 with an absolute value larger than one can even be ESS
if strategies are complements with sufficient high interdependence (k > 2).

24Dynamics are payoff monotone if a higher average fitness corresponds to a higher growth rate,
or formally 1

P (A)
∫
A
E (δx, P )P (dx) > 1

P (A′)
∫
A′
E (δx, P )P (dx) ⇔ Ṗ (A)

P (A) >
Ṗ(A′)
P (A′) . Dynamics are

regular if evolution does not allow for innovations which means that Ṗ (A) = 0 holds for all A ∈ B
with P (A) = 0.
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Figure 2.2: Relation of strategical interdependence and ESS preferences.

we proceed by using the stability concepts of section 2.2.3. At first, we reach the

following result.

Proposition 2.2. The strict Nash equilibrium preference α∗ = k
2−k is CSS.

Proof. From section 2.2.3 we know that any intersection of the main diagonal x = y

with the best reply function x (y) is an ESS. Any ESS x∗ is additionally a CSS if the

best reply function intersects the main diagonal from above. Following the indirect

evolutionary approach, this condition can be transferred to our preference setting.

Eq. (2.16) is now considered as of the first players’ best reply function h (β),

h (β) = α = − k(β + 1)(k + 2)
βk(k − 2) + k2 − 2k − 4 . (2.17)

It is left to check whether the best reply function intersects the main diagonal at

α∗ = k
2−k with a slope smaller than 1. The slope of the best reply function at the

equilibrium preference α∗ = α = β = k
2−k is

dh(β)
dβ

}
β= k

2−k

= k

k + 2 . (2.18)

Eq. (2.18) always underbids the declared value of 1 since with the restrictions of k
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we have
dh(β)
dβ

}
β= k

2−k

= k

k + 2 < 1 ⇒ 0 < 2. (2.19)

Figure 2.3 shows that the best reply function intersects the main diagonal from

above.

Now, we apply the NIS concept.

Proposition 2.3. The strict Nash equilibrium preference α∗ = k
2−k is NIS.

Proof. A sufficient condition for NIS is given by Ineq. (2.9). Applying this condition

to the relevant fitness function Eq. (2.15), the sufficient condition becomes

fαα

(
α∗ = k

2− k , α
∗ = k

2− k

)
+ 2fαβ

(
α∗ = k

2− k , α
∗ = k

2− k

)
< 0. (2.20)

After calculating, we get

fαα

(
α∗ = k

2− k , α
∗ = k

2− k

)
+ 2fαβ

(
α∗ = k

2− k , α
∗ = k

2− k

)
= m2k2(k − 2)6

512(k − 1)3 .

(2.21)

With the restrictions of m and k the result is always negative.

Furthermore, from Lemma 2.1 and the restrictions on k it follows that

dh(β)
dβ

}
β= k

2−k

= k

k + 2 <
1
2 ⇒ k < 2 (2.22)

is true, which is sufficient for NIS, too.

To show the following result, we translate evolutionary fitness to a quadratic

function which allows us to use the classification scheme as proposed by Cressman

and Hofbauer (2005).
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Figure 2.3: Intersection of h (β) with main diagonal α = β.

Proposition 2.4. In the Taylor-approximated case of a quadratic fitness function,

the strict Nash equilibrium preference α∗ = k
2−k is E R.

Proof. See the Appendix.

Hence, the homogeneous population with unit mass on
{
α∗ = k

2−k

}
is both strong

against small shifts by a large fraction of the population and strong against large

shifts by a small fraction of the population. Recall, that E R implies CSS as well as

NIS. Note also that E R implies (strong) uninvadability (see Oechssler and Riedel,

2002). The latter implication gives the replicator dynamics a strong meaning if the

variational norm is used on the population space since a homogeneous, uninvadable

population is then asymptotically stable with respect to the infinite preference space

(see Oechssler and Riedel, 2001). However, as mentioned above, we basically assume

the weak topology to explain the evolution of preferences. As discussed, identifying
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the stability criteria is more subtle here, but E R is a strong argument in favor of

the equilibrium α∗ = k
2−k .

2.5 The Analysis with Sophisticated-Perceptive

Preferences
So far, other-regarding preferences have been formulated with subjective well-being

that is specified by a utility function predefined through one’s own monetary payoff

in addition to a certain extent of a co-player’s monetary payoff. This section deals

with the convention that individuals with other-regarding preferences take the real

well-being of co-players into account. Thus, the perceived payoff function depends

no longer on the monetary, objective payoff of others but on their subjective payoff

which possibly differs from the objective payoff as well. This assumption is justified

by the valid common knowledge assumption regarding preferences in addition to

the standard premise of a real care in the relevant case.25 Hence, the reformation of

preferences implemented here describes a legitimate, more differentiated definition

of altruism and envy, and individuals adherent with this definition exhibit a “so-

phisticated perception” of a co-player’s well-being. This is why we suggest the term

“sophisticated-perceptive preferences”. The basic question is now then, whether this

reformation makes a difference in the present evolutionary framework. To answer

this question, let us first detail the new situation more formally.

We define the subjective well-being of the two players as follows.

V n
1 (x, y) = π1(x, y) + αV n−1

2 (x, y) and V n
2 (x, y) = π2(x, y) + βV n−1

1 (x, y), (2.23)

where n ∈ N0 = {0, 1, 2, ...} is the number of perceptive iteration-steps which we

assume is a homogeneous trait-value in the population. Besides, the special case
25Predominantly, this alternative definition is proper by virtue of the valid common knowledge

assumption with respect to preferences but does not call for being more “true” in general since an
accurate definition of altruism or envy seems always to depend heavily on the given environment
and an underlying question one wants to answer.
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of n = −1 requires an extra definition which follows a break down into monetary

payoffs:

V n=−1
1 (x, y) = π1(x, y) and V n=−1

2 (x, y) = π2(x, y).

All remaining game-parameters are the same as in section 2.4.

Now we are able to distinguish the different types of preferences with n ∈ N0 ∪

{−1}. At first, the orthodox homo economicus assumption is valid if n = −1

since egoism is then represented. Other regarding preferences appear if n ∈ N0,

and sophisticated-perceptive preferences are present if n ∈ N = {1, 2, 3, ...}. In

particular, we are foremost interested in the case of n → ∞, since we assume the

ability to perfect perception, and the evolutionary differences to n = 0 (which is

the case of the previous section with other-regarding preferences but without a

sophisticated-perception).

With this issue in mind, we can now give the following result which shows the

irrelevance of the existence of a sophisticated perception of a co-player’s well-being.

Proposition 2.5. Consider the evolutionary environment discussed so far. Then,
the existence of a sophisticated perception of well-being, which we assume is a homo-
geneous and “absolute” value,26 is immediately negligible with respect to the evolu-
tionary fitness of the equilibrium preference. Precisely, x∗ ∈ argmax

x
lim
n→∞

V n
1 (x, y∗) =

x∗ ∈ argmax
x

V n=0
1 (x, y∗) = x∗ ∈ argmax

x
U1(x, y∗).

Proof. We only give the proof with respect to the first players’ well-being since the
position of the players is inconsequential. By incorporating even and odd numbers
n, the calculations of the limit values are given by

26By “absolute” value, we mean that the perceptive iteration-steps of the individuals run to
infinity. Alternatively, we could consider subjective preference functions which are recursive in the
sense of U�1 (x, y) = π1 (x, y) + αU�2 (x, y) (recall that the positions of the players is by no means
such that for the second player U�2 (x, y) = π2 (x, y) + βU�1 (x, y) holds) which would lead to the
same qualitative finding of this proposition.
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lim
n→∞

V 2n+2
1 = lim

n→∞

(
1 + αβ + ..+ αn+1βn+1

)
[π1 + απ2]

= lim
n→∞

1− αn+2βn+2

1− αβ [π1 + απ2]

= 1
1− αβ [π1 + απ2]

= V n=0
1

1− αβ ,

and

lim
n→∞

V 2n+1
1 = lim

n→∞

[(
1 + αβ + ..+ αn+1βn+1

)
π1 + α (1 + αβ + ..+ αnβn)π2

]
= lim

n→∞

1− αn+1βn+1

1− αβ
[
π1 + αn+1βn+1π1 + απ2

]
= 1

1− αβ [π1 + απ2]

= V n=0
1

1− αβ .

Since there is only one limiting value for both cases, we can use this result.
A basic postulate of the indirect evolutionary approach that players seek to max-

imize their well-being implies that

x∗ ∈ argmax
x

V n=0
1 (x, y∗)
1− αβ ,

which is equivalent to
x∗ ∈ argmax

x

U1(x, y∗)
1− αβ .

By a simple calculation, we see that

x = k(α + 1)y +m

2

declares the first players’ best reaction. Obviously, the denominator of the limit
value is irrelevant for evolutionary fitness of the respective preference since the re-
action function is the same as in the previous section (see Eq. 2.13), and the same
computation under indirect evolution follows.
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Although sophisticated-perceptive preferences appear like a somewhat artifi-

cial game-theoretical product, one can think of situations where human beings with

other-regarding preferences anticipate the fact that others might feel similar. Con-

sider, for example, the question of who will pay the bill in a restaurant with very

close friends where one party has to give the other party’s goodwill the precedence.

However, we leave it to the reader to decide to what extent sophisticated-perceptive

preferences play a relevant role in human society. Also, the question of what is a real-

istic number of perceptive iteration-steps n is quite far beyond the scope of this study.

Maybe this would be an interesting experiment to study in the laboratory—however,

mounting such an experiment seems to be more difficult than the traditional ones

with usual other-regarding preferences.

2.6 Conclusion
In this paper, we have reviewed the study of altruism by Bester and Güth (1998), and

the one-dimensional enlargement of the preference space by Possajennikov (2000)

and Bolle (2000), respectively. By making two expedient assumptions on the evolu-

tion of preferences, this study is a straightforward extension of the former surveys

and furthermore a required task, as shown by Oechssler and Riedel (2002). If one

assumes that preferences are unconsciously shaped (as in the replicator dynamics)

and that human beings are able to perceive altruism and envy from a continuum

then one has to admit that using ESS is too fragile. Following these postulates,

it has been shown that the strategic environment still determines the evolutionary

fitness of altruism and envy. Altruism remains evolutionarily viable if the underly-

ing game exhibits strategic complements and envy remains evolutionarily viable if

strategic substitutes are present.

In particular, we have shown that the strict equilbrium preference is CSS and

NIS in the original case, and E R in the Taylor-approximated case with a quadratic

fitness function. An interior CSS is an asymptotically stable rest point of the adap-
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tive dynamics approach which gives an exact meaning of the evolutionary analysis

if restricted to evolution of monomorphic populations. As mentioned before, we are

more interested in the consequences for the replicator dynamics where the popu-

lation composition changes in a distributional sense. In the case that the adopted

population space is determined by the strong topology, the dynamic stability of a

homogeneous population is given if the corresponding equilibrium strategy is un-

invadable (which is implied by E R). However, if the weak topology is adopted,

the relation to static stability concepts is more restrictive concerning technical and

initial state issues. Knowing from Heifetz et al. (2007a) that a somewhat restricted

version of the game with full support on the preference space converges under the

replicator dynamics, we further can rightly conjecture that the equilibrium prefer-

ence is dynamically stable.

A few open questions remain. One basic issue concerns the definitions of altruism

and envy. Both definitions are fully determined through the subjective well-being

function (Eq. (2.11)) (and the sophisticated version of section 2.5) which is some-

what special. One can think of alternative definitions and put these in the discussed

evolutionary framework. For example, Heidhues and Riedel (2007) consider comple-

mentary altruism in the sense of Ui = min {πi, απj}, with some altruism-parameter

α ≥ 1, which follows the ideology of John Rawls in that human beings are rather al-

truistic if they are better off in relation to others. It would be interesting to see what

preferences would emerge in such an alternative game. It would also be of interest

to explore whether the evolutionary viability of continuous preferences remains in

intermediated cases where the individuals anticipate the opponents’ idiosyncratic

preferences with a noise term. These issues import chances of future research.
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2.7 Appendix

Proof of Proposition 2.4

To prove E R of the equilibrium preference α∗ = k
2−k with respect to the rele-

vant fitness function f(α, β) = −m2(k(α+1)+2)(k2α(β+1)+k(α−1)−2)
(4−k2(α+1)(β+1))2 , we build on the work

of Cressman and Hofbauer (2005) who suggest a classification scheme for testing dy-

namic stability relating to quadratic payoff functions. The basic idea is to consider

the payoff function in terms of the mean E (P ) and the variance V ar (P ) of popula-

tion P . In particular, the kth moment of P is defined as Pk =
∫
xkP (dx) such that

P1 = E (P ) and P2 = V ar (P ) + P 2
1 hold true.

Employing the second-order Taylor expansion of f(α, β) around α = β = α∗ =
k

2−k guides to:

f(α, β) = − 1
1024 (k − 1)3

(
m2

(
aα2 + bβ2 + cαβ + dα + eβ + f

))
+ h.o.t., (A.2.1)

with coefficients:

a = −64k2 − 80k4 + 128k3 + 20k6 − 8k7 + k8,

b = 48k4 + k8 − 12k7 + 48k6 − 80k5,

c = 160k5 + 20k7 − 160k4 − 2k8 − 80k6 + 64k3,

d = 96k5 − 128k4 + 64k3 − 32k6 + 4k7,

e = 128k2 − 256k3 + 128k4 − 16k5 + 8k6 − 4k7,

f = 256− 512k + 192k2 + 64k3 + 16k4 − 12k6.

For E R we have to check whether f(δα∗ , Q) = f(α∗, Q) > f(Q,Q) holds for all

Q 6= δα∗ sufficiently close to δα∗ (in the weak topology).
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By ignoring the higher order terms and substituting the moments, we reach

f(Q,Q) = − m2

1024(k−1)3 [aQ2 + bQ2 + cQ2
1 + dQ1 + eQ1 + f ]

= − m2

1024(k−1)3 [(a+ b)Q2 + cQ2
1 + (d+ e)Q1 + f ] , and

f(α∗, Q) = − m2

1024(k−1)3

[
a (α∗)2 + bQ2 + cα∗Q1 + dα∗ + eQ1 + f

]
,

where − m2

1024(k−1)3 > 0 by restrictions on k.

Thus, the condition of E R is given by

f(α∗, Q)− f(Q,Q) > 0⇔ a
(
(α∗)2 −Q2

)
+ c (α∗Q1 −Q2

1) + d (α∗ −Q1) > 0

⇔ a
(
(α∗)2 −

(
V AR (Q) + E (Q)2

))
+ c

(
α∗E (Q)− E (Q)2

)
+ d (α∗ − E (Q)) > 0

⇔ a
((

k
2−k

)2
−
(
V AR (Q) + E (Q)2

))
+c

(
k

2−kE (Q)− E (Q)2
)
+d

(
k

2−k − E (Q)
)
>

0, where we now substitute ε := V AR (Q) > 0 and η := k
2−k − E (Q) , so that

aη

(
k

2− k + E (Q)
)
− aε+ cηE (Q) + dη > 0 (A.2.2)

is deciding.

The essence of the weak topology is captured by the fact that populations are

close to each other if the respective means are sufficient similar and the variances

sufficient close to 0. Hence, for E R, it is left to check whether Ineq. (A.2.2) holds

for small ε > 0 and small |η| where η is either positive or negative. Note that we

have a < 0 with strategical interdependence (k 6= 0), such that a sufficient condition

becomes

η

[
a

(
k

2− k + E (Q)
)

+ cE (Q) + d

]
> 0.

Accordingly, we have to make a case differentiation regarding η and verify that

the term a
(

k
2−k + E (Q)

)
+ cE (Q) + d is positive for i) η > 0 and negative for ii)

η < 0.

By inserting the coefficients a, c, d and E (Q) = k
2−k − η into the term, it is

straightforward to calculate that
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a
(

k
2−k + E (Q)

)
+ cE (Q) + d

= k2︸︷︷︸
>0

240 k2 − 160 k3 + 60 k4 − 12 k5 − 192 k + k6 + 64︸ ︷︷ ︸
>0

 η︸︷︷︸
i)>0
ii)<0︸ ︷︷ ︸

under case i) >0 under case ii) <0

.

As a result, Ineq. (A.2.2) is verified, whether the mean of a mutant population

Q is slightly below or above the equilibrium. Thus, the Dirac-delta distribution of the

homogeneous population δα∗ with unit mass on the equilibrium preference α∗ = k
2−k

satisfies the requirements of E R.

2
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Chapter 3

A Dynamic Model of Reciprocity
with Asymmetric Equilibrium
Payoffs

We analyze indirect evolutionary two-player games to identify the dynamic emer-

gence of (strong) reciprocity in a large number of economic settings. The underlying

evolutionary environment allows for an arbitrary initial population state provided

that every degree of the compact space of reciprocity is adherent to at least one

individual of the corresponding continuum population. The basic results, which es-

sentially maintain the evolutionary viability of reciprocity, are, in several directions,

context dependent, and minimum valid for the wide class of evolutionary dynamics

which hold for regularity and payoff-monotonicity. The evolutionary solution concept

which is applied to elevate the explanatory power of emerging Nash equilibria is dom-

inance solvability, in this case, for continuous strategy spaces. An asymmetric aspect

comes into play since the actions of the evolutionary players are not only determined

by the current state of reciprocity but also by their inherent, context-free preferences

towards others which differ among one another devoid of being endogenized in the

time span of the dynamic process at hand.
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3.1 Introduction

In recent years, it has been established that the orthodox assumption on material

or monetary1 selfishness of players is not necessarily sustainable in economic mod-

eling. While the assumption of exogeneous given selfishness fits fairly well in some

economic contexts,2 real life evidence and experimental data suggest that people do

not behave consistent with this postulate in general. Most convincing studies in-

clude ultimatum/dictator games (e.g. Güth et al., 1982; Andreoni and Miller, 2002;

Camerer, 2003), or public goods contribution games (e.g. Andreoni et al., 2002).

The present research contributes to the literature by analyzing a dynamic model

of reciprocity in an evolutionary framework.3 In essence, reciprocity refers to peo-

ples’ desire to reward perceived kindness and to punish perceived unkindness. The

present form of reciprocity invokes the idea that subjective values include to be

sensitive to opponents’ intrinsic preferences. More precisely, our suggestion of play-

ers’ psychological payoff including other-regarding motivations follows the model of

Levine (1998) who demonstrates a striking consistency with results from experi-

mental lab studies. Levine shows that his model is useful to understand several

results from ultimatum games and market experiments. Formally, player i seeks to
1Putting the meaning of selfishness to an economic environment is essential for the present

study and related models with so-called other-regarding preferences. To make this point, consider
Joel Sobel’s comment on the hypothesis only the selfish survive: “with sufficient freedom to define
“selfish” this statement is a tautology” (Sobel (2005, p. 430)). In other words, motivations may
depend on others’ motivations but their exclusive personality is a banality in the final analysis.
This thinking appears trivial yet corresponds to a famous theory called “psychological egoism”
which claims that anything we do for others is just because of increasing our own welfare.

2Generally, in highly competitive settings with many players and with one-shot and/or anony-
mous play (e.g. financial markets), one can assume that the average behavior reflects a high degree
of material greed.

3As described in the next section, one should be aware of the fact that reciprocity has different
definitions in the economic literature. See also the survey paper by Sobel (2005) for this issue.
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maximize her subjective well-being, given by4

vi = ui +
∑
j 6=i

αi + λ · αj
1 + λ

· uj,

where ui and uj are material payoffs, αi,αj ∈ (−1, 1) are social preference parame-

ters, and λ ∈ [0, 1] symbolizes a weight which player i puts on player j’s preference.

Accordingly, individuals are not only concerned with their own material payoff but

also with that of their opponents. This fact is in the first place due to intrinsic pref-

erences like altruism. However, by considering an extra dimension of reciprocity5,

the individual weight which is placed on the opponents’ profit varies additionally

with respect to the opponents’ intrinsic preference. The advantage of the well-being

functional with two preference dimensions is that it allows us to explore why people

sometimes behave contrary to their true attitudes or ethos. In particular, the daily

observance, whether in economic or other social life settings, of intrinsic good people

behaving badly (or selfishly) sometimes or intrinsic selfish (or bad) people behaving

well sometimes centers the motivation of the current study.

Technically, we use an indirect evolutionary environment to identify the cultural

viability of reciprocity in a broad class of pre-programmed populations where the

players engage in many different types of strategic two-player games. Indirect evo-

lution allows the players to choose a behavior which follows their perceptive payoffs

but the players receive evolutionary fitness (or reproductive success) according to

their “true”, objective payoffs. The presupposition that players aim to maximize

their own idiosyncratic preferences but that economic success “regulates the mar-

ket” is by now a central tenet in economic modeling and successfully opposes the
4This functional is the exact writing of Levine (1998, p. 597). Sethi and Somanthan (2001) intro-

duce a similar model by replacing player i’s weight on player j’s material profit [αi + λ · αj ] / [1 + λ]
by [αi + λ · (αj − αi)] / [1 + λ], where 0 ≤ αi < 1 and λ ≥ 0. Their specification allows an altruist
to place a negative weight on a selfish individual which is not possible under Levine’s definition.
Apart from the denotative conception of reciprocity and for the sake of technical simplicity, the
precise definition of the players’ subjective payoffs are once more slightly modified in the present
study.

5Although Levine does not explicitly connect with the term “reciprocity” in his study (however,
Sethi and Somanthan do), the parameter λ clearly represents much of the features of reciprocity
in any environment of non-anonymous interaction.
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neo-classical feature of pure economic selfishness. Consequently, a reciprocity dis-

position which yields a larger objective payoff tends to become more prevalent in

a certain population while dispositions with relative low objective payoffs tend to

decease. The idea that social preferences beside selfishness are profitable in some

strategic environments is well documented in the relevant literature and dates back

at least as far as Schelling (1960). The basic reason for this is that (at least some-

what) recognized preferences provide a commitment device which makes unselfish

players potentially the better performers in interdependent settings. Another pre-

cursor of this theme is Frank (1987, 1988) who finds that recognizable emotions

have the strategic power to change the actions of others, and therefore features the

ability to increase the profit of the possessors. Güth and Yaari (1992) then formally

introduce the approach of indirect evolution. In fact, they use this approach to chal-

lenge a form of reciprocity by having regard for individuals who have tendencies for

rejecting unfair offers in ultimatum bargaining. However, the reciprocity motive is

somewhat restricted there because the agents are not able to feel subjective benefits

from proposing fair distributions. In line with related literature, the finding of Güth

and Yaari is that the observability of types guarantees that reciprocators gain from

their attitudes in material terms while opportunists relatively loose.6

In the present study, we analyze the evolving of reciprocity in the wide frame

of regular and payoff-monotonic selection processes. For that purpose, we use a

result which is shown by Heifetz et al. (2007a): if the evolutionary game on the level

of biases (which is located at equilibrium behavior which results from the players’

idiosyncratic well-being functionals) is dominance solvable, in the sense of Moulin

(1984), for continuous preference spaces, then, the limiting population can be char-

acterized under any payoff-monotonic selection dynamics. The replicator dynamics

for general distributions (cf. Oechssler and Riedel (2001) for a detailed technical
6Huck and Oechssler (1999) illustrate viability of preferences for rejecting unfair divisions even

if preferences are unobservable provided that the population is small and that the distribution of
preferences is known in the population.
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survey) is subsumed by the class of payoff-monotonic growth-rate functions that is

applied to the present study. The more general class considered here explicitly al-

lows to interpret the evolving of reciprocity not just on a biological level but rather

on a cultural level of learning (including imitation) or education where a reciprocity

disposition that is adequate to achieve higher material returns is replicated faster.

Note that our approaching is somewhat enhanced in comparison with the practice

of a group of research articles that assumes the evolving of other-regarding issues

(like reputation, social preferences, positional goods, ideologies, and so on) on a bi-

ological level and treats the results simply as a metaphor to interpret the dynamics

in terms of cultural spreading.7 Yet, this is not the only reason why the present

methodological approach is prepared for exploring reciprocity. In alignment with

the dynamical system, we are allowed to assume any arbitrary initial population

distribution provided that it is described by a compact interval of reciprocity. This

technical feature equips the results with a striking general character.

A first observation of our work shows that a sufficient reciprocal player who is

intrinsically spiteful (altruistic) may behave benevolent (spiteful) if the opponent

player is sufficient contrary in the intrinsic attitude and the strategic situation re-

quires that kind of behavior. In fact, the sign of the players’ overall concern for the

other players’ payoff is always determined by the strategic situation, i.e. the players

show a positive concern for the other players if strategic complements are present

and a negative concern if strategies are substitutes—a result which is reminiscent

to related work of Possajennikov (2000) and Bester and Güth (1998). A further

observation says that if player A’s intrinsic preference lies below a certain threshold
7Answering the question whether preference evolution relies on a biological or cultural selection

process is a subtle task and rarely elucidated in much detail in related work. However, in our
case, it is indeed useful to examine reciprocity on a rather short-termed cultural level since we
assume two differently treated preference dimensions which initiate the equilibrium actions: one
(altruism/spite) is exogeneous given and not evolving while the other (reciprocity) is endogenized
and evolving. With these specifications, it is appropriate to think of reciprocity as a cultural
norm which changes within the time span of cultural spreading while altruism/spite changes more
seldom by gene transmission. For a deeper understanding of the different selection processes (and
the associated speed differences) in evolutionary game theory, see Selten (1991).
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(if player A is relatively spiteful), then player A’s tendency to reciprocity is higher

the lower the intrinsic preference of player B (the nastier player B)—if player A’s

intrinsic preference lies above the threshold, then player A’s tendency to reciprocity

is higher the higher player B’s intrinsic preference is. The threshold depends on the

strategic type of the underlying game.

The remainder of the paper works as follows. The first part of section 3.2 surveys

some recent approaches of reciprocity or fairness in economics which are, in some

obvious sense, connected with the present study. The second part illustrates why

our treatment of subjective payoff perception, involving reciprocity, has the strate-

gic power to resolve social dilemma conflicts. Section 3.3 then introduces the basic

model under which the viability of reciprocity is analyzed. Section 3.4 concludes.

Technical details about the applied dynamics, and a figure and a table, that specify

some initial conditions, appear in the appendices.

3.2 On Reciprocity

3.2.1 Related Models and Current Treatment

In order to explain the emergence of other-regarding preferences, there are by now

several studies that try to identify more or less complicated models which give in-

sight into the economic psychology of people in strategic situations. The common

theme in these models is the antithesis to the neo-classical assumption that peo-

ple’s behavior is thoroughly driven by material selfishness. In order to narrow the

wide spectrum of recent approaches and to connect with the present work, it is

useful to concentrate on prominent models which explicitly incorporate a certain

motive of reciprocity or fairness.8 One such class assumes that subjective benefits
8Usually, the will to reciprocate springs from the will to being fair. However, the concept of

fairness is likewise of somewhat ambiguous use in economics. At this point, we refrain from a
broader discussion on fairness and point to the well-being functionals of this section for examining
the specific conception.
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are motivated from inequity aversions of own and other’s economic gains. Put dif-

ferently, the players’ actions are initiated by distribution considerations. Fehr and

Schmidt (1999) propose for this approach. In their regard, the subjective well-being

functional of player i in the standard two-player setting is formalized as

Ui = πi − αimax[πj − πi, 0]− βimax[πi − πj, 0],

where πi, πj are material payoffs and αi ≥ βi ≥ 0, βi < 1 are weight parameters.

Hence, the perceptive payoff of player i differs significantly in the issue whether she

and her opponent j are approximately equal rich in economic values; viz., the players

are pre-programmed to feel satisfaction from being about as rich as the opponent

players. To further summarize, the players are inequity-averse (αi, βi ≥ 0), dislike

inequity more if it springs from own relative loss (αi ≥ βi), but like gaining profit

more than reducing inequity (βi < 1). A similar model, also motivated by the idea

that the players aim to reduce inequity in their material payoffs, is developed by

Bolton and Ockenfels (2000). In the two-player setting, Bolton and Ockenfels assume

that the personal well-being of player i is determined via the (possibly non-linear)

term

Ui = vi

(
πi,

πi
πi + πj

)
,

where vi (·, ·) is globally non-decreasing, concave in the first argument (the mate-

rial payoff of player i), and strictly concave in the second argument (the relative

material payoff of player i). The models of Fehr/Schmidt and Bolton/Ockenfels

are both motivated by the idea that players act according to satisfy their fairness

emotions by reducing economic inequity. However, the players in these models are

distributional motivated and do not explicitly estimate the individual types of the

opponents, i.e. the players do not differentiate in the other players’ intentions or

preferences. Inspired by the psychological game-theoretical approach of Geanakop-

los et al. (1989), there is a somewhat more complex class of fairness models which

accounts for these elements and seems to reflect reality more detailed. In psycholog-

ical games, the players’ preferences depend on their beliefs about the other players’
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intentions. By using normal form games, Rabin (1993) proposes for this technique.

With his notation, he assumes that individual i plays according to her expected

utility

Ui (ai, bj, ci) = πi (ai, bj) + f̃j (bj, ci) [1 + fi (ai, bj)] ,

where ai, bj, and ci are, in this order, the strategy chosen by player i, the belief of

player i about the strategy of player j, and the belief of player i about the belief

of player j about the strategy of player i. πi (ai, bj) is player i’s material payoff,

f̃j (bj, ci) is player i’s belief about the kindness of the opponent j towards player i,

and fi (ai, bj) symbolizes the kindness of player i towards player j. If equilibrium

play is reached, the players’ beliefs about the other players’ intentions are true and

the players base their actions on these beliefs and the subsequent actions of the other

players. In line with Rabin’s approach but with the purpose to expand to extensive

form games, Dufwenberg and Kirchsteiger (2004) assumes a similar model. The ba-

sic difficulty of the extensive form is given by the fact that the players have to adjust

their perceived utility by updating their beliefs about the others’ intentions at each

node of the sequential game tree to ensure useful results. Contrary, in Geanakop-

los et al. (1989) and Rabin (1993), the players have only initial beliefs about the

others’ intentions which make the equilibrium analysis easier. Falk and Fischbacher

(2006) and Charness and Rabin (2002) propose equilibrium models which basically

incorporate both aspects the distributional one and the intention-based. However,

opposing to the approach used in the current paper, the applicability of these models

is somewhat limited which is basically due to the assumption of higher order beliefs

about the others’ intentions and the appearance of many equilibria. Levine’s model

and the version used here depict a third way of modeling reciprocity. In particular,

the subjective utility functions of the players depend on the beliefs about the intrin-

sic preferences of others, i.e. the players reciprocate to the perceived preference of

the respective opponent player.

From the previous sentences, it becomes clear that the meaning of reciprocity
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is ambiguous in terms of functional forms subsuming a motive of fairness. How-

ever, discriminations of reciprocity are multi-dimensional existent. In the following,

we will mention some further basic facets which appear repeatedly throughout the

literature. One prominent aspect is to distinguish between weak and strong reci-

procity. Weak reciprocity stands for the conception that people reciprocate in order

to gain higher material returns in the future by sustaining collaboration. Typically,

weak reciprocity relies on reputation and repeated interaction in orthodox economic

modeling and is basically not different from pure selfishness in social preference ter-

minology. In a key paper, Trivers (1971) uses the term reciprocal altruism which

is identical to weak reciprocity for which he shows sustainability under infinite re-

peated interactions.9 In contrast, strong reciprocity refers to the conception that

people show cooperative or retaliatory behavior, even if there is no reason to expect

higher material returns in the future (e.g. Gintis, 2000). Moreover, people are will-

ing to sacrifice own profit in order to either help friends or harm enemies. Under

this aspect, strong reciprocity is really other-regardingly intended.10

The differentiation of positive and negative reciprocity among the literature is

self-explanatory (e.g. Hoffmann et al., 1998). Loosely speaking, positive reciprocity

describes the tendency to reward kind people while negative reciprocity describes

the tendency to harm cruel people.

Another common aspect is to differentiate between direct and indirect reciprocity

(e.g. Nowak and Sigmund, 2005). Direct reciprocity describes the routine that if

‘person A helps (harms) person B, then person B helps (harms) person A’ while

indirect reciprocity states that if ‘person A helps (harms) person B, then person C
9As already discussed in the literature, the denotation “reciprocal altruism” appears somewhat

inadequate in this respect, cf. Hoffmann et al. (1998, p. 338). They argue convincingly that
“I am not altruistic if my action is based on my expectation of your reciprocation”. Another
thread of research comments that weak reciprocity is not reciprocity and would therefore probably
be unhappy with Trivers’ denotation even in this aspect. For example, Fehr and Fischbacher
(2002, C3) write: “It is important to emphasize that reciprocity is not driven by the expectation of
future material benefit. It is, therefore, fundamentally different from “cooperative” or “retaliatory”
behavior in repeated interactions.”

10For obvious reasons, Sobel (2005) substitutes “strong” with “intrinsic”, and “weak” with “in-
strumental”.
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helps (harms) person A’.

The specific notion of reciprocity used in the current paper is determined by the

subjective well-being functionals of section 3.3 and the underlying methodological

approach, and, in this regard, described as follows.

In comparison with the significant recurrent features of economic reciprocity, the

present shape exhibits the following attributes:

• preference-based

• strong (intrinsic)

• both, positive or negative

• indirect.

Though, the stated attributes are not intended to identify an objective, “true”

definition of reciprocity in economics. More precisely: the aim of this paper is not to

elucidate the meaning of reciprocity how it should be used in economics but rather to

assume a form of reciprocity that exhibits some predominant features which appear

frequently in the literature, and to explore under what circumstances this form of

reciprocity can survive in an evolutionary process.

3.2.2 A Simple Illustration

As we will see, the implications of strong reciprocity which we obtain in our basic

model are somewhat intricate to retrace (however, the trend and interpretation of

these results remain on a plain level). So, the following formulation of the sym-

metric two-player prisoners’ dilemma is intended to give a simple illustration why

the current treatment of subjective payoff perception, involving reciprocity, has the

strategic power to resolve social dilemma conflicts and overcome spite.11 Consider
11The prisoners’ dilemma is the leitmotif in Sethi and Somanthan (2003) for surveying economic

reciprocity in the evolutionary game theoretic literature. The current version uses a different notion
of reciprocity.
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the following 2× 2 matrix.

cooperate defect
cooperate ξ − υ, ξ − υ −υ, ξ
defect ξ,−υ 0, 0

Figure 3.1: A Prisoners’ Dilemma

As is the rule in the matrix design, one player is the row player and the other

plays the column; the first number in each matrix entry is the payoff received by

the row player and the second one belongs to the column player. The strategy

cooperate is connected with a private loss of υ > 0 and a benefit to the other player

of ξ > υ. The strategy defect yields neither a loss nor a benefit. If two intelligent

and self-interested individuals play this game exactly once, we face the well-known

dilemma where both players defect in order to reach a higher payoff regardless of

the strategical choice of the other player. However, cooperate would be mutually

better since both players’ outcome is higher under this strategy profile: ξ − υ > 0

with ξ > υ.

Under a simple model of natural selection the same dilemma defines the usual

situation. If we think of a population with size N consisting of k cooperators, and

hence N − k defectors, the reproductive matrix payoffs (or fitnesses) are given by

fC = k − 1
N − 1ξ − υ (cooperators)

and

fD = k

N − 1ξ (defectors),

and the average fitness is determined by f = k
N

(ξ− υ). In any mixed population the

defectors reach a higher fitness than the cooperators so that natural selection tends

to decline the fraction of cooperators while the fraction of defectors eventually take

over the whole population. Hence, without any model arrangement which favors the

outcome of cooperation, the dilemma of the one-shot game trivially persist under

natural selection where matrix payoffs correspond to fitnesses.
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Consider now the notion of player i’s perceived payoff which we use in the fol-

lowing chapters, i.e.12

Ui = πi + θi · πj with θi = αi · γi + (1− αi) · γj,

where αi ∈ [0, 1] defines the individual “norm of reciprocity”, and γi, γj ∈ [−1, 1]

defines the individual “intrinsic preference”.13 Note that if γi 6= 0, then player i puts

a non-zero weight on the material payoff of player j (unless the extremly rare case

where αi · γi + (1− αi) · γj = 0 with γi 6= 0; however, even in this case individual i

is intrinsically biased but her disposition does not come into effect only because her

reciprocity norm and the intrinsic preferences of both players compensate to zero).

Hence, we say that player i is biased if γi 6= 0. Further, we say that player i is

materialistic if both hold true γi = 0 and αi = 1, since then θi = 0, i.e. the material

outcome of player i coincides with her perceived payoff. Accordingly, a materialist

places no weight on the other players’ payoff while a biased player i places a weight

of ρbi on the payoff of a biased player and a payoff of ρmi on the payoff of a materialist,

where

ρbi = αi · γi + (1− αi) · γj; ρmi = αi · γi.

If two biased player interact, we reach the following payoff matrix.

cooperate defect
cooperate ξ − υ + ρbi (ξ − υ) , ξ − υ + ρbj (ξ − υ) −υ + ρbiξ, ξ − ρbjυ
defect ξ − ρbiυ,−υ + ρbjξ 0, 0

Figure 3.2: A Prisoners’ Dilemma with Biased Players

Provided that ξ − υ + ρb• (ξ − υ) > ξ − ρb•υ and −υ + ρb•ξ > 0, and thus ρb• > υ
ξ
,

cooperate is a dominant strategy for both players (the • stands for either i or j).

Note that if À αi · γi + γj > αi · γj and Á αj · γj + γi > αj · γi then ρb• > 0 and
12Cf. Eqs. (3.1) and Eqs. (3.3) in section 3.3. For the sake of simplicity, we assume that all

dispositions are perfectly observable.
13In our main model in section 3.3 we exclude perfect intrinsic preferences for technical reasons.

This is not necessary for the current illustrative purpose.
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(cooperate, cooperate) is potentially a Nash equilbrium, depending on the ratio of

benefit and loss. It is easily comprehended that both inequalities À and Á hold

if both players have altruistic feelings towards others, i.e. γi, γj > 0. But even in

the case of different intrinsic preferences, i.e. sign (γi) 6= sign (γj), the reciprocity

motive is apt to keep cooperate as the agreed strategy. For example, if player j is

moderate spiteful, say γj = −0, 6, and player i is perfectly altruistic, γi = 1, a high

reciprocity norm of player j, say αj = 0, 3, can reverse player j’s natural will to de-

fect. Note that the ability to reciprocity gives a strong impetus to the game. Even

if a player has a strong intrinisic attitude (|γi| is close to 1) a perfect tendency to

reciprocity (αi = 0) will always overcome the origin will to either cooperate or defect

if the other player has a contrary intrinsic attitude (sign (γi) 6= sign (γj)) since then

sign (θi) = sign (γj) 6= sign (γi). Of course, if both players are spiteful, i.e. γi, γj < 0,

then À and Á never hold and the only rational strategy is always defect.

In the case that a biased player i meets a materialistic player j, the action of

the biased player is determined by her intrinsic preference and independent of her

reciprocity motive, since the sign of ρmi (and thus the sign of γi) induce whether

to cooperate or defect. Naturally, a materialist always defects and is in the ad-

vantageous free-reding position if the opponent is a cooperating benevolent player.

Clearly, the pros and cons of being biased in the matrix PD game continue in a

standard population model where the matrix payoffs correspond to fitnesses.

The prisoners’ dilemma essentially illustrates the strategic advantages which can

result from the reciprocity motive when two biased players interact where one player

is sufficient altruistic and the other is intrinsically malevolent but sufficient recip-

rocal to overcome this attitude. It also demonstrates that two altruists can always

resolve the social dilemma but the reciprocity motive is not apt to overcome the

will of an altruist to cooperate if the other player is materialistic in the above sense.

Hence, the expected evolutionary advantages which results from the reciprocity mo-

tive seem to depend heavily on the initial population distribution regarding the

intrinsic preferences of the players.
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3.3 Model

In this section we will introduce our model of strong reciprocity, state our main

result under the assumption that the players perfectly recognize each others types,

and interpret the results.

Let there be a large population of evolutionary agents. At each instant in time a

pair of agents is matched at random to play the game ΓU = ({1, 2} , {x, y} , {U1, U2})

with the aim to maximize their subjective well-being, determined by

U1 = π1 + θ1 · π2 (3.1a)

U2 = π2 + θ2 · π1, (3.1b)

where π1 and π2 are material or “economic” (and therefore interpersonal comparable)

payoffs (e.g. money). In order to incorporate a broad variety of strategic situations

in this study, we assume that the material payoffs are defined by

π1 = x · (l · y − x) + x (3.2a)

π2 = y · (l · x− y) + y, (3.2b)

where x, y ∈ [0,∞) describe the actions or efforts of player 1 and player 2, respec-

tively. The parameter l ∈
(
l < 0, l > 0

)
determines the characteristic nature of

the game by measuring the kind and extent of strategical interdependence; the l is

further specified as soon as required. The specification of the economic payoffs is

sufficiently general to illustrate success since the economic interpretations are ex-

tensive. The simplest example is a production game with either negative or positive

externalities which is determined by the sign of l. The externality l < 0 represents,

for example, a common pool resource game where the players exploit a resource

with efforts x and y, respectively. Accordingly, the higher player A’s input the lower

player B’s payoff. Oppositely, l > 0 determines a game where a more aggressive

behavior of one player increases the payoff of the other player like in public good
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contribution settings. Alternatively, one can assume oligopolistic competition where

the efforts are either firms’ quantity choices (in a Cournot market) or price choices

(in a Bertrand market).

The variables θ1,θ2 symbolize the subjective overall concern for the respective

opponents’ profit, and have deeper meanings, as specified by

θ1 = α · γ1 + (1− α) · γ2 (3.3a)

θ2 = β · γ2 + (1− β) · γ1, (3.3b)

where the parameters γ1,γ2 are intrinsic preferences or attitudes, either altruism

or spite14 (γ1,γ2 include also material selfishness at the peak of neutrality). The

variables α,β identify the dispositions to reciprocity which belong to player 1 and

player 2, respectively. While the dimension of altruism and spite is an exogenous

trait, the dimension of reciprocity is endogenized in the model. This distinction

allows, for example, a player who is rather altruistic inclined to behave spiteful in a

reciprocal manner, however, by keeping the true character. Or, a player who is rather

spiteful by nature is able to behave benevolent without changing the true character

during the course of selection. From these specifications, one should think about

reciprocity as a cultural norm or convention which is changeable by the dynamical

pressures, and in this line, provides the distinct flexibility in the players’ behavior. It

is more for the sake of distinctiveness that we will sometimes refer to the parameters

γ1, γ2 as intrinsic preferences and to the reciprocity-variables α, β as cultural norms

or conventions; because, in the sense of subjective motivations which distort the

economic greed of the players and initiate their actions, α and β belong to the class

of intrinsic preferences, too. This is rather a question of definition.

In accordance with Levine (1998) and Sethi and Somanthan (2001), we avoid

initially the somewhat unnatural economic situations in which a player is less (or

equally) concerned about herself than about the opponent. Formally, the subjective
14Alternatively, one can assume that envy or malevolence is the opposite preference to altruism.
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overall concern for the other player satisfies |θ1| , |θ2| < 1. To ensure this, we impose

the following restrictions on the preference components:

γ1, γ2 ∈ A = [−1 + ε, 1− ε]

α, β ∈ B = [0, 1] ,
(3.4)

where ε is positive and small. Both assumptions are intuitively plausible. The first

one allows the players to exhibit a negative (“spite”: γ1, γ2 < 0), a neutral (“egoism”:

γ1, γ2 = 0), or a positive (“altruism”: γ1, γ2 > 0) intrinsic preference towards others.

The second assumption is even more intuitive and shows that the players evaluate

their overall concern by a convex combination of the own and the other players’

intrinsic preference. Note that α, (β) induce reciprocal actions only if α, (β) 6= 1

since in the case of α, (β) = 1 the agents’ subjective overall concern is independent

of the opponents’ intrinsic preference. Accordingly, we have the following notion.

Definition 3.1. The agents possess a tendency to reciprocity whenever α, (β) ∈

B \ {1}.

Evidently, the intuition of these assumptions is in line with the restriction of the

subjective overall concern towards others, which is finally fixed by

|α · γ1 + (1− α) · γ2| = |θ1| , (|β · γ2 + (1− β) · γ1| = |θ2|) < 1. More precisely, with

intrinsic traits of altruism and spite and the present distribution of reciprocity, the

players are completely identified over the compact space

θ1, θ2 ∈ Θ = [−1 + ε, 1− ε] . (3.5)

The game setup is close to the one of Harrison and Villena (2008) but differs

significantly in several aspects. First, Harrison and Villena concentrate on game

settings which exhibit negative externalities (∂π1(x,y)
∂y

< 0, ∂π2(x,y)
∂x

< 0) and strategic

substitutes (∂π1(x,y)
∂x∂y

< 0, ∂π2(x,y)
∂x∂y

< 0). This means that a higher input of player A

lowers both the actual payoff and the marginal payoff of player B. From Eqs. (3.2)

and their first and second order derivatives it is easy to see that the present setting
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represents negative externalities (∂π1(x,y)
∂y

< 0, ∂π2(x,y)
∂x

< 0) and strategic substitutes

(∂π1(x,y)
∂x∂y

< 0, ∂π2(x,y)
∂x∂y

< 0) if l < 0, and positive externalities (∂π1(x,y)
∂y

> 0, ∂π2(x,y)
∂x

> 0)

and strategic complements (∂π1(x,y)
∂x∂y

> 0, ∂π2(x,y)
∂x∂y

> 0) if l > 0.15 Note that with l = 0

there is no strategic interdependence so that economic competition becomes “mo-

nopolistic”. Consequently, the present model incorporates a much broader class of

strategic games.

A second difference regards the evolutionary analysis. While Harrison and Vil-

lena use the ESS concept to illustrate the evolutionary viability of reciprocity, we

use dominance solvability as proposed by Heifetz et al. (2007a). The lack of ESS is

that its predictions are only static. ESS does not explore to what level evolution will

lead the evolving trait of a certain population but can only tell whether a somehow

reached population state is immune to rare “mutations”.16,17 Contrary, dominance

solvability is useful to establish dynamic results with respect to many initial popu-

lation states that evolve according to the broad class of regular, payoff-monotonic

dynamics.

According to the indirect evolutionary approach, the players maximize their sub-

jective well-being which leads to a second stage game located at equilibrium behavior

(or on the level of biases). Let this game be symbolized by

Γf = ({1, 2} , {α, β} , {f1, f2}), where f1, f2 are the reproductive success defining

fitness functions that can be identified by substituting equilibrium behavior in the

economic payoffs (Eqs. (3.2)), which formally corresponds to

f1, f2 = π1(x∗, y∗), π2(x∗, y∗),

where x∗, y∗ are equilibrium strategies of ΓU = ({1, 2} , {x, y} , {U1, U2}). Thus, let
15The terminology to characterize the strategic environment was introduced by Bulow et al.

(1985) in order to distinguish games with upward sloping best-response functions from those with
downward sloping best-response functions.

16Formally, a strategy x∗ is ESS, if either i) π(x∗, x∗) > π(x, x∗) or ii) π(x∗, x∗) =
π(x, x∗) and π(x, x) < π(x∗, x) for all mutations x 6= x∗, see Maynard-Smith and Price (1973).

17Another lack of ESS is the insufficiency for characterizing dynamic stability of certain evolu-
tionary dynamics like replicator or BNN with continuous strategy sets (cf. Hofbauer et al., 2009,
and some references therein).
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both players maximize their perceived payoffs, i.e. x∗ ∈ argmaxx U1(x, y∗) and y∗ ∈

argmaxy U2(x∗, y), which defines their reaction functions: x = 1
2 (1 + ly (1 + θ1))

and y = 1
2 (1 + lx (1 + θ2)). Equalizing the reaction functions identifies the unique

equilibrium profile of the game (x∗, y∗), where

x∗ = − θ1l + l + 2
l2 + θ2l2 − 4 + θ1l2 + θ1l2θ2

(3.6a)

y∗ = − θ2l + l + 2
l2 + θ2l2 − 4 + θ1l2 + θ1l2θ2

. (3.6b)

From the equilibrium profile, we can comprehend the strategic influence of player

A’s regard for player B’s payoff on player B’s strategy. The strategic influence is

consistent with the psychological idea that individuals condition their actions on

the perceived types of others and do not act uniformly with each other. At this

point, it becomes clear that the relatedness of the other players’ type and the own

equilibrium action requires a positive degree of recognition. Note again that we have

assumed this ability of the players in the perfect sense.

Plugging the equilibrium actions in the material payoff functions leads to the

individual fitnesses which are functions of the biases,

f1 (θ1 (γ1, γ2, α) , θ2 (γ1, γ2, β)) = π1(x∗, y∗)

= −(θ1l + l + 2) (−l + θ1l − 2 + θ1l
2 + θ1l

2θ2)
(l2 + θ2l2 − 4 + θ1l2 + θ1l2θ2)2

(3.7a)

f2 (θ1 (γ1, γ2, α) , θ2 (γ1, γ2, β)) = π2(x∗, y∗)

= −(θ2l + l + 2) (−l + θ2l − 2 + θ2l
2 + θ1l

2θ2)
(l2 + θ2l2 − 4 + θ1l2 + θ1l2θ2)2 .

(3.7b)

Eqs. (3.7), the equilibrium payoffs, are the central functionals which measure

the prevalence of the different types in the game (the specifications of the dynamic

process—where successful types proliferate at the expense of abortive types—are

given in the Appendix A).

In the following, we assume that the intrinsic preference of player 1 is not exactly

the same as the intrinsic one of player 2, i.e. γ1 6= γ2. This assumption gives the
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game Γf an asymmetric character and is reasonable in order to adopt reciprocity

in the model. In the case of γ1 = γ2, it would be sufficient to behave according to

the intrinsic preference altruism or spite to fulfill the characteristic of reciprocity.

Formally, there are now two different populations but with intrinsic traits of altruism

and spite selected from the same pool. Somewhat informal, one can imagine that

nature picks γ1, γ2 from the equal distributed set A “with two hands at once”. Based

on the usual asymmetric setting in evolutionary games (cf. Selten, 1980; Weibull,

1995, pp. 64), let us imagine an ex ante symmetric game, denote ΓγΓf . In this game

any intrinsic preference parameter is assigned to each of the players with the same

probability. This assumption corresponds to “nature plays first” by allocating γ1, γ2

to player 1 and player 2. Relying on Selten’s work, the pair of reciprocity biases

(α, β), where α is associated with γ1 (i.e. the biases of player 1 are given with γ1

and α) and β is associated with γ2, would be evolutionarily stable in the sense of

ESS in the ex ante symmetric game ΓγΓf if and only if the vector (α, β) describes a

strict Nash equilibrium of the asymmetric game Γf . However, as mentioned before,

the question of interest regards the conception of dominance solvability, and hence,

the question of which type pass the dynamic evolutionary pressures under many

starting conditions.

The following lemma is useful to identify a dominance solvable trait (cf. Heifetz

et al., 2007a; Moulin, 1984, Theorem 4).
Lemma 3.1. In order to check for dominance solvability of a particular trait it is
sufficient to compute that

(i) the fitness function is continuous, twice differentiable and strictly concave in
the particular trait of each player;

(ii) the slope of each player’s best-reply function is less than 1 in absolute value;
and to argue that

(iii) the particular trait is selected from a compact interval.

To start with, a substantial argument for condition Lemma 3.1(iii) to be satisfied

here gives the following remark.
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Remark. The issue of compactness or completeness of the bias spaces is rather a

philosophical question. At best, one should think about the opportunity to “select”

the subjective norm of reciprocity as a hypothetical choice rather than an alternative

reflecting from a permanent conscious state of mind. Accordingly, the particular

values of α, β, and thus θ1, θ2, as emotional devices come into the conscious minds

and initiate the actions only if the strategic situation requires it yet the whole spaces

examining players’ potentials are present at any time.

In order to examine the viability of reciprocity, we will base our analyses on the

results given with the Theorem of Appendix A and Lemma 3.1; however, we have

to extend the setting somewhat since we assume the game Γf to be asymmetric.

To emphasize the asymmetric character of the game consider now two different

bias spaces with elements θ1, θ2 since γ1 6= γ2, however symmetrical types are also

possible, i.e. θ1 = θ2. So, θ1 ∈ Θ1 = [−1 + ε, 1− ε] and θ2 ∈ Θ2 = [−1 + ε, 1− ε]

where θ1 = θ2 only if α ·γ1 +(1− α) ·γ2 = β ·γ2 +(1− β) ·γ1 with γ1 6= γ2. Since the

position of the players’ roles is initially by no means (i.e. the players are either in

position 1 or in position 2 with equal probability) it is relatively straightforward to

construct an ex ante symmetric game setup. Thus, the profile parameter κ = (θ1, θ2)

is selected from the compact support K = Θ1×Θ2 = [−1 + ε, 1− ε]× [−1 + ε, 1− ε]

and determines the evolving game parameter of the ex ante symmetric game with

the distribution Gt = (G1
t , G

2
t ) where G1

t corresponds to θ1 and G2
t to θ2; the t

will sometimes be dropped for convenience.18 Then, the ex ante symmetric game

payoff of an individual with type κ = (θ1, θ2) competing with an individual of type

κ̃ =
(
θ̃1, θ̃2

)
is defined by

f (κ, κ̃) =
f1
(
θ1, θ̃2

)
+ f2

(
θ2, θ̃1

)
2 . (3.8)

18Of course, the basic evolving trait is the norm of reciprocity, α (respective β), however, for
the sake of clarity, it is sometimes benefiting to think of the overall concern as the evolving trait
(consider θ1, θ2 as an initial random weighting of α and β).
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Accordingly,

f (κ,G) = f1 (θ1, G
2) + f2 (θ2, G

1)
2 (3.9)

is the ex ante fitness to type κ = (θ1, θ2) under the distribution G = (G1, G2).

Having this game texture allows us to transfer methodological results from Heifetz

and Segev (2004) who use an asymmetric game setting which is close to ours in

order to identify “the evolutionary role of toughness in bargaining” which gives the

name to their essay. Extending the terminology of domination as in the Appendix

A to the asymmetric game setting we have that κ̃ =
(
θ̃1, θ2

)
(or κ̂ =

(
θ1, θ̂2

)
) is

dominated by κ = (θ1, θ2) in iteration n + 1 if for every κ́ =
(
θ́1, θ́2

)
∈ Un we have

f1
(
θ1, θ́2

)
> f1

(
θ̃1, θ́2

)
(or f2

(
θ2, θ́1

)
> f2

(
θ̂2, θ́1

)
).

Accordingly, we reach:

Lemma 3.2. Dominance solvability of the asymmetric game Γf with the two play-

ers’ payoffs f1 (θ1, θ2) and f2 (θ2, θ1) implies dominance solvability of the ex ante

symmetric game ΓγΓf with payoff f (κ, κ̃).

Using now the Theorem of Appendix A and Lemma 3.2, we have:

Lemma 3.3. If both players’ asymmetric game is dominance solvable to θ∗1 (α∗, γ1, γ2)

and θ∗2 (β∗, γ1, γ2), respectively, then the profile κ∗ = (θ∗1, θ∗2) is the unique outcome

of the ex ante symmetric game ΓγΓf under any regular and payoff-monotonic selection

dynamics.

We are now able to prove our main result.

Proposition 3.1. Consider the game described above with l ∈ [−1/4, 0) ∪ (0, 3/5]

and an extra requirement as given below the proof of this proposition (the require-

ment specifies the sets of γ1 and γ2 that we consider in different situations l). Then,

any initial full-support of the distribution of biases G = (G1
0, G

2
0) will converge in

distribution towards a unit mass on the pair of (θ∗1 = α∗γ1 + β∗γ2, θ
∗
2 = β∗γ2 + α∗γ1)
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with the pair of reciprocity normsα∗ = 1/2 + 1/2
−4 l − 4 +

√
Λ (γ1, γ2, l)

l (l − 2) (γ1 − γ2) , β∗ = 1/2 + 1/2
4 l + 4−

√
Λ (γ1, γ2, l)

l (l − 2) (γ1 − γ2)

 ,
with

Λ (γ1, γ2, l) = l4 (γ1 + γ2 + 2)2 − 4 l3
(
(γ1 + γ2 + 1)2 − 1

)
+

4 l2
(
(γ1 + γ2 + 1)2 − 1− 4 γ1 − 4 γ2

)
+ 16 l (γ1 + γ2 + 2) + 16,

under any regular and payoff-monotonic dynamics.

Proof. According to the Theorem of Appendix A and Lemmata 3.1-3.3, the pro-

cedure of the proof is to find an equilibrium profile of the asymmetric game Γf =

({1, 2} , {α, β} , {f1, f2}), and then check for sufficient conditions regarding domi-

nance solvability. Thus, calculating first order conditions of f1 (θ1, θ2) and f2 (θ1, θ2)

(cf. Eqs. (3.7)), i.e. ∂f1
∂θ1

(θ1, θ2) = 0 and ∂f2
∂θ2

(θ1, θ2) = 0, and solving for the biases

yield

θ1 = − (θ2l + l + 2θ2 + 2) l
θ2l2 + l2 − 2θ2l − 2l − 4 (3.10a)

θ2 = − (θ1l + l + 2θ1 + 2) l
θ1l2 + l2 − 2θ1l − 2l − 4 , (3.10b)

where it is now reasonable to account for

θ1 = α · γ1 + (1− α) · γ2 (3.11a)

θ2 = β · γ2 + (1− β) · γ1, (3.11b)

in order to find equilibria on the level of reciprocity. To this end, we plug Eqs.

(3.11) in Eqs. (3.10), equalize α and β, and solve for the equilibria.19 Accordingly,

we reach

α∗± = 1/2 + 1/2 −4 l − 4± Φ (γ1, γ2, l)
l (l − 2) (γ1 − γ2)

19Note that, mathematically, it does not matter whether we substitute the overall concern for
its components in Eqs. (3.10) or in the fitness functions (Eqs. (3.7)).
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and

β∗± = 1/2 + 1/2 4 l + 4± Φ (γ1, γ2, l)
l (l − 2) (γ1 − γ2) ,

where

Φ (γ1, γ2, l) =
√

Λ (γ1, γ2, l),

with

Λ (γ1, γ2, l) = l4 (γ1 + γ2 + 2)2 − 4 l3
(
(γ1 + γ2 + 1)2 − 1

)
+

4 l2
(
(γ1 + γ2 + 1)2 − 1− 4 γ1 − 4 γ2

)
+ 16 l (γ1 + γ2 + 2) + 16,

where Λ (γ1, γ2, l) > 0 if γ1, γ2 ∈ A = [−1 + ε, 1− ε] and l ∈ [−1/4, 1]. Further, by

regarding the restrictions on γ1, γ2 and the strategic setting l, and by analyzing the

result sets of α∗± and β∗±, respectively, we find that α∗− and β∗+ are no possible solu-

tions since α∗− /∈ [0, 1] and β∗+ /∈ [0, 1]. In order to prove that α∗−, β∗+ /∈ [0, 1] we have

to consider 8 cases, or accordingly, we have to verify 8 conditions (each condition

corresponds to one case), denote (I) to (V III). The Φ (γ1, γ2, l) is dropped in the

following since it is a positive value and of no account in any of the 8 conditions.

Case 1: Assume γ1 − γ2 < 0 and l ∈ (0, 1]. Then, α∗− < 0 implies that (I):=

−4 < −l(l−2)(γ1−γ2)+4l, which is true since the right hand side of (I) is positive.

Case 2: Assume γ1 − γ2 > 0 and l ∈ (0, 1]. Then, α∗− > 1 implies that (II):=

−4 < l(l−2)(γ1−γ2)+ 4l, which is true since the right hand side of (II) is positive.

Case 3: Assume γ1−γ2 < 0 and l ∈ [−0, 25, 0). Then, we analyze the same condition

as under case 2, i.e. (II)=(III), but with negative l and γ1 < γ2; however, this

condition holds even under these constraints.

Case 4: Assume γ1 − γ2 > 0 and l ∈ [−0, 25, 0). Then, we analyze the same condi-

tion as under case 1, i.e. (I)=(IV ), but with negative l and γ1 > γ2; however, this

condition holds even under these constraints.

Case 5: Assume γ1 − γ2 < 0 and l ∈ (0, 1]. Then, β∗+ > 1 implies that (V ):=

4 > l(l − 2)(γ1 − γ2)− 4l, which is true since (V ) = (−1) · (I).

Case 6: Assume γ1 − γ2 > 0 and l ∈ (0, 1]. Then, β∗+ < 0 implies that (V I):=
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4 > −l(l − 2)(γ1 − γ2)− 4l, which is true since (V I) = (−1) · (II).

Case 7: Assume γ1−γ2 < 0 and l ∈ [−0, 25, 0). Then, we analyze the same condition

as under case 6 (respective 2), i.e. (V II)=(V I)=(−1) · (II), but with negative l and

γ1 < γ2; however, this condition holds even under these constraints.

Case 8: Assume γ1−γ2 > 0 and l ∈ [−0, 25, 0). Then, we analyze the same condition

as under case 5 (respective 1), i.e. (V III)=(V )=(−1) · (I), but with negative l and

γ1 > γ2; however, this condition holds even under these constraints.

Hence, the unique equilibrium profile to be further analyzed is given by

(α∗+ = 1/2 + 1/2 −4 l − 4 + Φ (γ1, γ2, l)
l (l − 2) (γ1 − γ2) = α∗,

β∗− = 1/2 + 1/2 4 l + 4− Φ (γ1, γ2, l)
l (l − 2) (γ1 − γ2) = β∗),

(3.12)

where we have dropped the subscripts “+” and “−” for convenience.

According to Lemma 3.1(i), the next step is to show that Eqs. (3.7) fulfill the

properties of

(J) “continuity”,

(I) “twice differentiability”, and

(H) “concavity”,

with respect to α (respective β). By substituting θ1 and θ2 for its components, it

is easy to comprehend that J and I are satisfied. To show H, review that we have

defined the fixed and evolving dispositions by the restrictions

γ1, γ2 ∈ A = [−1 + ε, 1− ε] with γ1 6= γ2,

α, β ∈ B = [0, 1] ,

and the convex combinations, which totally identify the players, by

θ1 = α · γ1 + (1− α) · γ2

θ2 = β · γ2 + (1− β) · γ1

 ∈ Θ = [−1 + ε, 1− ε]
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Now, let us first check for concavity of Eqs. (3.7) in θ1 (respective θ2). Note that

although we deal with asymmetric fitness functions, it is sufficient to show that

one player’s payoff is concave in the overall concern, i.e. ∂2fA
(∂θA)2 (θA, θB) < 0 (for

A ∈ {1, 2} and B = 3 − A), since the pools of θA, θB are equal. Calculating the

second derivative with respect to Eqs. (3.7) yields

∂2fA

(∂θA)2 (θA, θB) = 2 l2 T (θA)
(l2 + θBl2 − 4 + θAl2 + θAl2θB)4 ,

where

T (θA) = −16 +
(
3 θB2 + θA + θB

3 + 3 θB2θA + 3 θAθB + 1 + θAθB
3 + 3 θB

)
l5

+
(
16 θB + 14 θB2 − 4 θB2θA − 2 θAθB3 + 6− 2 θAθB + 4 θB3

)
l4

+
(
−8 θB2θA − 8 θA − 16 θAθB + 12 θB2 + 24 θB + 12

)
l3

+
(
−4 θB2 − 8 θAθB − 8 θA + 4

)
l2 + (−16− 16 θB) l

Somewhat tedious calculations reveal that T (θA) < 0 if l ∈ [−1/4, 3/5] and θA, θB ∈

Θ, and thus ∂2fA
(∂θA)2 (θA, θB) < 0, if l ∈ [−1/4, 0)∪ (0, 3/5] and θA, θB ∈ Θ. Therefore,

the players’ best replies concerning their overall biases are given by Eqs. (3.10).

However, whether the players’ best replies concerning their reciprocity biases are

implicitly given by Eqs. (3.10) is still an open question. Differentiating Eqs. (3.7)

with respect to α (respective β) by applying the chain rule leads to

∂2f1

(∂α)2 (θ1, θ2) = ∂2f1

(∂θ1)2 (θ1, θ2) (γ1 − γ2)2 ,

and
∂2f2

(∂β)2 (θ1, θ2) = ∂2f2

(∂θ2)2 (θ1, θ2) (γ2 − γ1)2 ,

where (γ1 − γ2)2 > 0 and (γ2 − γ1)2 > 0 in any case, and ∂2f1
(∂θ1)2 (θ1, θ2) < 0,

∂2f2
(∂θ2)2 (θ1, θ2) < 0 if l ∈ [−1/4, 0)∪(0, 3/5]. Then ∂2f1

(∂α)2 (θ1, θ2) < 0 and ∂2f2
(∂β)2 (θ1, θ2) <

0 under the same constraint concerning l.

The next step is to show that the slope of the best reply functions of the asym-

metric bias game are less than 1 in absolute value (cf. Lemma 3.1(ii)). We derive the
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two players’ best reply functions concerning the reciprocity motive by calculating

and solving the first order conditions of Eqs. (3.7) with respect to α (respective β),

or equivalently, by plugging Eqs. (3.11) in Eqs. (3.10) and solving for the reciprocity

norms. Accordingly, we reach

BR1 = α

(
β = θ2 − γ1

γ2 − γ1

)
= (−l2 + 2 γ2l − 2 l − γ2l

2) θ2 + 4 γ2 − γ2l
2 − l2 + 2 γ2l − 2 l

(l2 − 2 l) (γ1 − γ2) θ2 + (l2 − 2 l − 4) (γ1 − γ2)
(3.13a)

BR2 = β

(
α = θ1 − γ2

γ1 − γ2

)
= (γ1l

2 − 2 γ1l + l2 + 2 l) θ1 + γ1l
2 − 2 γ1l − 4 γ1 + l2 + 2 l

(l2 − 2 l) (γ1 − γ2) θ1 + (l2 − 2 l − 4) (γ1 − γ2) .

(3.13b)

The slopes of the best reply functions are given by

BRs
1 = dα

dβ
(β) = −4 l (2 + l)

(4 + (γ1β − γ1 − β γ2 − 1) l2 + (−2 γ1β + 2 + 2 γ1 + 2 β γ2) l)2

(3.14a)

BRs
2 = dβ

dα
(α) = −4 l (2 + l)

(−4 + (α γ1 + 1 + γ2 − γ2α) l2 + (−2α γ1 − 2 γ2 − 2 + 2 γ2α) l)2 ,

(3.14b)

where

sup
l∈[−1/4,0)∪(0,3/5]

∣∣∣− (4l2 + 8l
)∣∣∣ ≈ 6, 24

and

inf
l∈[−1/4,0)∪(0,3/5]

γ1,γ2∈A
α,β∈B

|den (BRs
1)| = inf

l∈[−1/4,0)∪(0,3/5]
γ1,γ2∈A
α,β∈B

|den (BRs
2)| ≈ 8, 265,

with den (◦) symbolizing the denominator of ◦. Since 6, 24 < 8, 265 the slopes of the

best reply functions of the two players are less than 1 in absolute value, so condition

Lemma 3.1(ii) holds.

In conclusion, by Lemmata (3.1-3.3), the ex ante bias game ΓγΓf is dominance

solvable with (α∗, β∗) as in Eq. (3.12) as the unique Nash equilibrium profile, and

the unique profile that survives any dynamic regular and payoff-monotonic process

with full support on the one-dimensional reciprocity space.

In order to analyze only situations where the evolutionary outcome of reciprocity

lies between 0 and 1, we need to compute the following requirement as announced
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in Proposition 3.1.

Requirement. The following relation is necessary to guarantee that α∗, β∗ ∈ [0, 1] .

|Φ (γ1, γ2, l)− (4l + 4)| ≤ |l (l − 2) (γ1 − γ2)| . (3.15)

Proof. Since α∗+β∗ = 1, it is sufficient to show that α∗ ∈ [0, 1] . Consider 0 ≤ α∗ ≤ 1

with α∗ as in Eq. (3.12), then we need to examine 2 cases:

Case 1: l (l − 2) (γ1 − γ2) < 0, i.e. sign (l) = sign (γ1 − γ2), and

Case 2: l (l − 2) (γ1 − γ2) > 0, i.e. either l < 0 or γ1 < γ2.

Rearranging 0 ≤ α∗ ≤ 1 given the first case leads to

4l + 4 + l (l − 2) (γ1 − γ2)︸ ︷︷ ︸
<0

≤ Φ (γ1, γ2, l) ≤ 4l + 4− l (l − 2) (γ1 − γ2)︸ ︷︷ ︸
<0

,

and the second case leads to

4l + 4− l (l − 2) (γ1 − γ2)︸ ︷︷ ︸
>0

≤ Φ (γ1, γ2, l) ≤ 4l + 4 + l (l − 2) (γ1 − γ2)︸ ︷︷ ︸
>0

.

Subsuming both cases gives

4l + 4− |l (l − 2) (γ1 − γ2)| ≤ Φ (γ1, γ2, l) ≤ 4l + 4 + |l (l − 2) (γ1 − γ2)| ,

and thus

|Φ (γ1, γ2, l)− (4l + 4)| ≤ |l (l − 2) (γ1 − γ2)| .

Solving for a parameter of this expression does not give much additional insight,

instead, in the Appendix B we show some representative situations that conform to

this requirement (see Figure 3.3 and Table 3.1 there).

Having proved our basic result, it is relatively simple to derive a benchmark

finding where the evolutionary players are not able to feel reciprocity.20 Let us first

define a one-dimensional population as follows.

20Qualitatively, the same result appears in an example of Heifetz et al. (2007a).
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Definition 3.2. A one-dimensional population here is a population as in the fore-

going environment, but without reciprocity, and where the evolving trait is simply

the intrinsic preference (the weight which is put on the opponents’ material profit).

That is, α = β = 1 (cf. Definition 3.1), such that θA = 1 ·γ′A+(1− 1) ·γ′B = γ
′
A and

θB = 1 ·γ′B+(1− 1) ·γ′A = γ
′
B, where the “

′” symbolizes “evolving” or “endogenized”.

Also, in this settig, we allow for γ′A = γ
′
B.

Then, we reach the following result.

Proposition 3.2. Consider the one-dimensional population described above with a

strategic interdependence according to l ∈ [−1/4, 0)∪ (0, 3/5] and a mutation space

given by θA = γ
′
A, θB = γ

′
B ∈ Θ = [−1 + ε, 1− ε]. Then, any initial full-support

distribution of biases converges in distribution towards the unit mass on l/(2 − l),

under any regular and payoff-monotonic dynamics.

Proof. As we have computed that ∂2fA
(∂θA)2 (θA, θB) < 0 if l ∈ [−1/4, 0)∪(0, 3/5], it suf-

fices to show that the slope of the best reply function is less than 1 in absolute value

in this variant setting, since twice-differentiabilty and continuity, as also requested

by Lemma 3.1, is obviously here. The best reply function of player A is

BRA = θA (θB) = argmax
θA

fA (θA, θB) = − (θBl + l + 2 θB + 2) l
θBl2 + l2 − 2 θBl − 2 l − 4 . (3.16)

The slope of the best reply function is

BRs
A = dθA

dθB
(θB) = 4 (l + 2) l

(θBl2 + l2 − 2 θBl − 2 l − 4)2 . (3.17)

Under assumptions l ∈ [−1/4, 0) ∪ (0, 3/5] and θA, θB ∈ [−1 + ε, 1− ε], we see that

dBRs
A

dθB
= −8 (l + 2) l (l2 − 2 l)

(θB l2 + l2 − 2 θB l − 2 l − 4)3 < 0.

Hence, Eq. (3.17) is decreasing in θB, and thus maximized at θB = −1 + ε

and minimized at θB = 1 − ε. With l ∈ [−1/4, 0), Eq. (3.17) is negative and

the maximum absolute value occurs at θB = 1 − ε, where |BRA (θB = 1− ε)| =∣∣∣∣4 (l+2)l
(−2 l2+l2ε+4 l−2 lε+4)2

∣∣∣∣ < 1. With l ∈ (0, 3/5], Eq. (3.17) is positive and the maximum
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absolute value occurs at θB = −1+ε, where |BRA (θB = −1 + ε)| =
∣∣∣∣4 (l+2)l

(l2ε−2 lε−4)2

∣∣∣∣ <
1. Since the variant game is dominance solvable, we find the outcome l/(2 − l) by

equalizing and solving for the biases with respect to Eq. (3.16), i.e. solving for θA
in θA (θB = θA).

So, what is the significance of these results? By fielding this question, one

should bear in mind that although the constraints of the equilibrium, which are de-

termined by the game dynamical aspects and the model parameters, appear some-

what restricted, all assumption are intuitively plausible and of sufficient general

character. The game dynamics allow for different initial populations to develop in

the wide field of regularity and payoff monotonicity only provided that the popu-

lation describes a compact interval in the line of reciprocity. Likewise, the payoff

function which defines reproductive success in the society stands for a wide variety

of different strategic games.

There are several observations which we can make easily. To start with, note that

both players’ equilibrium reciprocity values sum up to 1, i.e. α∗+ β∗ = 1. This fact

guarantees that both players’ regard for the opponents’ payoff is identical.

Corollary 3.1. θ∗1 = θ∗2.

Proof. Since α∗ + β∗ = 1, we have θ∗1 = α∗︸︷︷︸
=1−β∗

·γ1 + β∗︸︷︷︸
=1−α∗

·γ2 = θ∗2.

This result is not surprising because asymmetry of the equilibrium payoffs emerges

not on the level of the players’ overall concern but only with respect to the intrinisc

preferences of the players. The next observation regards a comparing of our basic

result with the outcome in the one-dimensional population model.

Corollary 3.2. The two-dimensional population model may develop a different over-

all concern than the one-dimensional population model does.

Proof. Let us write down only one simple example. Consider l = −0, 25, γ1 = −0.8,

and γ2 = 0.4. Then, the two-dimensional population develops an outcome that is
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approximately α∗ · γ1 + β∗ · γ2 ≈ −0, 08 and the outcome of the one-dimensional

population model corresponds to l
2−l = −0, 1.

However, the fact that the strategic environment determines the sign of the overall

concern is an observation which is of general character.

Corollary 3.3. The players show a negative overall concern if strategic substitutes

are present, i.e. l < 0 ⇒ θ∗1 = θ∗2 < 0. If the underlying game exhibits strategic

complements, then, the players’ value their opponents’ payoff positively, i.e. l >

0⇒ θ∗1 = θ∗2 > 0.

This result is reminiscent of the pioneering work of Bester and Güth (1998) where

strategic complements leads to altruism and strategic substitutes to selfishness.21

The following observation regards the reciprocity motive and its conclusion holds

universally for the case of strategic substitutes, i.e. l ∈ [−1/4, 0), and partly for the

case of strategic complements (l ∈ (0, 3/5]).

Corollary 3.4. There exists a threshold ζ (l) ∈ A such that

∂α∗ (γ1, γ2, l)
∂γ2

< 0, for γ1 < ζ (l) , (3.18)

and
∂α∗ (γ1, γ2, l)

∂γ2
> 0, for γ1 > ζ (l) , (3.19)

and for the second player likewise. A rough conclusion of this observation works as

follows. If player A’s intrinsic lies below the threshold, then the will to reciprocate

to player B increases as player B gets more nasty. Likewise, if player A’s intrinsic

lies above the threshold, then the will to reciprocate to player B increases as player

B gets more nice. Furthermore, the threshold is increasing in the strategic setting l.

As the fractions of Ineq. (3.18) and Ineq. (3.19) are no continuous functions for

the parameter constraints when strategies are complements, the conclusion derived
21However, the finding under strategic substitutes is restricted there, which is due to Bester

and Güth’s presumption of a non-negative preference space, and extends to spitefulness if the
zero-barrier is abrogated (cf. Bolle, 2000; Possajennikov, 2000).

75



from these inequations is limited for l ∈ (0, 3/5]. In particular, for strategic comple-

ments and some values of γ1 ∈ A, denote γ̂1, there is a critical point for γ2 such that

α∗ (γ̂1, γ2 − δ, l ∈ (0, 3/5]) < α∗ (γ̂1, γ2, l ∈ (0, 3/5]) > α∗ (γ̂1, γ2 + δ, l ∈ (0, 3/5]), for

positive δ, and for the second player likewise.

3.4 Conclusion

Building upon the assumption that individuals adjust their actions to achieve higher

subjective utility, while dynamical pressures change the composition of reciprocal

preferences in the population according to the players’ objective gains, this study

provides a prognose concerning the emergence of strong reciprocity in a wide class of

strategic interaction. The specific conception of reciprocity is defined by the players

tendency to response to the perceived intrinsic attitudes of others. The basic finding

is that a high degree of flexibility (in the reciprocal sense) pays off. In our setting,

it is the strategic environment and the specific other players’ type which determine

the players’ behavior and only marginally their usual, exogeneous given, intrinsic

attitudes. The unique dominance solvable profile of reciprocity in our asymmet-

ric setting, and hence the only survivor under any regular and payoff monotonic

selection process, motivates an altruistically inclined player to behave spitefully if

strategies are substitutes and the opponent player is intrinsically spiteful. Con-

versely, the reciprocity norm of a spiteful player motivates him to show altruistic

behavior if strategies are complements and the opponent player is intrinsically al-

truistic. In this regard, our study provides an economic and cultural explanation to

the question why people often show a different behavior than they usually would.

The study further substantiates related work which shows that the strategic envi-

ronment determines the players equilibrium behavior in one-dimensional preference

models. In particular, the fact that strategic substitutes lead to a negative emotion

and strategic complements to a positive emotion is once more confirmed, even in
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the new setting of two preference dimensions.

A further conclusion of our work is that if player A is relatively spiteful, then

player A’s tendency to reciprocity is higher the nastier player B—if player A is rel-

atively nice, then player A’s tendency to reciprocity is higher the nicer player B.

However, this conclusion is restricted in the sense that it holds universally only for

the case of strategic substitutes.

One can think of several extensions of our basic model. Since preference biases

act like commitment devices which form the other players’ equilibrium strategies to

a certain extent, it would be interesting to explore whether the qualitative results

maintain in cases where the players do not recognize the other players’ types per-

fectly. For instance, one can think of situations where the players’ types are observed

with some noise because they do not learn the types of each other, or where some

players intentionally signal a wrong disposition in order to benefit from the resulting

strategic effect. It would further be interesting whether our results can be identified

in experimental studies—an admittedly subtle task since the individual usual types

have to be ascertained before a norm of reciprocity can be examined.
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3.5 Appendices

3.5.1 Appendix A. A Generic Class of Evolutionary Dynam-

ics

To analyze the evolutionary viability of reciprocity, we build upon the generic class

of selection dynamics as proposed by Heifetz et al. (2007a). This section is intended

to sketch the distinctive attributes and advantages of this class. To this end, imagine

the following.

At each instant in time t ≥ 0, two players are randomly drawn from a continuum

population to play a certain game. In particular, the population is characterized by

the distribution Gt ∈ ∆ (Θ), where ∆ (Θ) is the set of Borel probability distributions

over the compact space Θ =
[
θ, θ

]
. The population evolves over time in the space

of ∆ (Θ) according to the following differential equation.

Ġt (S) =
∫
S
g (θ,Gt) dGt (θ) , S ⊆ Θ Borel measurable, (A.3.1)

where g : Θ×∆ (Θ)→ R is a continuous growth-rate function. The following defi-

nition further specifies the dynamics.

Definition 3.3. The continuous growth-rate function g : Θ×∆ (Θ)→ R is payoff-

monotonic and regular if for every G ∈ ∆ (Θ), the following conditions hold:

• A higher average fitness corresponds to a higher growth-rate, or formally,
∫
f
(
θ, θ́

)
dGt

(
θ́
)
>
∫
f
(
θ̃, θ́

)
dGt

(
θ́
)
⇐⇒ g (θ,Gt) > g

(
θ̃, Gt

)
. (A.3.2)

• Gt is a probability distribution for every t,
∫

Θ
g (θ,G) dG (θ) = 0. (A.3.3)
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• g can be extended to the domain Θ×X, where X is the set of signed Borel mea-

sures with variational norm smaller than 2, such that g is uniformly bounded

and Lipschitz continuous on Θ×X. Formally,

sup
θ∈Θ
|g (θ,Gt)| <∞

sup
θ∈Θ

∣∣∣g (θ,Gt)− g
(
θ, G̃t

)∣∣∣ < K
∥∥∥Gt − G̃t

∥∥∥ , Gt, G̃t ∈ X,
(A.3.4)

for some constant K, where ‖G‖ = sup
|h|≤1
|
∫

Θ hdG| is the variational norm on

signed measures.

Oechssler and Riedel (2001, Lemma 3) show that regularity of g guarantees that

the mapping G →
∫
Θ g (·, G) dG is bounded and Lipschitz continuous in the varia-

tional norm, which implies that the differential Eq. (A.3.1) has a unique solution

for any initial distribution G0.22

The dynamics defined here formalize the simple idea that only individuals who

play well in the population increase while individuals who play badly decrease. As

mentioned in the introduction, the underlying evolving process may rely on a bi-

ological level or on a cultural level. Accordingly, more successful types have more

descendantes who carry the genes of their parents, or more successful types are more

likely to be adopted under a cultural process of education or imitation from role-

models. Alternatively, Heifetz et al. (2007a) mention that the same mathematical
22To see that the replicator dynamics forms a special case of the generic dynamics determined

by Eq. (A.3.1), consider a growth-rate function which evolves according to the subtraction of the
population average success from the success of a single type (the difference is sometimes called the
excess payoff ). Formally, Gt evolves according to

Ġt (S) =
∫
S

[f (θi, Gt)− f (Gt, Gt)] dGt (θi) , S ⊆ Θ,

where
f (θi, Gt) =

∫
Θ
fi (θi, θj) dGt (θj)

is the expected success of individual i played against a randomly chosen individual j. And, the
population average success is

f (Gt, Gt) =
∫

Θ

∫
Θ
fi (θi, θj) dGt (θj) dGt (θi) .
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structure is compatible with the idea that successful individuals have more influence

on the dynamic process since they appear more often in economic interactions, and

so, are more likely to be reproduced.

Dealing with the concept of dominance solvability requires a deeper understand-

ing of the concept of domination and some additional notations. To begin with,

we say that θ′ is dominated by θ whenever f (θ, θ′′) > f (θ′, θ′′) for every θ′′ ∈ Θ.

Then, let D1 denote the set of types θ′ which are dominated by some θ ∈ Θ, and

U1 is the set of undominated types, i.e. U1 = Θ \ D1. Further, Dn is the set of

dominated types after at most n iterations and the set of undominated types is

accordingly Un = Θ \Dn. Then, θ′ ∈ Un is dominated in iteration n + 1 by θ ∈ Un
if f (θ, θ′′) > f (θ′, θ′′) for every θ′′ ∈ Un. We say that θ′ is serially dominated if it

is dominated after some number of iterations. Under regular and payoff monotonic

dynamics any serially dominated types are extinct in the limiting population. A

game is dominance solvable if there is a unique type that is not serially dominated.

The analyzes of reciprocity in this paper is based on this class of selection dynamics

and on the following theorem of Heifetz et al. (2007a) which extends results from

Samuelson and Zhang (1992), where the population evolves according to matrix

games, to continuous strategy spaces.

Theorem. (Heifetz et al. (2007a)) Consider a symmetric two-player game with

strategy space Θ =
[
θ, θ

]
⊂ R, a continuous payoff function f : Θ × Θ → R, and

a regular, payoff-monotonic growth-rate function g : Θ × ∆ (Θ) → R. Moreover,

assume that the population G has initially full support over the compact space Θ

and evolves according to the differential equation as defined by Eq. (A.3.1). Then,

types θ which are serially dominated are asymptotically weeded out, i.e. they have

a neighborhood V 3 θ for which limt→∞Gt (V ) = 0. In particular, when the game

is dominance solvable to equilibrium θ∗, then Gt converges in distribution to a unit

mass at θ∗.
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3.5.2 Appendix B. Figure and Table

Figure 3.3 presents the possible sets of γ1 and γ2 in 5 different strategic situations

l: l = −0, 25, l = −0, 05, l = 0, 05, l = 0, 25, and l = 0, 5. The graphics show

that we analyze situations where the intrinsic preferences of the two populations are

predominantly different, i.e. sign (γ1) is predominantly different from sign (γ2). The

graphics also show that in the case of strategic substitutes l < 0, we do not consider

populations with positive γ1 and positive γ2; likewise, in the case of strategic com-

plements, we do not consider cases where γ1 and γ2 are both negative.

Figure 3.3: γ1,γ2-

sets.

Table 3.1 shows some dominance solvable results with respect to different game
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parameters. For expositional clarity we focus on the same “representative” envi-

ronments as in Figure 3.3: we assume 5 different cases which examine the strategic

environment, i.e. l = −0, 25, l = −0, 05, l = 0, 05, l = 0, 25, and l = 0, 5, each with

a two population setting of different intrinsic preferences. The table basically shows

that a dominance solvable reciprocity trait is apt to reverse the players intrinsic

attitude. This finding holds in settings with strategic substitutes (l < 0) as well

as in those with strategic complements (l > 0). For example take l = −0, 25, i.e.

strategic substitutes, then if the γ1-player is moderate altruistic (γ1 = 0, 3) and the

opponent player is of type γ2 = −0, 3 then the dynamics drive the γ1-player to a

relatively reciprocal norm (0, 25) such that the overall concern becomes negative.

The fact that the sign of the strategic environment determines the sign of the overall

concern can also be observed in the table.

Exogeneous game parameters Dominance solvable traits (approx. values)

Strategic setting Intrinsic preferences Reciprocity Overall concern

l γ1 γ2 α∗ β∗ θ∗1 = θ∗2

−0, 25 −0.9 0, 1 0, 125 0, 875 −0.025

−0, 25 0, 3 −0, 3 0, 25 0, 75 −0, 15

−0, 05 −0, 6 0, 3 0, 35 0, 65 −0, 015

−0, 05 0, 6 −0, 1 0, 087 0, 913 −0, 039

0, 05 0, 7 −0, 2 0, 262 0, 738 0, 036

0, 05 −0, 7 0, 5 0, 4 0, 6 0, 02

0, 25 0, 4 −0, 5 0, 67 0, 33 0, 103

0, 25 −0, 3 0, 2 0, 19 0, 81 0, 105

0, 5 0, 6 0, 1 0, 478 0, 522 0, 339

0, 5 −0, 7 0, 3 0, 166 0, 834 0, 134

Table 3.1: Results in different situations.
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Chapter 4

Overconfidence in Tullock

Contests: An Evolutionary

Approach

We explore evolutionarily stable levels of self-confidence in Tullock contests for fi-

nite and infinite populations. While the players match exactly their true value of

self-confidence if the population is infinite, they always exhibit a tendency to over-

confidence if the population is of finite size. More precisly, the smaller the size of the

population, the stronger the evolutionarily stable degree of overconfidence. Method-

ologically, we use the approach of indirect evolution where players maximize given

preferences which evolve according the evolutionary fitness they induce. We further

establish a conformity between evolutionarily stable effort as calculated under direct

evolution, and the equilibrium effort which is induced by the evolutionarily stable

level of overconfidence given indirect evolution.
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4.1 Introduction

The deviations from standard routines of the homo economicus model have recently

revolutionized the branch of behavioral economics. Economic decision makers are

not as selfish, rational, and perfectly informed as presupposed in much traditional

economic work. Due to observations of real life interaction and experimental eco-

nomics, the consideration of “imperfect” economic agents occurs by now in many

different areas of economics. In many experiments, people show “irrational” and/or

“unselfish” behavior, for instance by “burning money” in order to either punish or

reward others or for other reasons.1

In the present work, we consider contests where players make irrecoverable invest-

ments to influence their probability of winning. Evidently, this sort of competition

is a very common phenomenon, and the related literature include, among others,

litigation (Robson and Skaperdas, 2008), R&D competition (Nalebuff and Stiglitz,

1983), sporting competition (Szymanski, 2003), lobbying (Baye et al., 1993) and

rent-seeking (Tullock, 1980). In particular, we investigate the probably most stud-

ied form of contests, namely Tullock contest, and achieve to substantiate detected

deviations which occur from predictions of rational Nash equilibrium theory on the

one side and results from experimental economics on the other. The brainchild of

Tullock (1980) is that the individual probability of winning a (howsoever designed)

contest is an increasing function of the own effort. In Nash equilibrium theory, it

is established that the accumulated efforts of the contest participants never exceed

the rent. However, experimental contests show that people may overexpenditure in

relation to risk-neutral Nash expenditure levels.2 ESS theory and direct evolution

of effort levels already gives an answer to this puzzle since overdissipation can be an

ESS outcome of a Tullock contest as shown by Hehenkamp et al. (2004).

The main objective of the present study is to further identify evolutionary ratio-
1Cf. Camerer (2003) for a great overview of the experimental literature.
2Cf. Hörisch and Kirchkamp (2010) and Morgan et al. (2008), and the references therein.
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nales for departures from Nash equilibrium effort levels by allowing the players to

exhibit an idiosyncratic feeling of self-confidence, i.e. the players are able to per-

ceive underconfidence and overconfidence.3 The idea to integrate the dimension of

self-confidence in the Tullock contest environment builds upon recent empirical find-

ings that overconfident subjects are more likely to self-select into more competitive

settings than unbiased individuals (cf. Dohmen and Falk, 2006). Methodologically,

we use indirect evolution where subjective and objective payoffs are two different

values; the first is pursued by the players who exhibit an idiosyncratic parameter

of self-confidence and the second measures the evolutionary success of this idiosyn-

cratic parameter (cf. Güth et al., 2002). Indirect evolution is by now the central

tool in behavioral economics and, in particular, evolutionary game theory, to ex-

plain distortions from the homo economicus model in experiments and real life.

The methodology has recently stirred the contest literature. For example, Kon-

rad (2004) models an all-pay auction (a limiting case of the Tullock contest where

the player with the highest expenditure wins for certain) with two types of indi-

viduals: altruistic and envious ones. He considers incomplete information and an

infinitely repeated game, and identifies an “interior equilibrium”, i.e. both types

exist in equilibrium such that they form a symbiosis. Schmidt (2009) considers a

related model but with full information and he uses a standard Tullock contest.

He finds that a population of altruists performs better than a population of en-

vious players but an envious player has the edge over an altruist if both compete

against each other. Moreover, he finds an evolutionary advantage of the envious

player in that very altruistic players always die out but very envious players do so

only under certain conditions. The result that “negatively interdependent” players

(in the sense of suffering if others win) feature an evolutionary advantage can also

be found in Leininger (2009). Methodically, he uses indirect evolution and Schaffer

(1988)’s ESS version for finite populations to prove that evolutionarily stable prefer-
3If we use the expression “self-confidence”, we mean its dimension which ranges from strong

underconfidence over the neutral (“true”) level to strong overconfidence.
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ences exhibit negative interdependence which rationalizes higher expenditures than

standard Nash behavior without distortions. Precisely, he finds that evolutionarily

stable spite under indirect evolution yields to the same more aggressive behavior

as calculated with the ESS conception under direct evolution. The build-up of our

approach is very close to Leininger’s—however, instead of altruism/spite we explore

the level of self-confidence. As Leininger identifies spite as an evolutionary rationale

for aggressive behavior in contests, we find overconfidence as another evolutionary

rationale. Interestingly, the equivalence result of Leininger applies to the same ex-

tent in our setting, too. That is, direct evolution of effort and indirect evolution of

self-confidence guides to the same behavior.4

The remainder of this paper is organized as follows. In the next section, we review

a standard Tullock contest and corresponding Nash and ESS behavior, respectively.

In section 4.3, we introduce the dimension of self-confidence in the Tullock envi-

ronment, and detect evolutionarily stable degrees for finite and infinite populations.

We further establish an equivalence result between behavior as induced by evolu-

tionarily stable self-confidence given indirect evolution and the effort level which is

calculated under direct evolution. We conclude with section 4.4, summarizing what

has been learned.

4.2 Nash and ESS Behavior in Standard Tullock
Contests

In order to prepare for the analysis of the next section, we first review a standard

Tullock contest as well as corresponding Nash equilibrium and ESS behavior, re-

spectively. The description of Nash and ESS behavior draws on Leininger (2009)

and Hehenkamp et al. (2004). We treat the results as a benchmark to those which

occur in the subsequent research.
4In the same way, Boudreau and Shunda (2010) analyze price perceptions in Tullock contests

and identify the same equivalence result.
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4.2.1 Tullock Contest and Nash Behavior

A standard Tullock contest works as follows. Consider the (expected) payoff of

individual i, i = 1, ..., n:

Πi = PiV − ci (ei) , (4.1)

where we resort to the following often used assumptions:

Pi =


eri∑n

j=1 e
r
j

if max {e1, ..., en} > 0

1/n otherwise
, (4.2)

i.e., the so-called “contest success function” Pi is of the usual logit form, and we

further assume currently that

ci (ei) = ei, (4.3)

meaning player i’s costs ci (ei) and effort ei ∈ R+
0 are equivalent. In the following,

we refer to the corresponding payoff function

πi = PiV − ei, (4.4)

as the objective (or material) payoff function (in the sense of intersubjective mea-

surable). Recall that r ∈ R+
0 in the contest success function is called the technology

parameter which represents the implemented efficiency of the contest; it is also

termed the discriminatory power of the contest and determines the influence of a

players’ effort on his probability of winnning.5 As is well-known, the unique Nash

equilibrium effort, where all players maximize their material profits, correspond to

e∗ = n− 1
n2 rV, (4.5)

given that r ≤ n/(n− 1).

An important element of the Tullock contest is the dissipation rate. The dissi-

pation rate determines the part of the price which is spent by the players, and is
5For example, r = 1 is a lottery, r = 0 eliminates the impact of the players’ efforts on their

winning probabilities, and r → ∞ is an all-pay auction where the player with the highest effort
wins for certain.
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formally defined via the ratio

D =
∑n
j=1 ej

V
. (4.6)

In equilibrium it holds that ∑n
j=1 e

∗
j = ne∗ = n−1

n
rV, such that D∗ = n−1

n
r. As

overdissipation (full or underdissipation) occurs if D > (= or <) 1, respectively,

one can conclude that overdissipation is incompatible with rational Nash behavior

since D∗ = n−1
n
r ≤ 1 given that r ≤ n/(n − 1). The result that overdissipation do

not occur in equilibrium with rational agents is robust to many modifications of the

Tullock environment.6 A big puzzle in this regard is that Nash behavior evidently

fails to be a proper prediction since experimental results often show overdissipation

of the players (cf. Morgan et al., 2008; Hörisch and Kirchkamp, 2010, and each with

the references therein).

4.2.2 ESS Behavior

As is well-known an ESS, for evolutionarily stable strategy, is a robust strategy such

that if all members of a group adopt it there is no other minority-strategy that

performs better in expectation (cf. Maynard-Smith and Price, 1973). The following

notion is standard for games with infinite populations.

Definition 4.1. eESS is evolutionarily stable iff, for all e 6= eESS, the equilibrium

condition

(i) π(eESS, eESS) > π(e, eESS)

or, in the case of equity, the stability condition

(ii) π(eESS, eESS) = π(e, eESS), π(e, e) < π(eESS, e)

holds.
6For example, to models with loss aversion (Cornes and Hartley, 2003) or risk aversion (Konrad

and Schlesinger, 1997). Cf. the references in Baharad and Nitzan (2008) for further examples.
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Hehenkamp et al. (2004) use Schaffer (1988)’s ESS version for finite populations

(where ESS is not necessarily a refinement of Nash’s concept), in the Tullock contest

environment and, interestingly, find that ESS behavior yields to more aggressive

play than Nash behavior. The methodology is all important for our analysis. To

review this result and to prepare for our analysis, consider a population of finite size

N where only n ⊆ N players participate in the contest. Those n-participants are

chosen randomly and with equal probability. Then, consider the following definition.

Definition 4.2. Let a contest-strategy e be adopted by all players i, i = 1, ..., n. A

mutant strategy e 6= e can invade e, if the payoff of a single player with strategy e

(against e of the (n− 1) other players) is strictly higher than the payoff of a player

with strategy e (against the single mutant with strategy e and (n− 2) other players

with strategy e). A strategy eESS is evolutionarily stable, if it cannot be invaded by

any mutant strategy.

Assume now in the Tullock contest environment that player 1 is the only mutant

player with strategy e such that all (n− 1) other players use strategy e. Then, the

expected payoff of the mutant player is

π1(e, e, ..., e) = er

(n− 1)er + er
V − e, (4.7)

and the expected payoff of one of the n− 1 players i, i ∈ {2, ..., n}, with effort e is

πi =
(

1− n− 1
N − 1

)
πi(e, ..., e) + n− 1

N − 1πi(e, e, ..., e), (4.8)

since the probability that an ESS player face the mutant is (n− 1) / (N − 1). In

order to find an ESS, we reach the following maximization problem:

max
e

π1(e, eESS, ..., eESS)−(1− n− 1
N − 1)πi(eESS, ..., eESS)− n− 1

N − 1πi(e, e
ESS, ..., eESS),

and thus, by dropping the constant second term:

max
e

π1(e, eESS, ..., eESS)− n− 1
N − 1πi(e, e

ESS, ..., eESS). (4.9)
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Accordingly, we recognize that the maximization problem is not only about pursuing

higher own payoff but also about lowering others’ payoff. One can refer to this type

of behavior as “spite” (cf. Hamilton, 1971). Provided that r ≤ n/(n−1), the unique

ESS-effort accords to

eESS = (n− 1)N
(N − 1)n2 rV,

(cf. Hehenkamp et al., 2004, Theorem 5). As lim
N→∞

eESS = lim
N→∞

(n−1)N
(N−1)n2 rV = e∗ =

n−1
n2 rV , we conclude that the difference of Nash and ESS behavior dissapears if the

population is infinite. Further, given that N = n, it holds that ESS behavior is

more aggressive than Nash behavior since r
n
V > n−1

n2 rV . Unlike under Nash induced

efforts, aggregate ESS effort may over-dissipate the rent and, furthermore, does not

depend on the number of players but only on the given contest technology and the

given rent. In particular, DESS = n · eESS = r · V , and thus over-dissipation occurs

if r > 1, under-dissipation occurs if r < 1, and full-dissipation occurs if r = 1.

4.3 Overconfidence: The Distorted Case

Following the indirect evolutionary approach of Güth and Yaari (1992), we differenti-

ate between subjective payoff (or utility), which determines the players’ idiosyncratic

biases on the dimension of self-confidence, and objective payoff, which measures the

evolutionary fitness of the particular bias. As noted in the foregoing section, the

objective payoff πi is given by the standard expected Tullock success with costs

ci (ei) = ei, cf. Eq. (4.4). The subjective payoff is described in the following

subsection.

4.3.1 Subjective Utility

We assume in the following that the contest participants may differ in the way they

perceive their ability in the Tullock contest. More precisely, we assume that the
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players have different perceptions about their effort costs (Ludwig et al., 2010, use

a similar model to analyze overconfidence in Tullock contests; however, not from an

evolutionary point of view):

ci (ei) = (1 + χi) ei, (4.10)

where χi ∈ Ti = R identifies player i’s idiosyncrasy on the dimension of self-

confidence. We interpret a person with type χi < (>) 0 as overconfident (under-

confident) since individual i perceives his effort cost lower (higher) than it really is,

(1 + χi) ei < (>) ei with χi < (>) 0. Accordingly, the subjective utility of player i is

given by:

Ui = PiV − ci (ei) = πi − χiei = PiV − (1 + χi) ei. (4.11)

Hence, a player’s subjective utility (Ui) differs from his objective payoff (πi) to the

extent of |χiei|. The players strive to maximize their subjective utility with an

adequate effort level and we denote the corresponding effort game by Γ = (I,Si,Ui),

where I is the set of contest participants (players) with biases χi that are randomly

drawn from the population N to play the contest game, and Si = R+ 3 ei. The

assumptions made in this subsection are binding for the following subsections.

4.3.2 A Preliminary Result

The following example is shown to rationalize overconfidence in a Tullock contest

environment without going in evolutionary details. Consider a two-player Tullock

contest, i.e. I = {1, 2}, and a technology parameter as in a lottery, i.e. r = 1. In

this game, both players maximize their payoff function but they differ in the way

they perceive their payoffs; the first player is a profit maximizer while the second

has a feeling of self-confidence. Formally,7

Ú1 = π1 = e1

e1 + e2
V − e1,

7The´symbolizes the belonging to our motivating example of this subsection.
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and

Ú2 = π2 − χ2e2 = e2

e1 + e2
V − (1 + χ2) e2.

The Nash equilibrium efforts are then given by the profile

(
é∗1, é

∗
2

)
=
(

χ2 V

(1 + χ2)2 ,
V

(1 + χ2)2

)
,

which yield subjective payoffs (recall that the subjective payoff of player 1 is identical

with his objective payoff)

Ú∗1 = V χ2
2

(1 + χ2)2 ,

and

Ú∗2 = V

(1 + χ2)2 .

Hence, a slight disposition of player 2 is subjective beneficial in relation to the

subjective utility of player 1 since Ú∗2 > Ú∗1 if χ2 ∈ (−1, 1). If the disposition of player

2 is too strong, then player 1 is subjective better of with his disability to perceive

a distorted degree of self-confidence. However, due to the indirect evolutionary

game which we suppose, only the objective payoff is decisive for determinig players’

success. The objective payoffs are

π́∗1 = V χ2
2

(1 + χ2)2 ,

and

π́∗2 = χ2 V

(1 + χ2)2 .

Note that player 2 earns exactly the equilibrium effort of player 1. Provided that

χ2 ∈ (0, 1), the “distorted” player 2 is also the more successful one in evolutionary

terms. However, the puzzle regarding which type is more successful concerning evo-

lutionary stability is not solved yet. We address this issue in the following subsection

by allowing both players to perceive the dimension of self-confidence.
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4.3.3 Main Results

Consider again the case I = {1, 2} and r = 1. However, we suppose now that both

players are able to recognize the dimension of self-confidence. The subjective payoffs

are

U1 = P1V − c1 (e1) = π1 − χ1e1 = e1

e1 + e2
V − (1 + χ1) e1, (4.12)

and

U2 = P2V − c2 (e2) = π2 − χ2e2 = e2

e1 + e2
V − (1 + χ2) e2. (4.13)

As is the standard procedure under the indirect evolutionary approach, both players

maximize their subjective payoff which may be due to some learning process. It can

easily be calculated that the unique Nash equilibrium profile of the effort game

Γ = ({1, 2} ,Si=1,2,Ui=1,2), where the players maximize U1 and U2, respectively, is

then given by

(e∗1, e∗2) =
(

v (1 + χ2)
(χ1 + χ2 + 2)2 ,

v (1 + χ1)
(χ1 + χ2 + 2)2

)
. (4.14)

The subjective equilibrium payoffs are

U1 (e∗1, e∗2) = U∗1 = v (1 + χ2)2

(χ1 + χ2 + 2)2 , (4.15)

and

U2 (e∗1, e∗2) = U∗2 = v (1 + χ1)2

(χ1 + χ2 + 2)2 , (4.16)

however, decisive for evolutionary success is only objective equilibrium profit (or

equilibrium fitness, Fi=1,2, in evolutionary terms):

π1 (e∗1, e∗2) = F1 = (χ1 + χ2 + 1) (1 + χ2) v
(χ1 + χ2 + 2)2 , (4.17)

and

π2 (e∗1, e∗2) = F2 = (χ1 + χ2 + 1) (1 + χ1) v
(χ1 + χ2 + 2)2 . (4.18)

The fitness terms determine the reproductive successes of χ1 and χ2. In the follow-

ing, we use the ESS conceptions for finite and infinite populations to identify the
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evolutionarily stable degree of self-confidence. As we will see, the differentiation of

finite and infinite populations is mandatory in our model. Let us first consider an

infinite population.

Infinite Population

We resort to Definition 4.1 but with respect to the dimension of self-confidence.

Accordingly, χESP is an evolutionarily stable preference iff, for all χ 6= χESP , the

equilibrium condition (i) F
(
χESP , χESP

)
> F

(
χ, χESP

)
, or the stability condition

(ii) F
(
χESP , χESP

)
= F

(
χ, χESP

)
and F (χ, χ) < F

(
χESP , χ

)
hold. The following

proposition shows that the players do not exhibit an evolutionarily stable disposition

of over- or underconfidence in the case of N =∞.

Proposition 4.1. For an infinite population N = ∞, the unique evolutionarily

stable degree of self-confidence is given by

χESP = 0, (4.19)

i.e. the players perceive their effort costs as they really are:

ci (ei) =
(
1 + χESPi

)
ei = ei, and are profit maximizer in the sense of Ui=1,2 = πi=1,2.

Proof. To check the conditions for ESP, consider the problem of player 1 of max-

imizing the equilibrium fitness function F1 = (χ1+χ2+1)(1+χ2)v
(χ1+χ2+2)2 (by symmetry, it is

sufficient to consider only one player). The first order condition is

−v
(1 + χ2) (χ1 + χ2)
(χ1 + χ2 + 2)3 = 0

After solving for χ1, which yields the best reply function

χ1 (χ2) = −χ2,

and equating χ1 and χ2, the possible canditate for ESP is χ1 = 0.

To prove that χ1 = 0 is the only best reply against itself, consider

F1 (0, 0)−F1 (χ1, 0) = 1/4 vχ1
2

(χ1 + 2)2 ,
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which is strictly positive whenever χ1 6= 0. Thus, the equilibrium condition holds

for objective payoff maximizing.

However, this does not necessarily mean that the same result appears for N <∞.

Let us now explore the case of a finite population.

Finite Population

In accordance with Leininger (2009) (see also Guse and Hehenkamp, 2006), we

adopt the definition of an evolutionarily stable preference (ESP) for finite popula-

tions. The transformation of Definition 4.2 to the preference frame is immediate.

Accordingly, the maximization problem that the players face is of the kind as in Eq.

(4.9), and it writes

max
χ
F1(χ, χESS, ..., χESS)− n− 1

N − 1Fi(χ, χ
ESS, ..., χESS),

and for the present two-player case,

max
χ
F1 −

1
N − 1F2, (4.20)

and thus

max
χ

(χ1 + χ2 + 1) (1 + χ2) v
(χ1 + χ2 + 2)2 −

(χ1 + χ2 + 1) (1 + χ1) v
(N − 1) (χ1 + χ2 + 2)2 ,

⇒ max
χ

(χ1 + χ2 + 1) v (N − 2 + χ2N − χ2 − χ1)
(N − 1) (χ1 + χ2 + 2)2 . (4.21)

The first order condition of this problem is given by

−v
(2 + χ1 + χ2 +Nχ1 + χ2Nχ1 + χ2N + χ2

2N)
(N − 1) (χ1 + χ2 + 2)3 = 0. (4.22)

Setting χ1 = χ2 = χ yields

−1/4 (Nχ+ 1) v
(1 + χ)2 (N − 1)

= 0. (4.23)
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Solving this expression for χ, we reach

χ = − 1
N
. (4.24)

We have proven the following proposition.

Proposition 4.2. For a finite population N <∞, the unique evolutionarily stable

preference profile is (
χESP , χESP

)
=
(
− 1
N
,− 1

N

)
. (4.25)

As proposition 4.2 shows, the evolutionarily stable distortion on the level of self-

confidence depends on the size of the population N and varies between material

profit maximization for infinite populations, i.e., lim
N→∞

χESP = lim
N→∞

− 1
N

= 0, and

strong overconfidence, χESP = −1
2 , in the case of N = 2. The following observation

is then immediate.

Corollary 4.1. In any case of 2 ≤ N < ∞, the players are overconfident since

χESP ∈ [−1/2, 0).

We further find the following conformity between direct evolution of effort and

equilibrium effort which is induced under indirect evolution of self-confidence.

Corollary 4.2. For both finite and infinite populations, and players engaged in two-

player contests, direct evolution of effort and indirect evolution of self-confidence

yield to the same equilibrium behavior.

Proof. Substituting χESP = − 1
N

in the equilibrium efforts (Eq. (4.14)) guides to

(e∗1, e∗2) =
 v

(
1 + χESP2

)
(
χESP1 + χESP2 + 2

)2 , v
(
1 + χESP1

)
(
χESP1 + χESP2 + 2

)2
 =

(
1/4 Nv

N − 1 , 1/4
Nv

N − 1

)
,

which is the same as the ESS behavior under direct evolution, cf. section 4.2.2 or

Hehenkamp et al. (2004), Theorem 5 ibidem.
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4.4 Conclusion

Under the assumptions that evolution operates on the level of self-confidence in a

finite population, we find that players overvalue their ability in two-player Tullock

contests. Precisely, we detect evolutionarily stable degrees of overconfidence, mean-

ing that the players perceive their effort costs lower than they really are. If, instead,

the two-player contests appear in populations of infinite size, the players perceived

efforts match exactly their true efforts, i.e. the players are objective payoff maxi-

mizer.

The fact that ESS for finite and infinite populations guides to different results is

due to a simple general mechanism which holds under direct or indirect evolution. In

order to succeed, evolution forces the players to maximize relative payoff. Since the

players cannot affect the average payoff of all players if the population is of infinite

size, the maximization problem of relative payoffs coincides with the one of absolute

payoff maximization. In contrast, if the population is of finite size the players di-

rectly affect the average payoff which makes them relative payoff maximizers. This

guides to the finding that the players are the more competitive, i.e. overconfidence

in our setting, the smaller the population.

We further find the same equivalence result as Leininger (2009) and Boudreau

and Shunda (2010) in the sense that direct evolution of effort and indirect evolution

of preferences result in the same behavior. Evidently, the fact that indirect evolu-

tion of preferences and direct evolution of effort induce the same aggressive behavior

under different evolving traits in Tullock contests surely deserves a more complete

explanation in future research.
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Chapter 5

Closing Remarks

Within the three main chapters of this thesis, I contributed with three essays on the

evolution of individual preferences. Essay 1 and 2 are related in several aspects, how-

ever, the methodologies, purposes, and results are complementary in a wide sense.

Nevertheless, with a sharp perspicacity, the results are mutually transferable to a

certain extent. The third essay is scarcely related with the first and the second since

it explores a complete different psychological trait in a different strategic setting.

The first essay is the study which refers most to the evolution of preferences in

the literal, i.e. biological, sense. By relying on the seminal study of Bester and Güth

(1998) and the extensions of Bolle (2000) and Possajennikov (2000), I tried to ex-

plain the emergence of altruistic and envious preferences in several strategic settings.

The methodology to characterize the outcomes is basically biological since the repli-

cator dynamics (where the population evolves in a polymorphic sense) and partly

the adaptive dynamics (where the population evolves in a monomorphic sense) are

measuring the success of the preferences. Both dynamics stemp from biology. The

basic enhancement in comparison to the former approaches is that the results are

dynamic, and stability is explicitly measured under the assumption of continuous

preferences (i.e. the space of preferences is compact). I showed that, generally, the
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qualitative findings of the former studies hold. Namely, strategic complements lead

to altruism and strategic substitutes to envy.

The second essay has some assumptions which are close to those of the first one

but the focal points are different. Most obviously, my purpose with the second essay

is to identify evolutionary reasons why reciprocal tendencies are pervasive phenom-

ena in economic interactions. The interpretations of the interpersonal successes are

similar to those of the first essay but the perceived payoffs are more subtle. The

individuals are fully identified on a two-dimensional space. In particular, they have

inborn social attitudes which are not changeable by the dynamical pressures and

they belong to a distribution of reciprocity parameters which is changing within

the time span of a generic class of selection dynamics which works rather in a so-

cial frame of learning, imitation, or education. Hence, from a methodological view,

essay 2 is a profound continuation of essay 1 in the sense that the observed time

span in which the evolving trait changes is reduced from a biological to a cultural

level. Another technical feature, which separates essay 2 from essay 1 somewhat,

is that the methodological approach accounts for asymmetric responses in the type

game. Like in essay 1, the strategic environment of the game is the fundamental

determinant for measuring the type of action in the society. The results regarding

reciprocity are subtle but the trend is established: it usually pays off to show a high

flexibility in the reciprocal sense.

The third essay deals with individual preferences in contests. In particular, I

analyzed the dimension of self-confidence in Tullock contests, where each player’s

winning probability is his effort’s share of total efforts. I used the ESS conception

for infinite populations and its analog for finite populations—while the former can

rightly be seen as a refinement of Nash’s concept, the latter is not necessarily one—

and showed that a distorted degree of self-confidence arises only in populations of

finite size; if the population under study is infinite, then only profit maximization

is evolutionarily stable. Given the finite case, the players exhibit a certain degree of
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overconfidence which increases with decreasing size of the population and yields to

more aggressive behavior than under the undistorted Nash equilibrium level. Inter-

estingly, the behavior which is induced by the particular degree of overconfidence

under indirect evolution is the same as evolutionary stable behavior given direct evo-

lution. Accordingly, overconfidence can be seen as another evolutionary rationale

for the observation that people often exceed Nash equilibrium play in experimental

contests.

In all studies the so-called indirect evolutionary approach plays a key role. Indirect

evolution is currently the most established approach which provides a theoretical

justification for developing subjective values in an economic society.
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