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Summary
In this thesis (consisting of Parts I - III) we study Gamma measures located on the
cone K(Rd) of discrete Radon measures. They form, as well as the Gaussian and
Poisson measures, an important class of measures on infinite dimensional spaces
and appeared in the representation theory of groups. In the present thesis, the
following topics of Gamma analysis are developed:

• Construction of Gibbs perturbations for the Gamma measures

• Differential structure on the cone K(Rd)

• Integration by parts formulas for Gamma and Gibbs measures

• Construction of associated diffusions

In Part I, we define a homeomorphism T between the cone K(Rd) and a subset
of the configuration space Γ(R̂d) over the product space R̂d of marks in R+ :=
(0,∞) and positions in Rd. This subset consists of pinpointing configurations
with finite local mass. Then we construct Gamma measures on K(Rd) as image
measures, under T, of proper Poisson measures on Γ(R̂d).

In Part II, we establish Gibbs perturbations of Gamma measures w.r.t. a pair
potential that describes the interaction of particles and satisfies certain stability
properties: We follow the Dobrushin-Lanford-Ruelle approach to Gibbs random
fields in classical statistical mechanics and introduce the corresponding Gibbs for-
malism on the cone. Proving the existence of the Gibbs measures on the cone
K(Rd) is a non-trivial problem, even for a non-negative potential. We know about
the cone K(Rd) less than about the configuration space Γ(R̂d), hence we transfer
the problem to Γ(R̂d) via the homeomorphism T

−1. Even on Γ(R̂d), the trans-
fered potential with infinite range does not fit the standard framework because of
the high concentration close to 0 of the underlying intensity measure on R+. We
develop analytic techniques, involving Lyapunov functionals and weak dependence
on boundary conditions, to construct Gibbs measures on Γ(R̂d) and characterize
sets supporting them. Using the homeomorphism T, we establish the existence of
Gibbs perturbations on the cone.

To obtain diffusions on the cone, in Part III, we introduce a gradient which
consists of extrinsic and intrinsic parts. They correspond to the motion of marks
and positions of particles, respectively. An important result here (and a new issue in
infinite dimensions) is an integration by parts formula without an underlying quasi-
invariance property of the involved Gamma measure. Next, we study conservative
gradient Dirichlet forms of Gibbs measures constructed in Part II. To check their
quasi-regularity, we define a Polish space, in which we embed the cone. Therefore,
we study a priori diffusions on the Polish space. A crucial issue here is that the
diffusions are actually located on a subset of T−1(K(Rd)). Using this fact and the
homeomorphism T, we construct diffusions on the cone. In particular, we get an
example of diffusions describing the motion of densely distributed particles.
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Chapter 1

Introduction

Handling and modeling complex systems have become an essential part of
modern science. For a long time, complex systems have been treated in
physics, where e.g. methods of probability theory are used to determine their
macroscopic behavior by their microscopic properties. Nowadays complex
systems, ranging from e.g. ecosystems to the climate, biological populations,
societies and financial markets, play an important role in various fields such
as biology, chemistry, robotics, computer science and even social science.

A mathematical tool to study these systems is infinite dimensional analy-
sis. Widely applied, e.g. in financial mathematics and mathematical physics,
are Gaussian and Poissonian analysis corresponding to Gauss, resp. Poisson
measures. We develop some Gamma analysis related to Gamma measures,
which may serve to model biological systems.

The mentioned measures are infinite dimensional analogues of measures
classified by Meixner. A first step in the related analysis is to study sets
supporting them. In particular, Gaussian measures are located on linear
spaces; Poisson measures are supported by the space of locally finite con-
figurations. And Gamma measures have full mass on the cone of locally
finite, discrete Radon measures. The analysis developed for the Gaussian
and Poissonian measures includes chaos decompositions, differential struc-
tures on the underlying spaces, corresponding Dirichlet forms and associated
diffusions, whereas for the Gamma measures a chaos decomposition and a
quasi-invariance property w.r.t. multiplication of marks is known. One of our
aims is to introduce a differential structure on the cone, construct Dirichlet
forms and get associated diffusions on the cone.

An important feature of complex systems is the interaction of their com-
ponents. Let us exemplify this with a prominent physical example, namely
a gas: To model a free gas, Poisson measures are used. ’Free’ means that

1



2 CHAPTER 1. INTRODUCTION

any interaction of the molecules is absent. But, the molecules of real gases
interact with each other. To model this, the notion of Gibbs perturbations
of Poisson measures has been introduced and studied. Considering Gamma
measure as states of free systems, we will also study Gibbs perturbations of
Gamma measures.

A mathematical model for the above mentioned many-particle systems,
namely spaces of locally finite configurations, appeared first in statistical
mechanics. Such a configuration space describes the positions of identical
particles in a phase space, e.g. Rd. Here, locally finite means that there are
only finitely many particles in any compact area. To describe the allocation
of particles a Poisson measure with a certain intensity measure can be used.
It distributes the particles independently of each other (cf. e.g. Subsection
1.1.2 or Chapter 2).

As mentioned above, particles may interact and influence each other.
Gibbs measures are suitable to describe this phenomena. In the late 1960s
Dobrushin, Lanford and Ruelle introduced the mathematical setting for Gibbs
measures that are used to describe equilibrium states of infinitely large sys-
tems (cf. [Dob68, Dob70b, LR69, Rue69]), which strongly encouraged the
development of the theory of Markov random fields (cf. [Geo88, Pre76]).
Generally speaking, one distinguishes between two main classes of Gibbs
measures, namely, spin systems on graphs or discrete metric spaces (cf., e.g.,
[Lan20, Isi25, Geo88]) and particle systems in continuum, e.g., in Rd (cf.,
e.g., [AKR98b, Kun99, AKPR06]).

We will treat Gibbs measures for particle systems in the continuum Rd,
d ∈ N, and an attached space of marks R+ := [0,∞) with an infinite measure
on the marks. Thus, we extend models treated in the second class.

Standard references for the theory of Gibbs measures are [Geo88, Pre76].
More recent ones are [AKPR06] (an overview) and [KPR10] (an analytic
approach).

Aims

We will develop some structure of the Gamma analysis (cf. also Section 1.2):

• We study Gibbs perturbations of the Gamma measures,

• introduce a differential structure on the cone of discrete measures,

• establish integration by parts formulas and

• construct diffusions corresponding to associated Dirichlet forms.
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The differential structure on the cone will turn out to be richer than the one
on the linear spaces on which the Gaussian measures are located and the one
on the configuration spaces which support the Poisson measures. It is richer
in the sense that there exists an extrinsic differential structure related to the
marks (or values) of the discrete measures and an intrinsic one corresponding
to their support or positions.1

1.1 Infinite dimensional analysis

We will repeat very briefly some of the known results of Gaussian, Poissonian
and Gamma analysis. Although, we focus on the Gamma analysis, for the
convenience of the reader, we also repeat some of the known results for the
Gaussian and Poisson case. This allows us to compare the different situations
more easily. But before, we describe in which sense they are similar.

Meixner classification

In 1933 Meixner studied functions of the type exp[xu(t)]/f(t) where t 7→ u(t)
and t 7→ f(t) are analytic functions. He found that there only exist five differ-
ent systems of orthogonal polynomials whose generating functions for related
orthogonal polynomials are of this type. The obtained classification yields
(cf. [Mei34]) the Gaussian (normal), binomial, Gamma, Poisson and a fifth
class. For the Gaussian, Gamma and Poisson measure there exists a gener-
alization to infinite dimensional spaces.

There exists a famous characterization of Fourier transformations for
probability measures on Hilbert spaces given by the following theorem:

Theorem 1.1.1 (Minlos, see e.g. [GV64, Section II.3.1]). Let H be a real
separable Hilbert space and k : H → C be a continuous function with k(0) = 1
and which is positive definite on H. The latter means that ∀h1, . . . , hN ∈
H, ∀ c1, . . . , cN ∈ C :

N∑
i, j=1

k(hi − hj)cicj ≥ 0.

1A point x ∈ Rd is called a position of such a locally finite, discrete Radon measure η
on Rd, if sx := η({x}) 6= 0. The set of all positions is called the support τ(η). We refer to
the value sx as a mark.
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Then for every Hilbert-Schmidt extension H− of H, there exists exactly one
probability measure µ on H− such that

∀φ ∈ H+ : µ̃(φ) :=

∫
H−

ei〈x,φ〉µ(dx) = k(φ),

where H+ ⊂ H ⊂ H− and H+ is the dual space of H−.

For particular measures the support can be classified more precisely, as
we will see in the following.

1.1.1 Gaussian analysis

The Gaussian analysis has been studied quite extensively. As a general ref-
erence see [BK95a], [Bog98] or [Hid05, pp. 46ff] (a historical overview by
Izumi Kubo).

Via the Minlos theorem, one obtains a probability measure µ0 that cor-
responds to the functional

k(φ) = e
− 1

2
‖φ‖2

L2(Rd,dx) , φ ∈ L2(Rd, dx) = H,

It is called the Gaussian White Noise measure. The corresponding triple is
S ′(Rd) ⊃ L2(Rd, dx) ⊃ S(Rd) and µ0(S ′(Rd)) = 1. Here, S(Rd) denotes the
space of Schwartz test functions.

Chaos decomposition

Theorem 1.1.2 (Itô-Segal decomposition, cf. [BK95a, Section 2.2f]). Any
F ∈ L2(S ′, µ0) can be written as an orthogonal decomposition

F (ω) =
∞∑
n=0

〈f (n), : ω⊗̂n :〉,

where {〈f (n), : ω⊗̂n :〉}n∈N denotes the system of generalized Hermite polyno-
mials. The latter may be expressed as multiple stochastic integrals w.r.t. to
a Wiener process.

Differential structure

Let us introduce a set of cylindrical functions

FC∞b (S ′,S) := {f(〈ρ1, ·〉, . . . , 〈ρN , ·〉) |N ∈ N, f ∈ C∞b (RN),

ρ1, . . . , ρN ∈ S} ⊂ L2(S ′, µ0).
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We fix F = f(〈ρ1, ·〉, . . . , 〈ρN , ·〉) ∈ FC∞b (S ′,S) with N ∈ N, f ∈ C∞b (RN)
and ρ1, . . . , ρN ∈ S.

Definition 1.1.3. For h ∈ L2(Rd, dx) define the directional derivative as

∇S′h F (ω) :=
N∑
j=1

∂

∂xj
f(〈ρ1, ω〉, . . . , 〈ρN , ω〉)〈ρj, h〉Tω(S′), ω ∈ S ′,

where we set Tω(S ′) := L2(Rd, dx) for each ω ∈ S ′. The gradient is

∇S′F (ω) :=
N∑
j=1

∂

∂xj
f(〈ρ1, ω〉, . . . , 〈ρN , ω〉))ρj, ω ∈ S ′.

As usual,
∇S′h F (ω) = 〈∇S′F (ω) , h〉Tω(S′), ω ∈ S ′.

The geometry of the space S ′ is flat because the tangent space at each
point is the same.

Quasi-invariance property

Proposition 1.1.4 (Cameron-Martin, see, e.g., [BK95a, Theorem II.2.3]).
For all h ∈ L2(Rd, dx) we have

dµ0(ω − h)

dµ0(ω)
= e

〈ω,h〉Tω(S′)−
1
2
‖h‖2

Tω(S′) , ω ∈ S ′.

Here, 〈ω, h〉, ω ∈ S ′ is defined as a measurable linear function µ0-a.s..

Integration by parts

Via the quasi-invariance formula one gets an integration by parts formula.

Theorem 1.1.5 (cf., e.g., [BK95b, Section IV.3]). For all h ∈ L2(Rd, dx)
and F, G ∈ FC∞b (S ′,S) we have∫

S′
∇S′h F (ω)G(ω)µ0(dω) = −

∫
S′
F (ω)∇S′h G (ω)µ0(dω)

+

∫
S′
F (ω)G(ω)βµ0(h, ω)µ0(dω),

where the logarithmic derivative is

ω 7→ βµ0(h, ω) := 〈ω, h〉Tω(S′).
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Dirichlet forms and associated stochastic dynamics

We define the corresponding gradient bilinear form for all F,G ∈ FC∞b (S ′,S)
as

Eµ0(F,G) :=

∫
S′
〈∇S′F (ω) ,∇S′G (ω)〉Tω(S′)µ0(dω).

It is closable in L2(S ′, µ0) and its closure is a conservative symmetric Dirichlet
form which is quasi-regular (cf. e.g. [MR92, Corollary II.3.3 and IV.4a)]).

1.1.2 Poisson measure

Already in [VGG75] Poisson measures are given as examples for quasi-invariant
ergodic measures on configuration spaces. The Poissonian white noise anal-
ysis was developed in [CP90, IK88, NV95, Pri95]. In the late 1990s started
some new development in stochastic analysis and differential geometry on
configuration spaces (cf. e.g. [AKR98a, AKR98b]), when integration by
parts formulas and Dirichlet forms were derived for these measures. The
chaos decompositions of Poisson measures is presented in, e.g., [KdSSU98].

Let m(dx) = ρ(x)dx with ρ ∈ H1,2
loc (Rd), where dx denotes the Lebesgue

measure on (Rd,B(Rd)). Via the Minlos theorem we obtain for the functional

C0(Rd) 3 f 7→ e〈e
if−1,m〉 = e

∫
(eif(x)−1)m(dx)

the existence of a Poisson measure πm (with intensity measure m). It is
located a priori in a linear space of generalized functions, but has de facto
full support on the configuration space over Rd, which we present below.

The configuration space

The configuration space Γ(Rd) over Rd is defined to be the collection of locally
finite subsets of Rd:

Γ(Rd) := {γ ⊂ Rd | |γ ∩K| <∞ for all K ⊂ Rd compact},

where |A| denotes the number of elements of a set A.
A configuration can be viewed as a positive measure, i.e.,

Γ(Rd) 3 γ 7→
∑
x∈γ

δx(dy) ∈M(Rd),

where δx denotes the Dirac measure at x ∈ Rd andM(Rd) the set of positive
Radon measures on Rd. We equip the configuration space Γ(Rd) with the
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relative topology as a subset of the space M(Rd) with the vague topology:
It is the smallest topology such that the following functions are continuous

M(Rd) 3 γ 7→ 〈f, γ〉 =

∫
Rd
f(x)γ(dx) =

∑
x∈γ

f(x) ∈ R, f ∈ C0(Rd).

We equip Γ(Rd) with the corresponding Borel σ-algebra B(Γ(Rd)). (For
further details cf. Section 2.1 resp. the papers mentioned above).

Remark 1.1.6. The Mecke identity is a useful characterization of the Pois-
son measure: Let f : Rd×Γ(Rd)→ [0,∞) be a B(Rd)×B(Γ(Rd))-measurable
function. Then∫

Γ(Rd)

∫
Rd
f(x, γ)γ(dx)πm(dγ) =

∫
Rd

∫
Γ(Rd)

f(x, γ + δx)πm(dγ)m(dx).

Chaos decomposition

Similarly to the Gaussian case, we have an orthogonal chaos decomposition:

Theorem 1.1.7 (see [KdSSU98, Subsection 2.3]). For all F ∈ L2(Γ(Rd), πm),
we have

F (γ) =
∞∑
n=0

〈Cm
n (γ), f (n)〉,

where the system {Cm
n (f (n))(γ) = 〈Cm

n (γ), f (n)〉}n∈N is called the system of
generalized Charlier polynomials for the Poisson measure πm.

Differential structure

We define the set of cylindrical functions:

FC∞b (Γ(Rd), C∞0 (Rd)) := {gF (〈ρ1, ·〉, . . . , 〈ρN , ·〉)|N ∈ N,
gF ∈ C∞b (RN), ρ1, . . . , ρN ∈ C∞0 (Rd)}.

Let V0(Rd) denote the set of all smooth vector fields with compact support.

Definition 1.1.8. The directional derivative of F ∈ FC∞b (Γ(Rd), C0(Rd))
w.r.t. v ∈ V0(Rd) is defined as

∇Γ
vF (γ) :=

N∑
j=1

∂gF
∂sj

(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉) 〈∇Rd
v ϕj, γ〉Tγ(Γ), (1.1.1)
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where the tangent space at a configuration γ ∈ Γ(Rd) is

Tγ(Γ) := L2(Rd, γ).

The gradient is

∇ΓF (γ) :=
N∑
j=1

∂gF
∂sj

(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)∇Rdϕj ∈ Tγ(Γ).

Comparing with the Gaussian case, the geometry of Γ(Rd) is non-flat
because the tangent spaces are different at each point. The gradient and the
directional derivative satisfy

∇Γ
vF (γ) =

〈
∇ΓF (γ) , v

〉
Tγ(Γ)

.

Quasi-invariance property

Let Diff0(Rd) denote the set of all diffeomorphisms φ : Rd → Rd with compact
support, i.e., there exists a compact set ∆ ∈ Bc(X) such that for all x ∈ ∆c

we have φ(x) = x.
For each φ ∈ Diff0(Rd), we define its lifting

φ : Γ(Rd) 3 γ 7→ φ(γ) := {φ(x)|x ∈ γ} ∈ Γ(Rd).

Proposition 1.1.9 (see [AKR98a, Prop. 2.2.]). The Poisson measure πm
is (quasi-)invariant w.r.t the group Diff0(Rd), and for any φ ∈ Diff0(Rd) we
have

d(φ∗πm)

dπm
(γ) =

∏
x∈γ

pmφ (x) exp

(∫
Rd

(
1− pmφ (x)

)
m(dx)

)
,

where ∗ indicates that we take the image measure and the Radon-Nikodym
density pmφ is defined as

pmφ (x) :=
d
(
φ∗m

)
(x)

dm(x)
=
ρ(φ−1(x))

ρ(x)

dv
(
φ−1(x)

)
dv(x)

=
ρ(φ−1(x))

ρ(x)
Jv(φ)(x),

if x ∈ {0 < ρ <∞} ∩ {0 < ρ ◦ φ−1 <∞};
pmφ (x) :=1, otherwise.

Here, Jv(φ) denotes the Jacobian determinant of φ.
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Integration by parts

Theorem 1.1.10 (see [AKR98a, Thm 3.1]). We get an integration by parts
formula for all F, G ∈ FC∞b (Γ(Rd), C∞0 (X)) and any v ∈ V0(Rd):∫

Γ(Rd)

(∇Γ
vF )(γ)G(γ)πm(dγ) = −

∫
Γ(Rd)

F (γ)(∇Γ
vG)(γ)πm(dγ)

−
∫

Γ(Rd)

F (γ)G(γ)βπm(v, γ)πm(dγ),

where

βπm(v, γ) :=

∫
Rd

(
〈βm(x), v(x)〉Tx(Rd) + divR

d

v(x)
)
γ(dx) and

βm(x) :=
∇Rdρ(x)

ρ(x)
∈ Tx(X) with, as usual, βm := 0 on {ρ = 0}.

As for the Gaussian measure, this integration by parts formula is derived
via the quasi-invariance property of the Poisson measure.

Dirichlet forms and associated stochastic dynamics

We define a gradient bilinear form for all F,G ∈ FC∞b (Γ(Rd), C∞0 (Rd)) by

Eπm,Γ(F,G) :=

∫
Γ(Rd)

〈∇ΓF (γ) ,∇ΓG (γ)〉Tγ(Γ)µ0(dγ).

It is closable in L2(Γ(Rd), πm) and its closure is a conservative symmetric
gradient Dirichlet form which is quasi-regular and local (cf. e.g. [AKR98b,
Proposition 5.1., Theorem 5.1. and Corollary 5.1]).

Theorem 1.1.11 (see [AKR98b, Theorem 5.2] and [RS98, Proposition 1]).
There exists a conservative diffusion process2

MΓ(Rd) =
(
Ω,F, (Ft)t≥0 , (Θt)t≥0 , (Xt)t≥0 (Pγ)γ∈Γ(Rd)

)
on Γ(Rd) which is properly associated with

(
Eπm,Γ,D

(
Eπm,Γ

))
, i.e., for all

(πm-versions) of F ∈ L2(Γ(Rd), πm) and all t > 0 the function

Γ(Rd) 3 γ 7→ ptF (γ) :=

∫
Ω

F (X(t))dPγ

2This is a conservative strong Markov process with continuous sample paths
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is an Eπm,Γ-quasi-continuous version of exp(−tLπm,Γ)F , where Lπm,Γ is the
generator of

(
Eπm,Γ,D

(
Eπm,Γ

))
(cf. [MR92, Section I.2]). MΓ(Rd) is up to

πm-equivalence unique (cf. [MR92, Theorem VI.6.4]). In particular, MΓ(Rd)

is πm-symmetric (i.e.,
∫
GptFdπm =

∫
FptGdπm for all F,G : Γ(Rd) → R,

B(Γ(Rd))-measurable) and has πm as an invariant measure.

1.1.3 Gamma measure

Let us quickly summarize some known results regarding the Gamma measures
(cf. also Chapter 3 for details). The Gamma measures over a compact set are
strongly related to (multiplicative) Lebesgue measures (cf. [TVY01]). The
latter are considered in [VGG83] from a point of view of group representation.
In [KdSS98, Subsection 4.2] a chaos decomposition for the Gamma measures
is presented.

The cone of positive discrete measures

The cone of locally finite discrete measures is defined as

K(Rd) :=
{
η =

∑
siδxi

∣∣∣si ∈ R+, xi ∈ Rd, xi 6= xj∀ i, j ∈ N, i 6= j,

∀Λ ∈ Bc(Rd) : η(Λ) <∞
}
⊂M(Rd).

Here, Bc(Rd) denotes the collection of Borel sets in Rd with compact closure.
The Gamma measure Gθ, θ > 0 being a shape parameter, is characterized

via (compare [TVY01, P.279], [KdSSU98, Definition 4.1] )

EGθ [exp (−〈a, ·〉)] = exp

(
−θ
∫
Rd

log(1 + a(x))m(dx)

)
,

where a : Rd → [0,∞), is a bounded, compactly supported Borel function.

Chaos decomposition

Similarly to the Gaussian and the Poissonian case, we have an orthogonal
chaos decomposition:

Theorem 1.1.12 ([KdSSU98, Subsection 4.2]). Any F ∈ L2(K(Rd),Gθ) can
be written as

F (η) =
∞∑
n=0

〈Lθn(η), f (n)〉,

where the system {Lθn(f (n))(η) = 〈Lθn(η), f (n)〉}n∈N is called the system of
generalized Laguerre polynomials for the Gamma measure Gθ.
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Quasi-invariance

In [TVY01] the (extrinsic) quasi-invariance formula w.r.t. multiplication is
outlined for the case that Rd is replaced by [0, 1].

Theorem 1.1.13 (cf. [TVY01, Theorem 3.1]). The Gamma measure Gθ on
K(Rd) is quasi-invariant under the multiplication Mh : K(Rd) 3 η 7→ ehη ∈
K(Rd) for each h ∈ C0(Rd). The corresponding density is

d(MhGθ)
dGθ

(η) = exp

(
−θ
∫
Rd
h(x)m(dx)

)
exp

(
−
∫
Rd

(
e−h(x) − 1

)
dη(x)

)
.

This quasi-invariance is an essential property of Gamma measures. It is
deeply related with the structure of Gamma measure (cf. [LS01]).

1.2 Content
This thesis is divided into three parts: In Part I we introduce our basic object,
namely the Gamma measure Gθ, θ > 0 being a shape parameter, resp. (as
a related Poisson space model) the Gamma-Poisson measure Pθ. In Part
II we construct Gibbs perturbations of the Gamma measure Gθ; and in Part
III we outline some differential structure on the cone K(Rd), Dirichlet forms
related to Gamma and Gibbs measures and associated diffusions.

Here, we only give a brief insight. For a more detailed overview of the
content, more motivation and relations to existing literature, we refer to the
beginning of the respective chapters. For the convenience of the reader, we
included an index of the most important notations, definitions and results.

1.2.1 Gamma measures

Let m be a non-atomic Radon measure on (Rd,B(Rd)), where B(Rd) denotes
the Borel σ-algebra on Rd. On R+ := (0,∞) being equipped with the metric
dR+(s1, s2) := | ln s1

s2
|, s1 and s2 ∈ R+, we consider the measure

λθ := θ
1

t
e−tdt, θ > 0 being a shape parameter.

Each x̂ = (sx, x) ∈ R̂d := R+ × Rd may describe a particle with a mark sx
being located at a position x ∈ Rd.

In our considerations the configurations space Γ(R̂d) over R̂d will play a
central role. It is defined as (cf. also Section 2.1)

Γ(R̂d) :=
{
γ ⊂ R̂d

∣∣ |γΛ| <∞, ∀Λ ∈ Bc(R̂d)
}
,
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where Λ ∈ Bc(R̂d) is a Borel set with compact closure, γΛ := γ ∩ Λ is the
restriction of γ to Λ and |γΛ| denotes the set cardinality.

Let Λ ∈ Bc(R̂d). The Poisson measure PΛ
θ on Γ(Λ) := {γ ∈ Γ(R̂d)|γ ⊂

Λ} =
⊔
n≥0{γ ∈ Γ(Λ) | |γ| = n} with intensity measure λθ ⊗m is given by

PΛ
θ := e−λθ⊗m(Λ)

∑
n≥0

1

n!

(
λθ ⊗m

)⊗̂n
.

Because of the consistency of {PΛ
θ |Λ ∈ Bc(R̂d)} by Kolmogorov’s theorem

there exists a unique probability measure Pθ such that

Pθ ◦P−1

R̂d,Λ
= PΛ

θ ,

where PR̂d,Λ is the projection from Γ(R̂d) to Γ(Λ): PR̂d,Λ(γ) = γ ∩ Λ.

We identify a smaller set Γf (R̂d) ⊂ Γ(R̂d) that supports Pθ (cf. Subsection
2.2.1): To that end, we introduce the set of pinpointing configurations (cf.
Definition 2.2.2)

Γp(R̂d) :=
{
γ ∈ Γ(R̂d)

∣∣ for all (s1, x1), (s2, x2) ∈ γ we have
x1 = x2 ⇒ s1 = s2

}
.

For all ∆ ∈ Bc(Rd) and γ ∈ Γp(R̂d) we define a local mass via (cf. Definition
2.2.6)

m∆(γ) :=
∑

x̂=(sx,x)∈γ

s1∆(x) =

∫
R̂d
s1∆(x)γ(dx̂).

Combining these two definitions, we specify the set of pinpointing configura-
tions with finite local mass as (cf. Definition 2.2.7)

Γf (R̂d) :=
{
γ ∈ Γp(R̂d)

∣∣m∆(γ) <∞, ∀∆ ∈ Bc(Rd)
}
.

The following result, which is the main one of Chapter 2, will enable us to
construct the Gamma measure. We have

Pθ(Γf (R̂d)) = 1.

For our further considerations it is important that there exists a bijection
between Γf (R̂d) and the cone of discrete Radon measures

K(Rd) :=
{
η =

∑
siδxi

∣∣∣si ∈ R+, xi ∈ Rd, xi 6= xj∀ i, j ∈ N, i 6= j,

∀∆ ∈ Bc(Rd) : η(∆) <∞
}
.
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The mentioned bijection is even a homeomorphism and is defined by (cf.
(3.1.2))

T : Γf (R̂d) → K(Rd)
γ = {(sx, x)} 7→ η :=

∑
(sx,x)∈γ sxδx.

The image measure of Pθ under T is denoted by Gθ and called Gamma mea-
sure with shape parameter θ > 0. We call Pθ Gamma-Poisson measure.

These two objects, namely the cone K(Rd) and the Gamma measure Gθ,
are studied in more detail in Chapter 3. We present two important results:

• All moments exist (cf. Theorem 3.2.6): For n ∈ N and for each bounded
Borel function a : Rd → R that is supported by ∆ ∈ Bc(Rd) we have

EGθ [〈a, ·〉n] ≤ n!‖a‖∞θnm(∆)n <∞.

• Quasi-invariance property (cf. Theorem 3.3.3): The Gamma measure
Gθ is quasi-invariant under the multiplications Mh : K(Rd) 3 η 7→
ehη ∈ K(Rd), where h ∈ C0(Rd) .

These two properties are essentially used in Part III to establish integration
by parts formulas and study related Dirichlet forms.

The construction is extended to the case of a locally compact Polish space
X.

1.2.2 Gibbs perturbations

In Part II, we construct Gibbs perturbations of the Gamma measure Gθ on
K(Rd) by means of a pair potential φ : Rd × Rd → R describing the inter-
action between particles. So far, we considered the “free case” of a Gamma
measure Gθ, where φ = 0. Here, we give a heuristic description. The precise
definitions and results are presented in Chapters 4 and 5.

We introduce a Gibbs formalism on K(Rd) following the Dobrushin-
Lanford-Ruelle (DLR) approach to Gibbs random fields in classical statisti-
cal mechanics (cf. Section 5.3): As an example, we consider a basic model
with

φ(x, y) = a(x− y), x, y ∈ Rd,

where a ≥ 0 is bounded, even and compactly supported.
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For each η ∈ K(Rd) and a tempered boundary condition ξ ∈ Kt(Rd) (cf.
(5.3.5)), the relative energy H∆(η|ξ) in a bounded area ∆ ∈ Bc(Rd) is given
by (cf. (5.3.4))

H∆(η|ξ) :=

∫
∆

∫
∆

φ(x, y)η(dx)η(dy) +

∫
∆c

∫
∆

φ(x, y)η(dx)ξ(dy).

Fix an inverse temperature β = 1/T > 0. A local Gibbs measure in volume
∆ is the probability measure on K(∆) defined as

µ∆(dη|ξ) =
1

Z∆(ξ)
e−βH∆(η|ξ)G∆

θ (dη),

where G∆
θ is the Gamma measure on K(∆). The probability kernels

π∆(B|ξ) = µ∆({η ∈ K(∆)|η ∪ ξ∆c ∈ B}|ξ), B ∈ B(K(Rd)),

indexed by ∆ ∈ Bc(Rd) and ξ ∈ Kt(Rd), constitute the Gibbs specification on
K(Rd). It determines corresponding tempered Gibbs measures µK on K(Rd)
via the (DLR) equation (cf. (6.3.18))∫

K(Rd)

π∆(B|η)µK(dη) = µK(B),

valid for all ∆ ∈ Bc(Rd) and B ∈ B(K(Rd)) (cf. Definition 5.3.9).3 The set
of all tempered Gibbs measures related to the specification π = {π∆}∆∈Bc(Rd)

will be denoted by Gibbstφ(K(Rd)) (cf. Definition 5.3.5). By the construction,
all µ ∈ Gibbstφ(K(Rd)) are supported by Kt(Rd).

The first step of our considerations is to show the existence of such Gibbs
measures µK ∈ Gibbstφ(K(X)), which is a non-trivial problem (cf. also be-
low). But before going into details, we will formulate some results. To this
end, we have to be more specific about the conditions on the symmetric
function φ. We distinguish two cases:

1. The potential φ is non-negative, i.e. φ ≥ 0, and has finite range, i.e.,

∀∆ ∈ Bc(Rd) ∃ U∆ : φ(x, y) = φ(y, x) = 0 if x ∈ ∆ and y ∈ U c∆.

2. The potential φ, which may take possibly negative values, satisfies some
stability properties. Merely speaking the repulsion part φ+ of the po-
tential shall dominate its attraction part φ− (for the precise formulation
see Subsection 5.3.1).

3Here, we set π(dγ|ξ) = 0 if ξ /∈ Kt(Rd).
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We obtain the following main results describing the set Gibbstφ(K(Rd)):

• Existence (cf. Theorem 5.3.7): For each φ as above, there exists a
corresponding Gibbs measure, i.e.,

Gibbstφ(K(Rd)) 6= ∅.

• Uniform moment bounds (cf. Theorems 5.3.10 and 5.3.11): For ∆ ∈
Bc(X) and N ∈ N there exists CN(∆) > 0 such that for all µK ∈
Gibbstφ(K(X)) ∫

K(X)

η(∆)NµK(dη) < CN(∆).

Our strategy is to reformulate the existence problem in terms of related
Gibbs measures on the configuration space Γ(R̂d). To some extent, this
approach is similar to the free case, where we first define the Gamma-Poisson
measure on Γ(R̂d) and then use the bijective mapping T between the cone
K(Rd) and the set Γf (R̂d) of pinpointing configurations with finite local mass.
Recall that

T
−1 : K(Rd) 3 η =

∑
sxδx 7→ γ = {(sx, x)} ∈ Γf (R̂d) ⊂ Γ(R̂d).

Using T−1, we can transfer the corresponding objects (like the potential,
relative energy and local specification) to the configuration space Γ(R̂d), e.g.,

φ(x, y), x, y ∈ Rd to V (x̂, ŷ) = sxsyφ(x, y), x̂, ŷ ∈ X̂;
µ∆(dη|ξ) to µR+×∆(dγ|T−1(ξ));
π∆(dη|ξ) to πR+×∆(dγ|T−1(ξ)).

We will call the specification kernels πR+×∆(dγ|T−1(ξ)) ∈ M1(Γ(R̂d)) semi-
local because they are indexed by “stripes” R+ ×∆ ⊂ R̂d. Using the (DLR)
formalism on Γ(R̂d), we then define the associated Gibbs measures on Γ(R̂d)
corresponding to the semi-local specification

πΓ = {πR+×∆(dγ|ξ̃)|∆ ∈ Bc(Rd), ξ̃ ∈ Γf (R̂d)}.

The set of all of such Gibbs measures will be denoted by GibbstV (Γ(R̂d)) (cf.
also Subsection 4.5.1 and Section 5.1). Actually, each µΓ ∈ GibbstV (Γ(R̂d)) is
supported by the subset Γt(R̂d) ⊂ Γf (R̂d) of tempered configurations, which
is defined by (5.1.35).

The one-to-one correspondence between the local specification kernels π∆

on K(Rd) and the semi-local ones, πR+×∆, on Γ(R̂d) (cf. Subsection 5.3.2)
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implies the one-to-one correspondence between the classes of Gibbs measures
Gibbstφ(K(Rd)) and GibbstV (Γ(R̂d)) (cf. Theorem 5.3.6). By the above con-
struction, the set GibbstV (Γ(R̂d)) consists of those µΓ ∈ M1(Γ(R̂d)) which
solve the (DLR) equation and have full measure on Γf (R̂d) (cf. Theorem
4.3.31, resp. Corollary 5.2.11). Hence, we will first construct and study the
Gibbs measures µΓ on Γ(R̂d) and then reformulate the corresponding results
for the Gibbs measures µK on K(Rd).

Even on the configuration space Γ(R̂d), neither the potential, nor the
semi -local specification kernels are standard (cf. e.g. [Rue69, Rue70] or
[AKR98b, KLU99, Kun99]).

Concerning the semi-local specification, usually one considers local speci-
fication kernels on Γ(R̂d), where instead of R+×∆, ∆ ∈ Bc(Rd), one chooses
Λ ∈ Bc(R̂d) (cf. Section 4.1). An important issue is that the classes of mea-
sures µ ∈ M1(Γ(R̂d)) that solve the (DLR) equation w.r.t. to the local
Gibbs specification (πΛ)Λ∈Bc(R̂d) respectively semi-local one (πR+×∆)∆∈Bc(Rd)

indeed coincide, as we show in Theorem 4.5.9 (see also Remark 5.1.24). This
immediately implies the one-to-one correspondence between the two classes
of Gibbs measures on K(Rd) and Γ(R̂d), i.e., between GibbstV (Γ(R̂d)) and
Gibbstφ(K(Rd)). So, we will first study the set GibbstV (Γ(R̂d)) and then re-
formulate the main results for µ ∈ Gibbstφ(K(Rd)).

Furthermore, the potential V (x̂, ŷ) = sxsyφ(x, y) does not fit the standard
framework on Γ(R̂d) (cf. Section 4.2 for more details), in so far as:

1. V is in general not translation invariant in R̂d.

2. V may have an infinite range in R̂d.

3. If φ(x, y) = a(x−y) ≥ 0, where x, y ∈ Rd and a ∈ C1
0(Rd) not identical

to zero, then (cf. Lemma 4.2.1)

C(β) :=ess sup
x̂∈R̂d

∫
Rd

∫
R+

∣∣e−βsxsya(x−y) − 1
∣∣λθ(dsx)dx =∞.

So, V voids the uniform integrability condition, which is C(β) < ∞
(cf. e.g. [AKR98b, Kun99]).

4. The intensity measure λθ on the marks is infinite, i.e., λθ(R+) = ∞,
and, moreover, it has a high concentration as s ↘ 0. (In marked
configuration spaces the intensity measure on R+ is usually assumed to
be finite, cf. [KLU99].)
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We overcome these difficulties in Chapters 4 and 5, where we study in
detail the related Gibbs measures on Γ(R̂d). In particular, we establish their
existence and uniform moment bounds (cf. Theorems 4.2.7 and 4.3.34, resp.
5.2.8 and 5.2.10).

In Chapter 4 we concentrate on the case of a non-negative potential
V ≥ 0 and construct a Gibbs measure being specified by the local speci-
fication kernel πΛ, Λ ∈ Bc(R̂d) (cf. Section 4.2). To establish the existence
of µΓ ∈ GibbstV (Γ(R̂d)), we derive uniform moment bounds for µΛ(dγ|ξ) (cf.
Proposition 4.2.3). These bounds imply that each net of local specification
kernels πΛ(dγ|ξ) with a fixed boundary condition ξ is locally equicontinuous
(cf. Proposition 4.2.6). This yields the existence of a certain µΓ ∈M1(Γ(R̂d))
being a limit point of such a net as Λ↗ R̂d, for which we then show that it
satisfies the (DLR) equation, i.e., µΓ ∈ GibbstV (Γ(R̂d)) (cf. Theorem 4.2.7).
Therefore, the set GibbstV (Γ(R̂d)) is non-void. After establishing the exis-
tence, we deduce certain moment estimates being uniform for all Gibbs mea-
sures µΓ ∈ GibbstV (Γ(R̂d)) (cf. Theorems 4.3.31 and 4.3.34). These estimates
allow us to identify an ‹exponentially tempered› subset Γt

ex(R̂d) ⊂ Γf (R̂d)

on which each µΓ ∈ GibbstV (Γ(R̂d)) has full measure (cf. Remark 4.3.32 and
Corollary 4.4.2).

In our general considerations in Chapter 5, we remove the assumption
that V ≥ 0 and work directly with the semi-local specification kernels πR+×∆,
∆ ∈ Bc(Rd). As we already mentioned above, both specifications lead to the
same set GibbstV (Γ(R̂d)). To construct such Gibbs measures (cf. Theorem
5.2.8), we need more advanced analytic techniques than in Chapter 4. These
involve introducing certain Lyapunov functionals and establishing the weak
dependence of Gibbs specification kernels on boundary conditions. A key
issue in the existence proof is Proposition 5.2.4, where we get a uniform
bound (as ∆ ↗ Rd) for the exponential integral of a Lypunov functional
w.r.t. the local specification kernels πR+×∆. For a large class of boundary
conditions ξ ∈ Γ(R̂d), this allows us to prove the local equicontinuity of the
specification kernels (πR+×∆(dγ|ξ))∆∈Bc(Rd) (cf. Definition 5.1.16), which im-
plies their tightness in a proper topology (cf. Proposition 5.2.7). Finally,
we check that all cluster points µΓ of the Gibbs specification {πR+×∆} (as
∆ ↗ R̂d) are surely Gibbs. The properties of µ ∈ GibbstV (Γ(R̂d)), including
moment bounds and a characterization of supporting sets, are summarized
in Theorem 5.2.10 and Corollary 5.2.11.

In Section 5.3 we make a transition to the cone K(Rd). Using the canoni-
cal homeomorphism T (cf. (3.1.2)), we obtain Gibbs measures µK on K(Rd)
as image measures of Gibbs measures µΓ on Γ(R̂d), i.e., µK = T

∗µΓ. Then
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we can directly reformulate the main results obtained in Chapter 4 and 5 in
the Gibbsian framework on K(Rd). Among them, we mention the existence
result (cf. Theorem 5.3.7) and the uniform moment bounds (cf. Theorem
5.3.10).

These results will be of particular importance in Part III: There we es-
tablish integration by parts formulas for Gibbs measures onK(Rd) and study
related Dirichlet forms and operators (cf. Chapter 6), which are then used
to construct associated diffusions on K(Rd) in Chapter 7.

Let us point out that the technique developed in Sections 5.1 and 5.2
also covers more general potentials than in the basic model with V (x̂, ŷ) =
sxφ(x, y)sy (see the general setup fixed in Subsection 5.1.3 and the corre-
sponding results in Theorem 5.2.8 and 5.2.10). Moreover, the results of
Chapter 4 and 5 are extended from Rd to general locally compact Polish
spaces X.

1.2.3 Differential calculus over K(Rd)

In Part III, we incorporate movement of the marks (extrinsic) and positions
(intrinsic). In fact, we construct diffusions

• for extrinsic, intrinsic and joint motion that

• are located in K(Rd) and

• are related to Gθ, as well as to some class of Gibbs perturbations.

• In particular, we get a diffusion of a dense set in Rd.

Our approach is based on using Dirichlet forms: Roughly speaking, for each
quasi-regular and local Dirichlet form, there exists an associated diffusion. In
Chapter 7 we treat the question of quasi-regularity (and locality) of gradient
Dirichlet forms to obtain associated diffusions.

Prominent examples for diffusions over spaces of measures are Fleming-
Viot processes, which are motivated by biological considerations (cf. [Hoc91,
EK93] and Chapter 7). Diffusions constructed via Dirichlet forms in the
configuration space framework are considered, e.g., in [AKR98a, AKR98b]
and [KLU99]. The theory of Dirichlet forms is explained, for example, in
[MR92] or, the symmetric case, in [FOT94].
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Differential calculus and Dirichlet forms

We first introduce some gradients on functions over K(Rd) (cf. Section 6.1)
and then deduce integration by parts formulas and construct related Dirich-
let forms (cf. Section 6.3).

Fix h ∈ C0(Rd), v ∈ V0(Rd) (being the set of smooth sections of the
tangent space T (X) with compact support) and consider cylinder functions

F (η) = gF (〈φ, η〉), (1.2.1)

where gF ∈ C∞b (Rd) and φ ∈ C∞0 (Rd).4 We construct an extrinsic (∇Kext,hF ),
an intrinsic (∇Kint,vF ) and a joint (∇Kh,vF ) directional derivative (cf. Subsec-
tions 6.1.2, 6.1.3 and 6.1.4): Let F : K(Rd) → R. We define an extrinsic
derivative in direction h via the multiplications Mth : K(Rd) 3 η 7→ ethη ∈
K(Rd) with t ∈ R:

∇Kext,hF (η) :=
d

dt
F (ethη),

whenever the right-hand side exists (cf. Definition 6.1.1). For the particular
cylinder function specified in (1.2.1), we have (cf. Proposition 6.1.7)

∇Kext,h gF (〈φ, η〉) = g′F (〈φ, η〉)〈φh, η〉

Let R 3 t 7→ φvt (x) be the solution to the Cauchy problem d
dt

(φv0)(x) =
v(φvt (x)) and φv0(x) = x for x ∈ Rd. Then we define the intrinsic derivative
along v as

∇Kint,vF (η) :=
d

dt
F ((φvt )

∗ η)

∣∣∣∣
t=0

,

whenever the right-hand side exists (cf. Definition 6.1.9). In particular, for
the above cylinder functions (cf. (1.2.1)) we have (cf. Proposition 6.1.14)

∇Kint,v gF (〈φ, η〉) = g′F (〈φ, η〉)〈∇X
v φ, η〉.

Combining the extrinsic and intrinsic directional derivative, we get the joint
one (cf. Subsection 6.1.4)

∇Kh,vF (η) = ∇Kext,hF (η) +∇Kint,vF (η).

4C∞b (Rd) is the set of all arbitrarily many times differentiable bounded functions from
Rd and C∞0 (Rd) that subset whose functions are compactly supported.
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For the corresponding gradients, we choose the following tangent spaces : The
extrinsic one is T ext

η (K) := L2(K(Rd), η) (cf. Definition 6.1.3). The extrinsic
gradient is defined by〈

∇KextF (η), h
〉
T ext
η (K)

= ∇Kext,hF (η),

whenever the right-hand side exists. In particular (cf. Proposition 6.1.14),

∇Kext gF (〈φ, η〉) = g′F (〈φ, η〉)φ ∈ T ext
η (K).

Furthermore, we define the intrinsic tangent space T int
η (K) at η ∈ K(Rd)

as the Hilbert space L2(Rd → T (Rd), η) of measurable η-square integrable
sections (measurable vector fields) Vη : X → T (Rd) with the scalar product

〈V 1
η , V

2
η 〉T int

η (K) :=

∫
Rd
〈V 1

η (x), V 2
η (x)〉Tx(Rd)η(dx),

where V 1
η , V

2
η ∈ T int

η (K). The intrinsic gradient is defined via

〈(∇KintF )(η), v〉T int
η (K) = (∇Kint,vF )(η),

whenever the right-hand side exists. In particular for F as in (1.2.1)

∇Kint gF (〈φ, η〉) = g′F (〈φ, η〉)∇Xφ ∈ T int
η (K).

Combining the extrinsic and intrinsic part, we get the tangent space at
η ∈ K(X)

Tη(K) = T ext
η (K)⊕ T int

η (K)

and the gradient

(∇KF )(η) =
(
(∇KextF )(η), (∇KintF )(η)

)
∈ Tη(K).

To obtain corresponding extrinsic, intrinsic and joint integration by parts
formulas, we fix a measure m(dx) = ρ(x)v(dx) on (Rd,B(Rd)) such that
ρ ∈ H1,2

loc (Rd, v). We define the extrinsic, intrinsic and joint logarithmic
derivatives (cf. Definitions 6.3.17 and 6.3.30)

〈βGθext(η), h〉T ext
η (K) := θ〈h,m〉 − 〈h, η〉,

〈βGθint(η), v〉T int
η (K) :=

∫
Rd
〈βm(x), v(x)〉Tx(Rd) + divR

d

v(x)η(dx),

〈βGθ(η), (h, v)〉Tη(K) := 〈βGθext(η), h〉T ext
η (K) + 〈βGθint(η), v〉T int

η (K).
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We establish the following integration by parts formula (cf. Theorem 6.3.39):∫
K(Rd)

∇Kh,vF (η)Gθ(dη) = −
∫
K(Rd)

F (η)〈βGθ(η), (h, v)〉Tη(K)Gθ(dη).

It yields for h = 0 an intrinsic and for v = idRd an extrinsic integration by
parts formula.

The integration by parts formula is a key tool to study corresponding
Dirichlet forms. The above results hold for more general functions, in par-
ticular for each cylinder function

F ∈ FC∞b (K(Rd), C∞0 (Rd)) =: SK(Rd)

being of the form (cf. Definition 6.1.5)

F (η) = gF
(
〈φ1, η〉, . . . , 〈φN , η〉

)
,

where gF ∈ C∞b (RN) and φi ∈ C∞0 (Rd) for i = 1, . . . , N , N ∈ N.

The next step is to study the joint Dirichlet form related to Gθ (cf. Sub-
section 6.3.4). We present a main result of Chapter 6:

• Dirichlet form (cf. Proposition 6.3.47 and Theorem 6.3.48): The joint
bilinear form (cf. (6.3.46))

EGθ(F,G) :=

∫
K(Rd)

〈
∇KF (η),∇KG(η)

〉
Tη(K)

Gθ(dη), F,G ∈ SK(Rd),

is closable and its closure is a conservative Dirichlet form.

Analogous results hold in the intrinsic and extrinsic case (cf. Theorems 6.3.29
and 6.3.38).

We deduce the above results for more general measures on K(Rd):

1. Let Gλ on K(Rd) be the image measure of a Poisson measure Pλ on
Γ(R̂d) whose intensity measure λ on R+ has first and second moments,
i.e.,

m1(λ) +m2(λ) =

∫
R+

(
s+ s2

)
λ(ds) <∞.

Then the intrinsic results hold for Gλ (cf. Theorems 6.3.8, 6.3.14 and
Proposition 6.3.12 in Subsection 6.3.1). 5

5Each Gλ is a Levy measures (cf. Definition 3.1.5).
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2. The extrinsic, intrinsic and joint results are extended to the Gibbsian
case (cf. Theorems 6.3.19, 6.3.33, 6.3.39; 6.3.29, 6.3.38 and 6.3.48).

The results of Chapter 6 hold in a more general setting, where Rd is
replaced by an arbitrary connected, orientated, separable C∞-Riemannian
manifold with Riemannian metric dX .

Equilibrium processes

A main difficulty to obtain diffusions on K(Rd) is to find the correct under-
lying Polish space for the quasi-regular property.6

For simplicity, let m be the Lebesgue measure dx on Rd. We use the
configuration space of multiple configurations in R̂d (cf. (7.2.1))

Γ̈(R̂d) :=

{
γ =

∑
y∈γ

myδy

∣∣∣my ∈ N and γ(Λ) <∞, ∀ Λ ∈ Bc(R̂d)

}
.

We define a functional (cf. Definition 7.2.7)

dΓ̈f
(γ, γ′) : Γ̈(R̂d)× Γ̈(R̂d) 3 (γ, γ′) 7→ dΓ̈f

(γ, γ′) ∈ [0,∞],

which is a metric on (cf. Definition 7.2.9)

Γ̈f (R̂d) :=
{
γ ∈ Γ̈(R̂d)

∣∣ dΓ̈f
(γ, ∅) <∞

}
.

The space (Γ̈f (R̂d), dΓ̈f
) is Polish (cf. Theorem 7.2.11); and it is the space

on which we will work.

Consider the pre-Dirichlet form defined for all F ∈ FC∞b (Γ̈f (R̂d), C0(R̂d))
via (cf. Definition 7.2.18) 7

EPθ,Γ̈f (F, F ) :=

∫
Γ̈f (R̂d)

∫
R̂d

(√
s
d

ds
F (γ)

)2

+

(
1√
s

d

dx
F (γ)

)2

γ(ds, dx)Pθ(dγ),

6Since we do not know whether K(Rd) is a Lusin space, we cannot apply the abstract
results [BBR06, BBR08].

7The set FC∞b (Γ̈f (X̂), C∞0 (X̂)) consists of all functions F which can be represented as

Γ̈(X̂) 3 γ 7→ F (γ) = gF (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉),

with some N ∈ N, gF ∈ C∞b (RN ) and ϕi ∈ C∞0 (X̂), 1 ≤ i ≤ N .
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where Pθ denotes the extension of the Gamma-Poisson measure to Γ̈f (R̂d)

by 0. The closure (EPθ,Γ̈f ,D(EPθ,Γ̈f )) is a conservative Dirichlet form (cf.
Theorem 7.2.22). As an essential step to obtain an associated diffusion, we
prove that this Dirichlet form is quasi-regular (cf. Theorem 7.2.39).

We get a conservative diffusion8 MΓ̈f that is properly associated with
(EPθ,Γ̈f ,D(EPθ,Γ̈f )) (cf. Theorem 7.3.7). One drawback is that the process is
only constructed on Γ̈(R̂d). We prove that it is actually a diffusion on the
set of pinpointing configurations with finite local mass dΓ̈f

(∅, ·), i.e., on

ΓK(R̂d) :=
{
γ ∈ Γ̈f (R̂d)

∣∣γ(R+ × {x}) ≤ 1 ∀x ∈ Rd
}

(cf. Theorem 7.3.12). For the proof we show that Γ̈(R̂d)\ΓK(R̂d) is EPθ,Γ̈f -
exceptional by extending a technique presented in [RS98]. Then we get a
main result of Chapter 7:

• Existence of a conservative diffusion on K(Rd) (cf. Theorem 7.4.4):
Let d ≥ 2. Then there exists a conservative diffusion process

M := MK(Rd) =
(
Ω,F, (Ft)t≥0 , (Θt)t≥0 , (X(t))t≥0 , (Pη)η∈K(Rd)

)
on K(Rd) which is properly associated with

(
EGθ,Γ̈f ,D

(
EGθ,Γ̈f

))
,9 i.e.,

for all (Gθ-versions) of F ∈ L2(K(Rd),Gθ) and all t > 0 the function

K(Rd) 3 η 7→ ptF (η) :=

∫
Ω

F (X(t))dPη

is an EGθ,Γ̈f -quasi-continuous version of exp(−tLGθ,Γ̈f )F , where LGθ,Γ̈f
is the generator of

(
EGθ,Γ̈f ,D

(
EGθ,Γ̈f

))
(cf. also Theorem 7.2.20). M

is up to Gθ-equivalence unique. In particular, M is Gθ-symmetric
(i.e.,

∫
GptFdGθ =

∫
FptGdGθ for all F,G : K(Rd) → R, B(K(Rd))-

measurable) and has Gθ as an invariant measure.

• Existence of extrinsic and extrinsic diffusions on K(Rd) (cf. Corollary
7.4.5): There exist extrinsic, intrinsic and joint diffusions on K(Rd),
d ≥ 2, describing the motion of marks and positions.10

In particular, there exists a diffusion describing the motion of the dense
set τ(ηt) ∈ Rd, where ηt ∈ K(Rd) for all t ≥ 0.

8A diffusion is a strong Markov process with continuous sample paths
9This is the Dirichlet form on K(Rd) that corresponds to

(
EPθ,Γ̈f ,D

(
EPθ,Γ̈f

))
.

10The extrinsic motion exists also for d = 1.
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The above results extend to more general situations (cf. Theorem 7.4.4):

1. We can equip the Lebesgue measure dx with a density ρ ∈ H1,2
loc (Rd, dx)

such that m(dx) = ρ(x)dx fulfills (cf. (7.2.12))

∃M, C ≥ 1 : m
({
x ∈ Rd

∣∣ |x| ≤ k
})
≤MCk.

2. In addition to the first extension, Gθ can be replaced by a Gibbs per-
turbation of Gθ w.r.t. some non-negative potential φ ∈ C1(Rd × Rd).
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Chapter 2

Poisson measures

In this chapter, we recall properties of the space of (locally finite) configu-
rations, construct Poisson measures on it (cf. Section 2.1) and establish the
concrete setting in which we will work (cf. Section 2.2).

The notion of a configuration space as a model for describing many-
particle systems appeared first in statistical mechanics. There the state of
an ideal gas is described by a Poisson random point field. Nowadays config-
uration spaces are also widely applied in computer science and biology.

One of the early papers treating configuration spaces is [VGG75]. Others
are e.g. [AKR98a, AKR98b], where the geometry of configuration spaces is
studied, or [Geo88, Pre05, KPR10], where the existence of Gibbs measures
is treated. For a more detailed account, we refer to e.g. [Kun99].

In Section 2.1, we fix a locally compact Polish space Y with the Borel
σ-algebra B(Y ) and define the configurations space Γ(Y ) over Y as (cf. also
Subsection 2.1.1)

Γ(Y ) :=
{
γ ⊂ Y

∣∣|γΛ| <∞, ∀Λ ∈ Bc(Y )
}
,

where Λ ∈ Bc(Y ) is a Borel set with compact closure, γΛ := γ∩Λ denotes the
restriction of γ to Λ and |γΛ| denotes the set cardinality. Fixing a non-atomic
intensity measure σ on (Y,B(Y )), we construct the Poisson measure πσ on
Γ(Y ) (cf. Subsection 2.1.2).

Then (cf. Section 2.2), we outline the concrete setting in which we will
work:

1. We introduce a space of marks, R+ :=]0,∞[, and a space of positions,
Rd with d ∈ N.

27
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2. Letm be a non-atomic Radon measure on (Rd,B(Rd)) and (R+,B(R+))
be equipped with

λθ := θ
1

s
e−sds, θ > 0 being a fixed parameter.

Note that λθ has a high concentration close to 0. Specifying Y :=
R̂d := R+ × Rd and σ = λθ ⊗m, we get the Gamma-Poisson measure
Pθ, which will be an import measure for our considerations.

3. We identify a smaller set Γf (R̂d) ⊂ Γ(R̂d) that supports Pθ (cf. Sub-
section 2.2.1):

(a) We define the set of pinpointing configurations (cf. Definition
2.2.2)

Γp(R̂d) :=
{
γ ∈ Γ(R̂d)

∣∣ for all (s1, x1), (s2, x2) ∈ γ we have
x1 = x2 ⇒ s1 = s2

}
.

(b) For all ∆ ∈ Bc(Rd) and γ ∈ Γp(R̂d) we set the local mass as (cf.
Definition 2.2.6)

m∆(γ) :=
∑

x̂=(sx,x)∈γ

s1∆(x).

We define the set of pinpointing configurations with finite local
mass as (cf. Definition 2.2.7)

Γf (R̂d) :=
{
γ ∈ Γp(R̂d)

∣∣m∆(γ) <∞, ∀∆ ∈ Bc(Rd)
}
.

(c) We show that Pθ
(
Γf (R̂d)

)
= 1 (cf. Theorems 2.2.4 and 2.2.9),

which is basically due to the following relation between m∆ and
λθ ⊗m:∫

Γ(R̂d)

m∆(γ)Pθ =

∫
∆

∫
R+

sxλθ(ds)m(dx) <∞, ∀∆ ∈ Bc(Rd).

By the last step, we can consider the image measure of Pθ on the cone
of discrete Radon measures K(Rd), which is bijective to Γf (R̂d) (cf.
Chapter 3).

2.1 A short introduction to configuration spaces
We recall some facts about the configuration space Γ(Y ) related to the topol-
ogy and the measurable structure and construct the Poisson measure. This
outline is based on [Kun99, Section 2.1] and [KPR10, Section 2.1].
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2.1.1 Configuration space

The local compact Polish space Y is called phase space. It is equipped with
the Borel σ-algebra B(Y ) generated by the family O(Y ) of open sets in Y .
The system Bc(Y ) consists of all Borel sets with compact closure. Let C0(Y )
denote the set of continuous functions f : Y → R with compact support.

Configurations γ ∈ Γ(Y )

For each Λ ∈ B(Y ), the configuration space Γ(Λ) is the system of all locally
finite subsets of Λ:

Γ(Λ) := {γ ⊂ Λ ||γΛ′| <∞, ∀ Λ′ ∈ Bc(Λ)} . (2.1.1)

Each γ ∈ Γ(Λ) can be identified with the corresponding counting measure∑
y∈γ δy, where δy denotes the Dirac measure with mass 1 at point y. For

example, to the configuration γ = ∅ there corresponds the zero measure on
Λ. Therefore we have a natural embedding

Γ(Λ) ⊂M(Λ),

whereM(Λ) denotes the linear space of all Radon measures on Λ.

Topology on the configuration space Γ(Y ) Fix Λ ∈ B(Y ). We equip
Γ(Λ) with the vague topology inherited from M(Λ), i.e. with the coarsest
topology onM(Λ) such that each of the following maps is continuous

M(Λ) 3 ν 7→ 〈f, ν〉 :=

∫
Λ

f(y)ν(dy), f ∈ C0(Λ). (2.1.2)

The vague topology on Γ(Λ) will be denoted by O(Γ(Λ)).
We remark (cf. [KPR10, P.5]) that Γ(Λ) equipped with the vague topol-

ogy is a Polish space (cf. [Kal83, 15.7.7] and, for a concret metric, [KK06]).

The Borel σ-algebra on Γ(Y ) Let Λ ∈ B(Y ). By B(Γ(Y )) we denote the
Borel σ-algebra associated to the vague topology on Γ(Y ). An equivalent
definition of B(Γ(Λ)) can be given via the counting mappings defined for all
Λ′, Λ̃ ∈ B(Y ) as

NΛ′,Λ̃ : Γ(Λ′) → N0 ∪ {∞}
γ 7→ |γ ∩ Λ̃|. (2.1.3)

Namely,

B(Γ(Λ)) = σ
(
NΛ,Λ̃|Λ̃ ∈ Bc(Λ)

)
. (2.1.4)
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Lemma 2.1.1 ([Pre05, Lemma 2.13, p. 24]). Each function

Γ(Y ) 3 γ 7→ 〈f, γ〉

is B(Γ(Y ))-measurable for f : Y → R being B(Y )-measurable and supported
by a compact set.

Finite Configuration

Fix Λ ∈ B(Y ). We define for n ∈ N0 the space of n-point configurations over
Λ

Γ
(n)
0 (Λ) := {γ ∈ Γ(Λ) ||γ| = n} , for n ∈ N and Γ

(0)
0 (Λ) := {∅}. (2.1.5)

The space of finite configurations located in a set Λ is defined as the disjoint
union

Γ0(Λ) :=
⊔
n∈N0

Γ
(n)
0 (Λ) (2.1.6)

We call Γ0(Y ) the space of finite configurations.
Note that Γ0(Λ) =

{
γ ∈ Γ(Y )

∣∣|γ| <∞, γY \Λ = ∅
}

and Γ0(Λ) = Γ(Λ)
for Λ ∈ Bc(Y ).

Borel σ-albgebra on Γ0(Y ) We will define more structure on Γ
(n)
0 (Y ).

For each n ∈ N0 and Λ ∈ B(Y ) let

Λ̃n :=
{

(y1, . . . , yn)
∣∣yk ∈ Λ for 1 ≤ k ≤ n, yk 6= yj if k 6= j

}
and equip Γ

(n)
0 (Λ) with the weakest topology, denoted by O(Γ

(n)
0 (Λ)), such

that each of the following natural ("symmetrizing") mappings is continuous

symn
Λ : Λ̃n → Γ

(n)
0 (Λ)

(y1, . . . , yn) 7→ {y1, . . . , yn}. (2.1.7)

Then we equip Γ0(Λ) with the topology O
(
Γ0(Λ)

)
being the topology of

disjoint unions of O
(
Γ

(n)
0 (Λ)

)
on Γ

(n)
0 (Λ).

Let B
(
Γ

(n)
0 (Λ)

)
denote the Borel σ-algebra on Γ

(n)
0 (Λ) which is generated

by O
(
Γ

(n)
0 (Λ)

)
and B

(
Γ0(Λ)

)
the one on Γ0(Λ). Using (2.1.3), we have (cf.

e.g. [Len75])

B
(
Γ

(n)
0 (Λ)

)
= σ

(
NΛ,Λ̃

∣∣Λ̃ ∈ Bc(Λ)
)
. (2.1.8)

For Λ ∈ Bc(Y ), we note that not only Γ0(Λ) = Γ(Λ), but also

B
(
Γ0(Λ)

)
= B

(
Γ(Λ)

)
= B(Γ(Y )) ∩ Γ(Λ), ∀Λ ∈ Bc(Y ).
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Algebra of cylindrical sets

Fix Λ, Λ̃ ∈ B(Y ) with Λ̃ ⊂ Λ. We define

BΛ̃

(
Γ(Λ)

)
:= σ

({
NΛ,Λ′

∣∣∣Λ′ ∈ B(Λ), Λ′ ⊂ Λ̃
}) (

⊂ B(Γ(Λ))
)
. (2.1.9)

It is only sensitive to sets in Λ̃. We consider the natural projections

PΛ,Λ̃ : Γ(Λ) → Γ(Λ̃)

γ 7→ γΛ̃ (2.1.10)

and note that

BΛ̃(Γ(Λ)) = P
−1

Λ,Λ̃
◦ B(Γ(Λ̃)). (2.1.11)

In order to avoid confusions we will not use the same notation for both of
them because B(Γ(Λ̃)) and BΛ̃(Γ(Λ)) are σ-algebras on different spaces, Γ(Λ̃)
resp. Γ(Λ). Using the later σ-algebra we define the algebra of cylindrical sets

Bcyl(Γ(Λ)) :=
⋃

Λ̃∈Bc(Λ)

BΛ̃(Γ(Λ)) (2.1.12)

Note that Bcyl(Γ(Λ)) is a subsystem of B(Γ(Λ)).

2.1.2 Poisson measure

We perform the well-known explicit construction of πσ (see e.g. [AKR98b,
Section 2.1] or [DVJ03, Section 2.4]). On the underlying phase space Y , we
fix an intensity measure σ being a non-atomic Radon measure on (Y,B(Y )),
for which

σ({x}) = 0 for all x ∈ Y.

Typically, we have σ(Y ) =∞.
By B(Γ(Y )) we denote the set of all bounded B(Γ(Y ))-measurable func-

tions F : Γ(Y ) → R. For each Λ ∈ Bc(Y ), the corresponding Lebesgue-
Poisson measure PΛ

σ with intensity measure σ on (Γ(Λ),B(Γ(Λ))) is defined
by the identity∫

Γ(Λ)

F (γΛ)PΛ
σ (dγΛ)

:=F ({∅}) +
∑
n∈N

1

n!

∫
Λn
F ({x1, . . . , xn})dσ(x1) . . . dσ(xn), (2.1.13)
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which should hold for all bounded measurable functions F ∈ B(Γ(Λ)). Tak-
ing into account that PΛ

σ (Γ(Λ)) = eσ(Λ) < ∞, we introduce the probability
measures

πΛ
σ := e−σ(Λ)PΛ

σ . (2.1.14)

Note that the family
{
πΛ
σ |Λ ∈ Bc(Y )

}
is consistent, which means (using the

projections defined in (2.1.15))

πΛ
σ ◦ P−1

Λ,Λ′ = πΛ′

σ whenever Λ′ ⊂ Λ.

By Kolmogorov’s theorem (cf. [Pat67, Theorem V.3.2]), the Poisson measure
πσ is the unique probability measure on (Γ ,B(Γ )) such that

πΛ
σ = πσ ◦ P−1

Λ for all Λ ∈ Bc(Y ). (2.1.15)

An equivalent way of defining πσ is to claim that, for any collection of dis-
joint domains (Λj)

N
j=1 ⊂ Bc(Y ), the random variables NX̂,Λj

(γ) (cf. (2.1.3))
should be mutually independent and distributed by the Poissonian law with
parameters σ(Λj), i.e.,

πσ
({
γ ∈ Γ

∣∣ NΛj(γ) = n
})

=
σn(Λj)

n!
e−σ(Λj), n ∈ Z+. (2.1.16)

Another well-known analytic characterization of πσ is given through its Laplace
transform, see e.g. [GV64],∫

Γ (Y )

exp〈f, γ〉dπσ(γ) = exp

{∫
Y

(
ef(x) − 1

)
dσ(x)

}
, f ∈ C0(Y ).

(2.1.17)

Topologies on spaces of measures over Γ(Y )

LetM1(Γ(Y )) denote the space of all probability measures on Γ(Y ).

Definition 2.1.2 ([KPR10, Subsection 2.4]). On the space of all probability
measuresM1(Γ(Y )) we introduce the topology of local setwise convergence.
This topology, which we denote by Tloc, is defined as the coarsest topology
making the maps µ 7→ µ(B) continuous for all sets B from the algebra

Bcyl(Γ(Y )) =
⋃
|Λ|<∞

BΛ(Γ(Y )).

Equivalently, Tloc is the coarsest topology such that µ 7→ µ(F ) is con-
tinuous for all bounded Bcyl(Γ (Y ))-measurable functions F : Γ (Y ) → R.
Since the topology Tloc is not metrizable (cf. [Geo88, p.57]), the notions of
convergence and sequential convergence in Tloc do not coincide.
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2.2 Gamma-Poisson measures
We specify the abstract setting of Section 2.1 to our needs: In particular, we
introduce R+ as a space of marks and a locally compact Polish space X as
a space of positions. Then we get the Gamma-Poisson measure Pθ on Γ(X̂),
where X̂ = R+ × X. The main aim is to prove that Pθ

(
Γf (X̂)

)
= 1 (cf.

Theorem 2.2.9).

The space R+ of marks

We equip R+ =]0,∞[ with the logarithmic metric1

dR+(x, y) :=

∣∣∣∣ln xy
∣∣∣∣ ∀x, y ∈ R+. (2.2.1)

This metric is invariant under multiplication. This means that for all positive
functions g : R+ 3 x 7→ gx := g(x) ∈ R+, we have dR+(gx, gy) = dR+(x, y).
Furthermore, the metric dR+ is locally equivalent to the usual one on R being
restricted to R+. Hence, (R+, dR+) is a locally compact Polish space.

Let B(R+) denote the Borel σ-algebra on R+. Observe that B(R+) =
B(R) ∩ R+. We consider a Radon measure λ on (R+,B(R+) such that∫

R+

sλ(ds) <∞ (2.2.2)

A typical example is, letting ds denote the Lesgue measure on R+ and θ > 0
being a fixed parameter,

λθ(ds) = θ
e−s

s
ds. (2.2.3)

This measure has a high concentration close to zero.
We like to point out a particular property to familiarize ourselves with

the space (R+, dR+): In the metric dR+ let us consider the ball BR(1) centered
at 1 with radius R > 0,

BR(1) ={r ∈ R+|dR+(r, 1) ≤ R} =
{
r ∈ R+|

∣∣∣ln r
1

∣∣∣ ≤ R
}

=
{
r ∈ R+|

(
r ≥ 1 : r ≤ eR

)
or (0 < r ≤ 1 : − ln r ≤ R)

}
=
[
e−R, eR

]
, (2.2.4)

which shows that the distance from 1 to e−R, as well as the one from 1 to
eR, is R. Therefore, the distance to 0, as well as the one to ∞, is infinite.

1The logarithmic metric is quite useful to construct later a corresponding Gibbs measure
in Chapter 4.
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The space X of positions

We denote for the locally compact Polish space X by B(X) its Borel σ-
algebra and by Bc(X) that subset consisting only of the Borel sets with
compact closure. Moreover, we pick a non-atomic Radon measure m on X.

Remark 2.2.1. 1. Our standard example is X = Rd, d ∈ N fixed, being
the d-dimensional vector space over the real numbers with the usual
Euclidean metric and m(dx) = dx being the Lebesgue measure on Rd.

2. We stress that we have a broken symmetry between the spaces of marks
and the space of positions: For the standard example, we see that for
all ∆ ∈ Bc(Rd) ∫

R+

∫
∆

s dxλθ(ds) <∞. (2.2.5)

Configuration space over R+ ×X

The next step is to combine the space of marks R+ and the space of positions
X to one space, so that we can define measures on Γ(R+ ×X).

Let X̂ := R+×X be the product space of the space R+ of marks and the
space X of positions (or locations). We refer to X̂ as the phase space. From
now on without further notice, we denote the elements of X̂ by x̂ = (s, x)
where s ∈ R+, x ∈ X. The same is true, if these elements are indexed, i.e.
x̂i = (si, xi) ∈ X̂ for all i ∈ N. X̂ is equipped with the metric

dX̂(x̂1, x̂2) := dR+(s1, s2) + dX(x1, x2), ∀x̂1, x̂2 ∈ X̂ (2.2.6)

and the corresponding Borel σ-algebra B(X̂). Moreover, for notational con-
venience we define for each Λ ⊂ X̂ the projection to R+ and X by

ΛR+ := {s ∈ R+ |∃x ∈ X : (s, x) ∈ Λ} and (2.2.7)
ΛX := {x ∈ X |∃ s ∈ R+ : (s, x) ∈ Λ} . (2.2.8)

We refer to ΛR+ as the set of types, marks or species, whereas ΛX can be
considered as the support.

2.2.1 Poisson measure on Γ(X̂)

Our next task is to introduce the Gamma-Poisson measure Pθ on Γ(X̂) and
show Pθ(Γf (X̂)) = 1.
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Setting Y = X̂, we apply Section 2.1 to our setting: Γ(X̂) is the configu-
ration space over X̂. Each γ ∈ Γ(X̂) can be represented as

γ = {x̂i | i ∈ N},

where x̂i = (si, xi) ∈ X̂, si ∈ R+ and xi ∈ X. As usual, M1(Γ(X̂)) denote
the space of probability measures on (Γ(X̂),B(Γ(X̂))). On Γ(X̂) we consider
the Poisson measure πλ⊗m with intensity measure λ⊗m on X̂ (cf. (2.1.15))
and denote it by

Pλ(dγ) := πλ⊗m(dγ). (2.2.9)

In particular, we fix θ > 0 and consider (cf. (2.2.3))

Pθ(dγ) := πλθ⊗m(dγ). (2.2.10)

We call it Gamma-Poisson measure on Γ(X̂).2
For each Λ ∈ Bc(X̂) denote by

PΛ
λ := PΛ

λ⊗m and PΛ
θ := PΛ

λθ⊗m, resp.
PΛ
λ := πΛ

λ⊗m(dγ) and PΛ
θ := πΛ

λθ⊗m(dγ).
(2.2.11)

the corresponding Lebesgue-Poisson resp. Poisson measures on Γ(Λ) (cf.
(2.1.14), (2.1.1)).

Support of the Gamma-Poisson measure Pθ
The support of each configuration γ ∈ Γ(X̂) is given by the projection

τ(γ) := γX . (2.2.12)

It represents the positions of all particles. We note that typically the support
τ(γ) does not have to be a configuration on X, i.e., τ(γ) ∩ ∆ is in general
dense in ∆ for any ∅ 6= ∆ ∈ Bc(X) open. Since γ ∈ Γ(X̂) is countable, also
its support τ(γ) is countable.

Pinpointing configurations

Definition 2.2.2. The set of pinpointing configurations in Λ ∈ B(X̂) is
given by

Γp(X̂) :=
{
γ = {x̂i} ∈ Γ(Λ)

∣∣ ∀x̂1 = (s1, x1), x̂2 = (s2, x2) ∈ γ :

xi = xj ⇒ si = sj

}
. (2.2.13)

2Pλ is a marked Poisson measure, if λ(R+) < ∞ (cf. [KLU99, Section 2.1]). But, Pθ
on Γ(R̂d) is a compound Poisson measure (cf. [KdSSU98, Definition 3.1]).



36 CHAPTER 2. POISSON MEASURES

Each pinpointing configuration γ ∈ Γp(X̂) has one mark sx associated to
a position x ∈ τ(γ). Therefore, we may denote

γ =
{

(sx, x)
∣∣x ∈ τ(γ)

}
∀γ ∈ Γp(X̂).

Here, we use the visual image of a pin: The pinpoint indicates the location
x of the particle, whereas the pinhead represents its mark sx.

Lemma 2.2.3. The set of pinpointing configurations on each Λ ∈ B(X̂) is
measurable, i.e. Γp(X̂) ∈ B(Γ(Λ)). In particular, Γp(X̂) ∈ B(Γ(X̂)).

Proof. First of all, we assume that Λ ∈ Bc(X̂). Let D ∈ B(X ×X) denotes
the diagonal of X×X, i.e., D := {(x, x)|x ∈ X}. The complement to Γp(X̂)
can be represented as

Γp(X̂)c = {γ ∈ Γ(Λ) |∃ {x̂1, x̂2} ⊂ γ : {x1, x2} ∈ D} =
⋃
k∈N

Ak, (2.2.14)

where Ak ⊂ Γ(k)(Λ) is defined by

Ak :=
{
γ ∈ Γ(k)(Λ) ||γ| = k, ∃ {x̂1, x̂2} ⊂ γ : {x1, x2} ∈ D

}
. (2.2.15)

For each set Ak, there exists

Ãk = symk
X̂

−1
(Ak) ∈ B

(
X̂k
)
.

This associated set is symmetric in each component and, actually, Ãk ∈
B(Λk). Hence, Ak ∈ B(Γ(Λ)) ⊂ B(Γ(X̂)).

Now we treat the general case of a fixed Λ ∈ B(X̂). We choose a countable
covering {Λn}n∈N of X̂(and thus of Λ) consisting of increasing compact sets
Λn ∈ Bc(X̂).3 We have that

Γp(X̂) =
⋂
n∈N

{γ ∈ Γ(Λ) |γΛn ∈ Γp(Λn ∩ Λ)} =
⋂
n∈N

P
−1
Λ,Λn∩Λ(Γp(Λn ∩ Λ)),

(2.2.16)
wherePΛ,Λn∩Λ is the B(Γ(Λ))/B(Γ(Λn ∩ Λ))-measurable projection from Γ(Λ)
to Γ(Λn ∩ Λ). Thus,

Γp(X̂)c ∈ B(Γ(Λ)).

3Let us show this: Because X̂ is locally compact, we find for each x̂ ∈ X̂ an open set
Bx̂ ∈ Bc(X̂) containing x̂. Then ⋃

x̂∈X̂

Bx̂ ⊂ X̂

is an open covering of X̂. Since X̂ has the Lindelöf property (cf. [Sie00, Theorems 65 and
49]), we can choose a countable subsection. Hence, we find such an increasing sequence.
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Theorem 2.2.4. We have Pλ(Γp(X̂)) = 1. In particular, the Gamma-
Poisson measure Pθ is supported by Γp(X̂).

Remark 2.2.5. Pθ(Γp(R̂d)) = 1 is given in [KdSS98, Proposition 3.2] for
whose proof one may also compare [Kal74, Kal83, MKM78].

Proof of Theorem 2.2.4. The basic idea of the proof is that m⊗m(D) = 0,
where D denotes the diagonal in X ×X. To apply this, we rewrite Γp(X̂)c

using an increasing compact sequence {An}n∈N covering X̂ (similarly to the
last proof) and estimate its measure to be 0.

We will show that Pλ(Γp(X̂)) = 1. To this end, we choose a countable
covering {Λn}n∈N of X̂ consisting of increasing compact sets Λn ∈ Bc(X̂).3 For
simplicity, these sets are chosen to be of product type, i.e. Λn = Λn,R+×Λn,X .
Taking the complement of the intersection given in (2.2.16) (with Λ = X̂)
we have

Pλ
(

Γcp(X̂)
)

= Pλ

(⋃
n∈N

P
−1

X̂,Λn
Γp(Λn)c

)
≤

∞∑
n=1

Pλ
(
P
−1

X̂,Λn
Γp(Λn)c

)
,

where PX̂,Λn
is the projection of Γ(X̂) onto Γ(Λn) (cf. (2.1.15)). Hence, it is

enough to prove that for all Λ ∈ Bc(X̂) being of product type4

0
!

= Pλ
(
P
−1

X̂,Λ

(
Γp(X̂)c

))
= e−λ⊗m(Λ)PΛ

λ⊗m

(
Γp(X̂)c

)
,

which is shown if
0

!
= PΛ

λ⊗m

(
Γp(X̂)c

)
. (2.2.17)

In order to show (2.2.17), we fix such a Λ. Using (2.2.15) we calculate

PΛ
λ⊗m(Γp(X̂)c) ≤

∞∑
k=0

PΛ
λ⊗m

({
γ ∈ Γ(Λ)(k) |∃ {x̂1, x̂2} ⊂ γ, {x1, x2} ∈ D

})
=
∞∑
k=0

1

k!
(λ⊗m)⊗k

({
{x̂1, . . . , x̂k} ⊂ Λ

∣∣∣∃ i, j ∈ {1, . . . , k}, i 6= j :

{xi, xj} ∈ D
})

≤
∞∑
k=2

1

k!

(
k

2

)
(λ⊗m)⊗(k−2)(Λk−2) (m⊗m)(D)︸ ︷︷ ︸

=0

· λ(ΛR+)2 = 0

Our next task is to prove Pθ(Γf (X̂)) = 1.
4By “!” we indicate a property that is to be shown.
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A local mass map By definition, the support τ(γ) of each γ ∈ Γ(X̂) is
a countable set. Thus, for each γ ∈ Γp(X̂) we can sum up the associated
marks sx, x ∈ τ(γ).

Definition 2.2.6. For each γ ∈ Γ(X̂) we define its local mass5 on ∆ ∈ B(X)
by

m∆(γ) :=

∫
R+×∆

sγ(ds, dx) = 〈s⊗ 1∆(x), γ〉 ∈ [0,∞]. (2.2.18)

In particular, for γ ∈ Γp(X̂) and ∆ ∈ B(X)

m∆(γ) =
∑

x∈τ(γ)∩∆

sx ∈ [0,∞]. (2.2.19)

Definition 2.2.7. The set of pinpointing configurations with finite local
mass Γf (X̂) is defined by

Γf (X̂) := Γf,m(X̂) :=
{
γ ∈ Γp(X̂)

∣∣ ∀∆ ∈ Bc(X) : m∆(γ) <∞
}
. (2.2.20)

Remark 2.2.8. By Lemma 2.1.1, the map Γ(X̂) 3 γ → m∆(γ) ∈ R is
B(Γ(X̂))-measurable for all ∆ ∈ B(X) as the limit of measurable functions.
Moreover, Γf (X̂) ∈ B(Γ(X̂)).

Theorem 2.2.9. We have Pλ(Γf (X̂)) = 1. In particular, the Gamma-
Poisson measure Pθ is supported by Γf (X̂).

Proof. Fix ∆ ∈ Bc(X). Recall that by Remark 2.2.8 the function Γ(X̂) 3
γ → m∆(γ) is measurable. We have∫

Γ(X̂)

m∆(γ)Pλ(dγ) =

∫
Γ

〈s⊗ 1∆(x), γ〉Pλ(dγ)

=

∫
X

∫
R+

s1∆λ(ds)m(ds) = m(∆)

∫
R+

sλ(ds) <∞. (2.2.21)

Hence, for all ∆ ∈ Bc(X) we have

m∆(γ) <∞, for γ ∈ Γ (Pλ-a.e.).

5The general concept will be given in Definition 4.3.4.



Chapter 3

Gamma measures

In this chapter, we will present the main objects of our considerations, namely
the cone of discrete Radon measures and the Gamma measures. Moreover,
we outline a quasi-invariance property of the Gamma measure.

The Gamma measures on infinite dimensional spaces appeared in the rep-
resentation theory of groups (cf. [VGG75]). They are closely related to mul-
tiplicative Lebesgue measures. In [KdSSU98] Gamma measures are treated
as a particular case of compound Poisson measures and the related chaos de-
composition and annilation and creation operators are studied. In [TVY01],
a constructive approach for the Gamma measures is given. In [Sta03], the
Gamma measures appear as examples of “invariant probability measure for
a class of continuous state branching processes with immigration.”1

Our first aim (cf. Section 3.1) is to introduce the underlying topological
space, namely the cone of discrete measures (cf. Definition 3.1.1)

K(Rd) :=
{
η =

∑
siδxi

∣∣∣si ∈ R+, xi ∈ Rd, xi 6= xj∀ i, j ∈ N, i 6= j,

∀Λ ∈ Bc(Rd) : η(Λ) <∞
}
.

Then (cf. Subsection 3.2.1) we get the Gamma measure Gθ, θ > 0 a fixed
parameter, on K(Rd) as an image measure of the Gamma-Poisson measure
Pθ on Γ(R̂d) (cf. Chapter 2) and prove that (cf. Theorems 3.1.7 and 3.2.2)

EGθ [exp (−〈a, ·〉)] = exp

(
−θ
∫
Rd

log(1 + a(x))dm(x)

)
, (3.0.1)

1This is cited from [Sta03, Abstract].

39
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where a : Rd → [0,∞), is a bounded, compactly supported, non-negative
Borel function such that log(1 + a) ∈ L1(Rd,m) and m has been fixed to be
a non-atomic Radon measure on Rd.

From (3.0.1) we deduce two important properties of Gθ:
• All finite moments exist, i.e., for n ∈ N and for each bounded Borel

function a : Rd → R that is supported by ∆ ∈ Bc(Rd) we have (cf.
Theorem 3.2.6)

EGθ [〈a, ·〉n] ≤ n! 〈‖a‖∞1∆, θm〉n <∞. (3.0.2)

• The Gamma measure Gθ is quasi-invariant under K(Rd) 3 η 7→ ehη ∈
K(Rd), where h ∈ C0(Rd) (cf. Theorem 3.3.3).

In Part III, the later two properties are heavily used to do differential calcu-
lus related to Gθ on K(Rd).

These results extend to the case that Rd is replaced by an arbitrary locally
compact Polish space X, which we fix from now on together with a non-
atomic Radon measure m on X.

3.1 Levy measures on the cone of discrete Radon
measures

The main aim of this section is to introduce the cone K(X) and Levy mea-
sures on K(X), which include Gamma measures.

3.1.1 The cone K(X)

Definition 3.1.1. The cone of locally finite discrete measures over X is
defined as

K(X) :=
{
η =

∑
siδxi

∣∣∣si ∈ R+, xi ∈ X, xi 6= xj∀ i, j ∈ N, i 6= j,

∀Λ ∈ Bc(X) : η(Λ) <∞
}
⊂M(X), (3.1.1)

whereM(X) denotes the set of all Radon measures over X.

Remark 3.1.2. Heuristically spoken, η ∈ K(X) means that on each position
there should only be one particle with its specific mark and that the mass (=the
sum of marks) does not explode locally.

Definition 3.1.3. For each η ∈ K(X) we denote its support by

τ(η) := {x ∈ X| η(x) := η({x}) 6= 0}.
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3.1.2 Levy measures

Definition 3.1.4. A Radon measure λ on (R+,B(R+)) satisfying

λ(R+) =∞ and m1(λ) :=

∫
R+

sλ(ds) <∞

is called a Levy measure on R+. The first moment of λ is m1(λ).

The Borel σ-algebra on K(X)

The topology on K(X) is inherited from Γf (X) being equipped with the
subspace topology of (Γ(X̂),O(Γ(X̂))) (cf. Section 2.1): That is, we equip
K(X) with the strongest topology O(K(X)) such that the following bijective
map is continuous

T : Γf (X̂) → K(X)

γ = {(sx, x)} 7→ η :=
∑

(sx,x)∈γ

sxδx. (3.1.2)

Then we equip K(X) with the corresponding Borel σ-algebra B(K(X)).

Definition 3.1.5 (compare [TVY01, Definition 2.1]). A Levy measure Gλ on
(K(X), B(K(X))) over the space (X,B(X),m) with Levy (intensity) measure
λ on R+ is a Poisson process on K(X) such that its Laplace transform fulfills

EGλ [exp (−〈a, ·〉)] = exp

(
−
∫
R+×X

(1− e−a(x)s)λ(ds)m(dx)

)
, (3.1.3)

where 〈a, η〉 :=
∫
X
a(x)dη(x) and a : X → R is a compactly supported,

bounded, non-negative Borel function.

Remark 3.1.6. This definition differs from the more general one, where one
assumes for an intensity measure λ on R+ just

∫ 1

0
s2λ(ds) <∞ (cf. [App09,

P.29, (1.10)]). The additional integrability insures that Gλ(K(X)) = 1.

Theorem 3.1.7 (compare [AKR98a], [TVY01]). Let λ be Levy measure on
R+ with m1(λ) <∞. Then there exists a corresponding Levy measure Gλ on
(K(X),B(K(X))) which has λ as an intensity measure on R+.

Proof. This follows using the results of Section 2.2, especially Theorem 2.2.9.
Namely, we consider the Poisson measure Pλ on Γ(X̂) with intensity measure
λ⊗m. By Theorem 2.2.9, Pλ

(
Γf (X̂)

)
= 1. Note that Γf (X̂) ⊂ B(Γ(X̂)) is



42 CHAPTER 3. GAMMA MEASURES

bijective to K(X) under the map T given in (3.1.2). Hence, we define Gλ as
the image measure of Pλ under T:

Gλ = T
∗Pλ.

Then Gλ has the required properties.2

Remark 3.1.8. We emphasize that for Gλ-a.e. η ∈ K(X)

|τ(η) ∩∆| =∞ ∀∆ ∈ Bc(X) : m(∆) 6= 0.

3.2 Gamma measures

We have a look at two important classes of examples of measures being
supported by the coneK(X). The first one consists of special Levy measures,
namely of all Gamma measures Gθ, θ > 0, (cf. Definition 3.2.1). If m(X) <
∞, we can consider a second class consisting of infinite measures, namely of
multiplicative Lebesgue measures (cf. Definition 3.2.7).

3.2.1 Gamma measures

This subsection is based on [TVY01].3

Definition 3.2.1 (compare [TVY01, Definition 2.2]3). A Gamma measure
with shape parameter θ > 0 is the Levy measure on (K(X),B(K(X))) with
the following Levy intensity measure on R+ (cf. (2.2.3))

λθ(ds) = θ
e−t

t
dt.

Theorem 3.2.2 (compare [TVY01, P.279] 3). The measure λθ is indeed a
Levy measure on R+ and Gθ exists. Moreover,

EGθ [exp (−〈a, ·〉)] = exp

(
−θ
∫
X

log(1 + a(x))dm(x)

)
, (3.2.1)

where a : X → (−1,∞), is a bounded, compactly supported Borel function
such that log(1 + a) ∈ L1(X,m).

2The existence of Gλ can also be shown by using the existence and the mapping theorem
in [Kin93, P.23, resp. p.18], and Campbell’s theorem (cf. [Kin93, P.28]) to deduce the
Laplace formula. Then one still has to check that it is supported by the cone K(X).

3In [TVY01] the case X being [0, 1] is considered.
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Proof. One checks that λθ is a Levy measure.4 Hence, by Theorem 3.1.7
there exists a corresponding Levy measure. The formula for the Laplace
transform follows by using (3.1.3) and Lemma 3.2.3, i.e.,∫ ∞

0

e−a(x)t − 1

t
e−tdt = − log(1 + a(x)) ≤ − log(1− 1 + εx),

where εx > 0. Moreover, the mentioned bound is sharp because, otherwise,
there would exists a non null set such that the logarithm is not finite.

Lemma 3.2.3. For δ > 0, c ≥ −1 + δ and ε ≥ 0 we get∫ ∞
ε

e−ct − 1

t
e−tdt = − log(1 + c)− F (ε, c),

where

F (ε, c) :=
∞∑
k=1

(−ε)k((1 + c)k − 1)

k!k

converges absolutely. In particular,∫ ∞
0

e−ct − 1

t
e−tdt = − log(1 + c).

Proof. The following integral exists because we find, using the mean value
theorem for t ≤ 1, a dominating integrable function for the integrand. Using
the transformation rule with t′ = (c+ 1)t we derive∫ ∞

0

e−ct − 1

t
e−tdt = lim

ε→0

(∫ ∞
ε(c+1)

e−t
′

t′
dt′︸ ︷︷ ︸

=:E1(ε(c+1))

−
∫ ∞
ε

e−t

t
dt︸ ︷︷ ︸

=:E1(ε)

)
.

Taking the derivative of E1(ε) w.r.t. ε and then finding a primitive we obtain

dE1(x)

dx

∣∣∣∣
x=ε

= −e
−ε

ε
=
∞∑
k=1

(−ε)k−1

k!
− 1

ε

and

E1(ε) = −
∞∑
k=1

(−ε)k

k!k
− log ε+ C,

4Indeed, λθ((1,∞)) ≤ θ
∫∞

1
1 · e−tdt < ∞,

∫
R+
tt−1e−tdt = 1 and λθ((0,∞)) ≥

θ
∫ 1

0
e−1t−1dt =∞.
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where C > 0. Note∣∣∣∣ (−ε)k+1k!k

(−ε)k(k + 1)!(k + 1)

∣∣∣∣ =
| − ε|
k + 1

· (1− 1

k
) <

1

2
for k > 2ε.

Thus the sum exists, converges absolutely and is bounded by eε − 1. Using
this formula for ε and ε(c+ 1), we conclude∫ ∞

0

e−ct − 1

t
e−tdt = lim

ε→0
−
∞∑
k=1

(−ε)k((1 + c)k − 1)

k!k
− log

ε(c+ 1)

ε

= − log(c+ 1).

Furthermore,

|F (ε, c)| ≤
∞∑
k=1

∣∣∣∣(−ε)k((1 + c)k − 1)

k!k

∣∣∣∣
≤

∞∑
k=0

(ε)k(1 + c)k

k!
− 1 + eε − 1 ≤ eε(1+c) + eε − 2,

i.e., the sums converges absolutely.

3.2.2 Moments of Gamma measures

Definition 3.2.4. Let µ be a measure on (K(X),B(K(X))), a : X → R be
a bounded, compactly supported Borel function and n ∈ N. Then

Eµ
[
〈a, ·〉n

]
is called an nth moment of µ.

Lemma 3.2.5 (see [GR80, P.19, eq. 0.430 2]). For n ∈ N0, f, g ∈ Cn(R)

dn

dtn
(g ◦ f(t)) =

∑
∑
lil = n

i1,...ik∈N0

n!

i1! . . . ik!

(
f (1)(t)

1!

)i1
. . .

(
f (k)(t)

k!

)ik ( dn

dyn
g

)
◦ f(t),

where dn

dyn
g denotes the nth derivative of y 7→ g(y).

Theorem 3.2.6. Let θ > 0 and a : X → R be a bounded, compactly supported
Borel function. Then for all n ∈ N

EGθ [〈a, ·〉n] =
∑

∑
lil = n

i1,...ik∈N0

n!

i1! . . . ik!

〈
a1

1
, θm

〉i1
. . .

〈
ak

k
, θm

〉ik
(3.2.2)

If a is supported by ∆ ∈ Bc(X), then

EGθ [〈a, ·〉n] ≤ n!‖a‖∞θnm(∆)n. (3.2.3)
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Proof. The proof is done by deriving the Laplace transformation of λa w.r.t.
λ ∈ R and evaluating it at 0: For sufficiently small λ, we have λa > −1

2
and

(cf. Theorem 3.2.2)

EGθ
[
(−〈a, ·〉)n

]
=

(
d

dλ

)n
EGθ [exp(−λ〈a, ·〉)]

∣∣∣∣
λ=0

=

(
d

dλ

)n
exp(−θ〈log(1 + λa),m〉)

∣∣∣∣
λ=0

.

It equals (cf. Lemma 3.2.5)

∑
∑
lil = n

i1,...ik∈N0

n!

i1! . . . ik!


〈

(−1)10!
(1+λa)1a

1, θm
〉

1!

i1

. . .


〈

(−1)k(k−1)!
(1+λa)k

ak, θm
〉

k!

ik

(exp) ◦ (〈− log(1 + λa), θm〉)
∣∣∣∣
λ=0

=
∑

∑
lil = n

i1,...ik∈N0

n!

i1! . . . ik!
(−1)

∑
lil︸ ︷︷ ︸

(−1)n

〈
a1

1
, θm

〉i1
. . .

〈
ak

k
, θm

〉ik
.

Hence, we obtain the desired formula by multiplying with (−1)n.

3.2.3 Multiplicative Lebesgue measures

Definition 3.2.7 (cf. [TVY01, Definition 4.1]). Let m(X) <∞ and θ > 0.
A multiplicative Lebesgue measure Lθ with parameter θ > 0 on K(X) is
defined by

Lθ(dη) = e〈1,η〉Gθ(dη).

Lemma 3.2.8. Its Laplace transform is

ELθ
[
e−〈a,·〉

]
= exp

(
−θ
∫
X

log a(x)m(dx)

)
,

where a : X → R+ is a strictly positive, bounded, compactly supported Borel
function with log a ∈ L1(X,m).

Proof. This follows by

ELθ
[
e−〈a,·〉

]
= EGθ

[
e−〈a−1,·〉] = exp

(
−θ
∫
X

log(1 + a(x)− 1)m(dx)

)
.
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3.2.4 Additive Lebesgue measures

Let

E(X) :=

{∑
siδxi

∣∣∣∣{(si, xi)|i ∈ N} ⊂ R×X : η :=
∑
i∈N

esiδxi ∈ K(X)

}
.

To define the additive Lebesgue measure we use the mapping

Log : K(X) → E(X)∑
i siδxi 7→

∑
i log(si)δxi .

Definition 3.2.9 (cf. [Ver07, Section 4.4]). Let θ > 0 and m(X) <∞. The
additive Lebesgue measure Laddθ on E(X) is defined as the image measure of
Lθ under Log:

Laddθ := Log∗Lθ. (3.2.4)

3.3 Basic properties of Gθ, Lθ and Laddθ

Fix θ > 0, we present a quasi-invariance and extremality property of the
Gamma measure Gθ and the Lebesgue measure Lθ. Moreover, we show an
ergodicity property of the Gamma measures.

3.3.1 Quasi-invariance, ergodicity and extremality of Gθ
Analogously to [TVY01] we outline a transformation rule and the ergodicity
of the Gamma measure Gθ. In addition we show its extremality.

Multiplicator operator on the cone

Definition 3.3.1. For each h ∈ C0(X) the multiplicator is given by

Mh : K(X) → K(X)
η 7→ ehη.

That is (Mhη)(x) = eh(x)η(x).

Remark 3.3.2. The multiplier Mh is well defined because h is continous and
bounded.



3.3. Basic properties 47

Theorem 3.3.3 (compare [TVY01, Theorem 3.1]3). The Gamma measure
Gθ is quasi-invariant under Mh for each h ∈ C0(X). The corresponding
density is

d(MhGθ)
dGθ

(η) = exp

(
−θ
∫
X

h(x)m(dx)

)
exp

(
−
∫
X

(
e−h(x) − 1

)
dη(x)

)
.

Proof. We split the Gamma measure and consider the action of the multi-
plication on both parts independently. On one part the action is trivial and
on the other one the formula follows by the Laplace transform.

Fix h ∈ C0(X) and Λ ∈ Bc(X) : h = 1Λh. Then Mh leaves all marks
outside of Λ invariant. Hence, by the multiplicative property, it is enough to
calculate the Radon-Nikodyn derivative for GΛ

θ .5 Let ξ = Mhη. Consider an
arbitrary function l ∈ C0(X). Then

fl(ξ) :=

∫
Λ

el(x)ξ(dx) =

∫
Λ

eh(x)el(x)η(dx) = fhl(η).

Therefore, using (3.2.1), the Laplace transform equals

EGΛ
θ
[exp(−fl(Mh(·)))] = EGΛ

θ
[exp(−fhl(·)]

= exp

(
−θ
∫

Λ

log
(
1 + el(x)eh(x)

)
m(dx)

)
= exp

(
−θ
∫

Λ

h(x)dm(x)

)
exp

(
−θ
∫

Λ

log
(
e−h(x) + el(x)

)
m(dx)

)
= exp

(
−θ
∫

Λ

h(x)dm(x)

)
EGΛ

θ

[
exp

〈
e−h − 1 + el, ·

〉]
.

For the last equation, the Laplace transform (cf. (3.2.1)) is applicable because
h ∈ C0(h) (Hence, ∃δ > 0 : e−h−1 ≥ −1+δ). This concludes the proof.

Theorem 3.3.4 (cf. [TVY01, Theorem 3.2]3). The action of the group
C0(X) on the space (K(X),Gθ) is ergodic.

Proof. This follows by straightforwardly adapting the proof of [TVY01, The-
orem 3.2].6

5On GΛC

θ it is 1 = exp
(
−θ
∫

ΛC
h(x)m(dx)

)
exp

(
−
∫

ΛC

(
e−h(x) − 1

)
η(dx)

)
.

6For the convenience of the reader, we give the details: Let G : K(X)→ R be a measur-
able function onK(X), which is for all h ∈ C0(X) invariant underMh, i.e. G(Mhη) = G(η)
Gθ-a.e.. Consider an arbitrary Borel function k : R → R. Then for each h ∈ C0(X) by
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Lemma 3.3.5. Let θ1, θ2 > 0. Then there exists no non trivial convex com-
bination of Gamma measures Gθ1 and Gθ2 which equals Gθ.

Proof. If there existed θ1, θ2 ∈ R+\θ and c ∈ [0, 1] fixed such that

Gθ = cGθ1 + (1− c)Gθ2 ,

we would obtain by the Laplace transform for any feasible function a:

exp (−θ〈log(1 + a),m〉)
= c exp (−θ1〈log(1 + a),m〉) + (1− c) exp (−θ2〈log(1 + a),m〉)
= c (exp (−〈log(1 + a),m〉))θ1 + (1− c) (exp (−〈log(1 + a),m〉))θ2 .

Denoting x := exp (−〈log(1 + a),m〉) ∈ R+ we see

xθ = cxθ1 + (1− c)xθ2 ⇔ 1 = cxθ1−θ + (1− c)xθ2−θ.

Considering the different cases implies a contradiction for x sufficiently large:
Assume that θ1 > θ then for x tending to infinity the r.h.s of the last equation
tends to infinity, which leads to a contradiction for the function a being
sufficiently small. The same is true for θ2 > θ. On the other hand, if θ is
bigger than θ1 and θ2, the r.h.s tends to 0 for a being sufficiently small.

Hence, no Gamma measure Gθ can be represented by any non-trivial
convex combination of finitely many Gamma measures.

3.3.2 Projective invariance and convex combinations of
Lθ and Laddθ

Theorem 3.3.6 (cf. [TVY01, Theorem 4.1]3). Let m(X) < ∞. For each
h ∈ C0(X), the multiplicative Lebesgue measure Lθ is projective-invariant
under Mh, and the corresponding density is given by

d(MhLθ)
dLθ

(η) = exp

(
−θ
∫
X

h(x)m(dx)

)
.

Theorem 3.3.3

EGθ [k(G(·)] = EGθ [k(G(Mh·))] = EGθ
[
k(G(·)) exp

(
−〈(e−h − 1), ·〉

)]
exp (−θ〈h,m〉) .

We deduce

EGθ
[
k(G(·)) exp

(
−〈(e−h − 1), ·〉

)]
= EGθ [k(G(·)] · exp (−θ〈−h,m〉)]

= EGθ [k(G(·)] · EGθ
[
exp

(
−〈e−h(x) − 1, ·〉

)]
,

where we used the Laplace transform (cf. Definition 3.2.1) and that h is compactly sup-
ported. Since for any G the last equation holds for any arbitrary Borel function k and any
h ∈ C0(X), Gθ is ergodic.
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Proof. As before we set for l ∈ C0(X) fl(η) :=
∫
X
el(x)η(dx) and obtain

ELθ [e
−fl(Mh(·))] = ELθ [efl+h(·)] = e−θ〈log(el+h),m〉 = e−θ〈h,m〉ELθ [e−fl(·)].

Lemma 3.3.7. Let θ1, θ2 > 0. There exists no non-trivial convex combina-
tion of multiplicative "Lebesgue" measures Lθ1 and Lθ2 which equals Lθ.

Proof. Arguing similarly as in the proof of Lemma 3.3.5, we get the assertion.
(We just replace log(1 + a) by log a.)

Definition 3.3.8. For each h ∈M0 := {h ∈ C0(X) | 〈h,m〉 = 0} we define

Ah : E(X) → E(X)
η =

∑
i siδxi 7→

∑
i(si + h(xi))δxi =: h+ η.

Theorem 3.3.9 (cf. [Ver07, Theorem 6]). Let m(X) < ∞. For each h ∈
M0, the additive Lebesgue measure Laddθ is invariant under Ah.

Proof. Theorem 3.3.6 yields

d(AhLaddθ )(η) = d(AhLogLθ)(η) = d(LogMhLθ)(η)

= d(LogLθ)(η) = dLaddθ (η).
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Part II

Gibbs perturbations
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Gibbs perturbations

In Part II, we study Gibbs perturbations of Gamma measures on K(Rd). We
will describe heuristically our approach, the detailed definitions and results
are presented in Chapters 4 and 5.

Let φ : Rd × Rd → R be a pair potential which describes the interaction
between particles. To introduce a Gibbs formalism on K(Rd) (cf. Section
5.3), we follow the lines of the Dobrushin-Lanford-Ruelle (DLR) approach
to Gibbs random fields in classical statistical mechanics:

For each η ∈ K(Rd) and a boundary condition ξ ∈ K(Rd), the relative
energy H∆(η|ξ) in a bounded area ∆ ∈ Bc(Rd) is defined by (cf. (5.3.4))

H∆(η|ξ) :=

∫
∆

∫
∆

φ(x, y)η(dx)η(dy) +

∫
∆c

∫
∆

φ(x, y)η(dx)ξ(dy).

We fix an inverse temperature β = 1/T > 0. A local Gibbs measure in volume
∆ is given by

µ∆(dη|ξ) =
1

Z∆(ξ)
e−βH∆(η|ξ)G∆

θ (dη) ∈M1(K(Rd)),

where G∆
θ is the Gamma measure on K(∆). The probability kernels

π∆(B|ξ) = µ∆({η ∈ K(∆)|η ∪ ξ∆c ∈ B}|ξ), B ∈ B(K(Rd)),

indexed by ∆ ∈ Bc(Rd) and ξ ∈ K(Rd), form the Gibbs specification on
K(Rd). It describes corresponding Gibbs measures µ on K(Rd) via the
(DLR) equation (cf. (6.3.18))∫

K(Rd)

π∆(B|η)µ(dη) = µ(B),

valid for all ∆ ∈ Bc(Rd) and B ∈ B(K(Rd)) (cf. Definition 5.3.9). The set
of all Gibbs measures related to the specification π = {π∆}∆∈Bc(Rd) will be
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denoted by Gibbsφ(K(Rd)) (cf. Definition 5.3.5).

The existence of such Gibbs measures is far from being trivial. We will
reformulate the existence problem in terms of the related Gibbs measures on
the configuration space Γ(R̂d). Also in the free case, we have first defined
the Gamma-Poisson measure on Γ(R̂d) and then use the bijective mapping
T between the cone K(Rd) and the set Γf (R̂d) of pinpointing configurations
with finite local mass, i.e.,

T
−1 : K(Rd) 3 η =

∑
sxδx 7→ γ = {(sx, x)} ∈ Γf (R̂d) ⊂ Γ(R̂d).

Using T−1, we map the involved objects (like the potential, relative energy
and local specification) to the configuration space Γ(R̂d), e.g.,

φ(x, y), x, y ∈ Rd to V (x̂, ŷ) = sxsyφ(x, y), x̂, ŷ ∈ X̂;
µ∆(dη|ξ) to µR+×∆(dγ|T−1(ξ));
π∆(dη|ξ) to πR+×∆(dγ|T−1(ξ)).

Since the corresponding specification kernels πR+×∆(dγ|T−1(ξ)) ∈M1(Γ(R̂d))

are indexed by “stripes” R+×∆ ⊂ R̂d, they are called semi-local. The associ-
ated Gibbs measures on Γ(R̂d) corresponding to the semi-local specification

πΓ = {πR+×∆(dγ|ξ̃)|∆ ∈ Bc(Rd), ξ̃ ∈ Γf (R̂d)}

are also specified via a (DLR) equation (cf. also (4.5.14)). Such Gibbs
measures constitute the set GibbsV (Γ(R̂d)) (cf. also Subsection 4.5.1 and
Section 5.1).

Due to the one-to-one correspondence between the local specification ker-
nels π∆ on K(Rd) and the semi-local ones, πR+×∆, on Γ(R̂d) (cf. Subsection
5.3.2), we get the one-to-one correspondence between the classes of Gibbs
measures Gibbsφ(K(Rd)) and GibbsV (Γ(R̂d)). By the above construction,
the set GibbsV (Γ(R̂d)) consists of those µΓ ∈ M1(Γ(R̂d)) which solve the
(DLR) equation and have full measure on Γf (R̂d) (cf. Theorem 4.3.31, resp.
Corollary 5.2.11). This is our motivation to first study the Gibbs measures
µΓ on Γ(R̂d) and then transfer the corresponding results to the Gibbs mea-
sures µK on K(Rd).

Even though we are on the configuration space Γ(R̂d), neither the poten-
tial, nor the semi -local specification kernels are standard. Usually on Γ(R̂d)
one considers local specification kernels πΛ, which are indexed by bounded
sets Λ ∈ Bc(R̂d) (cf. Section 4.1). Both specifications (the local and the semi-
local one) determine the same set of Gibbs measures (cf. Theorem 4.5.9 resp.
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Remark 5.1.24). On the other hand, the potential V (x̂, ŷ) = sxsyφ(x, y) does
not fit the standard framework on Γ(R̂d). One of the reasons is that the
intensity measure λθ has a high concentration for s close to 0 and that V is
not translation-invariant and has an infinite range in R̂d (cf. Section 4.2 for
details).

In Chapters 4 and 5, we establish the existence of Gibbs measures µ ∈
GibbsV (Γ(X̂)) and show uniform moment bounds (cf. Theorems 4.2.7 and
4.3.34, resp. 5.2.8 and 5.2.10). In Chapter 4 we consider non-negative po-
tentials V ≥ 0 and construct a Gibbs measure being specified by the local
specification kernels πΛ, Λ ∈ Bc(R̂d) (cf. Section 4.2). In Chapter 5 we re-
move the assumption that V ≥ 0 and work with the semi-local specification
kernels πR+×∆, ∆ ∈ Bc(Rd). As we already mentioned above, both specifica-
tions lead to the same set GibbsV (Γ(R̂d)).

As we will see in Chapter 5, our existence and moment results for Gibbs
measures on Γ(R̂d) extend to more general potentials than in the basic model
with V (x̂, ŷ) = sxsyφ(x, y), x̂, ŷ ∈ R̂d.

Finally, in Section 5.3, we come back to the initial setting of Gibbs mea-
sures on the cone K(Rd). A main result of this section (and also of Part II)
is the existence of µ ∈ Gibbsφ(K(Rd)) (cf. Theorem 5.3.6), i.e. that

Gibbsφ(K(Rd)) 6= ∅.

Furthermore, the properties of µ ∈ Gibbsφ(K(Rd)), including moment bounds
and a characterization of supporting sets, are summarized in Theorems 5.3.10
and 5.3.11.
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Chapter 4

Gibbs measures on Γ(X̂) with
non-negative potential

Our aim is to construct Gibbs perturbations of the Gamma-Poisson measure
Pθ by means of a pair potential V . It describes the interaction between
particles and may depend on their positions and marks. In Chapters 2 and
3 we considered the “free case”, where V = 0.

In this chapter we study the technically easier case of V ≥ 0, for which el-
ementary probability techniques are sufficient. Then (Chapter 5), we handle
more general potentials that satisfy certain stability conditions (cf. Section
5.1). For the later case we need more advanced methods. We stress that
even for non-negative potentials V , we are not in a standard framework of
Gibbs measures on (marked) configuration spaces because of the irregularity
properties of the intensity measure λθ ⊗m on the underlying space R̂d (cf.
e.g. [Rue69, Rue70] or [AKR98b, KLU99, Kun99]; for details cf. Section
4.2). 1

The Gibbsian formalism is presented in Section 4.1. We start from a pair
potential V of the form:2

V (x̂, ŷ) = sxsya(x− y), x̂, ŷ ∈ R̂d,

where a ≥ 0 is a bounded, even and compactly supported B(Rd)-measurable
function. For each γ ∈ Γ(R̂d) and a boundary condition ξ ∈ Γf (X̂), we define

1For a general review on the construction of Gibbs measures, we refer to [AKPR06].
2Although, we start with a translation invariant potential φ(x, y) = a(x − y), our

considerations are not limited to this case.
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the relative energy HΛ(γ|ξ) in a bounded area Λ ∈ Bc(R̂d):

HΛ(γ|ξ) :=
∑
x̂,ŷ∈γΛ

V (x̂, ŷ) + 2
∑
x̂∈γΛ
ŷ∈ξΛc

V (x̂, ŷ).

Let β = 1/T > 0 denote the inverse temperature. A local Gibbs measure in
volume Λ is defined by

µΛ(dγ|ξ) =
1

ZΛ(ξ)
e−βHΛ(γ|ξ)PΛ

θ (dγ) ∈M1
(
Γ(Λ)

)
,

where PΛ
θ is the Lebesgue-Poisson measure on Γ(Λ) (cf. (2.2.11)). The family

of local specification kernels πΛ(dγ|ξ), Λ ∈ Bc(R̂d) and ξ ∈ Γf (R̂d), which are
defined by

πΛ(B|ξ) = µΛ

(
{η ∈ Λ

∣∣η ∪ ξΛc ∈ B}|ξ
)
, B ∈ B(Γ(R̂d)),

determines the conditional distributions in finite volumes of a Gibbs measure
µ ∈M1(Γ(R̂d)). Analytically this relation is described by the so-called DLR
equation given in (4.1.13). The set of all Gibbs measures that correspond to
Pθ and the pair potential V is denoted by GibbsV (Γ(R̂d)).

Already on Γ(R̂d), being a non-linear infinite dimensional manifold, the
existence of a Gibbs measure is non-trivial. Furthermore, because of the
specific features of our interaction potential and intensity measure, we are
far from the standard framework known in the literature for particle systems
in continuum (cf. [Rue69, Rue70] or [AKR98b, KLU99, Kun99]).

To establish the existence of µ ∈ GibbsV (Γ(R̂d)), we derive uniform mo-
ment bounds for µΛ(dγ|ξ) (cf. Proposition 4.2.3). These bounds imply that
each net of local specification kernels πΛ(dγ|ξ) with a fixed boundary con-
dition ξ is locally equicontinuous (cf. Proposition 4.2.6). This implies the
existence of a certain µ ∈ GibbsV (Γ(R̂d)) being a limit point of such a net as
Λ ↗ R̂d, for which we then check that it satisfies the (DLR) equation (cf.
Theorem 4.2.7). Therefore, the set GibbsV (Γ(R̂d)) is non-void.

After establishing the existence, we deduce certain moment estimates be-
ing uniform for all Gibbs measures µ ∈ GibbsV (Γ(R̂d)) (cf. Theorems 4.3.31
and 4.3.34). These estimates allow us to identify an ‹exponentially tem-
pered› subset Γt

ex(R̂d) ⊂ Γf (R̂d) on which each µ ∈ GibbsV (Γ(R̂d)) has full
measure (cf. Remark 4.3.32 and Corollary 4.4.2).
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Similarly as in the free case, one may map each µ ∈ GibbsV (Γ(R̂d)) to
K(R̂d) via the bijective map (cf. (3.1.2))

T : Γf (R̂d) 3 γ = {(sx, x)} 7→ η =
∑

sxδx ∈ K(Rd).

The question arises whether we can introduce an intrinsic Gibbs formalism
on K(Rd) such that for each µΓ ∈ GibbsV (Γ(R̂d)) the image measure

µK := T
∗µΓ ∈M1(K(Rd))

will be a Gibbs measure on K(Rd). This question will be answered in Section
5.3, where we will give a direct construction of the corresponding Gibbs
specification πK = (π∆)∆⊂K on K(Rd).

As a preliminary step in Subsection 4.5.1, we introduce the family of
semi-local specification kernels {πR+×∆(dγ|ξ) | ∆ ∈ Bc(Rd), ξ ∈ Γf (R̂d)} on
Γ(R̂d), which will satisfy

T
∗πR+×∆(dγ|ξ) = π∆(dη|T(ξ)), ∆ ∈ Bc(Rd), ξ ∈ Γf (R̂d).

As we prove in Theorem 4.5.9, both specifications (the local and the semi-
local one) determine the same class of Gibbs measures.

The results of this chapter hold for more general potentials and underlying
spaces (cf. Theorems 4.3.26, 4.3.34 and 4.5.9).

4.1 Gibbsian formalism on Γ(X̂)

Let X be a locally finite Polish space equipped with a non-atomic measurem.
Given a non-negative pair potential V : X̂ × X̂ → [0,∞), we construct the
Gibbs perturbation of the Gamma-Poisson measure Pθ. To this end, we will
follow the standard DLR-approach. Below, we briefly recall the definition of
the corresponding Gibbs measures on Γ(X̂).

4.1.1 Potential

We assume V to be B(X̂ × X̂)-measurable, symmetric and non-negative.

Example 4.1.1. A typical choice (and a basic model setting, cf. Section
4.2) is X = Rd equipped with the Lebesgue measure m(dx) = dx and the pair
potential

V (x̂, ŷ) = sxsya(x− y) ∀x̂, ŷ ∈ R̂d, (4.1.1)
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where the B(Rd)-measurable function a : Rd → [0,∞) has a compact support
and is bounded, non-negative and even, i.e., there exist ∆ ∈ Bc(Rd) and
M <∞:

0 ≤ a(x) = a(−x) ≤M1∆(x), ∀x ∈ Rd.

4.1.2 Relative energy

For each boundary condition ξ ∈ Γ(X̂) (cf. (2.2.20)) and a bounded area
Λ ∈ Bc(X̂) we define the relative energy Γ(X̂) 3 γ 7→ HΛ(γ|ξ) ∈ R ∪ {∞}
by

HΛ(γ|ξ) :=
∑
x̂,ŷ∈γΛ

V (x̂, ŷ) + 2
∑
x̂∈γΛ
ŷ∈ξΛc

V (x̂, ŷ) (4.1.2)

Here, the first sum is taken over all ordered pairs (x̂, ŷ) ∈ γΛ × γΛ. This
includes also the summand corresponding to (x̂, x̂).

Finiteness of the relative energy

Lemma 4.1.2. Let γ ∈ Γ(R̂d) and ξ ∈ Γf (X̂) (cf. (2.2.20)). Then the
relative energy (cf. (4.1.2)) that corresponds to the above example is finite:3

HΛ(γ|ξ) =
∑

x̂,ŷ∈γ∩Λ

a(x− y)sxsy + 2
∑
x̂∈γ∩Λ
ŷ∈ξ∩ΛC

a(x− y)sxsy <∞.

Proof. For the first sum this follows by the definition of local finite configu-
rations γ ∈ Γ(R̂d) ((2.1.1)) and the boundedness assumption on a. For the
second one we use in addition that a has a bounded support. Thus only
points y ∈ τ(ξ ∩ Λc) lying in the set

UΛ :=
{
x ∈ Rd

∣∣∣ dist(x,Λ) := inf
ŷ∈Λ
{|x− y|} ≤ R

}
∈ Bc(Rd)

are taken in the sum. Here, we fix some R > 0 such that

a(x) = 0 whenever |x| > R.

Thus, by the local mass property of the space Γf (X̂) (cf. (2.2.20) in Definition
2.2.7) the sum is finite.

For the general case see Lemma 4.3.16 and Theorem 4.3.13.
3More general potentials are treated in Lemma 4.3.16.
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Measurability

Since we have not found an explicit reference for the measurability of the
relative energy in both components, we give the proof here (also, to keep the
exposition self contained).

Lemma 4.1.3. The relative energy HΛ(γ|ξ) is B(Γ(X̂)× Γ(X̂))-measurable
in (γ, ξ) ∈ Γ(X̂)× Γ(X̂).

Proof. Here, we do not exclude the possibility that HΛ(ξ, γ) is infinite. We
have for any γ, ξ ∈ Γ(X̂)

H∆(γ|ξ) = lim
Λ↗X̂

Λ∈Bc(X̂)

H∆(γΛ|ξΛ), ∀∆ ∈ Bc(X̂).

It is enough to show for each fixed Λ that the function Γ(X̂) × Γ(X̂) 3
(γ, ξ) 7→ H∆(γΛ, ξΛ) obeys the required measurability. The later is implied
(cf. (2.1.7) ff) by the claim that for any n1, n2 ∈ N the following function is
B
(⊗n1

i=1 X̂ ×
⊗n2

i=1 X̂
)
-measurable:

Λn1+n2 3 (x̂1, . . . , x̂n1)× (ŷ1, . . . , ŷn2) 7→ H∆({x̂1, . . . , x̂n1}|{ŷ1, . . . , ŷn2})

=

n1∑
i,j=1

1Λ∩∆(x̂i)1Λ∩∆(x̂j)V (x̂i, x̂j)

+

n1∑
i=1

n2∑
j=1

1Λ∩∆(x̂i)1Λ∩∆c(ŷj)
(
V (x̂i, ŷj) + V (ŷj, x̂i)

)
. (4.1.3)

Each summand is B
(
×n1
i=1X̂ ××

n2
i=1X̂

)
-measurable because V is B(X̂ × X̂)

measurable. Since the sums in (4.1.3) are symmetrizing, the claim follows
(cf. (2.1.7)).

4.1.3 Local specification

We fix V to be of the type described in (4.1.1). (More general potentials are
considered in Section 4.3).

Let us fix an inverse temperature β > 0. For each set Λ ∈ Bc(X̂) and
each boundary condition ξ ∈ Γ(X̂), we define the local Gibbs measures

µΛ(dγ|ξ) :=

{
1

ZΛ(ξ)
e−βHΛ(γ|ξ)PΛ

θ (dγ), if ξ ∈ Γf (X̂)

0, else
(4.1.4)
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on Γ(Λ), where HΛ(γ|ξ) is the relative energy introduced in (4.1.2) above.
Here, PΛ

θ is the Lebesgue-Poisson measure on Γ(Λ) with intensity measure
λθ ⊗m (cf. (2.1.13)), and ZΛ(ξ) is the normalizing factor

ZΛ(ξ) :=

∫
Γ(Λ)

e−βHΛ(γ|ξ)PΛ
θ (dγ)

=1 +
∞∑
n=1

1

n!

∫
Λn

exp

(
−βHΛ

{(
n⋃
i=1

(si, xi)

∣∣∣∣∣ ξ
)})

n∏
i=1

λθ ⊗m(dx̂i). (4.1.5)

Note that for any ξ ∈ Γf (X̂)

1 ≤ ZΛ(ξ) ≤ eλθ⊗m(Λ) <∞. (4.1.6)

By assumption, all µΛ(·|ξ) are probability measures for ξ ∈ Γf (X̂).

Remark 4.1.4. If V = 0 then µΛ(·|ξ) = PΛ
θ for all ξ ∈ Γ(X̂) (cf. (2.2.11),

(2.1.14) and (2.1.13) vs. (4.1.4) and (4.1.5)).

Definition 4.1.5. The local specification

π = {πΛ(·|ξ)|Λ ∈ Bc(X̂), ξ ∈ Γ(X̂)}

is a family of stochastic kernels

B(Γ(X̂))× Γ(X̂) 3 (B, ξ) 7→ πΛ(B|ξ) ∈ [0, 1] (4.1.7)

given by

πΛ(B|ξ) := µΛ(BΛ,ξ|ξ),
BΛ,ξ := {γΛ ∈ Γ(Λ) | γΛ ∪ ξΛc ∈ B } ∈ B(Γ(Λ)).

(4.1.8)

This means that for each F ∈ B(Γ(X̂)) we have∫
Γ(X̂)

F (γ)πΛ(B|ξ) =

∫
Γ(Λ)

F (γΛ ∪ ξΛc)µΛ(dγΛ|ξ).

Consistency property

Fix Λ ∈ Bc(X̂). By construction (cf. [Pre76, Proposition 6.3] or [Pre05,
Proposition 2.7, p. 20]), the family (4.1.8) obeys the consistency property ,
which means that for all B ∈ B(Γ(X̂)) and ξ ∈ Γ(X̂)∫

Γ(X̂)

π∆(B|γ)πΛ(dγ|ξ) = πΛ(B|ξ), ∆ ⊆ Λ. (4.1.9)
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For ξ ∈ Γf (X̂), each specification kernel kernel πΛ(dγ|ξ) is a probability
measure on

(
Γ(X̂),B(Γ(X̂))

)
. Given F ∈ B(Γ(X̂)) and µ ∈ M1(Γ(X̂)) let

us define πΛF ∈ B(Γ(X̂)) and πΛµ ∈M1(Γ(X̂)) by

(πΛF )(ξ) :=

∫
Γ(X̂)

F (η)πΛ(dη|ξ), ξ ∈ Γ(X̂), (4.1.10)

(πΛµ)(B) :=

∫
Γ(X̂)

πΛ(B|η)µ(dη), B ∈ B(Γ(X̂)), (4.1.11)

which are obviously related by the duality 〈πΛF, µ〉 = 〈F, πΛµ〉. Here and
elsewhere, we use the following shorthand for expectations

〈F, µ〉 := µ (F ) :=

∫
Γ(X̂)

Fdµ. (4.1.12)

4.1.4 Gibbs measures

Definition 4.1.6. A probability measure µ ∈ M1(Γ(X̂)) is called a grand
canonical Gibbs measure (or state) with pair potential V and inverse
temperature β > 0 if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equi-
librium equation ∫

Γ(X̂)

πΛ(B|ξ)µ(dξ) = µ(B) (4.1.13)

valid for all Λ ∈ Bc(X̂) and B ∈ B(Γ(X̂)). Fixed an inverse temperature β,
the associated set of all Gibbs states will be denoted by GibbsV (Γ(X̂)).

Remark 4.1.7. From the definition of the local specification, we have that
any solution of the (DLR) equation is supported by Γf (X̂).

To obtain the (DLR) equation it is enough to check (4.1.13) only for B ∈
Bcyl(Γ(X̂)). Indeed, using Caratheodory’s theorem, we deduce that µ

∣∣
Bcyl(Γ(X̂))

extends uniquely to a measure on σ(Bcyl(Γ(X̂))) = B(Γ(X̂)). Hence, (4.1.13)
holds for all B ∈ B(Γ(X̂)).

Whenever it is clear on which underlying space we consider the Gibbs
measures, we simply write GibbsV instead of GibbsV (Γ(X̂)).

The existence of such a measure under suitable conditions is shown in
Section 4.2 for the non-negative potential defined by (4.1.1) (cf. Theorem
4.2.7). In Section 4.3 we handle more general potentials (see Theorem 4.3.26).
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4.2 Existence of Gibbs measures: Basic model
We show the existence of a Gibbs measure corresponding to the Gamma-
Poisson measure Pθ and the non-negative symmetric potential given in Ex-
ample 4.1.1, i.e.,

V (x̂, ŷ) := sxsya(x− y), x̂, ŷ ∈ R̂d. (4.2.1)

After explaining why this type of potential does in general not fit the
standard framework, we outline the scheme that we use for proving the exis-
tence (cf. below). An important step for the existence proof is the uniform
bound given in Proposition 4.2.3. Here, we stick to the basic setting, to
clearly state some new essential issues concerning the existence of a Gibbs
measure. (The more general setting is handled in Section 4.3.)

Remarks on the potential

The potential specified above (cf. (4.2.1)) has an finite range of interaction
regarding its Rd component, i.e.,

∃R > 0 : V (x̂, ŷ) = 0, if |x− y| > R.

If a = 0, we are in the free case, which we have treated in Section 2.2. Thus,
without loss of generality, a 6= 0 (m-a.e.). Let us fix such a potential for this
section.

Lemma 4.2.1. Fix β > 0 and consider a non-negative, even function a ∈
C0(Rd) (a 6= 0). Then

C(β) :=ess sup
x̂∈R̂d

∫
R̂d

∣∣e−βsxsya(x−y) − 1
∣∣λθ ⊗m(dx̂) =∞. (4.2.2)

Proof. For all s ∈ R+ and x ∈ Rd∫
R̂d

∣∣e−βa(y−x)st − 1
∣∣λθ ⊗m(d(t, y))

=

∫
Rd

∫
R+

1− e−βa(y−x)st

t
θe−tdtm(dy)

=θ

∫
Rd

log(1 + βa(y − x)s)m(dy)

=θ

∫
Rd

log(1 + βa(y)s)m(dy), (4.2.3)
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where we used Lemma 3.2.3. There exists x0 ∈ Rd such that a(x0) > 0. Since
a is continuous, there exists ε > 0 such that

am := min
x∈Bε(x0)

a(x) > 0,

where Bε(x0) denotes the closed ball centered at x0 with radius ε. Thus,∫
Rd

log(1 + βa(y)s)m(dy) ≥ log(1 + βams)m
(
Bε(x0)

)
−→
s→∞
∞.

A uniform integrability condition is that C(β) < ∞ (cf. [AKR98b,
Kun99]), but we have C(β) = ∞ for 0 6= a ∈ C0(Rd) (cf. Lemma 4.2.1).
Moreover, another principal difference to the existing literature on marked
configuration spaces is that there are infinitely many particles located in any
compact ∆ ∈ Bc(Rd) set with non-empty interior, i.e.,∫

Γ(R̂d)

|τ(γ) ∩∆| Pθ(dγ) =∞, ∀∅ 6= ∆ ∈ Bc(Rd).

Usually, this quantity is assumed to be finite (cf. [Kun99, KLU99, KdSS98,
AKR98a]).

Remark 4.2.2. Summing up, we emphasize that this basic model does not
fit the classical framework of classical statistical mechanics. Thus it cannot
be covered, e.g., by [Rue70, Theorem 5.5], where translation invariance is
used, nor by the more recent ones [AKR98a, Kun99], where C(β) < ∞ is
still present. Also the infinite measure λθ on R+ does not fit the abstract
scheme of marked configuration spaces, where the intensity measure on the
space of marks is assumed to be normalized or finite (cf. [KLU99]).

The general scheme of the existence result

According to [Geo88], it is important to introduce a correct topology on
M1(Γ(X̂)) to obtain the existence of a Gibbs measure µ. The basic aim is
to show that

1. “the net πΛ(·|ξ)Λ∈Bc(X̂) has a cluster point (in the chosen topology)”4

2. “each cluster point of πΛ(·|ξ)Λ∈Bc(X̂) belongs to GibbsV .”4

4This is cited from [Geo88, Chapter 4].
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Here, a coarse topology is useful to show the first property, whereas a suffi-
ciently fine topology is needed for the second one. Thus, one has to balance
these requirements to find an appropriate topology.

The existence problem has been solved for several models by various au-
thors. We give briefly comments on two classical approaches and refer to e.g.
[Pas08] for other ones and more details.

1. General Dobrushin’s criterion for existence of Gibbs measures
It is a standard approach for showing the existence of Gibbs measures
was presented in [Dob70b, Theorem 1] (cf. also [Dob70a]). For systems
in continuum, it relies on the reduction to a lattice system, which allows
to apply the general Dorbrushin criterium for Gibbs fields on Zd. For
classical particle systems in Rd, this method has been further developed
in [KKP04] and [PZ99].5

2. Ruelle’s technique of superstability estimates This technique
goes back to the celebrated paper [Rue69] (cf. also [LP76]). Trans-
lation invariance of the interaction potential is used for this approach,
which yields the existence of a superstable Gibbs measure for a certain
class of boundary conditions.5

These approaches do not apply directly in our setting. It is a challenging
problem to extend these techniques. Such extensions involve the choice of
an appropriate partition of Rd and the local mass map m, which allows us to
control the (super) stability properties of the interaction. Instead of this, we
realize the following (analytic) approach to the existence problem:

Scheme of the existence proof

To construct Gibbs measures, we perform the following steps:6

1. Identify a set of boundary conditions, denoted by Γf (X̂), such that

HΛ(γ|ξ) <∞ for all γ, ξ ∈ Γf (X̂) and Λ ∈ Bc(X̂)

and Gθ(Γf (X̂)) = 1 (cf. Lemma 4.1.2).

5This is taken from [Pas08, Chapter 1, (iii),I] and [KPR10], to which we also refer for
further details.

6In our scheme, we appropriately alter the basic idea presented in [Geo88] for the
lattice case (and adapted to the continuous model in [KPR10]) to fit our framework. This
includes, e.g., to incorporate the concept of a local mass map and handling that τ(γ) is
dense.
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2. Derive the following support property of the local Gibbs measures (cf.
Proposition 4.2.3): For all ∆ ∈ Bc(X), it holds

lim sup
Λ∈Bc(X̂)

∫
Γ(Λ)

m∆(γΛ)µΛ(dγΛ|ξ) ≤ C(ξ) <∞.

3. Check the local equicontinuity for each net {πΛ(·|ξ)| Λ ∈ Bc(X̂)} for
all ξ ∈ Γf (X̂) by the support property.7

4. Conclude the existence of a Gibbs measure µ as a cluster point of
the net {πΛ(dγ|ξ)}Λ∈Bc(R̂d), ξ ∈ Γf (R̂d) fixed, as Λ ↗ X̂ by the local
equicontinuity.

In detail, we show that the above net has a cluster point µ in Tloc, which
is supported by Γf (X̂). Using the consistency of the local specification, we
deduce that any such µ satisfies the (DLR) equation (cf. Theorem 4.2.7).

4.2.1 Support of the local specification kernels

For all ξ ∈ Γf (R̂d), The local Gibbs states µ(·|ξ) are probability measures on
Γ(Λ) because HΛ(γ|ξ) <∞ for all γ ∈ Γ(R̂d), ξ ∈ Γf (R̂d) (cf. Lemma 4.1.3).
Recall that

m∆(γ) :=
∑
x̂∈γ

sx1∆(x) for all ∆ ∈ Bc(Rd) and all γ ∈ Γ(R̂d).

Proposition 4.2.3. Let ξ ∈ Γf (R̂d). Then for all Λ ∈ Bc(R̂d) the probability
measures µΛ(·|ξ) have full support on Γ(Λ) ∩ Γf (R̂d) and πΛ(·|ξ) on Γf (R̂d),
respectively.

In detail, we have for each ∆ ∈ B(Rd) and each ξ ∈ Γ(X̂)∫
Γ(Λ)

m∆(γΛ)µΛ(dγΛ|ξ) ≤
∫

Λ

m∆({x̂})(λθ ⊗m)(dx̂)

≤
∫

Λ

sx1∆(x)(λθ ⊗m)(dx̂) ≤ θm(∆ ∩ ΛX). (4.2.4)

If ∆ ∈ Bc(Rd) then this integral is finite and the right-hand side in (4.2.4)
can be bounded uniformly in Λ.

7For this and the following step, we adapt ideas presented in [KPR10, Subsection 3.2],
cf. the proof of Proposition 4.2.6.
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Remark 4.2.4. The later estimate, is quite powerful (cf. also Theorem
4.3.31 and Remark 4.3.32) and it seems that it has not been exploited so far.
For further details, we refer also to Remarks 4.3.19 and 4.3.20.

Proof of Proposition 4.2.3. We explicitly estimate the integral by separating
one particle from the others. The additional task is to handle that the points
are coupled via the relative energy.

For each ξ /∈ Γf (X̂), by definition (cf. (4.1.4)) µΛ(·|ξ) = 0. Thus, the
bound holds trivially. Hence, w.l.o.g. γ ∈ Γf (X̂).

By Remark 2.2.8 m∆ is B(Γ(R̂d))-measurable. For any Λ ∈ Bc(R̂d), ∆ ∈
Bc(Rd) and ξ ∈ Γf (R̂d) we have∫

Γ(Λ)

m∆(γΛ)µΛ(dγΛ|ξ) =
1

ZΛ(ξ)

∫
Γ(Λ)

m∆(γΛ)e−βHΛ(γΛ|ξ)PΛ
θ (dγΛ)

=
1

ZΛ(ξ)

∑
n≥1

1

n!

n∑
k=1

∫
Λn

m∆({x̂k})e−βHΛ({x̂1,...,x̂n}|ξ)
n∏
i=1

(λθ ⊗m)(dx̂i), (4.2.5)

where PΛ
θ denotes the Lebesgue-Poisson measure with intensity measure λθ⊗

m (cf. (2.2.9)).
Let k ∈ {1, . . . , n} be fixed. We are able to decouple the kth particle from

the others:

HΛ({x̂1, . . . , x̂n}|ξ) =
∑

i,j=1,...,n
x̂i,x̂j∈Λ

V (x̂i, x̂j) +
∑

x̂i∈Λ, i=1,...,n
ŷ∈ξ

ΛC

2V (x̂i, ŷ)

=
n∑

i,j=1
i 6=k 6=j

V (x̂i, x̂j) + 2
n∑
j=1
j 6=k

V (x̂k, x̂j) + V (x̂k, x̂k)

+
∑

i=1,...,n; i 6=k
x̂i∈Λ,ŷ∈ξ

ΛC

2V (x̂i, ŷ) +
∑
x̂k∈Λ
ŷ∈ξ

ΛC

2V (x̂k, ŷ). (4.2.6)

Since V ≥ 0, we get

HΛ({x̂1, . . . , x̂n}|ξ) ≥
n∑

i,j=1
i 6=k 6=j

V (x̂i, x̂j) +
∑

i=1,...,n
i 6=k, x̂i∈Λ
ŷ∈ξ

ΛC

2V (x̂i, ŷ)

+ V (x̂k, x̂k) +
∑
x̂k∈Λ
ŷ∈ξ

ΛC

2V (x̂k, ŷ). (4.2.7)
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Plugging (4.2.7) into (4.2.5), we get∫
Γ(Λ)

m∆(γΛ)µΛ(dγΛ|ξ)

≤ 1

ZΛ(ξ)

∑
n≥1

1

n!

n∑
k=1

∫
Λn

m∆({x̂k})e−βHΛ({x̂k}|ξ})

× e−βHΛ({x̂1,...,x̂k−1,x̂k+1,...,x̂n}|ξ)
n∏
i=1

(λθ ⊗m)(dx̂i)

=
1

ZΛ(ξ)

(∫
Λ

m∆({x̂1})e−βHΛ({x̂k}|ξ})(λθ ⊗m)(dx̂1)

+
∑
n≥2

1

n!

n∑
k=1

∫
Λ

m∆({x̂k})e−βHΛ({x̂k}|ξ})(λθ ⊗m)(dx̂k)

×
∫

Λn−1

e−βHΛ({x̂1,...,x̂k−1,x̂k+1,...,x̂n}|ξ)
n∏

i=1,i 6=k

(λθ ⊗m)(dx̂i)

)
Taking the common integral out, this equals∫

Λ

m∆({x̂})e−βHΛ({x̂k}|ξ)(λθ ⊗m)(dx̂)
1

ZΛ(ξ)

×
∫

ΛN−1

(
1 +

∑
n≥2

n

n!

∫
Λn−1

e−βHΛ({x̂1,...,x̂n−1}|ξ)
n−1∏
i=1

(λθ ⊗m)(dx̂i)

)
=

∫
Λ

m∆({x̂})e−βHΛ({x̂k}|ξ})(λθ ⊗m)(dx̂)
1

ZΛ(ξ)
ZΛ(ξ). (4.2.8)

The later is dominated by∫
R̂d
sx1∆(x)(λθ ⊗m)(dx̂) = θm(∆)

∫
R+

tt−1e−tdt = θm(∆). (4.2.9)

If ∆ ∈ Bc(Rd) then

sup
Λ∈Bc(R̂d)

∫
Γ(R̂d)

m∆(γ)πΛ(dγ|ξ)

= sup
Λ∈Bc(R̂d)

(∫
Γ(R̂d)

m∆(γ)µΛ(dγ|ξ) + m∆(ξΛc)

)
≤ θm(∆) + sup

Λ∈Bc(R̂d)

m∆(ξΛc) ≤ θm(∆) + m∆(ξ) <∞, (4.2.10)

where ξ ∈ Γf (R̂d). This implies the support properties of πΛ(·|ξ) resp. µΛ(·|ξ)
stated in the assertion.
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4.2.2 Local equicontinuity

The local equicontinuity allows us to construct a Gibbs measure as a limit
point of a net consisting of the local specification kernels.

Definition 4.2.5 (cf. [Geo88, (4.6) Definition]). Let Y be a locally com-
pact Polish space. The net of probability measures {νΛ| Λ ∈ Bc(Y )} on
Γ(Y ) is called locally equicontinuous if for all Λ̃ ∈ Bc(Y ) and each sequence
{BN}N∈N ⊂ B(Γ(Λ̃)) with BN ↓ ∅

lim
N→∞

lim sup
Λ∈Bc(Y )

Λ↗Y

νΛ(BN) = 0. (4.2.11)

Proposition 4.2.6. The net {πΛ(dγ|ξ)| Λ ∈ Bc(R̂d)} is locally equicontinu-
ous for each fixed ξ ∈ Γf (R̂d).

Proof. As in [KPR10], we adapt to the configuration space Γ(R̂d) the argu-
ments used for proving Theorem 4.12 and Corollary 4.13 in [Geo88].

Fix an arbitrary compact set Λ̃ = Λ̃R+ × Λ̃Rd ∈ Bc(R̂d) and let {BN}N∈N
be any sequence of sets from B(Γ(Λ̃)) such that BN ↓ ∅ as N → ∞. We
choose R > 0 such that a

∣∣
BcR(0)

= 0 and set

U := UR(Λ̃) :=

{
x ∈ Rd

∣∣∣∣ distRd(x, Λ̃Rd) := inf
y∈Λ̃Rd

|x− y| ≤ R

}
∈ Bc(Rd). (4.2.12)

Consider the following Borel subsets of configurations whose local masses at
U are bounded by T > 0,

Γ(U , T ) :=
{
γ ∈ Γ(R̂d) | (mU(γ)) ≤ T

}
. (4.2.13)

Note that the map ŷ 7→ V (x̂, ŷ) = sxsya(x− y), x̂ ∈ Λ̃, is surely zero outside
of R+ ×U . For each Λ ∈ Bc(R̂d) and ξ ∈ Γf (R̂d), by the definition of a local
specification (cf. (4.1.7), (4.1.8)) and the consistency property (cf. (4.1.9)),
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we have

πΛ(BN |ξ) = πΛ(BN ∩ [Γ(U , T )c|ξ)

+

∫
Γ(R̂d)

πΛ̃∩Λ(BN ∩ Γ(U , T )|η)πΛ(dη|ξ) (4.2.14)

= πΛ(BN ∩ [Γ(U , T )]c|ξ)

+

∫
Γ(R̂d)

1

ZΛ̃∩Λ(η)

∫
Γ(Λ̃∩Λ)

1BN∩Γ(U ,T )(γΛ̃∩Λ ∪ η(Λ̃∩Λ)c)

× exp {−βHΛ̃∩Λ(γΛ̃∩Λ|η)}P Λ̃∩Λ
θ (dγΛ̃∩Λ)πΛ(dη|ξ).

Using that ZΛ̃∩Λ ≥ 1, the later is dominated by

πΛ([Γ(U , T )]c|ξ) (4.2.15)

+

∫
Γ(R̂d)

∫
Γ(Λ̃∩Λ)

1BN∩Γ(U ,T )(γΛ̃∩Λ ∪ η(Λ̃∩Λ)c)

× exp {−βHΛ̃∩Λ(γΛ̃∩Λ|η)}P Λ̃∩Λ
θ (dγ)πΛ(dη|ξ). (4.2.16)

Chebyshev’s inequality insures that for each ε > 0 there exists T (ε, ξ) > 0
such that

πΛ([Γ(U , T )]c|ξ) ≤ ε for all T ≥ T (ε, ξ) and Λ ∈ Bc(R̂d). (4.2.17)

Indeed, using Proposition 4.2.3, we get

πΛ

({
γ ∈ Γ(R̂d) : mU(γ) > T}

∣∣∣ ξ)
≤
∫

Γ(R̂d)

mU(γ)

T
πΛ(dγ|ξ) (4.2.18)

≤ 1

T

(
θm
(
UR(Λ̃)

)
+ mU(ξΛc)

)
=:

1

T
CU ,ξ <∞.

As T →∞, the whole term becomes arbitrary small.
Since HΛ̃∩Λ

(
γΛ̃∩Λ

∣∣η) ≥ 0 for all γ ∈ Γ(R̂d) and Λ ∈ Bc(R̂d), the inner
integral in (4.2.16) is dominated by∫

Γ(Λ̃∩Λ)

1BN∩Γ(U ,T )(γΛ̃∩Λ ∪ ηθ,(Λ̃∩Λ)c)P
Λ̃∩Λ
θ (dγΛ̃)

≤ P Λ̃
θ (BN ∩ Γ(Λ̃)) ≤ ε, as soon as N ≥ N(ε). (4.2.19)

Plugging (4.2.17) and (4.2.19) back into (4.2.15) and letting T ↗∞ and then
BN ↓ ∅, we get the required equicontinuity of the net {πΛ(dγ|ξ)| Λ ∈ Bc(R̂d)}
(cf. (4.2.11)).
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4.2.3 Existence of Gibbs measures: Basic model

We show that each limit measure that we obtain by the local equicontinuity
is indeed a Gibbs measure.8

Theorem 4.2.7. Let a ∈ L1(Rd,m) be as described in Example 4.1.1, i.e.,
∃Ma < ∞ and ∆ ∈ Bc(Rd): 0 ≤ a(x) = a(−x) ≤ M1∆(x) for all x ∈ Rd.
Assume that

V (x̂, ŷ) = sxsya(x− y), ∀x̂, ŷ ∈ R̂d. (4.2.20)

Then there exists a (non-zero) Gibbs measure µ corresponding to the potential
V and the Gamma-Poisson measure Pθ, θ > 0 being the fixed parameter. It
is supported by Γf (R̂d).

Proof. We will show that the local equicontinuous specification has a cluster
point in Tloc (cf. Definition 2.1.2). For this candidate (for being a Gibbs
measure) we show that it is supported by the ‹tempered› configurations
γ ∈ Γf (R̂d). The final step is to prove the (DLR) equation (cf. (4.1.13)),
for which we use the monotonicity property of the local specification.

We first observe that the relative energyHΛ(η|ξ) is finite for all η ∈ Γ(R̂d),
ξ ∈ Γf (R̂d) and Λ ∈ Bc(R̂d) (cf. Lemma 4.1.2).

Let ξ ∈ Γf (R̂d) be fixed from now on. By Proposition 4.2.6 the net
{πΛ(dγ|ξ)| Λ ∈ Bc(R̂d)} is locally equicontinuous. By [Geo88, Proposition
4.9] combined with [Pat67, Theorem V.3.2], any locally equicontinuous net
inM1(Γ(R̂d)) has at least one Tloc-cluster point. Thus, there exists a limit
point

µ := lim
N→∞

πΛN (·|ξ) ∈M1(Γ(R̂d))

taken along some order generating sequence ΛN ↗ R̂d, such that for all local
sets B ∈ Bcyl(Γ(R̂d)) :

πΛN (B|ξ)→ µ(B) as N →∞. (4.2.21)

To check the support property, we take advantage of πΛ(·|ξ) being sup-
ported by Γf (R̂d) for each Λ ∈ Bc(R̂d) (cf. Proposition 4.2.3).

Indeed, fix an arbitrary ∆ ∈ Bc(Rd). Since m∆(·) is not Bcyl(Γ(R̂d))-
measurable, we use a cut-off procedure. For all Λ ∈ Bc(R̂d) the local mass
γ 7→ m∆(γΛ) is Bcyl(Γ(R̂d))-measurable; and

lim
Λ↗R̂d

m∆(γ ∩ Λ)↗ m∆(γ), ∀γ ∈ Γ(R̂d).

8This idea also used in [KPR10, Subsection 3.2].
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Hence, by Beppo Levi,∫
Γ(R̂d)

m∆(γ)µ(dγ) = lim
Λ↗R̂d

Λ∈Bc(R̂d)

∫
Γ(R̂d)

m∆(γΛ)µ(dγ)

= lim
Λ↗R̂d

Λ∈Bc(R̂d)

lim
N→∞

∫
Γ(R̂d)

m∆(γΛ)πΛN (dγ|ξ)

≤ lim
Λ↗R̂d

Λ∈Bc(R̂d)

(
lim
N→∞

∫
Γ(R̂d)

m∆(γΛ∩ΛN )µΛN (dγΛN |ξ) + lim sup
N→∞

m∆(Λ ∩ ξΛcN
)

)

≤ lim
Λ↗R̂d

Λ∈Bc(R̂d)

∫
R̂d

m∆({x̂})1Λ(x̂)λθ ⊗m(dx̂) ≤ θm(∆) =: M∆ <∞, (4.2.22)

where we used the uniform bound given in Proposition 4.2.3 (cf. (4.2.4)).

To prove that µ is a Gibbs measure, it remains to check the (DLR)
equation. To this end, we would like to apply the consistency property of
the specification kernels πΛN .

Fix Λ̃ ∈ Bc(R+ × Rd) and B ∈ Bcyl(Γ(R̂d)). We take care that the func-
tion Γ(R̂d) 3 γ 7→ πΛ̃(B|γ) is in general only B(Γ(R̂d))- and not Bcyl(Γ(R̂d))-
measurable. We overcome this problem by using a cut-off procedure and the
fact that the measure µ is defined on the σ-algebra generated by the algebra
Bcyl(Γ(R̂d)). In fact, for each Λ ∈ Bc(R̂d), we consider the truncated func-
tion Γ(R̂d) 3 γ 7→ πΛ̃(B|γΛ), which is (obviously) BΛ(Γ(R̂d))- and therefore
Bcyl(Γ(R̂d))-measurable.

We will justify the following equations to obtain the (DLR) one:∫
Γ(R̂d)

πΛ̃(B|γ)µ(dγ)
1.
= lim

Λ↗R̂d
Λ∈Bc(R̂d)

∫
Γ(R̂d)

πΛ̃(B|γΛ)µ(dγ)

2.
= lim

Λ↗R̂d
Λ∈Bc(R̂d)

lim
N→∞

∫
Γ(R̂d)

πΛ̃(B|γΛ)πΛN (dγ|ξ),

3.
= lim

N→∞

∫
Γ(R̂d)

πΛ̃(B|γ)πΛN (dγ|ξ)

4.
= lim

N→∞
πΛN (B|ξ) 5.

= µ(B). (4.2.23)

The second and fifth equation follow by the definition of µ (cf. (4.2.21)).
The fourth holds by the consistency of the local specification (cf. (4.1.9)).
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We have to argue a little more to obtain the other ones (cf. (4.2.25) for the
first and (4.2.28) for the third one).

Denote ∆̃ := Λ̃R̂d . In order to show that the the first equation in (4.2.23)
holds, we use that by Lemma 4.3.28 (cf. (4.3.29)) below there existsMΛ′ <∞
such that∫

Γ(R̂d)

|π∆̃(B|γΛ)− πΛ̃(B|γ)|µ(dγ)

≤2βMa

(
1 + eλθ⊗m(Λ̃)

)
MΛ′

∫
Γ(R̂d)

mΛ̃(γΛc)µ(dγ)

≤2βMa

(
1 + eλθ⊗m(Λ̃)

)
MΛ′

∫
R̂d

mΛ̃∩Λc
Rd

({x̂})λθ ⊗m(dx̂), (4.2.24)

where we used (4.2.22) to deduce the last inequality. The integrand in the last
line in (4.2.24) converges pointwisely to 0. Thus, using Lebesgue’s dominated
convergence theorem, we have justified the first equality in (4.2.23), i.e.,∫

Γ(R̂d)

πΛ̃(B|γ)µ(dγ) = lim
Λ↗R̂d

Λ∈Bc(R̂d)

∫
Γ(R̂d)

πΛ̃(B|γΛ)µ(dγ). (4.2.25)

It remains to prove the third equality in (4.2.23): Using (4.3.29) we have∣∣∣∣∫
Γ(R̂d)

[
πΛ̃(B|γΛ)− πΛ̃(B|γ)

]
πΛN (dγ|ξ)

∣∣∣∣
≤
(

1 + eλθ⊗m(Λ̃)
)
βMaMΛ′

∫
Γ(R̂d)

m∆̃(γΛc)πΛN (dγ|ξ). (4.2.26)

Proposition 4.2.3 yields the following bound for the last integral∫
ΛN

m(Λ̃∩Λc)Rd
({x̂})λθ ⊗m(dx̂) + m∆̃(ξΛc∩ΛN

c)

≤
∫
R̂d

m(Λ̃∩Λc)Rd
({x̂})λθ ⊗m(dx̂) + m∆̃(ξΛc)

≤
∫
R̂d

m(Λ̃∩Λc)Rd
({x̂})λθ ⊗m(dx̂) +

∑
x̂∈ξΛc∩ΛN

c

m∆̃({x̂}). (4.2.27)

As before, by Lebesgue’s dominated convergence theorem the integral be-
comes arbitrary small for Λ ↗ X̂. The same is true for the second sum.
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Thus, the third equation in (4.2.23) holds, i.e.,

lim
Λ↗R̂d

Λ∈Bc(R̂d)

lim
N→∞

∫
Γ(R̂d)

πΛ̃(B|γΛ)πΛN (dγ|ξ)

= lim
N→∞

∫
Γ(R̂d)

πΛ̃(B|γ)πΛN (dγ|ξ). (4.2.28)

Hence, µ is a Gibbs measure (being supported by Γf (R̂d)).

4.3 Existence of Gibbs measures on Γ(X̂): Gen-
eral case

We come back to the general case of X being a locally compact Polish space
with non-atomic Radon measure m. We generalize the concept of a local
(w.r.t. λθ⊗m) mass map on Γ(X̂) to include more general potentials. Then
we follow the scheme presented above (cf. P. 66) to show the existence of a
Gibbs measure. The uniform bound for the local Gibbs measures (cf. Propo-
sition 4.3.18) is a key issue, not only for showing the existence, but also for
proving the uniform bound for all Gibbs measures (cf. Theorem 4.3.31).9

We define the set Ls(X × X) of symmetric functions which are only
supported on a ‹strip around the diagonal›:

Definition 4.3.1. By Ls(X ×X) we denote the set of bounded symmetric
B(X)-measurable functions φ over X ×X which fulfill

(FR) Finite range : For any ∆ ∈ Bc(X) there exists U∆ ∈ Bc(X) such
that

φ(x, y) = φ(y, x) = 0, ∀x ∈ ∆, y ∈ U c∆. (4.3.1)

Remark 4.3.2. In the basic model setting the finite range condition is ful-
filled if

∃R ∈ [0,∞) : ∀x, y ∈ Rd : |x− y| > R ⇒ φ(x, y) = 0. (4.3.2)

In this case, we set for ∆ ∈ Bc(Rd)

U∆ :=

{
x ∈ Rd

∣∣∣∣ distRd(x,∆) := inf
y∈∆
|x− y| ≤ R

}
∈ Bc(Rd). (4.3.3)

9We point out that the result of this section hold not only for the Gamma-Poisson
measure Pθ, but even for more general Poisson measures. For this compare Section 5.1
and especially the setting and (5.1.25) therein. But for the sake of simplicity, we stick to
our main motivation, namely the Gamma-Poisson measure Pθ.
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Admissible potentials

The class of admissible potentials depends strongly on the behavior of the
Levy measure λθ (and on m). In general, we can handle all symmetric po-
tentials V (x̂, ŷ) obeying

0 ≤ V (x̂, ŷ) ≤ l(x̂)l(ŷ)φ(x, y),

where φ ∈ Ls(X ×X) and l : X̂ → R+ is such that

X̂ 3 x̂ 7→ l(x̂)1∆(x) ∈ L1(X̂, λθ ⊗m), for all ∆ ∈ Bc(X),

i.e., l is a semi-local function (cf. Definitions 4.3.1 and 4.3.4). Respectively,
the set of admissible boundary configuration is

Γf,l(X̂) :=

ξ ∈ Γp(X̂)

∣∣∣∣ ∑
x∈τ(ξ)∩∆

l(x̂) <∞, ∀∆ ∈ Bc(X)

 .

Whenever it is clear which semi-local function l is involved, we omit the index
l. Below, we will show that Pθ

(
Γf,l(X̂)) = 1.

Example 4.3.3. These admissible potentials include

Vp(x̂, ŷ) = spx · spy a(x− y) x̂, ŷ ∈ R̂d,

where 0 ≤ a ∈ L1(Rd, dx) is bounded, even and compactly supported. More
generally, by choosing φ ∈ Ls(X×X) (cf. Definition 4.3.1), we can treat the
following one

Vp(x̂, ŷ) = spx · spy φ(x, y) x̂, ŷ ∈ X̂.

Another type of potentials is the 1-particle potential:

V (x̂, ŷ) = s1/2
x s1/2

y 1{x=y}(x, y)b(x),

where b ∈ L∞(Rd, dx) is bounded.

4.3.1 A (general) local (w.r.t. λθ ⊗m) mass map

Here, we introduce the concepts of a semi-local functions and of a local mass
map. Using them, we can extend the potentials of the basic model (cf.
Section 4.2).



4.3. Existence of Gibbs measures on Γ(X̂): General case 77

Definition 4.3.4. Let l : X̂ → R+ be B(X̂)-measurable. The function l
is called semi-local (w.r.t. λθ ⊗ m) if it is integrable on R+ × ∆, for all
∆ ∈ Bc(X). This means∫

R+×∆

l(x̂)λθ ⊗m(dx̂) ≤ C∆ <∞, ∀∆ ∈ Bc(X). (4.3.4)

Example 4.3.5. Let X = Rd with d ∈ N and let m(dx) = dx be the Lebesgue
measure on Rd. For p > 0, the function

lp : R̂d 3 x̂ 7→ lp(x̂) := spx ∈ R+ (4.3.5)

is semi-local (w.r.t. λθ ⊗m). An upper bound for the corresponding integral
(cf. (4.3.4)) is given for each ∆ ∈ Bc(Rd) by∫

R+×∆

lp(x̂)λθ ⊗m(dx̂) =m(∆) ·
∫
R+

spθ
e−s

s
ds = m(∆)θΓ(p) <∞,

where Γ(p) denotes the classical Gamma function.

Local mass map

We introduce the second important concept of the so-called local mass map.

Definition 4.3.6. Let l be a semi-local function in the sense of Definition
4.3.4. The associated (semi-)local (w.r.t. λθ ⊗m) mass map

m := ml : B(X̂)× Γ(X̂) 3 (Λ, γ) 7→ mΛ(γ) ∈ R+, (4.3.6)

is defined via

mΛ(γ) :=〈mΛ, γ〉 =
∑
x̂∈γ

l(x̂)1Λ ∀γ ∈ Γ(X̂). (4.3.7)

Remark 4.3.7. Let l be a semi-local function. Its associated local mass map
is additive, i.e.

mΛ(
⊔∞
i=1 γi) =

∑∞
i=1 mΛ(γi), ∀Λ ∈ B(X̂), ∀

(
γi
)
i∈N ⊂ Γ(X̂) :

γi ∩ γj = ∅ whenever i 6= j,
(4.3.8)

and monotone, i.e.

∀Λ, Λ̃ ∈ B(X̂) : Λ ⊆ Λ̃ implies mΛ ≤ mΛ̃. (4.3.9)

Moreover, for any Λ ∈ B(X̂),

the map B(Γ) 3 γ 7→ mΛ(γ) is B(Γ)-measurable (4.3.10)

as the limit of measurable functions (cf. also Lemma 2.1.1).
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From the context it will be clear whether we treat the semi-local function
l or its associated local mass map m, which is defined in (4.3.7). Thus, from
now on we shall denote them by the same symbol m, if no confusion seems
to be possible.

The previous considerations motivate the following

Definition 4.3.8. A map m

m : B(X̂)× Γ(X̂) 3 (Λ, γ) 7→ mΛ(γ) ∈ R+, (4.3.11)

is called a (semi-)local (additive) mass map (w.r.t. λθ⊗m) (or for short local
mass map), if it fulfills the additivity (cf. (4.3.8)), the monotonicity (cf.
(4.3.9)), the measurability (cf. (4.3.10)) and the (semi-local) integrability,
i.e., ∫

X̂

mR+×∆(x̂)λθ ⊗m(dx̂) ≤ C∆ <∞, ∀∆ ∈ Bc(X). (4.3.12)

If Λ is fixed, mΛ is called a local (w.r.t. λθ ⊗ m) mass at Λ ∈ B(X̂). If
mΛ = mX̂ for all Λ ∈ B(X̂) then we call m := mX̂ a global (w.r.t. λθ ⊗m)
mass.

If instead of (4.3.8) only the (weaker) subadditive property

mΛ(∅) = 0 and mΛ(
⋃∞
i=1 γi) ≤

∑∞
i=1 mΛ(γi),

∀Λ ∈ B(X̂), ∀
(
γi
)
i∈N ⊂ Γ(X̂)

, (4.3.13)

holds, we call m a subadditive local (w.r.t. λθ⊗m) mass map. We will omit
“(w.r.t. λθ⊗m)” most of the time, when it is clear which intensity measures
on X̂ are meant.

Depending on the question of interest, we will make one or another choice
of local resp. global masses related to λθ ⊗m.

Remark 4.3.9. 1. As we will see later (cf. Example 4.4.3) there exist
global mass maps which cannot be constructed by means of any semi-
local function. Therefore, it is reasonable to introduce the general con-
cept of a local mass map m.

2. The term (semi-)local reflects the fact that the integrability condition
has only to hold w.r.t. bounded sets ∆ ∈ Bc(X). Whereas the term
global mass is motivated by the claim that (4.3.12) holds for ∆ = X.
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3. Due to the additivity, each local mass map m can be written as

mΛ(γ) = 〈mΛ({·}), γ〉, ∀γ ∈ Γ(X̂), Λ ∈ B(R̂d).

Remark 4.3.10. We can easily include the local (w.r.t. λθ ⊗m) mass map
considered in Section 4.2 in this new concept. This also explains the following
abbreviation, which we will use without further advice: For ‹stripes› Λ =
R+ ×∆ with ∆ ∈ B(X) we set

m∆ := mR+×∆.

Fix an arbitrary map m̃ : B(X) × Γ(X̂) 3 (∆, γ) 7→ m̃∆(γ) ∈ [0,∞].
We set for all Λ ∈ B(X̂)

mΛ :=

{
m̃∆, if Λ = R+ ×∆, where ∆ ∈ B(X),
0, else. (4.3.14)

Thus, we may use the same name and symbol for both objects defined in
(4.3.13) and (4.3.14) respectively.

Example 4.3.11. It is easy to check that for any p > 0 the map

mp : B(X)× Γ(X̂) 3 ∆× γ 7→ mp,∆(γ) :=
∑

x∈τ(γ)∩∆

spx (4.3.15)

is a local mass map in the sense of Definition 4.3.8. The required additivity,
monotonicity and measurability (cf. (4.3.8), (4.3.9) and (4.3.10)) are clear
and the integrability w.r.t. λθ ⊗m follows by Example 4.3.5. It will be used
to construct Gibbs measures corresponding to the potential Vp discussed in
Example 4.3.3.

4.3.2 Support of the Gamma-Poisson measure

Using local mass maps, we describe sets on which the Gamma-Poisson mea-
sure Pθ has full mass.

Definition 4.3.12. Let m be a local (w.r.t. λθ ⊗m) mass map. We define
the set of (pinpointing) configurations with finite local mass by

Γf (X̂) := Γf,m(X̂) :=
{
γ ∈ Γp(X̂)

∣∣∣ mΛ(γ) <∞, ∀Λ ∈ R+ × Bc(X)
}
.

If it is clear which local mass map is meant, we omit the index m.

The following result generalizes Theorem 2.2.9.
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Theorem 4.3.13. For any (semi-)local (w.r.t. λθ ⊗ m) mass map m, the
Gamma-Poisson measure Pθ is supported by Γf (X̂) ∈ B(Γ(X̂)), i.e.

Pθ
(
Γf (X̂)

)
= 1.

Proof. The claim is proved similarly to Theorem 2.2.9.

The later result is also a special case of Theorem 4.3.34 below for V ≡ 0.

Corollary 4.3.14. The Gamma-Poisson measure Pθ is supported by⋂
p>0

{
γ ∈ Γp(X̂) |∀∆ ∈ Bc(X) : mp,∆(γ) <∞

}
. (4.3.16)

Proof. This follows by Theorem 4.3.13 and the fact that the set in (4.3.16)
can be written as a countable intersection over pn ↘ 0 as n ↗ ∞ (cf. also
Example 4.3.11).

4.3.3 Finiteness of the relative energy

We describe admissible boundary configurations ξ ∈ Γ(X̂) such that all local
Hamiltonians Γ(X̂) 3 γ 7→ HΛ(dγ|ξ) are well-defined for Λ ∈ Bc(X̂).

Example 4.3.15. For the following potentials V (x̂, ŷ), x̂, ŷ ∈ X̂, the relative
energy is finite, if the boundary condition ξ is chosen from the mentioned set:

1. ξ ∈ Γf,m1(X̂), for V (x̂, ŷ) = sxsyφ(x, y), and

2. ξ ∈ Γf,mp(X̂), for Vp(x̂, ŷ) = sx
psy

pφ(x, y) with p > 0,

where φ ∈ Ls(X ×X) (cf. Definition 4.3.1).

Fix a non-negative, symmetric potential V : X × X → [0,∞] and a
semi-local function or local mass map m such that

V (x̂, ŷ) ≤ mX̂({x̂}) ·mX̂({ŷ})φ(x, y), x̂, ŷ ∈ X̂, (4.3.17)

where φ ∈ Ls(X ×X).

Lemma 4.3.16. Let V be as in (4.3.17). Let γ ∈ Γ(X̂) and ξ ∈ Γf (X̂) (cf.
(2.2.20)), then the relative energy (cf. (4.1.2))

HΛ(γ|ξ) =
∑

x̂,ŷ∈γ∩Λ

V (x̂, ŷ) + 2
∑
x̂∈γ∩Λ
ŷ∈ξ∩ΛC

V (x̂, ŷ)

is finite for all Λ ∈ Bc(X). If m is a global mass, this result even holds for
φ ≡ 1.
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Proof. We proceed similarly to Lemma 4.1.2: For the first sum this follows
immediately by the definition of local finite configurations γ ∈ Γ(X̂) (cf.
(2.1.1)). The finiteness of the second sum is guaranteed by the choice of
ξ ∈ Γf (X̂).

Remark 4.3.17. The potentials, which we treat in Lemma 4.3.16 can have
an infinite range w.r.t. R+ ×X, as long as the proper global mass exists.

4.3.4 Support of the local specification kernels

Similar as in Section 4.1, we define for each Λ ∈ Bc(X̂) and ξ ∈ Γ(X̂) the
local Gibbs state µΛ(dγ|ξ) (cf. (4.1.4)) and the local specification kernel
πΛ(dγ|ξ) (cf. (4.1.8)). Let GibbsV denote the set of corresponding Gibbs
measures defined by Definition 4.1.6, where we use instead of Γf (X̂) the set
Γf,m(X̂) (cf. Definition 4.3.12).

The following proposition is a key estimate for proving the existence and
the uniform moment bounds of the Gibbs measures.

Proposition 4.3.18. Let V be as in (4.3.17). Then, for each ξ ∈ Γf (X̂)

and each Λ ∈ Bc(X̂), the probability measure µΛ(·|ξ) is supported by Γf (Λ)

and πΛ(·|ξ) respectively by Γf (X̂).
In detail, for any subadditive local (w.r.t. λθ ⊗m) mass map m̃, for all

Λ̃ ∈ B(X̂) and each ξ ∈ Γ(Γ(X̂))∫
Γ(Λ)

m̃Λ̃(γΛ)µΛ(dγΛ|ξ) ≤
∫

Λ

m̃Λ̃({x̂})(λθ ⊗m)(dx̂). (4.3.18)

If Λ̃ = R+×∆ with ∆ ∈ Bc(X) then this integral is dominated by θC∆, being
the constant corresponding to (4.3.12). If m̃ is a local mass map and V = 0,
then the above estimate is optimal, i.e., (4.3.18) becomes an equality.

Proof. The proof is quite similar to that of Proposition 4.2.3, where one uses
the idea of separating a single particle.

Remark 4.3.19. Having a closer look at the proof of Proposition 4.2.3, we
see that if we separate (instead of 1 particle) a group of n particles from the
others we obtain the weaker result∫

Γ(Λ)

m̃Λ̃(γΛ)µΛ(dγΛ|ξ) ≤
n∑
i=1

∫
Γ(i)(Λ)

m̃Λ̃(γ)PΛ
θ (dγ),

where PΛ
θ is the Lebesgue-Poisson measure on Γ(Λ) and Γ(i)(Λ) is the (i)-

particle configuration space over Λ.
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Remark 4.3.20. We point out a similar result, which one can obtain by
Ruelle’s equation (cf. [Rue70, (5.12), (E)]). Let m̃Λ̃ be supported by Λ ∈
Bc(R̂d), then∫

Γ(X̂)

m̃Λ̃(γ)πΛ(dγ|ξ) =

∫
Γ(Λ)

(∫
Γ(Λc)

m̃Λ̃(η ∪ γ)e−βHΛ(γ|ξ)πΛ(dγ|ξ)
)
PΛ
θ (dη)

=

∫
Γ(Λ)

∫
Γ(Λc)

[
m̃Λ̃(η) + m̃Λ̃(γ)︸ ︷︷ ︸

=0

]
e−βHΛ(γ|ξ)︸ ︷︷ ︸

=1

πΛ(dγ|ξ)

PΛ
θ (dη)

≤
∫

Γ(Λ)

m̃Λ̃(η)PΛ
θ (dη). (4.3.19)

We see that this estimate does not allow to get a uniform bound for Λ ↗
R+ × ∆ with ∆ ∈ Bc(X). On the other hand, we obtain by (4.3.18) for
Λ̃ = R+ ×∆ that

sup
Λ↗X̂, Λ∈Bc(X̂)

∫
Γ(X̂)

m̃R+×∆(γ)πΛ(dγ|ξ) ≤
∫

Γ(X̂)

m̃R+×∆(γ)Pθ(dγ)

≤
∫
X̂

m̃R+×∆({x̂})(λ⊗m)(dx̂) ≤ θC∆ <∞. (4.3.20)

So in our applications, we use instead of (4.3.19) the preciser estimate (4.3.18).

Estimates for higher moments for the specification kernels

Proposition 4.3.21. Let V be as in (4.3.17). We have for any subadditive
local (w.r.t. λθ ⊗m) mass map m̃ that for all Λ̃ ∈ B(X̂)∫

Γ(Λ)

[
m̃X̂(γΛ̃∩Λ)

]2
µΛ(dγΛ|ξ) ≤

∫
Γ(X̂)

[
m̃X̂(γΛ̃)

]2Pθ(dγ)

≤
∫
X̂

[
m̃X̂({x̂}Λ̃)

]2
(λθ ⊗m)(dx̂) +

(∫
X̂

m̃X̂({x̂}Λ̃)(λθ ⊗m)(dx̂)

)2

,

(4.3.21)

uniformly for all Λ ∈ Bc(X̂). In particular, if Λ̃ ∈ Bc(X̂), then the last
summand in the r.h.s of (4.3.21) is finite. If we additionally assume, that
the first summand is finite for all Λ̃ ∈ Bc(X̂), then for each Λ̃ ∈ Bc(X̂) there
exists a positive constant C(Λ̃, m̃) such that∫

Γ(Λ)

[
m̃X̂(γΛ̃∩Λ)

]2
µΛ(dγΛ|ξ) ≤ C(Λ̃, m̃) (4.3.22)

uniformly for all ξ ∈ Γf (X̂).



4.3. Existence of Gibbs measures on Γ(X̂): General case 83

Proof. By the subadditivity (cf. (4.3.13)), we get for each Λ ∈ Bc(X̂) and
ξ ∈ Γf (X̂)∫

Γ(Λ)

m̃X̂γΛ∩Λ̃
2µΛ(dγΛ|ξ)

≤ 1

ZΛ(ξ)

∑
n≥0

1

n!

∫
Λn

(
n∑
k=1

m̃X̂({x̂k}Λ̃)

)2

e−βHΛ({x̂1,...,x̂n}|ξ)
n∏
i=1

(λθ ⊗m)(dx̂i).

(4.3.23)

Using(
n∑
k=1

m̃X̂({x̂k}Λ̃)

)2

=
∑

1≤k,j≤n
k 6=j

m̃X̂({x̂k}Λ̃) m̃X̂({x̂j}Λ̃) +
∑

1≤k≤n

m̃X̂({xk}Λ̃)2

(4.3.24)

and performing the calculation analogously to (4.2.7) and (4.2.9), we get∫
Γ(Λ)

[
m̃X̂(γΛ̃∩Λ)

]2
µΛ(dγΛ|ξ) ≤

∫
Γ(1)(Λ)

[
m̃X̂({x̂}Λ̃)

]2
e−βHΛ({x̂}|ξ})PΛ

θ (d{x̂})

+

∫
Γ(2)(Λ)

m̃X̂({x̂1}Λ̃) m̃X̂({x̂2}Λ̃)e−βHΛ({x̂1,x̂2}|ξ})PΛ
θ (d{x̂1, x̂2}). (4.3.25)

Using again that V ≥ 0, we estimate the last term by∫
X̂

[
m̃X̂({x̂}Λ̃)

]2
(λθ ⊗m)(dx̂) +

(∫
X̂

m̃X̂({x̂}Λ̃)(λθ ⊗m)(dx̂)

)2

.

Using also Theorem 3.2.6, we conclude the proof of the assertion.

Remark 4.3.22. 1. We even have that (4.3.22) holds for higher moments,
but then the formula is quite involved. For N ∈ N, it takes the form∫

Γ(Λ)

[
m̃X̂(γΛ̃∩Λ)

]N
µΛ(dγΛ|ξ) ≤

∫
Γ(X̂)

[
m̃X̂(γΛ̃)

]NPθ(dγ)

≤
∑

k1+...kn=N
1≤ki≤N, n∈N

Ck1,...,kn

n∏
i=1

∫
X̂

[
m̃X̂({x̂}Λ̃)

]kiλθ ⊗m(dx̂) (4.3.26)

provided the integrals in the right-hand side are finite. This is surely
the case, if we assume that∫

m̃X̂({x̂}∆)nλθ ⊗m(dx̂) <∞ for 1 ≤ n ≤ N.
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To prove this result, we first get a formula analogously to (4.3.24),
which we plug in (4.5.9) and calculate the integral over the different
summands individually. Here, we have to split up to N particles from
the others. This yields an estimate that has a similar structure as
(4.3.21), in so far it depends on Λ̃ and N , but is independent of Λ.

2. In a similar way one can consider positive k-body potentials (k ≥ 2).
Here, a sufficient condition for (4.3.26) with N ≥ 1 will be∫
⊔k
i=1 Γ(i)(Λ)

m̃X̂({x̂1}∆)nPΛ
θ (d{x̂1, . . . , x̂i}) <∞, for all 1 ≤ n ≤ kN.

4.3.5 Local equicontinuity

The following step is essential for proving the existence of Gibbs measures,
i.e., that GibbsV 6= ∅.

Proposition 4.3.23. Let V be as in (4.3.17). Then, for each fixed ξ ∈
Γf (X̂), the net {πΛ(dγ|ξ)| Λ ∈ Bc(X̂)} is locally equicontinuous.

If m is a global mass map, then we may drop the finite interaction range
condition and still obtain the local equicontinuity stated above.

Proof. The results follows by adapting the arguments used in proving Propo-
sition 4.2.6. Namely, e.g., we set

U :=

{
R+ ×X, if m is a global mass,
R+ × U∆, otherwise (cf. (4.3.3)),

where ∆ ∈ Bc(X̂) is such that Λ ⊂ R+ ×∆. Then we repeat the estimates
(4.2.14) to (4.2.19) for the specification kernels defined by (4.1.8) (with the
general potential V as in (4.3.17) and Γf (X̂) defined by Definition 4.3.12)
and deduce the assertion.

4.3.6 Existence

Now we are in position to prove one of the main results of Chapter 4, which
ensures the existence of µ ∈ GibbsV . We start with

Definition 4.3.24. A local (w.r.t. λθ ⊗m) mass map m : B(X̂)× Γ(X̂)→
[0,∞] is called

(QL) quasi local: There exists cm ∈ (0,∞) such that for each Λ ∈ B(R+)×
Bc(X) one finds Λ′ ∈ B(R+)× Bc(X) with

mX̂(γΛ) ≤ cmmΛ′(γ). (4.3.27)
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Remark 4.3.25. Given a semi-local function l̃, then its associated local mass
map (cf. Definition 4.3.6) is quasi local. In particular, this holds for all
examples discussed in Example 4.3.11.

Moreover, this property holds obviously for any global mass map.

Theorem 4.3.26. Let V : X̂ × X̂ → [0,∞] be a non-negative potential and
m a semi-local (w.r.t. λθ ⊗m) function or a local (w.r.t. λθ ⊗m) mass map
such that

V (x̂, ŷ) ≤ mX̂({x̂}) ·mX̂({ŷ})φ(x, y) ∀x̂, ŷ ∈ X̂, (4.3.28)

where we assume that φ ∈ Ls(X ×X) and that (QL) holds.
Then for any β, θ > 0, there exists a Gibbs measures corresponding to Pθ

and V , i.e.,
GibbsV 6= ∅.

Each µ ∈ GibbsV is supported by Γf (X̂).
If m is a global mass, we may even take φ ≡ 1 in (4.3.28).

Remark 4.3.27. Theorem 4.3.26 holds for each potential given in Example
4.3.15.

Proof of Theorem 4.3.26. We proceed along the lines for proving the exis-
tence result in the basic model in Theorem 4.2.7 with obvious modifications.
Note that the specification kernels πΛ(dγ|ξ), ξ ∈ Γf (X̂) , are probability
measures on Γ(X̂).

Indeed, similarly as in the mentioned proof, we get the existence of a limit
measure µ using Lemma 4.3.16 and Proposition 4.3.23. We deduce that µ
is indeed a Gibbs measure through Lemmas 4.3.28, 4.3.29 and Proposition
4.3.30 below. To this end, we crucially use the following estimate which we
get by Proposition 4.3.18 (cf. (4.3.18)): Fix an arbitrary Λ̃ ∈ B(R+)×Bc(X).
We have for all Λ′ ∈ B(X̂) and ΛN ∈ Bc(X̂)∫

Γ(X̂)

mΛ̃(γΛ′)πΛN (dγ|ξ)

=

∫
Γ(ΛN )

mΛ̃(γΛN∩Λ′ ∪ ξΛcN∩Λ′)µΛN (dγΛN |ξ)

≤
∫

Γ(ΛN )

mΛ̃(γΛN∩Λ′)µΛN (dγΛN∩Λ′ |ξ) + mΛ̃(ξΛcN∩Λ′)

)
≤
∫
X̂

mΛ̃({x̂}Λ′)λθ ⊗m(dx̂) + mΛ̃(ξΛ′) ≤ θCΛ̃ + mΛ̃(ξΛ′) <∞.
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Note that this bound is uniform in N ∈ N.

It remains to show the above mentioned lemmas and proposition:

Lemma 4.3.28. Suppose we are in the setting of Theorem 4.3.26. Then,
for each ∆ ∈ Bc(X̂), there exist ∆′ ∈ B(R+) × Bc(X) (being the same as
in (4.3.27)) and Mφ,M∆′ ∈ (0,∞) such that for B ∈ BΛ(Γ(X̂)) and all
Λ ∈ Bc(X̂):10

|π∆(B|γΛ)− π∆(B|γ)| ≤ 2βcmMφM∆′

(
1 + eλθ⊗m(∆)

)
m∆′(γΛc)

=: C(m,∆, φ)m∆′(γΛc) =: Cm∆′(γΛc), (4.3.29)

where we chose cm ∈ (0,∞) such that (QL) holds.

Proof. Let B ∈ BΛ(Γ(X̂)), then 1B(η ∪ γΛ∩∆c) = 1B(η ∪ γ∆c) for all η, γ ∈
Γ(X̂). Hence, for any γ ∈ Γf (X̂) we have

|π∆(B|γΛ)− π∆(B|γ)|

≤ 1

Z∆(γΛ)

∫
Γf (X̂)

1B(η∆ ∪ γΛ∩∆c)e−βH∆(η∆|γΛ)

×
(

1− exp

{
− 2β

∑
x̂∈η∆,

ŷ∈γΛc∩∆c

V (x̂, ŷ)

})
P∆
θ (dη∆)

+

∣∣∣∣ 1

Z∆(γΛ)
− 1

Z∆(γ)

∣∣∣∣ ∫
Γf (X̂)

1B(η∆ ∪ γ∆c)e−βH∆(η∆|γ)P∆
θ (dη∆).

(4.3.30)

Dropping the first indicator function, we get the following dominator of the
first summand

1

Z∆(γΛ)

∫
Γf (X̂)

e−βH∆(η∆|γΛ)

(
1− exp

{
− 2β

∑
x̂∈η∆

ŷ∈γΛc∩∆c

ŷ∈U∆

V (x̂, ŷ)

})
P∆
θ (dη∆),

(4.3.31)

where we used (cf. also (4.3.1)) that there exists U∆ ∈ B(X̂) such that

V (x̂, ŷ) = 0 for all x̂ ∈ ∆ and ŷ ∈ U c∆.
10Despite our usual convention to use ∆ to denote sets in X, we use ∆ ∈ Bc(X̂) in

Lemmas 4.3.28, 4.3.29 and Proposition 4.3.30 to maintain a better readability.
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(If m is a global mass, we choose w.l.o.g. U∆ = X̂; otherwise, we can choose
U∆ ∈ B(R+)× Bc(X).) Since P∆

θ (Γ(∆)) = eλθ⊗m(∆), we estimate the second
summand in (4.3.30) by

1

Z∆(γ)︸ ︷︷ ︸
≤1

· 1

Z∆(γΛ)

∣∣Z∆(γ)− Z∆(γΛ)
∣∣eλθ⊗m(∆). (4.3.32)

We use that Z∆(γ) =
∫

Γf (X̂)
e−βH∆(η∆|γ)P∆

θ (dη∆) to rewrite the difference in
the last line. Using the upper bound established above (cf. (4.3.31) and
(4.3.32)) for the summands in (4.3.30), we deduce that uniformly for all
B ∈ BΛ(Γ(X̂))

|π∆(B|γΛ)− π∆(B|γ)|

≤ 1

Z∆(γΛ)

(
1 + eλθ⊗m(∆)

)∫
Γf (X̂)

e−βH∆(η∆|γΛ)

×
(

1− exp

{
− 2β

∑
x̂∈η∆

ŷ∈γΛc∩∆c∩U∆

V (x̂, ŷ)

})
P∆
θ (dη∆)

≤
(

1 + eλθ⊗m(∆)
)∫

Γf (X̂)

(
2β

∑
x̂∈η∆

ŷ∈γΛc∩∆c∩U∆

V (x̂, ŷ)

)
P∆
θ (dη∆)

≤2β
(

1 + eλθ⊗m(∆)
)

×
∫

Γf (X̂)

( ∑
x̂∈η∆

ŷ∈γΛc∩∆c∩U∆

mX̂({x̂})mX̂({ŷ})φ(x, y)

)
P∆
θ (dη∆), (4.3.33)

where we applied (4.3.28) together with the elementary inequality 1−e−βα ≤
βα for all α, β ≥ 0. The next step is to estimate the integral in the last line
of (4.3.33). Taking into account that

sup
x,y∈X

φ(x, y) =: Mφ <∞

(cf. our assumptions resp. Definition 4.3.1), we get∫
Γf (X̂)

( ∑
x̂∈η∆

ŷ∈γΛc∩∆c∩U∆

mX̂({x̂})mX̂({ŷ})φ(x, y)

)
P∆
θ (dη∆)

≤Mφ

∫
Γ(X̂)

mX̂(η∆)mX̂(γΛc∩U∆
)P∆

θ (dη∆)

≤MφmX̂(γΛc∩U∆
)

∫
∆

mX̂({x̂})(λθ ⊗m)(dx̂), (4.3.34)
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where we applied Proposition 4.3.18. Using (QL) (cf. (4.3.27)) and the
monotonicity of a local mass map (cf. (4.3.10)) we deduce

∃∆′ ∈ B(R+)× Bc(X) :
mR+×X(γU∆

) ≤ cmm∆′(γ)
mR+×X(γ∆) ≤ cmm∆′(γ)

∀γ ∈ Γ(X̂).

(4.3.35)

This yields a bound for (4.3.34), namely

Mφm∆′(γΛc)

∫
X̂

m∆′({x̂})λθ ⊗m(dx̂) ≤ 2βcmMφm∆′(γΛc)M∆′ , (4.3.36)

where we used the integrability of m (cf. (4.3.12)) to find that

∃M∆′ > 0 :

∫
X̂

m∆′({x̂})λθ ⊗m(dx̂) ≤M∆′ .

We summarize the estimates given in (4.3.33), (4.3.34) and (4.3.36):

|π∆(B|γΛ)− π∆(B|γ)| ≤ 2βcmMφM∆′

(
1 + eλθ⊗m(∆)

)
m∆′(γΛc), (4.3.37)

which yields the claim.

The following lemma will be applied for the local specification kernels
(i.e. ν(dγ) := πΛ(dγ|ξ)). That is why in its formulation we assume the
dependence on a boundary condition ξ.

Lemma 4.3.29. Suppose that we are in the setting of Theorem 4.3.26.10 Fix
∆ ∈ Bc(X̂) and ξ ∈ Γf (X̂). Assume that for some ν ∈ M1(Γ(X̂)) it holds
for all Λ′ ∈ B(X̂) and ∆′ ∈ B(R+)× Bc(X)∫

Γ(X̂)

m∆′(γΛ′)ν(dγ) ≤
∫
X̂

m∆′({x̂}Λ′) (λθ ⊗m) (dx̂) + m∆′(ξΛ′). (4.3.38)

Then for any ε > 0 there exists Λ = Λ(ε,m,∆, φ, ξ) ∈ Bc(X̂) such that, for
all ν ∈ M1(Γ(X̂)) fulfilling (4.3.38) and for all Λ̃ ∈ Bc(X̂) with Λ̃ ⊃ Λ, we
have ∣∣∣∣∫

Γ(X̂)

[
π∆(B|γΛ̃)− π∆(B|γ)

]
ν(dγ)

∣∣∣∣ ≤ ε. (4.3.39)

In other words,

lim
Λ↗X̂

Λ∈Bc(X̂)

∫
Γ(X̂)

π∆(B|γΛ)ν(dγ) = lim
Λ↗X̂

Λ∈Bc(X̂)

∫
Γ(X̂)

π∆(B|γ)ν(dγ). (4.3.40)
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Proof. Using (4.3.29) we have∣∣∣∣∫
Γ(X̂)

[
π∆(B|γΛ)− π∆(B|γ)

]
ν(dγ)

∣∣∣∣
≤ C(m,∆, φ)

∫
Γ(X̂)

m∆′(γΛc)ν(dγ). (4.3.41)

Equation (4.3.38) with Λ′ = Λc yields the following bound for the last integral∫
X̂

m∆′({x̂}Λc)λθ ⊗m(dx̂) + m∆′(ξΛc), ξ〉. (4.3.42)

By Lebesgue’s dominated convergence theorem, (4.3.42) becomes arbitrary
small for sufficiently large Λ. Thus, the claim holds.

Proposition 4.3.30. Suppose we are in the setting of Theorem 4.3.26. We
assume that a sequence (µN)N∈N ⊂ M1(Γ(X̂)) satisfies (4.3.38). Moreover,
let for each ∆ ∈ Bc(X̂) and B ∈ Bcyl(Γ(X̂)) there exists N0 ∈ N such that10

for all N ≥ N0

∫
Γ(X̂)

π∆(B|γ)µN(dγ) = µN(B). (4.3.43)

If µ ∈M1(Γ(X̂)) is the τloc-limit of the sequence
(
µN
)
N∈N, then:

1. µ obeys the estimate (4.3.43) and hence is supported by Γf (X̂)).

2. µ satiesfies the (DLR) equation (4.1.13).

Proof. Fix an arbitrary ∆ ∈ B(R+) × Bc(X). Since in general m∆(·) is
not Bcyl(Γ(X̂))-measurable, we use the following cut-off procedure. For all
Λ ∈ Bc(X̂) the local mass

Γ(X̂) 3 γ 7→ m∆(γΛ)

is Bcyl(Γ(X̂))-measurable. Beppo Levi yields that for all Λ′ ∈ B(X̂)∫
Γ(X̂)

m∆(γΛ′)µ(dγ) = lim
Λ↗X̂

Λ∈Bc(X̂)

∫
Γ(X̂)

m∆(γΛ′∩Λ)µ(dγ)

= lim
Λ↗X̂

Λ∈Bc(X̂)

lim
N→∞

∫
Γ(X̂)

m∆(γΛ′∩Λ)µN(γ)
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Using (4.3.38), the last line is dominated by

lim
Λ↗X̂

Λ∈Bc(X̂)

lim
N→∞

(∫
X̂

m∆′({x̂}Λ′∩Λ)λθ ⊗m(dx̂) + m∆′(ξΛ′∩Λ)

)

≤
∫
X̂

m∆′({x̂}Λ′)λθ ⊗m(dx̂) + m∆′(ξΛ′) <∞, (4.3.44)

where we used for the finiteness (4.3.12) and that ξ ∈ Γf (X̂).

We justify the following relations to obtain the (DLR) equation: Let
∆ ∈ Bc(X̂). Using Beppo Levi, we get∫

Γ(X̂)

π∆(B|γ)µ(dγ)
1.
= lim

Λ↗X̂
Λ∈Bc(X̂)

∫
Γ(X̂)

π∆(B|γΛ)µ(dγ)

2.
= lim

Λ↗X̂
Λ∈Bc(X̂)

lim
N→∞

∫
Γ(X̂)

π∆(B|γΛ)µN(dγ)

3.
= lim

N→∞

∫
Γ(X̂)

π∆(B|γ)µN(dγ)
4.
= lim

N→∞
µN(dγ)

5.
= µ(B). (4.3.45)

The second and fifth equation follow by the definition of µ . The fourth holds
by the consistency assumed in (4.3.43). For the first and third equality we
use Lemma 4.3.29. Hence, we have shown that µ is a Gibbs measure (being
supported by Γf (X̂)).

This completes the proof of Theorem 4.3.26.

4.3.7 Support of Gibbs measures

Let us have a closer look on the support properties of µ ∈ GibbsV .

Theorem 4.3.31. Let m̃ be an arbitrary local (w.r.t. λθ⊗m) mass map and
Λ̃ ∈ B(R+)× Bc(X). Fix a Gibbs measure µ ∈ GibbsV . Then∫

Γ(X̂)

m̃Λ̃(γ)µ(dγ) ≤
∫

Γ(X̂)

m̃Λ̃(γ)Pθ(dγ)

≤
∫
X̂

m̃Λ̃({x̂})λ⊗m(dx̂) <∞. (4.3.46)

This bound is uniform for all Gibbs measure µ corresponding to V and Pθ.
In particular, µ(Γf,m̃(X̂)) = 1.
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Proof. Our idea is to exploit the uniform estimate for local Gibbs measures
(cf. Proposition 4.3.18) and the DLR property.

Fix some Λ̃ ∈ B(X̂). Using Beppo Levi, we have∫
Γ(X̂)

m̃Λ̃(γ)µ(dγ) = lim
Λ↗X̂

Λ∈Bc(X̂)

∫
Γ(X̂)

m̃Λ̃(γΛ)µ(dγ).

By the (DLR) equation the right-hand side of the later equation equals

lim
Λ↗X̂

Λ∈Bc(X̂)

lim
ΛN↗X̂

ΛN∈Bc(X̂)

∫
Γ(X̂)

∫
Γ(ΛN )

m̃Λ̃(γΛ)πΛN (dγ|ξ)µ(dξ)

By the additivity of m̃Λ and the definition of the local specification kernel
(cf. (4.1.8)), it is dominated by

lim
Λ↗X̂

Λ∈Bc(X̂)

(
lim

ΛN↗X̂
ΛN∈Bc(X̂)

∫
Γ(X̂)

∫
Γ(ΛN )

m̃Λ̃(γΛ∩ΛN )µΛN (dγΛN |ξ)µ(dξ)

+ lim sup
ΛN↗X̂

ΛN∈Bc(X̂)

∫
Γ(X̂)

m̃Λ̃(ξΛ∩ΛcN
)µ(dξ)

)
.

Note that ξΛ∩ΛcN
converges trivially to ∅. This means, there exists N0 > 0

such that Λ ⊂ ΛN for all N ≥ N0, whence ξΛ∩ΛcN
= ∅. Hence, the last line

equals

lim
Λ↗X̂

Λ∈Bc(X̂)

(
lim

ΛN↗X̂
ΛN∈Bc(X̂)

∫
Γ(X̂)

∫
Γ(ΛN )

m̃Λ̃(γΛ∩ΛN )µΛN (dγΛN |ξ)µ(dξ)

)

Using the uniform bound given in Proposition 4.3.18 (cf. (4.3.18)), the later
is dominated by

≤ lim
Λ↗X̂

Λ∈Bc(X̂)

∫
Γ(X̂)

∫
X̂

m̃Λ̃({x̂}Λ)λθ ⊗m(dx̂)µ(dξ). (4.3.47)

If actually Λ̃ ∈ B(R+) × Bc(X̂), then the last line is bounded by θCΛ̃ < ∞.
Hence, we have proved that µ(Γf,m̃(X̂)) = 1.

Remark 4.3.32. To obtain the last result, we crucially used that V ≥ 0.
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1. Let GibbsV 6= ∅. Then Theorem 4.3.31 implies for any local mass map
m̃ that

∀µ ∈ GibbsV µ(Γf,m̃(X̂)) = 1.

2. The later shows that the a priori assumption of µ being supported by
Γf (X̂) is no restriction; and it is in fact not necessary (cf. also Remark
4.3.33 below).

The following remark concerns the support property of µ ∈ GibbsV :

Remark 4.3.33. Let µ be a Gibbs measure and A ⊂ B(Γ(X̂)) be such that
there exists Λ ∈ Bc(X̂) : πΛ(Γ(X̂)|ξ) = 0 for all ξ ∈ A. Then µ(A) = 0
because

1 =µ(Γ(X̂)) =

∫
Γ(X̂)

πΛ(Γ(X̂)|ξ)µ(dξ) =

∫
Ac
π(Γ(X̂)|ξ)µ(dξ)

≤
∫
Ac
µ(dξ) = 1− µ(A).

4.3.8 Higher moments of Gibbs measures

Theorem 4.3.34. Let V : X̂ × X̂ → [0,∞) be as in Theorem 4.3.26 with
the corresponding local (w.r.t. λθ ⊗m) mass map m. Fix a Gibbs measure
µ ∈ GibbsV and a subadditive local mass map m̃. Then for N ∈ {1, 2} and
∆ ∈ B(X̂)∫

Γ(X̂)

m̃X̂(η∆)Nµ(dη) ≤
∫

Γ(X̂)

m̃X̂(η∆)NPθ(dη)

≤
∫
X̂

m̃X̂({x̂}∆)N(λθ ⊗m)(dx̂) +

(∫
X̂

m̃X̂({x̂}∆)(λθ ⊗m)(dx̂)

)N
.

(4.3.48)

For N = 1 we may drop the first summand. In this case the r.h.s. in
(4.3.48) is by assumption finite for any ∆ ∈ B(R+)×Bc(X). For N = 2 the
r.h.s. is finite if ∆ ∈ B(R+)× Bc(X) and∫

X̂

m̃X̂({x̂}∆)2(λθ ⊗m)(dx̂) <∞.

Remark 4.3.35. By the definition of a local mass map,

m̃X̂({·}∆)1 ∈ L1(X̂, λθ ⊗m).
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Proof. Similarly to the proof of Theorem 4.3.31, this fact follows by the
(DLR) property and Proposition 4.3.18 resp. 4.3.21. Using the monotone
convergence theorem, we get∫

Γ(Λ)

m̃X̂(η∆)Nµ(dη) = lim
Λ↗X̂

Λ∈Bc(X̂)

∫
Γ(X̂)

m̃X̂(η∆∩Λ)Nµ(dη)

= lim
Λ↗X̂

Λ∈Bc(X̂)

lim
Λ̃↗X̂, Λ⊆Λ̃,

Λ̃∈Bc(X̂)

∫
Γ(Λ)

∫
Γ(Λ̃)

m̃X̂(η∆∩Λ)NµΛ̃(dη|ξ)µ(dξ)

≤ lim
Λ↗X̂

Λ∈Bc(X̂)

lim
Λ̃↗X̂, Λ⊆Λ̃,

Λ̃∈Bc(X̂)

∫
Γ(Λ)

(∫
X̂

m̃X̂({x̂}∆)N(λθ ⊗m)(dx̂)

+

(∫
X̂

m̃X̂({x̂}∆)(λθ ⊗m)(dx̂)

)N )
µ(dξ),

where we applied Proposition 4.3.21 for N = 2, resp. Proposition 4.3.18 for
N = 1. This yields the claim.

Remark 4.3.36. For the moments of higher orders, results analogous to
those mentioned in Remark 4.3.22 hold. Here, we only point out that∫

Γ(X̂)

m̃X̂(η∆)Nµ(dη) <∞ for some N ∈ N

whenever ∫
X̂

m̃X̂({x̂}∆)nλθ ⊗m(dx̂) for all 1 ≤ n ≤ N.

4.4 A closer look at Gibbs measures

In the previous section, we have shown that the (convex set) GibbsV 6= ∅ (cf.
Theorem 4.3.26). In this section we show that the set GibbsV is a compact
set in Tloc (cf. Subsection 4.4.4).

For simplicity in this section, we consider the case of X = Rd (with
d ∈ N) being equipped with the Lebesgue measure m(dx) = dx.11 Using

11Actually, we can handle more general spaces which fulfill a certain covering property
(cf. Remark 4.4.2 and esp. Definition 5.3.1) to construct an associated global mass and
obtain the announced results. But, for the sake of clarity, we stick to the basic model
setting.
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properties of the underlying phase space R̂d, we introduce a smaller subset
Γt(R̂d) ⊂ Γf (R̂d) of the so-called ‹tempered configurations› such that

µ(Γt(R̂d)) = 1, for all µ ∈ GibbsV .

From now on, the lower index R+ shall remind us that we treat an object
in R+ or a property related to the space R+. The same notational convention
is true for X, resp. Rd.

4.4.1 Covering of R̂d

Let (R+, dR+) and (Rd, | · |) be the components of the underlying phase space
R̂d = R+×Rd described in Section 2.2. We construct a covering of the space
R̂d, which consists of balls whose volumes are uniformly bounded. On Rd we
use the standard covering related to the Euclidean distance, whereas on R+

we use a special one related to the logarithmic distance.12

We fix an arbitrary g ∈ (0, 1). Let QRd,z, z ∈ Zd, denote the balls with
radius dg, centered at qz, i.e.,

QRd,z :=
{
x ∈ Rd | |gz − x| ≤ d · g

}
.

Then
(
QRd,z

)
z∈Zd covers Rd and

sup
z∈Zd

m
(
QRd,z

)
=: MRd <∞ (4.4.1)

because the Lebesgue measure is translation invariant.13 Instead of QRd,z we
can also consider the hypercubes

Qk,g := [−g/2, g/2) + kg, k ∈ Zd.

In the later case, we have a disjoint partition of Rd =
⊔
k∈Zd Qk,g.

For R+ we have a different type of covering: For all N ∈ Z we define

QR+,N := [gN+1/2, gN−1/2). (4.4.2)

Since the intensity measures λθ is non-atomic, it does not matter whether
we consider the half open intervals or their closures. The closures are balls
in (R+, dR+) that are centered at points gN and have radius −1

2
ln g > 0 (cf.

(2.2.1)).
12Thus we have to leave the framework of Ruelle, cf. [Rue69, Rue70].
13If we take instead of the Euclidean norm the sup-norm, we get the usual choice of

cubes (cf. e.g. [Rue69], [AKR98b], [KPR10]).
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Lemma 4.4.1. The half open intervals QR+,N cover R+ and their volumes
are uniformly bounded:

sup
N∈Z

λθ
(
QR+,N

)
≤ θ (| ln g|+ 1) =: MR+ <∞ (4.4.3)

Proof. If N < 0 then 1 ≤ gN = (1
g
)|N | and

θ

∫ gN−1/2

gN+1/2

e−tt−1dt ≤ θ

∫ gN−1/2

gN+1/2

e−tg|N |−1/2dt ≤ θ

∫ ∞
g

e−t · 1dt = θ
1

eg
.

On the other hand, if N ≥ 0 then 0 < gN ≤ 1 and for 0 < a ≤ b ≤ 1∫ b

a

e−t
1

t
dt ≤

∫ b

a

1

t
dt = ln

b

a
.

Therefore, for N ≥ 0 we obtain

θ

∫ gN−1/2

gN+1/2

e−t
1

t
dt ≤ θ(ln g)(N − 1/2− (N + 1/2)) = θ ln

1

g
.

Hence, the claim follows.

Setting for all k := (N, z) ∈ I := Z× Zd

Qk := Q(N,z) := QR+,N ×QRd,z, (4.4.4)

we get sets with uniformly bounded volume covering R̂d.

Remark 4.4.2. We summarize the important facts regarding the space that
we will use for the construction: Let us suppose that we are in the general
framework, i.e., we consider again an arbitrary locally compact Polish space
X (cf. Section 4.3). Let I ⊂ Z × Zd = {k = (N, z)|N ∈ Z, z ∈ Zd}. We
define for q, g > 0 and k = (N, z) ∈ I the weights

ck,q :=e−q|z|e−q|N ln g| ≥ 0. (4.4.5)

(AP′) Admissible partition: Let g, q, I and (Qg,k)k∈I be chosen such
that Qg,k are a partition of X̂, i.e. X̂ =

⊔
k∈IQg,k, the weights are

summable, i.e.,

Cq :=
∑
k∈I

ck,q <∞, ∀ q > 0, (4.4.6)

and the volumes of the partition sets Qg,k are uniformly bounded, i.e.,

sup
k∈I

λθ ⊗m(Qg,k) <∞. (4.4.7)
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4.4.2 An associated global mass

We introduce some notation to keep the presentation more easily readable.
For k ∈ I (cf. (4.4.4)), we denote the restriction of a configuration γ ∈ Γ(X̂)
to the ball Qg,k by

γk := γQg,k

and the configuration space over this ball by

Γk := Γ(Qg,k) :=
{
γk

∣∣∣γ ∈ Γ(X̂)
}
⊂ Γ0.

Furthermore, we define the projection of Qg,k to R+ and Rd by

Qk,R+ := (Qg,k)R+
, resp. Qk,Rd := (Qg,k)Rd .

For any local mass map m and for each k ∈ I, we abbreviate the local mass
in Qg,k by

mk := mQg,k .

Example 4.4.3. For each p ≥ 0 and k ∈ I, we define (cf. Example 4.3.11)

Γ(X̂) 3 γ 7→ mp,k(γ) := mp,Qg,k(γ) :=
∑

(s,x)∈γ∩Qg,k

sp, (4.4.8)

which is finite for any γ ∈ Γp(X̂) (cf. (2.1.1)). For p > 0 each mp,Qg,k is a
global mass map (cf. also Lemma 4.4.5 below).

We present a second local mass map, which will not be used afterwards
in our considerations. It incorporates the following aspects: A configuration
describes the allocation of particles in R̂d. For each area Λ we have some
known information about the allocated particles. We assume that informa-
tion is processed in chunks Qg,k and that no information outside of a given
area Λ may be used, i.e., that information is not previsible. The the following
local mass maps are in correspondence with this interpretation:

Example 4.4.4. Let p > 0 and define

mp,g : B(R̂d)× Γ(X̂) → R+

(Λ, γ) 7→
∑

x̂∈γ∩ΛI

sp, (4.4.9)
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where
ΛI :=

⋃
k∈I, Qg,k⊂Λ

Qg,k, ∀Λ ∈ B(R̂d). (4.4.10)

Note that m0 = |γ ∩ ΛI| is not a local mass map because (4.3.12) is void. For
p > 0, mp,g is a local (w.r.t. λθ⊗dx) mass at Qg,k and mp is a corresponding
local mass map. We point out that there exists no semi-local function whose
associated local mass map coinsides with mp,g.

Lemma 4.4.5. For any p ≥ 0,

sup
k∈I, ξ∈Γf (X̂),

Λ∈Bc(R̂d)

∫
Γk

mp,k(γ)µΛ(dγ|ξ) ≤ cp <∞, (4.4.11)

where

cp :=


θMRd(1 + | ln g|), if p = 0,
θMRd(1 + 1

p
), if 0 < p ≤ 1,

θMRd(1 + (dp− 1e)!), if 1 ≤ p,

and MR+ and MRd are the same as in (4.4.3), resp. (4.4.1).

Proof. We apply Proposition 4.3.18 for the subadditive local mass map

B(R̂d)× Γ(X̂) 3 (∆, γ) 7→ 1Γ(∆I)(γ) ·mp,∆I
(γ),

to deduce that∫
Γk

mp,k(γ)µΛ(dγ) =

∫
Γ(X̂)

1Γ(Qg,k)(γ) ·mp,k(γ)µΛ(dγ)

≤
∫

Γ(1)(Λ)

1Γ(Qg,k)(γ) ·mp,k(γ)PΛ
θ (dγ) ≤

∫
Qg,k

mp,k({x̂i})λθ ⊗m(dx̂i).

(4.4.12)

The integral is finite (cf. (4.3.12)), thus it remains to show that the bound
is uniform for all Qg,k, k ∈ I, i.e.,∫

Qg,k

mp,k({x̂i})λθ ⊗m(dx̂i) ≤cp. (4.4.13)

In the case p = 0, the claim follows from the uniform bound for the projection
of the sets Qg,k into R+ and Rd given by Lemma 4.4.1, resp. (4.4.1). If p > 0,
it follows by Example 4.3.5 and the following calculations: For 0 < p ≤ 1

Γ(p) ≤
∫ 1

0

sp−1 · 1ds+

∫ ∞
1

1 · e−sds ≤ 1

p
+ 1.
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For 1 ≤ p

Γ(p) ≤
∫ 1

0

1 · e−sds+

∫ ∞
1

sdp−1ee−sds ≤ 1 +

∫ ∞
0

sdp−1ee−sds

≤1 +
[
−sdp−1ee−s

]∞
0
−
∫ ∞

0

−e−s · dp− 1esdp−1e−1ds = 1 + (dp− 1e)!.

Remark 4.4.6. We can generalize the results of Lemma 4.4.5, also to the
situation described in Remark 4.4.2:

1. From the proof of the lemma, namely by (4.4.13), we see that (4.4.11)
holds for any local mass map m obeying

sup
k∈I

∫
X̂

mk({x̂})(λθ ⊗m)(dx̂) ≤ C <∞, (4.4.14)

2. Furthermore, if we have a finite local (w.r.t. λθ⊗m) mass map obeying∫
X̂

mX̂({x̂})λθ ⊗m(dx̂) ≤ C <∞, (4.4.15)

then we even obtain (cf. Proposition 4.3.18) that

sup
ξ∈Γf (X̂)

Λ∈Bc(X̂)

∫
Γ(X̂)

mX̂(γ)µΛ(γ|ξ) <∞. (4.4.16)

Definition 4.4.7. Let m̃ be a local (w.r.t. λθ ⊗m) mass map. If it fulfills
(4.4.14), then we call m̃ a local mass map with uniform integrability (w.r.t.
λθ⊗m). If even the stronger condition (4.4.15) holds, we call m̃ a finite local
(w.r.t. λθ ⊗m) mass map.

We call a semi-local function uniform integrable, resp. finite, if the asso-
ciated local mass map has this property.

Example 4.4.8. The local mass maps mp, p > 0, defined by (4.4.9) in
Example 4.4.3 fulfill the uniform integrability, as one can check using (4.4.13)
and ∫

R̂d
mp,k({x̂})λθ ⊗m(dx̂) =

∫
Qk

mp,k({x̂})λθ ⊗m(dx̂).
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Lemma 4.4.9. Under the assumptions of Proposition 4.3.18, we have for
any local mass map m̃ that∫

Γ(X̂)

m̃k(γ)πΛ(dγΛ|ξ) ≤
∫

Λ

m̃k({x̂})(λθ ⊗m)(dx̂) + m̃k(ξΛc). (4.4.17)

If (4.4.14) is fulfilled with the constant C > 0, then the first summand is
(uniformly for all Qk) bounded by this constant C.

Proof. The claim follows directly by Proposition 4.3.18.

Global mass

The next step is to find a suitable global mass on Γ(X̂) to R+. With its help
one can get a better insight into sets on which the Gamma-Poisson measure
Pθ is supported.

Definition 4.4.10. Let m̃ : B(R̂d) × Γ(X̂) → R+ be a map. For q > 0, let
us set

‖γ‖m̃,q :=
∑
k∈I

ck,q m̃k(γ), γ ∈ Γ(X̂), (4.4.18)

where, for each k = (N, z) ∈ I, we define the weight (cf. (4.4.5))

ck,q := exp {−q (|N ln(g)|+ |z|)} ≥ 0.

If ‖ · ‖q,m̃ is a global (w.r.t. λθ ⊗ m) mass map for all q > 0, we call each
‖ · ‖q,m̃ the associated q-weighted global (w.r.t. λθ⊗m) mass with parameter
q > 0. We refer to the whole family

{
‖ · ‖q,m̃

∣∣q > 0
}
as the associated global

mass (map).

Example 4.4.11. An associated global mass exists for 1) m0; 2) each semi-
local function that is uniformly integrable; 3) mass map with uniform inte-
grability, and in particular 4) for each mp and mp,g, p > 0.

Proof. The additivity and monotonicity (see (4.3.8) and (4.3.9)) are clear.
The measurability (cf. (4.3.10)) is obvious because the corresponding map
that is defined by (4.4.18) is the limit of B(Γ(X̂))-measurable functions (cf.
Theorem 4.3.13). We check the integrability (cf. (4.3.12)) via Fubini-Tonelli∫

R̂d
‖{x̂}‖m,qλθ ⊗m(dx̂) =

∑
k∈I

ck,q

∫
R̂d

mk({x̂})λθ ⊗m(dx̂)

≤Cq · C <∞, (4.4.19)
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where C is chosen appropriately. Here, in the first two cases we used the
uniform integrability (cf. (4.4.14)) to estimate the integrals and (4.4.6) to
check the summability; and in the third case we used (4.4.7) saying that∫

R̂d
mk({x̂})λθ ⊗m(dx̂) ≤ C.

Proposition 4.4.12. Let q > 0 and ‖·‖q,m̃ be an associated q-weighted global
mass. Under the assumptions of Proposition 4.3.18, we have∫

Γ(Λ)

‖γ‖m̃,q µΛ(dγ|ξ) ≤ C · Cq <∞. (4.4.20)

This implies that, for each Λ ∈ Bc(R̂d), πΛ(·|ξ) is supported by Γf,‖ ·‖m̃,q(R̂d)

whenever ξ ∈ Γf,‖ ·‖m̃,q(R̂d).

Proof. Since each global mass is a local mass map and hence it fulfills (4.4.14)
with the constant CCq (cf. (4.4.19)), the result follows by Lemma 4.4.9.

The support property implied by Proposition 4.4.12 motivates the follow-
ing definition:

Definition 4.4.13. Let m̃ be a local mass map with uniform integrability
(w.r.t. λθ ⊗ m) and q > 0. We define the following set of q-tempered
configurations

Γf,m̃,Q(R̂d) := Γf,‖·‖q,m̃(R̂d) ∩ Γf,m̃(R̂d). (4.4.21)

If it is clear which local mass map is meant, we omit the index m̃.

Remark 4.4.14. The associated global mass is measurable, Γf,m̃,q(X̂) ∈
B(Γ(X̂)) and Pθ(Γf,m̃,q(R̂d)) = 1 (cf. Remark 4.3.7 and Theorem 4.3.13).

Corollary 4.4.15. Let q > 0 and ‖ · ‖q,m̃ be an associated q-weighted global
mass. If we set

V (x̂, ŷ) = ‖{x̂}‖q,m̃ · ‖{ŷ}‖q,m̃, ∀x̂, ŷ ∈ R̂d,

then there exists a Gibbs measure corresponding to V and Pθ.
If m̃ is a semi-local function that is uniformly integrable, there exists an

associated q−weighted global mass. In particular, for m̃ = mp with p > 0 we
have constructed a Gibbs measure for a pair potential that vanishes nowhere.

Proof. Applying Theorem 4.3.26 for the local mass map Γ(X̂) 3 γ 7→ ‖γ‖q,m̃
and the above potential, yields the result.
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4.4.3 Support properties of Gibbs measures

In this subsection we show that each µ ∈ GibbsV is supported by the following
set Γt

m̃(R̂d) consisting of tempered configurations :

Definition 4.4.16. Let m̃ be a local mass map with uniform integrability
(w.r.t. λθ ⊗m). We define the set of tempered configurations by

Γt
m̃(R̂d) :=

⋂
q>0

Γf,m̃,q(R̂d), (4.4.22)

where Γf,m̃,Q(R̂d) =
{
γ ∈ Γf,m̃(R̂d) | ‖γ‖m̃,q <∞

}
(cf. Definition 4.4.13)

and ‖ · ‖m̃,q is the q-weighted global mass associated to the local mass map m̃
and q > 0. More precisely (cf. (4.4.18)),

‖γ‖m̃,q =
∑
k∈I

m̃k(γ)ck,q,

where for each k = (N, z) ∈ I we defined (cf. (4.4.5))

ck,q := exp
{
−q
(
|N ln g|+ |z|

)}
.

As before, if it is clear which is the involved local mass map, we may drop
the index of the local mass map, i.e.,

Γt(R̂d) = Γt
m̃(R̂d).

Remark 4.4.17. Since Γf,m̃,q̃(R̂d) ⊂ Γf,m̃,q(R̂d) for 0 < q̃ < q, we obtain that

Γt
m̃(R̂d) =

⋂
q>0

Γf,m̃,q(R̂d) ∈ B(Γ(R̂d))

and thus Pθ(Γt
m̃(R̂d)) = 1.

Corollary 4.4.18. Let a potential V fulfill the assumptions of Theorem
4.3.26 (with corresponding local mass map m). Then each Gibbs measure
µ that corresponds to the potential V and the Gamma-Poisson measure Pθ
is supported by the set of tempered configurations Γt

m̃(R̂d), i.e.,

µ(Γt
m̃(R̂d)) = 1. (4.4.23)

Here we may choose an arbitrary (semi-local function or) local (w.r.t. λθ⊗m)
mass map m̃ that admits an associated global mass map. In particular, such
a Gibbs measure exists and is supported by Γt

mp(R̂
d), p > 0.
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Proof. The existence follows by Theorem 4.3.26. The support property fol-
lows by Theorem 4.3.31, which holds for any local mass map. Since we
consider the global mass ‖ · ‖m̃,q, q > 0, as a constant local mass map, this
implies the support property (cf. Definition 4.4.16).

The existence and the support properties in the particular case of mp,
p > 0, follow by Theorem 4.3.26 and Example 4.4.11.

Example 4.4.19. Let V (x̂, ŷ) = sxsya(x− y) be as in Example 4.1.1. Then
any Gibbs measure corresponding to V is supported by

Γt
ex(R̂d) :=

⋂
p>0

0<g<1

γ ∈ Γ(R̂d)

∣∣∣∣∣∣
∑

k=(N,z)∈Zd+1

e−q(|z|+N | ln(g)|)
∑

x̂∈γ∩Qg,k

spx <∞

 .

where Qg,k := [gN+1/2, gN−1/2)×
(
[−1/2, 1/2)d + z

)
and R̂d =

⊔
k∈Zd+1 Qg,k.

4.4.4 Compactness of the set of Gibbs measure

We return to the general framework of (X, dX) being a locally compact Polish
space.

Theorem 4.4.20. Let V fulfill the assumptions of Theorem 4.3.26. Then,
for any local mass maps m̃ and for all Λ ∈ B(R+) × Bc(X), there exists
CΛ,m̃ > 0 such that

sup
µ∈GibbsV

∫
Γ(X̂)

m̃Λ(γ)µ(dγ) ≤ CΛ,m̃. (4.4.24)

Moreover, GibbsV is a compact set in the topology Tloc.

Corollary 4.4.21. Let
{
m̃i

∣∣i ∈ N
}
be a countable family of local mass maps

and the potential V fulfill the assumptions of Theorem 4.3.26. Then

µ

(⋂
i∈N

Γf,m̃i(X̂)

)
= 1, for all µ ∈ GibbsV . (4.4.25)

Proof of Theorem 4.4.20. The proof of Theorem 4.4.20 extends the argu-
ments used for proving the corresponding result in [KPR10]. The a-priori
bound (4.4.24) follows by Theorem 4.3.31.

The next step is to prove compactness. To this end, we note that it is
enough to prove the local equicontinuity of each net consisting of points of
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GibbsV . Then every net in GibbsV has a Tloc-cluster point in M1(Γ(X̂)),
which is equivalent to the relative compactness of GibbsV in the topology
Tloc. Finally, by Proposition 4.3.30, any of the Tloc-limit measures is surely a
Gibbs measure which is supported by Γf (X̂) (cf. Theorem 4.3.31).

For any µ ∈ GibbsV , all ∆,Λ ∈ Bc(R̂d) and each sequence {BN}N∈N ⊂
B(Γ(X̂)∆) with BN ↓ ∅, we have (cf. (4.2.14) - (4.2.19))

µ(BN) =

∫
Γ(X̂)

πΛ(BN |η)µ(dη)

≤
∫

Γ(X̂)

1

T

(∫
R̂d

mU({x̂})λθ ⊗m(dx̂) + mU(ξΛc)

)
µ(dξ) + PΛ

θ (BN)

≤ 1

T

(
CU +

∫
Γ(X̂)

mU(ξΛc)µ(dξ)

)
+ PΛ

θ (BN), ∀T > 0, N ∈ N, (4.4.26)

where U is chosen as in the proof of Proposition 4.3.23. Because of (4.3.46),
the above integral becomes arbitrary small as BN ↓ ∅ and T ↗∞. Hence,

lim
N→∞

sup
µ∈GibbsV

µ(BN) = 0,

which proves the required local equicontinuity.

Corollary 4.4.22. Let m̃ be a uniformly integrable (w.r.t. λθ⊗m) local mass
map, then GibbsV is a compact set in the topology Tloc and µ(Γt

m̃(X̂)) = 1 for
each µ ∈ GibbsV .

Proof. By Theorem 4.4.20 any limit point is again a Gibbs measure. Its
support property follows by Corollary 4.4.18 (and Example 4.4.11).

4.5 A modified description of Gibbs measures
on Γ(X̂)

In this section we will present a different point of view on Gibbs measures
treated in Section 4.3. The main new issue is that we do not localize in both
components R+ and X. Instead, we define a semi-local (Gibbs) specifications{

πR+×∆(·|ξ)
∣∣∆ ∈ Bc(X), ξ ∈ Γf (X̂)

}
,

index by the ‹stripes› R+×∆ in X̂. For the situation of Section 5.3, where we
consider Gibbs measures on the cone K(X), it seems natural to consider the
later kind of specification where the component in R+ becomes ‹invisible›.
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We show that both Gibbs specifications (i.e., the local one and the semi -
local) define via the (DLR) equation the same set of Gibbs measure in the
basic model (cf. Theorem 4.5.9 and Example 4.1.1).

We assume throughout this section that V : X̂×X̂ → [0,∞) is a potential
such that Theorem 4.3.26 is satisfied with some fixed local mass map m.

4.5.1 Semi-local specification

Relative energy

We define the relative energy for all ξ ∈ Γf (X̂) and ∆ ∈ Bc(X) as

Γf (X̂) 3 γ → HR+×∆(γ|ξ) :=
∑

x,y∈τ(γ)∩∆

V (x̂, ŷ) + 2
∑

x∈τ(γ)∩∆,
y∈τ(ξ)∩∆c

V (x̂, ŷ), (4.5.1)

where τ denotes the support of η ∈ Γf (X̂), i.e. τ(η) := ηX . Here, we take
the sum over all ordered pairs (x, y) ∈ (τ(γ)× τ(γ)) ∩ (∆×∆).
Lemma 4.5.1. For the above potential V we have

HR+×∆(γ|ξ) <∞, ∀γ, ξ ∈ Γf (X̂) and ∆ ∈ Bc(X).

Proof. The proof is similar to that of Lemma 4.3.16: One crucially uses that
γ ∈ Γf (X̂) (instead of γ ∈ Γ(X̂)) for the finiteness of the first sum in (4.5.1)
and, in addition, that the sum is taken over x ∈ τ(γ) ∩ U∆ (cf. (FR) and
(4.3.1)) for the finiteness of the second one in (4.5.1).

Semi-local Gibbs states

We fix an inverse temperature β = 1/T > 0 from now on. For each ∆ ∈
Bc(X) and ξ ∈ Γ(X̂), we define the (semi-local) Gibbs state with boundary
condition ξ as a probability measure on Γ(R+ ×∆)

µR+×∆(dη|ξ) :=

{
1

ZR+×∆(ξ)
e−βHR+×∆(η|ξ)PR+×∆

θ (dη), if ξ ∈ Γf (X̂)

0, otherwise,
(4.5.2)

where PR+×∆
θ is the Gamma-Poisson measure on Γ(R+ ×∆). The normaliz-

ing constant

ZR+×∆(ξ) :=

∫
Γ(R+×∆)

e−βHR+×∆(η|ξ)PR+×∆
θ (dη) ≤ 1. (4.5.3)

is called partition function. Note that PR+×∆
θ (Γf (R+ × ∆)) = 1, where

Γf (R+ ×∆) := {γ ∈ Γf (X̂) | γ ⊂ R+ ×∆}.
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Semi-local specification

Definition 4.5.2. The semi-local specification

π = {πR+×∆(·|ξ)|∆ ∈ Bc(X), ξ ∈ Γ(X̂)}

is a family of stochastic kernels

B(Γ(X̂))× Γ(X̂) 3 (B, ξ) 7→ πR+×∆(B|ξ) ∈ [0, 1] (4.5.4)

given by

πR+×∆(B|ξ) :=µR+×∆

({
γR+×∆

∣∣ γR+×∆ ∪ ξR+×∆c ∈ B
} ∣∣∣ξ) . (4.5.5)

Remark 4.5.3. In our case, we have no more ZΛ(ξ) ≥ 1, since in the defi-
nition (4.5.3) we used the Poisson measure (instead of the Lebesgue-Poisson
one, as in (4.1.5)). This causes an additional technical problem to control
ZΛ(ξ) from below (cf. Lemma 4.5.4).

In Lemma 4.5.4 and Proposition 4.5.5 we show that the semi-local speci-
fication kernels πR+×∆(·|ξ) are well-defined as probability measures on Γ(X̂)

for ξ ∈ Γf (X̂) and that they can be seen as a limit of the (original) local
specification kernels πI×∆(·|ξ), I ∈ Bc(X̂), as I ↗ R+ (cf. Definition 4.1.5).

Lemma 4.5.4. Suppose we are in the setting of Theorem 4.3.26. Let m and
m2 be semi-local, i.e., (4.3.12) holds for m2, or V (x̂, x̂) = 0, for all x̂ ∈ R̂d.
Then the normalizing constant ZR+×∆(ξ) is strictly positive for ξ ∈ Γf (X̂).
In detail, we have that for all ∆ ∈ Bc(X)

0 < Cφ,m,∆ ≤ZR+×∆(ξ) ≤ 1, (4.5.6)

where

Cφ,m,∆ := exp

(
− 2β‖φ‖∞

((
C

(1)
m,∆

)2

+ C
(2)
m,∆ + mX̂(ξR+×U∆

)C
(1)
m,∆

))
,

C
(1)
m,∆ :=

∫
R+×∆

mX̂({x̂})λθ ⊗m(dx̂) <∞, (4.5.7)

C
(2)
m,∆ :=

∫
R+×∆

(mX̂({x̂}))2λθ ⊗m(dx̂) <∞. (4.5.8)

If V (x̂, x̂) = 0 for all x̂ ∈ X̂, then C(2)
m,∆ is replaced by 0. (We point out that

this lower bound even holds for negative potentials, cf. Chapter 5.)
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Proof. Assumption (QL) allows us to find R+ × ∆′ ∈ B(R+) × Bc(X) to
apply the integrability condition (4.3.12). This implies that the integrals in
(4.5.7) and (4.5.8) are finite.

Since the function R 3 x→ e−x is convex, by Jensen’s inequality we have
a lower bound for ZR+×∆(ξ) with any ∆ ∈ Bc(X), namely∫

Γ(R+×∆)

exp
(
−βHR+×∆(η|ξ)

)
PR+×∆
θ (dη)

≥ exp

(
−β
∫

Γ(R+×∆)

HR+×∆(η|ξ)PR+×∆
θ (dη)

)
≥ exp

(
−
∫

Γ(R+×∆)

β‖φ‖∞

[ ∑
x̂,ŷ∈ηR+×∆

mX̂({x̂})mX̂({ŷ})

+ 2
∑

x̂∈ηR+×∆

ŷ∈ξR+×U∆

mX̂({x̂})mX̂({ŷ})
]
Pθ,R+×∆(dη)

)
,

where we used (4.3.28) together with the assumption that ‖φ‖∞ <∞. So, it
is enough to check that the following integral is finite:∫

Γ(R+×∆)

( mX̂(ηR+×∆))2 + mX̂(ηR+×∆) mX̂(ξR+×U∆
)PR+×∆

θ (dη).

This follows by Proposition 4.3.21:∫
Γ(R+×∆)

( mX̂(ηR+×∆))2PR+×∆(dη) ≤
(
C

(1)
m,∆

)2

+ C
(2)
m,∆ <∞, (4.5.9)∫

Γ(R+×∆)

mX̂(ηR+×∆)PR+×∆(dη) ≤ C
(1)
m,∆ <∞, and

mX̂(ξR+×U∆
) <∞ for ξ ∈ Γf (X̂).

If V (x̂, x̂) = 0 for all x̂ ∈ X̂, then we may drop C
(2)
m,∆ because of (4.3.24).

Thus, for each ξ ∈ Γf (X̂), πR+×∆(dη|ξ) is well-defined as a probability
measure on Γ(X̂). Now we show that the semi local specification πR+×∆(dη|ξ)
can be constructed as a limit of the local kernels πΛ(dη|ξ), Λ ∈ Bc(R+ ×∆)

Proposition 4.5.5. Under the assumptions of Lemma 4.5.4, we have

πR+×∆(dη|ξ) = τloc − lim
Λ↗R+×∆

Λ∈Bc(R+×∆)

πΛ(dη|ξ), ξ ∈ Γf (X̂), (4.5.10)

where the limit is independent of the net; and thus it is unique.
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Proof. Fix ξ ∈ Γf (X̂). The net
{
πΛ(·|ξ)

∣∣ Λ ∈ Bc(R+ ×∆), Λ↗ R+ ×∆
}

is local equicontinuous (see (4.2.17), (4.2.19) and (4.2.18) in the proof of
Proposition 4.3.23). Hence, there exists a Tloc-limit probability measure

π̃R+×∆(·|ξ) := τloc − lim
ΛN↗R+×∆

ΛN∈Bc(R+×∆)

πΛ(·|ξ)

along some sequence ΛN ↗ R+ ×∆. It remains to show that π̃R+×∆(B|ξ) !
=

πR+×∆(B|ξ) for all B ∈ Bcyl(Γf (X)). Indeed, there exists Λ0 ∈ Bc(X̂) such
that B ⊂ BΛ0(Γ(X̂)). We have

π̃R+×∆(B|ξ) = lim
N→∞

πΛN (B|ξ) = lim
N→∞

µΛN (BΛN ,ξ|ξ)

= lim
N→∞

eλθ⊗m(ΛN )

ZΛN (ξ)

∫
Γ(ΛN )

1BΛN,ξ
(ηΛN )e−βHΛN

(ηΛN
|ξ)e−λθ⊗m(ΛN )PΛN

θ (dηΛN )︸ ︷︷ ︸
PΛN
θ (dηΛN

)

= lim
N→∞

∫
Γ(X̂)

1BΛN,ξ
(η)e−βHΛN

(ηΛN
|ξ)Pθ(dη)∫

Γ(X̂)
1Γ(Λ),ξ(η)e−βHΛN

(ηΛN
|ξ)Pθ(dη)

=

∫
Γ(X̂)

1BR+×∆,ξ
(η)e−βHR+×∆(ηR+×∆|ξ)Pθ(dη)∫

Γ(X̂)
1Γ(Λ),ξ(η)e−βHR+×∆(ηR+×∆|ξ)Pθ(dη)

. (4.5.11)

By Lebesgue’s dominated convergence theorem we may take the limit inside
the integrals in the last line in (4.5.11). Therefore, the claim is proved, i.e.,
for any B ∈ Bcyl(Γ(X̂)) and ξ ∈ Γf (X̂),

π̃R+×∆(B|ξ) = πR+×∆(B|ξ).

Proposition 4.5.6. Under the assumptions of Lemma 4.5.4, the family of
semi-local specification kernels {πR+×∆}∆∈Bc(X) (cf. Definition 4.5.2) obeys
the consistency property, which means that for all B ∈ B(Γ(X̂)) and ξ ∈
Γ(X̂) ∫

Γ(X̂)

πR+×∆(B|γ)πR+×∆′(dγ|ξ) = πR+×∆′(B|ξ), (4.5.12)

where ∆,∆′ ∈ Bc(X) are such that ∆ ⊂ ∆′.
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Proof. If ξ /∈ Γf (X̂), then the assertion is clear. Hence, w.l.o.g. ξ ∈ Γf (X̂).
Using Proposition 4.5.5 twice we get∫

Γ(X̂)

πR+×∆(B|γ)πR+×∆′(dγ|ξ)

= lim
Λ↗R+×∆

Λ∈Bc(R+×∆)

lim
Λ′↗R+×∆′

Λ′∈Bc(R+×∆′)

∫
Γf (X̂)

πΛ(B|γ)πΛ′(dγ|ξ)

= lim
Λ′↗R+×∆′

Λ′∈Bc(R+×∆′)

πΛ′(B|ξ) = πR+×∆′(B|ξ). (4.5.13)

Here we applied Lebesgue’s dominated convergence theorem three times and
the consistency of {πΛ(·|ξ)|Λ ∈ Bc(X̂), ξ ∈ Γf (X̂)} (cf. (4.1.9)) once.

4.5.2 A modified concept of Gibbs measures

Now we are in position to define a modified concept of Gibbs measures on
Γ(X̂).

Definition 4.5.7. Let the assumptions of Lemma 4.5.4 be fulfilled. A prob-
ability measure µ on Γ(X̂) is called a Gibbs measure (or state) with pair
potential V and inverse temperature β > 0 if it satisfies the Dobrushin-
Lanford-Ruelle (DLR) equilibrium equation∫

Γ(X̂)

πR+×∆(B|η)µ(dη) = µ(B) (4.5.14)

for all ∆ ∈ Bc(X) and B ∈ B(Γ(X̂)). Fixed an inverse temperature β, the
associated set of all Gibbs states will be denoted by GibbsV,s(Γ(X̂)).

Remark 4.5.8. From the definition of the local specification (cf. (4.5.5) and
(4.5.2)), we have that any solution of the (DLR) equation is supported by
Γf (X̂).

To obtain the (DLR) equation it is enough to check (4.5.14) only for B ∈
Bcyl(Γ(X̂)). Indeed, using Caratheodory’s theorem, we deduce that µ

∣∣
Bcyl(Γ(X̂))

extends uniquely to a measure on σ(BcylΓ(X̂)) = B(Γ(X̂)). Hence, (4.5.14)
holds for all B ∈ B(Γ(X̂)).

Whenever it is clear on which space the Gibbs measure is considered, we
write GibbsV,s.
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Theorem 4.5.9. Under the assumptions of Lemma 4.5.4, we have that

µ ∈ GibbsV,s ⇐⇒ µ ∈ GibbsV . (4.5.15)

In particular, this holds in the basic model.

Proof. If µ ∈ GibbsV , then for all B ∈ Bcyl(Γ(X̂)), ∆ ∈ Bc(X) and Λ ∈ Bc(X̂)

µ(B) =

∫
Γ(X̂)

πΛ(B|η)µ(dη)

= lim
Λ↗R+×∆

∫
Γf (X̂)

πΛ(B|η)µ(dη) =

∫
Γ(X̂)

πR+×∆(B|η)µ(dη),

where we applied Proposition 4.5.5. This shows that µ ∈ GibbsV,s.
Conversely, let µ ∈ GibbsV,s. We have the following chain of equations for

all B ∈ Bcyl(Γ(X̂)), Λ,Λ′ ∈ Bc(X̂) and ∆ ∈ Bc(X) with Λ′ ⊂ Λ ⊂ R+ ×∆:

µ(B)
1.
=

∫
Γ(X̂)

πR+×∆(B|η)µ(dη)

2.
= lim

Λ↗R+×∆

∫
Γf (X̂)

πΛ(B|η)µ(dη)

3.
= lim

Λ↗R+×∆

∫
Γf (X̂)

∫
Γf (X̂)

πΛ′(B|η′)πΛ(dη′|η)µ(dη)

2.
=

∫
Γf (X̂)

∫
Γf (X̂)

πΛ′(B|η′)πR+×∆(dη′|η)µ(dη)

4.
=

∫
Γ(X̂)

πΛ′(B|η)µ(dη),

which implies the assertion. Here, the argument labeled: 1. is that µ ∈
GibbsV,s (cf. Definition 4.5.7), 2. is Proposition 4.5.5 and 3. is (4.1.9).

The semi-local specification kernels can be considered themselves as Gibbs
measures in unbounded volumes.

Definition 4.5.10. Let Λ′ ∈ B(X̂). A probability measure µ ∈ M1(Γ(X̂))
(with full measure on Γf (X̂)) is a Λ′-Gibbs measure (or state) with pair
potential V if it satisfies the (DLR) equation∫

Γf (X̂)

πΛ0(B|η)µ(dη) = µ(B) (4.5.16)

valid for all Λ0 ∈ Bc(Λ′) and B ∈ B(Γ(X̂)). Fixed an inverse temperature β,
the associated set of all Gibbs states will be denoted by GibbsV,Λ′(Γ(X̂)).
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Proposition 4.5.11. Let the assumptions of Lemmas 4.3.29 and 4.5.4 hold
and (µN)N∈N ∈ M1(Γ(X̂)) be such that µN(Γf (X̂)) = 1 and (4.3.39) hold
for each µN with ξ ∈ Γf (X̂). Assume that there exists Λ′ ∈ B(X̂) such that
for all Λ ∈ Bc(Λ′) and all B ∈ Bcyl(Γf (X)) we find N0 > 0 with∫

Γ(X̂)

πΛ(B|γ)µN(dγ) = µN(B) ∀N > N0. (4.5.17)

If µ is the Tloc limit of the sequence
(
µN
)
N∈N, then:

1. The estimate (4.3.38) also holds for µ, which implies that µ is supported
by Γf (X̂);

2. The (DLR) equation (4.5.16) holds also for the limit µ.

Proof. The proof follows that one of Proposition 4.3.30 with obvious modi-
fications. Namely, we fix Λ ∈ Bc(Λ′) instead of ∆ ∈ Bc(X̂) and only obtain
equation (4.5.16) instead of the (DLR) one.

Corollary 4.5.12. Let ∆ ∈ Bc(X) and ξ ∈ Γf (X̂) and let the assumptions
of Lemma 4.5.4 be fulfilled. Then the local specification kernel πR+×∆(·|ξ) is
a (R+ ×∆)-Gibbs measure.

Proof. This follows by Proposition 4.5.11.



Chapter 5

Gibbsian measure for general
potentials

In this chapter we consider the existence problem for Gibbs measures cor-
responding to general, not necessarily translation invariant or non-negative
potentials V : R̂d × R̂d → R with infinite interaction range in R̂d. In partic-
ular, we construct Gibbs measures µΓ on Γ(R̂d) whose image measure µK on
the cone K(Rd) are Gibbs perturbations of a Gamma measure Gθ (cf. Section
5.3). The later can be seen as a main result of Part II.

A main (technical) achievement of this chapter is to remove the assump-
tion V ≥ 0 (cf. Chapter 4). Instead of this, we have to impose some stability
properties on V (cf. Subsection 5.1.3 for the precise formulation). Merely
speaking, we assume that the repulsion part V + of the potential V dominates
its attractive part V −.

As before, we use the DLR approach to define the related set GibbstV (Γ(R̂d))
of ‹tempered› Gibbs measures (cf. Section 5.1). To construct such Gibbs
measures (cf. Theorem 5.2.8), we introduce certain Lyapunov functionals and
establishing the weak dependence of Gibbs specification kernels on bound-
ary conditions. For the existence proof, Proposition 5.2.4 is essential. There
where we get a uniform bound (as Λ↗ R̂d) for the exponential integral of a
Lypunov functional w.r.t. the local specification kernels πΛ. This enables us
to prove, for a large class of boundary conditions ξ ∈ Γ(R̂d), the local equicon-
tinuity of the specification kernels (πΛ(dγ|ξ))Λ∈Bc(R̂d) (cf. Definition 5.1.16),
which implies their tightness in a proper topology (cf. Proposition 5.2.7). As
a last step in the existence proof, we show that all cluster points µΓ of the
Gibbs specification {πΛ} (as Λ ↗ R̂d) are Gibbs, i.e., µΓ ∈ GibbstV (Γ(R̂d))
(cf. (5.2.20)). A second result is a uniform moment bound (cf. Theorem
5.2.10) for all ‹tempered› Gibbs measures (cf. (5.1.36)).

111
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As in Chapter 4, we first consider a basic model (cf. Subsection 5.1.1),
and then extend it to more general potentials with non-trivial interaction of
the marks and positions. The most general setup is fixed in Subsection 5.1.3.

In Section 5.3 we come back to the cone K(Rd). We obtain Gibbs mea-
sures µK on K(Rd) as image measures under the homeomorphism T (cf.
(3.1.2)) of a particular class of Gibbs measures µΓ on Γ(R̂d). By this transi-
tion, we can easily reformulate the main results obtained in Chapter 4 and
5 in the Gibbsian framework on K(Rd). Among them are the existence of
µ ∈ Gibbsφ(K(X)) (cf. Theorem 5.3.7) and uniform moment bounds (cf.
Theorem 5.3.10).

Using these results in Part III, we derive integration by parts formulas for
Gibbs measures on K(Rd) and study related Dirichlet forms and operators
(cf. Chapter 6), which are then used to construct associated diffusions on
K(Rd) in Chapter 7.

With the technique developed in Sections 5.1 and 5.2 we handle more
general potentials than in the basic model with V (x̂, ŷ) = sxφ(x, y)sy (see
the corresponding results in Theorem 5.2.8 and 5.2.10).

5.1 Gibbsian formalism on Γ(X̂)

As before, let X be a locally compact Polish space equipped with a non-
atomic Radon measure m and let λ be a Radon measure on R+. Fix a
symmetric pair potential V : X̂ × X̂ → R, i.e.,

V (x̂, ŷ) = V (ŷ, x̂), ∀x̂, ŷ ∈ X̂, (5.1.1)

that can be written as

V (x̂, ŷ) = l(x̂)l(ŷ)φ(x, y), ∀x̂, ŷ ∈ X̂, (5.1.2)

where l : X̂ → [0,∞) is a B(X̂)-measurable function and φ : X̂ × X̂ → R
a bounded and B(X̂ × X̂)-measurable one. Their exact properties will be
specified below.

5.1.1 The potential in the basic model

We impose the following assumptions on the potential V :
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(V′) Let the space of positions X be Rd with d ∈ N and m be the Lebesgue
measure on Rd. The intensity measure on the marks R+ is λ = λθ.
Moreover, we fix the semi-local function

l(x̂) = sx and the potential φ ∈ Ls(Rd × Rd)

such that the following conditions hold:

(FR′) Finite range: There exists R ∈ (0,∞) such that

φ(x, y) = 0 if |x− y| > R. (5.1.3)

(LB′) Lower boundedness :

inf
x,y∈Rd

φ(x, y) =: −M > −∞. (5.1.4)

(RC′) Repulsion condition: There exists δ > 0 such that

inf
x,y∈Rd
|x−y|≤δ

φ(x, y) > Aδ := 4Mmint
δ , (5.1.5)

with interaction parameter (cf. (5.1.17)) below

mint
δ :=

(
R

δ
+ 2

)d
. (5.1.6)

We remark that neither translation invariance nor continuity of V is as-
sumed.

5.1.2 Partition of the space X̂

We will introduce a partition of the space X̂ (cf. Example 5.1.1 for X̂ = R̂d)
for a better understanding of the above conditions. This partition turns out
to be very helpful for the later proofs.

Let us consider a countable index set Z and a partition

X̂ =
⊔
k∈Z

Q̂k (5.1.7)

of the phase space X̂ into ‹elementary› sets Q̂k ∈ B(X̂), k ∈ Z.
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Example 5.1.1 (Basic model). Recall that in this case V : R̂d × R̂d → R
with

V (x̂, ŷ) = sxsyφ(x, y).

Let us choose the parameter g := δ/
√
d with some δ > 0 satisfying assumption

(RC′). For each k in the index set Z := Z
d, we define the strip

Q̂k =Q̂g,k := R+ ×Qg,k, where (5.1.8)

Qg,k :=

[
−1

2
g,

1

2
g

[d
+ kg ⊂ Rd.

The cubes Qg,k have edge length g > 0, are centered at the points gk, k ∈ Zd
and

diam (Qg,k) := sup
x̂,ŷ∈Q̂g,k

|x− y|Rd = δ. (5.1.9)

This implies that φ(x, y) ≥ Aδ for all x̂, ŷ ∈ γQ̂g,k . Moreover,

sup
k∈Z

∫
Q̂g,k

(
sx + s2

x

)
(λθ ⊗m)(dx̂) <∞. (5.1.10)

Let us explain the choice of the constant mδ in (5.1.6). To this end, let
us introduce some more concepts and notation:

For k ∈ Z and γ ∈ Γ(X̂), we define

Γk := Γ(Q̂k), and γk := γ ∩ Q̂k. (5.1.11)

To each finite index set K b Z there corresponds1

ΛK :=
⊔
k∈K

Q̂k ∈ B(X̂); (5.1.12)

the family of all such domains will be denoted by Qc(X̂). For Λ ∈ B(X̂)

KΛ := {j ∈ Z | Q̂j ∩ Λ 6= ∅}, (5.1.13)

i.e. |KΛ| is the number of partition sets Q̂k having non-void intersection with
Λ. We note that in our example setting

|KΛ| <∞, ∀Λ ∈ B(R+)× Bc(X). (5.1.14)

1Here, K b Z means that K is a finite subset of Z.
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For a given volume Λ ∈ B(X̂) with |KΛ| <∞ we can construct its ‘minimal’
covering

ΛQ :=
⊔
k∈KΛ

Q̂k ∈ Qc(X̂). (5.1.15)

For each k ∈ Z, the family of ‘neighbor ’ partition sets of Q̂k, i.e., those
partition sets Q̂j having a point y ∈ Q̂j that interacts with a point x ∈ Q̂k,
is indexed by

∂intk :=
{
j ∈ Z | ∃x ∈ Q̂k, ∃y ∈ Q̂j : φ(x, y) 6= 0

}
. (5.1.16)

The number of interacting ‘neighbor ’ partition sets for each Q̂k, k ∈ Z, is
dominated by

mint := sup
k∈Z
|∂intk| ≤ ∞. (5.1.17)

In our example setting, we have roughly estimated them by mint
δ defined

in (5.1.6).

5.1.3 A potential V in the general framework

We outline a framework to handle general potentials

V : X̂ × X̂ → R.

We denote from now on by Pλ (analogously to (2.2.11)) the Poisson measure
with intensity measure λ⊗m on the configuration space Γ(X̂), respectively
PΛ
λ on Γ(Λ) for all Λ ∈ Qc(X̂).

Picking a proper partition of X

It is convenient for later references to summarize which properties of the un-
derlying partition and measure space are crucial in the proofs. In particular,
in the basic example such a proper partition has been constructed by strips
(cf. Example 5.1.1).

Definition 5.1.2. A partition

X̂ = R+ ×X =
⊔
k∈Z

Q̂k, (5.1.18)

with ‹elementary› sets Q̂k ∈ B(X̂) indexed by a at most countable set Z =
{k}, is said to be admissible if the following condition holds:
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(AP) Admissible partition:

M1 := sup
k∈Z

∫
Q̂k

l(x̂)λ⊗m(dx̂) <∞, (5.1.19)

M2 := sup
k∈Z

∫
Q̂k

l(x̂)2λ⊗m(dx̂) <∞, (5.1.20)

mint = sup
k∈Z
|∂intk| <∞. (5.1.21)

Moreover, the index set Z can be equipped with a metric ρ : Z × Z →
[0,∞) such that

mα,k0 :=
∑
k∈Z

e−αρ(k,k0) <∞, for all α > 0 and k0 ∈ Z. (5.1.22)

Remark 5.1.3. 1. We point out that (5.1.21) yields that UΛ ∈ Qc(X̂) for
all Λ ∈ Qc(X̂) where UΛ :=

⋃
k∈Z

{
Q̂k

∣∣∣ ∂intk ∩ KΛ 6= ∅
}
.

2. The classical situation of Gibbs measures over a configuration space
Γ(X̂) is included in this scheme by picking λ to be the Dirac measure
in 1 and l(x̂) = 1.2

3. Similarly, the case of a marked configuration space with a finite measure
λ is covered by choosing l(x̂) = sx and the partition sets having the form
R+ ×∆ with ∆ ∈ B(X).

4. An idea how condition (5.1.22) could be relaxed is given in [KP07,
Subsection 2.4].

A supporting set of the Poisson measure Pλ
Definition 5.1.4. If (AP) without (5.1.20) holds, then l is a Q-local func-
tion. In this case, we define a Q-local (w.r.t. λ⊗m) mass m by

mΛ(γ) =
∑
x̂∈γ∩Λ

l(x̂), ∀Λ ∈ Qc(X̂) ∪ {X̂}, (5.1.23)

and the set of pinpointing configurations with Q-local mass m by

Γf (X̂) := Γf,m,Q(X̂) :=
{
γ ∈ Γp(X̂)

∣∣ mΛ(γ) <∞, ∀Λ ∈ Qc(X̂)
}
.

(5.1.24)

2That the measure is supported by Γ(X) follows by Corollary 5.1.7.
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Remark 5.1.5. The last definition extends the idea of a semi-local mass
map (cf. Definition 4.3.8) and of a pinpointing set with finite local mass (cf.
Definition 4.3.12).

If the partition is fixed, we omit the index Q in the corresponding nota-
tions. Moreover, we call the corresponding objects for short local.

Theorem 5.1.6. If (AP) holds, then Γf (X̂) ∈ B(Γ(X̂)) and

Pλ(Γf (X̂)) = 1. (5.1.25)

Proof. The claim follows with obvious changes from the proof of Remark
4.3.7 and Theorem 4.3.13.

Corollary 5.1.7. Let Â ∈ B(X̂) be negligible for the measure λ⊗m. Then
the set of configurations not touching Â has full probability w.r.t. the Poisson
measure Pλ, i.e.,

Pλ
({
γ ∈ Γ(X̂)

∣∣∣ γ ⊂ Âc
})

= 1. (5.1.26)

Proof. Applying the appropriate version of Proposition 4.3.18 for the subad-
ditive local mass map 1{γ∈Γ(X̂)|γ⊂Âc} and performing the usual limit proce-
dure, we obtain the assertion.

Definition 5.1.8. Let (AP) hold. By Ls,Q(X̂ × X̂) we denote the set of
bounded symmetric B(X̂ × X̂)-measurable functions φ over X̂ × X̂ obeying

(FR) Finite range: For all Λ ∈ Qc(X̂), there exists UΛ ∈ Qc(X̂) with

φ(x̂, ŷ) = φ(y, x) = 0 ∀x̂ ∈ Λ, ŷ ∈ U cΛ. (5.1.27)

Remark 5.1.9. In the basic example, i.e. X = Rd, the (FR) condition reads
as

∃R ∈ [0,∞) : ∀x̂, ŷ ∈ R̂d : |x− y| > R ⇒ φ(x̂, ŷ) = 0. (5.1.28)

In this case, we set for Λ ∈ Qc(R̂d) (cf. (5.1.15))

UΛ :=
⊔
k∈Z

{Q̂k | Q̂k ∩ ΛR 6= ∅} ∈ Qc(R̂d), (5.1.29)

where ΛR :=
{
x̂ ∈ R̂d | distRd(x,ΛRd) := inf ŷ∈Λ |x− y| ≤ R

}
.

Using these concepts, we specify the conditions on the pair interaction
potential:
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(V) Potential : Let (AP) hold for the potential V defined in (5.1.1) via

V (x̂, ŷ) = l(x̂) · l(ŷ)φ(x̂, ŷ), ∀x̂, ŷ ∈ X̂. (5.1.30)

Suppose that for the bounded function φ ∈ Ls,Q(X̂ × X̂) the two condi-
tions hold:

(LB) Lower boundedness : For some M ≥ 0

inf
x̂,ŷ∈X̂

φ(x̂, ŷ) ≥ −M. (5.1.31)

(RC) Repulsion condition : For some A0 ≥ 0:

inf
k∈Z

inf
x̂,ŷ∈Q̂k

φ(x̂, ŷ) =: A0. (5.1.32)

Furthermore, we assume the following relation between the constants in
(LB) and in (RC):

A := 4Mmint < A0 (5.1.33)

where mint was defined in (5.1.17). We also include the particular case
M = 0 by setting A = 0 and say that (V) holds.

The relation (5.1.33) means that the repulsion part φ+ of φ dominates its
attraction part φ−. Note that neither translation invariance nor continuity
of V is assumed.

Remark 5.1.10. In Chapter 4, we treated the case M = 0 for the particular
measure λ = λθ. The results obtained in Chapter 4 extend to general Radon
measures λ. (The changes in the corresponding proofs are obvious.) Hence,
M = 0 is covered (in principle) by Chapter 4. Thus, we may assume from
now on that M > 0.

5.1.4 Gibbsian formalism

Everywhere below, we assume that (V) holds. We abbreviate the Q-local
mass

- γ -m:= mX̂(γ) :=
∑
x̂∈γ

l(x̂), γ ∈ Γf (X̂). (5.1.34)
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Tempered configurations

We define an appropriate set of tempered configurations (cf. also Definition
4.4.16):

Γt(X̂) :=Γt
l (X̂) :=

⋂
α>0

Γα,m(X̂), (5.1.35)

Γα,m(X̂) :=
{
γ ∈ Γf (X̂)

∣∣∣|‖γ‖|m,α,k0 <∞
}
, (5.1.36)

where

|‖γ‖|m,α,k0 :=

(∑
k∈Z

- γk -2m e−αρ(k,k0)

)1/2

. (5.1.37)

We may choose an arbitrary k0 ∈ Z for the definition of the tempered set in
(5.1.36) because for all k0, k1, k ∈ Z

e−αρ(k,k1)e−αρ(k1,k0) ≤e−αρ(k,k0) ≤ e−αρ(k,k1)eαρ(k1,k0).

Therefore, from now on we fix k0 ∈ Z and denote

|‖·‖|α = |‖·‖|m,α,k0 .

Conditional Hamiltonian

For each Λ ∈ Qc(X̂) and γ, ξ ∈ Γf (X̂) we introduce the conditional Hamil-
tonians HΛ(·|ξ) : Γ(Λ)→ R by

HΛ(γ|ξ) :=
∑

x̂,ŷ∈γ∩Λ

V (x̂, ŷ) + 2
∑

x̂∈γ∩Λ, ŷ∈ξ∩Λc

V (x̂, ŷ), (5.1.38)

H(γΛ) := HΛ(γΛ|∅). (5.1.39)

Here, the summation is taken over all ordered pairs (x̂, ŷ) ∈ γΛ × γΛ. Hence,
we sum twice over distinct points x̂, ŷ ∈ γΛ, i.e., (x̂, ŷ) and (ŷ, x̂), and once
over (x̂, x̂).

Lemma 5.1.11. If (V) holds, then

|HΛ(γ|ξ)| <∞, for all γ, ξ ∈ Γf (X̂) and Λ ∈ Qc(X̂).

Example 5.1.12. In the basic example, we have

|HR+×Qg,k(γ|ξ)| <∞, for all γ, ξ ∈ Γf (X̂) and k ∈ Zd.
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Proof of Lemma 5.1.11. The proof is similar to that one of Lemmas 4.3.16
and 4.5.1, so we just briefly recall the main idea. Note that

HΛ(γ|ξ) ≤ mΛ(γ)mΛ(γ)‖φ‖∞ + 2mΛ(γ)mUΛ
(ξ)‖φ‖∞,

where

UΛ :=
⊔
k∈Z

{
Q̂k

∣∣ ∂intk ∩ KΛ 6= ∅
}
∈ Qc(X̂). (5.1.40)

Since γ, ξ ∈ Γf (X̂), the assertion follows.

Lyapunov functional

For λ ∈ [0,∞), let us define the map

Γf (X̂) 3 γ 7→ Φ(γ) := λ - γ -2m≥ 0, (5.1.41)

which will play the role of a Lyapunov functional. To show upper and lower
bounds for the partition function, the following estimate is essential.

Lemma 5.1.13. Let (V) hold. Fix k ∈ Z, ξ ∈ Γf (X̂) and Λ ∈ Qc(X̂). Then

HΛ(γΛ|ξ) ≥
1

2
A
∑
j∈KΛ

- γj∩Λ -2m −
1

4
A
∑
l∈KUΛ

- ξl∩Λc -2m . (5.1.42)

In particular, we have for ξ = ∅,

HQ̂k
(γk) ≥

1

2
A - γk -2m . (5.1.43)

Proof. By obvious calculations

HΛ(γΛ|ξ) =
∑
x̂,ŷ∈γΛ

V (x̂, ŷ) + 2
∑
x̂∈γΛ
ŷ∈ξΛc

V (x̂, ŷ)

=
∑
j∈KΛ
l∈KΛ

∑
x̂∈γj∩Λ

ŷ∈γl∩Λ

V (x̂, ŷ) + 2
∑
j∈KΛ
l∈KΛc

∑
x̂∈γj∩Λ

ŷ∈ξl∩Λc

V (x̂, ŷ).

By (5.1.13), (LB) (cf. (5.1.31)), (RC) (cf. (5.1.32)), (5.1.33) and (AP), the
right-hand side above dominates

A
∑
j∈KΛ

- γj∩Λ -2m −M
∑
j∈KΛ

∑
l∈KΛ∩∂intj

l 6=j

- γj∩Λ -m- γl∩Λ -m

− 2M
∑
j∈KΛ

- γj -m
∑

l∈KΛc∩∂intj

- ξl -m .
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Using (5.1.21) and that ab ≤ 1/2(a2 + b2), for a, b ≥ 0, we see that the above
term dominates

+ A
∑
j∈KΛ

- γj -2m −M
( ∑
j∈KΛ

mint - γj -2m
)

−M
( ∑
j∈KΛ

mint - γj -2m +
∑
j∈KΛ

∑
l∈KΛc∩∂intj

- ξl∩Λc -2m
)

=
∑
j∈KΛ

- γj -2m
(
A− 2Mmint)−M ∑

j∈KΛ

∑
l∈KΛc∩∂intj

- ξl∩Λc -2m

=
1

2
A
∑
j∈KΛ

- γj -2m −M
∑
j∈KΛ

∑
l∈KΛc∩∂intj

- ξl∩Λc -2m, (5.1.44)

where we used that A = 4Mmint (cf. (5.1.33)). By (FR) and (5.1.21), the
last of the three summands in (5.1.44) dominates

−Mmint
∑
l∈KUΛ

- ξl∩Λc -2m .

The later estimate and (5.1.33) conclude the prove.

Partition function

Fix an inverse temperature β := 1/T > 0. For each Λ ∈ Qc(X̂) and ξ ∈
Γf (X̂), we define the partition function

ZΛ(ξ) :=

∫
Γf (Λ)

e−βHΛ(γΛ|ξ)PΛ
λ (dγΛ).

Lemma 5.1.14. Let (V) hold. For any Λ ∈ Qc(X̂), there exists a positive
constant C0(Λ, ξ) such that

0 <ZΛ(ξ) :=

∫
Γ(Λ)

exp {−βHΛ(γΛ|ξ)}PΛ
λ (dγΛ) ≤ C0(Λ, ξ) <∞.

Proof. Our idea is to use Lemma 4.5.4 to obtain a lower bound and respec-
tively Lemma 5.1.13 to get an upper one. We define for each Λ ∈ Qc(X̂) and
γ, ξ ∈ Γf (X̂)

H+
Λ (γ|ξ) :=

∑
x̂,ŷ∈γ∩Λ

l(x̂)l(ŷ)φ+(x̂, ŷ) + 2
∑

γ̂∩Λ, ŷ∈ξ∩Λc

l(x̂)l(ŷ)φ+(x̂, ŷ),



122 CHAPTER 5. GENERAL POTENTIALS

where φ+(x̂, ŷ) := max(φ(x, y), 0). By Jensen’s inequality

ZΛ(ξ) ≥
∫

Γ(Λ)

e−βH
+
Λ (γ|ξ)PΛ

λ (dγ) ≥ exp

(
−β
∫

Γ(Λ)

H+
Λ (γ|ξ)PΛ

λ (dγ)

)
≥ exp

(
− β‖φ‖∞

(
mΛ(γ)2 + 2mΛ(γ)mUΛ

(ξ)
))
.

We get, using (the proof of) Lemma 4.5.4 (cf. (4.5.6)):

ZΛ(ξ) ≥ exp

{
− β‖φ‖∞

[ (
C

(1)
m,Λ

)2

+ C
(2)
m,Λ + mX̂(ξUΛ

)C
(1)
m,Λ

]}
> 0, (5.1.45)

where we set, using (AP),

C
(1)
m,Λ :=2

∫
Λ

l(x̂)λθ ⊗m(x̂) ≤ 2 |KΛ|M1 <∞,

C
(2)
m,Λ :=2

∫
Λ

(l(x̂))2λθ ⊗m(x̂) ≤ 2 |KΛ|M2 <∞.

Moreover, by (5.1.42) we deduce an upper bound

ZΛ(ξ) ≤
∫

Γ(X̂)

exp

{
− 2βA

∑
j∈KΛ

- γj∩Λ -2m
}
PΛ
λ (dγΛ)

× exp

{
βMmint

∑
l∈KUΛ

- ξl∩Λc -2m
}

=: C0(Λ, ξ) <∞,

which completes the proof.

Remark 5.1.15. As we see from the proof (cf. (5.1.45)), we only use that
‖φ‖∞ <∞ for the lower bound in Lemma 5.1.14.

For the upper bound, the conditions (LB), (RC) (cf. (5.1.31), resp.
(5.1.32)) and (5.1.33) are sufficient.

Q-local specification

For each Λ ∈ Qc(X̂) we define the Q-local Gibbs state (or local Gibbs state
for short) with boundary condition ξ ∈ Γ(X̂) as

µΛ(dη|ξ) :=

{
1

ZΛ(ξ)
e−βHΛ(η|ξ)PΛ

λ (dη), if η, ξ ∈ Γt(X̂),

0, otherwise,
(5.1.46)

where ZΛ(ξ) is the partition function considered in Lemma 5.1.14.
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Definition 5.1.16. The local specification π = {πΛ(·|ξ)|Λ ∈ Qc(X̂), ξ ∈
Γ(X̂)} is a family of stochastic kernels

B(Γ(X̂))× Γ(X̂) 3 (B, ξ) 7→ πΛ(B|ξ) ∈ [0, 1] (5.1.47)

given by

πΛ(B|ξ) :=µΛ

(
{γΛ ∈ Γ(Λ) | γΛ ∪ ξΛc ∈ B }

∣∣∣ξ). (5.1.48)

Remark 5.1.17.

1. By Lemma 5.1.14,

0 < ZΛ(ξ) <∞, ∀ξ ∈ Γf (X̂). (5.1.49)

2. It is easy to see that (5.1.49) holds for all Λ ∈ B(X̂) with ΛQ ∈ Qc(X̂).
(This follows by the proof of Lemma 5.1.14, where we replace Λ by ΛQ
in the lower bound in (5.1.45) and the upper bound holds unchanged
(cf. (5.1.42).)

3. By construction (cf. [Pre76, Proposition 6.3] or [Pre05, Proposition
2.6]), the family (5.1.48) obeys the consistency property, which means
that for all Λ̃,Λ ∈ Qc(X̂) with Λ̃ ⊆ Λ∫

Γ(X̂)

πΛ̃(B|γ)πΛ(dγ|ξ) = πΛ(B|ξ), ∀B ∈ B(Γ(X̂)) and ξ ∈ Γ(X̂).

(5.1.50)

Remark 5.1.18. In the basic example this reads as follows: The Q-local
specification π = {πR+×Qg,k(dη|ξ)|k ∈ Zd, ξ ∈ Γ(X̂)} is given for ξ ∈ Γt(X̂)
and Qg,k (cf. (5.1.8)) by

πR+×Qg,k(B|ξ) :=µR+×Qg,k({γ ∈ Γt(R+ ×Qg,k)|γ ∪ ξR+×Qg,kc ∈ B}),

µR+×Qg,k(dη|ξ) :=
1

ZR+×Qg,k(ξ)
e−βHR+×Qg,k (η|ξ)PR+×Qg,k

θ (dη).

Gibbs measures

Definition 5.1.19. A probability measure µ on Γ(X̂) is called a Gibbs mea-
sure (or state) with pair potential V and inverse temperature β > 0 if it
satisfies the Dobrushin-Lanford-Ruelle (DLR) equilibrium equation∫

Γ(X̂)

πΛ(B|η)µ(dη) = µ(B) (5.1.51)

for all Λ ∈ Qc(X̂) and B ∈ B(Γ(X̂)). The associated set of all Gibbs states
will be denoted by GibbstV (Γ(X̂)).
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Remark 5.1.20. By the construction of the specification (cf. (5.1.46) -
(5.1.47)), each Gibbs measure µ is surely supported by Γt(X̂).

We denote the algebra of all local partition events by

BQ(Γ(X̂)) :=
⋃

Λ∈Qc(X̂)

BΛ(Γ(X̂)). (5.1.52)

Remark 5.1.21. To obtain the DLR equation it is enough to check (5.1.51)
only for B ∈ BQ(Γ(X̂)). Indeed, using Caratheodory’s theorem, we deduce
that µ

∣∣
BQ(Γ(X̂))

extends uniquely to a measure on σ(BQ(Γ(X̂))) = B(Γ(X̂)),
where we used Kuratowski’s theorem (cf. Theorem A.1.7) to get the last
equality. Hence, (5.1.51) holds for all B ∈ B(Γ(X̂)).

Before we proceed, we define the appropriate topology for convergence of
the local Gibbs states:3

Definition 5.1.22. On the space of all probability measures M1(Γ(X̂)) we
introduce the topology of Q-wise convergence. This topology, which we denote
by TQ, is defined as the coarsest topology making the mapsM1(Γ(X̂)) 3 µ 7→
µ(B) continuous for all sets B ∈ BQ(Γ(X̂)).

Remark 5.1.23. If for all Λ ∈ Bc(X̂) the set ΛQ ∈ Qc(X̂), then Q-wise
convergence implies the local setwise convergence (cf. Definition 2.1.2).

Remark 5.1.24. Let us assume that we are in the basic model framework
(cf. Subsection 5.1.1). Then the Gibbs measures µ ∈ GibbstV,s(Γ(R̂d)) are
defined via the semi-local specification π = {πR+×∆(dγ|ξ) | ∆ ∈ Bc(Rd), ξ ∈
Γ(R̂d)}. One the other hand, one can define, similar to Section 4.1, a local
specification π = {πΛ(dγ|ξ) | Λ ∈ Bc(R̂d), ξ ∈ Γ(R̂d)}.

It can be checked that the analog version of Theorem 4.5.9 holds in this
case, namely that both (i.e. the local and the semi-local) specifications deter-
mine the same set of Gibbs measures. This follows analogously to the proof of
Theorem 4.5.9, where we use Lemma 5.1.13 to see that Lebesgue’s dominated
convergence theorem is applicable in the proof of Proposition 4.5.5.

5.2 Existence for general potentials
In order to prove the existence an essential step is to check that the net of
Q-local Gibbs specification kernels {πΛ(dη|ξ)|Λ ∈ Qc(X̂)}, with a fixed tem-
pered boundary condition ξ ∈ Γt(X̂) (cf. (5.1.36)) is locally equicontinuous.

3See for the idea of localizing in a different framework e.g. [Geo88, Section 4.1] or
[KPR10, Section 2], where in the later Λ ∈ Bc(X̂) is chosen instead of Λ ∈ Qc(X̂).
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To that end, we introduce the map Γ(X̂) 3 γ 7→ λ - γk -2m, which will play the
role of a Lyapunov functional in our theory, and show that it is exponentially
integrable (cf. Lemma 5.2.2). After that we deduce a weak dependence on
boundary conditions (cf. Proposition 5.2.4): For each λ ∈ (1

4
βA, 1

3
βA), we

find Cλ > 0 such that uniformly for all k ∈ Z and ξ ∈ Γt(X̂)

lim sup
K↗Z

∫
Γ(X̂)

exp
{
λ - γk -2m

}
πK(dγ|ξ) ≤ Cλ.

By the weak dependence, we deduce first the mentioned local equicontinuity
(cf. Proposition (5.2.7)) and then the existence of a Gibbs measure (cf.
Theorem 5.2.8).

Throughout this section we assume that (V) holds. As a preliminary
step, we check that exp{λ - γk -m m2} is integrable w.r.t. πk(dγ|ξ).

Lemma 5.2.1. Let (V) hold. Fix k ∈ Z, ξ ∈ Γf (X̂), Λ ∈ Qc(X̂) and
λ ∈ [0, βA

2
]. Then∫

Γ(Λ)

exp
{
λ - γk -2m

}
πΛ(dγ|ξ)

≤ exp

(
ΥΛ,ε +

(ε
2
β‖φ‖∞M1,Λ + β

A

4

) ∑
l∈KUΛ

- ξl -2m
)
<∞, (5.2.1)

where ε > 0 is arbitrary and

ΥΛ,ε := β‖φ‖∞
(
M2,Λ +

1

2ε
M1,Λ|KUΛ

|
)
<∞.

Proof. By Lemma 5.1.13 the integral in (5.2.1) can be estimated by

1

ZΛ(ξ)

∫
Γ(X̂)

exp

{
− (

1

2
βA− λ) - γk∩Λ -2m −β

A

2

∑
j∈KΛ
j 6=k

- γj∩Λ -2m
}
PΛ
λ (dγΛ)

× exp
{
β
A

4

∑
l∈KUΛ

- ξl∩Λc -2m
}
. (5.2.2)

Lemma 5.1.14 (cf. (5.1.45)) yields the claim, where we note that∑
j∈KUΛ

- ξj -m≤
1

2ε
|KUΛ
|+ 1

2
ε
∑
j∈KUΛ

- ξj -2m . (5.2.3)

In Section 5.2.1, we will improve this result by showing that the constant
ΥΛ,ε can be chosen uniformly as Λ↗ X̂.
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5.2.1 Weak dependence on boundary conditions

In this section we prepare some technical estimates on the local specification
kernels which will be crucial to prove the existence of a Gibbs measure µ ∈
GibbstV (Γ(X̂)). To this end, we use an inductive scheme that is based on the
consistency property (5.1.50). We start by deducing the following bound in
the ‹elementary› partition sets Q̂k, k ∈ Z.

Lemma 5.2.2. For all λ ≤ 1
2
βA, k ∈ Z and ξ ∈ Γf (X̂)∫

Γk

exp
{
λ - γk -2m

}
πk(dγ|ξ) ≤ exp

(
Υε +

(βM
2

+ C+ε
) ∑
j∈∂intk

- ξj -2m
)
,

(5.2.4)

where ε > 0 is arbitrary and

Υε := β‖φ‖∞
(
M2 +

M1

ε
mint

)
<∞,

C+ := β‖φ‖∞
M1

2
<∞. (5.2.5)

Proof. By (5.1.42) for Λ = Q̂k and the proof of Lemma 5.2.1, we get this
result.

Remark 5.2.3. The estimate (5.2.4) expresses the so-called weak dependence
on boundary conditions. Analytically this means that(

βM

2
+ C+ε

)
mint < λ <

1

2
βA,

which is always possible for small enough ε > 0 provided we assume that
λ ∈ (βA

8
, βA

2
] and A0 > 4Mmint (cf. (5.1.33)).

Moment estimates

Consider now arbitrary large domains ΛK =
⊔
k∈K Q̂k ∈ Qc(X̂) indexed by

K b Z. Note that ΛK ↗ X̂ as K ↗ Z. Using the estimate (5.2.4) and the
consistency property (5.1.50), our next step will be to get similar moment
estimates for all specification kernels πK(dγ|ξ) := πΛK(dγ|ξ).

Proposition 5.2.4. Let λ ∈ (βA
4
, βA

2
]. Then there exists Cλ <∞ such that

for all k ∈ Z, ξ ∈ Γt(X̂)

lim sup
K↗Z

∫
Γ(X̂)

exp
{
λ - γk -2m

}
πK(dγ|ξ) ≤ Cλ. (5.2.6)
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Moreover, for each α > 0 one finds a proper να > 0 such that

lim sup
K↗Z

∫
Γ(X̂)

exp
{
να|‖γ‖|2α

}
πK(dγ|ξ) ≤ Cα. (5.2.7)

Proof. Let us define

0 ≤ nk(K|ξ) := log

{∫
Γ(X̂)

exp
{
λ - γk -2m

}
πK(dγ|ξ)

}
, k ∈ Z, (5.2.8)

which are finite by Lemma 5.2.1. In particular,

nk(K|ξ) := Φ(ξk) if k /∈ K.

Next, we will find a global bound for the whole sequence (nk(K|ξ))k∈Z , which
then implies the required estimates on each of its components.

Integrating both sides of (5.2.4) with respect to πK(dγ|ξ) with an arbitrary
ξ ∈ Γt(X̂) and taking into account the consistency property (5.1.50), we
arrive at the following estimate for k ∈ K

nk(K|ξ) ≤ Υε + log


∫

Γ(X̂)

exp

(βM + C+ε
) ∑
j∈∂intk

- ξj -2m

 πK(dγ|ξ)


= Υε +

(βM + C+ε
) ∑
j∈KC∩∂intk

- ξj -2m


+ log


∫

Γ(X̂)

exp

(βM + C+ε
) ∑
j∈K∩∂intk

- ξj -2m

 πK(dγ|ξ)

 . (5.2.9)

We will apply the multiple Hölder inequality

µ
(∏K

j=1
f
tj
j

)
≤
∏K

j=1
µtj(fj), µ(fj) :=

∫
fjdµ, (5.2.10)

valid for any probability measure µ, nonnegative functions fj, and tj ≥ 0

such that
∑K

j=1 tj ≤ 1, K ∈ N.
Choose 0 < δ < 1, ε > 0 such that

0 < B+ :=
1

4
βA+ εmintC+ < δλ ≤ λ0 := β

A

2
, (5.2.11)
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where C+ is defined by (5.2.5). In our context fj := exp {λ - γj -2m} and we
set

tj :=
βM

λ
+
εC+

λ
, for j ∈ K ∩ ∂intk.

Using this setting for (5.2.10), we deduce that the last summand in (5.2.9)
is dominated by ∑

j∈K∩∂intk

log

(∫
Γ(X̂)

exp (λ - γj -m) πK(dγ|ξ)
)tj

=
∑

j∈K∩∂intk

βM + εC+

λ
nj(K|ξ). (5.2.12)

Let K b Z contain a fixed point k0 ∈ Z. Let ϑ ≥ 0 such that ρZ(k0, j) ≤
ϑ for all j ∈ ∂intk0. Fix α > 0. We multiply (5.2.9) with the weight
exp{−αρ(k, k0)} and take the sum in (5.2.12) over all j ∈ K and multiply
the sum with the same weight. Then we get

nk0(K|ξ) ≤
∑
k∈K

[nk(K|ξ) exp{−αρZ(k0, k)}] (5.2.13)

≤
[
1− B+

λ
eαϑ
]−1 [

Υε +B+eαϑ||ξKc ||2α
]
.

We have[
1− B+eαϑ

λ

]−1

= 1 +
B+eαϑ

λ−B+eαϑ
≤ 1 +

B+eαϑ

1
δ
B+ −B+eαϑ

= 1 +
eαϑ

1
δ
− eαϑ

,

where we used (5.2.11). Plugging this back into (5.2.13), we get

nk0(K|ξ) ≤
∑
k∈K

[nk(K|ξ) exp{−αρ(k0, k)}]

≤
[
Υε +B+eαϑ|‖ξKc‖|2α

]( 1

1− δeαϑ

)
=: C1,δ,α,K,ε,ξ =: C1. (5.2.14)

Since |‖ξKc‖|α tends to zero as K ↗ Z, we obtain for each k0 ∈ Z

lim sup
K↗Z

∑
k∈K

[nk(K|ξ) exp{−αρ(k0, k)}] ≤ Υε

(
1

1− δeαϑ

)
, (5.2.15)

and thus, by letting α→ 0, we complete the proof of (5.2.6):

lim sup
K↗Z

nk0(K|ξ) ≤ 1

1− δ
Υε =: log Cλ =: log Cλ. (5.2.16)
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So, we have for each λ ≤ λ0 fulfilling (5.2.11)

lim sup
K↗Z

∫
Γ(X̂)

exp
{
λ - γk -2m

}
πK(dγ|ξ) ≤ exp

{
1

1− δ
Υε

}
= C0. (5.2.17)

By the Hölder inequality (5.2.10) we see that we can find a µα > 0 such that
(5.2.7) holds: We choose

να :=λ0

[∑
k∈Z

exp{−αρ(k, k0)}
]−1

, (5.2.18)

which is well-defined by (5.1.22). By (5.2.10), we get∫
Γ(X̂)

exp

{
να
∑
k∈Z

- γk -2m e−αρ(k,k0)

}
πK(dγ|ξ)

≤
∏
k∈K

(∫
Γ(X̂)

exp

{
λ0 - γk -2m

}
πK(dγ|ξ)

) vα
λ0

exp{−αρ(k,k0)}

e|‖ξKc‖|
2
α

≤
(

exp
{∑
k∈K

nk(K|ξ) exp{−αρ(k, k0)}
}) vα

λ0
exp{−αρ(k,k0)}

e|‖ξKc‖|
2
α .

Hence, using also (5.2.15), we deduce

lim sup
K↗Z

∫
Γ(X̂)

exp
{
να|‖α‖|2γ

}
πK(dγ|ξ) ≤ exp

{
Υε

(
1

1− δeαν

)}
=: Cα.

5.2.2 Uniform bounds for local Gibbs states

Corollary 5.2.5. Let (V) hold. Then for all K b Z, there exists C(K) <∞
such that

lim sup
Λ↗X̂
Λ∈Qc

∫
Γ(Λ)

(∑
k∈K

- γk -m m

)
πΛ(dγ|ξ) ≤C(K) <∞

uniformly for all ξ ∈ Γt(X̂).

Proof. The result follows immediately by Young’s inequality and (5.2.6).
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5.2.3 Local equicontinuity

An important step in proving the existence of a µ ∈ GibbsV is to establish
the equicontinuity of the local specification. To this end, we adopt [Geo88,
Definition 4.6] to our setting:

Definition 5.2.6. Fix ξ ∈ Γt(X̂). The net {πΛ(dγ|ξ)|Λ ∈ Qc(X̂)} is called
Q-locally equicontinuous iff for all Λ̃ ∈ Qc(X̂) (cf. (5.1.52)) and each se-
quence {BN}N∈N ⊂ BΛ̃(Γ(X̂)) with BN ↓ ∅

lim
N→∞

lim sup
Λ↗X̂

Λ∈Qc(X̂)

πΛ(BN |ξ) = 0. (5.2.19)

Proposition 5.2.7. Let (V) hold. Then for each fixed ξ ∈ Γt(X̂) the net
{πΛ(dγ|ξ)| Λ ∈ Qc(X̂)} is locally equicontinuous. Moreover, each of its limit
points is supported by Γt(X̂).

Proof. In principal, the arguments work as in Proposition 4.2.6 using Qc(X̂)
instead of Bc(X̂). Indeed, to get the lim sup of the first summand in (4.2.14)
arbitrarily small, we use the support property given by Corollary 5.2.5 (in-
stead of Proposition 4.2.3) for mU , where U ∈ Qc(X̂) by (FR). Taking into
account (5.1.21), (5.1.42) and (5.1.45), we see that the lim sup of the second
summand in (4.2.14) also vanishes. Combining these arguments, we get the
assertion.

5.2.4 Existence of Gibbs measures

Now we are in position to deduce a main result of this section. Namely,
we show that each limit point that we obtained by the local equicontinuity
proved above is indeed a Gibbs measure.

Theorem 5.2.8. Let V : X̂ × X̂ → R and λ⊗m be such that (V) holds.
Then there exists a Gibbs measure µ corresponding to the potential V and

the probability measure Pλ. It is supported by Γt(X̂). Therefore,

GibbstV (Γ(X̂)) 6= 0.

Furthermore, the set GibbstV (Γ(X̂)) is compact in the topology TQ.

Proof. We will follow the proof of Theorem 4.2.7 with the appropriate changes
to get this result. But, we emphasize that now the (DLR) property can be
derived much more easily.
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Similar as in the proof of Theorem 4.2.7 (cf. (4.2.21) and (4.2.22)), we
get a limit point µ ∈ M1(Γ(X̂)). Namely, Proposition 5.2.7 (and [Geo88,
Proposition 4.9] combined with [Pat67, Theorem V.3.2]) yield

µ := BQ − lim
N→∞

πΛN (·|ξ) ∈M1(Γ(X̂)),

where ΛN ↗ X̂, ΛN ∈ Qc(X̂), is some order generating sequence. We have
for all partition events B ∈ BQ(Γ(X̂)) that

πΛN (B|ξ)→ µ(B) as N →∞

and µ(Γt(X̂)) = 1.
The limit point µ is surely Gibbs just by the definition of the Q-local

specification. Indeed, fix Λ ∈ Qc(X̂) and B ∈ BQ(Γ(X̂)) arbitrarily. By
(FR), we can pick UΛ ∈ Qc(X̂) and justify the following equations to get the
(DLR) one. Note that the steps 1 and 3 are easier than in Theorem 4.3.26:∫

Γ(X̂)

πΛ(B|γ)µ(dγ)
1.
=

∫
Γ(X̂)

πΛ(B|γUΛ
)πΛN (dγ|ξ)

2.
= lim

N→∞

∫
Γ(X̂)

πΛ(B|γUΛ
)πΛN (dγ|ξ)

3.
= lim

N→∞

∫
Γ(X̂)

πΛ(B|γ)πΛN (dγ|ξ)

4.
= lim

N→∞
πΛN (B|ξ)

5.
=µ(B). (5.2.20)

The first and third equality follow by the choice of UΛ, the second and fifth
one by the definition of µ and the fourth one by the consistency of the local
specifications (cf. (5.1.50)).

It remains to show the compactness of GibbstV (Γ(X)). We make similar
changes as for the proof of Proposition 5.2.7. Using in addition Corollary
5.2.11 below (resp. Theorem 4.3.34 if (5.1.33) is void), we deduce the com-
pactness adopting the arguments in Theorem 4.4.20 (cf. (4.4.26)). Thus, all
the assertions are shown.

Uniqueness of Gibbs measures

Having established the existence of Gibbs measures, the next problem is
to show their uniqueness or non-uniqueness, which is more difficult than
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the existence. The non-uniqueness corresponds to the presence of phase
transitions in our model. The answer strongly depends on the interplay
between the model parameters like the temperature β, the intensity θ and
the stability properties of the potential.

Two basic techniques to show uniqueness of Gibbs measures are Ruelle’s
superstability estimates [Rue69, Rue70] andDobrushin’s criterion ([Dob70b]),
as well as its modifications [DP81, DP83]. However, they cannot be applied
directly in our framework and need essential modifications, which we will not
discuss here.

We only point out the following particular example, which however does
not cover the most interesting situation of the translation invariant case in
(Rd, dx):

Theorem 5.2.9. Let V and λ ⊗m be such that (V) holds. If X̂ ∈ Qc(X̂),
then there exists exactly one Gibbs measure corresponding to V and Pλ, i.e.∣∣∣GibbstV (Γ(X̂))

∣∣∣ = 1.

Proof. This follows by (5.1.46), Remark 5.1.17, Definition 5.1.19 and Theo-
rem 5.2.8.

5.2.5 Moment estimates for Gibbs measures

Theorem 5.2.10. Let (V) and (5.1.33) hold. For each α > 0 one finds a
certain να > 0 such that for all µ ∈ GibbstV (Γ(X̂))∫

Γ(X̂)

exp
{
να|‖γ‖|2α

}
µ(dγ) ≤ Cα, (5.2.21)

where C0 <∞ is the same as in Proposition 5.2.4 (cf. (5.2.7)).

Proof. Using Proposition 5.2.4 instead of Proposition 4.3.18 and doing the
obvious changes in the proof of Theorem 4.3.34, we establish this result.

Indeed, fix Λ̃ ∈ B(X̂). Using Beppo Levi, we have∫
Γ(X̂)

exp
{
να|‖γ‖|2α

}
µ(dγ) = lim

M↗∞

∫
exp

{
να|‖γ‖|2α ∧M

}
µ(dγ).

By the (DLR) equation this equals

lim
M↗∞

lim
ΛN↗X̂

ΛN∈Bc(X̂)

∫
Γ(X̂)

∫
Γ(X̂)

exp
{
να|‖γ‖|2α ∧M

}
πΛN (dγ|ξ)µ(dξ).
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By Lebesgue’s dominated convergence theorem, the later equals

lim
M↗∞

∫
Γ(X̂)

(
lim

ΛN↗X̂
ΛN∈Bc(X̂)

∫
Γ(X̂)

exp
{
να|‖γΛN‖|2α ∧M

}
πΛN (dγΛN |ξ)

)
µ(dξ)

≤ lim
M↗∞

∫
Γ(X̂)

(
lim

ΛN↗X̂
ΛN∈Bc(X̂)

∫
Γ(X̂)

exp
{
να|‖γΛN‖|2α

}
πΛN (dγΛN |ξ)

)
µ(dξ).

Since µ(Γt(X̂)) = 1, we may apply the uniform bound proven in Proposition
5.2.4 (cf. (5.2.21)). Thus, the later is dominated by Cα, which was to be
shown.

Corollary 5.2.11. Let (V) be fulfilled with the Q-local function l. For each
Λ ∈ Qc(X̂) and N ∈ N, there exists CN(Λ) > 0 such that for all µ ∈
GibbstV (Γ(X̂)) ∫

Γ(X̂)

〈l1Λ, γ〉Nµ(dγ) < CN(Λ). (5.2.22)

Proof. This follows by Theorem 5.2.10. Indeed, fix k ∈ Z. By (5.1.37), for
all Λ ∈ Qc(X̂) there exists ε := ε(Λ, k) > 0:

〈l1Λ, γ〉 ≤ ε(∆, k)|‖γ‖|m,1,k.

Then choosing ν1 (cf. Theorem 5.2.10), we obtain the assertion because

〈l1Λ, γ〉 ≤
εN !

(ν1)N
(ν1)N |‖γ‖|N1 ≤

εN !

(ν1)N
exp (ν1|‖γ‖|m,1,k) .

Hence, the assertion follows by Theorem 5.2.10.

Remark 5.2.12. If (5.1.33) is void and φ ≥ 0, we get the following result:
Fix N ∈ N and a Q-local function l̃. Assume that∫

Λ

l̃(x̂)nλ⊗m(dx̂) <∞, for all Λ ∈ Qc(X̂) and all 1 ≤ n ≤ N.

Then (compare also Remark 4.3.36) we get only that for all Λ ∈ Qc(X̂) there
exists CN(Λ) <∞ such that for each µ ∈ GibbstV (Γ(X̂))∫

Γf (Λ)

〈̃l, γ〉Nµ(dγ) < C. (5.2.23)
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5.3 Gibbs measures on the cone
In this section we discuss the transition from Γ(X̂) to K(X). Hence, we ob-
tain Gibbs measures on the cone K(X) corresponding to a sufficiently ‹nice›
potential φ : X ×X → R. To this end, we first specify the conditions on φ.

We fix the following local mass map m (cf. Example 4.3.11):

m(Λ, {(sx, x)}) = sx1ΛX (x) ∀Λ ∈ B(X̂), ∀(sx, x) ∈ X̂.

Let us recall some properties of the cone K(X). Let F ∈ FCb(K(X), C0(X))
be a cylinder function, i.e., it can be written as

F (η) = gF (〈ϕ1, η〉, . . . , 〈ϕN , η〉), η ∈ K(X) (5.3.1)

with some gF ∈ Cb(RN) and ϕi ∈ C0(X̂), 1 ≤ i ≤ N ∈ N. Then for each
µ ∈M1(K(X)), we have∫

K(X)

F (η)µ(dη) =

∫
K(X)

gF (〈ϕ1, η〉, . . . , 〈ϕN , η〉)µ(dη)

=

∫
Γf (X̂)

gF (〈idR+ ⊗ϕ1, η〉, . . . , 〈idR+ ⊗ϕN , η〉)
((
T
−1
)∗
µ
)

(dγ). (5.3.2)

We recall that T is the (bijective) homeomorphism between between Γf (X̂)
and K(X) (cf. (3.1.2)), i.e.,

T : Γf (X̂) → K(X)

γ = {(sx, x) |x ∈ τ(γ)} 7→ η :=
∑
x∈τ(γ)

sxδx. (5.3.3)

5.3.1 Gibbsian formalism on K(X)

We fix a pair potential φ : X × X → R, which is a bounded, symmetric
B(X ×X)-measurable function. We define the corresponding pair potential
Vφ : X̂ × X̂ → R by

Vφ(x̂, ŷ) := sxsyφ(x, y), x̂, ŷ ∈ X̂.

We fix an admissible partition of X:

Definition 5.3.1 (Admissible partition). Let Z be a countable index set. A
partition

X =
⊔
k∈Z

Qk,
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Qk ∈ B(X) for each k ∈ Z, is admissible, if the partition X̂ =
⊔
k∈Z Q̂k,

where Q̂k := R+ ×Qk for all k ∈ Z, is admissible in the sense of Definition
5.1.2.

We impose the following assumption on φ:

(φ)
K(X) The symmetric potential φ : X ×X → R is such that (V) holds for

the corresponding Vφ with the admissible partition X̂ =
⊔
k∈Z R+×Qk,

where Qk ∈ B(X) for all k ∈ Z.

In the case of X = Rd, it is sufficient, e.g., to assume the conditions (FR′),
(LB′) and (RC′) (cf. Subsection 5.1.1 and Example 5.1.1).

The relative energy

From here on, we always assume that (φ)
K(X) holds. We define the algebra

of ’local’ subsets in X (cf. also Subsection 5.1.2) by

Qc(X) := {∆ | R+ ×∆ ∈ Qc(X̂)}.

For each η, ξ ∈ K(X) and ∆ ∈ Qc(X), we define the relative energy

H∆(η|ξ) :=

∫
∆

∫
∆

φ(x, y)η(dx)η(dy) +

∫
∆c

∫
∆

φ(x, y)η(dx)ξ(dy). (5.3.4)

Lemma 5.3.2. If (φ)
K(X) holds, then |H∆(η|ξ)| < ∞ for all η, ξ ∈ K(X)

and ∆ ∈ Qc(X).

Proof. This follows by Lemma 5.1.11 because T : Γf (X̂)→ K(X) is homeo-
morphic.

Local specification

By Kt(X) we denote the tempered cone which is the image of Γt(X̂) (cf.
Subsection 5.1.4) under T (cf. (5.3.3), i.e.,

K
t(X) := T

(
Γt(X̂)

)
. (5.3.5)

Let us fix an inverse temperature β = 1/T > 0. For each ∆ ∈ Qc(X), the
local Gibbs measure on K(∆) is defined by

µ∆(dη|ξ) :=

{
1

Z∆(ξ)
e−βH∆(η|ξ)G∆

θ (dη), if η, ξ ∈ Kt(X),

0, otherwise,
(5.3.6)
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where G∆
θ is the Gamma measure with shape parameter θ on K(∆) and

Z∆(ξ) :=

∫
K(∆)

e−βH∆(η|ξ)G∆
θ (dη). (5.3.7)

is the partition function (i.e., normalizing factor).

Remark 5.3.3. For all ξ ∈ Kt(X), (5.3.7) is well-defined, i.e.,

0 < Z∆(ξ) <∞.

For φ ≥ 0, this follows by Lemma 4.5.4, and furthermore Z∆(ξ) ≤ 1. For
general φ obeying (5.1.33), this follows by Lemma 5.1.14.

Definition 5.3.4. The local specification π = {π∆}∆∈Qc(X) on K(X) is a
family of stochastic kernels

B(K(X))×K(X) 3 (B, ξ) 7→ π∆(B|ξ) ∈ [0, 1] (5.3.8)

given by

π∆(B|ξ) := µ∆(B∆,ξ|ξ),
B∆,ξ := {γ∆ ∈ K(∆) | γ∆ ∪ ξ∆c ∈ B } ∈ B(K(∆)). (5.3.9)

As we will see below, there is a one-to-one correspondence with the semi-
local specification kernels πR+×∆(dγ|ξ) on Γ(X̂) (cf. Subsection 4.5.1).

Gibbs measure

Definition 5.3.5 (Gibbs measure on the cone K(X)). A probability mea-
sure µ ∈ M1(K(X)) (that has a-priori full measure on Kt(X)) is called a
tempered Gibbs measure (or state) with pair potential φ and inverse
temperature β > 0 if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equi-
librium equation ∫

K(X)

π∆(B|η)µ(dη) = µ(B) (5.3.10)

for all ∆ ∈ Qc(X) and B ∈ B(K(X)). The associated set of all Gibbs states
will be denoted by Gibbstφ(K(X)).
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5.3.2 One-to-one correspondence between between Gibbs
measures on K(X) and Γ(X̂)

The following theorem shows the intrinsic connection between the semi-local
specification kernels on Γ(X̂) and the local specification kernels on K(X).

Theorem 5.3.6. Let φ : X × X → R be such that (φ)K(X) holds. Since
FCb(K(X), C0(X)) are a measure defining class, we have a one-to-one cor-
respondence between local Gibbs specifications π∆ on K(X) and semi-local
ones πR+×∆ on Γ(X̂). Indeed, for each F ∈ FCb(K(X), C0(X)), obeying (cf.
(5.3.1))

F (η) = gF (〈ϕ1, η〉, . . . , 〈ϕN , η〉), η ∈ K(X),

with some gF ∈ Cb(RN), ϕ1, . . . , ϕN ∈ C0(X̂) and N ∈ N, we have∫
K(X)

F (η)π∆(dη|ξ)

=

∫
Γf (X̂)

gF (〈idR+ ⊗ϕ1, γ〉, . . . , 〈idR+ ⊗ϕN , η〉)πR+×∆(dγ|T−1ξ) (5.3.11)

for all ξ ∈ K(X) and ∆ ∈ Qc(X).
This implies that there is a one-to-one correspondence between the Gibbs

measures on Γ(X̂) and on K(X): We have

µK ∈ Gibbstφ(K(X)) ⇐⇒ µΓ :=
(
T
−1
)∗
µK ∈ GibbstVφ(Γ(X̂)).

Using F as above, we have for µK ∈ Gibbstφ(K(X)):∫
K(X)

F (η)µK(dη)

=

∫
Γf (X̂)

gF (〈idR+ ⊗ϕ1, γ〉, . . . , 〈idR+ ⊗ϕN , γ〉)µΓ(dγ), (5.3.12)

where idR+ is the identity on R+, i.e., idR+(s) = s for all s ∈ R+.

Proof. Follows by the construction. We give the details: If ξ ∈ Γf (X̂)\Γt(X̂),
then (5.3.11) holds trivially (cf. (5.1.46) and (5.3.6)). Let ξ ∈ Γt(X̂) and F
be as in the assertion. Fix ∆ ∈ Qc(X). Then by (5.3.2)∫

K(X)

F (γ)e−βH∆(η|P (ξ))G∆
θ (dη)

=

∫
Γ(X̂)

gF (〈idR+ ⊗ϕ1, γ〉, . . . , 〈idR+ ϕN , η〉)eβHR+×∆(γ|ξ)P∆
θ (dγ).
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Hence, (5.3.11) follows. Fix B ∈ B(K(X)). Note that

B ∈ B(K(X))⇔ B̃ := T
−1(B) ∈ B(Γ(X̂)).

Let µ ∈ Gibbstφ(K(X)). Using µ(Kt(X)) = 1, the (DLR) equation and
(5.3.2), we get

µΓ(B̃) =µK(B) =

∫
Kt(X)

π∆(B|ξ)µK(dξ) =

∫
Γt(X̂)

πR+×∆(B̃|ξ̃))µΓ(dξ̃).

Hence, µΓ ∈ GibbstVφ(Γ(X̂)). On the other hand, if µΓ ∈ GibbstVφ(Γ(X̂)),
then

µK(B) =µΓ(B̃) =

∫
Γt(X̂)

πR+×∆(B̃|ξ̃)µΓ(dξ̃) =

∫
Kt(X)

π∆(B|ξ)µK(dξ).

This implies that µK ∈ Gibbstφ(K(X)).

5.3.3 Existence of Gibbs measures

Using Theorem 5.3.6, we will transfer the results obtained for Gibbs measures
µΓ ∈ GibbstVφ(Γ(X̂)) to Gibbs measures µK ∈ Gibbsφ(K(X)). This yields the
existence result and uniform moment estimates.

Theorem 5.3.7. Let φ be such that (φ)
K(X) is fulfilled. Then there exists a

tempered Gibbs measure on K(X), i.e.,

Gibbstφ(K(X)) 6= ∅.

Proof. Using Theorem 5.3.6, the assertions follow by Theorem 5.2.8.

Remark 5.3.8. Furthermore, the set Gibbstφ(K(X)) is compact in Tstr (cf.
Definition 5.3.9 below).

Analogue to TQ(Γ(X̂)) (cf. Definition 5.1.22), we introduce

Definition 5.3.9. The topology of local stripwise convergence onM1(K(X)),
denoted by Tstr, is defined as the coarsest topology making the maps µ 7→ µ(B)
continuous for all sets B from the algebra of ‹stripe› events

Bstr(K(X)) =
⋃

∆∈Qc(X)

B∆(K(X)),

where B∆(K(X)) := P
−1
∆ B(K(∆)). Here, we define the projections P∆ by

P∆ : K(X) 3 η 7→ η∆ :=
∑

x∈τ(η)∩∆

sxδx ∈ K(∆).
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Moment estimates

Theorem 5.3.10. Let (φ)
K(X) be fulfilled. For each ∆ ∈ Qc(X) and N ∈ N

there exists CN(∆) > 0 such that for all µK ∈ Gibbstφ(K(X))∫
K(X)

η(∆)NµK(dη) < CN(∆). (5.3.13)

Proof. Using Theorem 5.3.6, this follows by Corollary 5.2.11 (if (5.1.33)
holds), resp. by Theorem 4.3.34 and Remark 4.3.36 (if (5.1.33) is void).

For stable potentials, we have exponential moment bounds:

Theorem 5.3.11. Let (φ)
K(X) and (5.1.33) hold. For each α > 0 one finds

a certain να > 0 such that for all µK ∈ Gibbstφ(K(X))∫
K(X)

exp
{
να|‖η‖|2α

}
µK(dη) ≤ Cα,

where Cα <∞ is the same as in Proposition 5.2.4 (cf. (5.2.7)).

Proof. Follows by Theorem 5.2.10.



140 CHAPTER 5. GENERAL POTENTIALS



Part III

Differential calculus
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Chapter 6

Differential calculus and Dirichlet
forms

In Chapter 3 we saw the static picture, now we will introduce some move-
ment of the marks and positions. Our motivation is to use Dirichlet forms:
Roughly speaking, for each quasi-regular and local Dirichlet form, there ex-
ists an associated diffusion.

Prominent examples for diffusions over spaces of measures are Fleming-
Viot processes, which are motivated by biological considerations (cf. [Hoc91,
EK93] and Chapter 7 for details). They are located on a space of proba-
bility measures. Dirichlet forms in the configuration space framework are
considered, e.g., in [AKR98a, AKR98b] and [KLR99].

Although our construction of Dirichlet forms is related to the one on
marked configuration spaces (cf. e.g. [KdSS98, KLU99]), there is an es-
sential difference: Gamma measures can be viewed as Poisson measure on a
"marked" configuration space with an infinite measure on the marks, whereas
the mentioned references treat the case that the measure on the marks is fi-
nite. More recently, Wasserstein diffusions and entropic measures have been
studied using Dirichlet form in [vRS09, AvR10].

The theory of Dirichlet forms is explained, for example, in [MR92] or,
the symmetric case, in [FOT94]. We outline a general scheme how to get an
equilibrium process:

1. Identify an appropriate directional derivative (defined via a translation
group) and a tangent space Tη at η ∈ K(Rd) to get a corresponding
gradient ∇ on functions over K(Rd).

2. Choose a measure µ on (K(Rd),B(K(Rd))) and deduce a quasi-invariance

143
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property of µ w.r.t. the translation group.

3. Use the quasi-invariance property to establish an integration by parts
formula.

4. Show that the set of functions S admitting this integration by parts
formula is dense in L2(K(Rd), µ).

5. Define a corresponding gradient bilinear form

Eµ(F,G) =

∫
Γ

〈∇F (η),∇G(η)〉Tη µ(dη), ∀F,G ∈ S

and deduce via the integration by parts formula that it is closable.

6. Prove that the closure of (Eµ,S) w.r.t. the norm that is induced by the
bilinear form, namely

S 3 F 7→ (Eµ1 (F, F ))1/2 :=
(
〈F, F 〉L2(K(Rd),µ) + Eµ(F, F )

)1/2
,

is a Dirichlet form. It is denoted by (Eµ,D(Eµ)).

7. Deducing that it is quasi-regular, one obtains an associated “nice”
Markov process (cf. [MR92, Thm IV.3.5]).

8. If (Eµ,D(Eµ)) is local, one even gets an associated diffusion.

In this chapter, we will study the first six steps, whereas the last two are left
to be analyzed in Chapter 7. Our main motivation is to get Dirichlet forms
related to the Gibbs perturbations of Gamma measure Gθ on K(Rd).

Let us briefly indicate, where to find the main steps of the above program:
In Section 6.1, we construct an extrinsic (∇Kext), an intrinsic (∇Kint) and a
joint (∇K) gradient (cf. Subsections 6.1.2, 6.1.3 and 6.1.4). They exist for
all cylinder functions

F ∈ FC∞b (K(Rd), C∞0 (Rd)) =: SK

(cf. Definition 6.1.5). In Section 6.3, we get extrinsic, intrinsic and joint
integration by parts formulas w.r.t. Gθ (cf. Theorems 6.3.19, 6.3.33 and
6.3.39). This is the main step to consider corresponding Dirichlet forms. In
order to apply the Dirichlet form approach (compare the 4th point), we show
in Section 6.2 that (cf. Theorem 6.2.7 and esp. Corollary 6.2.8)

SK ⊂ L2(K(Rd),Gθ) is dense.
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Let us consider the bilinear form (cf. (6.3.46))

EGθ(F,G) :=

∫
K(Rd)

〈
∇KF (η),∇KG(η)

〉
Tη(K)

Gθ(dη), ∀F,G ∈ SK.

Using the integration by parts formula, we prove that it is closable and that
its closure is a conservative Dirichlet form (cf. Theorem 6.3.48). Analogous
results hold in the intrinsic and extrinsic case (cf. Theorems 6.3.29 and
6.3.38).

We deduce the above results for more general measures on K(Rd):

1. Let Gλ on K(Rd) be a Levy measure (cf. Definition 3.1.5) whose inten-
sity measure λ on R+ has first and second moments, i.e.,

m1(λ) +m2(λ) =

∫
R+

(
s+ s2

)
λ(ds) <∞.

Then the intrinsic results hold for Gλ (cf. Theorems 6.3.8, 6.3.14 and
Proposition 6.3.12 in Subsection 6.3.1).

2. The extrinsic, intrinsic and joint results are extended to the Gibbsian
case (cf. Theorems 6.3.19, 6.3.33, 6.3.39; 6.3.29, 6.3.38 and 6.3.48).

The above results are extended to a connected, orientated C∞ Rieman-
nian manifold X, which we fix from now on. Particular results of this chapter
are published in [Hag11].

6.1 Differential geometry on the cone K(X)

Let us start our scheme by introducing a differential geometry on K(X). We
construct a gradient on functions over K(X) consisting of an extrinsic part
related to the motion of marks (cf. Subsections 6.1.2) and an intrinsic one
related to the motion of positions (cf. Subsections 6.1.3). They are joined to
get the gradient w.r.t. changing marks and positions (cf. Subsections 6.1.4).1

1For Subsection 6.1.2, it is sufficient that X is a locally compact Polish space. But, in
order to keep a clearer structure, we already fixed X to be a connected, orientated C∞

Riemannian manifold at the beginning of this chapter.
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6.1.1 Group of motions

Similar as in [KLU99, Section 2], we consider the group of continuous cur-
rents, i.e., all continuous mappings

X 3 x 7→ a(x) ∈ R+

being equal to 1 outside a compact set. We define a multiplication a1a2 in
this group as the pointwise multiplication of the mappings a1 and a2 and
denote this group by RX

+ .
Let Diff0(X) denote the group of diffeomorphism on X with compact

support, i.e., which equal the identity map idX outside of a compact set. It
acts in RX

+ by automorphisms: for each ϕ ∈ Diff0(X), we have

RX
+ 3 a 7→ a ◦ ϕ−1 ∈ RX

+ .

Thus, we can endow the Cartesian product of Diff0(X) and RX
+ with the

following multiplication: for g1 = (ϕ1, a1), g2 = (ϕ2, a2) ∈ Diff0(X)× RX
+

g1g2 = (ϕ1 ◦ ϕ2, a1(a2 ◦ ϕ−1
1 ))

and obtain a semidirect product

G := Diff0(X) h RX
+

of the groups Diff0(X) and RX
+ . The group G acts on R+ × X for each

g = (a, ψ) ∈ G via

R+ ×X 3 (s, x) 7→ g(s, x) = (a(ψ(x))s, ψ(x)) ∈ R+ ×X.

6.1.2 Extrinsic Gradient

We define for each t ∈ R+ and h ∈ C0(X) the translation

Mth : K(X) → K(X)

η 7→ ηht := ethη =
∑
x∈τ(η)

eth(x)sxδx.

Definition 6.1.1. The extrinsic directional derivative of a function F :
K(X)→ R in direction h ∈ C0(X) is defined as

∇Kext,hF (η) :=
d

dt
F (ηht )

∣∣∣∣
t=0

,

whenever the expression on the right-hand side exists.
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Remark 6.1.2. 1. The transformation only changes the marks of the dis-
crete measure η. Therefore, we call them extrinsic.

2. By definition the directional derivate fulfills the product rule, i.e., for
F,G : K(X)→ R for which the directional derivative exists we get

∇Kext,h(F ·G)(η) = ∇Kext,hF (η) ·G(η) + F (η) · ∇Kext,hG(η).

Definition 6.1.3. We choose the extrinsic tangent space of K(X) at η ∈
K(X) to be

T ext
η (K) := L2(X, η). (6.1.1)

Definition 6.1.4. The extrinsic gradient ∇Kext of a function F : K(X)→ R
is defined as

∇KextF : K(X)→ T ext
· (K)

η → (∇KextF )(η) ∈ T ext
η (K),

whenever the extrinsic directional derivative of that function in each direction
h ∈ C0(X) exists and it holds that for all h ∈ C0(X)

∇Kext,hF (η) =
〈
∇KextF (η), h

〉
T ext
η (K)

=: 〈∇KextF, h〉(η). (6.1.2)

Existence for cylinder functions

We show the existence of the extrinsic gradient for some cylinder functions:

Definition 6.1.5 (Cylinder functions). Let k, l ∈ N∞0 and

Ck
0 (X) := Ck(X) ∩ C0(X).

By FCk
b (K(X), C l

0(X)) we denote the set of those cylinder functions F :
K(X)→ R that can be represented as

F (η) = gF
(
〈φ1, η〉, . . . , 〈φN , η〉

)
, (6.1.3)

where N ∈ N, gF ∈ Ck
b (RN) and φi ∈ C l

0(X) for i = 1, . . . , N .

Remark 6.1.6. The set of cylinder functions that we consider differs from
the usual one that one might expect to use (cf. e.g. [AKR98a, KLR99]):
For the configuration space Γ(R̂d) one normally calculates the gradient for
FC∞b (Γ(R̂d), C0(R+ × Rd)). But, this does not fit our geometrical structure.
However, the set FC1

b (K(X), C0(X)), which we consider, is sufficient to de-
fine the Dirichlet forms because it is dense in L2(K(X),Gθ) (cf. Corollary
6.2.8).
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Fix F = gF
(
〈φ1, ·〉, . . . , 〈φN , ·〉

)
∈ FC1

b (K(X), C0(X)), where N ∈ N,
gF ∈ C1

b (RN) and φi ∈ C0(X) for i = 1, . . . , N .

Proposition 6.1.7. For each h ∈ C0(X) and each η ∈ K(X), we get

(∇Kext,hF )(η) =
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρn, η〉)〈h, ρi〉T ext
η (K).

Proof. The formula for the directional derivative follows by the chain rule:
Fix h ∈ C0(X) and η ∈ K(X). Then

∇Kext,hF (η) =
d

dt
F (ethη)

∣∣∣∣
t=0

=
d

dt
gF (〈ρ1, e

thη〉, . . . , 〈ρN , ethη〉)
∣∣∣∣
t=0

=
N∑
i=1

∂igF (〈ρ1, e
thη〉, . . . , 〈ρN , ethη〉)

d

dt
〈ρi, ethη〉)

∣∣∣∣
t=0

.

Moreover,

d

dt
〈ρi, ethη〉 =

d

dt

∑
x∈τ(η)

ρi(x)eth(x)η(x) =
∑
x∈τ(η)

h(x)ρi(x)eth(x)η(x)

= 〈hρieth, η〉. (6.1.4)

(The sums are finite because ρi ∈ C0(X), cf. (3.1.1)). With (6.1.1) we get

d

dt
〈ρi, ethη〉 = 〈h, ρieth〉T ext

η (K)

and conclude (t=0)

(∇Kext,hF )(η) =
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρn, η〉)〈h, ρi〉T ext
η (K).

Proposition 6.1.8. The gradient exists and is

(∇KextF )(η) =
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)ρi, for all η ∈ K(X).

Explicitly writing the argument x ∈ X we see

(∇KextF )(η, x) =
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)ρi(x).
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Proof. By Proposition 6.1.7 and Definition 6.1.3 we have for all h ∈ C0(X)
that

〈∇KextF (η), h〉T ext
η (K) =

N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)〈h, ρi〉T ext
η (K)

=(∇Kext,hF )(η).

6.1.3 Intrinsic Gradient

In Subsection 6.1.2 we constructed a gradient for the motion of the marks,
now we define one for the motion of the positions in the state space X.
Here, we proceed similarly as in the case of a marked configuration space (cf.
[KdSSU98, Section 3]).2

Let V (X) denote the set of all C∞-vector fields onX (i.e. smooth sections
of the tangent space T (X)). We use that subset V0(X) ⊂ V (X) which
consists of all those vector fields with compact support.

For any x ∈ X, v ∈ V0(X) the curve R 3 t 7→ φvt (x) ∈ X is defined as
the solution to the following Cauchy problem{

d
dt
φvt (x) = v(φvt (x))

φv0(x) = x
.

Since v ∈ V0(X) has compact support, there exists a solution to this Cauchy
problem. Furthermore, the mappings {φvt , t ∈ R} form a one-parameter sub-
group in Diff0(X).

We fix v ∈ V0(X). Having the group φvt , t ∈ R, we can consider for any
η ∈ K(X) the curve R 3 t 7→ φvt

∗(η) ∈ K(X), i.e., for all f ∈ C0(X) we
have ∫

X

f(y)
(
φvt
∗η
)
(dy) =

∫
X

f
(
φvt (x)

)
η(dx) =

∑
x∈τ(η)

sxf
(
φvt (x)

)
.

Hence,

R 3 t 7→ φvt
∗η =

∑
x∈τ(η)

sxδφvt (x) ∈ K(X). (6.1.5)

2In this subsection we use more of the structure of X, namely the fact that X is a
connected, orientated C∞ (non-compact) Riemannian manifold (cf. Definition 6.1.11 and
Proposition 6.1.14).
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Definition 6.1.9. For a function F : K(X) → R we define the intrinsic
directional derivative along the vector field v ∈ V0(X) as

(∇Kint,vF )(η) :=
d

dt
F (φvt

∗η)

∣∣∣∣
t=0

,

provided the right-hand side exists.

Remark 6.1.10. It is called intrinsic because only the positions change while
the marks are fixed (cf. (6.1.5)).

Definition 6.1.11. We define the intrinsic tangent space T int
η (K) to the cone

K(X) at η ∈ K(X) to be the Hilbert space L2(X → T (X), η) of measurable
η-square integrable sections (measurable vector fields) Vη : X → T (X) with
the scalar product

〈V 1
η , V

2
η 〉T int

η (K) :=

∫
X

〈V 1
η (x), V 2

η (x)〉Tx(X)η(dx),

where V 1
η , V

2
η ∈ T int

η (K).

Remark 6.1.12. If ρ ∈ C∞0 (X), then ∇Xρ ∈ T int
η (K) for all η ∈ K(X).

Definition 6.1.13. Let F : K(X)→ R be such that the intrinsic directional
derivative ∇Kint,vF exists for all v ∈ V0(X). The intrinsic gradient ∇Kint of F
is defined as the mapping K(X) 3 η 7→ (∇KintF )(η) ∈ T int

η (K) such that

(∇Kint,vF )(η) = 〈(∇KintF )(η), v〉T int
η (K) for all v ∈ V0(X). (6.1.6)

The intrinsic gradient ∇Kint is defined for all those functions for which the
above holds.

Existence for cylinder functions

Fix F = gF (〈ρ1, η〉, . . . , 〈ρN , η〉) ∈ FC∞b (K(X), C∞0 (X)).

Proposition 6.1.14. For all v ∈ V0(X) the intrinsic directional derivative
∇Kint,vF exists:

(∇Kint,vF )(η) =
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)〈∇X
v ρi, η〉.

Here, ∇X
v ρ is the directional derivative of ρ ∈ C∞0 (X) along the vector field

v ∈ V0(X), i.e.,

(∇X
v ρ)(x) = 〈∇Xρ(x), v(x)〉Tx(X),
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where ∇X denotes the gradient over X. Furthermore,

(∇Kint,vF )(η) = 〈
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)∇Xρi, v〉T int
η (K).

Proof. For any η ∈ K(X), v ∈ V0(X) we have

F (φvt
∗η) = gF (〈ρ1, φ

v
t
∗η〉, . . . , 〈ρN , φvt

∗η〉)
= gF (〈ρ1 ◦ φvt , η〉, . . . , 〈ρN ◦ φvt , η〉).

This implies the first assertion. The second one follows by the linearity of
the pairing and using that (∇X

v ρ)(x) = 〈∇Xρ(x), v(x)〉Tx(X).

6.1.4 Joint gradient

After having defined an extrinsic and an intrinsic gradient, we join them to
obtain a gradient over the cone K(X) w.r.t. both components.

Definition 6.1.15. Let h ∈ C0(X) and v ∈ V0(X), then the directional
derivative of a function F : K(X) → R at the point η ∈ K(X) is defined to
be

(∇Kh,vF )(η) := (∇Kext,hF )(η) + (∇Kint,vF )(η).

We set the tangent space of K(X) at η ∈ K(X) to be

Tη(K) := T ext
η (K)⊕ T int

η (K) (6.1.7)

and define the gradient as

∇K := (∇Kext,∇Kint)

whenever the objects exist.

Existence for cylinder functions

Fix F = gF (〈ρ1, η〉, . . . , 〈ρN , η〉) ∈ FC∞b (K(X), C∞0 (X)).

Proposition 6.1.16. The gradient ∇K of F exists and equals

∇KF (η) =

( N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)ρi,

N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)∇Xρi

)

=:
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)
(
ρi,∇Xρi

)
∈ Tη(K)
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and for all h ∈ C0(X) and v ∈ V0(X) we have〈
∇KF (η), (h, v)

〉
Tη(K)

= ∇Kh,vF (η).

Proof. Using Definition 6.1.15, the result follows by Propositions 6.1.8 and
6.1.14. For the formula, we calculate:〈

∇KF (η), (h, v)
〉
Tη(K)

=
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)
〈(
ρi,∇Xρi

)
, (h, v)

〉
Tη(K)

=
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)
(
〈ρi, h〉T ext

η (K) +
〈
∇Xρi, v

〉
T int
η (K)

)
=∇Kh,vF (η).

6.2 Dense subsets of L2(K(X),Gθ)
Let Gλ be a fixed Levy measure with Levy intensity measure λ on R+. In
order to obtain a Dirichlet form, we will have to show that the corresponding
bilinear form is densely defined in L2(K(X),Gλ). It is sufficient to prove

FC∞b (K(X), C∞0 (X)) ⊂ L2(Gλ) := L2(K(X),B(K(X)),Gλ) is dense,

which is the task of this section.

Remark 6.2.1. In the case of a configuration space Γ(Rd) over Rd, the
dense set one normally considers is FC∞b (Γ(Rd), C∞0 (Rd)). Since K(X) can
be embedded as a topological subspace in Γ(X̂) and Gθ(K(X)) = 1, the set
FC∞b (K(X), C∞0 (R+ ×X)) lies dense in L2(K(X),Gθ).

Although this set is large enough to construct a Dirichlet form on it, we
have to prove that FC∞b (K(X), C∞0 (X)) ⊂ L2(K(X),Gθ) is dense because
the gradient ∇K(X) only act on cylindrical functions of the latter class.

A general strategy for showing the denseness of cylindrical func-
tions

As a motivation for our strategy, we first of all repeat some facts about the
Borel σ-algebra of the underlying space X and cylindrical functions.
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Remark 6.2.2.
As in [MR92, Section II.3a)], let us suppose for this motivation that S is a
locally convex topological real vector space which is a Suslin space, i.e. the
continuous image of a complete separable metric space.

1. [Bad70, Exposé n0 8, N0 7 Corollaire], as well as [Sch73, Part II,
Ch. I, Thm. 3, p.162], implies that the Borel σ-algebra of S, B(S),
coincides with the one generated by the dual space of S, i.e.

B(S) = σ(S ′), (6.2.1)

where S ′ denotes the topological dual space of S.

2. By [Sch73, Part II, Ch. I, Lemma 4, p.162] there exists a countable
subset of S ′ separating the points in S. Let

FC∞b (S, S ′) :=
{
f(l1, . . . , lN) |N ∈ N, f ∈ C∞b (RN), l1, . . . , lN ∈ S ′

}
denote the set of cylindrical functions.

3. By the Lindelöf property, one gets that FC∞b (S, S ′) separates the points
in S.

4. Using (6.2.1), one shows that (cf. [Hag08, Proof of Thm 4.1.15, (a)
Claim, P.52], resp. cf. the technique below for the denseness argument)

FC∞b (S, S ′) ⊂ L2(S,B(S), µ) dense w.r.t. L2(S, µ),

where µ is a probability measure on (S,B(S)).

Unfortunately, we do not have these nice properties for the cone K(X).
Thus, we need more arguments to get the point separating set and to deduce
the denseness result.

6.2.1 A set of point separating functions

We show that there exists a countable subset SK of FC∞b (K(X), C∞0 (X))
which separates the points of K(X). Since X is separable, there exists a
countable set DX of points which lies dense in X, i.e.,

∀x ∈ X, r > 0, ∃q ∈ DX : d(x, q) ≤ r,

where d := dX : X ×X → R denotes the metric in X. We denote for each
r ∈ R the ball with radius r around q ∈ X by

Br(q) := {x ∈ X| d(x, q) ≤ r} and Br := Br(0). (6.2.2)
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Definition 6.2.3. We consider the countable family of functions

SK :=
⋃
N∈N

⋃
q∈DX

⋃
r∈Q

{cN(〈·, ϕq,r〉)} ⊂ FC∞b (K(X), C∞0 (X)).

Here, we choose cN ∈ C∞b (R) monotone such that
cN(r) ≥ −1 if r < 0
cN(r) = r if 0 ≤ r ≤ N
cN(r) ≤ N + 1 if N ≤ r

 (6.2.3)

and ϕq,r ∈ C∞b (X) with (cf. (6.2.2))

1Br/10(q) ≤ ϕq,r ≤ 1Br(q). (6.2.4)

Remark 6.2.4 (Existence of these "spiked" functions).
The function ϕq,r has a “spike“ centered at q of heights 1.

1. In the case of X being Rd, d ∈ N, we can obtain these functions in the
following way: We define for ε > 0 gε ∈ C∞0 (X) such that supp gε ⊂ Bε

and obtain ϕq,r ∈ C∞0 (X) by setting

ϕ̃q,r(·) :=

{
1 if d(·, q) ≤ r

2
,

0 else,

}
= 1Br/2(q)

and ϕN,q,r := gr/10 ? ϕN,q,r, where ? denotes the convolution of two
functions.

2. In the general case of X being a connected Riemannian manifold, the
existence of the functions ϕq,r, q ∈ X and r ∈ R, follows by the exis-
tence of smooth bump functions (cf. [Lee03, Proposition 2.26,P.55]): If
r ≤ 0, then we choose ϕq,r = 0. Otherwise, we apply the mentioned re-
sult for the closed set Br/10(q) and the open set {x ∈ X|dX(x, q) < r/2}.
Here, we used that the ("distance") metric d = dX , which corresponds
to the Riemannian metric, exists for any connected Riemannian man-
ifold and that its metric topology is the same as the original manifold
topology (cf. [Lee03, Proposition 11.20, P.278]).

Proposition 6.2.5. The countable set SK separates the points of K(X).

Proof. First, we sketch the idea of the proof: Fix {η, η′} ∈ K(X). Initially
we find a compact set AN ∈ R+×X on which the two elements η, η′ ∈ K(X)
differ. Then we consider the function ϕ0,N being supported by BN+1. If the
associated function in S does not separate the points, we ”change the spike
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of ϕ0,N “ and choose an ”appropriately spiked function ϕq,r“ that separates η
and η′.

It is important to identify a correct ”spike”. Therefore, we will order the
points of η and η′ lying in the strip R+ × BN+1 appropriately, consider the
first point x̂d which belongs only to one of them and does not lie on the
border of the strip and ”cut“ the sum over the marks of the ordered points.

Fix η, η′ ∈ K(X): η 6= η′ and consider the covering (AN)N∈N of R+ ×X,
where AN :=

([
1
N
, N
]
×BN

)
. We find N ∈ N such that there exists x̂? ∈

η ∩ AN with x̂? 6= x̂′ for all x̂′ ∈ η′ ∩ AN or x̂′? ∈ η′ ∩ AN with x̂′? 6= x̂ for all
x̂ ∈ η ∩ AN . (From now on, ′ indicates a property related to η′.) Set

M̃ := 〈1BN+1
, η〉 <∞, M ′ := 〈1BN+1

, η′〉 <∞ and
M := max(M,M ′).

Here, they are finite by the definition of K(X) (cf. (3.1.1)).

If 〈η, ϕ0,N〉 6= 〈η′, ϕ0,N〉, then 〈·, ϕ0,N〉 separates these points and we
choose cM(〈·, ϕ0,N〉) ∈ SK(X) to separate η and η′.

Otherwise, we have to identify the correct "spike": We count some points
of η and η′ lying in the strip R+×BN+1: Let us define for the fixed parameter
N and M the set

B := BN,M :=]0,M ]×BN+1.

It contains all the points of the restriction of η, resp. η′, to the strip R+ ×
BN+1. We enumerate the points of ηB, resp. η′B, lying in B by sorting them
by the size of their marks, i.e.

ηB =

|ηB |⋃
n=1

{x̂n} : (M̃ ≥) s1 ≥ s2 ≥ · · · ≥ sn ≥ . . . and

η′B =

|η′B |⋃
n=1

{x̂′n} : (M ′ ≥) s′1 ≥ s′2 ≥ · · · ≥ s′n ≥ . . . .

Furthermore, we assume that the points of η′B are ordered such that the or-
dering of η′B ∩ ηB in η′B is the same as in ηB. (This is possible because for
each mark there are at most finitely many points x̂ having that mark.)

For the next step we need a formal fail safe for the case that one of the ele-
ments has just finitely many points in the strip and they are ”contained“ in the
other one. If |ηB| < |η′B|, we pick x1 ∈ X\{x1, . . . , x|ηB |, x

′
1, . . . , x

′
|ηB |, x

′
|ηB |+1}
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and set s|ηB |+1 = 0 and x|ηB |+1 = x1. If |η′B| < |ηB|, we do a similar defini-
tion, namely we choose x′1 ∈ X\{x1, . . . , x|η′B |, x|η′B |+1, x

′
1, . . . , x

′
|η′B |
} and set

s′|η′B |+1 = 0 and x′|η′B |+1 = x′1.

Fix d ∈ N to be the smallest index such that the corresponding ”points“
do not lie both in η and η′ and on the border of the strip, i.e., such that(

xd 6= x′d or sd 6= s′d

)
and(

d(xd, 0) < N + 1 or d(x′d, 0) < N + 1
)
.

(At the latest this will happen at x̂d = x̂? or x̂′d = x̂′?.)
If xd = x′d, then w.l.o.g. s′d ≤ sd. (Otherwise we change the role of η and

η′.) If xd 6= x′d, then w.l.o.g. d(xd, 0) < N + 1 (It is not on the border of the
strip).

We will identify the ”correct” spike, i.e., the correct function ϕq,r, which
separates the points. To this end, we choose t′ ∈ N such that for all n ≥ t′,
n ∈ N, the sum of the remaining marks is small, i.e.,

|η′B |∑
k=n+1

s′k ≤ εd :=
1

2
(sd − s′d̃),

where
d̃ := min{k ≥ d|s′k < sd}

is the smallest index after d such that the corresponding mark differs from
sd and set s′∞ := 0. If xd = x′d, then d̃ = d. If |η′B| <∞, we choose t′ = |η′B|.

The next idea is that there shall be no difference between the functions
fN and ϕN for the first t′ points of η′B except maybe for the point xd. To this
end, we calculate the minimal distance of xd to these points and the border
of the strip. In detail, we choose r ∈ Q such that

0 < r ≤min{d(xd, x
′
k)
∣∣1 ≤ k ≤ t′, x′k 6= xd

}
∧
(
N + 1− d(xd, 0)

)
.

Due to the definition of K(X), there is at most one x′k, k ≤ |η′B|, such that
x′k = xd. Thus, we set

d′ := min{k|x′k = xd} and x′∞ := 0.

As a last step we choose a q ∈ DX such that d(xd, q) ≤ r
10

and choose

ϕq,r ≤ 1.
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This ϕq,r separates η and η′:

〈ϕq,r, η〉 − 〈ϕq,r, η′〉 =

|ηB |∑
k=1
k 6=d

skϕq,r(xk)︸ ︷︷ ︸
≥0

+ sdϕq,r(xd)

−
t′∑
k=1
k 6=d′

s′kϕq,r(x
′
k)︸ ︷︷ ︸

=0

− s′d′ϕq,r(x′d′)︸ ︷︷ ︸
=s′

d′ϕq,r(xd)

)
−

|η′B |∑
k=t′+1
k 6=d′

s′kϕq,r(x
′
k)︸ ︷︷ ︸

≤1

≥(sd − s′d′)ϕq,r(xd)− εd

=(sd − s′d′)−
1

2
(sd − s′d̃)

≥(sd − s′d′)−
1

2
(sd − s′d′) > 0, (6.2.5)

where, by the definition and ordering of the points, we have s′d′ < sd because
(sd, xd) 6= (s′d′ , xd) and d(xd, 0) < N + 1. Since d̃ is the smallest index k such
that s′k < sd, we get s′d′ ≤ s′

d̃
.

Furthermore, we choose Ñ ∈ N such that

Ñ ≥ max (〈ϕq,r, η〉, 〈ϕq,r, η′〉) <∞.

Hence (using also (6.2.5)), cÑ(〈ϕq,r, ·〉) ∈ SK separates η and η′. Therefore,
SK separates the points in K(X).

6.2.2 Denseness criterium

We show that FC∞b (K(X), C∞0 (X)) ⊂ L2(K(X), µ) is dense, where µ ∈
M1(K(X)).

Definition 6.2.6. Let (Z,B) be a Borel space and F a set of B-measurable
functions f : Z → R. Then we define for k ∈ N ∪ {0,∞} the set of finitely
based functions FCk

b (Z,F) by

h ∈ FCk
b (Z,F) :⇔ h(·) = g(f1(·), . . . , fN(·)), (6.2.6)

where N ∈ N, g ∈ Ck
b (RN) and fi ∈ F for 1 ≤ i ≤ N .

Theorem 6.2.7. Let (Z,B) be a standard Borel space3 and µ be a finite
measure on it. Assume that there exists a countable set and exists l ∈ N ∪
{0,∞} such that

S := {fn|n ∈ N} ⊂ FC l
b(Z,F) =: M

3We recall its definition in Section A.1.
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and that S separates the points of Z. Here, F is a set containing measurable
functions f : Z → R.

Then for any k ∈ N ∪ {∞}

M ⊂ Lk(µ) := Lk(Z,B, µ) dense w.r.t. Lk(µ). (6.2.7)

Before we prove this theorem, we note that it is sufficient for our purpose:

Corollary 6.2.8. For any finite measure µ on (K(X),B(K(X)))

FC∞b (K(X), C∞0 (X)) ⊂ L2(µ) := L2(K(X),B(K(X)), µ)

is dense w.r.t. L2(µ). In particular, this holds for µ = Gθ.

Proof. Since K(X) is homeomorphic to Γf (X̂) ∈ B(Γ(X̂)) (cf. Subsection
3.1.2 and Remark 2.2.8), we obtain by Theorem A.1.6 that (K(X),B(K(X)))
is a standard Borel space.

Therefore, Proposition 6.2.5 and Theorem 6.2.7 yield the claim, where we
consider the following set of measurable (cf. Lemma 2.1.1) functions

F := {〈φ, ·〉|φ ∈ C∞0 (X)}.

Proof of Theorem 6.2.7. We use a monotone class argument (see [Röc05,
Definition 1.11.7, Satz 1.11.11, p.54f] or [Pro05, I Theorem 8]):

H := M
Lk(µ) ⊂ Lk(µ)

is a monotone vector space.4

4Clearly, 1 ∈ H. Let (fn)n∈N be a sequence in H such that 0 ≤ f1 ≤ f2 ≤ · · · ≤
fn ↗ f and f bounded. We have to prove that f ∈ H. By the Lebesgue dominated
convergence theorem and a diagonal argument there exists a sequence gn ∈M such that
f = Lk(µ) − limn→∞ gn ∈ H: Indeed, since the sequence (fn)n∈N(∈ Lk(µ)) converges
pointwisely monotone increasing to f and is bounded by f ∈ L∞(µ) ⊂ Lk(µ), the Lebesgue
dominated convergence theorem gives us that

Lk(µ)− lim
n→∞

fn = f

and thus w.l.o.g (eventually considering a subsequence) ‖fn − f‖Lk(µ) ≤
1
n . For each fn ∈

H there exists a sequence gn,m ∈ M such that fn = Lk(µ) − limm→∞ gn,m. Furthermore
w.l.o.g for all m ∈ N : m ≥ n we have ‖fn − gn,m‖Lk(µ) ≤

1
n .

Defining gn := gn,n we obtain

‖gn − f‖Lk(µ) ≤ ‖gn,n − fn‖Lk(µ) + ‖fn − f‖Lk(µ) ≤
2

n

and hence f ∈ H.
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Moreover, M is a set of bounded functions, which is closed under multi-
plication. Then (by monotone classes, e.g. [Röc05, Satz 11.1.11] or [Pro05,
I Theorem 8]) σ(M)b ⊂ H. Here, σ(M)b denotes the set of all bounded,
σ(M)-measurable functions.

Claim: σ(M)
!

= B (6.2.8)

This yields

M ⊂ L∞(µ)
(6.2.8)

= σ(M)b

monotone
classes
⊂ H = M

Lk(µ) (6.2.9)

and hence we are done because the indicator functions are measurable.

Proof of the Claim(cf (6.2.8)):
Since we would like to apply Kuratowski’s Theorem (cf. Theorem A.1.7),
we set D := σ(S) = σ({fn | n ∈ N}), which is countably generated, and
consider

id : (Z,B) → (Z,D)
z 7→ z.

The function id is one-to-one and measurable because the fn are measurable.
(Z,D) is even a separable Borel space (cf. Definition A.1.4) because

∀z ∈ Z: {z} !
=
⋂
n

{fn = fn(z)} ∈ D.

The subset inclusion is obvious. z is the only element in the intersection
because S is point separating; and thus for every y 6= z there exists a n′ ∈ N
such that fn′(y) 6= fn′(z).

Hence, by Kuratowski’s Theorem (cf. Theorem A.1.7) id−1 is an isomor-
phism and B = D. Therefore, B = D ⊂ σ{M} ⊂ B.

Remark 6.2.9 (Further extensions). The above proof can be generalized:

1. The arguments work for any complete, separable metric space X, for
which the countable set SK(X) (cf. Definition 6.2.3) exists and m(A) <
∞ for all A ∈ B(X) bounded.

2. The method to show the denseness also works

(a) for configuration spaces. Then we consider sx = 1 and

Γ(X) = {η ∈ K(X)|∀Λ ∈ Bc(R+ ×X)∀x̂ ∈ ηΛsx = 1}.

(b) C∞0 (X) being replaced by {f : X → {0, 1, 2} measurable}.
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6.3 Integration by parts and Dirichlet forms
Now we proceed to construct Dirichlet forms via the scheme that we outlined
at the beginning of this chapter.

Let X still be a connected, orientated, separable C∞-Riemannian mani-
fold X with Riemannian metric dX . It is equipped with its Borel σ-algebra
B(X). Let

m(dx) = ρv(dx) (6.3.1)

be a non-atomic Radon measure on the state space X with Riemmanian
volume element v, where ρ > 0 v-a.e. is a density such that ρ

1
2 ∈ H1,2

loc (X, v),
which denotes the local Sobolev space of L2

loc(X, v).
Further on, we denote the logarithmic derivative of m by

X 3 x 7→ βm(x) :=
∇Xρ(x)

ρ(x)
∈ Tx(X), (6.3.2)

where ∇X denotes the gradient on X and βm := 0 on {ρ = 0}.

6.3.1 Intrinsic motion for Levy measures

We do not have a quasi-invariance principle, thus we cannot go on with the
construction scheme at the second point (as done, e.g., in [AKR98a]). This
is due to the fact that the measure on R+ is infinite.

Let λ be a Levy measure on R+ with finite first moment, i.e., m1(λ) <∞,
and Gλ the corresponding Levy process (cf. Theorem 3.1.7).

Definition 6.3.1. For any v ∈ V0(X) we define the intrinsic logarithmic
derivativeof Gλ along v as

K(X) 3 η 7→ 〈βGλint(η), v〉T int
η (K) := 〈η, βmv 〉

:=

∫
X

〈βm(x), v(x)〉Tx(X) + divXv(x)η(dx),

where divX is the divergence on X with respect to m.

Remark 6.3.2. The intrinsic logarithmic derivate is independent of λ.

Lemma 6.3.3. Let v ∈ V0(X). If the first moment of λ exists, i.e.,

m1(λ) :=

∫
R+

sλ(ds) <∞, (6.3.3)
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then 〈βGλint(·), v〉T int
· (K) ∈ L1(K,Gλ). Moreover, if the second one is finite, i.e.,

m2(λ) :=

∫
R+

s2λ(ds) <∞, (6.3.4)

then
〈βGλint(·), v〉T int

· (K) ∈ L2(K,Gλ).

Proof. We define

f(x) := 〈v(x), βm(x)〉Tx(X) + divXv(x), x ∈ X.

We recall (compare Theorem 3.2.6) the formula for the first and second mo-
ments of the measure Gλ, namely for all finitely supported Borel-measurable
function f ≥ 0 we have∫

K(X)

〈η, f〉Gλ(dη) = m1(λ)〈f,m〉 resp. (6.3.5)∫
K(X)

〈η, f〉2Gλ(dη) = m2(λ)〈f 2,m〉+m2
1(λ)〈f,m〉2. (6.3.6)

Therefore, it is sufficient to show that f ∈ L1(X,m) ∩ L2(X,m). To this
end, we use the assumption that ρ

1
2 ∈ H1,2

loc (X, v) to show that f ∈ L1(X,m).
Once obtained this property we deduce by the compactness of the support
of v that each f is even in L1(X,m) ∩ L2(X,m).

First of all, we note that, due to v ∈ V0(X), X being finite-dimensional
and (6.3.5), the integral over the divergence part is finite, i.e.,∫

X

divXv(x)m(dx) ≤ Cm(Λ) <∞,

where we choose C > 0 and Λ ∈ Bc(X) appropriately. Moreover, by Cauchy-
Schwartz∫

X

〈v(x), βm(x)〉Tx(X)m(dx) ≤
∫
X

|v(x)|1/2Tx(X) · |v(x)|1/2Tx(X)|β
m(x)|Tx(X)m(dx)

≤
(∫

X

|v(x)|Tx(X)︸ ︷︷ ︸
≤C1Λ

m(dx)

)1/2

·
(∫

X

|v(x)|Tx(X)︸ ︷︷ ︸
≤C1Λ

|βm(x)|2Tx(X)m(dx)

)1/2

≤ C

(∫
Λ

ρ(x)v(dx)

) 1
2

(∫
Λ

∣∣∣∣∇Xρ

ρ
(x)

∣∣∣∣2
Tx(X)

ρ(x)v(dx)

) 1
2

.
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Since ρ
1
2 ∈ H1,2

loc (X, v), i.e.,∫
Λ

∣∣∣∣1ρ>0
∇Xρ

ρ
1
2

∣∣∣∣2
TxX

+ |ρ
1
2 |2v(dx) <∞ Λ ∈ Bc(X),

the above product is finite. To show f ∈ L2(X,m), we remark∫
X

|f(x)|2m(dx) =

∫
X

|v(x)|2Tx(X)|βm(x)|2Tx(X)m(dx)

≤C2

∫
Λ

|βm(x)|2Tx(X)m(dx)

and conclude, as above, the assertion.

Having a closer look at the last proof, we get

Corollary 6.3.4. Let p ∈ N such that for all k ∈ {1, . . . , p}

mk(λ) :=

∫
R+

skλ(ds) <∞. (6.3.7)

Then ρ1/2 ∈ H1,p
loc (X, v) implies

〈βGλint(·), v〉T int
· (K) ∈

⋂
1≤k≤p

Lk(K,Gλ).

For Gλ = Gθ, θ > 0, this holds for any p ∈ N. In particular, in the basic
model setting, we have

〈βGθint(·), v〉T int
· (K) ∈

⋂
1≤k<∞

Lk(K,Gλ).

Theorem 6.3.5. Let m1(λ) <∞. Then for all F, G ∈ FC1
b (K(X), C1

0(X))
and any v ∈ V0(X) we have an integration by parts formula∫

K(X)

(∇Kint,vF )(η)G(η)Gλ(dη) = −
∫
K(X)

F (η)(∇Kint,vG)(η)Gλ(dη)

−
∫
K(X)

F (η)G(η)〈βGλint(η), v〉T int
η (K)Gλ(dη).

Proof. Let λn(dt) := 1[ 1
n
,∞[(t)λ(dt), which is finite. By Theorem 3.1.7, for

each λn there exists a Poisson measure Pλn . By definition, the gradient only
“notes” changes in a finite set on the position space, it is continuous and
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〈η − ηΛN ,1∆〉, where ∆ ∈ Bc(X): ΛN ∈ R+ × ∆, becomes for ΛN ↗ X̂
arbitrarily small. Hence, Lebesgue’s dominated convergence theorem yields∫

K(X)

(∇Kint,vF )(η)Gλ(dη) = lim
ΛN∈Bc(R+×X)

ΛN↗R+×X

∫
K(X)

(∇Kint,vF )(ηΛN )Gλ(dη)

= lim
ΛN∈Bc(R+×X)

ΛN↗R+×X

lim
n→∞

∫
K(X)

(∇Kint,vF )(ηΛN )Gλn(dη)

Now we have a finite intensity measure λn on R+. Thus, we can use the
assertion of [KdSS98, Theorem 3.5], which is valid in this setting.5 Hence,
the last line equals

− lim
ΛN∈Bc(R+×X)

ΛN↗R+×X

lim
n→∞

∫
K(X)

F (ηΛN )〈βGλint(η), v〉T int
η (K)Gλn(dη)

=−
∫
K(X)

F (η)〈βGλint(η), v〉T int
η (K)Gλ(dη),

where the finiteness follows by Lemma 6.3.3.

Adjoint of the intrinsic gradient

Definition 6.3.6. A function V is called an intrinsic vector field iff it is of
the following form

V (η) :=
N∑
i=1

gi(η)vi

where for i = 1, . . . , N gi ∈ FC∞b (K(X), C∞0 (X)) and vi ∈ V0(X). By
Vcyl,X(K(X)) we denote the set of all these intrinsic vector fields.

Lemma 6.3.7. Let V1, V2 ∈ Vcyl,X(K(X)). If m1(λ) <∞, then∫
K(X)

〈V1(η), V2(η)〉T int
η (K) Gλ(dη) <∞.

Proof. The intrinsic vector fields are bounded and finitely supported. Thus
the integral is finite because the first moments of the Levy measure λ are

5The cutoff in R+ does not void the assertion because the quasi-invariance property of
Gλn holds (cf. [KdSS98, Proposition 2.8]) and the integration by parts formula is obtained
by using this property.
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finite (cf. (6.3.5)): Indeed, there exist Λ ∈ Bc(X) and C, C̃ > 0 such that∫
K(X)

〈V1(η), V2(η)〉T int
η (K) Gλ(dη)

≤C
N∑
i=1

Ñ∑
j=1

∫
K(X)

∫
X

〈vi, ṽj〉Tx(X) 1Λ(x)η(dx)Gλ(dη)

≤C̃
∫
K(X)

〈1Λ, η〉 Gλ(dη) = C̃m1(λ)m(Λ) <∞. (6.3.8)

Theorem 6.3.8. Fix V :=
∑N

i=1 givi ∈ Vcyl,X(K(X)). Let λ be a Levy mea-
sure on R+ with m1(λ) +m2(λ) <∞. Then for all F ∈ FC1

b (K(X), C1
0(X))∫

K(X)

〈
∇KintF (η), V (η)

〉
T int
η (K)

Gλ(dη) =

−
∫
K(X)

F (η)
N∑
i=1

〈
∇Kintgi, vi

〉
T int
η (K)

Gλ(dη)

−
∫
K(X)

F (η)〈βGλint(η), V (η)〉T int
η (K)Gλ(dη), (6.3.9)

where all the integrals are finite. We can reformulate it as((
∇Kint

)?
Gλ
V
)

(η) =−
N∑
i=1

〈
∇Kintgi(η), vi

〉
T int
η (K)

− 〈βGλint(η), V (η)〉T int
η (K). (6.3.10)

Proof. The finiteness of the involved integrals follows by Lemma 6.3.7. The
integration by parts formula (cf. Theorem 6.3.5) yields the result. Indeed,∫

K(X)

〈(
∇KintF

)
(η), V (η)

〉
T int
η (K)

Gλ(dη)

=
N∑
i=1

∫
K(X)

gi(η)
〈
∇KintF (η), vi

〉
T int
η (K)

Gλ(dη)

=
N∑
i=1

∫
K(X)

F (η)
(
−∇Kint,vigi(η)− 〈βGλint(η), gi(η)〉T int

η (K)

)
Gλ(dη)

=

∫
K(X)

F (η)

(
−

N∑
i=1

〈
∇Kintgi(η), vi

〉
T int
η (K)

− 〈βGλint(η), V (η)〉T int
η (K)

)
Gλ(dη)

=

∫
K(X)

F (η)
((
∇Kint

)?
Gλ
V
)

(η)Gλ(dη),
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where we used the definition of the adjoint in the last line.

Intrinsic bilinear form

We define for F, G ∈ FC∞b (K(X), C∞0 (X)) a gradient bilinear form, namely

EGλint (F,G) :=

∫
K(X)

〈
∇KintF (η),∇KintG(η)

〉
T int
η (K)

Gλ(dη). (6.3.11)

Remark 6.3.9. By Lemma 6.3.7, EGλint(F,G) is finite and by Theorem 6.2.7
densely defined.

Definition 6.3.10. For F = gF (〈ρ1, η〉, . . . , 〈ρN , η〉) ∈ FC2
b (K(X), C∞0 (X))

we define the intrinsic generator of EGλint

(LGλint F )(η) := −
(
S
K(X)
int F

)
(η)− 〈βGλint(η),

(
∇KintF

)
(η)〉T int

η (K)

= −
(
S
K(X)
int F

)
(η)−

N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)
∫
X

∆Xρi(x)dη(x)

−
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)
∫
X

〈βm(x),∇Xρi(x)〉Tx(X)dη(x), (6.3.12)

where ∆X denotes the Laplace-Beltrami operator on X and(
S
K(X)
int F

)
(η) :=

N∑
l,k=1

∂l∂kgF (〈ρ1, η〉, . . . , 〈ρN , η〉)〈∇Xρk,∇Xρl〉T int
η (K).

Corollary 6.3.11. Let m1(λ) + m2(λ) < ∞. We rewrite the bilinear form
using the intrinsic generator: For all F,G ∈ FC2

b (K(X), C∞0 (X)) we obtain

EGλint(F,G) =

∫
K(X)

(LGλint F )(η)G(η)Gλ(dη). (6.3.13)

Proof. The result follows by Theorem 6.3.8.

Proposition 6.3.12. Let m1(λ) + m2(λ) < ∞. Then the bilinear form
(EGλint ,FC∞b (K(X), C∞0 (X))) is well-defined, positive definite, symmetric and
closable.

Proof. The symmetry and positive definiteness of the form are clear:

EGλint (F,G) =

∫
K(X)

〈∇KintF (η),∇KintG(η)〉T int
η (K)Gλ(dη) = EGλint (G,F ) (6.3.14)
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and

EGλint (F, F ) =

∫
K(X)

〈∇KintF (η),∇KintF (η)〉T int
η (K)Gλ(dη) ≥ 0. (6.3.15)

The closability now follows by [MR92, Proposition I.3.3].

Intrinsic Dirichlet form

We denote the closure of (EGλint ,FC∞b (K(X), C∞0 (X))) by (EGλint ,D(EGλint )).

Definition 6.3.13. A Dirichlet form (E ,D(E)) is conservative, if

1 ∈ D(E) and E(1, 1) = 0.

Theorem 6.3.14. Let m1(λ)+m2(λ) <∞. The closure (EGλint ,D(EGλint)) of the
intrinsic bilinear form (EGλint ,FC∞b (K(X), C∞0 (X))) is a conservative Dirich-
let form.

Proof. We give the details to get the contraction property. Let ρε ∈ C2
b (R):

1.) ρε : R→ [−ε, 1+ε] and ρ′ε ≤ 1, 2.) ρε(t) = t ∀t ∈ [0, 1] and 3.) ∀t1 ≥ t2 :
ρε(t1) ≤ ρε(t2). Then |ρε(t)| ≤ |ρ′ε(t)||t| ≤ |t| because ρε(0) = 0 and ρ′ε ≤ 1.
Hence,

EGλint (ρε ◦ F, ρε ◦ F )

=

∫
K(X)

〈∇Kint(ρε ◦ F )(η),∇Kint(ρε ◦ F )(η)〉TηK(X)Gλ(dη)

=

∫
K(X)

∫
X

N∑
i,j=1

∂i(ρε ◦ gF )(〈ρ1, η〉, . . . , 〈ρN , η〉)

∂j(ρε ◦ gF )(〈ρ1, η〉, . . . , 〈ρN , η〉)〈∇Xρi(x),∇Xρj(x)〉Tx(X)η(dx)Gλ(dη),

=

∫
K(X)

(ρ′ε(F (η)))2

∫
X

N∑
i,j=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)

∂jgF (〈ρ1, η〉, . . . , 〈ρN , η〉)〈∇Xρi(x),∇Xρj(x)〉Tx(X)η(dx)Gλ(dη)

≤
∫
K(X)

∫
X

N∑
i,j=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)

∂jgF (〈ρ1, η〉, . . . , 〈ρN , η〉)〈∇Xρi(x),∇Xρj(x)〉Tx(X)η(dx)Gλ(dη)

= EGλint (F, F ).

By [MR92, Propositions I.4.7 and I.4.10] the closure of the bilinear form is
in fact a Dirichlet form. That it is conservative is obvious.

Example 6.3.15. Chosing λ(dt) = θt−1e−tdt, we obtain a Dirichlet form
EGθint for the Gamma measure Gθ.
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6.3.2 Extrinsic motion related to Gibbs measures

In this subsection we construct a Dirichlet form describing the motion of
marks. To this end, we enter the general scheme at the second point using the
(extrinsic) quasi-invariance property of Gθ. By [LS01] this quasi-invariance
property only holds for particular measures. Of those, the Gamma measures
are prominent examples (for details cf. [LS01, Theorem 1]). Hence, we as-
sume from now on that λ = λθ, θ > 0 fixed.

We deduce the Dirichlet form describing the movement of positions (and
marks, cf. Subsections 6.3.3 and 6.3.4) w.r.t. a fixed Gibbs measure µ
corresponding to the pair potential φ. From now on, we assume that (φ)K(X)

holds and that

|K′∆| <∞ ∀∆ ∈ Bc(X). (6.3.16)

Remark 6.3.16. The property stated in (6.3.16) is equivalent to{
∆Q
∣∣∆ ∈ Bc(X)

}
⊂ Qc(X),

where we use the notation introduced in (5.1.15). Hence, the assumption
(6.3.16) allows us to use for the construction of the Dirichlet forms the usual
cylinder functions

FC∞b (K(X), C∞0 (X)).

One can avoid this condition. For k ∈ N∞0 let Ck
0,Q(X) denote the set of

k-times continuously differentiable functions f that vanish outside of a set
∆f ∈ Q(X). If (6.3.16) does not hold, one can rewrite all the results of
Chapter 6 using Ck

0,Q(X) instead of Ck
0 (X), e.g.,

FCb(K(X), C0,Q(X)) replaces FCb(K(X), C0(X)).

But for the simplicity and clarity of the outline, we assume it.

Adjoint of the extrinsic directional derivative

Before we obtain the integration by parts formula, we introduce

Definition 6.3.17. For each h ∈ C0(X) and η ∈ K(X) we define the fol-
lowing extrinsic logarithmic derivative

〈βµext(η), h〉T ext
η (K) :=θ〈h,m〉 − 〈h, η〉 − β 〈h, φ〉Tη⊗η , (6.3.17)

where

〈h, φ〉Tη⊗η :=

∫
K(X)

∫
K(X)

φ(x, y) (h(x) + h(y)) η(dx)η(dy). (6.3.18)
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Lemma 6.3.18. Let (φ)K(X) (and (6.3.16)) hold. For each h ∈ C0(X), we
have

〈βµext(η), h〉T ext
η (K) ∈

⋂
p∈N

Lp(K(X), µ). (6.3.19)

Proof. For each k ∈ N0 there exists ∆̃ ∈ Qc(X) and C > 0 such that∫
K(X)

|βµext(h, η)|k µ(dη) ≤ Ck

∫
K(X)

(
1 + 〈1∆̃, η〉+

〈
1U∆̃

, η
〉2
)k
µ(dη)

≤ Ck

2k∑
j=0

(
2k

j

)∫
K(X)

〈
1U∆̃

, η
〉j
µ(dη) <∞, (6.3.20)

where we deduce the finiteness by Theorem 5.3.10.

Integration by parts for the extrinsic directional derivative

Theorem 6.3.19. Let (φ)K(X) (and (6.3.16)) hold. Then we have for F,G ∈
FC∞b (K(X), C0(X)) and h ∈ C0(X) the following extrinsic integration by
parts formula∫

K(X)

∇Kext,hF (η)G(η)µ(dη) = −
∫
K(X)

F (η)∇Kext,hG(η)µ(dη)

−
∫
K(X)

F (η)G(η)〈βµext(η), h〉T ext
η (K)µ(dη).

It can be rewritten as((
∇Kext,h

)?,µ
G
)

(η) =− 〈∇KextG(η), h〉T ext
η (K)

−G(η)〈βµext(η), h〉T ext
η (K). (6.3.21)

Remark 6.3.20. This integration by parts formula for the Gibbs measure
µ is independent of the concrete structure of the Gibbs measure: It only
depends on the potential φ (and, of course, on the Gamma measure Gθ and
the direction h ∈ C0(X) of the directional derivative).

Proof of Theorem 6.3.19. To prove this result we use the (DLR) property
of the measure µ. The integrability of the logarithmic derivative is given in
Lemma 6.3.18.

By the product rule, it is enough to prove the integration by parts formula
for G = 1. Fix ∆̃ ∈ Qc(X) such that F (η∆̃) = F (η) and h = h1∆̃. Let
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U∆̃ ∈ Qc(X) be chosen as in (FR). In particular, φ(x, y) = 0 if x ∈ ∆̃ and
y /∈ U∆̃. Let ∆ ∈ Qc(X) be such that U∆̃ ⊂ ∆.

Using the (DLR) equation (cf. (6.3.18) in Definition 5.3.5), we get∫
K(X)

∇Kext,hF (η)µ(dη) =

∫
K(X)

∇Kext,hF (η∆)µ(dη)

=

∫
K(X)

∫
K(∆)

∇Kext,hF (η∆ ∪ ξ∆c)π∆(dη∆|ξ)µ(dξ)

=

∫
K(X)

1

Z∆(ξ)

∫
K(∆)

∇Kext,hF (η∆)e−βH∆(η∆|ξ)G∆
θ (dη∆)µ(dξ), (6.3.22)

where G∆
θ denotes the Gamma measure on K(∆). We calculate the inte-

gration by parts formula for the inner integral. Since each factor in the
integrals below is continuously differentiable and the logarithmic derivative
is in

⋂
p∈N L

p(K(X), µ) (cf. Lemma 6.3.18), we may interchange the differ-
entiation and integration.∫

K(∆)

∇Kext,hF (η)e−βH∆(η∆|ξ)Gθ(dη)

=
d

dt

∫
K(∆)

F (ethη)e−βH∆(η∆|ξ)Gθ(dη)

∣∣∣∣
t=0

=
d

dt

∫
K(∆)

F (η)e−βH∆(e−thη∆|ξ)dMthGθ(η)

dGθ(η)
dGθ(η)

∣∣∣∣
t=0

=
d

dt

∫
K(∆)

F (η) exp
(
− βH∆(e−thη∆|ξ)− θ〈th,m〉 − 〈e−th − 1, η〉

)
dGθ(η)

∣∣∣∣
t=0

(6.3.23)

We calculate the derivate of the relative energy:

d

dt
H∆(e−thη|ξ)

∣∣∣∣
t=t0

=
d

dt

( ∑
x,y∈τ(η)∩∆

e−th(x)sxe
−th(y)syφ(x, y) +

∑
x∈τ(η)∩∆
y∈τ(ξ)∩∆c

e−th(x)sxsyφ(x, y)

)∣∣∣∣
t=t0

=−
∑

x,y∈τ(η)∩∆∩∆̃

(
h(x) + h(y)

)
e−t0h(x)sxe

−t0h(y)syφ(x, y)

−
∑

x∈τ(η)∩∆∩∆̃
y∈τ(ξ)∩∆c∩U∆̃

h(x)e−t0h(x)sxsyφ(x, y) (6.3.24)

=− 〈h, φ〉Tη⊗η ,
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where the second sum in (6.3.24) vanishes because U∆̃ ⊂ ∆. Interchanging
integration and differentiation in (6.3.22) and plugging (6.3.24) into (6.3.23),
yields ∫

K(∆)

∇Kext,hF (η)e−βH∆(η∆|ξ)Gθ(dη)

=

∫
K(∆)

F (η)〈βµext(η), h〉T ext
η (K)e

−βH∆(η∆|ξ)Gθ(dη). (6.3.25)

Plugging (6.3.25) back into (6.3.22), we get using the (DLR) equation∫
K(X)

∇Kext,hF (η)µ(dη)

=

∫
K(X)

(
1

Z∆(ξ)

∫
K(∆)

F (η)〈βµext(η), h〉T ext
η (K)e

−βH∆(η|ξ)Gθ(dη)

)
µ(dξ)

=

∫
K(X)

F (η)〈βµext(η), h〉T ext
η (K)µ(dη).

which implies the claim.

Adjoint of the extrinsic gradient

Definition 6.3.21. A function V is called a extrinsic vector field iff it is of
the following form

V (η) :=
N∑
i=1

gi(η)φi

where gi ∈ FC∞b (K(X), C0(X)) and φi ∈ C0(X) for i = 1, . . . , N . By
Vcyl,R+(K(X)) we denote the set of all these extrinsic vector fields.

Remark 6.3.22. For F ∈ FC∞b (K(X), C0(X)), we have∇KextF ∈ Vcyl(K(X)).

Lemma 6.3.23. Let V1, V2 ∈ Vcyl,R+(K(X)), then∫
K(X)

〈V1(η), V2(η)〉T ext
η (K) µ(dη) <∞.

Proof. The extrinsic vector fields are bounded and finitely supported. Thus
the integral is finite because the first moment of µ is finite (cf. (5.3.13)).



6.3. Dirichlet forms 171

Theorem 6.3.24. Fix V :=
∑N

i=1 giφi ∈ Vcyl,R+(K(X)). Let (φ)K(X) (and
(6.3.16)) hold. Then we have for all F ∈ FC1

b (K(X), C0(X))∫
K(X)

〈
∇KextF (η), V (η)

〉
T ext
η (K)

µ(dη) =

−
∫
K(X)

F (η)
N∑
i=1

〈
∇Kextgi(η), φi

〉
T ext
η (K)

µ(dη)

−
∫
K(X)

F (η)〈βµext(η), V (η)〉T ext
η (K)µ(dη), (6.3.26)

where all the integrals are finite. We can reformulate it as

((
∇Kext

)?
µ
V
)

(η) =−
N∑
i=1

〈
∇Kextgi(η), φi

〉
T ext
η (K)

− 〈βµext(η), V (η)〉T ext
η (K). (6.3.27)

Proof. The finiteness of the involved integrals follows by Lemma 6.3.23. Sim-
ilar as in Theorem 6.3.8, we use the integration by parts formula (cf. Theorem
6.3.19) to derive the result.

Extrinsic bilinear form

We define for F,G ∈ FC∞b (K(X), C0(K(X))) the bilinear form

Eµext(F,G) :=

∫
K(X)

〈∇KextF (η),∇KextG(η)〉T ext
η (K)µ(dη). (6.3.28)

Remark 6.3.25. It is finite (cf. Lemma 6.3.23) and densely defined (cf.
Corollary 6.2.8).

Definition 6.3.26. For each F ∈ FC∞b (K(X), C0(X)) we define the extrin-
sic generator for all η ∈ K(X) by

(Lµext F )(η) := −
(
S
K(X)
ext F

)
(η)− 〈βµext(η),∇KextF (η)〉T ext

η (K),

where for all η ∈ K(X)

(S
K(X)
ext F )(η) :=

N∑
l,k=1

∂l∂kgF (〈ρ1, η〉, . . . , 〈ρN , η〉)〈ρk, ρl〉T ext
η (K).
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Corollary 6.3.27. Let (φ)K(X) (and (6.3.16)) hold. We have for F, G ∈
FC∞b (K(X), C0(X)) that

Eµext(F,G) =

∫
K(X)

〈
∇KextF (η),∇KextG(η)

〉
T ext
η (K)

µ(dη)

=

∫
K(X)

(Lµext F )(η)G(η)µ(dη). (6.3.29)

Proof. The claim follows by Theorem 6.3.24. Namely, for an arbitrary cylin-
drical function F (η) = gF (〈ρ1, η〉, . . . , 〈ρN , η〉) ∈ FC∞b (K(X), C0(X)) we
choose φi = ρi for i = 1, . . . , N and

gi(η) := ∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉).

Proposition 6.3.28. Let (φ)K(X) (and (6.3.16)) hold. Then the bilinear
form (Eµext,FC∞b (K(X), C0(X))) is closable, symmetric and positive definite.

Proof. This assertion follows similarly to Proposition 6.3.12 with the obvious
adaptions.

Extrinsic Dirichlet form

We denote the closure of (Eµext,FC∞b (K(X), C0(X))) by (Eµext,D(Eµext)).

Theorem 6.3.29. Let (φ)K(X) (and (6.3.16)) hold. Then (Eµext,D(Eµext)) is a
conservative Dirichlet form.

Proof. The claim follows as in Theorem 6.3.14 with the obvious changes.

6.3.3 Intrinsic motion related to Gibbs measures

From now on, let (φ)K(X) (and (6.3.16)) hold and, in addition, φ ∈ C1(X×X).

Integration by parts for the directional derivative

Before we calculate the integration by parts formula, we introduce

Definition 6.3.30. Let (φ)K(X) (and (6.3.16)) hold and φ ∈ C1(X × X).
For each v ∈ V0(X) and each η ∈ K(X) we define the intrinsic directional
logarithmic derivative

η 7→ 〈βµint(η), v〉T int
η (K) :=〈βGθint(η), v〉T int

η (K) − β
〈
∇Xφ, v

〉
Tη⊗Tη

. (6.3.30)
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Here,

〈βGθint(η), v〉T int
η (K) =

∫
X

〈βm(x), v(x)〉TXx + divXv(x)η(dx)

and

〈∇φ, v〉Tη⊗Tη :=

∫
X

∫
X

(
∇Xφ(x, y), (v(x), v(y))

)
η(dx)η(dy) (6.3.31)

Remark 6.3.31. Note that

〈∇φ, v〉Tη⊗Tη =
∑

x,y∈τ(η)

(
∇Xφ(x, y), (v(x), v(y))

)
sxsy

=
∑

x,y∈τ(η)

(∂1φ(x, y)(v(x)) + ∂2φ(x, y)(v(y))) sxsy. (6.3.32)

Lemma 6.3.32. We have

η 7→ 〈βµint(η), v〉T int
η (K) ∈

⋂
k∈N

Lk(K(X), µ). (6.3.33)

Proof. As in (6.3.20), we get the integrability of 〈βµint(·), v〉T int
· (K).

Theorem 6.3.33. Let (φ)K(X) (and (6.3.16)) hold and φ ∈ C1(X×X). Then
for each v ∈ V0(X) and F,G ∈ FC∞b (K(X), C∞0 (X)) we have an intrinsic
integration by parts formula for the gradient ∇Kint,v:∫

K(X)

(
∇Kint,vF

)
(η)G(η)µ(dη) = −

∫
K(X)

F (η)
(
∇Kint,vG

)
(η)µ(dη)

−
∫
K(X)

F (η)G(η)〈βµint(η), v〉T int
η (K)µ(dη). (6.3.34)

Proof. It is enough to deduce the claim for G = 1. There exists ∆̃ ∈ Qc(X) :
F (η) = F (η∆̃) and v = 1∆̃v. Using the (DLR) property, we have for an
arbitrary ∆ ∈ Qc(X) with ∆ ⊃ U∆̃∫

K(X)

(
∇Kint,vF

)
(η)µ(dη) =

∫
K(X)

(
∇Kint,vF

)
(η∆)µ(dη)

=

∫
K(X)

∫
K(X)

(
∇Kint,vF

)
(η∆)π∆(dη|ξ)µ(dξ)

=

∫
K(X)

1

Z∆(ξ)

∫
K(∆)

(
∇Kint,vF

)
(η∆ ∪ ξ∆c)e−βH∆(η∆|ξ)G∆

θ (dη∆)µ(dξ).

(6.3.35)
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Since both factors in the integrand are in
⋂
p∈N L

p(K(∆),G∆
θ ), we get using

(the proof of) Theorem 6.3.5 that∫
K(X)

(
∇Kint,vF

)
(η)µ(dη)

=

∫
K(X)

1

Z∆(ξ)

∫
K(∆)

F (η∆)e−βH∆(η∆|ξ)
(
− 〈βGθint(η∆), v〉T int

η∆
(K)

− β d

dt
H∆

((
(φνt )

−1)∗ η|ξ)∣∣∣∣
t=0

)
G∆
θ (dη∆)µ(dξ). (6.3.36)

Hence, it remains to calculate

d

dt
H∆

((
(φνt )

−1)∗ η|ξ)∣∣∣∣
t=0

=
d

dt

∑
x,y∈τ(η)∩∆

φ
(
(φνt )

−1(x), (φνt )
−1(y)

)
sxsy

+
∑

x∈τ(η)∩∆

y∈τ(ξ)∩∆C

φ
(
(φνt )

−1(x), y
)
sxsy

∣∣∣∣
t=0

=
∑

x,y ∈τ(η)∩∆

sxsy
(
∂1φ

(
(φνt )

−1(x), (φνt )
−1(y)

)
(ψt(x))

+ ∂2φ
(
(φνt )

−1(x), (φνt )
−1(y)

)
(ψt(y))

)∣∣∣∣
t=0

=
∑

x,y∈τ(η)∩∆̃

sxsy
(
∂1φ(x, y)(ψt(x)) + ∂2φ(x, y)(ψt(x))

)∣∣∣∣
t=0

. (6.3.37)

Here, we used that φ((φνt )
−1(x), (φνt )

−1(y)) = 0 for all t, x ∈ ∆̃ and y /∈ U∆̃.
Hence, it is sufficient to consider

X 3 x 7→ψt(x) :=

(
d

dt
(φνt )

−1

)
(x)

=−
((

d

dx
φνt

)
◦
(
(φνt )

−1(x)
))−1((

d

dt
φνt

)
◦
(
(φνt )

−1(x)
))

=−
((

d

dx
φνt

)
◦
(
(φνt )

−1(x)
))−1

(v(x)). (6.3.38)

Moreover, v ∈ V0(X) is a smooth, compactly supported vector field and (cf.
e.g. [Hag08, Theorem 4.2.11]) the derivative in (6.3.38) is bounded; therefore,
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ψt is uniformly bounded for small t. Setting t = 0 yields

ψ0 = −
((

d

dx
φν0

)
◦
((
φν0)−1(x)

))−1

(v(x)) = −v(x).

We plug (6.3.38) back into (6.3.37) and see that the later equals∑
x,y∈τ(η)∩∆̃

sxsy
(
∂1φ(x, y)v(x) + ∂2φ(x, y)v(y)

)
=− 〈∇φ,1∆̃v〉Tη⊗Tη = −〈∇φ, v〉Tη⊗Tη . (6.3.39)

Using (6.3.39) in (6.3.36), yields the claim.

Adjoint of the intrinsic gradient

Lemma 6.3.34. Let V1, V2 ∈ Vcyl,X(K(X)), then∫
K(X)

〈V1(η), V2(η)〉T int
η (K) µ(dη) <∞.

Proof. The claim follows similarly as in Lemma 6.3.23 because V1 and V2 are
bounded and finitely supported (cf. also Definition 6.3.6).

Theorem 6.3.35. Let (φ)K(X) (and (6.3.16)) hold and φ ∈ C1(X×X). Fix

V :=
N∑
i=1

givi ∈ Vcyl,X(K(X)).

Then for any F ∈ FC∞b (K(X), C∞0 (X))∫
K(X)

〈∇KintF (η), V (η)〉T int
η (K)µ(dη)

=

∫
K(X)

F (η)

(
N∑
i=1

(
−∇Kint,vigi

)
(η)− 〈βµint(η), V (η)〉T int

η (K)

)
µ(dη). (6.3.40)

In other words,

((
∇Kint

)?,µ
V
)

(η) =
N∑
i=1

(
−∇Kint,vigi

)
(η)− 〈βµint(η), V (η)〉T int

η (K). (6.3.41)
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Proof. The claim follows by the intrinsic integration by parts formula of the
Gibbs measure µ (cf. Theorem 6.3.33):∫

K(X)

〈∇KintF (η), V (η)〉µ(dη) =

∫
K(X)

N∑
i=1

〈
(
∇KintF

)
(η), vi〉gi(η)µ(dη)

=
N∑
i=1

∫
K(X)

F (η) ·
(
−∇Kint,vigi(η)− gi(η)〈βµint(η), vi(η)〉T int

η (K)

)
µ(dη),

which implies the result by the linearity of the logarithmic derivative.

Intrinsic bilinear form

We define for F,G ∈ FC∞b (K(X), C∞0 (X)) the intrinsic bilinear form

Eµint(F,G) :=

∫
K(X)

〈∇KintF (η),∇KintG(η)〉T int
η (K)µ(dη).

Proposition 6.3.36. Let (φ)K(X) hold and φ ∈ C1(X × X). The bilinear
form

(
Eµint,FC∞b (K(X), C∞0 (X))

)
is well-defined, closable, symmetric and

positive definite.

Proof. By Lemma 6.3.34, the integral is finite. Since FC∞b (K(X), C∞0 (X)) ⊂
L2(K(X), µ) dense (cf. Corollary 6.2.8), the bilinear form is densely defined.
Thus, the bilinear form is well-defined. The other properties follow as in the
proof of Proposition 6.3.11.

Corollary 6.3.37. For F, G ∈ FC∞b (K(X), C∞0 (X))

Eµint(F,G) =

∫
K(X)

F (η)(LµintG)(η)µ(dη),

where we define the intrinsic generator Lµint as

(LµintG)(η) :=
((
∇Kint

)?,µ∇KintG
)

(η)

=−
N∑

i,j=1

∂2

∂i∂j
gG (〈ϕ1, η〉, . . . , 〈ϕN , η〉) 〈∇Xϕi,∇Xϕj〉T int

η (K)

−
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)
(∫

X

∆Xρi(x)dη(x)

+

∫
X

〈βm(x),∇Xρi(x)〉Tx(X)dη(x)− 〈∇φ,∇Xρi(x)〉Tη⊗Tη
)

(6.3.42)

Proof. To calculate the generator, we use V (η) = ∇KintG(η) in (6.3.40) and
follow the arguments to prove Corollary 6.3.11 with the obvious changes.
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Intrinsic Dirichlet form

We denote the closure of (Eµint,FC∞b (K(X), C∞0 (X))) by (Eµint,D(Eµint)).

Theorem 6.3.38. Let (φ)K(X) hold and φ ∈ C1(X ×X). Then the closure
(Eµ,D(Eµ)) is a conservative Dirichlet form.

Proof. As for the proof of Theorem 6.3.14, the claim follows by showing the
contraction property.

6.3.4 Joint motion related to Gibbs measures

In this subsection we combine the extrinsic and intrinsic considerations to get
a gradient Dirichlet form that corresponds to ∇K and describes a movement
in both components.

Adjoint of the directive derivative

Theorem 6.3.39. Let (φ)K(X) (and (6.3.16)) hold and φ ∈ C1(X × X).
For each h ∈ C0(X), v ∈ V0(X) and η ∈ K(X) we define the following
logarithmic derivative

〈βµ(η), (h, v)〉Tη(K) := 〈βµext(η), h〉T ext
η (K) + 〈βµint(η), v〉T int

η (K).

We obtain for all F , G ∈ FC1
b (K(X), C1

0(X)), all h ∈ C0(X) and all v ∈
V0(X) an integration by parts formula , i.e.,∫

K(X)

∇Kh,vF (η)G(η)µ(dη) = −
∫
K(X)

F (η)∇Kh,vG(η)µ(dη)

−
∫
K(X)

F (η)G(η)〈βµ(η), (h, v)〉Tη(K)µ(dη).

Proof. The result follows by Theorems 6.3.19 and 6.3.33.

Adjoint of the gradient

Definition 6.3.40. A function V : K(X)→ R is called a joint vector field,
iff it is of the following form

V (η) :=

(
N∑
i=1

gi(η)φi,
N∑
i=1

hi(η)vi

)
where for i = 1, . . . , N gi, hi ∈ FC∞b (K(X), C∞0 (X)), φi ∈ C0(X) and
vj ∈ V0(X). By Vcyl(K(X)) we denote the set of all these joint vector fields.
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Moreover, we denote for each such V its projection to Vcyl,R+(K(X)),
respectively to Vcyl,X(K(X)), by

VR+ :=
N∑
i=1

gi(η)φi, respectively by VX :=
N∑
i=1

hi(η)vi.

Remark 6.3.41. Let F ∈ FC∞b (K(X), C∞0 (X)) then ∇KF ∈ Vcyl(K(X)).

Lemma 6.3.42. Let V1, V2 ∈ Vcyl(K(X)), then∫
K(X)

〈V1(η), V2(η)〉Tη(K) µ(dη) <∞. (6.3.43)

Proof. Using equation (6.1.7), this follows by Lemmas 6.3.23 and 6.3.34.

Theorem 6.3.43. Let (φ)K(X) (and (6.3.16)) hold and φ ∈ C1(X ×X).Fix

V :=

(
N∑
i=1

giφi,
N∑
i=1

hivi

)
∈ Vcyl(K(X)).

Then we have for all F ∈ FC∞b (K(X), C∞0 (X))∫
K(X)

〈
∇KF (η), V (η)

〉
Tη(K)

µ(dη)

= −
∫
K(X)

F (η)

[ N∑
i=1

〈
∇Kextgi(η), φi

〉
T ext
η (K)

+
〈
∇Kinthi(η), vi

〉
T int
η (K)

]
µ(dη)

−
∫
K(X)

F (η)〈βµ(η), V (η)〉Tη(K)µ(dη), (6.3.44)

where all the integrals are finite. We can reformulate in terms of the adjoint((
∇K
)?,µ

V
)

(η)

=−
N∑
i=1

〈
∇Kextgi(η), φi

〉
T ext
η (K)

− 〈βµext(η), VR+(η)〉T ext
η (K)

−
N∑
i=1

〈
∇Kinthi(η), vi

〉
T int
η (K)

− 〈βµint(η), VX(η)〉T int
η (K). (6.3.45)

Proof. This follows by the definition of Tη(K) (cf. (6.1.7)) and by Theorems
6.3.24 and 6.3.35. The finiteness of the involved integrals follows by Lemma
6.3.42.
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Bilinear form

We define for F,G ∈ FC∞b (K(X), C∞0 (X)) the joint bilinear form

Eµ(F,G) :=

∫
K(X)

〈∇KF (η),∇KG(η)〉Tη(K)µ(dη). (6.3.46)

Remark 6.3.44. It is finite by Lemma 6.3.42 and densely defined by Corol-
lary 6.2.8.

Definition 6.3.45. We define for all F ∈ FC∞b (K(X), C∞0 (X)) the intrinsic
generator as

(Lµ F )(η) :=(Lµext F )(η) + (Lµint F )(η)

=:−
(
SK(X) F

)
(η)− 〈βµ(η),∇KF (η)〉Tη(K),

where η ∈ K(X),(
SK(X) F

)
(η) :=

(
S
K(X)
ext F

)
(η) +

(
S
K(X)
int F

)
(η),

(Lµext F )(η) :=−
(
S
K(X)
ext F

)
(η)− 〈βµext(η),∇KextF (η)〉T ext

η (K) and

(Lµint F )(η) :=−
(
S
K(X)
int F

)
(η)− 〈βµint(η),∇KintF (η)〉T int

η (K).

Corollary 6.3.46. For F, G ∈ FC∞b (K(X), C∞0 (X)) we get

Eµ(F,G) =

∫
K(X)

〈
∇KF (η),∇KG(η)

〉
Tη(K)

µ(dη)

=

∫
K(X)

(Lµ F )(η)G(η)µ(dη). (6.3.47)

Proof. This follows by Theorem 6.3.43 and by Corollaries 6.3.11 and 6.3.27.

Proposition 6.3.47. (Eµ,FC∞b (K(X), C∞0 (X))) is a closable, symmetric
positive definite bilinear form.

Proof. This follows by (6.1.7), Proposition 6.3.28 and Corollary 6.3.37.

Dirichlet form

We denote the closure of (Eµ,FC∞b (K(X), C∞0 (X))) by (Eµ,D(Eµ)).

Theorem 6.3.48. Then the closure (of the bilinear form) (Eµ,D(Eµ)) is a
conservative Dirichlet form.

Proof. This follows by the arguments used to prove Theorems 6.3.29 and
6.3.38.
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Chapter 7

Equilibrium processes

In Chapter 6 we obtained extrinsic, intrinsic and joint gradient Dirichlet
forms. Now, we want to actually construct corresponding diffusions on
K(Rd). We achieve this, e.g., for the Gamma measure Gθ in the basic model
framework. The obtained diffusions are measure-valued diffusions.

According to [Hoc91] and [Sko97] the theory of measure-valued stochas-
tic processes was initiated by [Daw75]. “Measure-valued processes have been
used to describe the dynamics of populations whose underlying distribu-
tions are continuously changing, and which are therefore described via a
distribution or random measure at each fixed time. They also arise as the
diffusion approximation to certain real-valued processes describing spatially-
distributed systems. Applications that lead to measure-valued processes in
the diffusion limit include models that describe the behavior of systems of
branching and diffusing particle [. . . ], models describing frequency distribu-
tions of alleles in neutral, non-neutral and interactive populations [. . . ]; and
the continuous limit of hierarchically-structured branching and branching
diffusion systems [. . . ].”1 (For details, references and examples we refer to
the survey paper [Hoc91].)

Prominent examples for genetic models are the Fleming-Viot processes,
which are supported by spaces that consist of probability measures (cf. [EK93,
RS95, EK95], where [EK93] is a survey). A (technical) advantage of treat-
ing processes on the space of probability measures is that this space can be
equipped with the Wasserstein-metric making it Polish (cf. Theorem A.2.8).
This is quite useful for showing the quasi-regularity property.

In [Dyn89] the Ornstein-Uhlenbeck, the Fleming-Viot and the Dawson-
Watanabe process are considered in a unified view. More recent publications

1This is quoted from [Hoc91, P.212].
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consider entropic measures and Wasserstein diffusion (cf. [vRS09, AvR10]).

As we pointed out in Chapter 6, to a Dirichlet form, there exists an
associated diffusion if and only if the Dirichlet form is quasi-regular and
local. Hence, our task is to find conditions for the Dirichlet forms to be
quasi-regular (and local) in our setting.

In [BBR06, P.269] it is outlined “that for any semi-Dirichlet form (E , D(E))
on a measurable Lusin space E there exists a Lusin topology with the given
σ-algebra as the Borel σ-algebra so that (E , D(E)) becomes quasi-regular.
However one has to enlarge E by a zero set.” But, this set might not be
exceptional, and hence, the associated process might not be located on E. In
[BBR08, Theorem 2.2] a condition is presented such that there exists a right
process with state space E. Unfortunately, we cannot apply these results
because we do not know whether K(X) is a Lusin space.2

To get the quasi-regularity, we use a technique presented in [RS95] (cf.
also [MR00] and [KLR06, Section 6]). It uses that the underlying state space
is Polish. Hence, in our situation, our first task is to find a proper underlying
Polish space.

Having the above remarks in mind, an initial idea is to treat this issue
in the spirit of Fleming-Viot processes. In Section 7.1, we embed K(X)
into the well-known Polish space M(X) of all Radon measures over X (cf.
Section A.2). Here, as before (cf. Chapters 6), we consider a connected,
orientated C∞-Riemannian manifold X and a measure m(dx) = ρ(x)v(dx)
on (X,B(X)) with

ρ ∈ H1,2
loc (X, v). (7.0.1)

Then we obtain a process describing an extrinsic motion (cf. Theorem 7.1.1),
if X is compact.

This is a good start, but those diffusions that we want to construct in the
following

• for extrinsic, intrinsic and joint motion

• are located in K(Rd) and

• are related to Gibbs perturbations of Gθ w.r.t. to a pair potential
0 ≤ φ ∈ C1(Rd × Rd) as treated in Section 5.3 (cf. (φ)K(Rd)).

2A Lusin space is the continuous one-to-one image of a Polish space.
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And the results in Section 7.1 do not provide this. Hence, we have to analyze
our situation more carefully.

A main difficulty to obtain diffusions on K(Rd) is to find the correct
underlying Polish space for the quasi-regularity property.3

For simplicity, let X = Rd, d ∈ N, and m be the Lebesgue measure dx
on Rd. We define a functional dΓ̈f

(cf. Definition 7.2.7) on the configuration
space of multiple configurations in R̂d (cf. (7.2.1)), which is a metric on (cf.
Definition 7.2.9)

Γ̈f (R̂d) :=
{
γ ∈ Γ̈(R̂d)

∣∣dΓ̈f
(γ, ∅) <∞

}
.

The space (Γ̈f (R̂d), dΓ̈f
) is Polish (cf. Theorem 7.2.11); and it is the space

on which we will work.

Consider the pre-Dirichlet form defined for all F ∈ FC∞b (Γ̈f (R̂d), C0(R̂d))
(cf. (7.2.15)) via (cf. Definition 7.2.18)

EPθ,Γ̈f (F, F ) :=

∫
Γ̈f (R̂d)

∫
R̂d

(√
s
d

ds
F (γ)

)2

+

(
1√
s

d

dx
F (γ)

)2

γ(ds, dx)Pθ(dγ).

Its closure (EPθ,Γ̈f ,D(EPθ,Γ̈f )) is a conservative Dirichlet form (cf. Theorem
7.2.22). As an essential step to obtain an associated diffusion, we prove that
this Dirichlet form is quasi-regular (cf. Theorem 7.2.39).

We get a conservative diffusion4 MΓ̈f that is properly associated with
(EPθ,Γ̈f ,D(EPθ,Γ̈f )) (cf. Theorem 7.3.7). One drawback is that the process is
only constructed on Γ̈(R̂d). In Theorem 7.3.12 we prove that it is actually a
diffusion on the set ΓK(R̂d) consisting of all pinpointing configurations with
finite local mass dΓ̈f

(∅, ·) (cf. Definition 7.3.8). For the proof we show that
Γ̈(R̂d)\ΓK(R̂d) is EPθ,Γ̈f -exceptional by extending a technique presented in
[RS98].

In Section 7.4 we transfer this result to the cone K(Rd) and get a main
result of Chapter 7 (cf. Theorem 7.4.4 and Corollary 7.4.5):

3Since we do not know whether K(X) is a Lusin space, we cannot apply the abstract
results [BBR06, BBR08].

4A diffusion is a strong Markov process with continuous sample paths
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• There exist extrinsic, intrinsic and joint diffusions on K(Rd), d ≥ 2,
describing the motion of marks and positions.

• In particular, there exists a diffusion describing the motion of the dense
set τ(ηt) ∈ Rd, where ηt ∈ K(Rd) for all t ≥ 0.5

The above results extend to more general situations (cf. Theorem 7.4.4):

1. We can equip the Lebesgue measure dx with a density ρ ∈ H1,2
loc (Rd, dx)

such that m(dx) = ρ(x)dx fulfills (cf. (7.2.12))

m
({
x ∈ Rd

∣∣ |x| ≤ k
})
≤MCk.

2. In addition to the first extension, Gθ can be replaced by a Gibbs per-
turbation of Gθ w.r.t. some non-negative potential φ ∈ C1(Rd × Rd).

7.1 An extrinsic process moving finite measures

We show the quasi-regularity property of an extrinsic Dirichlet form. Then
there exists a corresponding Markov process (cf. Theorem 7.1.1 for the exact
properties and for their definitions [MR92, Definitions IV.1.5, IV.1.8 and
IV.1.13]).

Let X be compact for this section.

7.1.1 Embedding of K(X)

K(X) can be embedded intoM(X), which denotes the space of Radon mea-
sures. And, more importantly, the gradient and bilinear forms are well-
defined, if we replace

FC∞b (K(X), C0(X)) by FC∞b (M(X), C0(X)), resp.
FC∞b (K(X), C∞0 (X)) by FC∞b (M(X), C∞0 (X)).

For the Dirichlet forms we use that any Gamma measure Gθ, as well as all
other considered measures, has full mass on on the cone K(X). Hence, the
results that we obtained in Chapter 6 are carried over.

5The extrinsic motion exists also for d = 1.
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Extending of well-known objects For each h ∈ C0(X) and η ∈M(X),
we extend the definition of the translation given in Subsection 6.1.2: It acts
on each Radon measure by equipping it with a density, i.e.,

Mh(η)(dx) := eh(x)η(dx).

We get similar to Proposition 6.1.7 for each F ∈ FC∞b (M(X), C∞0 (X)),
h ∈ C0(X) and η ∈M(X)

(∇Kext,hF )(η) =
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρn, η〉)〈h, ρi〉T ext
η (M),

where T ext
η (M) := L2(X, η).

7.1.2 Quasi-regularity of extrinsic Dirichlet forms

Theorem 7.1.1 (compare also [RS95, Theorem 3.4 or p.31f]). Let X be
compact and µ be a probability measure on (M(X),B(M(X))) having full
support on K(X) and finite first moment, i.e.,

Eµ[〈1, ·〉] <∞.

For all F, G ∈ FC∞b (M(X), Cb(X)) we define the extrinsic bilinear form

Eµ,Mext (F,G) :=

∫
M(X)

〈∇KextF (η),∇KextG(η)〉T ext
η (M)µ(dη). (7.1.1)

We assume that it is closable and that its closure (Eµ,Mext ,D(Eµ,Mext )) is a Dirich-
let form. Then this Dirichlet form is quasi-regular and there exists an as-
sociated µ-tight special standard process, which is properly associated with
(Eµ,Mext ,D(Eµ,Mext )).

Theorem 7.1.2. Let m(X) < ∞ and µ be a Gibbs measure as treated in
Section 6.3. Then (Eµ,Mext ,D(Eµ,Mext )) is quasi-regular and there exists an as-
sociated µ-tight special standard process, which is properly associated with
(Eµ,Mext ,D(Eµ,Mext )).

Proof. As in Section 6.3, we obtain that the bilinear form is closable and
that the closure (Eµ,Mext ,D(Eµ,Mext )) is a conservative Dirichlet form because µ
has full support on K(X) (cf. also Theorem 6.3.29). Thus, Theorem 7.1.1
implies the assertion.

This is our motivation to prove Theorem 7.1.1, for which we use:
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Definition 7.1.3. Let ρ and ρ1 be two metrics on E. They are uniformly
equivalent if

id : (E, ρ1)→ (E, ρ)

and its inverse are uniformly continuous.

Lemma 7.1.4. Let (E, ρ) be a metric space. If ϕ ∈ C∞b (R) is a strictly
increasing function (i.e. ϕ′ > 0) with decreasing derivative, ϕ(0) = 0 and
|ϕ′| ≤ 1, then

ρ1 := ϕ ◦ ρ

is a bounded metric, which is uniformly equivalent with ρ.

Proof. The boundedness, symmetry, positivity and triangle inequality (ϕ is
increasing!) for the metric ρ1 are clear. It remains to show that id : (E, ρ1)→
(E, ρ), as well as its inverse, is uniformly continuous. For the inverse this
property is obvious (ρ1 ≤ |ϕ′| · ρ ≤ ρ). Since ϕ′ ◦ ϕ−1

∣∣
R+

0
∈ C(R+

0 ) and
∃ε2 > 0 : ϕ′

(
ϕ−1(0)

)
≥ ε2 > 0, there exists δ1 > 0 :

ϕ′
(
ϕ−1(r)

)
≥ ε2

2
∀r > 0 : |r| < δ1.

For ε > 0 pick δ := min(δ1,
ε2
2
ε). Then for all x, y ∈ E with ρ1(x, y) ≤ δ

ρ(x, y) = ϕ−1(ρ1(x, y)) ≤ max
0≤r≤ρ1(x,y)

1

ϕ′
(
ϕ−1(r)

)ρ1(x, y)

≤ max
0≤r≤δ

1

ϕ′
(
ϕ−1(r)

)δ ≤ 1
ε2
2

· ε2

2
· ε ≤ ε.

Proof of Theorem 7.1.1. Since X is a complete, separable metric space, by
Corollary A.2.10M(X) is again Polish. Moreover, by Theorem A.2.11, there
exist uniformly continuous functions (φi)i∈N on X, such that ‖φi‖∞ ≤ 1, and
they are sufficient to get the metric which generates the topology onM(X):

ρ0(η, ν) = sup
i
〈φi, η − ν〉, η, ν ∈M(X).

Similar as in Subsection 6.1.2 (compare Definition 6.1.4 and Proposition
6.1.8) we have for F (·) = gF (〈ρ1, ·〉, . . . , 〈ρN , ·〉) ∈ FC1

b (M(X), C0(X)) and
η ∈M(X)

(∇KextF )(η) =
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)ρi ∈ T ext
η (M) = L2(X, η).
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The Dirichlet form (Eµ,Mext ,D(Eµ,Mext )) is of the type studied in [RS95, Section
3] with core FC∞b (M(X), Cb(X)); and for F,G ∈ FC∞b (M(X), Cb(X)) we
set for all η ∈M(X)

SMext(F,G)(η) := 〈(∇KextF )(η), (∇KextG)(η)〉T ext
η (M)

=
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)
Ñ∑
j=1

∂jgG(〈ρ̃1, η〉, . . . , 〈ρ̃Ñ , η〉)

× 〈ρi(x)ρ̃j(x), η〉.

By [RS95, Lemma 3.2], SMext satisfies [RS95, (3.6)]: For any smooth function
φ on R with φ(0) = 0 and |φ′| ≤ 1 we obtain

|SMext(F, φ ◦G)(η)| =

∣∣∣∣∣
∫
X

N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)ρi(x)

·
Ñ∑
j=1

∂j(φ ◦ gG)(〈ρ̃1, η〉, . . . , 〈ρ̃Ñ , η〉)ρ̃j(x)η(dx)

∣∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

∂igF (〈ρ1, η〉, . . . , 〈ρN , η〉)

∣∣∣∣∣ |φ′(G(η))| ·

·

∣∣∣∣∣∣
Ñ∑
j=1

∂jgG(〈ρ̃1, η〉, . . . , 〈ρ̃Ñ , η〉)

∣∣∣∣∣∣
∣∣∣∣∫
X

ρi(x)ρ̃j(x)η(dx)

∣∣∣∣
≤
∣∣SMext(F,G)(η)

∣∣ .
Let ϕ be as in Lemma 7.1.4, then, by the same lemma, ρ1 := ϕ ◦ ρ is a
bounded metric uniformly equivalent with ρ. Since (M(X), ρ0) is separable,
there exists a countable dense set (νi)i∈N ⊂M(X). We define

fij(η) := ϕ(〈φj, η − νi〉) ∀η ∈M(X).

Then we obtain, using that ϕ is increasing,

sup
j
fij(η) = ϕ(sup

j
〈φj, η − νi〉) = ϕ(ρ0(η, νi)) = ρ1(η, νi).

In order to apply [RS95, Theorem 3.4] it remains to show

sup
ij
SMext(fij) ∈ L1(M(X), µ).
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We have

SMext(fij)(η) =

∫
X

(ϕ′(〈φj, η − νi〉))2φ2
j(x)η(dx) ≤ 〈1, η〉,

which, by assumption, is integrable w.r.t. µ. Thus the Dirichlet form
(Eµ,Mext ,D(Eµ,Mext )) is quasi-regular by [RS95, Theorem 3.4]. By [MR92, Theo-
rem IV.3.5, p.103] we obtain the mentioned associated Markov process.

7.2 Quasi-regularity on multiple configurations

In this section, we prove that (EPθ,Γ̈fext ,FC∞b (Γ̈f (R̂d), C0(R̂d))) is closable and
that its closure is a quasi-regular Dirichlet form (cf. Subsections 7.2.4 and
7.2.6). To that end, we show that (Γ̈f (R̂d), dΓ̈f

) is a Polish space (cf. Sub-
section 7.2.2).

For our considerations we need the configuration space of multiple locally
finite configurations in X̂

Γ̈(X̂) :=

{
γ =

∑
y∈γ

myδy

∣∣∣my ∈ N and γ(Λ) <∞, ∀ Λ ∈ Bc(X̂)

}
. (7.2.1)

An equivalent representation is

Γ̈(X̂) =
{
γ̈ = (nγ, γ)

∣∣γ ∈ Γ(X̂), nγ : γ → N
}
. (7.2.2)

We define |γ̈Λ| :=
∑

y∈γΛ
nγ(y). Here, the function nγ yields the number of

points at each position y ∈ γ. Γ̈(X̂) ⊂ M(X̂) is equipped with the vague
topology O(Γ̈(X̂)) inherited fromM(X̂). The corresponding Borel σ-algebra
is denoted by B(Γ̈(X̂)).6

We fix µ to be a probability measure on (Γ̈(X̂),B(Γ̈(X̂)) such that

〈h, ·〉 ∈ L1(Γ̈(X̂), µ) for all h ∈ C∞0 (X̂). (7.2.3)

7.2.1 The embedding space for compact X

Let X be compact. We define the set of multiple configurations with finite
mass by

Γ̈f (X̂) :=
{
γ ∈ Γ̈(X̂)

∣∣〈γ, s⊗ 1(x)〉 <∞
}
, (7.2.4)

6For details, we refer to, e.g., [AKR98a].
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where Γ̈(X̂) is defined by (7.2.1). We equip Γ̈f (X̂) with the subspace topology
O(Γ̈f (X̂)) of (Γ̈(X̂),O(Γ̈(X̂))) and denote by B(Γ̈f (X̂)) the corresponding
Borel σ-algebra.

Remark 7.2.1. If we consider the subset of pinpointing configurations, then
we get Γf (X), which corresponds to the cone K(X) (cf. (2.2.20) and also
the proof of Theorem 5.3.7).

We define a metric which yields an alternative (and for the later consid-
erations very useful) description of Γ̈f (X̂):

Definition 7.2.2. Fix q ∈ (0, 1). Then we choose a sequence (fn)n∈Z such
that fn ∈ C∞0 (R+),

1[qn,qn−1] ≤ fn ≤ 1[qn+1,qn−2] and |f ′n| ≤ q−(n+3)
1[qn+1,qn]∪[qn−1,qn−2].

(7.2.5)

We define the metric

df (γ, γ
′) :=

∞∑
n=−∞

|〈γ − γ′, fn(s)s⊗ 1(x)〉| ∀γ, γ′ ∈
..
Γ(X̂). (7.2.6)

Remark 7.2.3. Note that (Γ̈f (X̂), df ) is a metric space: The triangle in-
equality is clear and the rest follows by the following equivalence

df (γ,∅) <∞ ⇔ 〈γ,1(x)s〉 <∞,

which holds for each γ ∈
..
Γ(X̂) because

〈γ,1(x)s〉 ≤
∞∑

n=−∞

〈γ,1(x)fn(s)s〉 ≤
∞∑

n=−∞

〈γ,1(x)1[qn+1,qn−2]s〉 ≤ 〈γ,1(x)3s〉.

Definition 7.2.4. Let dMR denote the metric defined in [MR00, (3.12)]. On
Γ̈f (X̂), we introduce the metric

dΓ̈f
(γ, γ′) := dMR(γ, γ′) + df (γ, γ

′), ∀γ, γ′ ∈ Γ̈f (X̂).

Remark 7.2.5. Let us summarize a few properties of dMR (cf. [MR00,
Subsection 3.2, esp. (3.12), and (3.3)]):

dMR(γ, γ′) := sup
k∈N

ckξ
(
dX̂ (φk · γ, φk · γ′)

)
, (7.2.7)
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where 0 < ck ↘ 0, ξ ∈ C∞0 (R) with 0 ≤ ξ ≤ 1 on [0,∞], ξ(t) = t on
[−1/2, 1/2], ξ′ > 0 and ξ′′ ≤ 0, φk := (1 + δk)/δk gEk,δk ,

dX̂(γ, γ′) := sup
{
|gA,ε(γ)− gA,ε(γ′)

∣∣A ∈ B(X̂), ε > 0
}
,

gA,ε(x̂) :=
1

1 + ε
(ε− dX̂(x̂, A) ∧ ε) and gA,ε(γ) =

∫
X̂

gA,ε(x̂)γ(dx̂).

Here, dX̂ denotes the metric on X̂ (cf. (2.2.6)) and (Ek)k∈N, consisting
of bounded sets, is a well-exhausting sequence of X̂ with (δk)k∈N being the
corresponding sequence of strictly positive numbers.

This means that⋃
k∈I

Ek = X̂ and Eδk
k ⊂ Ek+1, ∀k ∈ I,

where we define Aε := {x̂ ∈ X̂
∣∣dX̂(x,A) < ε} for all A ∈ B(X̂) and ε > 0

and (δk)k∈I is a sequence of strictly positive numbers.

Theorem 7.2.6. If (X, dX) is a compact and complete separable metric
space, then (Γ̈f (X̂), dΓ̈f

) is a complete and separable metric space.

Proof. Let (γk)k∈N be a dΓ̈f
-Cauchy sequence. Then it is a dMR- and a df -

Cauchy sequence. We define for n ∈ Z

γ(n) := 〈γ,1(x)fn(s)s〉 ∀γ ∈
..
Γ(X̂)

and get the following embedding:
..
Γ(X̂) ←↩ Γ̈f (X̂) ↪→ l1

γk ←[ γk 7→
(
γ

(n)
k

)∞
n=−∞

.

Since (γk)k∈N is a dMR-Cauchy sequence in the complete space (
..
Γ(X̂), dMR),

we deduce by [MR00, Proposition 3.9] that it converges vaguely to a multiple
configuration γ0 ∈

..
Γ(X̂). By the vague convergence, γ(n) converges point-

wisely to γ(n)
0 . Since

(
γ

(n)
k

)∞
n=−∞, k → ∞, is a df -Cauchy sequence in the

Banach space l1, it converges to an element a =
(
a(n)
)∞
n=−∞ ∈ l1. The l1

convergence implies pointwise convergence, thus

γ
(n)
0 = a(n) ∀n ∈ Z
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because the pointwise limits have to coincide. Hence, γ0 ∈ Γ̈f (X̂) because
γ0 ∈

..
Γ(X̂) and a ∈ l1, i.e.,

df (γ0,∅) =
∞∑

n=−∞

〈γ0,1(x)fn(s)s〉 =
∞∑

n=−∞

a(n) <∞.

Therefore, (Γ̈f (X̂), dΓ̈f
) is a complete metric space.

It remains to prove the separability: To that end, let S..
Γ(X̂)

be a countable

dense set in
( ..
Γ(X̂), dMR

)
. We define

SΓ̈f (X̂) :=
{
γK :=

{
(s, x) ∈ γ

∣∣qK ≤ s ≤ q−K , x ∈ X
} ∣∣∣γ ∈ S..

Γ(X̂)
, K ∈ N

}
.

This is a countable and dense subset of
(
Γ̈f (X̂), dΓ̈f

)
. Indeed, let ε > 0 and

γ ∈ Γ̈f (X̂). Since there exists K := KMR such that ck < ε and ξ ≤ 1 for all
k > K, we get (cf. (7.2.7))

dMR(γ, γk) < ε ∀k > KMR. (7.2.8)

Moreover, since df (γ,∅) <∞,

∃K ≥ KMR : ∀k ≥ K
∑
|n|>k−2
n∈Z

|〈γ, fn(s)s1X(x)〉| < ε. (7.2.9)

Since S..
Γ(X̂)
⊂

..
Γ(X̂) 3 γK dense, there exists γ′ ∈ S..

Γ(X̂)
:

dMR(γK , γ
′) < ε and

|〈γK − γ′,1Xfn(s)s〉| < ε

2|n|+2
∀n ∈ Z : |n| ≤ K + 4. (7.2.10)

We pick γ′K+2, then

dMR(γK , γ
′
K+2) ≤ dMR(γk, γ

′) < ε (7.2.11)

because we have less points outside of [qK , q−K ] × X, in which lie all the
points of γK . Furthermore,∣∣〈γK − γ′K+2,1Xfn(s)s〉

∣∣ < ε

2|n|+2
∀n ∈ Z



192 CHAPTER 7. EQUILIBRIUM PROCESSES

because 〈fK+1(s)s, γK〉 = 0 and 〈fK+m(s)s, γ′K+2〉 = 0 for all m ≥ 3. Thus,

dΓ̈f

(
γ, γ′K+2

)
≤ dMR (γ, γK)︸ ︷︷ ︸

≤ε by (7.2.8)

+ dMR

(
γK , γ

′
K+2

)︸ ︷︷ ︸
≤ε by (7.2.11)

+ df (γ, γK) + df (γK , γ
′
K+2)

≤ 2ε+
∑

|n|≤K−2

|〈γ − γK , fn(s)s1X(x)〉|︸ ︷︷ ︸
=0 ∀n≤K−2

+
∑

|n|≥K−2

∣∣〈 γK︸︷︷︸
⊂γ

, fn(s)s1X(x)〉
∣∣

+
∑

|n|≥K−2

|〈γ, fn(s)s1X(x)〉|︸ ︷︷ ︸
≤ε by (7.2.9)

+
∑

|n|≤K+3

∣∣〈γ − γ′K+2, fn(s)s1X(x)〉
∣∣︸ ︷︷ ︸

≤ ε 2−|n|−2

+
∑

|n|≥K+3

∣∣〈γ − γ′K+2, fn(s)s1X(x)〉
∣∣︸ ︷︷ ︸

=0

≤ 2ε+ 2ε+
ε

4
(1 + 20 + 1) < 5ε,

which shows the separability.

7.2.2 Identifying a proper Polish space for X = Rd

Let X = Rd, d ∈ N. We restrict the assumptions on m to get the corre-
sponding assertions of Theorem 7.2.23 (and 7.2.29 and 7.2.31).

Basically, we assume that the mass does not “grow too fast”. Then, using
a well-exhausting sequence {Xk}k∈N of Rd, we replace 1X by an infinite sum,
as we did replace 1R+s by

∑
n sfn(s).

Definition 7.2.7. If m(Rd) < ∞, then we choose I = {1}, X1 = Rd and
φ1 = 1X . Otherwise, let δ = 1/2 and define for k ∈ I := N

Xk := {x ∈ Rd| |x| ≤ k}

We assume that

∃1 ≤M,C <∞ : m(Xk) ≤MCk, ∀k ∈ I. (7.2.12)

Fix (φk)k∈N ⊂ C∞0 (Rd) such that

1Xk\Xk−1
≤ φk ≤ 1X1/4

k \X−1/4
k−1

and
|∂iφk| ≤ 41

X
1/4
k \X−1/4

k−1
∀1 ≤ i ≤ d

, (7.2.13)

where for all A ∈ B(Rd) and ε > 0, we set

Aε :=
{
x ∈ X

∣∣dX(x,A) < ε
}

and A−ε :=
{
x ∈ X

∣∣dX(x,Ac) > ε
}
.

We define for all γ, γ′ ∈ Γ̈(R̂d)

df (γ, γ
′) := 2

∞∑
n=−∞

∑
k∈I

1

M(2C)k
|〈φk · fn(s)s, γ − γ′〉| ∈ [0,∞].
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Remark 7.2.8. Definition 7.2.7 is consistent with Definition 7.2.2. If Rd is
equipped with the Lebesgue measure, i.e. ρ ≡ 1, then (7.2.12) is fulfilled.

Definition 7.2.9. We define

dΓ̈f
(γ, γ′) := df (γ, γ

′) + dMR(γ, γ′), ∀γ, γ′ ∈ Γ̈(R̂d),

and the set of multiple configurations with finite mass dΓ̈f
by

Γ̈f (R̂d) :=
{
γ ∈ Γ̈(R̂d)

∣∣dΓ̈f
(γ, ∅) <∞

}
, (7.2.14)

where Γ̈(R̂d) is defined by (7.2.1). We equip Γ̈f (X̂) with the subspace topology
O(Γ̈f (X̂)) of (Γ̈(X̂),O(Γ̈(X̂))) and denote by B(Γ̈f (X̂)) the corresponding
Borel σ-algebra.

Remark 7.2.10. Note that dΓ̈f
is a metric on Γ̈f (R̂d).

Theorem 7.2.11. Let the conditions stated in Definition 7.2.7 hold. Then(
Γ̈f (R̂d), dΓ̈f

)
)
is a complete, separable metric space.

Proof. Making the obvious appropriate adaption of the proof of Theorem
7.2.6 yields this result.

7.2.3 Bilinear forms on Γ̈(X̂)

We outline the bilinear forms that correspond to the extrinsic and intrinsic
ones defined in Chapters 6.7

Let µ be a probability measure on (Γ̈(X̂),B(Γ̈(X̂)) such that µ(Γ̈f (X̂)) =
1 and (7.2.3) holds.

Smooth cylinder functions on Γ̈f (X̂) We will also use some sets of
smooth cylinder functions . For all k, l ∈ N0 ∪ {∞}, we write

FCk
b (Γ̈f (X̂), C l

0(Y )).

By definition, FCk
b (Γ, C l

0(Y )) consists of all functions F which can be repre-
sented as

Γ 3 γ 7→ F (γ) = gF (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉), (7.2.15)

with some N ∈ N, gF ∈ Ck
b (RN) and ϕi ∈ C l

0(Y ), 1 ≤ i ≤ N .
7For this subsection we do not assume anymore that X is compact.
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Extrinsic bilinear forms

Definition 7.2.12. For all F, G ∈ FC∞b (Γ̈f (X̂), C∞0 (X̂)) we define the
extrinsic bilinear form

Eµ,Γ̈fext (F ) :=Eµ,Γ̈fext (F, F ) :=

∫
Γ̈f (X̂)

∫
X̂

(√
s
d

ds
F (γ)

)2

γ(ds, dx)µ(dγ).

Remark 7.2.13. Fix F, G ∈ FC∞b (Γ̈f (X̂), C∞0 (X̂)). Note that Eµint(F,G) <
∞. We denote

Sext(ϕi, ϕ̃j)(x̂) := s
d

ds
ϕi(x̂)

d

ds
ϕ̃j(x̂)

and the extrinsic bilinear square field operator

SΓ̈
ext(F,G)(γ) :=

N∑
i=1

∂iF
Ñ∑
j=1

∂jG〈γ, Sext(ϕi, ϕ̃j)(x̂)〉

=

∫
X̂

N∑
i=1

Ñ∑
j=1

∂iF ∂jG Sext(ϕi, ϕ̃j)(x̂)γ(dx̂),

where ∂iF := ∂igF (〈γ, ϕ1〉, . . . , 〈γ, ϕN〉), ∂jG := ∂jgG(〈γ, ϕ̃1〉, . . . , 〈γ, ϕ̃Ñ〉).
Then we can rewrite the bilinear form

Eµ,Γ̈fext (F,G) =

∫
Γ̈f (X̂)

SΓ̈
ext(F,G)(γ)µ(dγ).

Remark 7.2.14. Heuristically, we get for F ∈ FC∞b (Γ̈f (X̂), {idR+ ⊗φ̃ | φ̃ ∈
C∞0 (X)}) that

Sext(idR+ ⊗φ̃i, idR+ ⊗φ̃j)(x̂) = sφ̃i(x)φ̃j(x).

Intrinsic bilinear form

Definition 7.2.15. For all F ∈ FC∞b (Γ̈f (X̂), C∞0 (X̂)) we define the intrin-
sic bilinear form

EGθ,Γ̈fint (F ) := EGθ,Γ̈fint (F, F ) :=

∫
Γ̈f (X̂)

∫
X̂

(
1√
s

d

dx
F (γ)

)2

γ(ds, dx)µ(dγ).

Remark 7.2.16. Fix F, G ∈ FC∞b (Γ̈f (X̂), C∞0 (X̂)), we have Eµint(F,G) <
∞ and

Eµ,Γ̈fint (F,G) =

∫
Γ̈f (X̂)

SΓ̈
int(F,G)(γ)µ(dγ).
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Here, the square field operator is

SΓ̈
int(F,G)(γ) :=

N∑
i=1

∂iF
Ñ∑
j=1

∂jG〈γ, Sint(ϕi, ϕ̃j)(x̂)〉

=

∫
X̂

N∑
i=1

Ñ∑
j=1

∂iF ∂jG Sint(ϕi, ϕ̃j)(x̂)γ(dx̂),

where ∂iF := ∂igF (〈γ, ϕ1〉, . . . , 〈γ, ϕN〉), ∂jG := ∂jgG(〈γ, ϕ̃1〉, . . . , 〈γ, ϕ̃Ñ〉)
and

Sint(ϕi, ϕ̃j)(x̂) :=
1

s
〈∇Xϕi(x̂)∇Xϕ̃j(x̂)〉Tx(X).

Remark 7.2.17. Heuristically, we get for F ∈ FC∞b (Γ̈f (X̂), {idR+ ⊗φ̃ | φ̃ ∈
C∞0 (X)}) that

Sint(idR+ ⊗φ̃i, idR+ ⊗φ̃j)(x̂) = s〈∇X φ̃i(x),∇X φ̃j(x)〉Tx(X).

Joint Bilinear forms

Definition 7.2.18. For all F, G ∈ FC∞b (Γ̈f (X̂), C∞0 (X̂)) we define the joint
bilinear form

Eµ,Γ̈f (F,G) := Eµ,Γ̈fext (F,G) + Eµ,Γ̈fint (F,G).

Remark 7.2.19. Note that Eµ,Γ̈f (F,G) <∞ and

Eµ,Γ̈f (F,G) =

∫
Γ̈f

SΓ̈(F,G)(γ)µ(dγ),

where the square field operator is

SΓ̈(F,G)(γ) :=SΓ̈
ext(F,G)(γ) + SΓ̈

int(F,G)(γ)

=

∫
X̂

N∑
i=1

Ñ∑
j=1

∂iF ∂jG S(ϕi, ϕ̃j)(x̂)γ(dx̂),

and

S(ϕi, ϕ̃j)(x̂) :=Sext(ϕi, ϕ̃j)(x̂) + Sint(ϕi, ϕ̃j)(x̂)

=sϕi(x̂)ϕ̃j(x̂) +
1

s
〈∇Xϕi(x̂),∇Xϕ̃j(x̂)〉Tx(X).
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7.2.4 Closability of the bilinear forms

We identify some Gibbs measures for which the corresponding bilinear forms
are closable.

Let X = Rd, d ∈ N, m on (Rd,B(Rd) and (φk)k∈N ⊂ C∞0 (Rd) such that
(7.0.1), (7.2.12) and (7.2.13) hold. Assume that µ is a Gibbs perturbation of
Pθ w.r.t. a pair potential

V (x̂, ŷ) = sxφ(x, y)sy,

where φ ∈ C1(Rd × Rd) such that (φ)
K(Rd) holds (cf. Subsection 5.3.3).

Extrinsic bilinear form

Theorem 7.2.20. The extrinsic bilinear form (E Γ̈f ,µ
ext ,FC∞b (Γ̈f (R̂d), C0(R̂d)))

is closable and the extrinsic generator is for all γ ∈ Γf (R̂d)

(L
Γ̈f ,µ
ext F )(γ) :=

∫
R̂d
s
d2

ds2
F (γ)− s d

ds
F (γ)

(
1 + 2

∑
ŷ∈γ

φ(x, y)sy

)
γ(dx̂).

(7.2.16)

We have

L
Γ̈f ,µ
ext F ∈

⋂
p∈N

Lp(Γ̈f , µ). (7.2.17)

The closure of (E Γ̈f ,µ
ext ,FC∞b (Γ̈f (R̂d), C0(R̂d))) is denoted by (E Γ̈f ,µ

ext ,D(E Γ̈f ,µ
ext )).

It is a conservative Dirichlet form.

Proof. The idea to use the integration by parts formula of the Lebesgue
measure on R+ to prove the assertion is from [AKR98b, Theorem 4.3].

Fix F = gF (〈φ1, γ〉, . . . , 〈φN , γ〉) ∈ FC∞b (Γ̈f (R̂d), C0(R̂d)) and Λ′ ∈ Bc(R̂d)

such that ϕ1, . . . , ϕN are supported by Λ′. Let UΛ′ ∈ Bc(R̂d) :

φ(x̂, ŷ) = 0, ∀x̂ ∈ Λ, ŷ ∈ U cΛ′ .

The integrability (cf. (7.2.17)) follows because there exists C > 0 such that

(L
Γ̈f ,µ
ext F )(γ) ≤2C〈s1Λ′ , γ〉

(
1 + C〈1UΛ′

s, γ〉
)
∈
⋂
p∈N

Lp(Γ̈f , µ),

where we used Theorem 5.3.10. Fix Λ ∈ Bc(X̂) with UΛ′ ⊂ Λ. By (DLR),∫
Γ̈f (X̂)

S
Γ̈f
ext(F )(γ)µ(dγ) =

∫
Γ

∫
Γ(Λ)

S
Γ̈f
ext(F )(γ)πΛ(dγ|ξ)µ(ξ) (7.2.18)
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Since |γΛ| <∞ for all γ ∈ Γ(R̂d), the inner integral equals µ-a.e.

1

ZΛ(ξ)

∞∑
N=0

1

N !

∫
ΛN

S
Γ̈f
ext(F )(

N∑
i=1

δx̂i)

× exp

(
−

N∑
i,j=1

V (x̂i, x̂j)− 2
∑

1≤i≤N
ŷ∈ξΛc

V (x̂i, ŷ)

) N∏
i=1

λθ ⊗m(dx̂i). (7.2.19)

By the choice of Λ, the second summand in the exponent vanishes. We write
F (
∑N

i=1 δx̂i) as F̃ (s1, x1, . . . , sN , xN), define h(s) := s, s ∈ R+, and use

S
Γ̈f
ext(F̃ )(s1, x1, . . . , sN , xN) =

N∑
i=1

(
∂siF̃ (s1, x1, . . . , sN , xN)

)2

h(si). (7.2.20)

Then the last integral equals

N∑
i=1

∫
ΛN−1

∫
ΛX

∫
ΛR+

(∂siF (s1, x1, . . . , sN , xN))2 h(si)

× exp

(
−

N∑
i,j=1

V (x̂i, x̂j)

)
λθ(dsi)m(dxi)

∏
1≤j≤N,
i 6=j

λθ ⊗m(dx̂i). (7.2.21)

Using the integration by parts formula for the Lebesgue measure and the
symmetry of the potential V yields that the inner integral equals

−
∫

ΛR+

F̃ (s1, x1, . . . , sN , xN)

(
d2

dsi2
F (s1, x1, . . . , sn, xn)

+
d

dsi
F (s1, x1, . . . , sn, xn)

(
h′(si)

h(si)
− 2

∑
1≤j≤N
j 6=i

d

dsi
V (si, xi, sj, xj)

− d

dsi
V (si, xi, si, xi) +

λθ
′(si)ρ(xi)

λθ(si)ρ(xi)

))
h(si)λθ(si)ρ(xi)

× exp
(
−

N∑
i,j=1

V (x̂i, x̂j)
)
dsi +

∫
∂ΛR+

. . . dsi︸ ︷︷ ︸
=0

=:

∫
ΛR+

F̃ (s1, x1, . . . , sN , xN)(L
Γ̈f ,µ
ext F )(γ, x̂i)dsi. (7.2.22)
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Using the additivity of (L
Γ̈f ,µ
ext F )(γ, x̂i) and

h′(si)

h(si)
+
λθ
′(si)ρ(xi)

λθ(si)ρ(xi)
=

1

s
− (1 +

1

s
) = 1,

we get, plugging (7.2.22), (7.2.21), resp. (7.2.19) back in,∫
Γ̈f (X̂)

S
Γ̈f
ext(F̃ )(γ)µ(dγ) =

∫
Γ̈f (X̂)

F (γ)(L
Γ̈f ,µ
ext F )(γ)µ(dγ). (7.2.23)

Obviously, (E Γ̈f ,µ
ext ,FC∞b (Γ̈f (R̂d), C0(R̂d))) is positive definite and symmet-

ric. Hence, by [MR92, Proposition I.3.3.], it is closable. By arguments sim-
ilar to the proof of Theorem 6.3.14, we see that its closure is a conservative
Dirichlet form.

Intrinsic bilinear form

Theorem 7.2.21. Let φ ∈ C1(Rd × Rd) such that (φ)
K(Rd) holds. Then

the intrinsic bilinear form (E Γ̈f ,µ
int ,FC∞b (Γ̈f (R̂d), C0(R̂d))) is closable and the

intrinsic generator is for all γ ∈ Γf (R̂d)

(L
Γ̈f ,µ
int F )(γ) :=

d∑
k=1

∫
R̂d

1

s

(
d

dx(k)

)2

F (γ) +
d

dx(k)
F (γ)

×

(
1

s

1

ρ(x)

(
d

dx(k)
ρ(x)

)
− 2

∑
ŷ∈γ

sy
d

dx(k)
φ(x, y)

)
γ(dx̂), (7.2.24)

where x =
(
x(k)
)d
k=1

. We have

L
Γ̈f ,µ
int F ∈

⋂
p∈N

Lp(Γ̈f , µ). (7.2.25)

The closure of (E Γ̈f ,µ
int ,FC∞b (Γ̈f (R̂d), C0(R̂d))) is denoted by (E Γ̈f ,µ

int ,D(E Γ̈f ,µ
int )).

It is a conservative Dirichlet form.

Proof. Adapting the proof of Theorem 7.2.21 appropriately, we get this re-
sult. In detail, we choose h(s) = 1

s
and the equation corresponding to (7.2.20)

is

SΓ̈
ext(F )(s1, x1, . . . , sN , xN) =

N∑
i=1

h(si)
d∑

k=1

(
d

dx
(k)
i

F̃ (s1, x1, . . . , sN , xN)

)2

.
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Joint motion of marks and positions

Theorem 7.2.22. Let φ ∈ C1(Rd × Rd) such that (φ)
K(Rd) holds. Then the

joint bilinear form (E Γ̈f ,µ,FC∞b (Γ̈f (R̂d), C0(R̂d))) is closable and the joint
generator is for all γ ∈ Γf (R̂d)

LΓ̈f ,µF := L
Γ̈f ,µ
ext F + L

Γ̈f ,µ
int F ∈

⋂
p∈N

Lp(Γ̈f , µ). (7.2.26)

The closure of (E Γ̈f ,µ,FC∞b (Γ̈f (R̂d), C0(R̂d))) is denoted by (E Γ̈f ,µ,D(E Γ̈f ,µ)).
It is a conservative Dirichlet form.

Proof. This follows by Theorems 7.2.20 and 7.2.21.

7.2.5 Quasi-regularity for compact X

Let X be a compact and complete, separable metric space and µ be a prob-
ability measure on (Γ̈f (X̂),B(Γ̈f (X̂))) with

〈idR+ ⊗1X , ·〉 ∈ L1(Γ̈f (X̂), µ). (7.2.27)

Theorem 7.2.23. We assume that
(
Eµ,Γ̈fext ,FC∞b (Γ̈f (X̂), C∞0 (X̂))) is closable

and that its closure (Eµ,Γ̈fext ,D(Eµ,Γ̈fext )) is a Dirichlet form. Then it is quasi-
regular.

Proof. We will apply [MR00, Proposition 4.1] to get this quasi-regularity.
By Remark 7.2.13, the conditions (S.1), (S.2), (S.3) and (D.1) in [MR00,
Sections 1.1 and 2.1, cf. p. 267 and 281] are fulfilled. Thus, we show that

dΓ̈f
(·, γ′) = dMR(·, γ′) + df (·, γ′) ∈ D(Eµ,Γ̈f (X̂)

ext ) and

SΓ̈
ext(dΓ̈f

(·, γ′)) ≤ η ∈ L1(Γ̈f (X̂), µ),

where η is independent of γ′. We prove that dΓ̈f
(·, γ′) can be approximated for

each γ′ ∈ Γ̈(X̂) in the
(
Eµ,Γ̈fext,1

)
-norm, i.e., in FC∞b (Γ̈f (X̂), C∞0 (X)⊗C∞0 (R+))

⊂ FC∞b (Γ̈f (X̂), C∞0 (X̂)) there exist elements F̃l,k such that

(
Eµ,Γ̈fext,1

)1/2 − lim
k→∞
l→∞

F̃l,k = dΓ̈f
(·, γ′) ∈ D(Eµ,Γ̈f (X̂)

ext ).
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It is sufficient to prove the claim for each component of the metric dΓ̈f

separately, i.e., we have to show that there exists η ∈ L1(Γ̈f (X̂), µ) :

∀γ′ ∈ Γ̈f (X̂) ∃(FMR
l,k )l,k∈N, (Fl,k)l,k∈N ∈ FC∞b (Γ̈f (X̂), C∞0 (X̂)) :

F̃l,k = FMR
l,k + Fl,k ∀k, l ∈ N, for l, k →∞

FMR
l,k → dMR(·, γ′) and Fl,k → df (·, γ′) in

(
Eµ,Γ̈fext,1

)1/2

-norm,

SΓ̈
ext(dMR(·, γ′)) ≤ η and SΓ̈

ext(df (·, γ′)) ≤ η

because SΓ̈
ext(F̃l,k) ≤ 2SΓ̈

ext(F
MR
l,k )+2SΓ̈

ext(Fl,k). For the metric dMR we get this
result by the arguments of [MR00, Proposition 4.8]. Hence, to obtain the
quasi-regularity of Eµ,Γ̈fext , it is sufficient to show that there exist Fl,k, l, k ∈ N,
in the core FC∞b (Γ̈f (X̂), C∞0 (X̂)) with

lim
k→∞
l→∞

Fl,k =
∞∑
n=1

|〈· − γ′,1(x)fn(s)s〉| = df (·, γ′) ∈ D(Eµ,Γ̈f (X̂)
ext ) and

SΓ̈
ext(df (·, γ′)) ≤ η ∈ L1(Γ̈f (X̂), µ).

This we prove now: Fix γ′ ∈ Γ̈f (X̂) and choose g(x) = x
1+x

, x ∈ [0,∞),
g(∞) := 1. We define for all l, k ∈ N (cf. [MR00, Lemma 4.7, Proof of (i)])

Fl,k : Γ̈f (X̂) → [0,∞)

γ 7→ g

( k∑
n=−k

ϕl (〈γ − γ′,1(x)fn(s)s〉)
)
, (7.2.28)

where 0 ≤ ϕl ∈ C∞b (R) such that for all t ∈ R

ϕl(t)−→
l→∞
|t|, ϕl(0) = 0, |ϕ′l| ≤ 1, ϕ′l(0) = 0, ϕ′l(t)−→

l→∞
sign t,

ϕl(r) = |r| ∀r :
1

l
≤ |r| ≤ l − 1

l
, ϕl(r) = l, ∀r : |r| ≥ l +

1

l
and

|ϕ′′l (r)| ≤
{

0, |r| ∈
]

1
l
, l − 1

l

[
∪
]
l + 1

l
,∞
[
,

4l, otherwise.

Then Fl,k ∈ FC∞b (Γ̈f (X̂), C∞0 (X̂)). We check that (Fl,k)l,k∈N is a
(
Eµ,Γ̈fext,1

)1/2-
Cauchy sequence, i.e.,

lim
l,l′→∞
k,k′→∞

(∫
Γ̈f (X̂)

SΓ̈
ext(Fl,k − Fl′,k′)(γ)µ(dγ)

+

∫
Γ̈f (X̂)

(Fl,k − Fl′,k′)2 (γ)µ(dγ)

)
!

= 0. (7.2.29)
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We treat the L2(Γ̈f (X̂), µ) part first. Since 0 ≤ g ≤ 1, we have |Fl,k| ≤ 1.
Thus, we may apply Lebesgue’s dominated convergence theorem and take
the limit pointwisely. Since g is continuous, by Lemma 7.2.24 below the L2

part becomes arbitrarily small.
It remains to treat the second part. This we do in Lemma 7.2.25 below,

which is applicable by (7.2.27).

All in all, we obtain that (Fk,l)k,l∈N is a
(
Eµ,Γ̈f (X̂)

ext,1

)1/2-Cauchy sequence.
Therefore (cf. the bound obtained in (7.2.35) below and also [MR00, Lemma
4.7(i)] for the second assertion),

lim
k→∞
l→∞

Fl,k = g

(
∞∑
n=1

|〈· − γ′,1(x)fn(s)s〉|

)
= df (·, γ′) ∈ D(Eµ,Γ̈f (X̂)

ext ) and

SΓ̈
ext(df (·, γ′)) ≤ lim

k→∞
l→∞

SΓ̈
ext(Fl,k) ∈ L1(Γ̈f (X̂), µ).

Thus, it remains to show Lemmas 7.2.24 and 7.2.25:

Lemma 7.2.24. For n ∈ Z we abbreviate

xn := xn(γ, γ′) := 〈γ − γ′,1(x)fn(s)s〉. (7.2.30)

Then

lim
l,l′→∞
k,k′→∞

∣∣∣∣∣
k∑

n=−k

ϕl(xn)−
k′∑

n=−k′
ϕl′(xn)

∣∣∣∣∣ = 0. (7.2.31)

Proof. Since
∑∞

n=−∞ |xn| ≤ df (γ,∅) + df (γ
′,∅) <∞, we get

∀ε > 0 ∃k0 ∈ N :
∑
|n|>k0

xn ≤ ε for all k ≥ k0.

Fix ε > 0 with corresponding k0 and let

l0 :=
1

min
{
xn
∣∣xn 6= 0 ∧ |n| ≤ k0

}
∧ ε
∨ (df (γ,∅) + df (γ

′,∅)) , (7.2.32)



202 CHAPTER 7. EQUILIBRIUM PROCESSES

then we have for k, k′ ≥ k0 and l, l′ ≥ l0 that∣∣∣∣∣
k∑

n=−k

ϕl(xn)−
k′∑

n=−k′
ϕl′(xn)

∣∣∣∣∣
=

∣∣∣∣ ∑
−k0≤n≤−k0

(ϕl(xn)− ϕl′(xn))︸ ︷︷ ︸
=ϕlo (xn)−ϕlo (xn)=0

+
∑
n∈Z,

k0<|n|≤k

ϕl(xn)−
∑
n∈Z,

k0<|n|≤k′

ϕl′(xn)

∣∣∣∣
≤

∑
n∈Z

k0<|n|≤k

||ϕ′l| |∞ |xn|+
∑
n∈Z

k0<|n|≤k′

||ϕ′l′| |∞ |xn| ≤ 2ε,

and (7.2.31) is shown.

Lemma 7.2.25. Let 〈idR+ ⊗1X , ·〉 ∈ L1(Γ̈f (X̂), µ), then

lim
l,l′→∞
k,k′→∞

∫
Γ̈f (X̂)

SΓ̈
ext(Fl,k − Fl′,k′)(γ)µ(dγ) = 0. (7.2.33)

Remark 7.2.26. If µ is a Poisson measure, we can use Mecke’s identity
(cf. Remark 1.1.6). This yields for F ∈ FC∞b (Γ̈f (X̂), C∞0 (X̂)) and for µ-
a.e. γ ∈ Γ̈f (X̂) that (cf. Remark 7.2.13)

SΓ̈
ext(F )(γ) =

∫
X̂

(
N∑
i=1

∂iF (γ + δ(sx,x)) ·
√
s
d

ds
φi(x̂)

)2

λ⊗m(dx̂).

But, we can prove the lemma without Mecke’s identity.

Proof of Lemma 7.2.25. We prove this lemma by arguments similar to those
used to prove Lemma 7.2.24. We want to apply Lebesgue’s dominated con-
vergence theorem. Hence, we estimate

SΓ̈
ext(Fl,k − Fl′,k′)(γ) ≤ 2SΓ̈

ext(Fl,k)(γ) + 2SΓ̈
ext(Fl′,k′)(γ).

We set
gn(s) =

d

ds

(
fn(s)s

)
= fn(s) + sf ′n(s).

Then, using (7.2.5),

|gn(s)| ≤1[qn+1,qn−2](s) + q−(n+3)
1[qn+1,qn]∪[qn−1,qn−2](s)q

n−2

≤(1 + q−5)1[qn+1,qn−2](s).
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Moreover, g′ ≤ 1 and ϕ′l ≤ 1 ∀l ∈ N. Hence (cf. Remark 7.2.13), the
integrand in SΓ̈

ext(Fl,k)(γ) is dominated by∣∣∣∣ k∑
n=−k

g′
( k∑
n=−k

ϕl (xn)

)
︸ ︷︷ ︸

≤1

(
ϕ′l (xn)︸ ︷︷ ︸
≤1

gn(sx)1X(x)

)∣∣∣∣2sx

≤sx
( k∑
n=−k

|gn(sx)1X(x)|
)2

≤ sx(1 + q−5)

∣∣∣∣ ∞∑
n=−∞

1X(x)1[qn+1,qn−2](sx)

∣∣∣∣2
≤sx(1 + q−5) |31X(x)|2 . (7.2.34)

To summarize, we have obtained a bound for the integrand in (7.2.33) that
is independent of γ′ and by assumption integrable. This means that there
exists η ∈ L1(Γ̈f (X̂), µ) such that

lim sup
l,k↗∞

SΓ̈
ext(Fl,k)(γ) ≤

(
1 + q−5

) ∫
X̂

sx |31X(x)|2 γ(dx̂) ≤ η(γ). (7.2.35)

So, by Lebesgue’s dominated convergence theorem, we may take the limit
in (7.2.33) pointwisely. Using xn as set in (7.2.30), we get

SΓ̈
ext(Fl,k − Fl′,k′)(γ)

=

∫
X̂

(
g′
( k∑
n=−k

ϕl(xn)
) k∑
n=−k

ϕ′l(xn)
√
sxgn(sx)

− g′
( k′∑
n=−k′

ϕl′(xn)
) k′∑
n=−k′

ϕ′l′(xn)
√
sxgn(sx)

)2

γ(dx̂)

=

∫
X̂

(( k∑
n=−k

ϕ′l(xn)
√
sxgn(sx)−

k′∑
n=−k′

ϕ′l′(xn)
√
sxgn(sx)

)
g′
( k∑
n=−k

ϕl(xn)
)

+
k′∑

n=−k′
ϕ′l′(xn)

√
sxgn(sx)

(
g′
( k∑
n=−k

ϕl(xn)
)
− g′

( k′∑
n=−k′

ϕl′(xn)
)))2

γ(dx̂)

(7.2.36)

By the choice of ϕl, in particular l > l0, i.e., |xn| < l (cf. (7.2.32)),

|ϕ′l(xn)| ≤
{
‖ϕ′′l ‖∞|xn| ≤ 4l 1

l
, for xn ∈ [−l, l],

0, for |xn| ∈
(

1
l
, l − 1

l

)
∪
(
l + 1

l
,∞
) } ≤ 4.

Hence, using also (7.2.34), the sum in the last summand in (7.2.36) is dom-
inated by 4(1 + q−5) · 31X(x). Moreover, using in addition (7.2.31) and the
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continuity of g′, the last summand in (7.2.36) becomes arbitrarily small for
l, k, l′, k′ ↗ ∞. It remains to prove that the first summand in (7.2.36) be-
comes arbitrarily small. Since g′ is bounded, this follows by Lemma 7.2.27
below.

Lemma 7.2.27.

lim
l,l′→∞
k,k′→∞

∣∣∣∣∣
k∑

n=k

ϕ′l(xn)
√
sxgn(sx)−

k′∑
n=k′

ϕ′l′(xn)
√
sxgn(sx)

∣∣∣∣∣ !
= 0, (7.2.37)

Proof. This we deduce similarly to the proof of Lemma 7.2.27. Namely,

∀ε > 0 ∃k1 ∈ N :
∑
n∈Z
|n|>k0

4
√
sxgn(sx) ≤ ε for all k ≥ k1.

Let ε > 0 with corresponding k1 and

l1
2

:=
1

min
{
xn
∣∣xn 6= 0 ∧ |n| ≤ k1

}
∧ ε
∨ (df (γ,∅) + df (γ

′,∅)) ,

then we get for k, k′ ≥ k1 and l, l′ ≥ l1 that∣∣∣∣∣
k∑

n=−k

ϕ′l(xn)
√
sxgn(sx)−

k′∑
n=−k′

ϕ′l′(xn)
√
sxgn(sx)

∣∣∣∣∣
=

∣∣∣∣ ∑
−k1≤n≤−k1

(ϕ′l(xn)− ϕ′l′(xn))︸ ︷︷ ︸
=ϕ′l1

(xn)−ϕ′l1 (xn)=0

√
sxgn(sx)

+
∑
n∈Z,

k1<|n|≤k

ϕ′l(xn)
√
sxgn(sx)−

∑
n∈Z,

k1<|n|≤k′

ϕ′l′(xn)
√
sxgn(sx)

∣∣∣∣
≤

∑
n∈Z

k1<|n|≤k

4
√
sxgn(sx) +

∑
n∈Z

k1<|n|≤k′

4
√
sxgn(sx) ≤ 2ε,

and (7.2.43) is shown.

This concludes the proof of Lemma 7.2.25.

And thus, also the proof of Theorem 7.2.23 is completed.

Remark 7.2.28. Actually, Theorem 7.2.23 holds also if we choose C∞0 (R+)⊗
C∞0 (X) instead of C∞0 (X̂) (cf. (7.2.28)).
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Intrinsic bilinear form

Theorem 7.2.29. Let
(
Eµ,Γ̈fint ,FC∞b (Γ̈f (X̂), C∞0 (X̂))

)
be closable. Assume

that its closure (Eµ,Γ̈fint ,D(Eµ,Γ̈fint )) is a Dirichlet form. Then it is quasi-regular.

Proof. The arguments used for Eµ,Γ̈fext in the proof of Theorem 7.2.23 hold
for Eµ,Γ̈fint , if we replace ext by int and use Lemma 7.2.30 instead of Lemma
7.2.25.

Lemma 7.2.30. We have

lim
l,l′→∞
k,k′→∞

∫
Γ̈f (X̂)

SΓ̈
int(Fl,k − Fl′,k′)(γ)µ(dγ) = 0. (7.2.38)

Proof. Because of Remark 7.2.16, the claim follows by

Sint
(
idR+ fn ⊗ 1X

)
(x̂) =

1

s

∣∣∣∇X
(

idR+ fn ⊗ 1X
)

(x̂)
∣∣∣2
Tx(X)︸ ︷︷ ︸

=0

= 0.

Hence, Theorem 7.2.29 is proved.

Joint bilinear form

Theorem 7.2.31. Let
(
Eµ,Γ̈f ,FC∞b (Γ̈f (X̂), C∞0 (X̂))

)
is closable and that its

closure (Eµ,Γ̈f ,D(Eµ,Γ̈f )) is a Dirichlet form. Then it is quasi-regular.

Proof. This follows by the arguments of the proof of Theorem 7.2.23, where
we replace Lemma 7.2.25 by Lemma 7.2.32.

Lemma 7.2.32. Let 〈idR+ ⊗1X , ·〉 ∈ L1(Γ̈f (X̂), µ), then

lim
l,l′→∞
k,k′→∞

∫
Γ̈f (X̂)

SΓ̈(Fl,k − Fl′,k′)(γ)µ(dγ) = 0. (7.2.39)

Proof. The claim follows by Lemmas 7.2.25 and 7.2.30 because (cf. Remark
7.2.19)

SΓ̈(Fl,k − Fl′,k′)(γ) :=SΓ̈
ext(Fl,k − Fl′,k′)(γ) + SΓ̈

int(Fl,k − Fl′,k′)(γ).

Therefore, Theorem 7.2.31 is shown.
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7.2.6 Quasi-regularity for X = Rd

From now on, we fix X = Rd, d ∈ N, m on (Rd,B(Rd), (φk)k∈N ⊂ C∞0 (Rd)
and µ as in Subsection 7.2.4. This means that we fix X = Rd, d ∈ N, m
on (Rd,B(Rd) and (φk)k∈N ⊂ C∞0 (Rd) such that (7.0.1), (7.2.12) and (7.2.13)
hold. And µ is a Gibbs perturbation of Pθ w.r.t. a pair potential V (x̂, ŷ) =
sxφ(x, y)sy with φ ∈ C1(Rd × Rd) satisying (φ)

K(Rd).

Proposition 7.2.33. Let µ be as described above. Then∫
Γ̈(Rd)

dΓ̈f
(γ, ∅)µ(dγ) <∞.

In particular, Γ̈f (Rd) ∈ B(Γ̈(Rd)) and µ(Γ̈f (Rd)) = 1.

Proof. We note that dΓ̈f
(·, ∅) is a local mass map (w.r.t. λθ ⊗m):∫

X̂

dΓ̈f
({x̂},∅)λθ ⊗m(dx̂)

≤2

∫
R+

3sxλθ(dsx)
∑
i∈I

3

M(2C)i
m(Xi+1) ≤ 6

∫
R+

sxλθ(dsx)3C <∞,

where we applied (7.2.12) and (7.2.13). The measurability follows as in
Proposition 7.2.1. Hence, by (the proof of) Theorem 4.3.34 (cf. Remark
5.2.12) the assertion follows.

Extrinsic motion

Theorem 7.2.34. Let µ be as above. Then (Eµ,Γ̈fext ,FC∞b (Γ̈f (R̂d), C0(R̂d)))

is closable and its closure (Eµ,Γ̈fext ,D(Eµ,Γ̈fext )) is a quasi-regular Dirichlet form.

Proof. By Theorem 7.2.20, we get the closability. To show that the Dirichlet
form is quasi-regular, we assume that w.l.o.g. I = N. Replacing Fl,k in
(7.2.28) by

Fl,k : Γ̈f (Rd) → [0,∞)

γ 7→ g

( k∑
n=−k

∑
i∈I

1

M(2C)i
ϕl (〈γ − γ′, φi(x)fn(s)s〉)

)
,(7.2.40)

we obtain the result adapting the arguments appropriately. In particular,
we use Lemmas 7.2.35 and 7.2.36 instead of Lemmas 7.2.24 and 7.2.27 and
follow the arguments of Lemma 7.2.25 in this new situation. In more detail, in
(7.2.34) 1X is replaced by 2

∑
i

1
M(2C)i

φi. By Proposition 7.2.33, the changed
estimate is integrable.
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Lemma 7.2.35. For n ∈ Z, i ∈ I we abbreviate

xn,i := xn,i(γ, γ
′) := 〈γ − γ′, φi(x)fn(s)s〉. (7.2.41)

Then

lim
l,l′→∞
k,k′→∞

∑
i∈I

1

M(2C)i

∣∣∣∣∣
k∑

n=−k

ϕl(xn,i)−
k′∑

n=−k′
ϕl′(xn,i)

∣∣∣∣∣ = 0. (7.2.42)

Proof. This follows by the same kind of arguments as Lemma 7.2.24.

Lemma 7.2.36. Let 〈idR+ ⊗
∑

i∈I
1

M(2C)i
1Xi , ·〉 ∈ L1(Γ̈f (Rd), µ). Then

lim
l,l′→∞
k,k′→∞

∑
i∈I

1

M(2C)i
|φi(x)|

∣∣∣∣∣
k∑

n=k

ϕ′l(xn)fn(sx)sx −
k′∑

n=k′

ϕ′l′(xn)fn(sx)sx

∣∣∣∣∣ = 0.

(7.2.43)

Proof. This follows by the same kind of arguments as Lemmas 7.2.27 and
7.2.24, and using (7.2.12) instead of (7.2.27).

Therefore, Theorem 7.2.34 holds.

Intrinsic motion

Theorem 7.2.37. Let µ be as above. Then (Eµ,Γ̈fint ,FC∞b (Γ̈f (R̂d), C0(R̂d)))

is closable and its closure (Eµ,Γ̈fint ,D(Eµ,Γ̈fint )) is a quasi-regular Dirichlet form.

Proof. The proof is similar to the changes used to prove Theorem 7.2.34,
where we apply Lemma 7.2.38 instead of Lemma 7.2.30.

Lemma 7.2.38. Let 〈idR+ ⊗
∑

i∈I
1

M(2C)i
1Xi , ·〉 ∈ L1(Γ̈f (Rd), µ). Then

lim
l,l′→∞
k,k′→∞

∫
Γ̈f (Rd)

SΓ̈
int(Fl,k − Fl′,k′)(γ)µ(dγ) = 0. (7.2.44)

Proof. The integrand SΓ̈
int(Fl,k)(γ) is dominated by

1

sx

∑
i,j∈I

−k≤m,n≤k

g′(
∑
i∈I

−k≤n≤k

ϕl(xi,n))

︸ ︷︷ ︸
≤1

g′(
∑
j∈I

−k≤m≤k

ϕl(xj,m))

︸ ︷︷ ︸
≤1

ϕ′l(xi,n)︸ ︷︷ ︸
≤1

ϕ′l(xj,m)︸ ︷︷ ︸
≤1

fn(sx)sx
1

M(2C)i
fm(sx)sx

1

M(2C)j
∣∣∇Xφi(x)

∣∣2
Tx(X)

.
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Since ∣∣∇Xφi(x)
∣∣2
Tx(X)

≤ 42d1
X

1/4
i \X−1/4

i−1
(x)1

X
1/4
j \X−1/4

j−1
(x)

the last line is dominated by

42dsx
(∑
n∈Z

fn(sx)︸ ︷︷ ︸
≤3

)2
∑
i,j∈I

1

M(2C)i
1

M(2C)j
1
X

1/4
i \X−1/4

i−1
(x)1

X
1/4
j \X−1/4

j−1
(x)

≤122dsx
∑
i∈I

1

M(2C)i

(
1

M(2C)i+1
+

1

M(2C)i
+

1

M(2C)i−1

)
1
X

1/4
i \X−1/4

i−1
(x)

≤122dsx · 3
∑
i∈I

1

M(2C)i
(
1Xi+1

(x) + 1Xi(x) + 1Xi−1
(x)
)
,

where we used (7.2.13) and that each set Bi := X
1/4
i \X

−1/4
i−1 overlaps at most

with the three sets Bi+1, Bi, Bi−1, resp. (for the last step) with Xi+1, Xi,
Xi−1. By assumption the last line is integrable.

Hence, following and adapting the arguments as in Lemma 7.2.25 (cf.,
e.g., (7.2.36)) combined with Lemma 7.2.36, yields the proof.

Hence, Theorem 7.2.37 is proved.

Joint motion

Theorem 7.2.39. Let µ be as above. Then (Eµ,Γ̈f ,FC∞b (Γ̈f (R̂d), C0(R̂d)))

is closable and its closure (Eµ,Γ̈f ,D(Eµ,Γ̈f )) is a quasi-regular Dirichlet form.

Proof. With the same reasoning as given in the proof of Theorem 7.2.31, it
is sufficient to combine Lemma 7.2.38 with the analogue version of Lemma
7.2.25 to prove this result.

7.3 Diffusions on multiple configurations
We show that the associated processes for the above considered quasi-regular
Dirichlet forms are diffusions (cf. Subsection 7.3.1). Then we give conditions
to see that they actually sit on ΓK(X) ⊂ Γf (X̂).

As in Subsection 7.2.6, we fix X = Rd, d ∈ N, m on (Rd,B(Rd) and
(φk)k∈N ⊂ C∞0 (Rd) such that (7.0.1), (7.2.12) and (7.2.13) hold. And µ is a
Gibbs perturbation of Pθ w.r.t. a pair potential

V (x̂, ŷ) = sxφ(x̂, ŷ)sy,

where φ ∈ C1(R̂d × R̂d) satisfies (φ)
K(Rd) (cf. Subsection 5.3.1).
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7.3.1 Diffusions on multiple configurations

We briefly mention the locality of the considered quasi-regular Dirichlet
forms, before we present the associated diffusions.

Locality

Definition 7.3.1 (cf. [MR92, Def. V.1.1, p.148]). Let E be a Lusin space and
µ be a measure on it. A quasi-regular Dirichlet form (E ,D(E)) on L2(E, µ)
is said to have the local property (or to be local) if for all F,G ∈ D(E) with
supp(|F |µ) ∩ supp(|G|µ) = ∅, we have

E(u, v) = 0.

Proposition 7.3.2. The Dirichlet form (Eµ,Γ̈fext ,D(Eµ,Γ̈fext )) is local.

Proposition 7.3.3. The Dirichlet form (Eµ,Γ̈fint ,D(Eµ,Γ̈fint )) is local.

Proposition 7.3.4. The Dirichlet form (Eµ,Γ̈f ,D(Eµ,Γ̈f )) is local.

Proofs of Propositions 7.3.2, 7.3.3 and 7.3.4. This is evident using the proof
of [MR00, Proposition 4.12] (cf. also [MR92, Ex. V.I.12(ii), p.154].

Associated diffusions

Theorem 7.3.5. Let X = Rd, m and µ be as described above. Then there
exists a conservative diffusion process (i.e., a conservative strong Markov
process with continuous sample paths)

M
Γ̈f
ext =

(
Ω,F, (Ft)t≥0 , (Θt)t≥0 , (X(t))t≥0 , (Pγ)γ∈Γ̈f (X̂)

)
on Γ̈f (X̂) which is properly associated with

(
Eµ,Γ̈fext ,D

(
Eµ,Γ̈fext

))
, i.e., for all

(µ-versions) of F ∈ L2(Γ̈f (X̂), µ) and all t > 0 the function

Γ̈f (X̂) 3 γ 7→ ptF (γ) :=

∫
Ω

F (X(t))dPγ

is an Eµ,Γ̈fext -quasi-continuous version of exp(−tLµ,Γ̈fext )F , where Lµ,Γ̈fext is the
generator of

(
Eµ,Γ̈fext ,D

(
Eµ,Γ̈fext

))
(cf. [MR92, Section I.2]). M is up to µ-

equivalence unique (cf. [MR92, Theorem VI.6.4]). In particular, M is µ-
symmetric (i.e.,

∫
GptFdµ =

∫
FptGdµ for all F,G : Γ̈f (X̂)→ R, B(Γ̈f (X̂))-

measurable) and has µ as an invariant measure.
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Proof. Since the Dirichlet form is quasi-regular (cf. Theorem 7.2.23 resp.
7.2.37) and local (cf. Proposition 7.3.2) this follows by [MR92, Theorem
IV.3.5 resp.V.1.1]).

Theorem 7.3.6. The assertions of Theorem 7.3.5 hold with Eµ,Γ̈fint and M
Γ̈f
int

replacing Eµ,Γ̈fext , resp. M
Γ̈f
ext.

Proof. Since the Dirichlet form is quasi-regular (cf. Theorem 7.2.29 resp.
7.2.37) and local (cf. Proposition 7.3.3) this follows by [MR92, Theorem
IV.3.5 resp.V.1.1]).

Theorem 7.3.7. The assertions of Theorem 7.3.5 hold with Eµ,Γ̈f and MΓ̈f

replacing Eµ,Γ̈fext , resp. M
Γ̈f
ext.

Proof. Since the Dirichlet form is quasi-regular (cf. Theorem 7.2.31 resp.
7.2.39) and local (cf. Proposition 7.3.4) this follows by [MR92, Theorem
IV.3.5 resp.V.1.1]).

7.3.2 Exceptional set

The next theorems yield that the constructed diffusions over Γ̈(R̂d) actually
sit on ΓK(R̂d) ⊂ Γf (Rd), if d ≥ 2.

Definition 7.3.8. We denote the set of pinpointing configurations with
local mass dΓ̈f

(∅, ·) by

ΓK(R̂d) :=
{
γ ∈ Γ̈f (R̂d)

∣∣γ(R+ × {x}) ≤ 1 ∀x ∈ Rd
}
.

Remark 7.3.9. In general ΓK(R̂d) ⊂ Γf (R̂d) (cf. Definition 4.3.12).

Theorem 7.3.10. Let X = Rd, d ≥ 1, and µ be as described in the be-
ginning of Section 7.3 with φ ≥ 0. Then the set Γ̈(R̂d)\ΓK(R̂d) is Eµ,Γ̈fext -
exceptional and the assertions of Theorem 7.3.5 hold with Γ̈f (R̂d) being re-
placed by ΓK(R̂d). In particular, this holds for the set Γ̈(R̂d)\Γf (Rd).

Proof. Compare the proof of Theorem 7.3.12.

Theorem 7.3.11. Let X = Rd, d ≥ 2, and µ be as above with φ ≥ 0. Then
the set Γ̈(R̂d)\ΓK(R̂d) is Eµ,Γ̈fint -exceptional and the assertions of Theorem
7.3.6 hold with Γ̈f (R̂d) being replaced by ΓK(R̂d). In particular, this holds for
the set Γ̈(R̂d)\Γf (Rd).
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Proof. See the proof of Theorem 7.3.12.

Theorem 7.3.12. Let X = Rd, d ≥ 2, and µ be as above with φ ≥ 0. Then
the set Γ̈(R̂d)\ΓK(R̂d) is Eµ,Γ̈f -exceptional and the assertions of Theorem
7.3.7 hold with Γ̈f (R̂d) being replaced by ΓK(R̂d). In particular, this holds for
the set Γ̈(R̂d)\Γf (Rd).

To prove these results, we use the following Proposition.

Proposition 7.3.13. Let (E ,D(E)) be a Dirichlet form with Polish state
space E. The union of an increasing sequence of E-exceptional sets is E-
exceptional. The same holds for the intersection of a decreasing sequence of
E-exceptional sets.

Proof. Let (An)n∈N be an increasing sequence of E-exceptional sets. By
[MR92, Theorem III.2.8], we have using the notation of [MR92, Section III.2]

Caph,g

(⋃
n∈N

An

)
= sup

n≥1
Caph,g (An) = 0,

where we used that the capacity Caph,g(A) of A ⊂ E corresponding to the
two excessive functions h and g (cf. [MR92, p.78]) is 0, i.e.,

Caph,g(A) = 0, if and only if A ⊂ E is E-exceptional

(cf. [MR92, Theorem III.2.11]). This yields the first assertion.
For the second one, let (An)n∈N be a decreasing sequence of E-exceptional

sets. By [MR92, Theorem III.2.8],

Caph,g

(⋂
n∈N

An

)
= inf

n≥1
Caph,g (An) = 0.

Proof of Theorems 7.3.12, 7.3.10 and 7.3.11.
We extend the idea used to prove [RS98, Proposition 1]: Namely, by Propo-
sition 7.3.13, it is sufficient to show for all a ∈ N that the set

Na :=

{
γ ∈

..
Γ(R̂d)

∣∣∣∣ sup
y∈[−a,−a]d

∣∣∣{x̂ ∈ γ∣∣∣x̂ ∈ [e−a, ea]× {y}
}∣∣∣ ≥ 2

}
is exceptional because

⋃
a∈NNa =

..
Γ(R̂d)\ΓK(R̂d). Fix a ∈ N. We show

that the function u := u(a) = 1Na is quasi-continuous. This we will show by
approximating u with continuous functions un ∈ D(Eµ,Γ̈f ).



212 CHAPTER 7. EQUILIBRIUM PROCESSES

To this end, we start with a smooth partition of R̂d. Let φ ∈ C∞b (R)
satisfy 1[0,1] ≤ φ ≤ 1[−1/2,3/2] and |φ′| ≤ 31[−1/2,3/2]. For any n ∈ N and
i = (i1, . . . , id) ∈ Zd we define a C∞0 (R̂d) function by (compare [RS98, (12)])

φi,n(x̂) :=φ

( 1
a

ln(s) + 1

2

) d∏
k=1

φ(nxk − ik).

Moreover, we note that φi,n ≤ Ii,n where

Ii,n(x̂) :=1[−2,2](
1

a
ln(s))

d∏
k=1

1[−1/2,3/2](nxk − ik)

=1[e−2a,e2a](s)
d∏

k=1

1[−1/2,3/2](nxk − ik).

We calculate the partial derivatives

∂0φi,n(x̂) :=
d

ds
φi,n(x̂) = φ′

( 1
a

ln(s) + 1

2

)
1

2as

d∏
k=1

φ(nxk − ik)

∂jφi,n(x̂) =φ

( 1
a

ln(s) + 1

2

)
φ′(nxk − ik)n

d∏
k=1,k 6=j

φ(nxk − ik) 1 ≤ j ≤ d.

Hence,

∂0φi,n(x̂) ≤ 3

2as
Ii,n(x̂) and ∂jφi,n(x̂) ≤ 3nIi,n(x̂) for 1 ≤ j ≤ d. (7.3.1)

Let ψ be a smooth function on R satisfying 1[1,∞) ≤ ψ ≤ 1[2,∞) and |ψ′| ≤
21(2,∞). We pick the lattice An := [−na, na]d ∩ Zd and define a continuous
element of D(Eµ,Γ̈f (R̂d)) by:

un(γ) := ψ

(
sup
i∈An
〈φi, γ〉

)
. (7.3.2)

Then un → u pointwisely for n→∞. Namely, for a fixed γ we have |γ(a)| :=
|γ∩([e−a, ea]×[−a, a]d)| <∞. Hence, there exists a fixed and finite number of
points x ∈ τ(γ(a)), which have a minimal distance εX to each other. Choose
n large enough such that in each box Bi,n := [−1/2n, 1/2n]d + i/n there are
only points having the same support. Hence for the chosen n = n(γ):

un(γ) =

{
1, if γ ∈ Na,
0, if γ /∈ Na.
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It suffices to show that supn Eµ,Γ̈f (un, un) < ∞ to apply [RS98, Lemma
1]. We prepare to estimate SΓ̈(un):(

ψ′
(

sup
i∈An
〈φi,n, γ〉

))2

≤ 41{γ| supi∈An 〈φi,n,γ〉>1} ≤ 41{γ| supi∈An 〈Ii,n,γ〉≥2},

(7.3.3)

where we use that 〈Ii,n, γ〉 ∈ N0 for the final inequality. Hence, using first
SΓ̈(u ∨ v) ≤ SΓ̈(u) ∨ SΓ̈(v), then (7.3.1) and (7.3.3), we get

SΓ̈(un)(γ) =

(
ψ′
(

sup
i∈An
〈φi,n, γ〉

))2

SΓ̈

(
sup
i∈An
〈φi,n, ·〉

)
(γ)

≤
(
ψ′
(

sup
i∈An
〈φi,n, γ〉

))2

sup
i∈An

SΓ̈ (〈φi,n, ·〉) (γ)

=

(
ψ′
(

sup
i∈An
〈φi,n, γ〉

))2

sup
i∈An

∫
R̂d

1

sx

∣∣∇Xφi,n(x̂)
∣∣2 + |

√
sx∂0φi,n(x̂)|2 γ(dx̂)

≤4e2a
1{γ| supi∈An 〈Ii,n,γ〉≥2}9(n2d+ 1) sup

i∈Ai,n
〈Ii,n, γ〉

≤36e2a(n2d+ 1)
∑
i∈Ai,n

1{γ|〈Ii,n,γ〉≥2}〈Ii,n, γ〉. (7.3.4)

By the proof of Proposition 4.2.3, more detailed by (4.2.5), we see for µ being
a Gibbs measure with non-negative potential as considered in Chapter 5 that∫

{γ|〈Ii,n,γ〉≥2}
〈Ii,n, γ〉µ(dγ) ≤ 2

(∫
R̂d
Ii,n(x̂)λ⊗m(dx̂)

)2

≤
∫
R+

1[e−2a,e2a](sx)λ(dsx)︸ ︷︷ ︸
≤C<∞

d∏
k=1

(∫
Rd
1[−1/2,3/2](nxk − ik)m(dx)

)
︸ ︷︷ ︸

≤m
([
−1/2
n

,
3/2
n

]
+
ik
n

)
(7.3.5)

where we used that

−1/2 ≤ nxk − ik ≤ 3/2⇔ −1/2 + ik
n

≤ xk ≤
3/2 + ik

n
.

Since m(dx) = ρ(x)dx, by (7.3.4) and (7.3.5)∫
Γ̈f (R̂d)

SΓ̈(un)(γ)µ(dγ) ≤ 36e2a(n2d+ 1)
∑
i∈Ai,n

Cm

([−1/2

n
,
3/2

n

]d
+
i

n

)2

= 36e2a(n2d+ 1)C
∑
i∈Ai,n

(∫[
−1/2
n

,
3/2
n

]d
+i/n

ρ(x)dx

)2

.
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By Cauchy-Schwartz, ρ ∈ L2
loc(Rd, dx) (cf. (7.0.1)) and the translation in-

variance of the Lebesgue measure, the later sum is dominated by

∑
i∈Ai,n

(∫[
−1/2
n

,
3/2
n

]d
+i/n

ρ2(x)dx

)
︸ ︷︷ ︸

=
∫
[−a,a] ρ

2(x)dx≤C′(a)<∞

·

(∫[
−1/2
n

,
3/2
n

]d
+i/n

dx

)
︸ ︷︷ ︸

=(2/n)d

≤ n−d2dC ′(a) <∞.

Summing up, we get that for d ≥ 2 there exists C̃ <∞:

sup
n∈N
Eµ,Γ̈f (un) ≤ C̃ sup

n∈N

(
n2−dd+ n−d

)
<∞. (7.3.6)

This concludes the proof of Theorem 7.3.12. Moreover, we note that with
the same choices and (similar) calculations, we get that

sup
n∈N
Eµ,Γ̈fext (un) ≤C̃ sup

n∈N

(
n−d
)
<∞ for d ≥ 1 and

sup
n∈N
Eµ,Γ̈fint (un) ≤C̃ sup

n∈N

(
n2−dd

)
<∞ for d ≥ 2.

Hence, Theorems 7.3.10 and 7.3.11 are also shown.

We summarize the last three results:

Theorem 7.3.14. Let X = Rd, d ≥ 2, and µ be as above. Then the set
Γ̈(R̂d)\ΓK(R̂d) is Eµext-, resp. Eµint- or Eµ,-exceptional. In particular, this
holds for the set Γ̈(R̂d)\Γf (Rd).

Proof. This is clear by the last three theorems.

7.4 Diffusions on the cone
Our final goal is to obtain a diffusion on the cone K(Rd). To that end, we
have shown in Theorem 7.3.14 that the set of points in Γ̈f (R̂d) that are not
pinpointing is exceptional. Hence, the corresponding Markov process sits on
the subset of pinpointing points in Γ̈f (R̂d), which is denoted by ΓK(R̂d). This
subset equals Γf (Rd) if m(Rd) <∞.

7.4.1 Diffusions on K(Rd)

By the next theorem, we will obtain diffusions on the coneK(Rd) in the basic
model framework (cf. also Corollary 7.4.5).
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Theorem 7.4.1. Let the conditions of Theorem 7.3.14 hold. Then the con-
structed diffusions describe motion of marks and positions on the cone K(Rd).

Proof. There exists an injective map that maps ΓK(R̂d) inK(Rd). Ifm(Rd) <
∞, then ΓK(R̂d) = Γf (Rd) and the map is bijective.

Extrinsic motion on K(Rd)

Theorem 7.4.2. Let X = Rd, d ≥ 0, and m be such that (7.0.1), (7.2.12)
and (7.2.13) hold. (In particular, in the basic model framework this holds.)
Let µ be a Gibbs perturbation of Gθ w.r.t. a pair potential 0 ≤ φ ∈ C1(Rd×Rd)
for which (φ)K(X) holds (cf. Subsection 5.3.1 and Definition 5.3.5). Then
there exists a diffusion on K(Rd) describing an extrinsic motion.

More precisely (cf. Theorem 7.3.5), there exists a conservative diffusion
process (i.e., a conservative strong Markov process with continuous sample
paths)

M
K(Rd)
ext =

(
Ω,F, (Ft)t≥0 , (Θt)t≥0 , (X(t))t≥0 , (Pγ)η∈K(Rd)

)
on K(Rd) which is properly associated with

(
Eµ,Kext ,D

(
Eµ,Kext

))
,8 i.e., for all

(µ-versions) of F ∈ L2(K(Rd), µ) and all t > 0 the function

K(Rd) 3 η 7→ ptF (η) :=

∫
Ω

F (X(t))dPη

is an Eµ,Kext -quasi-continuous version of exp(−tLµ,Kext )F , where Lµ,Kext is the gen-
erator of

(
Eµ,Kext ,D

(
Eµ,Kext

))
(cf. [MR92, Section I.2]). M is up to µ-equivalence

unique (cf. [MR92, Theorem VI.6.4]). In particular, M is µ-symmetric (i.e.,∫
GptFdµ =

∫
FptGdµ for all F,G : K(Rd) → R, B(Γ̈f (X̂))-measurable)

and has µ as an invariant measure.

Proof. By Theorem 7.2.20, the assumptions of Theorem 7.2.34 (and Propo-
sition 7.2.33) are fulfilled.

To actually obtain continuous paths in K(Rd), we show the following
claim: If γn → γ in (Γ̈f (R̂d), dΓ̈f

), then 〈γn, sf(x)〉 → 〈γ, sf(x)〉 for all

8This is the Dirichlet form on K(Rd) that corresponds to
(
Eµ,Γ̈fext ,D

(
Eµ,Γ̈fext

))
, i.e.,

Eµ,Kext (F )(η) := Eµ,Γ̈fext
(
F (T−1(η))

)
,

where T : Γf (Rd) → K(Rd) (cf. (3.1.2)). This holds because Γ̈f (R̂d)\ΓK(R̂d) is excep-
tional.
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f ∈ C0(R̂d). We use the notation of Definition 7.2.7 to deduce this claim.
There exists k ∈ I such that

f ≤ ‖f‖∞1Xk .

For all ε > 0, we find I ∈ Bc(R+) such that

df (γ ∩ (Ic ×Xk),∅) < ε.

Let gN ∈ C∞0 (R+) be such that 1[ 1
N
,N ] ≤ gN . By the vague convergence there

exists N0 such that for all n ≥ N0

|〈fgN , γn〉 − 〈fgN , γ〉| < ε.

By the df convergence, there exists N1 > N0 such that for all n ≥ N1

df (γn ∩ (I ×Xk), γ ∩ (I ×Xk)) < ε.

Hence, for all n ≥ N1, we get, using also Definition 7.2.7,

|〈sf(x), γn〉 − 〈sf(x), γ〉|
≤|〈sgN(s)f(x), γn〉 − 〈sgN(s)f(x), γ〉|+M(2C)k‖f‖∞
× (df (γn ∩ (Ic ×Xk),∅) + df (γ ∩ (Ic ×Xk),∅))

<ε+M(2C)k‖f‖∞
(
df (γn ∩ (Ic ×Xk), γ ∩ (Ic ×Xk))

+ df (γ ∩ (Ic ×Xk),∅) + ε
)

<ε+ 3εM(2C)k‖f‖∞.

This shows the claim.

Therefore, the assertions follow by Theorem 7.4.1, which projects the
diffusions sitting on ΓK(R̂d) (cf. Theorems 7.3.10 and 7.3.5) onto K(Rd).

Intrinsic Motion

We obtain a result for the intrinsic motion that is similar to Theorem 7.4.2.

Theorem 7.4.3. Let X = Rd, d ≥ 2, and the assumptions of Theorem
7.4.2 hold. Then there exists an analoguos diffusion on K(Rd) describing an
intrinsic motion.

Proof. The claim follows similarly to the proof of Theorem 7.4.2, where we
replace the “extrinsic” arguments by their “intrinsic” counterparts.



7.4. Diffusions on the cone 217

Joint motion of marks and positions

We obtain a result for the motion of marks and positions on K(Rd) that is
similar to Theorem 7.4.2.

Theorem 7.4.4. Let X = Rd, d ≥ 2, and the assumptions of Theorem 7.4.2
hold. Then there exists a diffusion on K(Rd) describing the joint motion of
marks and positions.

Proof. The result follows similarly to the proof of Theorem 7.4.2, where we
use instead of the “extrinsic” arguments the corresponding “joint” ones.

Corollary 7.4.5. Assume that we are in the basic model framework with
d ≥ 2. Then there exist extrinsic, intrinsic and joint diffusions on K(Rd)
describing the motion of marks and positions. In particular, there exists a
diffusion describing the motion of the dense set τ(ηt) ∈ Rd, where ηt ∈ K(Rd)
for all t ≥ 0.

Proof. This follows from Theorems 7.4.2, 7.4.3 and 7.4.4, which hold in this
case for µ = Gθ.

7.4.2 Extension of Dirichlet forms on K(Rd)

We show a connection to Dirichlet forms considered in Section 6.3.
We fix X = Rd, d ≥ 2, and m(dx) = dx.

Theorem 7.4.6. Under the assumptions of Theorem 7.4.2, we have

FC∞b
(

Γ̈f (R̂d),
{

idR+ ⊗ϕ
∣∣ϕ ∈ C∞0 (Rd)

})
⊂ D

(
E Γ̈f ,µ

ext

)
.

In particular for the Lebesgue measure on Rd, the Dirichlet form that corre-
sponds to EGθext over Γf (Rd) is extended by

(
E Γ̈f ,Pθ

ext ,D(E Γ̈f ,Pθ
ext )

)
.

Proof. Similar as in the proof of Theorem 7.2.23, we approximate

F ∈ FC∞b
(

Γ̈f (R̂d),
{

idR+ ⊗ϕ
∣∣ϕ ∈ C∞0 (Rd)

})
by elements Fk ∈ FC∞b (Γ̈f (R̂d), C0(R̂d)) in the

(
E Γ̈f ,µ

ext,1

)
-norm.

Since gF ∈ C∞b (RN) and because of the structure of SΓ̈
ext, it is sufficient

to consider w.l.o.g. F = gF (〈·, idR+ ⊗ϕ〉). We choose

Fk := gF
(
〈·, fk · idR+ ⊗ϕ〉

)
, for k ∈ N
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where the fk ∈ C∞0 (R+) such that

1[2−k,2k] ≤ fk ≤ 1[2−k−1,2k+1] and
|f ′k(s)| ≤ 3 · 2k+1

1[2−k−1,2−k](s) + 1[2k,2k+1](s)

Obviously, the Fk, k ∈ N, converge pointwisely to F for k ↗ ∞. We check
that (Fk)k∈N form a

(
E Γ̈f ,µ

ext,1

)
Cauchy sequence, i.e.,

lim
k,k′→∞

(∫
Γ̈f (R̂d)

SΓ̈
ext(Fk − Fk′)(γ)µ(dγ) +

∫
Γ̈f (R̂d)

(Fk − Fk′)2µ(dγ)

)
!

= 0.

(7.4.1)

We treat the L2(Γ̈f (R̂d), µ) part first. Let gF be bounded by C. Then also
supl∈N ||Fl||∞ < C. Thus, we may apply Lebesgue’s dominated convergence
theorem and take the limit pointwisely. Since g is continuous, the convergence
follows by

〈γ, (1R+ − fk) · idR+ ⊗ϕ〉 ≤ 〈γ,1[2−k,2k]c idR+ ⊗ϕ〉−→
k→∞

0. (7.4.2)

Let us consider the first part in (7.4.1). Again we will use Lebesgue’s
dominated convergence theorem. Fix ∆ ∈ Bc(Rd) and Mϕ < ∞ such that
ϕ ≤Mϕ1∆. We define

gk(s) := fk(s) + sf ′k(s) and note |g′k(s)| ≤ 71[2−k−1,2k+1].

Since SΓ̈
ext(Fk − Fk′) ≤ 2SΓ̈

ext(Fk) + 2SΓ̈
ext(Fk′), it is sufficient to consider

SΓ̈
ext(Fk)(γ) =g′F

(
〈γ, fk · idR+ ⊗ϕ〉

)2

·
∫
R̂d
sx

(
gk(s)ϕ(x)

)2

γ(dx̂)

≤49C2M2
ϕ

∫
R̂d
sx1∆(x)γ(dx̂).

Hence (cf. Theorem 5.2.10),∫
Γ̈f (X̂)

SΓ̈
ext(Fk)µ(dγ) ≤ 49C2M2

ϕ

∫
R̂d
s1∆(x)λθ ⊗m(dx̂) <∞.

Thus it is sufficient to prove the convergence pointwisely. Since g is contin-
uous, the pointwise convergence follows by (7.4.2) because

SΓ̈
ext(Fk − Fk′)(γ)

=

∫
R̂d

((
g′F
(
〈γ, fk ⊗ ϕ〉

)
− g′F

(
〈γ, fk′ · idR+ ⊗ϕ〉

))
gk(sx)ϕ(x)

− g′F
(
〈γ, fk′ · idR+ ⊗ϕ〉

)(
gk′(sx)− gk(sx)

)
ϕ(x)

)2

sxγ(dx̂).

Thus, the claim follows.
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Theorem 7.4.7. Under the assumptions of Theorem 7.4.2, we have

FC∞b
(

Γ̈f (R̂d),
{

idR+ ⊗ϕ
∣∣ϕ ∈ C∞0 (Rd)

})
⊂ D

(
E Γ̈f ,µ

int

)
.

In particular for the Lebesgue measure on Rd, the Dirichlet form that corre-
sponds to EGθint on Γf (Rd) is extended by

(
E Γ̈f ,Pθ

int ,D(E Γ̈f ,Pθ
int )

)
.

Proof. This follows by adapting the arguments of the proof of Theorem 7.4.6
in an obvious way and using that there exists M <∞ and ∆ ∈ Bc(Rd) such
that Rd 3 x 7→ |∇Rdϕ(x)|Tx(Rd) ≤M1∆.

Theorem 7.4.8. Under the assumptions of Theorem 7.4.2, we have

FC∞b
(

Γ̈f (R̂d),
{

idR+ ⊗ϕ
∣∣ϕ ∈ C∞0 (Rd)

})
⊂ D

(
E Γ̈f ,µ

)
.

In particular for the Lebesgue measure on Rd, the Dirichlet form that corre-
sponds to EGθ on Γf (Rd) is extended by

(
E Γ̈f ,Pθ ,D(E Γ̈f ,Pθ)

)
.

Proof. This follows by combining the arguments of Theorems 7.4.6 and 7.4.7.
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Appendix A

Spaces of measures

We briefly outline some general facts concerning measurable spaces and the
space of finite Radon measures that we use in our considerations.

In Section A.1, we present some facts about standard Borel spaces. (Borel
space in the notion of [Pat67] are measurable spaces.)

In Section A.2, we collect some results concerning the spaceM+(X) of all
non-negative finite Radon measures over X, and also the space of probability
and the one of general finite Radon measures. Corollary A.2.10 and Theorem
A.2.11 allow us to prove the quasi-regularity in Section 7.1.

A.1 Kuratowski’s theorem
Definition A.1.1 (see [Pat67, p.1]). Let Y be a topological space. The Borel
σ-algebra BY of Y is defined to be the smallest σ-algebra of subsets of Y which
contains all the open subsets of Y .

Definition A.1.2 (see [Pat67, Definition VI.1.2, p.6]). A Borel space (or
a measurable space) (Z,B) is a pair, where Z is an abstract set and B is a
σ-algebra of subsets of Z.

Definition A.1.3. A set or a class of sets D is called denumerable, if there
exists a surjective map j : N→ D.

Definition A.1.4 (see [Pat67, Definition V.2.1, p.132]). A Borel space (Z,B)
is said to be countably generated if there exists a denumerable class D ⊂ B
such that D generates B. (Z,B) is called separable if it is countably generated
and for each z ∈ Z, the single point set {z} ∈ B.

Definition A.1.5 (see [Pat67, Definition V.2.2, p.133]). A countably gener-
ated Borel space (Z,B) is called standard if there exists a complete separable
metric space Y such that the σ-algebras B and BY are σ-isomorphic.

221



222 CHAPTER 7. EQUILIBRIUM PROCESSES

Theorem A.1.6 (see [Pat67, Theorem V.2.2,p.133]). If the Borel space
(Z,B) is countably generated, then there exists a separable metric space Y
such that B and BY are σ-isomorphic.

If Z is a separable metric space and BZ the class of Borel subsets of Z,
then (Z,BZ) is standard if and only if Z is a Borel set in some complete sep-
arable metric space Z in which Z can be embedded as a topological subspace.

In this case Z is a Borel set in every complete separable metric space in
which it is a topological subspace.

Theorem A.1.7 (Kuratowski, see [Pat67, Theorem V.2.4, p.135]). Let (Z,B)
be a standard Borel space, (Y, C) be a countably generated one and φ a one-
to-one map of Z into Y which is measurable.

Then Y ′ := φ(Z) ∈ C and φ is a Borel isomorphism between the Borel
spaces (Z,B) and (Y ′, CY ′), where CY ′ := {A ∩ Y ′|A ∈ C} is the trace σ-
algebra.

A.2 Properties of Radon measures
In this section we only consider finite measures. The main property that
we prove in this section is that the space of all finite non-negative Radon
measures over a complete, separable metric space X is Polish (cf. Corollary
A.2.10) and that its metric can be described by a supremum of countably
many functions (cf. Theorem A.2.11).

To that end we collect some results concerning spaces of (finite) measures
over metric spaces. A good reference is [Bog07a, Bog07b], whose setting
even includes general topological spaces. Note that measures in the sense of
[Bog07b] can be negative and are finite, cf. [Bog07a, 1.3.2. Definition]. We
call those (possibly negative) measures finite “signed measures”.

Let X be a topological space.

Definition A.2.1 (see [Bog07b, Definitions 7.1.1., 7.1.5, 7.2.1]). 1. A count-
ably additive (finite) signed measure on the Borel σ-algebra B(X) is
called a Borel measure on X. By MB(X) we denote the set of all
Borel measures.

2. A Borel measure µ on X is called a finite Radon measure if for every
B ∈ B(X) and ε > 0, there exists a compact set Kε ⊂ B such that

|µ|(B\Kε) < ε.

By Mr(X) we denote the set of all Radon measures.
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3. A Borel measure µ on a topological space X is called τ -additiveif for
every increasing net of open sets (Uλ)λ∈Λ in X, one has the equality

|µ|

(⋃
λ∈Λ

Uλ

)
= lim

λ
|µ| (Uλ) . (A.2.1)

If (A.2.1) is fulfilled for all nets with
⋃
λ Uλ = X, then µ is called

τ0-additive. By Mτ (X) we denote the set of all τ -additive measures.
Moreover, let us denote by M+

B (X),M+
r (X),M+

τ (X) the corresponding
classes of non-negative measures.

Definition A.2.2. A nonnegative set function µ defined on some system of
A of subsets of a topological space is called regular if for every A ∈ A and
every ε > 0, there exists a closed set Fε such that Fε ⊂ A, A\Fε ∈ A and
µ (A\Fε) < ε.

An additive set function µ of bounded variation on an algebra is called
regular if its total variation |µ| is regular.

Remark A.2.3. We emphasize that in the setting that we treat we do not
have to distinguish them (cf. Theorem A.2.5).

Definition A.2.4 (see [Bog07b, 6.1.2 Definition]). 1. X is called Haus-
dorff if every two distinct points in X possess disjoint neighborhoods.

2. A Hausdorff space X is called regular if, for every point x ∈ X and
every closed set Z ⊂ X not containing x, there exist disjoint open sets
U and V such that x ∈ U , Z ⊂ V .

3. A Hausdorff space X is called completely regular if, for every point
x ∈ X and every closed set Z ∈ X\{x}, there exists a continuous
function f : X → [0, 1] such that f(x) = 1 and f(z) = 0 for all z ∈ Z.

Theorem A.2.5 (see [Bog07b, 7.1.17 Theorem and 7.2.2. Proposition]).
Let X be a metric space. Then every Borel measure µ on X is regular. If X
is complete and separable, then the measure µ is Radon.

Proposition A.2.6. 1. Every Radon measure is τ -additive.

2. Every τ -additive measure on a regular space is regular. In particular,
every τ -additive measure on a compact space is Radon.

3. Every Borel measure on a separable metric space X is τ -additive.

From now on X shall be a metric space. Let us introduce a norm on
Mτ (X) that will turn out to be consistent with the weak topology.
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Definition A.2.7 (see [Bog07b, Section 8.3, P.181]). Let (X, ρX) be a metric
space. We define the Kantorovich-Rubinshstein norm onMτ (X) via

‖µ‖0 := sup

{∫
X

fdµ
∣∣f ∈ Lip1(X), sup

x∈X
|f(x)| ≤ 1

}
, (A.2.2)

where the space of Lipschitz functions with Lipschitz constant 1 is defined by

Lip1(X) :=
{
f : X → R

∣∣|f(x)− f(y)| ≤ ρX(x, y), ∀x, y ∈ X
}
.

By ρo we denote the corresponding metric, i.e.

ρ0(η, ν) = ‖η − ν‖0 for all η, ν ∈Mτ (X).

Theorem A.2.8 (see [Bog07b, 8.3.2 Theorem]). The topology generated by
‖ · ‖0 coincides with the weak topology on the set M+

τ (X) of nonnegative τ -
additive measures. In addition, on the set Pτ of probability τ -additive mea-
sures the weak topology is generated by the Lèvy-Prohorov metric:

dP (µ, ν) = inf {ε > 0 : ν(B) ≤ µ(Bε) + ε, µ(B) ≤ ν(Bε) + ε, ∀B ∈ B(X)} ,

where Bε := {x|dist(x,B) < ε}.

Theorem A.2.9 (see [Bog07b, 8.9.4 Theorem]). Let X be completely regular.

1. The spaceM+
τ (X) equipped with the weak topology is metrizable iff X is

metrizable. In that case, the metrizability ofM+
τ by a complete metric

is necessary and sufficient for the metrizability of X by a complete
metric.

2. If X is separable, thenMτ (X), as well asM+
τ (X), is separable in the

weak topology.

The same assertions hold, if we replaceM+
τ (X) by Pτ (X) which denotes the

space of all τ -additive measures over X with total mass 1.

Corollary A.2.10 (see also [Sch73, Part II, Appendix, Thm. 7, p.385]).
Let X be a complete, separable metric space. Then the set M+(X) of non-
negative (finite) Radon measures, which coincides with the one of nonnega-
tive Borel and τ -additive ones in this case, together with the metric ρo is a
complete separable metric space.

Theorem A.2.11. Let X be a complete, separable metric space. Then there
exists a countable sequence (φi)i∈N of uniformly continuous functions on X
with ‖φi‖∞ ≤ 1 and

ρ0(η, η′) = sup
i
〈φi, η − η′〉 ∀η, η′ ∈M+

τ (X).
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Proof. By the separability of X there exists a countable dense set SX :=
{xi ∈ X|i ∈ N}. For all r ∈ Q, for all {qi|i ∈ N} ⊂ Q and for all {xi|i ∈ N} ⊂
SX such that there exists f ∈ Lip1(X) with ‖f‖∞ ≤ 1 and |f(xi) − qi| < r
we choose φ = φr,(xi,qi)i∈N = f ∈ Lip1(X) and denote the countable union of
all these by

Φ := {φi|i ∈ N}.
We have that ∀η, η′ ∈M+(X), ∀δ > 0 ∃fδ ∈ Lip1(X) : ‖f‖∞ ≤ 1 and

ρ0(η, η′)− δ ≤
∫
X

fδ(x)(η − η′)(dx).

Moreover, there exists φδ ∈ Φ:

|fδ(xi)− φδ(xi)| ≤
δ

4
, ∀xi ∈ SX .

We define for all j ∈ N

Aj := Bδ/4(xj) ∩
⋃

i=1,...,j−1

Ai

and obtain, using in addition the Lipschitz continuity,

ρ0(η, η′)− δ ≤
∑
j∈N

(∫
Aj

|fδ(x)− fδ(xj)|︸ ︷︷ ︸
≤δ/4

+ |fδ(xj)− φδ(xj)|︸ ︷︷ ︸
≤δ/4

|η − η′|(dx)

+

∫
Aj

|φδ(xj)− φδ(x)|︸ ︷︷ ︸
≤δ/4

|η − η′|(dx) +

∫
Aj

φδ(x)(η − η′)(dx)

)

≤3

4
δ‖η − η′‖tv +

∫
X

φδ(x)(η − η′)(dx)

≤3

4
δ‖η − η′‖tv + sup

φi∈Φ

∫
X

φi(x)(η − η′)(dx)

≤3

4
δ‖η − η′‖tv + ρ0(η, η′),

where we denote for each η ∈Mτ (X) by ‖η‖tv its total variation norm, which
is finite because we treat finite non-negative measures η. Hence, we obtain
taking the limit δ ↘ 0 that

ρ0(η, η′) ≤ lim
δ↘0

3

4
δ‖η − η′‖+ sup

φi∈Φ

∫
X

φi(x)(η − η′)(dx)

= sup
φi∈Φ

∫
X

φi(x)(η − η′)(dx) ≤ ρ0(η, η′).
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Remark A.2.12. If (under stronger assumptions on the space X) the func-
tions in Theorem A.2.11 could be chosen to be continuously differentiable,
then the arguments of Sections 7.1 would even yield an associated diffusion
for the Dirichlet form (EGθint,D(EGθint)) and not only for (EGθext,D(EGθext)).1

1If one considers Fleming-Viot processes, then one only considers movement w.r.t.
marks (cf. e.g. [RS95, Section 4(c), p.31]).
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ergodicity Gθ, 47
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