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Summary

In this thesis (consisting of Parts I - III) we study Gamma measures located on the
cone IK(R?) of discrete Radon measures. They form, as well as the Gaussian and
Poisson measures, an important class of measures on infinite dimensional spaces
and appeared in the representation theory of groups. In the present thesis, the
following topics of Gamma analysis are developed:

e Construction of Gibbs perturbations for the Gamma measures
e Differential structure on the cone K(R%)
e Integration by parts formulas for Gamma and Gibbs measures

e Construction of associated diffusions

In Part I, we define a homeomorphism T between the cone K(R?) and a subset
of the configuration space I' (]@d) over the product space R? of marks in Ry =
(0,00) and positions in R?. This subset consists of pinpointing configurations
with finite local mass. Then we construct Gamma measures on K(R?) as image
measures, under T, of proper Poisson measures on I‘(Rd).

In Part II, we establish Gibbs perturbations of Gamma measures w.r.t. a pair
potential that describes the interaction of particles and satisfies certain stability
properties: We follow the Dobrushin-Lanford-Ruelle approach to Gibbs random
fields in classical statistical mechanics and introduce the corresponding Gibbs for-
malism on the cone. Proving the existence of the Gibbs measures on the cone
K (R?) is a non-trivial problem, even for a non-negative potential. We know about
the cone K(R?) less than about the configuration space I'(R?), hence we transfer
the problem to I'(R%) via the homeomorphism T~!. Even on I'(R%), the trans-
fered potential with infinite range does not fit the standard framework because of
the high concentration close to 0 of the underlying intensity measure on R;. We
develop analytic techniques, involving Lyapunov functionals and weak dependence
on boundary conditions, to construct Gibbs measures on F(Rd) and characterize
sets supporting them. Using the homeomorphism T, we establish the existence of
Gibbs perturbations on the cone.

To obtain diffusions on the cone, in Part III, we introduce a gradient which
consists of extrinsic and intrinsic parts. They correspond to the motion of marks
and positions of particles, respectively. An important result here (and a new issue in
infinite dimensions) is an integration by parts formula without an underlying quasi-
invariance property of the involved Gamma measure. Next, we study conservative
gradient Dirichlet forms of Gibbs measures constructed in Part II. To check their
quasi-regularity, we define a Polish space, in which we embed the cone. Therefore,
we study a priori diffusions on the Polish space. A crucial issue here is that the
diffusions are actually located on a subset of T~(IK(R?)). Using this fact and the
homeomorphism T, we construct diffusions on the cone. In particular, we get an
example of diffusions describing the motion of densely distributed particles.
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Chapter 1

Introduction

Handling and modeling complex systems have become an essential part of
modern science. For a long time, complex systems have been treated in
physics, where e.g. methods of probability theory are used to determine their
macroscopic behavior by their microscopic properties. Nowadays complex
systems, ranging from e.g. ecosystems to the climate, biological populations,
societies and financial markets, play an important role in various fields such
as biology, chemistry, robotics, computer science and even social science.

A mathematical tool to study these systems is infinite dimensional analy-
sis. Widely applied, e.g. in financial mathematics and mathematical physics,
are Gaussian and Poissonian analysis corresponding to Gauss, resp. Poisson
measures. We develop some Gamma analysis related to Gamma measures,
which may serve to model biological systems.

The mentioned measures are infinite dimensional analogues of measures
classified by Meixner. A first step in the related analysis is to study sets
supporting them. In particular, Gaussian measures are located on linear
spaces; Poisson measures are supported by the space of locally finite con-
figurations. And Gamma measures have full mass on the cone of locally
finite, discrete Radon measures. The analysis developed for the Gaussian
and Poissonian measures includes chaos decompositions, differential struc-
tures on the underlying spaces, corresponding Dirichlet forms and associated
diffusions, whereas for the Gamma measures a chaos decomposition and a
quasi-invariance property w.r.t. multiplication of marks is known. One of our
aims is to introduce a differential structure on the cone, construct Dirichlet
forms and get associated diffusions on the cone.

An important feature of complex systems is the interaction of their com-
ponents. Let us exemplify this with a prominent physical example, namely
a gas: To model a free gas, Poisson measures are used. 'Free’ means that
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any interaction of the molecules is absent. But, the molecules of real gases
interact with each other. To model this, the notion of Gibbs perturbations
of Poisson measures has been introduced and studied. Considering Gamma
measure as states of free systems, we will also study Gibbs perturbations of
Gamma measures.

A mathematical model for the above mentioned many-particle systems,
namely spaces of locally finite configurations, appeared first in statistical
mechanics. Such a configuration space describes the positions of identical
particles in a phase space, e.g. R%. Here, locally finite means that there are
only finitely many particles in any compact area. To describe the allocation
of particles a Poisson measure with a certain intensity measure can be used.
It distributes the particles independently of each other (cf. e.g. Subsection
1.1.2 or Chapter 2).

As mentioned above, particles may interact and influence each other.
Gibbs measures are suitable to describe this phenomena. In the late 1960s
Dobrushin, Lanford and Ruelle introduced the mathematical setting for Gibbs
measures that are used to describe equilibrium states of infinitely large sys-
tems (cf. [Dob68, Dob70b, LR69, Rue69|), which strongly encouraged the
development of the theory of Markov random fields (cf. [Geo88, Pre76]).
Generally speaking, one distinguishes between two main classes of Gibbs
measures, namely, spin systems on graphs or discrete metric spaces (cf., e.g.,
[Lan20, Isi25, Geo88|) and particle systems in continuum, e.g., in R? (cf.,
e.g., [AKRI98b, Kun99, AKPRO6]).

We will treat Gibbs measures for particle systems in the continuum R¢,
d € N, and an attached space of marks R, := [0, c0) with an infinite measure
on the marks. Thus, we extend models treated in the second class.

Standard references for the theory of Gibbs measures are [Geo88, Pre76].
More recent ones are [AKPRO6| (an overview) and [KPR10| (an analytic
approach).

Aims

We will develop some structure of the Gamma analysis (cf. also Section 1.2):
e We study Gibbs perturbations of the Gamma measures,
e introduce a differential structure on the cone of discrete measures,
e establish integration by parts formulas and

e construct diffusions corresponding to associated Dirichlet forms.
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The differential structure on the cone will turn out to be richer than the one
on the linear spaces on which the Gaussian measures are located and the one
on the configuration spaces which support the Poisson measures. It is richer
in the sense that there exists an extrinsic differential structure related to the
marks (or values) of the discrete measures and an intrinsic one corresponding
to their support or positions.!

1.1 Infinite dimensional analysis

We will repeat very briefly some of the known results of Gaussian, Poissonian
and Gamma analysis. Although, we focus on the Gamma analysis, for the
convenience of the reader, we also repeat some of the known results for the
Gaussian and Poisson case. This allows us to compare the different situations
more easily. But before, we describe in which sense they are similar.

Meixner classification

In 1933 Meixner studied functions of the type exp[zu(t)]/ f(t) where ¢ — wu(t)
and t +— f(t) are analytic functions. He found that there only exist five differ-
ent systems of orthogonal polynomials whose generating functions for related
orthogonal polynomials are of this type. The obtained classification yields
(cf. [Mei34]) the Gaussian (normal), binomial, Gamma, Poisson and a fifth
class. For the Gaussian, Gamma and Poisson measure there exists a gener-
alization to infinite dimensional spaces.

There exists a famous characterization of Fourier transformations for
probability measures on Hilbert spaces given by the following theorem:

Theorem 1.1.1 (Minlos, see e.g. [GV64, Section 11.3.1]). Let H be a real
separable Hilbert space and k : H — C be a continuous function with k(0) = 1
and which is positive definite on H. The latter means that Y hq,..., hy €
H Ve,...,ey € C:

N

i, j=1

LA point 2 € R? is called a position of such a locally finite, discrete Radon measure 7
on R4, if s, := n({z}) # 0. The set of all positions is called the support 7(n). We refer to
the value s, as a mark.
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Then for every Hilbert-Schmidt extension H_ of H, there exists exactly one
probability measure y on H_ such that

Voe . (o) [ “Oudr) = ko)

where H, C H C H_ and H, is the dual space of H_.

For particular measures the support can be classified more precisely, as
we will see in the following.

1.1.1 Gaussian analysis

The Gaussian analysis has been studied quite extensively. As a general ref-
erence see [BK95al, [Bog98| or [Hid05, pp. 46ff] (a historical overview by
[zumi Kubo).

Via the Minlos theorem, one obtains a probability measure p( that cor-
responds to the functional

k(o) = e 2 ietan g e I2(RY, do) = H,

It is called the Gaussian White Noise measure. The corresponding triple is
S'(R?) o L*(R?, dz) D S(R?) and 1o(S'(R?)) = 1. Here, S(R?) denotes the
space of Schwartz test functions.

Chaos decomposition

Theorem 1.1.2 (It6-Segal decomposition, cf. [BK95a, Section 2.2f]). Any
F € L*(S', o) can be written as an orthogonal decomposition

o0

Flw) =Y (f™,:w® ),

n=0

where {{f, : w®n ) Inen denotes the system of generalized Hermite polyno-
mials. The latter may be expressed as multiple stochastic integrals w.r.t. to
a Wiener process.

Differential structure

Let us introduce a set of cylindrical functions

FCR(S.S) = {f({pr, ), (pn, ) IN €N, f € CFF(RY),
1, pn €S} C LAS, o).



1.1. INFINITE DIMENSIONAL ANALYSIS 5

We fix F = f((p1,),.-.,{pn,")) € FCZ(S',S) with N € N, f € C°(RY)
and py,...,py € S.

Definition 1.1.3. For h € L*(R¢,dz) define the directional derivative as

N

/ a /
va@J) = a_f(<p17w>7"'7<pN7w>><:0j7h>Tw(3’)7 w ES?
]:
where we set T,,(S8") := L*(R%, dz) for each w € §'. The gradient is
Al
28_ plv : ~7<PN,W>))pj7 wedS'.

As usual,
VIF (W) = (VSF (W), sy, weS.

The geometry of the space S’ is flat because the tangent space at each
point is the same.

Quasi-invariance property

Proposition 1.1.4 (Cameron-Martin, see, e.g., [BK95a, Theorem I1.2.3]).
For all h € L*(RY, dz) we have

dpo(w —h) et rsn =3I, o)

dpo(w)

Here, {(w,h), w € 8" is defined as a measurable linear function pg-a.s..

weds.

Integration by parts
Via the quasi-invariance formula one gets an integration by parts formula.

Theorem 1.1.5 (cf., e.g., [BK95b, Section IV.3]). For all h € L*(R% dx)
and F, G € FC*(S',S) we have

/ UEF (@) Gl)olde) = ~ / @)V G () ole)
+ [ @@ (hwpn(do),

where the logarithmic derivative is

w = B (h,w) = (W, )1, (s
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Dirichlet forms and associated stochastic dynamics

We define the corresponding gradient bilinear form for all F, G € FC;*(S', S)
as

EM(F, Q) ::/ (VS'F (w), VS G (w)) 1, s o(dw).

’

It is closable in L?(8, o) and its closure is a conservative symmetric Dirichlet
form which is quasi-regular (cf. e.g. [MR92, Corollary I1.3.3 and IV .4a)]).

1.1.2 Poisson measure

Already in [VGGT5] Poisson measures are given as examples for quasi-invariant
ergodic measures on configuration spaces. The Poissonian white noise anal-
ysis was developed in [CP90, IK88, NV95, Pri95|. In the late 1990s started
some new development in stochastic analysis and differential geometry on
configuration spaces (cf. e.g. [AKR98a, AKRI8b|), when integration by
parts formulas and Dirichlet forms were derived for these measures. The
chaos decompositions of Poisson measures is presented in, e.g., [KdSSU9S|.

Let m(dx) = p(x)dz with p € H-?(RY), where dz denotes the Lebesgue

loc
measure on (R? B(R?)). Via the Minlos theorem we obtain for the functional

Co(RY) 3 f s ele—1m) _ o (4O 1m(a)

the existence of a Poisson measure m, (with intensity measure m). It is
located a priori in a linear space of generalized functions, but has de facto
full support on the configuration space over R?, which we present below.

The configuration space

The configuration space I'(R?) over R? is defined to be the collection of locally
finite subsets of R¢:

I'RY :={y CR?| |[yN K| < oo for all K C R? compact},

where |A| denotes the number of elements of a set A.
A configuration can be viewed as a positive measure, i.e.,

P(RY) 37 - 36, (dy) € M(RY),

ey

where §, denotes the Dirac measure at x € R? and M (RR?) the set of positive
Radon measures on RY. We equip the configuration space I'(R?) with the
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relative topology as a subset of the space M(R?) with the vague topology:
It is the smallest topology such that the following functions are continuous

ME®) 370 () = [ fanldn) = Y f@) €R, f e R

ey

We equip I'(R?) with the corresponding Borel o-algebra B(I'(R?)). (For
further details cf. Section 2.1 resp. the papers mentioned above).

Remark 1.1.6. The Mecke identity is a useful characterization of the Pois-
son measure: Let f : RExT(R?) — [0, 00) be a B(RY) x B(I'(RY))-measurable
function. Then

/F(Rd) y f(@, )y (dz) T, (dvy) = /Rd /F(Rd) Flx, 7y + 0)Tm (dy)m(dz).

Chaos decomposition

Similarly to the Gaussian case, we have an orthogonal chaos decomposition:

Theorem 1.1.7 (see [KASSU98, Subsection 2.3|). For all F' € L*(I'(R?), ),

we have
F(y) =Y (Cr(), ™),

where the system {C™(f™)(y) = (C™(7), f™) }nen is called the system of
generalized Charlier polynomials for the Poisson measure my,.

Differential structure

We define the set of cylindrical functions:

FCE(L(RY),CRY) = {gr({p1,)s-- -, (on, )N €N,
gr € C°(RY), p1, ..., pn € C*(RY)}.

Let Vp(R?) denote the set of all smooth vector fields with compact support.

Definition 1.1.8. The directional derivative of F' € FCX®(T'(R?), Cy(RY))
w.r.t. v € Vo(R?) is defined as

N
ViF( Zai 1. 7)s Ao DAV e M, (1L
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where the tangent space at a configuration v € T'(RY) is
() = L*(R?, ).

The gradient s
Y dgr
d
VIE(y Z ds; ({£1:7)5 5 {ony 7)) VE Pj e T.(T).

Comparing with the Gaussian case, the geometry of I'(R?) is non-flat
because the tangent spaces are different at each point. The gradient and the
directional derivative satisfy

VoF () =(V'F(7),0)7 -

Quasi-invariance property

Let Diffy(R?) denote the set of all diffeomorphisms ¢ : R? — R¢ with compact
support, i.e., there exists a compact set A € B.(X) such that for all z € A°
we have ¢(x) = x.

For each ¢ € Diffy(R?), we define its lifting

¢ :T(RY) 37— ¢(7) == {g(x)|x € v} € T(RY).

Proposition 1.1.9 (see [AKR98a, Prop. 2.2.]). The Poisson measure my,
is (quasi- Jinvariant w.r.t the group Diffy(R?), and for any ¢ € Diff,(R?) we

have
(¢ o) = [ vy (x)exp (/ (1 —pf;“(w))m(dfﬂ)) ,

xrey

where x indicates that we take the image measure and the Radon-Nikodym
density py' is defined as

iy AOm @) p6 @) do(0 @) plo )

T B s BT R
ifre{0<p<ootnN{0<pos ' < ool

py (x) =1, otherwise.

Here, Jy(¢) denotes the Jacobian determinant of ¢.
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Integration by parts
Theorem 1.1.10 (see [AKR98a, Thm 3.1|). We get an integration by parts
formula for all F, G € FC(T(RY), C5°(X)) and any v € Vo(RY):
[ (VRO R == [ PO 0)m(d)
I(R?) I(R4)
- [ FOIGE)E ) ma(d),
(R

where

LT (v, ) = /Rd ((Bm(:c),v(x)ﬁz(ﬂgd) + dz’dev(x)> ~v(dx) and

_ V()

p(@): p(z)

€ T,(X) with, as usual, 5™ :=0 on {p = 0}.

As for the Gaussian measure, this integration by parts formula is derived
via the quasi-invariance property of the Poisson measure.

Dirichlet forms and associated stochastic dynamics
We define a gradient bilinear form for all F,G € FC©(T'(R?), C5°(R?)) by
et (F.G) = [ (9P 0). VG ()l
(R

It is closable in L?(I'(R?),7,,) and its closure is a conservative symmetric
gradient Dirichlet form which is quasi-regular and local (cf. e.g. [AKR98D,
Proposition 5.1., Theorem 5.1. and Corollary 5.1]).

Theorem 1.1.11 (see [AKR98b, Theorem 5.2] and [RS98, Proposition 1]).
There exists a conservative diffusion process®

d
M) = <Q7 F, (Ft)tzo , <®t)t20 ’ (Xt)tzo (PV)VGF(WJ

on T'(RY) which is properly associated with (EWW’F,D(E’T’"’F)), i.e., for all
(Tm-versions) of F € L*(I'(RY), 7,,) and all t > 0 the function

MR 29 nF(0) = [ FX ()P,

2This is a conservative strong Markov process with continuous sample paths
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is an E™ ' -quasi-continuous version of exp(—tL™)F, where L™ is the
generator of (SWW’F,D(E,’”’”’F)) (cf. [MR92, Section I1.2]). MP®) s up to
Tm-equivalence unique (cf. [MR92, Theorem VI1.6.4[). In particular, M (E)
is Tm-symmetric (i.e., [ GpFdn,, = [ Fp,Gdn,, for all F,G : T(RY) — R,
B(T'(RY))-measurable) and has 7, as an invariant measure.

1.1.3 Gamma measure

Let us quickly summarize some known results regarding the Gamma measures
(cf. also Chapter 3 for details). The Gamma measures over a compact set are
strongly related to (multiplicative) Lebesgue measures (cf. [TVYO01]). The
latter are considered in [VGGS83] from a point of view of group representation.
In [KdSS98, Subsection 4.2 a chaos decomposition for the Gamma measures
is presented.

The cone of positive discrete measures
The cone of locally finite discrete measures is defined as

K(R?) := {7] = Z 8i0z,

SiERJr,xieRd,xi#iji,j eN, i # 7,

VA € B,(R%) : n(A) < oo} c M(RY).

Here, B.(R%) denotes the collection of Borel sets in R? with compact closure.
The Gamma measure Gg, 6 > 0 being a shape parameter, is characterized
via (compare [TVYO01, P.279], [KdSSU98, Definition 4.1] )

B, lexp (~ (o, ] =exp (=6 [ lou(1 + alem(an)),

where a : R? — [0, 00), is a bounded, compactly supported Borel function.

Chaos decomposition

Similarly to the Gaussian and the Poissonian case, we have an orthogonal
chaos decomposition:

Theorem 1.1.12 (|[KdSSU98, Subsection 4.2|). Any F € L*(K(R%),Gy) can
be written as

o0

F(n) =Y (Lim), f™),

n=0

where the system {L2(f™)(n) = (L%(n), f™)}nen is called the system of
generalized Laguerre polynomials for the Gamma measure Gy.
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Quasi-invariance

In [TVYO01] the (extrinsic) quasi-invariance formula w.r.t. multiplication is
outlined for the case that R? is replaced by [0, 1].

Theorem 1.1.13 (cf. [TVYO01, Theorem 3.1]). The Gamma measure Gy on
K(RY) is quasi-invariant under the multiplication M, : K(R?) > n s ehn €
K(RY) for each h € Co(R?). The corresponding density is

A ) =exp (<0 [ n@mtan) ) esp (= [ @0 1) anto) )

This quasi-invariance is an essential property of Gamma measures. It is
deeply related with the structure of Gamma measure (cf. [LS01]).

1.2 Content

This thesis is divided into three parts: In Part I we introduce our basic object,
namely the Gamma measure Gy, 8 > 0 being a shape parameter, resp. (as
a related Poisson space model) the Gamma-Poisson measure Py. In Part
IT we construct Gibbs perturbations of the Gamma measure Gy; and in Part
I1I we outline some differential structure on the cone IK(R?), Dirichlet forms
related to Gamma and Gibbs measures and associated diffusions.

Here, we only give a brief insight. For a more detailed overview of the
content, more motivation and relations to existing literature, we refer to the
beginning of the respective chapters. For the convenience of the reader, we
included an index of the most important notations, definitions and results.

1.2.1 Gamma measures

Let m be a non-atomic Radon measure on (R¢, B(R?)), where B(R?) denotes
the Borel g-algebra on RY. On R, := (0, c0) being equipped with the metric
dr. (s1,52) = |In j—;|, s1 and s € Ry, we consider the measure

1
A = Gge’tdt, 0 > 0 being a shape parameter.

Each & = (s;,x) € R? := R, x R? may describe a particle with a mark s,
being located at a position = € R?.

In our considerations the configurations space F(Rd) over R? will play a
central role. It is defined as (cf. also Section 2.1)

P(RY) := {7 CR? | |ya| < 00, VA € B.(R%)]},
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where A € BC(Rd) is a Borel set with compact closure, y5 := v N A is the
restriction of v to A and |y,| denotes the set cardinality.

Let A € B.(R%). The Poisson measure P} on ['(A) := {y € T(R%)|y C
A} =1,s0{y € T(A) | |7] = n} with intensity measure A\g ® m is given by

R SE

n>0

Because of the consistency of {PMA € B.(R%)} by Kolmogorov’s theorem
there exists a unique probability measure Py such that

PyoPZ! =Pp,

Re,A
where Py , is the projection from ['(RY) to D(A): Pgrap(v) =7NA.
We identify a smaller set T'f(R?) ¢ T'(R?) that supports Py (cf. Subsection

2.2.1): To that end, we introduce the set of pinpointing configurations (cf.
Definition 2.2.2)

[,(RY) := {ve F(]Rd)’ for all (s1,21), (s2,22) € v we have
T1 = T9 = S1 = 82}.

For all A € B,(R%) and v € T',(R%) we define a local mass via (cf. Definition
2.2.6)

ma(y) = > sla(z) = / sTa(z)y(di).
2=(sz,x)EY R

Combining these two definitions, we specify the set of pinpointing configura-
tions with finite local mass as (cf. Definition 2.2.7)

[y(RY) := {7 € T,(RY) |ma(y) < 00, VA € B.(R%)}.

The following result, which is the main one of Chapter 2, will enable us to
construct the Gamma measure. We have

Po(T;(RY) = 1.

For our further considerations it is important that there exists a bijection
between I';(R?) and the cone of discrete Radon measures

{77 = Z $i0a,

K(RY) : si€ER, x €RY my £ a¥Vi,j €N, i #j,

VA € B.(RY) : (A) < oo}.
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The mentioned bijection is even a homeomorphism and is defined by (cf.

(3.1.2))

T: T (RY) —  K(RY)
Y= {(Sx,il?)} = n= Z(sz,x)E'y Sx(sx'

The image measure of Py under T is denoted by Gy and called Gamma mea-
sure with shape parameter § > 0. We call Py Gamma-Poisson measure.

These two objects, namely the cone K(R?) and the Gamma measure Gy,
are studied in more detail in Chapter 3. We present two important results:

o All moments exist (cf. Theorem 3.2.6): For n € N and for each bounded
Borel function a : RY — R that is supported by A € B.(R%) we have

Eg,[{a, )"] < nlllalloct"m(A)" < oo.

e Quasi-invariance property (cf. Theorem 3.3.3): The Gamma measure
Gy is quasi-invariant under the multiplications M} : K(RY) 3 n
ehn € K(RY), where h € Cy(R?) .

These two properties are essentially used in Part III to establish integration
by parts formulas and study related Dirichlet forms.

The construction is extended to the case of a locally compact Polish space
X.

1.2.2 Gibbs perturbations

In Part II, we construct Gibbs perturbations of the Gamma measure Gy on
K(RY) by means of a pair potential ¢ : RY x R — R describing the inter-
action between particles. So far, we considered the “free case” of a Gamma
measure Gy, where ¢ = 0. Here, we give a heuristic description. The precise
definitions and results are presented in Chapters 4 and 5.

We introduce a Gibbs formalism on K(R?) following the Dobrushin-
Lanford-Ruelle (DLR) approach to Gibbs random fields in classical statisti-
cal mechanics (cf. Section 5.3): As an example, we consider a basic model
with

qb(x,y) :CL(iL'—y), l‘,yERd,

where a > 0 is bounded, even and compactly supported.
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For each n € K(R?Y) and a tempered boundary condition & € K*(R?) (cf.
(5.3.5)), the relative energy Ha(n|€) in a bounded area A € B,(RY) is given
by (cf. (5.3.4))

16 = [ [ oty + [ [ o ntansia)

Fix an inverse temperature § = 1/T > 0. A local Gibbs measure in volume
A is the probability measure on IK(A) defined as

mefﬁHa(n\ﬁ)gaA(dn)’

where G5 is the Gamma measure on IK(A). The probability kernels

Ta(BlE) = ua({n € K(A)nUéac € BYE), B € BIK(R?)),

indexed by A € B.(R?) and ¢ € K*(R?), constitute the Gibbs specification on
K(R%). It determines corresponding tempered Gibbs measures px on K(R?)
via the (DLR) equation (cf. (6.3.18))

pa(dn|§) =

7 (Blan) = (),

valid for all A € B.(RY) and B € B(K(R?)) (cf. Definition 5.3.9).3 The set
of all tempered Gibbs measures related to the specification ™ = {7a }aep, )
will be denoted by Gibbsy (K (R?)) (cf. Definition 5.3.5). By the construction,
all ;1 € Gibbsj (K(R?)) are supported by K*(R?).

The first step of our considerations is to show the existence of such Gibbs
measures i € Gibbsg(IK(X)), which is a non-trivial problem (cf. also be-
low). But before going into details, we will formulate some results. To this
end, we have to be more specific about the conditions on the symmetric
function ¢. We distinguish two cases:

1. The potential ¢ is non-negative, i.e. ¢ > 0, and has finite range, i.e.,

VA € B.RY) 3Ur:  é(z,y) = ¢ly,z) =0 ifxc AandycUs.

2. The potential ¢, which may take possibly negative values, satisfies some
stability properties. Merely speaking the repulsion part ¢* of the po-
tential shall dominate its attraction part ¢~ (for the precise formulation
see Subsection 5.3.1).

3Here, we set m(dy|¢€) = 0 if £ ¢ K*(R?).
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We obtain the following main results describing the set Gibbsy (K (R?)):

o FEuzistence (cf. Theorem 5.3.7): For each ¢ as above, there exists a
corresponding Gibbs measure, i.e.,

Gibbs} (K(R)) # 2.

e Uniform moment bounds (cf. Theorems 5.3.10 and 5.3.11): For A €
B.(X) and N € N there exists Cy(A) > 0 such that for all ux €
Gibbsg (K(X))

/K A () < O (),

Our strategy is to reformulate the existence problem in terms of related
Gibbs measures on the configuration space I'(R%). To some extent, this
approach is similar to the free case, where we first define the Gamma-Poisson
measure on F(Rd) and then use the bijective mapping T between the cone
K(R?) and the set T';(R%) of pinpointing configurations with finite local mass.
Recall that

T': KRY3n=> sidr>7={(sa,2)} € [;(R’) CT(RY).

Using T~!, we can transfer the corresponding objects (like the potential,
relative energy and local specification) to the configuration space I'(R9), e.g.,

o(z,y), 1,y €RT to V(2,9) = sus,0(x,y), &, € X;
pia(dnlé) to  pr,xa(dy[T7HE));
ma(dn]€) to e, xa(dy|TH(E)).

We will call the specification kernels g, xa (dy| T~ (€)) € MY (T'(R?)) semi-
local because they are indexed by “stripes” R, x A C R%. Using the (DLR)
formalism on I'(R?), we then define the associated Gibbs measures on I'(R?)
corresponding to the semi-local specification

= {7, xa(dV|E)|A € B(R?), € € T(RY)}.

The set of all of such Gibbs measures will be denoted by Gibbst, (I'(R%)) (cf.
also Subsection 4.5.1 and Section 5.1). Actually, each ur € Gibbst, (I'(R?)) is
supported by the subset I'*(R?) C I'j(R?) of tempered configurations, which
is defined by (5.1.35).

The one-to-one correspondence between the local specification kernels ma
on K(R?) and the semi-local ones, g, xa, on T'(R?) (cf. Subsection 5.3.2)
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implies the one-to-one correspondence between the classes of Gibbs measures

Gibbsg (K(R?)) and Gibbst, (T'(R%)) (cf. Theorem 5.3.6). By the above con-

struction, the set Gibbst (I'(R%)) consists of those ur € M'(I'(R?)) which
solve the (DLR) equation and have full measure on T';(R?) (cf. Theorem
4.3.31, resp. Corollary 5.2.11). Hence, we will first construct and study the
Gibbs measures pur on F(Rd) and then reformulate the corresponding results
for the Gibbs measures px on K(R?).

Even on the configuration space F(Rd), neither the potential, nor the
semi-local specification kernels are standard (cf. e.g. [Rue69, Rue70| or
|AKRO8b, KLU99, Kun99]).

Concerning the semi-local specification, usually one considers local speci-
fication kernels on I'(R%), where instead of R, x A, A € B.(R%), one chooses
A € B,(R?) (cf. Section 4.1). An important issue is that the classes of mea-
sures € MY(T(R?)) that solve the (DLR) equation w.r.t. to the local
Gibbs specification () cp, gy respectively semi-local one (g, xa)aes, &)
indeed coincide, as we show in Theorem 4.5.9 (see also Remark 5.1.24). This
immediately implies the one-to-one correspondence between the two classes
of Gibbs measures on K(R?) and T'(R%), i.e., between Gibbst, (I'(R%)) and
Gibbsg (K(R?)). So, we will first study the set Gibbst, (I'(R%)) and then re-
formulate the main results for ;1 € Gibbsy (K(R?)).

Furthermore, the potential V (2, 9) = s,s,¢(z, y) does not fit the standard
framework on I'(R%) (cf. Section 4.2 for more details), in so far as:

1. V is in general not translation invariant in RY,
2. V may have an infinite range in R,

3. If ¢(x,y) = a(x —y) > 0, where z,y € R and a € C}(R?) not identical
to zero, then (cf. Lemma 4.2.1)

:=ess sup/ / !e Bsesyalz—y) 1‘ Ao(dsy)dx =
sckd  JRE SR,

So, V voids the uniform integrability condition, which is C'(8) < oo
(cf. e.g. [AKRI98b, Kun99)|).

4. The intensity measure \g on the marks is infinite, i.e., A\g(Ry) = oo,
and, moreover, it has a high concentration as s N\, 0. (In marked
configuration spaces the intensity measure on R is usually assumed to
be finite, cf. [KLU99].)



1.2. CONTENT 17

We overcome these difficulties in Chapters 4 and 5, where we study in
detail the related Gibbs measures on F(Rd). In particular, we establish their
existence and uniform moment bounds (cf. Theorems 4.2.7 and 4.3.34, resp.
5.2.8 and 5.2.10).

In Chapter 4 we concentrate on the case of a non-negative potential
V' > 0 and construct a Gibbs measure being specified by the local speci-
fication kernel w5, A € B,(R?) (cf. Section 4.2). To establish the existence
of yir € Gibbst (D(R%)), we derive uniform moment bounds for s (dy|€) (cf.
Proposition 4.2.3). These bounds imply that each net of local specification
kernels 7y (d|§) with a fixed boundary condition & is locally equicontinuous
(cf. Proposition 4.2.6). This yields the existence of a certain i € M (I'(R%))
being a limit point of such a net as A 7 Rd, for which we then show that it
satisfies the (DLR) equation, i.e., ur € Gibbst (I'(R%)) (cf. Theorem 4.2.7).
Therefore, the set Gibbst, (I'(R?)) is non-void. After establishing the exis-
tence, we deduce certain moment estimates being uniform for all Gibbs mea-
sures yip € Gibbst (D(RY)) (cf. Theorems 4.3.31 and 4.3.34). These estimates
allow us to identify an <exponentially tempered> subset Tt (R%) C T';(R%)
on which each pup € Gibbst (D(R%)) has full measure (cf. Remark 4.3.32 and
Corollary 4.4.2).

In our general considerations in Chapter 5, we remove the assumption
that V' > 0 and work directly with the semi-local specification kernels g, xa,
A € B.(RY). As we already mentioned above, both specifications lead to the
same set Gibbst (D(R%)). To construct such Gibbs measures (cf. Theorem
5.2.8), we need more advanced analytic techniques than in Chapter 4. These
involve introducing certain Lyapunov functionals and establishing the weak
dependence of Gibbs specification kernels on boundary conditions. A key
issue in the existence proof is Proposition 5.2.4, where we get a uniform
bound (as A * R%) for the exponential integral of a Lypunov functional
w.r.t. the local specification kernels 7r, xa. For a large class of boundary
conditions & € F(Rd), this allows us to prove the local equicontinuity of the
specification kernels (mg, xa(d7[€)) aep,ray (cf. Definition 5.1.16), which im-
plies their tightness in a proper topology (cf. Proposition 5.2.7). Finally,
we check that all cluster points pur of the Gibbs specification {7mg, xa} (as
A 2 RY) are surely Gibbs. The properties of 1 € Gibbst (I'(R?)), including
moment bounds and a characterization of supporting sets, are summarized
in Theorem 5.2.10 and Corollary 5.2.11.

In Section 5.3 we make a transition to the cone IK(R?). Using the canoni-
cal homeomorphism T (cf. (3.1.2)), we obtain Gibbs measures px on K(R?)
as image measures of Gibbs measures pr on I'(RY), i.e., ux = T*ur. Then
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we can directly reformulate the main results obtained in Chapter 4 and 5 in
the Gibbsian framework on K(R?). Among them, we mention the existence
result (cf. Theorem 5.3.7) and the uniform moment bounds (c¢f. Theorem
5.3.10).

These results will be of particular importance in Part III: There we es-
tablish integration by parts formulas for Gibbs measures on K(R?) and study
related Dirichlet forms and operators (cf. Chapter 6), which are then used
to construct associated diffusions on K(R?) in Chapter 7.

Let us point out that the technique developed in Sections 5.1 and 5.2
also covers more general potentials than in the basic model with V(z,y) =
sz¢(x,y)s, (see the general setup fixed in Subsection 5.1.3 and the corre-
sponding results in Theorem 5.2.8 and 5.2.10). Moreover, the results of
Chapter 4 and 5 are extended from R? to general locally compact Polish
spaces X.

1.2.3 Differential calculus over K(R?)

In Part III, we incorporate movement of the marks (extrinsic) and positions
(intrinsic). In fact, we construct diffusions

o for extrinsic, intrinsic and joint motion that

e are located in K(R?) and

e are related to Gy, as well as to some class of Gibbs perturbations.
e In particular, we get a diffusion of a dense set in R%.

Our approach is based on using Dirichlet forms: Roughly speaking, for each
quasi-regular and local Dirichlet form, there exists an associated diffusion. In
Chapter 7 we treat the question of quasi-regularity (and locality) of gradient
Dirichlet forms to obtain associated diffusions.

Prominent examples for diffusions over spaces of measures are Fleming-
Viot processes, which are motivated by biological considerations (cf. [Hoc91,
EK93] and Chapter 7). Diffusions constructed via Dirichlet forms in the
configuration space framework are considered, e.g., in [AKR98a, AKR98b|
and [KLU99]. The theory of Dirichlet forms is explained, for example, in
[MRI2| or, the symmetric case, in [FOT94].
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Differential calculus and Dirichlet forms

We first introduce some gradients on functions over IK(R?) (cf. Section 6.1)
and then deduce integration by parts formulas and construct related Dirich-
let forms (cf. Section 6.3).

Fix h € Cy(R?), v € V5(RY) (being the set of smooth sections of the
tangent space T' (X) with compact support) and consider cylinder functions

F(n) = gr({¢,m), (1.2.1)

where gp € Cp°(R?) and ¢ € C§°(R?).* We construct an extrinsic (Vi ,F),
an intrinsic (Viy, ,F) and a joint (V)< F) directional derivative (cf. Subsec-
tions 6.1.2, 6.1.3 and 6.1.4): Let F : K(R?) — R. We define an extrinsic
derivative in direction h via the multiplications My, : K(RY) 3 n +— ety €

K(RY) with t € R:
K d th
Vext,hF(n) = EF(e 77)7

whenever the right-hand side exists (cf. Definition 6.1.1). For the particular
cylinder function specified in (1.2.1), we have (cf. Proposition 6.1.7)

Veen 9800, m)) = gu((6. 7)) {¢h,n)

Let R > ¢ — ¢}(z) be the solution to the Cauchy problem 4(¢¢)(z) =
v(¢¥(z)) and ¢y(z) = x for x € R%. Then we define the intrinsic derivative
along v as

d R

t=0

whenever the right-hand side exists (cf. Definition 6.1.9). In particular, for
the above cylinder functions (cf. (1.2.1)) we have (cf. Proposition 6.1.14)

Visew 9r((6,1)) = g5 ({0, m) (VY ¢, m).

Combining the extrinsic and intrinsic directional derivative, we get the joint
one (cf. Subsection 6.1.4)

VioF(n) = Vg hF(n) + Vi o F(1).

4Cp°(R?) is the set of all arbitrarily many times differentiable bounded functions from
R? and cge (R?) that subset whose functions are compactly supported.
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For the corresponding gradients, we choose the following tangent spaces: The
extrinsic one is T (K) := L*(K(R?),7n) (cf. Definition 6.1.3). The extrinsic
gradient is defined by

<vg§<‘D )’ h>Tﬁxt vexth ( )

whenever the right-hand side exists. In particular (cf. Proposition 6.1.14),

Vew 97((8,m) = ge((,m)e € T7(K).

Furthermore, we define the intrinsic tangent space T)™(IK) at n € K(R4)
as the Hilbert space L*(R? — T (RY),n) of measurable n-square integrable
sections (measurable vector fields) V,, : X — T (R?) with the scalar product

Vi Vil = [ (V@) V@, o),
where V1, V> € TI"(K). The intrinsic gradient is defined via

(Vi) (1), 0)zime (i) = (Vige o ) (1),

whenever the right-hand side exists. In particular for F' as in (1.2.1)

VE gr((¢,m) = gp((6. ) VY6 € Ti"(K).

Combining the extrinsic and intrinsic part, we get the tangent space at
n € K(X)

T,(K) = T, (K) ® T, (K)
and the gradient

(VEF)(n) = (Ve F) (), (Vi) () € TH(K).

To obtain corresponding extrinsic, intrinsic and joint integration by parts
formula,s we fix a measure m(dzr) = p(z)v(dz) on (R4 B(RY)) such that
p € H1 (]Rd v). We define the extrinsic, intrinsic and joint logarithmic
derivatives (Cf. Definitions 6.3.17 and 6.3.30)
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We establish the following integration by parts formula (cf. Theorem 6.3.39):
[ VERmGn =~ [ Fa)E ), (0 coGolin)
K(R4) K(R4)

It yields for h = 0 an intrinsic and for v = idra an extrinsic integration by
parts formula.

The integration by parts formula is a key tool to study corresponding
Dirichlet forms. The above results hold for more general functions, in par-
ticular for each cylinder function

F € FCP(K(RY), C*(RY) = Sza)
being of the form (cf. Definition 6.1.5)

F(?]) :9F<<¢1777>7~--7<¢N777>)7
where gr € C°(RY) and ¢; € C5°(R?) for i = 1,...,N, N € N.

The next step is to study the joint Dirichlet form related to Gy (cf. Sub-
section 6.3.4). We present a main result of Chapter 6:

e Dirichlet form (cf. Proposition 6.3.47 and Theorem 6.3.48): The joint
bilinear form (cf. (6.3.46))

£9(F,G) = /

K(R)

<VJKF(77)7 VJKG(W)>TW(]K) g@(d"?)a Fa G e S]K(HW)?

is closable and its closure is a conservative Dirichlet form.

Analogous results hold in the intrinsic and extrinsic case (cf. Theorems 6.3.29
and 6.3.38).

We deduce the above results for more general measures on K(R%):

1. Let Gy on K(RY) be the image measure of a Poisson measure Py on
I'(RY) whose intensity measure A on R has first and second moments,
ie.,

ml()\)—i-mQ()\):/R (54 s*) A(ds) < oc.

Then the intrinsic results hold for Gy (cf. Theorems 6.3.8, 6.3.14 and
Proposition 6.3.12 in Subsection 6.3.1). °

SEach G, is a Levy measures (cf. Definition 3.1.5).
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2. The extrinsic, intrinsic and joint results are extended to the Gibbsian
case (cf. Theorems 6.3.19, 6.3.33, 6.3.39; 6.3.29, 6.3.38 and 6.3.48).

The results of Chapter 6 hold in a more general setting, where R? is
replaced by an arbitrary connected, orientated, separable C'*°-Riemannian
manifold with Riemannian metric dx.

Equilibrium processes
A main difficulty to obtain diffusions on K(R?) is to find the correct under-
lying Polish space for the quasi-regular property.

For simplicity, let m be the Lebesgue measure dz on R?¢. We use the
configuration space of multiple configurations in R? (cf. (7.2.1))

T'(RY) = {’y => myd,

yeY

We define a functional (cf. Definition 7.2.7)

my € N and y(A) < oo, VA € Bc(Rd)}.

di,(7,7) : T(RY) x T(RY) 3 (7,7") = dis, (v,7) € [0, 0],

which is a metric on (cf. Definition 7.2.9)

Py (R?) = {5 € PRY) | dy (4,0) < o0}

The space (ff(Rd),dff) is Polish (cf. Theorem 7.2.11); and it is the space
on which we will work.

Consider the pre-Dirichlet form defined for all F € FCp*(T'((R%), Cy(R?))
via (cf. Definition 7.2.18) 7

1 () ::/j*f(f&d) /Rd (\/E%F(V))z

+ (%%F(y}) v(ds, dz)Py(dr),

6Since we do not know whether IK(R?) is a Lusin space, we cannot apply the abstract
results [BBR06, BBROS].
"The set FC°(I's(X),C5°(X)) consists of all functions F' which can be represented as

LX) 270 F() =gr(e1,7), -, (N 7)),
with some N € N, gr € C°(RN) and ¢; € C°(X), 1 <i < N,
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where Py denotes the extension of the Gamma-Poisson measure to I' f(Rd)
by 0. The closure (E7¢Ts D(EP2I'1)) is a conservative Dirichlet form (cf.
Theorem 7.2.22). As an essential step to obtain an associated diffusion, we
prove that this Dirichlet form is quasi-regular (cf. Theorem 7.2.39).

We get a conservative diffusion® M'/ that is properly associated with
(EPoLs D(EPoL1)) (cf. Theorem 7.3.7). One drawback is that the process is
only constructed on F(Rd) We prove that it is actually a diffusion on the
set of pinpointing configurations with finite local mass dff((?), 1), i.e., on

Pi(RY) = {7 e[y (RY|y(Ry x {a}) <1 Vre Rd}

(cf. Theorem 7.3.12). For the proof we show that I'(R?)\I'g (R?) is £PeL's-
exceptional by extending a technique presented in [RS98|. Then we get a
main result of Chapter 7:

e Euxistence of a conservative diffusion on K(R?) (cf. Theorem 7.4.4):
Let d > 2. Then there exists a conservative diffusion process

d
M = MEE) = (0,F, (F) sy, (00) 0 (X0 - () cxcn
on K(R?) which is properly associated with (EQG’Ff,D(Sgejf)),g ie.,
for all (Gp-versions) of F' € L?(K(R%),Gy) and all ¢ > 0 the function

K(RY 55— pi ) = / F(X(1))dP,

is an £9Ts-quasi-continuous version of exp(—tL9%17)F where L9

is the generator of (Ege’ff,D(é’gf’jf)) (cf. also Theorem 7.2.20). M
is up to Gy-equivalence unique. In particular, M is Gy-symmetric
(ie., [GpFdGy = [ Fp,GdGy for all F,G : K(R?) — R, B(K(R?))-

measurable) and has Gy as an invariant measure.

e Existence of extrinsic and extrinsic diffusions on K(R?) (cf. Corollary
7.4.5): There exist extrinsic, intrinsic and joint diffusions on K(R?),
d > 2, describing the motion of marks and positions.!°

In particular, there exists a diffusion describing the motion of the dense
set 7(n;) € R, where 0, € K(R?) for all ¢t > 0.

8 A diffusion is a strong Markov process with continuous sample paths

9This is the Dirichlet form on K (R9) that corresponds to (Spﬂ’ff,D(Sp"’ff)).
10The extrinsic motion exists also for d = 1.
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The above results extend to more general situations (cf. Theorem 7.4.4):

1. We can equip the Lebesgue measure dz with a density p € Hllo’c2 (R?, dx)
such that m(dz) = p(x)dzx fulfills (cf. (7.2.12))

M, C>1: m({zeR?| |z| <k}) <MC".

2. In addition to the first extension, Gy can be replaced by a Gibbs per-
turbation of Gy w.r.t. some non-negative potential ¢ € C*(R? x R9).
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Chapter 2

Poisson measures

In this chapter, we recall properties of the space of (locally finite) configu-
rations, construct Poisson measures on it (cf. Section 2.1) and establish the
concrete setting in which we will work (cf. Section 2.2).

The notion of a configuration space as a model for describing many-
particle systems appeared first in statistical mechanics. There the state of
an ideal gas is described by a Poisson random point field. Nowadays config-
uration spaces are also widely applied in computer science and biology.

One of the early papers treating configuration spaces is [VGGT75]. Others
are e.g. [AKR98a, AKRI8b|, where the geometry of configuration spaces is
studied, or [Geo88, Pre05, KPR10|, where the existence of Gibbs measures
is treated. For a more detailed account, we refer to e.g. [Kun99].

In Section 2.1, we fix a locally compact Polish space Y with the Borel
o-algebra B(Y') and define the configurations space I'(Y') over Y as (cf. also
Subsection 2.1.1)

I(Y):={yCY|lml<oo, VAEBY)},

where A € B.(Y) is a Borel set with compact closure, v, := yNA denotes the
restriction of v to A and |y, | denotes the set cardinality. Fixing a non-atomic
intensity measure o on (Y, B(Y)), we construct the Poisson measure 7, on

I'(Y) (cf. Subsection 2.1.2).

Then (cf. Section 2.2), we outline the concrete setting in which we will
work:

1. We introduce a space of marks, R, :=]0, 0o, and a space of positions,
R? with d € N.

27
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2. Let m be a non-atomic Radon measure on (R, B(R%)) and (R, B(R,))
be equipped with

1
Ag :=0—e"%ds, 6 >0 being a fixed parameter.
s

Note that Ay has a high concentration close to 0. Specifying ¥V :=
R?:= R, x R? and 0 = \g ® m, we get the Gamma-Poisson measure
Py, which will be an import measure for our considerations.

3. We identify a smaller set T';(R?) C T'(R%) that supports Py (cf. Sub-
section 2.2.1):

(a) We define the set of pinpointing configurations (cf. Definition
2.2.2)

I,(RY) := {re F(Rd)| for all (s1,1), (s2,22) € v we have
T4 = Tg = 81 = 52}.

(b) For all A € B,(R?) and v € T,(R%) we set the local mass as (cf,
Definition 2.2.6)

ma(y) == Z sIa(z).
2=(8z,z)EY

We define the set of pinpointing configurations with finite local
mass as (cf. Definition 2.2.7)

Iy(RY) == {y € [,(RY)|ma(7) < 00, VA € B.(RY)}.
(c) We show that P, (I‘f(Rd)) = 1 (cf. Theorems 2.2.4 and 2.2.9),

which is basically due to the following relation between ma and
Ag @ m:

/1“(1?@) ma(7)Py = /A/R+ sz g (ds)m(dz) < 0o, YA € B,(RY).

By the last step, we can consider the image measure of Py on the cone
of discrete Radon measures K(R?), which is bijective to I';(R?) (cf.
Chapter 3).

2.1 A short introduction to configuration spaces

We recall some facts about the configuration space I'(Y') related to the topol-
ogy and the measurable structure and construct the Poisson measure. This
outline is based on [Kun99, Section 2.1| and [KPR10, Section 2.1]|.



2.1. A SHORT INTRODUCTION TO CONFIGURATION SPACES 29

2.1.1 Configuration space

The local compact Polish space Y is called phase space. It is equipped with
the Borel o-algebra B(Y) generated by the family O(Y') of open sets in Y.
The system B.(Y) consists of all Borel sets with compact closure. Let Cy(Y)
denote the set of continuous functions f : Y — R with compact support.

Configurations v € I'(Y)

For each A € B(Y), the configuration space I'(A) is the system of all locally
finite subsets of A:

L(A) :={y CA|lw]| <oo, VA € B.(A)}. (2.1.1)

Each v € T'(A) can be identified with the corresponding counting measure
Zy@ dy, where 0, denotes the Dirac measure with mass 1 at point y. For
example, to the configuration v = () there corresponds the zero measure on
A. Therefore we have a natural embedding

P(A) € M(A),

where M(A) denotes the linear space of all Radon measures on A.

Topology on the configuration space I'(Y) Fix A € B(Y'). We equip
['(A) with the vague topology inherited from M(A), i.e. with the coarsest
topology on M(A) such that each of the following maps is continuous

M(A) 3 v s {f,0) /f (dy), f € Co(A). (2.1.2)

The vague topology on I'(A) will be denoted by O(T'(A)).
We remark (cf. [KPR10, P.5]) that I'(A) equipped with the vague topol-
ogy is a Polish space (cf. [Kal83, 15.7.7] and, for a concret metric, [KK06]).

The Borel o-algebra on I'(Y) Let A € B(Y). By B(I'(Y)) we denote the
Borel o-algebra associated to the vague topology on I'(Y). An equivalent
definition of B(I'(A)) can be given via the counting mappings defined for all
N AeB(Y) as
NA’,]\: F(A,) — NO U {OO}
v = |yNAl. (2.1.3)
Namely,

B(I'(A)) = o (N iA € Be(A)). (2.1.4)
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Lemma 2.1.1 (|[Pre05, Lemma 2.13, p. 24]). Each function

DY) >y = (f,7)

is B(I'(Y'))-measurable for f :Y — R being B(Y')-measurable and supported
by a compact set.

Finite Configuration

Fix A € B(Y'). We define for n € Ny the space of n-point configurations over
A

F(()n)(A) = {yel(A) ||| =n}, forneNand TV(A):={0}. (2.1.5)

The space of finite configurations located in a set A is defined as the disjoint
union

To(A) = | | T§7(A) (2.1.6)

n€Ng

We call T'g(Y') the space of finite configurations.
Note that T'o(A) = {7 € T(Y)||7] < 00, 1ya =0} and To(A) = ['(A)
for A € B.(Y).

Borel o-albgebra on Ty(Y) We will define more structure on I'{” (V).
For each n € Ny and A € B(Y) let

A =Ly, oy € Afor 1<k <n, yp#y;ifk#j}

and equip T{"” (A) with the weakest topology, denoted by O(I'{" (A)), such
that each of the following natural ("symmetrizing") mappings is continuous
sym : A" — F(()n)(A)
(Wi, n) = {Y1 o Un} (2.1.7)
Then we equip I'o(A) with the topology O(I'g(A)) being the topology of
disjoint unions of O(an)(A)) on TV (A).
Let B (an) (A)) denote the Borel o-algebra on T (A) which is generated

by (’)(Fé")(/\)) and B(Lo(A)) the one on Ig(A). Using (2.1.3), we have (cf.
e.g. [Len75])

B(TS(A)) = o (Ny 5] A € Bo(A)). (2.1.8)
For A € B.(Y), we note that not only I'g(A) = I'(A), but also
B(To(A)) = B('(A)) = BI'(Y)) NT(A), VA € B(Y).
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Algebra of cylindrical sets
Fix A, A € B(Y) with A € A. We define

BA(F(A)) =0 ({NAJ\/

N e B(A), N C A}) (CB(A). (2.1.9)

It is only sensitive to sets in A. We consider the natural projections

Pyi: T(A) — T(A)
O (2.1.10)

and note that
Bi(T(A) =P o B(T'(A)). (2.1.11)

In order to avoid confusions we will not use the same notation for both of

them because B(I'(A)) and B;(I'(A)) are o-algebras on different spaces, I'(A)
resp. I'(A). Using the later o-algebra we define the algebra of cylindrical sets

Bey(T(N) == ] Bi(T(A)) (2.1.12)
AeB.(A)

Note that Bey(I'(A)) is a subsystem of B(I'(A)).

2.1.2 Poisson measure

We perform the well-known explicit construction of 7, (see e.g. [AKR98D,
Section 2.1| or [DVJ03, Section 2.4]). On the underlying phase space Y, we
fix an intensity measure o being a non-atomic Radon measure on (Y, B(Y')),
for which

o({z})=0 forallz €Y.

Typically, we have o(Y) = co.

By B(I'(Y)) we denote the set of all bounded B(I'(Y'))-measurable func-
tions F' : I'(Y) — R. For each A € B.(Y), the corresponding Lebesgue-
Poisson measure P} with intensity measure o on (I'(A), B(T'(A))) is defined
by the identity

/F | FONRN)

=F{o}) + Z % /An F{{z,...,z,})do(z1)...do(x,), (2.1.13)

neN
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which should hold for all bounded measurable functions F' € B(I'(A)). Tak-
ing into account that P}(T'(A)) = e°™ < oo, we introduce the probability
measures

7h = eeWpA, (2.1.14)

o o

Note that the family {72|A € B.(Y)} is consistent, which means (using the
projections defined in (2.1.15))

A -1 _ A /
T, 0Py =7, whenever A" C A.

By Kolmogorov’s theorem (cf. [Pat67, Theorem V.3.2]), the Poisson measure
T, is the unique probability measure on (1", B(I")) such that

™ =71, 0Pt forall A € B.(Y). (2.1.15)

An equivalent way of defining 7, is to claim that, for any collection of dis-
joint domains (A;); C B.(Y), the random variables N, () (cf. (2.1.3))
should be mutually independent and distributed by the Poissonian law with
parameters o(A;), i.e.,

o ({y €| Ny,(7) =n}) = Un(/!\j)e—ffmj), neZy. (2.1.16)

n

Another well-known analytic characterization of 7, is given through its Laplace
transform, see e.g. [GV64],

/F(Y) exp(f, v)dm,(v) = eXp{/Y (ef@ — 1) da(x)}, fe o).
(2.1.17)

Topologies on spaces of measures over I'(Y)

Let M!(T'(Y')) denote the space of all probability measures on I'(Y').

Definition 2.1.2 ([KPR10, Subsection 2.4]). On the space of all probability
measures M (T(Y)) we introduce the topology of local setwise convergence.
This topology, which we denote by T, ts defined as the coarsest topology
making the maps p — (B) continuous for all sets B from the algebra

Boy(P(Y)) = | Ball(Y)).

[Al<oo

Equivalently, Ty, is the coarsest topology such that p +— p(F) is con-
tinuous for all bounded By (I'(Y'))-measurable functions F' : I'(Y) — R.
Since the topology T is not metrizable (cf. [Geo88, p.57]), the notions of
convergence and sequential convergence in 7y, do not coincide.
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2.2 Gamma-Poisson measures

We specify the abstract setting of Section 2.1 to our needs: In particular, we
introduce R as a space of marks and a locally compact Polish space X as
a space of positions. Then we get the Gamma-Poisson measure Py on F(X ),
where X = R, x X. The main aim is to prove that Py (Tp(X)) =1 (cf.
Theorem 2.2.9).

The space R, of marks

We equip R, =]0, oo[ with the logarithmic metric!

x
dr (z,y) = ln—‘ Vz,y € Ry, (2.2.1)
Y
This metric is invariant under multiplication. This means that for all positive
functions ¢ : Ry 3  — gz = g(x) € Ry, we have dg, (g9, gy) = dg, (2,y).
Furthermore, the metric dg, is locally equivalent to the usual one on R being
restricted to Ry. Hence, (Ry,dg,) is a locally compact Polish space.

Let B(R,) denote the Borel o-algebra on R,. Observe that B(R,) =
B(R) NR,. We consider a Radon measure A on (R, B(R) such that

/ sA(ds) < oo (2.2.2)

A typical example is, letting ds denote the Lesgue measure on R, and 6 > 0
being a fixed parameter,

—S

e
)\g(dS) =40 S

ds. (2.2.3)

This measure has a high concentration close to zero.

We like to point out a particular property to familiarize ourselves with
the space (R4, dr, ): In the metric dg, let us consider the ball Bg(1) centered
at 1 with radius R > 0,

BR(1> :{T € R+|dR+(r71) S R} = {T € R+| ‘lnﬂ S R}
:{TGR+|(7"21: rgeR)or(0<T§1: —lnrgR)}

— [ R eR] (2.2.4)

R

which shows that the distance from 1 to e™**, as well as the one from 1 to
R

e', is R. Therefore, the distance to 0, as well as the one to oo, is infinite.

!The logarithmic metric is quite useful to construct later a corresponding Gibbs measure
in Chapter 4.
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The space X of positions

We denote for the locally compact Polish space X by B(X) its Borel o-
algebra and by B.(X) that subset consisting only of the Borel sets with
compact closure. Moreover, we pick a non-atomic Radon measure m on X.

Remark 2.2.1. 1. Our standard example is X = R%, d € N fized, being
the d-dimensional vector space over the real numbers with the usual
Euclidean metric and m(dz) = dx being the Lebesgue measure on RY.

2. We stress that we have a broken symmetry between the spaces of marks
and the space of positions: For the standard example, we see that for

all A € B.(R?)

/R+/Asdx)\9(ds) < . (2.2.5)

Configuration space over R, x X

The next step is to combine the space of marks R, and the space of positions
X to one space, so that we can define measures on I'(R; x X).

Let X := R, x X be the product space of the space R, of marks and the
space X of positions (or locations). We refer to X as the phase space. From
now on without further notice, we denote the elements of X by i = (s,z)
where s € Ry, € X. The same is true, if these elements are indexed, i.e.
;= (si,x;) € X for all i € N. X is equipped with the metric

dg (21, %9) == dg, (51,52) + dx (x1,22), Vi1, @9 € X (2.2.6)

and the corresponding Borel o-algebra B (X ). Moreover, for notational con-
venience we define for each A C X the projection to R, and X by

A, ={seRy|Fz e X: (s,2) € A} and (2.2.7)
Ax ={re X|IseR,: (s,z) € A}. (2.2.8)

We refer to Ag, as the set of types, marks or species, whereas Ay can be
considered as the support.

A~

2.2.1 Poisson measure on ['(X)

~

Our next task is to introduce the Gamma-Poisson measure Py on I'(X) and
show P@(Ff(X)) =1.
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Setting Y = X,A we apply Section 2.1 to our setting: F(X) is the configu-
ration space over X. Each v € I'(X) can be represented as

v =A% | ieN},

where &; = (s;,2;) € X, s; € Ry and z; € X. As usual, M'(I'(X)) denote
the space of probability measures on (I'(X), B(I'(X))). On I'(X) we consider
the Poisson measure myg, with intensity measure A @ m on X (cf. (2.1.15))
and denote it by

Pady) = Tagm(dy). (2.2.9)
In particular, we fix § > 0 and consider (cf. (2.2.3))
Po(dy) := Tagem(dy). (2.2.10)

We call it Gamma-Poisson measure on T'(X).2

A~

For each A € B.(X) denote by

A ._ pA A._ pA
P = Py, and By = Py, oms resp.

2.2.11
Phimrio(dy) and P =k (dy), (22.11)

the corresponding Lebesgue-Poisson resp. Poisson measures on I'(A) (cf.
(2.1.14), (2.1.1)).

Support of the Gamma-Poisson measure Py

A

The support of each configuration v € I'(X) is given by the projection

7(7) = vx. (2.2.12)

It represents the positions of all particles. We note that typically the support
7(y) does not have to be a configuration on X, i.e., 7(7) N A is in general
dense in A for any @ # A € B.(X) open. Since v € ['(X) is countable, also
its support 7(+y) is countable.

Pinpointing configurations

Definition 2.2.2. The set of pinpointing configurations in A € B(X) is
given by

I,(X) = {7 = {&;} € D(A)| Vi1 = (s1,21), 2 = (50,22) €7 :

T, =2, = 8 = s]}. (2.2.13)

2P, is a marked Poisson measure, if A(R;) < oo (cf. [KLU99, Section 2.1]). But, Py
on T'(R%) is a compound Poisson measure (cf. [KdSSU98, Definition 3.1]).
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~

Each pinpointing configuration v € I',(X) has one mark s, associated to
a position z € 7(y). Therefore, we may denote

~

v = {(sl,,x)|x € 7'(7)} Vy e Iy(X).

Here, we use the visual image of a pin: The pinpoint indicates the location
x of the particle, whereas the pinhead represents its mark s,.

Lemma 2.2.3. The set of pinpointing configurations on each A € B(X') is
measurable, i.e. T',(X) € B(T'(A)). In particular, T(,(X) € B(I'(X)).

Proof. First of all, we assume that A € B.(X). Let D € B(X x X) denotes
the diagonal of X x X, i.e., D := {(z,z)|x € X}. The complement to I',(X)
can be represented as

Tp(X)° ={y €T(A) |3 {1,282} Cv: {z, 22} € D} = J Ar,  (2.2.14)

keN
where Ay C T®)(A) is defined by
A= {veT®) ||y =k, 3 {21,582} Cv: {22} €D}.  (2:2.15)
For each set A, there exists

Ay = syml}(_1 (Ay) € B (Xk) .

This associated set is symmetric in each component and, actually, flk €
B(A¥). Hence, Ay, € B(T(A)) € B(T'(X)).

Now we treat the general case of a fixed A € B(X). We choose a countable
covering {A, }nen of X (and thus of A) consisting of increasing compact sets
A, € B,(X).? We have that

Lp(X) = () {y € T(A) I, € Tp(Aa NA)} = [ Pily, an p(Aa NA)),

neN neN
(2.2.16)
where Py o, na is the B(I'(A))/B(I'(A, N A))-measurable projection from I'(A)
to I'(A, N'A). Thus, X
I'y(X)e e B(I'(A)).

]

3Let us show this: Because X is locally compact, we find for each & € X an open set
B; € B.(X) containing &. Then
U B:icXx
#eX
is an open covering of X. Since X has the Lindelsf property (cf. [Sie00, Theorems 65 and
49]), we can choose a countable subsection. Hence, we find such an increasing sequence.
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Theorem 2.2.4. We have PA(Iy(X)) = 1. In particular, the Gamma-
Poisson measure Py is supported by I'y(X).

Remark 2.2.5. Pg(Fp(Rd)) = 1 is given in [KdSS98, Proposition 3.2] for
whose proof one may also compare [Kal74, Kal83, MKM7S].

Proof of Theorem 2.2.4. The basic idea of the proof is that m ® m(D) = 0,
where D denotes the diagonal in X x X. To apply this, we rewrite Fp(f( )¢
using an increasing compact sequence {A, }nen covering X (similarly to the
last proof) and estimate its measure to be 0.

We will show that Py (I',(X)) = 1. To this end, we choose a countable
covering { A, }nen of X consisting of increasing compact sets A, € B.(X ) 3 For
simplicity, these sets are chosen to be of product type, i.e. A, = Ay r, XA, x.
Taking the complement of the intersection given in (2.2.16) (with A = X))
we have

) ()< et )

A

where P¢ , is the projection of I'(X) onto I'(A;,) (cf. (2.1.15)). Hence, it is
enough to prove that for all A € B, (X ) bemg of product type?

0217, (6051)) =L (1),

which is shown if

0L Py (rp(X)C) . (2.2.17)
In order to show (2.2.17), we fix such a A. Using (2.2.15) we calculate
Plon(TyX)7) € 3 Plon ({1 € POV A (i1, 82 €, (m,m2) € DY)
- 1 . .
:ZH A®@m)® ({ .Tk}CA‘HZjE{l ki g

B
Il

0

{z;,x;} € D})

i (5) e met 2 e min) Aas =0

e
[|

Our next task is to prove Py(I'f(X)) = 1.

4By “” we indicate a property that is to be shown.
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~

A local mass map By definition, the support 7(v) of each v € I'(X) is
a countable set. Thus, for each v € I',(X) we can sum up the associated
marks s,, © € 7(7).

Definition 2.2.6. For each v € T'(X) we define its local mass® on A € B(X)
by

ma(y) = /R o) = (59 1a().7) € (0.0 (2.2.18)

A~

In particular, for v € I',(X) and A € B(X)

ma(y) = Y s, €[0,00]. (2.2.19)

zeT(y)NA

Definition 2.2.7. The set of pinpointing configurations with finite local

~

mass ['f(X) is defined by

[4(X) = Tyu(X) :={y € T,(X)

VA € B.(X): ma(y) <oo}. (2.2.20)

A~

Remark 2.2.8. By Lemma 2.1.1, the map T'(X) 2 v — ma(y) € R is

A

B(I'(X))-measurable for all A € B(X) as the limit of measurable functions.
Moreover, I't(X) € B(I'(X)).

Theorem 2.2.9. We have PA(Ff()A())

= 1. In particular, the Gamma-
Poisson measure Py is supported by I'r(X).

~

Proof. Fix A € B.(X). Recall that by Remark 2.2.8 the function I'(X) >
v — ma(7y) is measurable. We have

/ ~ma(7)Paldy) = /<S® La(2),7)Pr(dy)
r(x) r
= /X/R sIaA(ds)m(ds) = m(A)/]R sA(ds) < oo. (2.2.21)

Hence, for all A € B.(X) we have

ma(y) < oo, fory el (Pyae.).

5The general concept will be given in Definition 4.3.4.



Chapter 3

Gamma measures

In this chapter, we will present the main objects of our considerations, namely
the cone of discrete Radon measures and the Gamma measures. Moreover,
we outline a quasi-invariance property of the Gamma measure.

The Gamma measures on infinite dimensional spaces appeared in the rep-
resentation theory of groups (cf. [VGGT75]). They are closely related to mul-
tiplicative Lebesgue measures. In [KdSSU98] Gamma measures are treated
as a particular case of compound Poisson measures and the related chaos de-
composition and annilation and creation operators are studied. In [TVYO01],
a constructive approach for the Gamma measures is given. In [Sta03|, the
Gamma measures appear as examples of “invariant probability measure for
a class of continuous state branching processes with immigration.”!

Our first aim (cf. Section 3.1) is to introduce the underlying topological
space, namely the cone of discrete measures (cf. Definition 3.1.1)

K(R?) := {77 = Z Si0z,

s; € Ry, E]Rd,xi#xjv i, €N, 147,

VA € B.(RY) : n(A) < oo}.

Then (cf. Subsection 3.2.1) we get the Gamma measure Gy, 6 > 0 a fixed
parameter, on K(R?) as an image measure of the Gamma-Poisson measure
Py on T'(R?) (cf. Chapter 2) and prove that (cf. Theorems 3.1.7 and 3.2.2)

Eg, [exp (—(a,-))] = exp (—9 /Rd log(1 + a(:z:))dm(:z:)) : (3.0.1)

IThis is cited from [Sta03, Abstract].

39
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where a : R? — [0,00), is a bounded, compactly supported, non-negative
Borel function such that log(1 + a) € L*(R%,m) and m has been fixed to be
a non-atomic Radon measure on R

From (3.0.1) we deduce two important properties of Gy:

e All finite moments exist, i.e., for n € N and for each bounded Borel
function @ : RY — R that is supported by A € B.(R?) we have (cf.
Theorem 3.2.6)

Eg,[(a,)"] < n! {[lallwla, 0m)" < . (3.0.2)

e The Gamma measure Gy is quasi-invariant under K(RY) 3 n — ey €
K(R?), where h € Cy(R?) (cf. Theorem 3.3.3).

In Part III, the later two properties are heavily used to do differential calcu-
lus related to Gy on K(R?).

These results extend to the case that R? is replaced by an arbitrary locally
compact Polish space X, which we fix from now on together with a non-
atomic Radon measure m on X.

3.1 Levy measures on the cone of discrete Radon
measures

The main aim of this section is to introduce the cone K(X) and Levy mea-
sures on K(X), which include Gamma measures.

3.1.1 The cone K(X)

Definition 3.1.1. The cone of locally finite discrete measures over X is
defined as

K(X):= {77 = Zsﬁmi

sie Ry, ;€ X,o, #2V i, €N, i # j,

VA € B.(X) : n(A) < oo} cM(X),  (3.1.1)

where M(X) denotes the set of all Radon measures over X.

Remark 3.1.2. Heuristically spoken, n € IK(X) means that on each position
there should only be one particle with its specific mark and that the mass (=the
sum of marks) does not explode locally.

Definition 3.1.3. For each n € K(X) we denote its support by
7(n) :=A{z € X|n(z) == n({z}) # 0}.
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3.1.2 Levy measures

Definition 3.1.4. A Radon measure A on (Ry, B(R,)) satisfying

ARy) =0 and mq(A) ::/ sA\(ds) < oo
Ry
is called a Levy measure on R, . The first moment of A is my(A).

The Borel o-algebra on K(X)

The topology on K(X) is inherited from I';(X) being equipped with the
subspace topology of (I'(X), O(I'(X))) (cf. Section 2.1): That is, we equip
K(X) with the strongest topology O(K (X)) such that the following bijective
map is continuous

T: LX) = KX)
y={(sn2)} = = ) s (3.1.2)

(sa,2) €y
Then we equip K(X) with the corresponding Borel o-algebra B(K(X)).

Definition 3.1.5 (compare [TVYO01, Definition 2.1]). A Levy measure G, on
(K(X), B(IK(X))) over the space (X, B(X), m) with Levy (intensity) measure
X on Ry is a Poisson process on IK(X) such that its Laplace transform fulfills

Eg, [exp (—(a,-))] = exp <—/R (1-— ea(”)s))\(ds)m(da:)> . (3.1.3)

+><X

where (a,n) = [y a(x)dn(z) and a : X — R is a compactly supported,
bounded, non-negative Borel function.

Remark 3.1.6. This definition differs from the more general one, where one
assumes for an intensity measure A on R, just fol s2X(ds) < oo (cf. [App0Y,
P.29, (1.10)]). The additional integrability insures that G\(K(X)) = 1.

Theorem 3.1.7 (compare [AKR98a|, [TVYO01]). Let A be Levy measure on
R, with my(X) < co. Then there exists a corresponding Levy measure Gy on
(K(X), B(K(X))) which has A as an intensity measure on R.

Proof. This follows using the results of Section 2.2, especially Theorem 2.2.9.

A~

Namely, we consider the Poisson measure Py on I'(X) with intensity measure
A ® m. By Theorem 2.2.9, Py (I';(X)) = 1. Note that I'y(X) C B(['(X)) is



42 CHAPTER 3. GAMMA MEASURES

bijective to IK(X) under the map T given in (3.1.2). Hence, we define G, as
the image measure of P, under T:

Gr = T*Py.
Then G, has the required properties.? O
Remark 3.1.8. We emphasize that for Gy-a.e. n € K(X)

T NAl =00 VA € B(X):m(A) #0.

3.2 Gamma measures

We have a look at two important classes of examples of measures being
supported by the cone IK(X'). The first one consists of special Levy measures,
namely of all Gamma measures Gy, § > 0, (cf. Definition 3.2.1). If m(X) <
0o, we can consider a second class consisting of infinite measures, namely of
multiplicative Lebesgue measures (cf. Definition 3.2.7).

3.2.1 Gamma measures

This subsection is based on [TVY01].?

Definition 3.2.1 (compare [TVY01, Definition 2.2]*). A Gamma measure
with shape parameter 6 > 0 is the Levy measure on (IK(X), B(K(X))) with
the following Levy intensity measure on Ry (cf. (2.2.3))

eft
No(ds) = 0—dt.

Theorem 3.2.2 (compare |[TVYO01, P.279] 3). The measure Ny is indeed a
Levy measure on Ry and Gy exists. Moreover,

Eg, [exp (—(a,-))] = exp (—G/X log(1+ a(:c))dm(:r;)) , (3.2.1)

where a : X — (—1,00), is a bounded, compactly supported Borel function
such that log(1 +a) € L'(X,m).

2The existence of Gy can also be shown by using the existence and the mapping theorem
in [Kin93, P.23, resp. p.18]|, and Campbell’s theorem (cf. [Kin93, P.28]) to deduce the
Laplace formula. Then one still has to check that it is supported by the cone K(X).

3In [TVYO01] the case X being [0, 1] is considered.
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Proof. One checks that )y is a Levy measure.® Hence, by Theorem 3.1.7
there exists a corresponding Levy measure. The formula for the Laplace
transform follows by using (3.1.3) and Lemma 3.2.3, i.e.,

oo —a(x)t __ 1
/ %e’tdt = —log(l+a(z)) < —log(l —1+¢,),
0

where €, > 0. Moreover, the mentioned bound is sharp because, otherwise,

there would exists a non null set such that the logarithm is not finite.
O

Lemma 3.2.3. For 0 >0,c> -1+ and e > 0 we get

0 e—ct -1 L
P dt = —log(1+4c¢) — F(g,¢),

where

Pl = 30 CH et 21

oo
k=

converges absolutely. In particular,

o0 ,—ct __ 1
/ ‘ " e tdt = —log(1 +c).
0

Proof. The following integral exists because we find, using the mean value
theorem for ¢ < 1, a dominating integrable function for the integrand. Using
the transformation rule with ¢ = (¢ + 1)t we derive

o0 o—ct _q 0o —t/ oo ,—t
/ e tdt = lim ( / - / “t).
0 t €0 g(c+1) t € t
—_—

=:E1 ((c+1)) =:E1(e)

Taking the derivative of E(¢) w.r.t. € and then finding a primitive we obtain

dE;(x) R N o L |
de | __ e _Z k! €
w=e k=1
and
=2
El(a)_—; T —loge + C,

ndeed, Ag((1,00)) < 6 [71-e7tdt < oo, fR+ tt=tetdt = 1 and A\g((0,00)) >
9]01 e 1t 1dt = <.
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where C' > 0. Note
(—e)k 1k | — ¢l 1, 1
= (1—==)< = for k> 2e.
‘(—s)k(k+1)!(k+1) pr1 g <y fork>2
Thus the sum exists, converges absolutely and is bounded by e* — 1. Using
this formula for ¢ and (¢ + 1), we conclude

®e et —1 =~ (—e)F((1+ o) -1 1
[ = g3 O ) st
0 t e—0 o k'k
= —log(c+1)
Furthermore,
(o) (A +o)f - 1)
[Fle.ol < ) o
k=1
N (5)k(1+c)k € e(l4c) €
<« SELED e icetie
k=0
i.e., the sums converges absolutely. O]

3.2.2 Moments of Gamma measures

Definition 3.2.4. Let u be a measure on (K(X),B(K(X))), a: X — R be
a bounded, compactly supported Borel function and n € N. Then

Eu [<a7 >n}

h

is called an n*™™ moment of u.

Lemma 3.2.5 (see [GR80, P.19, eq. 0.430 2|). Forn € Ny, f,g € C"(R)

%(gof(ﬂ): > : '<f(11)!(t))““'(fUZ!(t))ik <dfng>of(t)’

L4
ST 10 !
i1,...i5 €ENp

where (Z}—nng denotes the n™ derivative of y — g(y).

Theorem 3.2.6. Let 0 > 0 anda : X — R be a bounded, compactly supported
Borel function. Then for alln € N

Eg [ )= 3 il!‘f! |<%19m><%k9m>k (3.2.2)

N
Slip=n k
i1,...15 €Np

If a is supported by A € B.(X), then
Eg,[{a,-)"] < nlllal|0"m(A)". (3.2.3)
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Proof. The proof is done by deriving the Laplace transformation of Aa w.r.t.
A € R and evaluating it at 0: For sufficiently small \, we have \a > —% and
(cf. Theorem 3.2.2)

Ba (@ )] = (45) Esles(-Me)

N (%)n exp(—0(log(1 + Aa), m))

It equals (cf. Lemma 3.2.5)

(—1)t0! (—D)*(k—1)! & &
n! <(1+)\a)1a1’ 9m> <W“ ,9m>
NIRRT 1! !

A=0

A=0

Nliyy=n
i1,...iENp

(exp) o ((=log(1 + Aa),0m))

A=0

| . 1 i1 k ik
= Z n—(—l)zl” a—70m a—,@m .
! —\ 1 k

MNlip=n
i1,...ix€Np

Hence, we obtain the desired formula by multiplying with (—1)". O

3.2.3 Multiplicative Lebesgue measures

Definition 3.2.7 (cf. [TVYO01, Definition 4.1]). Let m(X) < oo and 6 > 0.

A multiplicative Lebesgue measure Ly with parameter 6 > 0 on K(X) is
defined by

Ly(dn) = " Gy(dn).
Lemma 3.2.8. Its Laplace transform is
Eg, [e‘<“">} = exp <—8/ loga(w)m(dx)) :
X

where a : X — Ry is a strictly positive, bounded, compactly supported Borel
function with loga € L'(X,m).

Proof. This follows by

Eg, [e™7] = Eg, [e™“™] = exp (—9 /X log(1 + a(x) — 1)m(dx)) :

]
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3.2.4 Additive Lebesgue measures

Let

E(X):= {Z 5i0z,

To define the additive Lebesgue measure we use the mapping

{(si,z)ie N} CRx X : n:= Zesi&;i € ]K(X)}

1€EN

Log: K(X) — EX)
21815% = Zzlog(sl)éﬂcz

Definition 3.2.9 (cf. [Ver07, Section 4.4]). Let 6 > 0 and m(X) < co. The
additive Lebesgue measure £3% on E(X) is defined as the image measure of
Ly under Log:

L% = Log*Ly. (3.2.4)

3.3 Basic properties of Gy, £y and £i%

Fix 6 > 0, we present a quasi-invariance and extremality property of the
Gamma measure Gy and the Lebesgue measure L£y. Moreover, we show an
ergodicity property of the Gamma measures.

3.3.1 Quasi-invariance, ergodicity and extremality of G

Analogously to [TVYO01]| we outline a transformation rule and the ergodicity
of the Gamma measure Gy. In addition we show its extremality.

Multiplicator operator on the cone

Definition 3.3.1. For each h € Cy(X) the multiplicator is given by

That is (Myn)(z) = e"@n(x).

Remark 3.3.2. The multiplier My, is well defined because h is continous and
bounded.
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Theorem 3.3.3 (compare [TVY01, Theorem 3.1]*). The Gamma measure
Go is quasi-invariant under My, for each h € Cy(X). The corresponding
density is

o = (<0 [ namtan))ep (= [ (- 1)anta) ).

Proof. We split the Gamma measure and consider the action of the multi-
plication on both parts independently. On one part the action is trivial and
on the other one the formula follows by the Laplace transform.

Fix h € Cy(X) and A € B.(X) : h = 1ph. Then M, leaves all marks
outside of A invariant. Hence, by the multiplicative property, it is enough to
calculate the Radon-Nikodyn derivative for G5'.5 Let & = M,n. Consider an
arbitrary function [ € Cy(X). Then

fi(§) = / el(x)f(dl’) = / eh(x)el(x)n(dﬁ) = fu(n)-
A A
Therefore, using (3.2.1), the Laplace transform equals

Egalexp(—=fi(Mi(-)))] = Egalexp(—fu(-)]
= exp (—49/ log (1 + el(x)eh(’”)) m(dw))
A

= exp (—9 /A h(x)dm(a:)) exp (-9 /A log (e7"®) —l—el(’”))m(da:))
= exp (—H/Ah(x)dm(x)> Ega [exp (e™" —1+¢',-)] .

For the last equation, the Laplace transform (cf. (3.2.1)) is applicable because
h € Cy(h) (Hence, 3§ > 0: e —1 > —1+4). This concludes the proof. [

Theorem 3.3.4 (cf. [TVYO01l, Theorem 3.2]*). The action of the group
Co(X) on the space (IK(X),Gy) is ergodic.

Proof. This follows by straightforwardly adapting the proof of [TVY01, The-
orem 3.2].° O

50On Qé\c it is 1 = exp (=0 [, h(z)m(dz)) exp (— [ o (7@ — 1) n(dz)).

SFor the convenience of the reader, we give the details: Let G : K(X) — R be a measur-
able function on IK(X), which is for all h € Cy(X) invariant under My, i.e. G(Myn) = G(n)
Gy-a.e.. Consider an arbitrary Borel function & : R — R. Then for each h € Cy(X) by
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Lemma 3.3.5. Let 01,05 > 0. Then there exists no non trivial convex com-
bination of Gamma measures Gy, and Gy, which equals Gy.

Proof. If there existed 61, §; € R*\# and ¢ € [0, 1] fixed such that
g@ = Cg91 + (1 - C)g927
we would obtain by the Laplace transform for any feasible function a:

exp (—0(log(1 + a), m))
= cexp (—0i(log(1 +a),m)) + (1 — ¢) exp (—62(log(1 + a), m))
= c(exp (—(log(1 + a),m)))" + (1 = ¢) (exp (—(log(1 + a),m)))™.
Denoting z := exp (—(log(1 + a),m)) € R™ we see
=" +(1-0c)2”? o 1=ca” %+ 1 -c)a?

Considering the different cases implies a contradiction for x sufficiently large:
Assume that 6; > 6 then for x tending to infinity the r.h.s of the last equation
tends to infinity, which leads to a contradiction for the function a being
sufficiently small. The same is true for 5 > 6. On the other hand, if 8 is
bigger than #; and 65, the r.h.s tends to 0 for a being sufficiently small.
Hence, no Gamma measure Gy can be represented by any non-trivial
convex combination of finitely many Gamma measures. [

3.3.2 Projective invariance and convex combinations of
ﬁg and [fédd

Theorem 3.3.6 (cf. [TVYO01, Theorem 4.1]*). Let m(X) < oo. For each
h € Co(X), the multiplicative Lebesque measure Ly is projective-invariant
under My, and the corresponding density is given by

d(i‘f_ﬁhf”(n) — exp (-9 /X h(x)m(dx)).

Theorem 3.3.3
Eg, [K(G ()] = Eq, [R(G(My-))] = Eg, [K(G()) exp (~{(e™" = 1),))] exp (~0(h,m))
We deduce
Eg, [K(G()) exp (=((e™" = 1),))] = Eg, [K(G()] - exp (~0(—h,m))
— Eg, [F(G()]-Eg, [exp (~(e™"® —1,)]
where we used the Laplace transform (cf. Definition 3.2.1) and that h is compactly sup-

ported. Since for any G the last equation holds for any arbitrary Borel function k and any
h € Cy(X), Gy is ergodic.
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Proof. As before we set for | € Co(X) fi(n) = fx el(x)n(dw) and obtain
Ep,[e M) = By, [efirn()] = e=0lose!™)m) — c=0hm) g, [e=h)].

]

Lemma 3.3.7. Let 0,05 > 0. There exists no non-trivial convex combina-
tion of multiplicative "Lebesque” measures Ly, and Ly, which equals Ly.

Proof. Arguing similarly as in the proof of Lemma 3.3.5, we get the assertion.
(We just replace log(1 + a) by loga.) ]

Definition 3.3.8. For each h € Mgy := {h € Cy(X) | (h,m) = 0} we define

Ay E(X) —  EB(X)
n=> .50z = > .(si+h(x;)0y, = h+n.

Theorem 3.3.9 (cf. [Ver07, Theorem 6]). Let m(X) < oco. For each h €
My, the additive Lebesque measure £3% is invariant under Ay.

Proof. Theorem 3.3.6 yields

d(AnLg™)(n) = d(AnLogLs)(n) = d(LogM;Le)(n)
= d(LogLy)(n) = dL5™(n).
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Part 11

Gibbs perturbations

o1






(Gibbs perturbations

In Part II, we study Gibbs perturbations of Gamma measures on K(R?). We
will describe heuristically our approach, the detailed definitions and results
are presented in Chapters 4 and 5.

Let ¢ : R x RY — R be a pair potential which describes the interaction
between particles. To introduce a Gibbs formalism on K(R?) (cf. Section
5.3), we follow the lines of the Dobrushin-Lanford-Ruelle (DLR) approach
to Gibbs random fields in classical statistical mechanics:

For each n € K(R?) and a boundary condition ¢ € K(R?), the relative
energy Ha(n|€) in a bounded area A € B.(R?) is defined by (cf. (5.3.4))

16 = [ [ otz + [ [ oot

We fix an inverse temperature 5 = 1/T > 0. A local Gibbs measure in volume
A is given by

pia(dn|é) = e PHAOGR (dn) € M (K(R?)),

Za(€)
where G5 is the Gamma measure on K(A). The probability kernels
Ta(Bl€) = ua({n € K(A)lnUéa- € BY¢), B € BIK(R)),

indexed by A € B.(RY) and ¢ € K(RY), form the Gibbs specification on
K(RY). Tt describes corresponding Gibbs measures p on K(R?) via the
(DLR) equation (cf. (6.3.18))

[ 7 (BAn) = (),

valid for all A € B.(RY) and B € B(K(R?)) (cf. Definition 5.3.9). The set
of all Gibbs measures related to the specification m = {7a}aep. ey Will be

23
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denoted by Gibbs,(K(R?)) (cf. Definition 5.3.5).

The existence of such Gibbs measures is far from being trivial. We will
reformulate the existence problem in terms of the related Gibbs measures on
the configuration space I'(R?). Also in the free case, we have first defined
the Gamma-Poisson measure on F(Rd) and then use the bijective mapping
T between the cone K(R?) and the set T f(Rd) of pinpointing configurations
with finite local mass, i.e.,

T KRY)2n=) s:0—7={(ss,2)} € T;(RY) C T(RY).

Using T—!, we map the involved objects (like the potential, relative energy
and local specification) to the configuration space I'(R?), e.g.,

~

gb(:z:,y), xz,y GRd to V(JAU,@) :8$Sy¢(x7y)v jag EX)
pa(dnlé) to  pr, xa(dy|THE));
ma(dn€) to 7, xa(dy|T(E)).

Since the corresponding specification kernels g,  a (dy|T~1(€)) € MY (T (RY))
are indexed by “stripes” Ry X A C R?, they are called semi-local. The associ-
ated Gibbs measures on I'(R?) corresponding to the semi-local specification

mr = {mr,xa(dV[)|A € B.(R?), £ € Tp(RY)}

are also specified via a (DLR) equation (cf. also (4.5.14)). Such Gibbs
measures constitute the set Gibbsy (I'(R?)) (cf. also Subsection 4.5.1 and
Section 5.1).

Due to the one-to-one correspondence between the local specification ker-
nels ma on K(R?) and the semi-local ones, 7, xa, on I'(R?) (cf. Subsection
5.3.2), we get the one-to-one correspondence between the classes of Gibbs
measures Gibbsy(IK(R?)) and Gibbsy (I'(R?)). By the above construction,
the set Gibbsy (D(RY)) consists of those ur € M!(I(R%)) which solve the
(DLR) equation and have full measure on T';(R?) (cf. Theorem 4.3.31, resp.
Corollary 5.2.11). This is our motivation to first study the Gibbs measures
fr on F(Rd) and then transfer the corresponding results to the Gibbs mea-
sures uk on K(RY).

Even though we are on the configuration space F(Rd), neither the poten-
tial, nor the semi-local specification kernels are standard. Usually on T'(R%)
one considers local specification kernels 7, which are indexed by bounded
sets A € B,(R?) (cf. Section 4.1). Both specifications (the local and the semi-
local one) determine the same set of Gibbs measures (cf. Theorem 4.5.9 resp.
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Remark 5.1.24). On the other hand, the potential V(z,9) = s,s,¢(x,y) does
not fit the standard framework on I'(RY). One of the reasons is that the
intensity measure Ay has a high concentration for s close to 0 and that V' is

not translation-invariant and has an infinite range in R (cf. Section 4.2 for
details).

In Chapters 4 and 5, we establish the existence of Gibbs measures u €
Gibbsy (I'(X)) and show uniform moment bounds (cf. Theorems 4.2.7 and
4.3.34, resp. 5.2.8 and 5.2.10). In Chapter 4 we consider non-negative po-
tentials V' > 0 and construct a Gibbs measure being specified by the local
specification kernels my, A € B,(R?) (cf. Section 4.2). In Chapter 5 we re-
move the assumption that V' > 0 and work with the semi-local specification
kernels T, xa, A € B.(R%). As we already mentioned above, both specifica-
tions lead to the same set Gibbsy (I'(R?)).

As we will see in Chapter 5, our existence and moment results for Gibbs
measures on I'(R%) extend to more general potentials than in the basic model

with V (2, 9) = s.s,0(z,y), &7 € R%.

Finally, in Section 5.3, we come back to the initial setting of Gibbs mea-
sures on the cone IK(R?). A main result of this section (and also of Part IT)
is the existence of y € Gibbs,(K(R?)) (cf. Theorem 5.3.6), i.e. that

Gibbs,(K(RY)) # @.

Furthermore, the properties of 1 € Gibbs, (K (R?)), including moment bounds
and a characterization of supporting sets, are summarized in Theorems 5.3.10
and 5.3.11.
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Chapter 4

AN

Gibbs measures on ['(X) with
non-negative potential

Our aim is to construct Gibbs perturbations of the Gamma-Poisson measure
Py by means of a pair potential V. It describes the interaction between
particles and may depend on their positions and marks. In Chapters 2 and
3 we considered the “free case”, where V' = 0.

In this chapter we study the technically easier case of V' > 0, for which el-
ementary probability techniques are sufficient. Then (Chapter 5), we handle
more general potentials that satisfy certain stability conditions (cf. Section
5.1). For the later case we need more advanced methods. We stress that
even for non-negative potentials V', we are not in a standard framework of
Gibbs measures on (marked) configuration spaces because of the irregularity
properties of the intensity measure Ay ® m on the underlying space R? (cf.
e.g. |[Rue69, Rue70] or [AKRI98b, KLU99, Kun99|; for details cf. Section
4.2). 1

The Gibbsian formalism is presented in Section 4.1. We start from a pair
potential V of the form:?

V(Z,9) = spsyalz —y), T,y € Rd,

where a > 0 is a bounded, even and compactly supported B (Rd):measurable
function. For each v € T'(RY) and a boundary condition £ € T';(X), we define

'For a general review on the construction of Gibbs measures, we refer to [AKPRO6].
2Although, we start with a translation invariant potential ¢(z,y) = a(z — y), our
considerations are not limited to this case.

57
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the relative energy Ha(v]€) in a bounded area A € B.(R%):

Hy(v[€) = Y V(@9 +2 Y V(i

2,9€vA FASOIN
IS

Let 8 = 1/T > 0 denote the inverse temperature. A local Gibbs measure in
volume A is defined by

1
Zn(§)

where P2 is the Lebesgue-Poisson measure on I'(A) (cf. (2.2.11)). The family

of local specification kernels mx(dv|€), A € B,(R?) and & € T';(R?), which are
defined by

pa(dy|€) = e PO PM(dy) € MH(T(A)),

mA(Bl€) = ua({n € AlnUéae € BYE), B € BI(RY),

determines the conditional distributions in finite volumes of a Gibbs measure
p € MYT(R?). Analytically this relation is described by the so-called DLR
equation given in (4.1.13). The set of all Gibbs measures that correspond to
Py and the pair potential V is denoted by Gibbsy (I'(R%)).

Already on F(Rd), being a non-linear infinite dimensional manifold, the
existence of a Gibbs measure is non-trivial. Furthermore, because of the
specific features of our interaction potential and intensity measure, we are
far from the standard framework known in the literature for particle systems
in continuum (cf. [Rue69, Rue70| or [AKR98b, KLU99, Kun99]).

To establish the existence of ;€ Gibbsy (I'(R%)), we derive uniform mo-
ment bounds for pa(dy|§) (cf. Proposition 4.2.3). These bounds imply that
each net of local specification kernels w5 (dvy|€) with a fixed boundary con-
dition ¢ is locally equicontinuous (cf. Proposition 4.2.6). This implies the
existence of a certain y € Gibbsy (I(R%)) being a limit point of such a net as
A R4, for which we then check that it satisfies the (DLR) equation (cf.
Theorem 4.2.7). Therefore, the set Gibbsy (I'(R%)) is non-void.

After establishing the existence, we deduce certain moment estimates be-
ing uniform for all Gibbs measures p € Gibbsy (I'(R%)) (cf. Theorems 4.3.31
and 4.3.34). These estimates allow us to identify an <exponentially tem-
pered> subset T (R%) C T'4(R?) on which each x € Gibbsy (I'(R%)) has full
measure (cf. Remark 4.3.32 and Corollary 4.4.2).
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Similarly as in the free case, one may map each u € Gibbsy (I(RY)) to
K(R?) via the bijective map (cf. (3.1.2))

T TR 3y ={(ss2)} 0= s,0, € KR).

The question arises whether we can introduce an intrinsic Gibbs formalism
on K(R%) such that for each ur € Gibbsy (I'(R?)) the image measure

px = T pur € MM (K(RY))

will be a Gibbs measure on IK(R?). This question will be answered in Section
5.3, where we will give a direct construction of the corresponding Gibbs
specification T = (7a)ack on K(RY).

As a preliminary step in Subsection 4.5.1, we introduce the family of
semi-local specification kernels {7mr, xa(d7|€) | A € B.(RY), £ € I'/(R%)} on
['(R%), which will satisfy

T, xa(dV]€) = maldn|T(€)), A € B.(R?), € € Tj(R?).

As we prove in Theorem 4.5.9, both specifications (the local and the semi-
local one) determine the same class of Gibbs measures.

The results of this chapter hold for more general potentials and underlying
spaces (cf. Theorems 4.3.26, 4.3.34 and 4.5.9).

A

4.1 Gibbsian formalism on I'(X)

Let X be a locally finite Polish space equipped with a non-atomic measure m.
Given a non-negative pair potential V' : XxX— [0,00), we construct the
Gibbs perturbation of the Gamma-Poisson measure Py. To this end, we will
follow the standard DLR-approach. Below, we briefly recall the definition of

A~

the corresponding Gibbs measures on I'(X).

4.1.1 Potential
We assume V to be B(X x X)-measurable, symmetric and non-negative.

Example 4.1.1. A typical choice (and a basic model setting, cf. Section
4.2) is X = R? equipped with the Lebesque measure m(dx) = dz and the pair
potential

V(i,9) = spsy,a(v —y) Vi, eRY (4.1.1)
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where the B(RY)-measurable function a : RY — [0,00) has a compact support
and is bounded, non-negative and even, i.e., there exist A € B.(RY) and
M < oo

0 <a(z) =a(—x) < Mla(x), Vr € R%

4.1.2 Relative energy

For each boundary condition £ € T'(X) (cf. (2:2.20)) and a bounded area
A € B.(X) we define the relative energy I'(X) 2 v +— Hy(v|€) € RU {oo}
by

Ha(v]€) Z V(e,g)+2 > V(@.g) (4.1.2)

Here, the first sum is taken over all ordered pairs (z,9) € vo X 5. This
includes also the summand corresponding to (&, ).

Finiteness of the relative energy

Lemma 4.1.2. Let v € T(R?) and € € Ty(X) (c¢f. (2.2.20)). Then the
relative energy (cf. (4.1.2)) that corresponds to the above example is finite?

Hy(y§) = Y alz—y)sesy +2 > a(r —y)s,s, < 0.
2,g€vNA zeyNA
gEENAC

Proof. For the first sum this follows by the definition of local finite configu-
rations 7 € T(R?) ((2.1.1)) and the boundedness assumption on a. For the
second one we use in addition that a has a bounded support. Thus only
points y € 7(£ N A€) lying in the set

Up = {x € Rd‘ dist(z, A) = ;rellfx{@ —y[} < R} € Bc(Rd)

are taken in the sum. Here, we fix some R > 0 such that
a(x) = 0 whenever |z| > R.

Thus, by the local mass property of the space I';(X) (cf. (2.2.20) in Definition
2.2.7) the sum is finite. O

For the general case see Lemma 4.3.16 and Theorem 4.3.13.

3More general potentials are treated in Lemma 4.3.16.
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Measurability

Since we have not found an explicit reference for the measurability of the
relative energy in both components, we give the proof here (also, to keep the
exposition self contained).

A ~

Lemma 4.1.3. The relative energy Hx(v[€) is B(I'(X) x I'(X))-measurable

A ~

in (7,€) € T'(X) x T'(X).

Proof. Here, we do not exclude the possibility that Hx(§,7v) is infinite. We
have for any v, ¢ € I'(X)

Ha(]€) = lim Ha(mlén), VA € Bo(X).
ASX
AEB(X)
It is enough to show for each fixed A that the function I'(X) x I'(X) 3
(7,€) — Ha(va,€r) obeys the required measurability. The later is implied
(cf. (2.1.7) ff) by the claim that for any n;,ny € N the following function is

B <®?:11 X x®", X)—measurable:

A2 5 (2, Bny) X (G0, Uny) = HA( 1, oo Ty HHG1, -+ g })
= Z Lana(@i)Lana (@) V (i, 25)
ig=1
+ Z Z Lana(Z0) Lanac(§5) (V (&3, 95) + V (95, 24)). (4.1.3)

i=1 j=1

Each summand is B <><?:11X X x?le)—measurable because V is B(X x X)

measurable. Since the sums in (4.1.3) are symmetrizing, the claim follows
(cf. (2.1.7)). O

4.1.3 Local specification

We fix V to be of the type described in (4.1.1). (More general potentials are
considered in Section 4.3). A
Let us fix an inverse temperature § > 0. For each set A € B.(X) and

~

each boundary condition ¢ € I'(X), we define the local Gibbs measures

pa(dr€) == { zge OOPMNdy),  if € € Ty(X)
0

, else

(4.1.4)
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on I'(A), where Hy(v|€) is the relative energy introduced in (4.1.2) above.
Here, P} is the Lebesgue-Poisson measure on I'(A) with intensity measure
Ao @m (cf. (2.1.13)), and Zx(§) is the normalizing factor

Zu(6) = / &R )

—1+ Z / exp ( BHA{ (O(Suflh)

Note that for any & € I';(X)

5) }) ﬁ Ao @ m(d;). (4.1.5)

1< Zp(€) < MmN < o0, (4.1.6)

By assumption, all s (-|€) are probability measures for £ € T'f(X).

Remark 4.1.4. If V = 0 then pa(-|€) = PP for all € € T(X) (¢f. (2.2.11),
(2.1.14) and (2.1.13) vs. (4.1.4) and (4.1.5)).

Definition 4.1.5. The local specification
7= {m(O)|A € B.(X), £ € I(X)}
1s a family of stochastic kernels
B(I'(X)) x I'(X) 3 (B, ) — mA(B¢) € 0,1] (4.1.7)
given by

7TA(B|£) = MA(BA,df)a (4 1 8)
BAf = {’VA S F(A) |”}/A Uépe € B} S B(F(A)) o

This means that for each F € B(D(X)) we have

[ FomBIO = [ Faaugum@nle).
r(X) I'(A)

Consistency property

Fix A € B,(X). By construction (cf. [Pre76, Proposition 6.3] or [Pre05,
Proposition 2.7, p. 20]), the family (4.1.8) obeys the consistency property,
which means that for all B € B(I'(X)) and ¢ € T'(X)

/F(X) ma(Bly)ma(dyl§) = ma(BlE), A CA. (4.1.9)
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~

For ¢ € I'p(X), each specification kernel kernel m(dy|{) is a probability
measure on (F(X’),B(F(X’))) Given F € B(I'(X)) and pn € MYI(X)) let
us define 7, F € B(['(X)) and mypu € MY(D(X)) by

(T F)(€) = / | Fomaianko), € <) (4.1.10)
() (B) = / B, B € B, (4.1.11)

which are obviously related by the duality (myF,pu) = (F,mpp). Here and
elsewhere, we use the following shorthand for expectations

(Fyp) :==p(F):= /F(X) Fdu. (4.1.12)

4.1.4 Gibbs measures

Definition 4.1.6. A probability measure y € MY (T'(X)) is called a grand
canonical Gibbs measure (or state) with pair potential V' and inverse
temperature B > 0 if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equi-
Librium equation

[ maBlutae) = u() (41.13)

r(X)

valid for all A € B.(X) and B € B(I'(X)). Fized an inverse temperature 3,
the associated set of all Gibbs states will be denoted by Gibbsy (I'(X)).

Remark 4.1.7. From the definition of the local specification, we have that
any solution of the (DLR) equation is supported by I’f(f().

To obtain the (DLR) equation it is enough to check (4.1.13) only for B €
Bey(T'(X)). Indeed, using Caratheodory’s theorem, we deduce that ,u‘chl (&)

extends uniquely to a measure on o(B,y(T'(X))) = B(D'(X)). Hence, (4.1.13)
holds for all B € B(I'(X)).

Whenever it is clear on which underlying space we consider the Gibbs
measures, we simply write Gibbsy instead of Gibbsy (I'(X)).

The existence of such a measure under suitable conditions is shown in
Section 4.2 for the non-negative potential defined by (4.1.1) (cf. Theorem
4.2.7). In Section 4.3 we handle more general potentials (see Theorem 4.3.26).
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4.2 Existence of Gibbs measures: Basic model

We show the existence of a Gibbs measure corresponding to the Gamma-
Poisson measure Py and the non-negative symmetric potential given in Ex-
ample 4.1.1, i.e.,

V(2,7) = spsyalz —y), &, €R™ (4.2.1)

After explaining why this type of potential does in general not fit the
standard framework, we outline the scheme that we use for proving the exis-
tence (cf. below). An important step for the existence proof is the uniform
bound given in Proposition 4.2.3. Here, we stick to the basic setting, to
clearly state some new essential issues concerning the existence of a Gibbs
measure. (The more general setting is handled in Section 4.3.)

Remarks on the potential

The potential specified above (cf. (4.2.1)) has an finite range of interaction
regarding its R? component, i.e.,

dR>0: V(z,y) =0, if |x —y| > R.

If a = 0, we are in the free case, which we have treated in Section 2.2. Thus,
without loss of generality, a # 0 (m-a.e.). Let us fix such a potential for this
section.

Lemma 4.2.1. Fix > 0 and consider a non-negative, even function a €

Co(R?) (a #0). Then
C(B) :=ess sup ‘e‘ﬁs”y“(x_y) — 1| X ® m(di) = occ. (4.2.2)
fecRd  JRI

Proof. For all s € R, and z € R?

) ‘e_ga(y—x)st _ 1| )\9 (029 m(d(t, y))

R’
1 — e—Baly—=z)st
:/ / ‘ Oe~tdt m(dy)
Rd JR, t

=6 [ 1og(1 + faly ~ 2)s)m(dy)

=0 /Rd log(1 + Ba(y)s)m(dy), (4.2.3)
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where we used Lemma, 3.2.3. There exists 2o € R? such that a(xy) > 0. Since
a is continuous, there exists € > 0 such that

am = min a(x) >0,
2€Be (o)

where E(mo) denotes the closed ball centered at xy with radius €. Thus,

§—00

/]Rd log(1 4+ Ba(y)s)m(dy) >log(1 + 6ams)m(Bg(x0)) —00.

[

A uniform integrability condition is that C(8) < oo (cf. [AKRIS8b,
Kun99]), but we have C(8) = oo for 0 # a € Cy(R?) (cf. Lemma 4.2.1).
Moreover, another principal difference to the existing literature on marked
configuration spaces is that there are infinitely many particles located in any
compact A € B.(R?) set with non-empty interior, i.e.,

/ T NAPy(dy) =00, VT # A € B(R?).
I(R4)

Usually, this quantity is assumed to be finite (cf. [Kun99, KLU99, KdSS98,
AKR98al).

Remark 4.2.2. Summing up, we emphasize that this basic model does not
fit the classical framework of classical statistical mechanics. Thus it cannot
be covered, e.g., by [Rue70, Theorem 5.5/, where translation invariance is
used, nor by the more recent ones [AKR98a, Kun99[, where C(f) < oo is
still present. Also the infinite measure \g on R, does not fit the abstract
scheme of marked configuration spaces, where the intensity measure on the
space of marks is assumed to be normalized or finite (cf. [KLU99]).

The general scheme of the existence result

According to [Geo88|, it is important to introduce a correct topology on
MYT'(X)) to obtain the existence of a Gibbs measure p. The basic aim is
to show that

1. “the net WA(-lf)Aegc(X) has a cluster point (in the chosen topology)”*

2. “each cluster point of 7a(+|¢)scp,(x) belongs to Gibbsy."

4This is cited from [Geo88, Chapter 4].
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Here, a coarse topology is useful to show the first property, whereas a suffi-
ciently fine topology is needed for the second one. Thus, one has to balance
these requirements to find an appropriate topology.

The existence problem has been solved for several models by various au-
thors. We give briefly comments on two classical approaches and refer to e.g.
[Pas08] for other ones and more details.

1. General Dobrushin’s criterion for existence of Gibbs measures
It is a standard approach for showing the existence of Gibbs measures
was presented in [Dob70b, Theorem 1| (cf. also [Dob70a]). For systems
in continuum, it relies on the reduction to a lattice system, which allows
to apply the general Dorbrushin criterium for Gibbs fields on Z¢. For
classical particle systems in R?, this method has been further developed
in [KKP04] and [PZ99].°

2. Ruelle’s technique of superstability estimates This technique
goes back to the celebrated paper [Rue69| (cf. also [LP76]). Trans-
lation invariance of the interaction potential is used for this approach,
which yields the existence of a superstable Gibbs measure for a certain
class of boundary conditions.’

These approaches do not apply directly in our setting. It is a challenging
problem to extend these techniques. Such extensions involve the choice of
an appropriate partition of R? and the local mass map m, which allows us to
control the (super) stability properties of the interaction. Instead of this, we
realize the following (analytic) approach to the existence problem:

Scheme of the existence proof

To construct Gibbs measures, we perform the following steps:%

~

1. Identify a set of boundary conditions, denoted by I';(X), such that
Ha(7]€) < oo for all v,€ € T4(X) and A € B.(X)

and Go(I'f(X)) =1 (cf. Lemma 4.1.2).

This is taken from [Pas08, Chapter 1, (iii),I] and [KPR10], to which we also refer for
further details.

5In our scheme, we appropriately alter the basic idea presented in [Geo88] for the
lattice case (and adapted to the continuous model in [KPR10]) to fit our framework. This
includes, e.g., to incorporate the concept of a local mass map and handling that 7(v) is
dense.
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2. Derive the following support property of the local Gibbs measures (cf.
Proposition 4.2.3): For all A € B.(X), it holds

lim sup / L OAIE) £ OO < o0

AeB.(X)

3. Check the local equicontinuity for each net {mA(-[£)| A € B.(X)} for
all ¢ € T4(X) by the support property.”

4. Conclude the existence of a Gibbs measure u as a cluster point of
the net {7 (dv]§)}rep.@ay, € € Tr(R?) fixed, as A 7 X by the local
equicontinuity.

In detail, we show that the above net has a cluster point u in 7., which

~

is supported by I's(X). Using the consistency of the local specification, we
deduce that any such p satisfies the (DLR) equation (cf. Theorem 4.2.7).

4.2.1 Support of the local specification kernels

For all ¢ € I';(R%), The local Gibbs states p(-|€) are probability measures on
['(A) because Hp(v]€) < oo for all v € T(R?), € € I'y(R?) (cf. Lemma 4.1.3).
Recall that

ma(7y) == Z Sz 1a(2) for all A € B,(R%) and all v € T'(R?).

TEy

Proposition 4.2.3. Let £ € I‘f(Rd). Then for all A € B.(R?) the probability
measures ip(-|€) have full support on T'(A) N T (RY) and ma(-|€) on Tp(RY),
respectively.

In detail, we have for each A € B(R?) and each ¢ € T'(X)
[ maGen(anlo) < [ mal(zhon s mds)
r(A) A
< / Sz 1a(z)(Ag @ m)(dz) < Om(A N Ax). (4.2.4)
A

If A € B.(RY) then this integral is finite and the right-hand side in (4.2.4)
can be bounded uniformly in A.

"For this and the following step, we adapt ideas presented in [KPR10, Subsection 3.2,
cf. the proof of Proposition 4.2.6.
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Remark 4.2.4. The later estimate, is quite powerful (cf. also Theorem
4.8.31 and Remark 4.3.32) and it seems that it has not been exploited so far.
For further details, we refer also to Remarks 4.3.19 and 4.3.20.

Proof of Proposition 4.2.3. We explicitly estimate the integral by separating
one particle from the others. The additional task is to handle that the points
are coupled via the relative energy.

For each & ¢ I';(X), by definition (cf. (4.1.4)) pa(-|€) = 0. Thus, the
bound holds trivially. Hence, w.l.o.g. v € I'f(X).

By Remark 2.2.8 mx is B(I'(R%))-measurable. For any A € B,(R?), A €
B.(R%) and ¢ € T'(R?) we have

*/BHA(’YA‘OPQA(

ma(ya)e dryn)

1
/ ma (va)pa(dal§) = ZA(f) T'(A)

fz Z/ ma ({&,})e M ({#1,0s2n }[E) H(/\e®m)(d$z) (4.2.5)

where P denotes the Lebesgue-Poisson measure with intensity measure \g®
m (cf. (2.2.9)).

Let k € {1,...,n} be fixed. We are able to decouple the k" particle from
the others:

HA({i'la <. $n}’§ Z V xhx] Z QV(:%MQ)

3 Vo) 230 Vi) + Vi)

ij=1 j=1
i#kF#] J#k
+ Y W (L) + Y 2V (s 9). (4.2.6)
i=1,...,n; i#k TrEA
ZENJEE O 9€€\C

Since V' > 0, we get

Hy({1, .. 2, €)= Y V(s a) + Y 2V(@n3)

ij=1 =1, n
oy ik, FreA
yAGEAC
+ V(e &) + Y 2V (i, 9) (4.2.7)
ZrEA
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Plugging (4.2.7) into (4.2.5), we get

/ ma(ya)pa(dyalé)

ma({Z)})e —BHA({Zr}IE})

n>1 n! An

n

X 6—6HA({§71,...,C%]€,1,C%]€+1 ,,,,, ff»n}|§) H(A@ ® m) (di,z)

=1

S (/ ma ({&1})e AU (N @ m) (diy)
D ! Z/mA {4 })e PINAETED (X @ m) (dity,)

n>2
></ 6*/BHA({§317-~~75%—1:§%+1 ,,,,, Zn}E) H (A9®m)(dii)>
An—t i=1,i%k

Taking the common integral out, this equals

Ve BN () @ ) (di)
[ mattan (o m) (@) 5
% /AN 1 (1+Z /An 1 e BHA{# 1,0 En-1}¢) H()\‘?@m)(dxz))
_ Ve PIEEHD (A, @ m)(d2) — - 7, (€), 2.
- [ mattay (o @ m)(d8) 7= Z0(6) (428)

The later is dominated by

/R sela(a)(h @ m)(di) = () /R #letdt = Om(A).  (4.2.9)

+

If A € B.(R?) then

aw [ maGImle

A€B.(RY) JT

- ([ (Rd)m(v)m(dw@+mA<sAe>)

AeB.(R?)
<Om(A)+ sup ma(&pre) < Om(A) +ma(§) < oo, (4.2.10)
A€B.(R9)

where & € T';(R%). This implies the support properties of 7y (-|€) resp. iz (-[€)
stated in the assertion. O
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4.2.2 Local equicontinuity

The local equicontinuity allows us to construct a Gibbs measure as a limit
point of a net consisting of the local specification kernels.

Definition 4.2.5 (cf. [Geo88, (4.6) Definition|). Let Y be a locally com-
pact Polish space. The net of probability measures {vp] A € B.(Y)} on

['(Y) is called locally equicontinuous if for all = B.(Y') and each sequence
{BN}NEN C B(F(A)) with By i 107)

lim limsupwvy(By) = 0. (4.2.11)
N—=oo AeB.(Y)
AY

Proposition 4.2.6. The net {mx(dv[§)| A € B.(RY)} is locally equicontinu-
ous for each fived & € T p(RY).

Proof. As in [KPR10|, we adapt to the configuration space I'(R?) the argu-
ments used for proving Theorem 4.12 and Corollary 4.13 in [Geo88|.

Fix an arbitrary compact set A = Ag L X Apa € BC(Rd) and let { By }nen

be any sequence of sets from B(I'(A)) such that By | @ as N — oo. We

choose R > 0 such that a| ., ., = 0 and set
B§(0)

U :=Up(A) = {:c € R¢

disth(:L',]\Rd) = inf |z —y| < R}

yeARd

€ B.(RY). (4.2.12)

Consider the following Borel subsets of configurations whose local masses at
U are bounded by T > 0,

DU, T) = {’y e D(RY) | (my(7)) < T} . (4.2.13)

Note that the map y — V(2,9) = sysya(z —vy), T € A, is surely zero outside
of Ry x Y. For each A € B,(R?) and ¢ € I';(R?), by the definition of a local
specification (cf. (4.1.7), (4.1.8)) and the consistency property (cf. (4.1.9)),



4.2. EXISTENCE OF GIBBS MEASURES: BASIC MODEL 71

we have
TA(By|€) = ma(By N LU, T)|E)
+/  Tiea (BN NDU,T) ) ma(dnl§) (4.2.14)
[(Rd)

= 7a(By O [T(U, T))IE)

1
+/ / 1syore,r)(Vana YU Nanaye)
I (R) Z]\mA(W) T'(ANA) NOPUT) UTANA (ANA)
% exp {=BHion (3w 1)} ™ (130 ma (d9]6)

Using that Z;., > 1, the later is dominated by

(DU, T)]°[€) (4.2.15)

+/A /~ ILBI\WF(U,T)(’Vf\mAU77([\ﬁA)C)
r(®&4) JT(ANA)
x exp {—BHxon (Vionm)} P2 (dy)ma(dnl€).  (4.2.16)

Chebyshev’s inequality insures that for each € > 0 there exists T'(¢,£) > 0
such that

(DU, T)lE) < e forall T > T(e,€) and A € Bo(R?). (4.2.17)
Indeed, using Proposition 4.2.3, we get

m ({7 € T@) : mu(y) > T ¢)

my(7)
< /F(Rd) U ) (42.18)

S % <0m(UR(/~X)) +mu(§Ac)> = %Cz,{{ < 0.

As T — 00, the whole term becomes arbitrary small. )
Since Hyqy (Vina|n) = 0 for all v € T(RY) and A € B.(R?), the inner
integral in (4.2.16) is dominated by

/ ~ ayareny(Vama Y g gnaye) B (dg)
P(ANA)
< PMByNT(A)) <, as soon as N > N(e). (4.2.19)

Plugging (4.2.17) and (4.2.19) back into (4.2.15) and letting T" * 0o and then
By | @, we get the required equicontinuity of the net {ma (dvy|€)| A € B.(RY)}
(cf. (4.2.11)). O



72 CHAPTER 4. GIBBS MEASURES WITHV >0

4.2.3 Existence of Gibbs measures: Basic model

We show that each limit measure that we obtain by the local equicontinuity
is indeed a Gibbs measure.®

Theorem 4.2.7. Let a € LY(R% m) be as described in Evample 4.1.1, i.e.,
IM, < 0o and A € B.(R?): 0 < a(x) = a(—x) < M1a(x) for all z € R™.

Assume that
V(2,9) = sesya(z —y), Vi, jeR% (4.2.20)

Then there exists a (non-zero) Gibbs measure p corresponding to the potential
V' and the Gamma-Poisson measure Py, 0 > 0 being the fized parameter. It
is supported by T';(R?).

Proof. We will show that the local equicontinuous specification has a cluster
point in T (cf. Definition 2.1.2). For this candidate (for being a Gibbs
measure) we show that it is supported by the <tempered> configurations
v € T4(R%). The final step is to prove the (DLR) equation (cf. (4.1.13)),
for which we use the monotonicity property of the local specification.

We first observe that the relative energy Hx(n[§) is finite for all n € I'(RY),
£ eTs(RY) and A € B.(R?) (cf. Lemma 4.1.2).

Let £ € T'4(R?) be fixed from now on. By Proposition 4.2.6 the net
{ma(dy|6)| A € B.(RY)} is locally equicontinuous. By [Geo88, Proposition
4.9] combined with [Pat67, Theorem V.3.2], any locally equicontinuous net
in M!(T'(R?)) has at least one Tp,c-cluster point. Thus, there exists a limit
point R

pim Tim (1) € MAD(RY)
taken along some order generating sequence Ay R?, such that for all local
sets B € By (D(RY)) :

Tay (Bl€) = u(B) as N — oc. (4.2.21)

To check the support property, we take advantage of 7 (+|§) being sup-
ported by I';(R?) for each A € B.(R?) (cf. Proposition 4.2.3).

Indeed, fix an arbitrary A € B.(R?). Since ma(-) is not Bey(I'(RY))-
measurable, we use a cut-off procedure. For all A € B.(R?) the local mass
v+ ma(ya) is Bey(T'(RY))-measurable; and

lim ma(yNA) Sma(y), Yy eD(RY).
ARE

8This idea also used in [KPR10, Subsection 3.2].
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Hence, by Beppo Levi,

[ mautn) =t [ waGaa(@)
(&) A/RE (R
AEB.(RY)
= lim  lim ma ()T (dV[E)
ARE N=00 Jr(Rd)
A€B.(R?)
< lim ( lim / mA('yAmAN)uAN(dfyANE) +limsupmA(Aﬁ§A5V)>
A RE -\ N=oo Jp(Rad) N—o0
A€B.(R?)
< lim ma({Z}H)1a(2)Ng @ m(dZ) < Om(A) =: Ma < 0o, (4.2.22)
A/RE JRd
A€B(R%)

where we used the uniform bound given in Proposition 4.2.3 (cf. (4.2.4)).

To prove that p is a Gibbs measure, it remains to check the (DLR)
equation. To this end, we would like to apply the consistency property of
the specification kernels my .

Fix A € B,(Ry x R?) and B € B.,(T'(R%)). We take care that the func-
tion T(R?) 3  +— 7;(B]y) is in general only B(I'(R%))- and not Bey(I'(R%))-
measurable. We overcome this problem by using a cut-off procedure and the
fact that the measure p is defined on the o-algebra generated by the algebra
By (T(RY)). In fact, for each A € B.(R?), we consider the truncated func-
tion T'(R?) 3 = 75 (B|7a), which is (obviously) Bx(I'(R%))- and therefore
Beyi(T'(R%))-measurable.

We will justify the following equations to obtain the (DLR) one:

1. .
[ mBhuant m [ w B
T'(R4) A/REJT(R)
AEB.(R?)
= lm o lim [ (Bl (dyl6),
A RE N=oo Jp(gd)
AeB(RY)
3. 4.
= lm [ 7w (Bly)may (dy[€)
700 Jp(@Y)
L lim my (BJE) % u(B). (4.2.23)
— 00

The second and fifth equation follow by the definition of p (cf. (4.2.21)).
The fourth holds by the consistency of the local specification (cf. (4.1.9)).
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We have to argue a little more to obtain the other ones (cf. (4.2.25) for the
first and (4.2.28) for the third one).

Denote A := Ag,. In order to show that the the first equation in (4.2.23)
holds, we use that by Lemma 4.3.28 (cf. (4.3.29)) below there exists My, < oo
such that

| 1ma(Bh) = ma(B) )

(&)

§2ﬁMa<1 + €A9®m(A)>MA’ / mz (Yae)p(dy)
I'(R4)

<201, (14 =D / Wi, (DN @ mdi), (4.2.22)
R

where we used (4.2.22) to deduce the last inequality. The integrand in the last
line in (4.2.24) converges pointwisely to 0. Thus, using Lebesgue’s dominated
convergence theorem, we have justified the first equality in (4.2.23), i.e.,

[ m@Bhean = hw [ mBhae@). @22
I'(R4) AeB/c(Rd) I(R9)

It remains to prove the third equality in (4.2.23): Using (4.3.29) we have

/F(Rd) [7T[\<B"YA) — WA(B’7>]7TAN(d7’§)’

< (1 + e%@m(ﬂ)) BM, My /  ma(yae)man (dh]6). (4.2.26)
(Rd)

Proposition 4.2.3 yields the following bound for the last integral

. s (200 0000 4

AN

< [ m(aene, (D20 © m(d) + ma 6

Rrd

< /Rdm(AOAC)Rd({:%}))\g®m(di‘)+ S ma{)). (4.2.27)

JA}GfAcmANc

As before, by Lebesgue’s dominated convergence theorem the integral be-
comes arbitrary small for A  X. The same is true for the second sum.
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Thus, the third equation in (4.2.23) holds, i.e.,

lim  lim TA(Blya)may (7€)
A/‘Rd N—o0 F(Rd)
AEB.(RY)
= im [ (Bl (@l9). (12.28)
=0 /(i)
Hence, p1 is a Gibbs measure (being supported by T'f(R%)). O

A~

4.3 Existence of Gibbs measures on I'(X): Gen-
eral case

We come back to the general case of X being a locally compact Polish space
with non-atomic Radon measure m. We generalize the concept of a local
(w.r.t. \p®m) mass map on ['(X) to include more general potentials. Then
we follow the scheme presented above (cf. P. 66) to show the existence of a
Gibbs measure. The uniform bound for the local Gibbs measures (cf. Propo-
sition 4.3.18) is a key issue, not only for showing the existence, but also for

proving the uniform bound for all Gibbs measures (cf. Theorem 4.3.31).°

We define the set Lg(X x X) of symmetric functions which are only
supported on a <strip around the diagonal>:

Definition 4.3.1. By L(X x X) we denote the set of bounded symmetric
B(X)-measurable functions ¢ over X x X which fulfill

(FR) Finite range : For any A € B.(X) there exists Un € B.(X) such
that
oz, y) = d(y,x) =0, Vo€ A, yely. (4.3.1)

Remark 4.3.2. In the basic model setting the finite range condition is ful-

filled if
JRe[0,00): Vz,yeRY: |z—y|>R = oé(z,y)=0. (4.3.2)
In this case, we set for A € B.(R?)

Up = {ZL‘ERd

distra(z, A) = igg lz —y| < R} € B.(RY). (4.3.3)
y

9We point out that the result of this section hold not only for the Gamma-Poisson
measure Py, but even for more general Poisson measures. For this compare Section 5.1
and especially the setting and (5.1.25) therein. But for the sake of simplicity, we stick to
our main motivation, namely the Gamma-Poisson measure Py.
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Admissible potentials
The class of admissible potentials depends strongly on the behavior of the
Levy measure Ay (and on m). In general, we can handle all symmetric po-
tentials V' (Z,9) obeying
0<V(z,9) < U2)(9)o(z,y),
where ¢ € Ly(X x X) and [ : X — R, is such that
X 3@ (&)1a(z) € LY(X, Ng@m),  forall A e B, (X),

i.e., [ is a semi-local function (cf. Definitions 4.3.1 and 4.3.4). Respectively,
the set of admissible boundary configuration is

LX) = (€€ T,(X)

Y UE)<oo, VA EB(X)

zeT(§)NA

Whenever it is clear which semi-local function [ is involved, we omit the index
[. Below, we will show that Py (I's (X)) = 1.

Example 4.3.3. These admissible potentials include
Vo(#,9) = b - sha(z—y) &,9€R,

where 0 < a € LY(R?, dz) is bounded, even and compactly supported. More
generally, by choosing ¢ € Ly(X x X) (c¢f. Definition 4.3.1), we can treat the
following one

Vo(#,9) = b - sh dla,y) &, € X.

Another type of potentials is the 1-particle potential:

V(#,9) = s3/%s) L iaeyy (2, y)b(2),

where b € L®(R?, dx) is bounded.

4.3.1 A (general) local (w.r.t. \p ® m) mass map

Here, we introduce the concepts of a semi-local functions and of a local mass
map. Using them, we can extend the potentials of the basic model (cf.
Section 4.2).
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Definition 4.3.4. Let [ : X — R* be B(X)-measurable. The function |
is called semi-local (w.r.t. X\g ® m) if it is integrable on Ry x A, for all
A € B.(X). This means

/ (#)h ® m(di) < Ca < 00, VA € Bo(X). (4.3.4)
R+XA

Example 4.3.5. Let X = R? with d € N and let m(dx) = dz be the Lebesgue
measure on R?. For p > 0, the function

[ :RYS 2 (&) := s € RT (4.3.5)
is semi-local (w.r.t. A\g @ m). An upper bound for the corresponding integral

(cf. (4.8.4)) is given for each A € B.(R?) by

/ﬂmA ()X ® m(dz) =m(A) - / 0

Ry S

6—8

ds = m(A)0T' (p) < oo,
where I'(p) denotes the classical Gamma function.

Local mass map
We introduce the second important concept of the so-called local mass map.

Definition 4.3.6. Let | be a semi-local function in the sense of Definition
4.8.4. The associated (semi-)local (w.r.t. A\g ® m) mass map

m :=m: BX)xT(X)3 (A7) = mp(y) € RF, (4.3.6)
15 defined via
ma(y) i=(mp,7) =D @)L Vy eT(X). (4.3.7)

Remark 4.3.7. Let | be a semi-local function. Its associated local mass map
1s additive, i.e.

v Ny =0 whenever i # j, -

and monotone, i.e.
VA,A € B(X): A C A implies my < my. (4.3.9)
Moreover, for any A € B(X),
the map B(I') 3 v — mp(v) is B(L)-measurable (4.3.10)

as the limit of measurable functions (cf. also Lemma 2.1.1).
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From the context it will be clear whether we treat the semi-local function
[ or its associated local mass map m, which is defined in (4.3.7). Thus, from
now on we shall denote them by the same symbol m, if no confusion seems
to be possible.

The previous considerations motivate the following

Definition 4.3.8. A map m
m :B(X) xT(X) 3 (A7) — my(y) € RF, (4.3.11)

is called a (semi-)local (additive) mass map (w.r.t. Ag@m) (or for short local
mass map), if it fulfills the additivity (cf. (4.3.8)), the monotonicity (cf.
(4.8.9)), the measurability (cf. (4.5.10)) and the (semi-local) integrability,

1.e.,
/ Mr, <A (2)Ag @ m(dT) < Ca < o0, VA€ B(X). (4.3.12)
X

If A is fized, my is called a local (w.r.t. A\g ® m) mass at A € B(X). If
mp = my for all A € B(X) then we callm :=my a global (w.r.t. \g ®@ m)
mass.

If instead of (4.3.8) only the (weaker) subadditive property

ma(2) =0 and  ma(UZ %) < 3272 maly),
5 A , (4.3.13)
VA € B(X), ¥ (), € T(X)
holds, we call m a subadditive local (w.r.t. A\g ®@m) mass map. We will omit
“(w.r.t. \g@m)” most of the time, when it is clear which intensity measures
on X are meant.

Depending on the question of interest, we will make one or another choice
of local resp. global masses related to A\g ® m.

Remark 4.3.9. 1. As we will see later (cf. Ezample 4.4.3) there exist
global mass maps which cannot be constructed by means of any semi-
local function. Therefore, it is reasonable to introduce the general con-
cept of a local mass map m.

2. The term (semi-)local reflects the fact that the integrability condition
has only to hold w.r.t. bounded sets A € B.(X). Whereas the term
global mass is motivated by the claim that (4.3.12) holds for A = X.
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3. Due to the additivity, each local mass map m can be written as

ma(y) = (ma({})7), Yy e N(X), AeBRY.

Remark 4.3.10. We can easily include the local (w.r.t. A\g @ m) mass map
considered in Section 4.2 in this new concept. This also explains the following
abbreviation, which we will use without further advice: For <stripess A =

Ry x A with A € B(X) we set

ma = MR, xA-

~

Fiz an arbitrary map m : B(X) x I'(X) 3 (A,7) = ma(y) € [0, 00].
We set for all A € B(X)

. {ﬁlA, if A=R, x A, where A € B(X),
A=

0 else. (4.3.14)

Thus, we may use the same name and symbol for both objects defined in

(4.3.13) and (4.3.14) respectively.

Example 4.3.11. It is easy to check that for any p > 0 the map

m,: BX)XT(X) 3 Axymma(y) = > s (4.3.15)

zeT(y)NA

is a local mass map in the sense of Definition 4.3.8. The required additivity,
monotonicity and measurability (cf. (4.5.8), (4.3.9) and (4.5.10)) are clear
and the integrability w.r.t. \g ® m follows by Erample 4.3.5. It will be used
to construct Gibbs measures corresponding to the potential V, discussed in
Example 4.3.5.

4.3.2 Support of the Gamma-Poisson measure

Using local mass maps, we describe sets on which the Gamma-Poisson mea-
sure Py has full mass.

Definition 4.3.12. Let m be a local (w.r.t. \g @ m) mass map. We define

the set of (pinpointing) configurations with finite local mass by

Dp(X) =D pm(X) = {’y € T,(X)| ma(7) < o0, VA € R, x BC(X)} .

If it is clear which local mass map is meant, we omit the index m.

The following result generalizes Theorem 2.2.9.
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Theorem 4.3.13. For any (semi-)local (w.r.t. A\g ® m) mass map m, the
Gamma-Poisson measure Py is supported by I'j(X) € B(I'(X)), i.e.

Po(T5(X)) = 1.
Proof. The claim is proved similarly to Theorem 2.2.9. O
The later result is also a special case of Theorem 4.3.34 below for V' = 0.
Corollary 4.3.14. The Gamma-Poisson measure Py is supported by

M {7 € T,(X) VA € B(X) : mpa(7) < 00} : (4.3.16)

p>0

Proof. This follows by Theorem 4.3.13 and the fact that the set in (4.3.16)
can be written as a countable intersection over p, \, 0 as n ~ 0o (cf. also
Example 4.3.11). O

4.3.3 Finiteness of the relative energy

We describe admissible boundary configurations § € I'(X) such that all local
Hamiltonians I'(X') 3 v +— Ha(dv|§) are well-defined for A € B.(X).

Example 4.3.15. For the following potentials V (Z, ), &,7 € X, the relative
enerqy s finite, if the boundary condition £ is chosen from the mentioned set:

1. € € Ty, (X), for V(,9) = susyél,y), and
2. £ € Ff,mp(f(), for V,(2,9) = s.Ps,Po(x,y) with p > 0,
where ¢ € Ly(X x X) (c¢f. Definition 4.5.1).

Fix a non-negative, symmetric potential V' : X x X — [0,00] and a
semi-local function or local mass map m such that

~

Viag) < mg({a}) - me(7Ho(wy), .9 € X, (43.17)
where ¢ € Ly(X x X).

Lemma 4.3.16. Let V be as in (4.3.17). Let v € T(X) and € € T4(X) (cf
(2.2.20)), then the relative energy (cf. (4.1.2))

Hy(y[) = Y V(Eg+2 Y Vi,

ZT,yevNA TeEYNA
JeENAC

is finite for all A € B.(X). If m is a global mass, this result even holds for
o =1.
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Proof. We proceed similarly to Lemma 4.1.2: For the first sum this follows
immediately by the definition of local finite configurations vy € F(X ) (cf.
(2.1.1)). The finiteness of the second sum is guaranteed by the choice of
¢ el'p(X).

O

Remark 4.3.17. The potentials, which we treat in Lemma 4.5.16 can have
an infinite range w.r.t. R, x X, as long as the proper global mass exists.

4.3.4 Support of the local specification kernels

Similar as in Section 4.1, we define for each A € B.(X) and ¢ € I'(X) the
local Gibbs state p(dy|€) (cf. (4.1.4)) and the local specification kernel
ma(dy|€) (cf. (4.1.8)). Let Gibbsy denote the set of corresponding Gibbs
measures defined by Definition 4.1.6, where we use instead of I" f(X ) the set
[ m(X) (cf. Definition 4.3.12).

The following proposition is a key estimate for proving the existence and
the uniform moment bounds of the Gibbs measures.

Proposition 4.3.18. Let V be as in (4.3.17). Then, for each & € T'j(X)
and each A € B.(X), the probability measure pa(-|€) is supported by I'¢(A)
and m(-|€) respectively by I'p(X).

In detail, for any subadditive local (w.r.t. \g ® m) mass map m, for all
A € B(X) and each ¢ € T(D(X))

/ s (v )ian (A9 €) < / 3 ({21) e © m)(di). (4.3.18)
r'(A) A

If A =R, x A with A € B.(X) then this integral is dominated by 6Cx, being
the constant corresponding to (4.3.12). If m is a local mass map and V = 0,
then the above estimate is optimal, i.e., (4.3.18) becomes an equality.

Proof. The proof is quite similar to that of Proposition 4.2.3, where one uses
the idea of separating a single particle. [

Remark 4.3.19. Having a closer look at the proof of Proposition 4.2.3, we
see that if we separate (instead of 1 particle) a group of n particles from the
others we obtain the weaker result

iz (va) ea (dyal€) < Z / 7PN (d),

r(a) row

where P} is the Lebesque-Poisson measure on T'(A) and TW(A) is the (i)-
particle configuration space over A.
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Remark 4.3.20. We point out a similar result, which one can obtain by
Ruelle’s equation (cf. [Rue70, (5.12), (E)]). Let my be supported by A €
B.(R%), then

[ o= [ ([ sswunenseom ) s

= M+ A+ —BHA(v[E) A
/I‘(A) /F(Ac) |:mA(?7) ™ w} L/_/ﬂ'/\(d"y’f) P@ (d??)

= :1

< [ e, (4.3.19)
T(A)

We see that this estimate does not allow to get a uniform bound for A 7
Ry x A with A € B.(X). On the other hand, we obtain by (4.5.18) for
A = R+ X A th(lt

sup / fim, e (1) ma(d1]€) < / iz s (1) Po(d7)

AKX, AeBe(X

X
So in our applications, we use instead of (4.3.19) the preciser estimate (4.3.18).

Estimates for higher moments for the specification kernels

Proposition 4.3.21. Let V be as in (4.3.17). We have for any subadditive
local (w.r.t. \g ® m) mass map w that for all A € B(X)

/ [ (15en)] 1 (d1al€) < / [mx(70)] Po(d)
I'(A) '(X)

< [ b)) n e m)(as) + ( | s {x}A><Ae®m><dx>)2,
(4.3.21)

uniformly for all A € B.(X). In particular, if A € B.(X), then the last
summand in the 1.h.s of (4.3.21) is finite. If we additionally assume, that
the first summand is finite for all A € BC(X), then for each A € BC(X) there
exists a positive constant C(A,m) such that

/F N (¢ (Yirn)] “pa(dal€) < C(A, ) (4.3.22)

uniformly for all & € I‘f(X).
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Proof. By the subadditivity (cf. (4.3.13)), we get for each A € B.(X) and
§ e T'p(X)

/ MY B (dyal€)
r(A)

2
ﬁH Llyeeey $'n §
_ZA () Z n! / ( myg {zk}/\)> At /| )H (Ao ® m)(d;).
(4.3.23)
Using

(Z fflx({fﬁkh)> = > wg({ats) me({dta) + Y. me{ri}y)?

k=1 1<k ]<n 1<k<n
(4.3.24)

and performing the calculation analogously to (4.2.7) and (4.2.9), we get

/ (¢ (van)] “1a(dral€) < / [ g ({2}5)] e PPN pA(d{ 7))
I'(A) r(A)

+ / g ({a1}3) mg({hg)e ORI PN A, 221). (4.3.25)
r ()

Using again that V' > 0, we estimate the last term by

[ [nstanloeemia + ([ me@rones m)

X

Using also Theorem 3.2.6, we conclude the proof of the assertion. O

Remark 4.3.22. 1. We even have that (4.5.22) holds for higher moments,
but then the formula is quite involved. For N € N, it takes the form

/ [tﬁ)?«y]\mA)}NﬂA(d'VA‘g)S/A (M (v3)] " Poldy)
I'(A) I(X)

< Z Ck1 ..... kn, H/X [Iﬁf(({i‘}fx)}kl)\g ®m(d:i") (4326)

ki+...kn=N i=1
1<k;<N, neN

provided the integrals in the right-hand side are finite. This is surely
the case, if we assume that

/ m({Z}a)" Vo @ m(dz) < oo for1 <n <N.
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To prove this result, we first get a formula analogously to (4.3.24),
which we plug in (4.5.9) and calculate the integral over the different
summands individually. Here, we have to split up to N particles from
the others. This yields an estimate that has a similar structure as
(4.8.21), in so far it depends on A and N, but is independent of A.

2. In a similar way one can consider positive k-body potentials (k > 2).
Here, a sufficient condition for (4.53.26) with N > 1 will be

/ g ({@}a)" P (d{dy, ..., 3;}) < oo, foralll<n<EN.
LIy TO (4)

4.3.5 Local equicontinuity

The following step is essential for proving the existence of Gibbs measures,

i.e., that Gibbsy, # @.

Proposition 4.3.23. Let V be as in (4.3.17). Then, for each fized £ €
T(X), the net {mx(dy|€)| A € B.(X)} is locally equicontinuous.

If m is a global mass map, then we may drop the finite interaction range
condition and still obtain the local equicontinuity stated above.

Proof. The results follows by adapting the arguments used in proving Propo-
sition 4.2.6. Namely, e.g., we set

Y — R, x X, if mis a global mass,
" | Ry xUa, otherwise (cf. (4.3.3)),

where A € B,(X) is such that A C R, x A. Then we repeat the estimates
(4.2.14) to (4.2.19) for the specification kernels defined by (4.1.8) (with the

A

general potential V' as in (4.3.17) and I';(X) defined by Definition 4.3.12)
and deduce the assertion. O

4.3.6 Existence

Now we are in position to prove one of the main results of Chapter 4, which
ensures the existence of y € Gibbsy. We start with

Definition 4.3.24. A local (w.r.t. Ay ®m) mass map m: B(X) x T(X) —
0, 00] s called

(QL) quast local: There exists ¢y € (0,00) such that for each A € B(R) X
B.(X) one finds ' € B(R;) x B.(X) with

mX<’)/A) < cmmA/(y). (4.3.27)
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Remark 4.3.25. Given a semi-local function |, then its associated local mass
map (cf. Definition 4.3.6) is quasi local. In particular, this holds for all
examples discussed in Example 4.3.11.

Moreover, this property holds obviously for any global mass map.

Theorem 4.3.26. Let V : X x X — [0, 00] be a non-negative potential and
m a semi-local (w.r.t. \g @ m) function or a local (w.r.t. A\g @ m) mass map
such that

V(@,9) <me({2}) - me({g})o(z,y) Vi, g€ X, (4.3.28)

where we assume that ¢ € Ls(X x X) and that (QL) holds.
Then for any 3,60 > 0, there exists a Gibbs measures corresponding to Py
and V', i.e.,
Gibbsy # @.

A

Each p € Gibbsy is supported by I'f(X).
If m is a global mass, we may even take ¢ =1 in (4.58.28).

Remark 4.3.27. Theorem 4.3.26 holds for each potential given in Example
4.8.15.

Proof of Theorem 4.3.26. We proceed along the lines for proving the exis-
tence result in the basic model in Theorem 4.2.7 with obvious modifications.

A

Note that the specification kernels ma(dv|£), € € T'y(X) , are probability

~

measures on ['(X).

Indeed, similarly as in the mentioned proof, we get the existence of a limit
measure /4 using Lemma 4.3.16 and Proposition 4.3.23. We deduce that p
is indeed a Gibbs measure through Lemmas 4.3.28, 4.3.29 and Proposition
4.3.30 below. To this end, we crucially use the following estimate which we
get by Proposition 4.3.18 (cf. (4.3.18)): Fix an arbitrary A € B(R,) x B.(X).
We have for all A’ € B(X) and Ay € B.(X)

[ miGwan, (@l
r(X)

I
—

mz (Vaynar Uéag nar)piay (dyay[§)
T'(An)

S/ mz (Yaynar) iy (dyaynarl€) + mA(fAﬁva/)>
I'(AN)
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Note that this bound is uniform in N € N.

It remains to show the above mentioned lemmas and proposition:

Lemma 4.3.28. Suppose we are in the setting of Theorem 4.3.26. Then,
for each A € Bu(X), there exist A' € B(RL) x B.(X) (being the same as
in (4.3.27)) and My, Mar € (0,00) such that for B € By(['(X)) and all
A € B.(X):10

7a(Bha) = 7a(BI)| < 28en My M (1457 Jm(00)
= C(m, A, (b)mA/(’yAc) = CmA/(’)/Ac), (4.3.29)

where we chose ¢y € (0,00) such that (QL) holds.

~

Proof. Let B € Bo(I'(X)), then 15(nUyanac) = 1a(nUvac) for all 5,y €
I'(X). Hence, for any v € I';(X) we have

[TA(B|va) — ma(Bl7)]

1
< / ﬂB(ﬁA U ,YAmAc)efﬁHA(ﬁAl'm)
Za(1a) Jr, )
X (1 — exp{ — 20 Z V(i",ﬁ)})PeA(dm)
. zena,
JE€YACnAC
1 1 / —BH A
+ — L5(na Uyae)e PHata PR (dny ).
Za(m)  Za(V) | Jr,x) 0

(4.3.30)

Dropping the first indicator function, we get the following dominator of the
first summand

ZAEVA) /F . o~ BHA(A ) (1 _exp{ —28 Y V(i A)})PgA(dm),

X) _ &ena
YEYACNAC
geUn

(4.3.31)

where we used (cf. also (4.3.1)) that there exists Un € B(X) such that

V(z,9) =0 forallde A andy el

19Despite our usual convention to use A to denote sets in X, we use A € B.(X) in
Lemmas 4.3.28, 4.3.29 and Proposition 4.3.30 to maintain a better readability.
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(If m is a global mass, we choose w.l.o.g. Un = X otherwise, we can choose
Up € B(R,) x B.(X).) Since P2 (T'(A)) = @A) we estimate the second
summand in (4.3.30) by

1 1
: ZA(y) = Za(yp)]ete®m™A). 4.3.32
70) Zatw) 20 2200 (4352
——
<1
We use that Z(y frf e PHAMA) PA(dna) to rewrite the difference in

the last line. Usmg the upper bound established above (cf. (4.3.31) and
(4.3.32)) for the summands in (4.3.30), we deduce that uniformly for all
B € BA(I'(X))

[TA(Blya) — ma(B|Y)]

< 1 (1+6>\9®m(A)>/ e~ PHa(alA)
~ Za(7a) (%)

X (1 —exp{ 25 Y V(i',z))})Pf(dm)

zena
JE€EYAcnAcNUA

§<1 +6A9®m(A)> /Ff(j() (25 Z V(:?:,y))P (dna)

zena
§25<1 + eAe@m(A)>

JEYAcAAcNUA
X/rfpz)( xezm mX({f})mx({?)})cﬁ(%y))PeA(dnA), (4.3.33)
YEYAchAcNUA

where we applied (4.3.28) together with the elementary inequality 1 —e=?* <
Ba for all a, B > 0. The next step is to estimate the integral in the last line
of (4.3.33). Taking into account that

sup ¢(z,y) =: My < 0o
z,yeX

(cf. our assumptions resp. Definition 4.3.1), we get

/r %) ( Z mx({fi})m;g({g)})gb(:c,y))Paﬁ(dnA)

TENA
UISINTINIRZIN

<M, / PLICNLNEENRL TN

<Myms () [ mi (LD 00 @ m)(d), (43.34)
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where we applied Proposition 4.3.18. Using (QL) (cf. (4.3.27)) and the
monotonicity of a local mass map (cf. (4.3.10)) we deduce

/ ome x () < cemar() 5
IN' € B(R.) x BuX): (R e) ST vy e D),
(4.3.35)

This yields a bound for (4.3.34), namely
Mymar(1ae) /X mar ({31 ® m(di) < 28enMyma (7a) M, (4.3.36)
where we used the integrability of m (cf. (4.3.12)) to find that
dMar >0 /XmA/({ir})/\g ®@m(dz) < Mar.
We summarize the estimates given in (4.3.33), (4.3.34) and (4.3.36):

— < : AoEm(A) ) mn
) m
ma(Blya) — ma(BlY)| < 28cmMsMa (1 te )m (ac),  (4.3.37)

which yields the claim. O

The following lemma will be applied for the local specification kernels
(i.e. v(dy) := ma(dy|€)). That is why in its formulation we assume the
dependence on a boundary condition &.

Lemma 4.3.29. Suppose that we are in the setting of Theorem 4;5’.26’.10 Fix
A € B.(X) and § € T4(X). Assume that for some v € M*(T(X)) it holds
for all N € B(X) and A’ € B(R,) x B.(X)

/ R mA/(vA/)V(dv) S /A mA/({:%}A/) ()\9 &® m) (dZIA?) + mA/(é’A/). (4338)
r(X) X
Then for any € > 0 there exists A = A(e,m, A, ¢,§) € B X) such that, for

all v e MY D(X)) fulfilling (4.3.38) and for all A € B.(X) with A D A, we
have

[ (g = ma(Bivian)| < (1339
I(X)
In other words,
im [ maBhwu(d) = lm | ma(Bhv(dy). (4340
AKX (X ASX  Jr(X)

AEB(X) AEB(X)
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Proof. Using (4.3.29) we have

/ MEGINE mBrw]u(dw\

< C(m, A, ¢) F(X) ma: (")/Ac)l/(d’}/) (4341)

Equation (4.3.38) with A’ = A¢ yields the following bound for the last integral

/XmAf({i}Ac)Ae ®m(di) +mar(éac), §). (4.3.42)

By Lebesgue’s dominated convergence theorem, (4.3.42) becomes arbitrary
small for sufficiently large A. Thus, the claim holds. ]

Proposition 4.3.30. Suppose we are in the setting of Theorem 4.3.26. We
assume that a sequence (pin) yey C MM (I(X)) satisfies (4.3.38). Moreover,
let for each A € Bo(X) and B € B.y(T'(X)) there exists Ny € N such that'

for all N > Ny /r(f() A (B|y)un(dy) = pn(B). (4.3.43)

If n e MI(F(X)) is the Ti.-limit of the sequence (uN) Nens then:

~

1. p obeys the estimate (4.5.43) and hence is supported by I';(X)).
2. p satiesfies the (DLR) equation (4.1.13).

Proof. Fix an arbitrary A € B(R;) x B.(X). Since in general ma(-) is
not By (I'(X))-measurable, we use the following cut-off procedure. For all

~

A € B.(X) the local mass

~

['(X) 2 v+ ma(ma)

is Beyi(T'(X))-measurable. Beppo Levi yields that for all A’ € B(X)

/ Cma(uu(dy) = tim [ ma(wea)n(dy)
'(X) AKX JI(X)

AeB.(X)
= lim lim mA(’yA/nA)uN('y)

AEB.(X)
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Using (4.3.38), the last line is dominated by

hm lim (/ mA/({Ii'}A/mA>A9 X m(dﬁ) + mas (fA'mA))
A/(XA N—o00 X
AeB.(X)

< /XmA/({j}A/))\g X m(di) + mA/(gA/) < 00, (4344)

A

where we used for the finiteness (4.3.12) and that { € I'f(X).

We justify the following relations to obtain the (DLR) equation: Let
A € B.(X). Using Beppo Levi, we get

/A Ta(Bly)p(dy) = lim ~ ma(Blya)p(dy)
r(X) A/X JT(X)
AeB.(X)
= lim lim [ wa(Blya)p(dy)
A/‘XA N—oo F(X)
AeB.(X)
2 lim Ta(BIy)un(dy) £ lim py(dy) 2 w(B). (4.3.45)
N—o0 F(X) N—o0

The second and fifth equation follow by the definition of ;1 . The fourth holds
by the consistency assumed in (4.3.43). For the first and third equality we
use Lemma 4.3.29. Hence, we have shown that p is a Gibbs measure (being

~

supported by I'f(X)). O

This completes the proof of Theorem 4.3.26. O]

4.3.7 Support of Gibbs measures
Let us have a closer look on the support properties of 1 € Gibbsy,.

Theorem 4.3.31. Let m be an arbitrary local (w.r.t. \g®@m) mass map and
A e B(Ry) x B.(X). Fiz a Gibbs measure pn € Gibbsy. Then

/ g ()uldy) < / 5 (1) Po(d)
r(X) r'(X)

< /X s ({212 @ m(di) < oo. (4.3.46)

This bound is uniform for all Gibbs measure p corresponding to V- and Py.

~

In particular, p(I'ra(X)) = 1.
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Proof. Our idea is to exploit the uniform estimate for local Gibbs measures
(cf. Proposition 4‘3'1§) and the DLR property.
Fix some A € B(X). Using Beppo Levi, we have

/ - mi(y)p(dy) = Algr)l( . my (ya)u(dy).
(X
(%) WX T

By the (DLR) equation the right-hand side of the later equation equals

ASX AN X
A€B(X) ANEB:(X

im G [ [ amg (d0u
: I'(X) JT(AN)
By the additivity of m, and the definition of the local specification kernel
(cf. (4.1.8)), it is dominated by

lim ( lim / / 15 (Y i (@70, [€)1(dE)
ASX An /X Jrx) Jray)
AEB:(X) ANEB.(X)

+ limsup / ) I‘T‘tA(SAmAyv)M(df))-
Ay /X JT(X)
ANEBC(X)

Note that {anag, converges trivially to @. This means, there exists No > 0
such that A C Ay for all N > Ny, whence fAﬂA?V = . Hence, the last line
equals

lim ( lim // ﬁ"]\(VAmAN)MAN(dVAN|§)/~L(d§))
ASX An /X Jr(X) Jray)
AEB.(X) ANEB:(X)

Using the uniform bound given in Proposition 4.3.18 (cf. (4.3.18)), the later
is dominated by

AKX
A€B(X)

< lim /F N /X g ({2 }a) N © m(da) (de). (4.3.47)

If actually A € B(R,) x B.(X), then the last line is bounded by #C; < co.

~

Hence, we have proved that p(I'ss(X)) = 1. O

Remark 4.3.32. To obtain the last result, we crucially used that V > 0.
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1. Let Gibbsy # &. Then Theorem 4.3.31 implies for any local mass map
m that

A~

Yu e Gibbsy u(ny,ﬁ(X)) =1.

2. The later shows that the a priori assumption of u being supported by

~

I'¢(X) is no restriction; and it is in fact not necessary (cf. also Remark

4.3.33 below).

The following remark concerns the support property of u € Gibbsy:

~

Remark 4.3.33. Let p be a Gibbs measure and A C B(I'(X)) be such that
there exists A € B.(X) : ma(I'(X)[§) = 0 for all ¢ € A. Then u(A) =0
because

~

L=p(r(x) = [ AT = | mecioutds
< [ wtag) = 1= p(a).

4.3.8 Higher moments of Gibbs measures

Theorem 4.3.34. Let V : X x X — [0,00) be as in Theorem 4.3.26 with
the corresponding local (w.r.t. A\g ® m) mass map m. Fizx a Gibbs measure
w € Gibbsy and a subadditive local mass map m. Then for N € {1,2} and
A € B(X)

Cmg(na)Vu(dn) < [ mg(na) N Py(dn)
r(X) I'(X)

< [ feldara) Ow e mya) + ( / w{ae}me@m)(d@)) .
(4.3.48)

For N = 1 we may drop the first summand. In this case the r.h.s. in
(4.3.48) is by assumption finite for any A € B(Ry) x B.(X). For N =2 the
r.h.s. is finite if A € B(Ry) x B.(X) and

/ g ({2}a)? (N @ m)(di) < oo.
X
Remark 4.3.35. By the definition of a local mass map,

Mg ({}a)' € LY(X, Ag @ m).
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Proof. Similarly to the proof of Theorem 4.3.31, this fact follows by the
(DLR) property and Proposition 4.3.18 resp. 4.3.21. Using the monotone
convergence theorem, we get

[ R uen = tim [ st
AeB.(X)

SR N IR WOTRRUREONS
A/X  A/X, ACA, JT(A) JT(A)
AeB.(X) AeB.(X)

< tm [ (et e ma)
AX  A/X, ACA, JT(A) X
AeB.(X) AeB.(X)

+( [ caa) 00 m)(df%))N>u(d€),

where we applied Proposition 4.3.21 for N = 2, resp. Proposition 4.3.18 for
N = 1. This yields the claim. [

Remark 4.3.36. For the moments of higher orders, results analogous to
those mentioned in Remark 4.3.22 hold. Here, we only point out that

g (na)Vp(dn) < oo for some N € N
(%)

whenever

[ myg({Z}a)" Mg @m(dz) for alll <n < N.
X

4.4 A closer look at Gibbs measures

In the previous section, we have shown that the (convex set) Gibbsy # & (cf.
Theorem 4.3.26). In this section we show that the set Gibbsy is a compact
set in Tjoc (cf. Subsection 4.4.4).

For simplicity in this section, we consider the case of X = R? (with
d € N) being equipped with the Lebesgue measure m(dz) = dr.!! Using

1 Actually, we can handle more general spaces which fulfill a certain covering property
(cf. Remark 4.4.2 and esp. Definition 5.3.1) to construct an associated global mass and
obtain the announced results. But, for the sake of clarity, we stick to the basic model
setting.
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properties of the underlying phase space R?, we introduce a smaller subset
I'*(RY) C T';(R?) of the so-called <tempered configurations> such that

w(T*(RY)) =1, for all 4 € Gibbsy.

From now on, the lower index R shall remind us that we treat an object
in R, or a property related to the space R,. The same notational convention
is true for X, resp. R<.

4.4.1 Covering of R4

Let (Ry,dg, ) and (R?]|-]) be the components of the underlying phase space

R? = R, x R? described in Section 2.2. We construct a covering of the space
R?, which consists of balls whose volumes are uniformly bounded. On R¢ we
use the standard covering related to the Euclidean distance, whereas on R,
we use a special one related to the logarithmic distance.!?

We fix an arbitrary g € (0,1). Let Qga ., 2z € 7, denote the balls with
radius dg, centered at gz, i.e.,

QRd7Z::{xERd||gz—x|§d-g}.

Then (QRd7Z)Z 74 COVETS R? and

sup m (QR%) =: Mpa < 0 (4.4.1)

2€74

because the Lebesgue measure is translation invariant.'® Instead of Qga , we
can also consider the hypercubes

Qrg = [—9/2,9/2) + kg, keZ

In the later case, we have a disjoint partition of R% = ez Qg

For R, we have a different type of covering: For all N € Z we define
Qr, v = [gV 2 gV 12). (4.4.2)

Since the intensity measures \g is non-atomic, it does not matter whether
we consider the half open intervals or their closures. The closures are balls
in (Ry,dg, ) that are centered at points g™ and have radius —3Ing > 0 (cf.
(2.2.1)).

12Thus we have to leave the framework of Ruelle, cf. [Rue69, Rue70].
I3If we take instead of the Euclidean norm the sup-norm, we get the usual choice of
cubes (cf. e.g. [Rue69], [AKRI8b|, [KPR10]).
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Lemma 4.4.1. The half open intervals Qr, n cover Ry and their volumes
are uniformly bounded:

sup Ag (Qr, n) < 0(|Ing| +1) = Mg, < o0 (4.4.3)
Nez
Proof. If N < 0 then 1 < ¢V = (%)‘N| and
N-1/2 N-1/2

g g oo 1
6/ e ttldt < 9/ e tgNI=12qt < 9/ et 1dt = 0—.
gN+1/2 gN+1/2 g ed

On the other hand, if N > 0then 0 < g <landfor0<a<b<1

b b
1 1 b
/e‘t—dtg/ —dt =In —.
a t o b a

Therefore, for N > 0 we obtain
N-1/2

g
9/ e*tldt§9(lng)(N—1/2—(N+1/2)):Hlnl.
gN+1/2 t g

Hence, the claim follows. ]
Setting for all k := (N, z) € [ :=7Z x Z
Qr = Q(N,z) = Qr, N X QRd,za (4.4.4)
we get sets with uniformly bounded volume covering RY.

Remark 4.4.2. We summarize the important facts regarding the space that
we will use for the construction: Let us suppose that we are in the general
framework, i.e., we consider again an arbitrary locally compact Polish space
X (cf. Section 4.3). Let 1 C 7Z x 7% = {k = (N,2)|N € Z,z € 74}. We
define for q,g > 0 and k = (N, z) € I the weights

Cpq i=e FlemaNIngl > (4.4.5)

(AP’) Admissible partition: Let g,q, I and (Quk)ker be chosen such

that Qg1 are a partition of X, ie X = Lier Qgks  the weights are
summable, i.e.,

C, = ch,q < 00, Vg >0, (4.4.6)
kel

and the volumes of the partition sets Qg1 are uniformly bounded, i.e.,

sup Ap @ m(Qgx) < 00. (4.4.7)

kel



96 CHAPTER 4. GIBBS MEASURES WITHV >0

4.4.2 An associated global mass

We introduce some notation to keep the presentation more easily readable.

A

For k € I (cf. (4.4.4)), we denote the restriction of a configuration v € I'(X)
to the ball Qg by

Tk = VQqgk

and the configuration space over this ball by
Dk i=T(Qu) = {u [y eT(X) } T,

Furthermore, we define the projection of Qg x to Ry and R? by

Qk7R+ = (Q97/€)R+ ’ resp. Qk,Rd = (Qg,k)Rd .

For any local mass map m and for each k € I, we abbreviate the local mass

in Qg by
mg = ng’k.

Example 4.4.3. For each p > 0 and k € 1, we define (cf. Example 4.5.11)

NX)3 7y mu(y) =myg, ()= Y &, (4.4.8)

(5,2)EVNQg,k

which is finite for any v € Tp(X) (¢f. (2.1.1)). Forp >0 each m,Q,, 1S a
global mass map (cf. also Lemma 4.4.5 below).

We present a second local mass map, which will not be used afterwards
in our considerations. It incorporates the following aspects: A configuration
describes the allocation of particles in R, For each area A we have some
known information about the allocated particles. We assume that informa-
tion is processed in chunks @), and that no information outside of a given
area A may be used, i.e., that information is not previsible. The the following
local mass maps are in correspondence with this interpretation:

Example 4.4.4. Let p > 0 and define

(A, ) — Z sP, (4.4.9)
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where )
A= |J Qi VAEBRY. (4.4.10)
kel, Qg CA
Note that mg = |y N Ag| is not a local mass map because (4.3.12) is void. For
p>0,m,, isalocal (w.r.t. \g®dx) mass at Qg and m, is a corresponding

local mass map. We point out that there exists no semi-local function whose
associated local mass map coinsides with m, 4.

Lemma 4.4.5. For any p > 0,

sup My (V) pa(dr[€) < ¢ < o0, (4.4.11)
kel, €€T4(X), /I
A€B.(RY)
where
OMga(1+|Ingl),  ifp=0,
¢p =1 OMga(1+ ), if0<p<1,

OMga(1+ ([p—1])1), if1<p,
and Mg, and Mga are the same as in (4.4.3), resp. (4.4.1).
Proof. We apply Proposition 4.3.18 for the subadditive local mass map
B(RY) x T(X) 3 (A7) = Trapn(7) - mpag(7),
to deduce that

/F e (7)pa () = / PRICRCR AT

< / Lr, (1) Mok (NPMAY) < [ ({8} Ao © m(dis).
F(l)(A) Qg,k
(4.4.12)

The integral is finite (cf. (4.3.12)), thus it remains to show that the bound
is uniform for all Q %, k € L, i.e.,

my, ({2 }) Ao @ m(d;) <c,. (4.4.13)
Qg,k
In the case p = 0, the claim follows from the uniform bound for the projection
of the sets Q, . into R, and R? given by Lemma 4.4.1, resp. (4.4.1). If p > 0,
it follows by Example 4.3.5 and the following calculations: For 0 < p <1

1 e
1
F(p)g/ sp_l-lds—l—/ 1-e%ds < —+1.
0 1 p
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For 1 <p

1 o) o0
I(p) < / 1-e%ds +/ slPte=sds < 1 +/ slPe=sds
0 1 0

(e 9]

<1t [P e = [ e [ 5P s = 1 (- 1]
0

Remark 4.4.6. We can generalize the results of Lemma 4.4.5, also to the
situation described in Remark 4.4.2:

1. From the proof of the lemma, namely by (4.4.13), we see that (4.4.11)
holds for any local mass map m obeying

Sup/ka({j;})()\g ®@m)(dz) < C < oo, (4.4.14)

kel

2. Furthermore, if we have a finite local (w.r.t. \g®m ) mass map obeying

[ me ({810 @ m(di) < C < oo, (4.4.15)
X
then we even obtain (cf. Proposition 4.3.18) that
swp [ w6 < oo, (4.4.16)
gery(X) JI(X)
A€B.(X)

Definition 4.4.7. Let m be a local (w.r.t. \g @ m) mass map. If it fulfills
(4.4.14), then we call m a local mass map with uniform integrability (w.r.t.
Ao ®@m). If even the stronger condition (4.4.15) holds, we call m a finite local
(w.r.t. \g @ m) mass map.

We call a semi-local function uniform integrable, resp. finite, if the asso-
ciated local mass map has this property.

Example 4.4.8. The local mass maps m,, p > 0, defined by (4.4.9) in
Ezxample 4.4.3 fulfill the uniform integrability, as one can check using (4.4.13)
and

m,,({2}) N @ m(dz) = / my, ,({2}) A @ m(dz).

R4 k
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Lemma 4.4.9. Under the assumptions of Proposition 4.5.18, we have for
any local mass map m that

[ FOmanio) < [ e o m) +wul).  @a1)

If (4.4.14) is fulfilled with the constant C' > 0, then the first summand is
(uniformly for all Q) bounded by this constant C.

Proof. The claim follows directly by Proposition 4.3.18. ]

Global mass

The next step is to find a suitable global mass on I'(X) to R¥. With its help
one can get a better insight into sets on which the Gamma-Poisson measure
Py is supported.

Definition 4.4.10. Let i : B(RY) x I'(X) — RF be a map. For q > 0, let
us set

A

Mg =D crg Me(y), v € T(X), (4.4.18)

kel

where, for each k = (N, z) € I, we define the weight (cf. (4.4.5))

hq = exp {—¢ (N In(g)] + |2])} > 0.

If || - |lgm ts a global (w.r.t. N\g ® m) mass map for all ¢ > 0, we call each
|| - |lg.w the associated g-weighted global (w.r.t. A\g ® m) mass with parameter
q > 0. We refer to the whole family {|| - ||qa|q > 0} as the associated global
mass (map).

Example 4.4.11. An associated global mass exists for 1) mg; 2) each semi-
local function that is uniformly integrable; 3) mass map with uniform inte-
grability, and in particular 4) for each m, and m,,, p > 0.

Proof. The additivity and monotonicity (see (4.3.8) and (4.3.9)) are clear.
The measurability (cf. (4.3.10)) is obvious because the corresponding map
that is defined by (4.4.18) is the limit of B(I'(X))-measurable functions (cf.
Theorem 4.3.13). We check the integrability (cf. (4.3.12)) via Fubini-Tonelli

LK o @ mid) = cug [ ({1000 m(da)

kel

<C,-C < oo, (4.4.19)
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where C' is chosen appropriately. Here, in the first two cases we used the
uniform integrability (cf. (4.4.14)) to estimate the integrals and (4.4.6) to
check the summability; and in the third case we used (4.4.7) saying that

y m, ({2} A ® m(dz) < C.
]

Proposition 4.4.12. Let ¢ > 0 and ||-||4.a be an associated q-weighted global
mass. Under the assumptions of Proposition 4.3.18, we have

/(A) 1Yl a(dy|€) < C - Cy < 0. (4.4.20)
r

This implies that, for each A € B,(RY), mo(-|€) is supported by Lol o (R)
whenever € € Ty . (RY).

Proof. Since each global mass is a local mass map and hence it fulfills (4.4.14)
with the constant CC, (cf. (4.4.19)), the result follows by Lemma 4.4.9. [J

The support property implied by Proposition 4.4.12 motivates the follow-
ing definition:

Definition 4.4.13. Let m be a local mass map with uniform integrability
(w.r.t. Ag @ m) and ¢ > 0. We define the following set of g-tempered
configurations

Ff7ﬁl7Q(Rd) = Fva’”q,ﬁ (Rd) N Fﬁ,ﬁ(Rd). (4.4.21)
If it is clear which local mass map is meant, we omit the index m.

Remark 4.4.14. The associated global mass is measurable, Tjqq(X) €
B(I'(X)) and Py(Ta.4(RY)) =1 (¢f Remark 4.3.7 and Theorem 4.3.13).

Corollary 4.4.15. Let ¢ > 0 and || - ||,a be an associated q-weighted global
mass. If we set

V(@,9) = {&} o - {3} lom, V2.9 € RY,

then there exists a Gibbs measure corresponding to V' and Py.

If m is a semi-local function that is uniformly integrable, there exists an
associated qg—weighted global mass. In particular, for m = m, with p > 0 we
have constructed a Gibbs measure for a pair potential that vanishes nowhere.

~

Proof. Applying Theorem 4.3.26 for the local mass map I'(X) 3 v — ||7]l¢a
and the above potential, yields the result. O
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4.4.3 Support properties of Gibbs measures

In this subsection we show that each € Gibbsy is supported by the following
set I't (R?) consisting of tempered configurations:

Definition 4.4.16. Let m be a local mass map with uniform integrability
(w.r.t. \g @ m). We define the set of tempered configurations by

TL(RY) == (T rmq(RY), (4.4.22)

where Tjq.0(RY) = {7 eTra®RY | llag < oo} (cf. Definition 4.4.13)
and || - ||s.q s the g-weighted global mass associated to the local mass map m
and q > 0. More precisely (cf. (4.4.18)),

[RIEPED I GO

kel

where for each k = (N, z) € T we defined (cf. (4.4.5))

kg :=exp{—q(|[Nlng| + |2|) } .

As before, if it is clear which is the involved local mass map, we may drop
the index of the local mass map, i.e.,

[HRY) = T4 (RY.

Remark 4.4.17. Since T';5:(R?) C Tjq.(RY) for 0 < § < q, we obtain that

FE(RY) = (T raq(R?) € BI(R)

q>0
and thus Py(T%(RY)) = 1.

Corollary 4.4.18. Let a potential V' fulfill the assumptions of Theorem
4.8.26 (with corresponding local mass map m). Then each Gibbs measure
i that corresponds to the potential V' and the Gamma-Poisson measure Py
15 supported by the set of tempered configurations Fé([@d), i.e.,

u(CE(RY)) = 1. (4.4.23)

Here we may choose an arbitrary (semi-local function or) local (w.r.t. \g@m)
mass map m that admits an associated global mass map. In particular, such
a Gibbs measure exists and is supported by F;p (RY), p > 0.
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Proof. The existence follows by Theorem 4.3.26. The support property fol-
lows by Theorem 4.3.31, which holds for any local mass map. Since we
consider the global mass || - a4, ¢ > 0, as a constant local mass map, this
implies the support property (cf. Definition 4.4.16).

The existence and the support properties in the particular case of m,,
p > 0, follow by Theorem 4.3.26 and Example 4.4.11.

]

Example 4.4.19. Let V(z,9) = sysya(x —y) be as in Example 4.1.1. Then
any Gibbs measure corresponding to V' is supported by

It (RY) := ﬂ v e T(RY) Z e~ 9(I21+NIn(g)]) Z sP < o0

p>0 k=(N,z)ezZd+1 ZEYNQg,k
0<g<1

where Qg = [gNT1/2 gN=1/2) % ([—1/2, 1/2)% + z) and RY = ez Qgk-

4.4.4 Compactness of the set of Gibbs measure

We return to the general framework of (X, dy) being a locally compact Polish
space.

Theorem 4.4.20. Let V' fulfill the assumptions of Theorem 4.3.26. Then,
for any local mass maps m and for all A € B(Ry) x B.(X), there exists
Cam > 0 such that

sup [ (uld) < Cns (4.4.24)
r(X)

neGibbsy
Moreover, Gibbsy is a compact set in the topology Tic-

Corollary 4.4.21. Let {ﬁ‘tz|z € N} be a countable family of local mass maps
and the potential V' fulfill the assumptions of Theorem 4.3.26. Then

i <ﬂ Ly, (X)) =1, for all ;v € Gibbsy. (4.4.25)

€N

Proof of Theorem 4.4.20. The proof of Theorem 4.4.20 extends the argu-
ments used for proving the corresponding result in [KPR10|. The a-priori
bound (4.4.24) follows by Theorem 4.3.31.

The next step is to prove compactness. To this end, we note that it is
enough to prove the local equicontinuity of each net consisting of points of
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Gibbsy. Then every net in Gibbsy has a Tie-cluster point in MY(I'(X)),
which is equivalent to the relative compactness of Gibbsy in the topology
Tioe- Finally, by Proposition 4.3.30, any of the Tp,.-limit measures is surely a
Gibbs measure which is supported by T's(X) (cf. Theorem 4.3.31).

For any p € Gibbsy, all A,A € Bc(Rd) and each sequence {By}nyen C
B(T'(X),) with By | @, we have (cf. (4.2.14) - (4.2.19))

w(By) = /F © mA(By|n)p(dn)

< / N %( [ wul{h)re @ mid) + mu(gAc)>M(d§) BBy

1

§?(C’u—l—/ ) mu(gAc)p(df)) + P}(By), VI'>0, N eN, (4.4.26)
I(X)

where U is chosen as in the proof of Proposition 4.3.23. Because of (4.3.46),

the above integral becomes arbitrary small as By | @ and T' " co. Hence,

lim sup w(By)=0,
N—0o 1,eGibbsy

which proves the required local equicontinuity. O

Corollary 4.4.22. Let m be a uniformly integrable (w.r.t. )\g®m)A local mass

map, then Gibbsy is a compact set in the topology Tiee and p(LL(X)) =1 for
each € Gibbsy .

Proof. By Theorem 4.4.20 any limit point is again a Gibbs measure. Its
support property follows by Corollary 4.4.18 (and Example 4.4.11). O]

4.5 A modified description of Gibbs measures

A

on ['(X)

In this section we will present a different point of view on Gibbs measures
treated in Section 4.3. The main new issue is that we do not localize in both
components R, and X. Instead, we define a semi-local (Gibbs) specifications

{WR+XA(-|§)|A e B,(X), €€ rf(f()} ,

index by the <stripes> R, x A in X. For the situation of Section 5.3, where we
consider Gibbs measures on the cone K(X), it seems natural to consider the
later kind of specification where the component in R, becomes <invisible>.
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We show that both Gibbs specifications (i.e., the local one and the semi-
local) define via the (DLR) equation the same set of Gibbs measure in the
basic model (cf. Theorem 4.5.9 and Example 4.1.1).

We assume throughout this section that V : X x X — [0, 00) is a potential
such that Theorem 4.3.26 is satisfied with some fixed local mass map m.

4.5.1 Semi-local specification

Relative energy

We define the relative energy for all € € Tp(X) and A € B.(X) as

Pi(X) 3y = Hepn(V6) = Y V(@,9)+2 Z V(&,9), (4.5.1)
z,yeT(y)NA zeT(Y)NA,
yET(f)ﬁAC

where 7 denotes the support of n € Ff(X), i.e. 7(n) := nx. Here, we take
the sum over all ordered pairs (z,y) € (7(7) X 7(7)) N (A x A).

Lemma 4.5.1. For the above potential V' we have
Hg. «a(7]€) < 00, V7, € T4(X) and A € B.(X).

Proof. The proof is similar to that of Lemma 4.3.16: One crucially uses that
v € T'4(X) (instead of v € I'(X)) for the finiteness of the first sum in (4.5.1)
and, in addition, that the sum is taken over x € 7(y) NUa (cf. (FR) and
(4.3.1)) for the finiteness of the second one in (4.5.1). O

Semi-local Gibbs states

We fix an inverse temperature § = 1 /T > 0 from now on. For each A €
B.(X) and £ € I'(X), we define the (semi-local) Gibbs state with boundary
condition & as a probability measure on I'(R; x A)

! e_BHR+XA(77|§)7)R+XA dn), ifeeT b
pr, xa(dn|€) ::{ 5R+xA(£) G (dn) #(X)

, otherwise,
(4.5.2)

where P, *? is the Gamma-Poisson measure on I'(R,. x A). The normaliz-
ing constant

Zr,xa(§) = / e PR xaMOPEXA (gpy < 1. (4.5.3)
F(R+XA)

is called partition function. Note that PR+XA(Ff(R+ x A)) = 1, where
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Semi-local specification

Definition 4.5.2. The semi-local specification

™= {mr, «a(O)|A € B.(X), £ € T(X)}

is a family of stochastic kernels
B(D(X)) x T(X) 3 (B,€) = ., <a(BI¢) € [0,1] (4.5.4)

given by

Try xa(BlE) =pr, xa ({'7R+><A | Yoy xa U&r,xac € B} ‘f) . (4.5.5)

Remark 4.5.3. In our case, we have no more Zx(§) > 1, since in the defi-
nition (4.5.3) we used the Poisson measure (instead of the Lebesgue-Poisson
one, as in (4.1.5)). This causes an additional technical problem to control

ZA(&) from below (cf. Lemma 4.5.4).

In Lemma 4.5.4 and Proposition 4.5.5 we show that the semi-local speci-

A~

fication kernels 7r, «a(:|¢) are well-defined as probability measures on I'(X)

~

for £ € I'y(X) and that they can be seen as a limit of the (original) local
specification kernels w7 (+[€), I € B.(X), as I /Ry (cf. Definition 4.1.5).

Lemma 4.5.4. Suppose we are in the setting of Theorem 4.3.26. Let m and
m? be semi-local, i.e., (4.5.12) holds for m?, or V(2,%) = 0, for all € RY.

A~

Then the normalizing constant Zr, «a(§) is strictly positive for & € I'f(X).
In detail, we have that for all A € B.(X)

0< C¢,m,A SZR+XA<€) S 1, (456)

where

2
Cams = oxn - 21l (C43)"+ CEh  matenan L) )

oW, = /R  mg{Eh o mide) < oo, (4.5.7)
O = /R A(mX({i}))Q)\gebm(di) < 0. (4.5.8)

If V(z,2) =0 for all & € X, then C’@A is replaced by 0. (We point out that
this lower bound even holds for negative potentials, cf. Chapter 5.)
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Proof. Assumption (QL) allows us to find Ry x A’ € B(R;) x B.(X) to
apply the integrability condition (4.3.12). This implies that the integrals in
(4.5.7) and (4.5.8) are finite.

Since the function R 3 x — e is convex, by Jensen’s inequality we have
a lower bound for Zg, «a(§) with any A € B.(X), namely

/ exp (—ﬁHR+xA(77|§)) P§+XA(d77)
IR+ xA)

> oxp (—6 / HR+xA(77|§)7’§+XA(d77))
MR+ xA)

Zexp<—/F(R+XA)6II¢Iloo[ Y. me({Ehme({g})

Z,9€NR, xA
+2) mx({f})mx({@})}Pe,R+xA(d77)>,
ienRerA
&R, xUA

where we used (4.3.28) together with the assumption that ||¢|l. < co. So, it
is enough to check that the following integral is finite:

/ (Mg (R xa)) + Mg (MR, xa) Mg (Eapxun) Py (dn).
F(R+ XA)
This follows by Proposition 4.3.21:

2 @\, ~@
- A)( m g (1R, xa)) Pr,xaldn) < (Cm,A) +OP) <00, (4.5.9)
+><

/ mX(nR+><A)PR+><A(d77) < C;{)A < o0, and
F(R+ XA)

A~

mX(f]R+><z,{A) < 0 for f € Ff(X)

If V(i,2) = 0 for all & € X, then we may drop CIE,L%)A because of (4.3.24).
[l

~

Thus, for each £ € I'p(X), mr, xa(dn|§) is well-defined as a probability

measure on I'(X'). Now we show that the semi local specification mg, «a (dn[€)
can be constructed as a limit of the local kernels 75 (dn|€), A € B.(R; x A)

Proposition 4.5.5. Under the assumptions of Lemma 4.5.4, we have

~

WR+XA(CZ77|§) :Tloc—hm 7TA<d77’5), 6 -~ Ff(X), (4510)
A/R+XA
AGBC(R+XA)

where the limit is independent of the net; and thus it is unique.
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Proof. Fix £ € T'4(X). The net {ma(]) | A€ B.Ry x A), A MRy x A}
is local equicontinuous (see (4.2.17), (4.2.19) and (4.2.18) in the proof of
Proposition 4.3.23). Hence, there exists a Tj,.-limit probability measure

Tryxa([§) = Tioe — lim mp(+|€)
AN/R+XA
ANEB(RyxA)

along some sequence Ay Ry x A. It remains to show that T, «a(B|¢) L

TR, xa(BJ§) for all B € Beyi(I'y(X)). Indeed, there exists Ag € B.(X) such
that B C By, (['(X)). We have

7}R+><A(B’5) = ]\}I_I}I})o 71—/\N(BK) = ]\}l_rgo :UAN<BAN,§‘5)

m(A
= m N)/ Ly e (ay e P an nlOe=20Em b PN (dp, )
N—o00 ZAN(&) (Aw) NoE N — /,
Py (dna )

. fr ILBA g BHAN(WAN|£)P9(d77)

= lim

N—mf F(A),g(ﬁ) ﬁHAN(nANlé)pe(dn)

:fF(X) HBR+><A,§ (n)e_ﬂHR+XA(nR+XA|§)P9(dn)
Jrx Treaye(n)e ?exali<alOp, (dn)

(4.5.11)

By Lebesgue’s dominated convergence theorem we may take the limit inside
the integrals in the last line in (4.5.1}). Therefore, the claim is proved, i.e.,
for any B € By (['(X)) and £ € I'p(X),

7~TR+xA(B|§) = WR+><A(B‘€)‘
[

Proposition 4.5.6. Under the assumptions of Lemma 4.5.4, the family of
semi-local specification kernels {mr, «a}aep.(x) (cf- Definition 4.5.2) obeys

the consistency property, which means that for all B € B(I'(X)) and € €
I'(X)

[ s Bl d16) = ra,ar(BIO), (45.12)
r'(X)

where A, A" € B.(X) are such that A C A'.
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~ ~

Proof. If £ ¢ T'¢(X), then the assertion is clear. Hence, w.lo.g. £ € I'f(X).
Using Proposition 4.5.5 twice we get

/ A 7TR+><A(B|’}/)7T]R+ x A/ (d7|£)
(X)

= lim lim ma(Bly)ma(d
o gm Bl
AEB(Ry X A) A €B,(Ry xA)
W A B0 = e (B0 1)

AIEBC(R+ XA/)

Here we applied Lebesgue’s dominated convergence theorem three times and
the consistency of {ma(:[€)|A € B.(X),& € I'y(X)} (cf. (4.1.9)) once. O

4.5.2 A modified concept of Gibbs measures

Now we are in position to define a modified concept of Gibbs measures on
['(X).

Definition 4.5.7. Lel the assumptions of Lemma 4.5.4 be fulfilled. A prob-
ability measure p on I'(X) is called a Gibbs measure (or state) with pair
potential V' and inverse temperature > 0 if it satisfies the Dobrushin-

Lanford-Ruelle (DLR) equilibrium equation
/ ey xa(Bln)u(dn) = u(B) (4.5.14)
I'(X)

for all A € B.(X) and B € B(I'(X)). Fized an inverse temperature (3, the
associated set of all Gibbs states will be denoted by Gibbsy s(I'(X)).

Remark 4.5.8. From the definition of the local specification (cf. (4.5.5) and
(4.5.2)), we have that any solution of the (DLR) equation is supported by
I'p(X).

To obtain the (DLR) equation it is enough to check (4.5.14) only for B €

BCyI(F(X)). Indeed, using Caratheodory’s theorem, we deduce that ;L}B (X))

extends uniquely to a measure on o(B.,I'(X)) = B(I'(X)). Hence, (4.5.14)
holds for all B € B(T'(X)).

Whenever it is clear on which space the Gibbs measure is considered, we
write Gibbsy .
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Theorem 4.5.9. Under the assumptions of Lemma 4.5.4, we have that
i € Gibbsys <= € Gibbsy. (4.5.15)
In particular, this holds in the basic model.

Proof. If i € Gibbsy, then for all B € B, (T'(X)), A € B.(X) and A € B,(X)
u(B) = [ (Bl
(X)

ARexA Jr ) a(Bn)(dn) /F(X) Ry xa(Bln)p(dn)

where we applied Proposition 4.5.5. This shows that ;o € Gibbsy .
Conversely, let it € Gibbsy . We have the following chain of equations for

all B € B(T'(X)), A, A € B(X) and A € B.(X) with A’ € A € Ry x A:

w(B) = /F " TR, xa (Bln)pu(dn)

£t Bl
% lim /Ff /Ff o (Bl )ma(dny'[m) ()

A/‘R+XA

L[ B @ )
Lp(X) JTp(X)

. / o, T (Blnutdn),

which implies the assertion. Here, the argument labeled: 1. is that u €
Gibbsy s (cf. Definition 4.5.7), 2. is Proposition 4.5.5 and 3. is (4.1.9). O

The semi-local specification kernels can be considered themselves as Gibbs
measures in unbounded volumes.

Definition 4.5.10. Let A’ € B(X). A probability measure p € M (T'(X))
(with full measure on I'y(X)) is a A'-Gibbs measure (or state) with pair
potential V' if it satisfies the (DLR) equation

/F o T Bl(n) = () (4.5.16)

valid for all Ay € B,(A') and B € B(T'(X)). Fized an inverse temperature 3,
the associated set of all Gibbs states will be denoted by Gibbsy o (I'(X)).
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Proposition 4.5.11. Let the assumptions of Lemmas 4.3.29 and 4.5.4 hold
and (juy)nven € MYT(X)) be such that puy(Dp(X)) = 1 and (4.3.39) hold
for each py with &€ € Ty(X). Assume that there exists ' € B(X) such that
for all A € B.(A\') and all B € B.y(T'f(X)) we find Ny > 0 with

/mz) (Bl un(dy) = pv(B) - YN > No. (4.5.17)

If 1 is the Ty limit of the sequence (’uN)NEN’ then:

1. The estimate (4.8.38) also holds for ju, which implies that p is supported
by L'p(X);

2. The (DLR) equation (4.5.16) holds also for the limit .

Proof. The proof follows that one of Proposition 4.3.30 with obvious modi-
fications. Namely, we fix A € B.(A’) instead of A € B.(X) and only obtain
equation (4.5.16) instead of the (DLR) one. O

A

Corollary 4.5.12. Let A € B.(X) and § € I'f(X) and let the assumptions
of Lemma 4.5.4 be fulfilled. Then the local specification kernel mg, «a(-|§) is
a (Ry x A)-Gibbs measure.

Proof. This follows by Proposition 4.5.11. O



Chapter 5

(Gibbsian measure for general
potentials

In this chapter we consider the existence problem for Gibbs measures cor-
responding to general, not necessarily translation invariant or non-negative
potentials V' : R? x RY — R with infinite interaction range in R?. In partic-
ular, we construct Gibbs measures pp on F(Rd) whose image measure pg on
the cone IK(R?) are Gibbs perturbations of a Gamma measure Gy (cf. Section
5.3). The later can be seen as a main result of Part II.

A main (technical) achievement of this chapter is to remove the assump-
tion V' > 0 (cf. Chapter 4). Instead of this, we have to impose some stability
properties on V (cf. Subsection 5.1.3 for the precise formulation). Merely
speaking, we assume that the repulsion part V' of the potential V' dominates
its attractive part V.

As before, we use the DLR approach to define the related set Gibbst, (I'(R?))
of <tempered> Gibbs measures (cf. Section 5.1). To construct such Gibbs
measures (cf. Theorem 5.2.8), we introduce certain Lyapunov functionals and
establishing the weak dependence of Gibbs specification kernels on bound-
ary conditions. For the existence proof, Proposition 5.2.4 is essential. There
where we get a uniform bound (as A 7 Rd) for the exponential integral of a
Lypunov functional w.r.t. the local specification kernels 7. This enables us
to prove, for a large class of boundary conditions £ € F(Rd), the local equicon-
tinuity of the specification kernels (w4 (d7[€))ep, ey (cf- Definition 5.1.16),
which implies their tightness in a proper topology (ct. Proposition 5.2.7). As
a last step in the existence proof, we show that all cluster points ur of the
Gibbs specification {m,} (as A 7 R?) are Gibbs, i.e., ur € Gibbst (I(R%))
(cf. (5.2.20)). A second result is a uniform moment bound (cf. Theorem
5.2.10) for all <tempered> Gibbs measures (cf. (5.1.36)).

111
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As in Chapter 4, we first consider a basic model (cf. Subsection 5.1.1),
and then extend it to more general potentials with non-trivial interaction of
the marks and positions. The most general setup is fixed in Subsection 5.1.3.

In Section 5.3 we come back to the cone K(R?). We obtain Gibbs mea-
sures puk on K(R?) as image measures under the homeomorphism T (cf.
(3.1.2)) of a particular class of Gibbs measures pr on I'(R%). By this transi-
tion, we can easily reformulate the main results obtained in Chapter 4 and
5 in the Gibbsian framework on K(R?). Among them are the existence of
p € Gibbsy(IK(X)) (cf. Theorem 5.3.7) and uniform moment bounds (cf.
Theorem 5.3.10).

Using these results in Part 111, we derive integration by parts formulas for
Gibbs measures on K(R?) and study related Dirichlet forms and operators
(cf. Chapter 6), which are then used to construct associated diffusions on
K(R?) in Chapter 7.

With the technique developed in Sections 5.1 and 5.2 we handle more
general potentials than in the basic model with V(z,9) = s,¢(z,y)s, (see
the corresponding results in Theorem 5.2.8 and 5.2.10).

A

5.1 Gibbsian formalism on I'(X)

As before, let X be a locally compact Polish space equipped with a non-
atomic Radon measure m and let A be a Radon measure on R,. Fix a
symmetric pair potential V' : X x X — R, i.e.,

V(z,9) =V(9,2), VYi,9€X, (5.1.1)
that can be written as
V(#,9) = ()9)d(z,y), Vi€ X, (5.1.2)

where [ : X — [0,00) is a B(X)-measurable function and ¢ : X x X — R
a bounded and B(X x X)-measurable one. Their exact properties will be
specified below.

5.1.1 The potential in the basic model

We impose the following assumptions on the potential V:
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(V') Let the space of positions X be R? with d € N and m be the Lebesgue
measure on R, The intensity measure on the marks Ry is X = ).
Moreover, we fix the semi-local function

(Z) = s, and the potential ¢ € Ly(R? x R?)
such that the following conditions hold:
(FR/) Finite range: There exists R € (0,00) such that
o(x,y) =0 if [x —y| > R. (5.1.3)
(LB’) Lower boundedness:

inf ¢(x,y) = —M > —oc. (5.1.4)

z,ycR4
(RC') Repulsion condition: There ezists § > 0 such that

inf ¢(x,y) > As = 4MmP™, (5.1.5)
x,yeR‘i
|lz—y|<d

with interaction parameter (cf. (5.1.17)) below

d
m?::(§+a>. (5.1.6)

We remark that neither translation invariance nor continuity of V is as-
sumed.

5.1.2 Partition of the space X

We will introduce a partition of the space X (cf. Example 5.1.1 for X = I@d)
for a better understanding of the above conditions. This partition turns out
to be very helpful for the later proofs.

Let us consider a countable index set Z and a partition

X=|]@ (5.1.7)

of the phase space X into <elementary» sets Qk € B(X), keZ.
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Example 5.1.1 (Basic model). Recall that in this case V : R? x R? — R
with
V(Z,9) = sesyd(z,y).

Let us choose the parameter g := 5/\/3 with some § > 0 satisfying assumption
(RC'). For each k in the index set Z = 7., we define the strip

Qx ZQg,k =Ry X Qq, where (5.1.8)
11 [ .
Qok = —597 59 + kg C R“.

The cubes Qg x have edge length g > 0, are centered at the points gk, k € 7
and

diam (Qgx) == sup [z — ylgs = 0. (5.1.9)

jvgng,k‘

This implies that ¢(z,y) > As for all T,y € Vo Moreover,

sup/ (524 52) (Ao ® m)(di) < oo. (5.1.10)
keZ JQg i

Let us explain the choice of the constant ms in (5.1.6). To this end, let
us introduce some more concepts and notation:

For k € Z and v € I'(X), we define
Ty :=D(Qx), and Yo i= 7N Qp. (5.1.11)
To each finite index set K @ Z there corresponds!

Ak = | | Qr € B(X); (5.1.12)

kek
the family of all such domains will be denoted by Q.(X). For A € B(X)
Kya={jeZ|QnNA+#a} (5.1.13)

i.e. |[ICl is the number of partition sets Qr having non-void intersection with
A. We note that in our example setting

Kal <00, VA € B(R}) x Bo(X). (5.1.14)

'Here, K € Z means that K is a finite subset of Z.
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For a given volume A € B(X) with |[Kx| < co we can construct its ‘minimal’
covering

= | | @r e QuX). (5.1.15)

ke

For each k € Z, the family of ‘neighbor’ partition sets of Qk, i.e., those
partition sets QJ having a point y € QJ that interacts with a point x € Qk,
is indexed by

O = {j €Z|3weQrIyeQ;: o,y # 0}. (5.1.16)

The number of interacting ‘neighbor’ partition sets for each Q, k € Z, is
dominated by

m™ = sup |0"™k| < oo. (5.1.17)
keZ

In our example setting, we have roughly estimated them by m™ defined
n (5.1.6).

5.1.3 A potential V' in the general framework

We outline a framework to handle general potentials
V:XxX->R,

We denote from now on by Py (analogously to (2.2.11)) the Poisson measure
with intensity measure A ® m on the configuration space I'(X), respectively

PL on T(A) for all A € Q (X).

Picking a proper partition of X

It is convenient for later references to summarize which properties of the un-
derlying partition and measure space are crucial in the proofs. In particular,
in the basic example such a proper partition has been constructed by strips
(cf. Example 5.1.1).

Definition 5.1.2. A partition

X=R.xX=|]|@Q, (5.1.18)

kez

with celementarys sets Qy € B(X) indezed by a at most countable set Z =
{k}, is said to be admissible if the following condition holds:
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(AP) Admissible partition:

M, = sup/ [(Z)\ ® m(dZ) < oo, (5.1.19)
kez JQ

M, = sup/ [(2)*\ ® m(dE) < oo, (5.1.20)
kezZ JQ

m™ = sup|0™k| < oco. (5.1.21)
keZ

Moreover, the index set Z can be equipped with a metric p : Z X Z —
[0, 00) such that

Maky ‘= Ze_ap(k’kO) < 00, for allaa >0 and ko € Z. (5.1.22)
keZ

~

Remark 5.1.3. 1. We point out that (5.1.21) yields that Uy € Q.(X) for
all A € Qu(X) where Uy = Uy { O ) Ok Ky £ B}
2. The classical situation of Gibbs measures over a configuration space

F(X) 15 1ncluded in this scheme by picking \ to be the Dirac measure
in 1 and [(2) = 1.2

3. Similarly, the case of a marked configuration space with a finite measure
A is covered by choosing () = s, and the partition sets having the form
Ry x A with A € B(X).

4. An idea how condition (5.1.22) could be relaxed is given in [KPO07,
Subsection 2.4].

A supporting set of the Poisson measure P,
Definition 5.1.4. If (AP) without (5.1.20) holds, then | is a Q-local func-
tion. In this case, we define a Q-local (w.r.t. A® m) mass m by
ma(y) = Y (&), VA€ Q(X)U{X}, (5.1.23)
TeyNA
and the set of pinpointing configurations with Q-local mass m by

Dp(X) = ymo(X) = {7 €T, (X) | ma(y) < o0, VA€ QC(X)} .
(5.1.24)

2That the measure is supported by I'(X) follows by Corollary 5.1.7.
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Remark 5.1.5. The last definition extends the idea of a semi-local mass
map (cf. Definition 4.3.8) and of a pinpointing set with finite local mass (cf.
Definition 4.3.12).

If the partition s fized, we omit the index Q in the corresponding nota-
tions. Moreover, we call the corresponding objects for short local.

Theorem 5.1.6. If (AP) holds, then T'j(X) € B(T'(X)) and

A

Pal's(X)) = 1. (5.1.25)

Proof. The claim follows with obvious changes from the proof of Remark
4.3.7 and Theorem 4.3.13. O]

Corollary 5.1.7. Let A € B(X) be negligible for the measure A @ m. Then
the set of configurations not touching A has full probability w.r.t. the Poisson
measure Py, i.e.,

P({rer®)|yci}) =1 (5.1.26)

Proof. Applying the appropriate version of Proposition 4.3.18 for the subad-
ditive local mass map 1 (er(X) A} and performing the usual limit proce-
dure, we obtain the assertion. O

Definition 5.1.8. Let (AP) hold. By L,o(X x X) we denote the set of
bounded symmetric B(X x X)-measurable functions ¢ over X x X obeying

(FR) Finite range: For all A € Q.(X), there exists Uy € Q.(X) with

6(2,9) = o(y,x) =0 VieA, §els. (5.1.27)

Remark 5.1.9. In the basic ezample, i.e. X = R%, the (FR) condition reads
as

JRe[0,00): Vi, jeRY: |r—y|>R = ¢, 9) =0. (5128
In this case, we set for A € Q.(RY) (cf. (5.1.15))

Un = | |{Qk | Qx N Ar # 2} € Q(RY), (5.1.29)

keZ
where Ap := {i € RY | distga(, Aga) = infyep |z — y| < R} .

Using these concepts, we specify the conditions on the pair interaction
potential:
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(V) Potential: Let (AP) hold for the potential V' defined in (5.1.1) via
V(#,9) = () - [(§)e(2,5), Vi.geX. (5.1.30)

Suppose that for the bounded function ¢ € LS,Q()A( X X) the two condi-
tions hold:

(LB) Lower boundedness: For some M >0

inf ¢(2,9) > —M. (5.1.31)

z,9eX
(RC) Repulsion condition: For some Ay > 0:

inf inf ¢(2,9) = Ao (5.1.32)

k€Z 3 5eQy,

Furthermore, we assume the following relation between the constants in
(LB) and in (RC):

A= 4Mm™ < A (5.1.33)

int

where m™ was defined in (5.1.17). We also include the particular case
M =0 by setting A =0 and say that (V) holds.

The relation (5.1.33) means that the repulsion part ¢ of ¢ dominates its
attraction part ¢~. Note that neither translation invariance nor continuity
of V' is assumed.

Remark 5.1.10. In Chapter 4, we treated the case M = 0 for the particular
measure X = \g. The results obtained in Chapter 4 extend to general Radon
measures X. (The changes in the corresponding proofs are obvious.) Hence,
M = 0 is covered (in principle) by Chapter 4. Thus, we may assume from
now on that M > 0.

5.1.4 Gibbsian formalism

Everywhere below, we assume that (V) holds. We abbreviate the Q-local
mass

fyfm=me(y) =) Ud), v elHX). (5.1.34)

zey
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Tempered configurations

We define an appropriate set of tempered configurations (cf. also Definition
4.4.16):

I'*(X):= = () Fam(X), (5.1.35)
a>0
Lam(X) = {’y - rf<X>\||wmm,a,ko < oo}, (5.1.36)

where

1/2
N7 ko == (Zmﬁ B “0> . (5.1.37)

keZ

We may choose an arbitrary ky € Z for the definition of the tempered set in
(5.1.36) because for all ko, k1, k € Z

e orkkn) g—ap(kiko) < o—ap(kko) < o=ap(kk) gap(ki ko)

Therefore, from now on we fix kg € Z and denote
-[Ma = 11l Hom.amo-

Conditional Hamiltonian
For each A € Q,(X) and 7,§ € T'4(X) we introduce the conditional Hamil-
tonians Hx(+-|€) : T(A) — R by

Hy(y§) = Y V(&.9)+ Y V@), (5.1.38)

Z,yevNA zeEYNA, ge&NAe

H(va) == Hy(7a]9). (5.1.39)

Here, the summation is taken over all ordered pairs (&,7) € ya X ya. Hence,
we sum twice over distinct points &,y € 7, i.e., (Z,9) and (g, Z), and once
over (I, ).

Lemma 5.1.11. If (V) holds, then
|Hp(7]€)] < o0, for all v, € TH(X) and A € Q.(X).
Example 5.1.12. In the basic example, we have

|Hz, xq,, (V)| <00,  forally,& € Ty(X) and k € Z°.
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Proof of Lemma 5.1.11. The proof is similar to that one of Lemmas 4.3.16
and 4.5.1, so we just briefly recall the main idea. Note that

Ha([€) < ma(y)ma () [9]loo + 2ma(v)mey ()] o

where
Uy = | {Qk | O™k N Ky # @} e 0.(X). (5.1.40)
keZ
Since v,£ € T f(X ), the assertion follows. ]

Lyapunov functional
For A € [0, 00), let us define the map
TH(X) 370 ®(y) = Ay >0, (5.1.41)

which will play the role of a Lyapunov functional. To show upper and lower
bounds for the partition function, the following estimate is essential.

Lemma 5.1.13. Let (V) hold. Fizk € Z, £ € T§(X) and A € Q.(X). Then

Ha(7al€) > fiz:TWWMtn——A-Ejffmme. (5.1.42)

JEKA leky,

In particular, we have for £ = &,
1
Ho, () = AT w e (5.1.43)

Proof. By obvious calculations

Hy(nulg) = D V@Eg)+2 ) Vi,

g€ EEYA
J€€pc

=D D V@Ep+2). > VEa).
JEKA €YV nA JEKA TE€YjnA
leKn gevinn leKnc je&nnc

By (5.1.13), (LB) (cf. (5.1.31)), (RC) (cf. (5.1.32)), (5.1.33) and (AP), the
right-hand side above dominates

A Z tYjna fn —M Z Z 1 Yina fuf Yina fm

JELA JERA leKANS™ j
I

MYtk 3 Hbn

JE€KA 1EK AcNdint
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Using (5.1.21) and that ab < 1/2(a® 4+ ?), for a,b > 0, we see that the above
term dominates

a3 ot ow( T2

JEKA FEKA
_M( dDom™ry > ) e ﬁ)
Jjera JEKA e pC ﬁaintj

=D tufa (A=2Mm™) =M Y Y fbmety

geka JEKA lEK pendintj

1
=34 DotuA MY Y ta (5.1.44)

jera FEKA lEK pendintj

where we used that A = 4Mm™ (cf. (5.1.33)). By (FR) and (5.1.21), the
last of the three summands in (5.1.44) dominates

—Mmint Z +SZHAC '1/1%1 .

lG’CuA

The later estimate and (5.1.33) conclude the prove. O

Partition function

Fix an inverse temperature 8 := 1/T > 0. For each A € Q.(X) and ¢ €

~

['¢(X), we define the partition function
Zn(€) ;:/ e_BHA(’YAK)’]D)/\\(d,yA)‘
Lp(A)

Lemma 5.1.14. Let (V) hold. For any A € QC(X), there exists a positive
constant Cy(A, &) such that

0 <Zn(€) = / P B} ) £ (1,6 < o0

Proof. Our idea is to use Lemma 4.5.4 to obtain a lower bound and respec-
tively Lemma 5.1.13 to get an upper one. We define for each A € Q.(X) and

~

7,§ € Ff(X)

Hy(v§) = > @@t (@ a)+2 > U@)H)e" (,9),

&,9evNA ANA, geEnAe
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where ¢T(Z, ) := max(¢(z,y),0). By Jensen’s inequality

e~ BHL (1) pA exp [ — A
ZCET N P > esn (<4 [ iGIoPY@n)
> exp (= B0l (ma(3)? + 2ma (1), (6)) ).

We get, using (the proof of) Lemma 4.5.4 (cf. (4.5.6)):

Zr(§) > exp{ — 6H¢Hoo{ (c;{g)Q +CP\ + mX(guA)c;{)A]} >0, (5.1.45)

where we set, using (AP),
ci ::2/ (2) A @ m(2) < 2|Ka| My < 00,
A
o\ ::2/([(@))% @ m(z) < 2Ky My < 00,
A

Moreover, by (5.1.42) we deduce an upper bound

CHN xp{ =204 % a2 [P

JEKA

X exp {6]\477%1“t Z F&mae 12 } =: Cp(A, &) < 0,

lE’CuA
which completes the proof. O]

Remark 5.1.15. As we see from the proof (cf. (5.1.45)), we only use that
|9]lco < 00 for the lower bound in Lemma 5.1.14.

For the upper bound, the conditions (LB), (RC) (c¢f. (5.1.31), resp.
(5.1.32)) and (5.1.33) are sufficient.

O-local specification

For each A € Q.(X) we define the Q-local Gibbs state (or local Gibbs state

~

for short) with boundary condition £ € T'(X) as

L_o—=BHAMIO)PA (g , if n, & €T X7
fia(dnl§) :={ §A<s>e x(dn), it & € THX)

, otherwise,

(5.1.46)

where Zx () is the partition function considered in Lemma 5.1.14.
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Definition 5.1.16. The local specification 7 = {ms(-[§)|A € Q.(X), € €
[(X)} is a family of stochastic kernels

~ A

B(I'(X)) x I'(X) > (B,&) — ma(B|¢) € ]0,1] (5.1.47)
given by

ma(BIE) i=pa ({7a € T(A) |9 Utae € B} [¢). (5.1.48)
Remark 5.1.17.
1. By Lemma 5.1.14,

0 < Z)(§) < 0, VE e T'y(X). (5.1.49)

2. It is easy to see that (5.1.49) holds for all A € B(X) with Ag € Q.(X).
(This follows by the proof of Lemma 5.1.14, where we replace A by Ag
in the lower bound in (5.1.45) and the upper bound holds unchanged

(cf. (5.1.42).)

3. By construction (cf. [Pre76, Proposition 6.3] or [Pre05, Proposition
2.6/), the family (5.1.48) obeys the consistency property, which means
that for all A, A € Q.(X) with A C A

[ BRI = ma(Ble), VB € BH(6) and € € T(X).
r(X

(5.1.50)
Remark 5.1.18. In the basic example this reads as follows: The Q-local
specification ™ = {mg, xq, . (dn|¢)|k € Z, £ € T(X)} is given for £ € T*(X)
and Qg (cf (5.1.8)) by

WR+><Qg,k(B’£) ::MR+XQg,k<{7 € Ft<R+ X Qg,k)h/ U £R+><Qg,k:c S B})7

- x R4 xQq,
MR*FXQQ,IC (dlrl|§) ':Z]R 0 (5)6 ﬁHR-'— Qg’k(nlf)’PH o k(dn)'
+Xg.k

Gibbs measures

A

Definition 5.1.19. A probability measure p on I'(X) is called a Gibbs mea-
sure (or state) with pair potential V' and inverse temperature § > 0 if it
satisfies the Dobrushin-Lanford-Ruelle (DLR) equilibrium equation

/F o B = u(B) (5.151)

for all A € Qu(X) and B € ZS’A(F()A()) The associated set of all Gibbs states
will be denoted by Gibbs!, (T'(X)).
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Remark 5.1.20. By the construction of the specification (cf. (5.1.46) -
(5.1.47)), each Gibbs measure p is surely supported by T'*(X).

We denote the algebra of all local partition events by

BoT(X)):== |J Ba(T(X)). (5.1.52)
ACQ(X)

Remark 5.1.21. To obtain the DLR equation it is enough to check (5.1.51)
only for B € Bo(I'(X)). Indeed, using Caratheodory’s theorem, we deduce
that “‘BQ(F(X)) extends uniquely to a measure on o(Bgo(I'(X))) = B(I'(X)),

where we used Kuratowski’s theorem (cf. Theorem A.1.7) to get the last
equality. Hence, (5.1.51) holds for all B € B(T'(X)).

Before we proceed, we define the appropriate topology for convergence of
the local Gibbs states:?

Definition 5.1.22. On the space of all probability measures M (I'(X)) we
introduce the topology of Q-wise convergence. This topology, which we denote
by To, is defined as the coarsest topology making the maps Ml(F(X)) D p—
w(B) continuous for all sets B € Bo(T'(X)).

Remark 5.1.23. If for all A € B,(X) the set Ag € Q.(X), then Q-wise

convergence implies the local setwise convergence (cf. Definition 2.1.2).

Remark 5.1.24. Let us assume that we are in the basic model framework
(cf. Subsection 5.1.1). Then the Gibbs measures pu € gibbs€/7s(F(Rd)) are
defined via the semi-local specification ™ = {mr, «a(d7|€) | A € B.(RY), € €
F(Rd)}. One the other hand, one can define, similar to Section 4.1, a local
specification m = {mp(dv]€) | A € Bo(R%), & € T(RY)}.

It can be checked that the analog version of Theorem 4.5.9 holds in this
case, namely that both (i.e. the local and the semi-local) specifications deter-
mine the same set of Gibbs measures. This follows analogously to the proof of
Theorem 4.5.9, where we use Lemma 5.1.13 to see that Lebesgue’s dominated
convergence theorem is applicable in the proof of Proposition 4.5.5.

5.2 Existence for general potentials

In order to prove the existence an essential step is to check that the net of
Q-local Gibbs specification kernels {my (dn|&)|A € Q.(X)}, with a fixed tem-

~

pered boundary condition £ € I'*(X) (cf. (5.1.36)) is locally equicontinuous.

3See for the idea of localizing in a diﬁerentA framework e.g. [Geo88, Section 4.1] or
[KPR10, Section 2|, where in the later A € B.(X) is chosen instead of A € Q.(X).
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To that end, we introduce the map ['(X) 3 v — A, 12, which will play the
role of a Lyapunov functional in our theory, and show that it is exponentially
integrable (cf. Lemma 5.2.2). After that we deduce a weak dependence on
boundary conditions (cf. Proposition 5.2.4): For each A € (}lﬁA, %BA), we

~

find C, > 0 such that uniformly for all £k € Z and £ € I'*(X)
lim sup/ ~exp {)\ 1 Yk J(zl} mrc(dy]€) < Cs.
K 7 Jrx)

By the weak dependence, we deduce first the mentioned local equicontinuity
(cf. Proposition (5.2.7)) and then the existence of a Gibbs measure (cf.
Theorem 5.2.8).

Throughout this section we assume that (V) holds. As a preliminary
step, we check that exp{\ {7y fn m?} is integrable w.r.t. 74 (dvy|€).

Lemma 5.2.1. Let (V) hold. Fiz k € Z, £ € T4(X), A € Q.(X) and

A€ [0,85]. Then

/F P i)

A
<o (Tact (GAlolattia +67) Ttk ) <o (520

lEICuA

where € > 0 is arbitrary and

2e
Proof. By Lemma 5.1.13 the integral in (5.2.1) can be estimated by

1
Tre =00l (MQ,A + —M1,A|/CUA|) < 0.

: = 2 _ é > A
NG /F(X) eXp{ = (GBA =N mon f =53 ];Amm i }PA (dy)
7k
X exp {ﬁ% Z f &inne J(?n } (5.2.2)

lE’CuA
Lemma 5.1.14 (cf. (5.1.45)) yields the claim, where we note that
1 1
PERIR S 5 K| + 52 g (5.2.3)
ST J€Ku,
[

In Section 5.2.1, we will improve this result by showing that the constant
YA . can be chosen uniformly as A~ X.



126 CHAPTER 5. GENERAL POTENTIALS

5.2.1 Weak dependence on boundary conditions

In this section we prepare some technical estimates on the local specification
kernels which will be crucial to prove the existence of a Gibbs measure p €
Gibbst,(I'(X)). To this end, we use an inductive scheme that is based on the
consistency property (5.1.50). We start by deducing the following bound in
the <elementary> partition sets Qk, keZ.

Lemma 5.2.2. For all \ < 1A, k € Z and € € T(X)

/ exp { M i f } mr(dy[€) <exp (T +(6—+C+ ) Dt TQ)

Fk ]eamtk
(5.2.4)
where € > 0 is arbitrary and
M, .
Y. = Aol (M2 # ) <o
ct .= 5||¢>||0071 < 0. (5.2.5)

Proof. By (5.1.42) for A = Q. and the proof of Lemma 5.2.1, we get this
result. O

Remark 5.2.3. The estimate (5.2.4) expresses the so-called weak dependence
on boundary conditions. Analytically this means that

M : 1
(% + C*e) m™ < \ < 5514,

which is always possible for small enough € > 0 provided we assume that
A€ (B2, 84] and Ay > AMm™ (cf (5.1.33)).

Moment estimates

Consider now arbitrary large domains Ax = | |, o« Qk € QC(X ) indexed by

K € Z. Note that Ax X as K 7 Z. Using the estimate (5.2.4) and the
consistency property (5.1.50), our next step will be to get similar moment
estimates for all specification kernels mx(dy|§) := ma, (dy]€).

Proposition 5.2.4. Let \ € ( %,ﬁé]. Then there exists Cy < oo such that
forallk e Z, € e THX)

fimsup [ exp {3 g 2} meldl9) < o (5.2.6)
Kk z Jr)
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Moreover, for each o > 0 one finds a proper v, > 0 such that

fimsup [ exp {ua| 12} meldrle) < Co. (5.2.7)
Kz Jrx)

Proof. Let us define

0 < ni(K|€) :=log {/ Cexp{ M talt w,c(dﬂg)} . kez, (528)
r(X)
which are finite by Lemma 5.2.1. In particular,

ne(KlE) = ®(&) if k¢ K.

Next, we will find a global bound for the whole sequence (n4(K[€)),c,, which
then implies the required estimates on each of its components.

Integrating both sides of (5.2.4) with respect to mi(dy|§) with an arbitrary

Eerlt (X' ) and taking into account the consistency property (5.1.50), we
arrive at the following estimate for k € K

n(KJE) < Y. + log /F(X)GXP (BM+C*e) 3 12| meldyle)

jEdintk
=T+ | (BM+CTe) > 141
JEKCNOntE
vlogd [ ew (M) Y 4gh|mimlob. 629
(X jeknaimtl

We will apply the multiple Holder inequality

”(Hf > H fi)s ulfi) rZ/fjdu, (5.2.10)

valid for any probability measure p, nonnegative functions f;, and ¢; > 0
such that ZjK:l t; <1, K eN.
Choose 0 < § < 1, € > 0 such that

1 . A
0< BY:= JpA+em™CF <ON< Xy i= BT, (5.2.11)
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where C'* is defined by (5.2.5). In our context f; := exp{At{~; 14} and we

set M o+

A A
Using this setting for (5.2.10), we deduce that the last summand in (5.2.9)
is dominated by

ti: for j € K No"E.

1 A i) mc(d g)j
283 o8 ( / PRCINEARERTD
_ Z BM + eCT

i (KS). (5.2.12)

jEKNdint
Let K € Z contain a fixed point ky € Z. Let 9 > 0 such that pz(ko,j) <
Y for all j € 0™ky. Fix a > 0. We multiply (5.2.9) with the weight

exp{—ap(k, ko)} and take the sum in (5.2.12) over all j € K and multiply
the sum with the same weight. Then we get

o (K1E) <D e (KIE) exp{—apz ko, k)}] (5.2.13)

keK
Bt 17"
< {1 - Tew] (Y. + BYe™||gkell2] -

We have

| B+em9 -1 . N B+ea19 -1 N B+6m9 1 N eaﬁ
A\ o \ — Btexd — %BJF — Btexd % — e’

where we used (5.2.11). Plugging this back into (5.2.13), we get

Nk (K[€) < [ni(K[€) exp{ —ap(ko, k)}]

kek

1
S [Ta + B-&-eaﬂl”é‘kc i} (m) = 61,57(}7;@675 = Cl. (5.2.14)
Since |||€xe|||o tends to zero as K 7 Z, we obtain for each ky € Z
limsup Y  [nk(K|¢) exp{—ap(ko, k)}] < Y. (;) (5.2.15)
K7 hek 1 — dea

and thus, by letting o — 0, we complete the proof of (5.2.6):

1
lim sup ng, (K|§) <——=T. =: logC, =: logC,. (5.2.16)
K7 1—-9
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So, we have for each A < )\ fulfilling (5.2.11)

1
lim sup/ exp { A vk 12} mic(dy|€) < exp {—Ta} =Co. (5.2.17)
K/ Z F(X) 1-— 5

By the Holder inequality (5.2.10) we see that we can find a p, > 0 such that
(5.2.7) holds: We choose

Vo ==No {Z exp{—ap(k, ko)}] _1, (5.2.18)

keZz

which is well-defined by (5.1.22). By (5.2.10), we get

/ exp {va D tuta e‘ap(’“”"’”)}mc(dﬂ&)
r(X)

keZ

32 exp{—ap(k.ko)} )
SH (/(A)QXP{)\OT'}% J(]i}ﬂ-]c(d’y|§)) GH‘E’CC”‘Q
(X

kek

5 exp{—ap(hko)}
) ’ el

< (‘e { X 10y expl-apth. k)

kek
Hence, using also (5.2.15), we deduce

. 1
hmsup/ exp {Vallle]|[2} mic(dy]€) < exp {TE (W)} =: C,.
r(X) — de

K Z

5.2.2 Uniform bounds for local Gibbs states

Corollary 5.2.5. Let (V) hold. Then for all K € Z, there exists C(K) < oo
such that

lim sup /F(A) (ZMC tm m) ma(dv[§) <C(K) < o0

A X kek
AeQ.

~

uniformly for all £ € T*(X).

Proof. The result follows immediately by Young’s inequality and (5.2.6). O
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5.2.3 Local equicontinuity

An important step in proving the existence of a y € Gibbsy is to establish
the equicontinuity of the local specification. To this end, we adopt [Geo88,
Definition 4.6] to our setting:

Definition 5.2.6. Fiz { € T*(X). The net {ms(dv|¢)|A € Q.(X)} is called
Q-locally equicontinuous iff for all A € Q.(X) (cf. (5.1.52)) and each se-
quence { By }tnen C Bi(I'(X)) with By | @

lim limsup ma(Byl|€) = 0. (5.2.19)
N—o00 A/‘X
A€Q.(X)

~

Proposition 5.2.7. Let (V) hold. Then for each fived § € T*(X) the net
{ma(dyIE)] A € Q(X)} is locally equicontinuous. Moreover, each of its limit
points is supported by T'*(X).

Proof. In principal, the arguments work as in Proposition 4.2.6 using QC(X )
instead of B.(X). Indeed, to get the limsup of the first summand in (4.2.14)
arbitrarily small, we use the support property given by Corollary 5.2.5 (in-
stead of Proposition 4.2.3) for my,, where U € Q,(X) by (FR). Taking into
account (5.1.21), (5.1.42) and (5.1.45), we see that the lim sup of the second
summand in (4.2.14) also vanishes. Combining these arguments, we get the

assertion. ]

5.2.4 Existence of Gibbs measures

Now we are in position to deduce a main result of this section. Namely,
we show that each limit point that we obtained by the local equicontinuity
proved above is indeed a Gibbs measure.

Theorem 5.2.8. Let V : X x X — R and A ® m be such that (V) holds.
Then there exists a Gibbs measure ji corresponding to the potential V' and

A

the probability measure Py. It is supported by T'*(X). Therefore,
Gibbs{, (I'(X)) # 0.
Furthermore, the set Gibbst,(I'(X)) is compact in the topology To-

Proof. We will follow the proof of Theorem 4.2.7 with the appropriate changes
to get this result. But, we emphasize that now the (DLR) property can be
derived much more easily.



5.2. EXISTENCE 131

Similar as in the proof of Theorem 4.2.7 (cf. (4.2.21) and (4.2.22)), we
get a limit point u € MY(T'(X)). Namely, Proposition 5.2.7 (and [Geo88,
Proposition 4.9] combined with [Pat67, Theorem V.3.2|) yield

pi=Bo = lim my (€) € M'(D(X)),

where Ay 2 X, Ay € QC(X ), is some order generating sequence. We have
for all partition events B € Bgo(I'(X)) that

Tan(BlE) = u(B) as N — oo

and p(T*(X)) = 1.

The limit point p is surely Gibbs just by the definition of the Q-local
specification. Indeed, fix A € Q,(X) and B € Bo(I'(X)) arbitrarily. By
(FR), we can pick Uy € Q.(X) and justify the following equations to get the
(DLR) one. Note that the steps 1 and 3 are easier than in Theorem 4.3.26:

[ m@Bhnan 2 [ Bl m i)
I( I'(X)

X)

i]\}im A TA(B|yuy ) may (d]€)
—00 F(X)

% Jim TA(BlY) Ty (d7[€)

4. .
= lim my (BJE)
% (B). (5.2.20)

The first and third equality follow by the choice of Uy, the second and fifth
one by the definition of  and the fourth one by the consistency of the local
specifications (cf. (5.1.50)).

It remains to show the compactness of Gibbs}, (I'(X)). We make similar
changes as for the proof of Proposition 5.2.7. Using in addition Corollary
5.2.11 below (resp. Theorem 4.3.34 if (5.1.33) is void), we deduce the com-
pactness adopting the arguments in Theorem 4.4.20 (cf. (4.4.26)). Thus, all
the assertions are shown. ]

Uniqueness of Gibbs measures

Having established the existence of Gibbs measures, the next problem is
to show their uniqueness or non-uniqueness, which is more difficult than
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the existence. The non-uniqueness corresponds to the presence of phase
transitions in our model. The answer strongly depends on the interplay
between the model parameters like the temperature 5, the intensity 6 and
the stability properties of the potential.

Two basic techniques to show uniqueness of Gibbs measures are Ruelle’s
superstability estimates [Rue69, Rue70| and Dobrushin’s criterion (|[Dob70b]),
as well as its modifications [DP81, DP83|. However, they cannot be applied
directly in our framework and need essential modifications, which we will not
discuss here.

We only point out the following particular example, which however does
not cover the most interesting situation of the translation invariant case in

(RY, d):

Theorem 5.2.9. Let V and A @ m be such that (V) holds. If X € Q.(X),
then there exists exactly one Gibbs measure corresponding to V- and Py, i.e.

Gibbs (D(X))| = 1.

Proof. This follows by (5.1.46), Remark 5.1.17, Definition 5.1.19 and Theo-
rem 5.2.8. [

5.2.5 Moment estimates for Gibbs measures

Theorem 5.2.10. Let (V) and (5.1.33) hold. For each oo > 0 one finds a
certain v, > 0 such that for all u € Gibbs!,(T'(X))

[ e {vallolz} ) < o 522
(%)

where Cy < 0o is the same as in Proposition 5.2.4 (cf. (5.2.7)).

Proof. Using Proposition 5.2.4 instead of Proposition 4.3.18 and doing the
obvious changes in the proot of Theorem 4.3.34, we establish this result.
Indeed, fix A € B(X). Using Beppo Levi, we have

[ e (vl ) = Jim fexp ol A 31} ().
I(X) /100

By the (DLR) equation this equals

lim  lim / / exp {val V|12 A M) 7p, (dy]€) pu(dE).
i [ e (llall A M (le e

AN€EB:(X)
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By Lebesgue’s dominated convergence theorem, the later equals

i [ ([ e a2 A w9 e
M/ Jpxy \ Ay /X J1(X)
ANEB:(X)
. . 2
< lim [ lim _ - exp {Valllan 112} may (dyay|€) ) u(dE).
Moo Jpxy \ Av /X JT(X)
ANGBC(X)

N

Since p(I'*(X)) = 1, we may apply the uniform bound proven in Proposition
5.2.4 (cf. (5.2.21)). Thus, the later is dominated by C,, which was to be
shown. [

Corollary 5.2.11. Let (V) be fulfilled with the Q-local function I. For each
A€ Q(X) and N € N, there exists Cn(A) > 0 such that for all p €
Gibbs{ (T'(X))

/F o ()" () < O (). (5.2.92)

X)

Proof. This follows by Theorem 5.2.10. Indeed, fix k € Z. By (5.1.37), for

A~

all A € Q.(X) there exists € :=¢(A, k) > 0:

(A, 7) < e(A Rl w15

Then choosing v; (cf. Theorem 5.2.10), we obtain the assertion because

eN! eN!
(Ilp, ) < W(Vl)NIH’YHHV < o P @i llV[ 1) -

Hence, the assertion follows by Theorem 5.2.10. [

Remark 5.2.12. If (5.1.33) is void and ¢ > 0, we get the following result:
Fix N € N and a Q-local function |. Assume that

/ [(2)"\ @ m(dz) < co, for all A € Qu.(X) and all 1 <n < N.
A

~

Then (compare also Remark 4.3.36) we get only that for all A € Q.(X) there
exists Cy(A) < oo such that for each i € Gibbs!,(T'(X))

/ (LN pldy) < C. (5.2.23)
Tp(A)
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5.3 (Gibbs measures on the cone

A~

In this section we discuss the transition from I'(X') to K(X). Hence, we ob-
tain Gibbs measures on the cone K(X) corresponding to a sufficiently <nice>
potential ¢ : X x X — R. To this end, we first specify the conditions on ¢.

We fix the following local mass map m (cf. Example 4.3.11):
m(A, {(55,2)}) = s, 1a, (x) VA € B(X), Y(sp,2) € X.

Let us recall some properties of the cone K(X). Let F' € FCu(K(X), Co(X))
be a cylinder function, i.e., it can be written as

Fn) = gr({e1,n), -, (on,m), n€K(X) (5.3.1)

with some gr € Cy(RY) and ¢; € Cy(X), 1 < i < N € N. Then for each
e MYK(X)), we have

/ F(n)uldn) = / gr (o1 ), - (o)) ()
K(X)

K(X)

:/F 5 gr((idr, ®p1,n), ..., (idg, @gpN?n))((T_l)*M) @), (532)

We recall that T is the (bijective) homeomorphism between between I'p(X)
and K(X) (cf. (3.1.2)), i.e.,

~

T: (X) — K(X)
y={(sma)[z€T(V)} = ni= D siba (5.3.3)

zeT(v)

5.3.1 Gibbsian formalism on K(X)

We fix a pair potential ¢ : X x X — R, which is a bounded, symmetric
B(X x X ):measurable function. We define the corresponding pair potential
Vo X x X =R by

~

V¢(i‘>g) = S$Sy¢(l',y), jag € X.
We fix an admissible partition of X:
Definition 5.3.1 (Admissible partition). Let Z be a countable index set. A

partition
X = I_I Qk7
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Qr € B(X) for each k € Z, is admissible, if the partition X = ez Qs
where Qk =R, X Qg forall k € Z, is admussible in the sense of Definition
5.1.2.

We impose the following assumption on ¢:

(¢)k(x) The symmetric potential ¢ : X X X — R is such that (V) holds for

the corresponding Vg with the admissible partition X = Lie s Ry X Qp,
where Qi € B(X) for all k € Z.

In the case of X = R, it is sufficient, e.g., to assume the conditions (FR/),
(LB’) and (RC’) (cf. Subsection 5.1.1 and Example 5.1.1).

The relative energy

From here on, we always assume that (gb)]K( x) holds. We define the algebra
of 'local’ subsets in X (cf. also Subsection 5.1.2) by

Qe(X) :={A | Ry x A € Q(X)}.

For each 7, € K(X) and A € Q.(X), we define the relative energy

Ha(nl§) : //éxy (dz)n(dy) + /C/ch (dx)€(dy).  (5.3.4)

Lemma 5.3.2. If (¢)y y holds, then |[HA(n|§)| < oo for all n,&§ € K(X)
and A € Q.(X).

Proof. This follows by Lemma 5.1.11 because T : T';(X) — K(X) is homeo-
morphic. O

Local specification

By K'(X) we denote the tempered cone which is the image of T®(X) (cf.
Subsection 5.1.4) under T (cf. (5.3.3), i.e

KYX):=T (rt(f()) . (5.3.5)

Let us fix an inverse temperature 5 = 1/T > 0. For each A € Q.(X), the
local Gibbs measure on IK(A) is defined by

e PHAUIOGR(dn),  if n,€ € K'(X),

5.3.6
otherwise, ( )

_1
palanle)i= { 75

Y
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where G5 is the Gamma measure with shape parameter 6 on K(A) and

Za(€) = /K sl (5.3.7)

is the partition function (i.e., normalizing factor).
Remark 5.3.3. For all £ € KY(X), (5.58.7) is well-defined, i.e.,
0 < Za(§) < 0.

For ¢ > 0, this follows by Lemma 4.5.4, and furthermore Zx(§) < 1. For
general ¢ obeying (5.1.33), this follows by Lemma 5.1.14.

Definition 5.3.4. The local specification 7 = {ma}aco.(x) on K(X) is a
family of stochastic kernels

B(K(X)) x K(X) > (B,¢) — ma(BJ§) € [0,1] (5.3.8)
given by

Ta(B€) == pa(Bagl),
BA7§ = {’YA S K(A) |’7A Uéac € B} € B(K(A)) (539)

As we will see below, there is a one-to-one correspondence with the semi-

~

local specification kernels g, xa(dv|§) on I'(X) (cf. Subsection 4.5.1).

Gibbs measure

Definition 5.3.5 (Gibbs measure on the cone K(X)). A probability mea-
sure p € MYIK(X)) (that has a-priori full measure on K*(X)) is called a
tempered Gibbs measure (or state) with pair potential ¢ and inverse
temperature B > 0 if it satisfies the Dobrushin-Lanford-Ruelle (DLR) equi-
librium equation

/K T BI(n) = () (5.3.10)

for all A € Q.(X) and B € B(K(X)). The associated set of all Gibbs states
will be denoted by Gibbs} (IK(X)).
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5.3.2 One-to-one correspondence between between Gibbs

A~

measures on K(X) and I'(X)

The following theorem shows the intrinsic connection between the semi-local

A~

specification kernels on I'(X') and the local specification kernels on K(X).

Theorem 5.3.6. Let ¢ : X x X — R be such that (¢)xx) holds. Since
FC,(K(X),Co(X)) are a measure defining class, we have a one-to-one cor-
respondence between local Gibbs specifications ma on K(X) and semi-local

A~

ones mr, xa on I'(X). Indeed, for each F' € FCW(K(X),Co(X)), obeying (cf.

(5.3.1))
Fn)=gr({e,n), -, (enm), ne€K(X),

with some gp € Cy(RY), @1, ..., on € Co(X) and N € N, we have
| Fmstane)
K(X)

= / - gr((idr, ®p1,7), ..., (idr, @@y, M), xa(dy|T7E)  (5.3.11)
I (X)

forall ¢ € K(X) and A € Q.(X).
This implies that there is a one-to-one correspondence between the Gibbs

A

measures on I'(X) and on K(X): We have
px € Gibbs} (K(X)) <= pur:= (T i € gibbs€,¢(F(X)).

Using F as above, we have for ux € Gibbs (K(X)):
/ F' () puxc ()
K(X)
:/ (A)gF(<idR+ ®p1,7), -, (dry, ®pn,7))pr(dy),  (5.3.12)
Tp(X

where idg, is the identity on Ry, i.e., idr, (s) = s for all s € Ry.

A

Proof. Follows by the construction. We give the details: If € € T';(X)\I'*(X),
then (5.3.11) holds trivially (cf. (5.1.46) and (5.3.6)). Let £ € T*(X) and F
be as in the assertion. Fix A € Q.(X). Then by (5.3.2)

/ F(7)e—fHa0PO)GA (i)
K(X)

:/ X gr((idr, ®p1,7), ..., (idr, 90N7U))eﬂHR“A(Vl&)PeA(d’Y)-
I'(X)
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Hence, (5.3.11) follows. Fix B € B(IK(X)). Note that
B e B(K(X)) < B: =T Y(B) € B(I'(X)).

Let p € Gibbsg(K(X)). Using u(K'(X)) = 1, the (DLR) equation and
(5.3.2), we get

pr(B) :MIK(B):/ M(B|€>w<(d€)=/ ~ 7a, < (BlE))ur(dE).
Kt(X) It (X)
Hence, pur € Gibbsy, (I'(X)). On the other hand, if ur € Gibbs}, (I(X)),
then

yxc(B) =pr(B) = / (

This implies that ux € Gibbsg(IK(X)). O

s (BIE) ur (dE) = / ma (Bl (df).

K*(X)

)

5.3.3 Existence of Gibbs measures

Using Theorem 5.3.6, we will transfer the results obtained for Gibbs measures
pr € gibbsh(F(X)) to Gibbs measures px € Gibbs,(IK(X)). This yields the
existence result and uniform moment estimates.

Theorem 5.3.7. Let ¢ be such that (qﬁ)]K(X) is fulfilled. Then there exists a
tempered Gibbs measure on K(X), i.e.,

Gibbs(K(X)) # 2.

Proof. Using Theorem 5.3.6, the assertions follow by Theorem 5.2.8. O]

Remark 5.3.8. Furthermore, the set Gibbs{(IK(X)) is compact in Tgr (cf.
Definition 5.3.9 below).

Analogue to To(I'(X)) (cf. Definition 5.1.22), we introduce

Definition 5.3.9. The topology of local stripwise convergence on M (IK(X)),
denoted by T, is defined as the coarsest topology making the maps p — u(B)
continuous for all sets B from the algebra of <stripes events

Bstr(K(X)) = U BA<K(X))7
AGQC(X)
where Ba(IK(X)) := PA'B(K(A)). Here, we define the projections Pa by
Pa: KX)3n—=na:= Z $.0, € K(A).

zer(n)nA
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Moment estimates

Theorem 5.3.10. Let (@)y ) be fulfilled. For each A € Q.(X) and N € N
there exists Ciy(A) > 0 such that for all px € Gibbsj(K(X))

/K 1A ) < O (), (5.3.13)

Proof. Using Theorem 5.3.6, this follows by Corollary 5.2.11 (if (5.1.33)
holds), resp. by Theorem 4.3.34 and Remark 4.3.36 (if (5.1.33) is void). O

For stable potentials, we have exponential moment bounds:

Theorem 5.3.11. Let (¢)y y and (5.1.33) hold. For each oo > 0 one finds
a certain v, > 0 such that for all px € Gibbsj(K(X))

/ exp {valllnllI2} sxc(dn) < Ca,
K(X)

where C, < oo is the same as in Proposition 5.2.4 (cf. (5.2.7)).

Proof. Follows by Theorem 5.2.10. [
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Chapter 6

Differential calculus and Dirichlet
forms

In Chapter 3 we saw the static picture, now we will introduce some move-
ment of the marks and positions. Our motivation is to use Dirichlet forms:
Roughly speaking, for each quasi-regular and local Dirichlet form, there ex-
ists an associated diffusion.

Prominent examples for diffusions over spaces of measures are Fleming-
Viot processes, which are motivated by biological considerations (cf. [Hoc91,
EK93| and Chapter 7 for details). They are located on a space of proba-
bility measures. Dirichlet forms in the configuration space framework are
considered, e.g., in [AKR98a, AKR98b| and [KLR99].

Although our construction of Dirichlet forms is related to the one on
marked configuration spaces (cf. e.g. [KdSS98, KLU99|), there is an es-
sential difference: Gamma measures can be viewed as Poisson measure on a
"marked" configuration space with an infinite measure on the marks, whereas
the mentioned references treat the case that the measure on the marks is fi-
nite. More recently, Wasserstein diffusions and entropic measures have been
studied using Dirichlet form in [vRS09, AvR10].

The theory of Dirichlet forms is explained, for example, in [MR92] or,
the symmetric case, in [FOT94]. We outline a general scheme how to get an
equilibrium process:

1. Identify an appropriate directional derivative (defined via a translation
group) and a tangent space T, at n € K(R?) to get a corresponding
gradient V on functions over K(R?).

2. Choose a measure y on (IK(R?), B(IK(R?))) and deduce a quasi-invariance

143
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property of p w.r.t. the translation group.

3. Use the quasi-invariance property to establish an integration by parts
formula.

4. Show that the set of functions 5 admitting this integration by parts
formula is dense in L?(IK(R9), u1).

5. Define a corresponding gradient bilinear form

EF.6) = [ (VF(), VG, nldn), VF.G e

T

and deduce via the integration by parts formula that it is closable.

6. Prove that the closure of (£#,3) w.r.t. the norm that is induced by the
bilinear form, namely

S5 F s (EM(F,F)? = ((F, F) 2k way . + E(F, F))m,
is a Dirichlet form. It is denoted by (E#, D(EH)).

7. Deducing that it is quasi-regular, one obtains an associated ‘“nice”
Markov process (cf. [MR92, Thm IV.3.5]).

8. If (£#,D(EM)) is local, one even gets an associated diffusion.

In this chapter, we will study the first six steps, whereas the last two are left
to be analyzed in Chapter 7. Our main motivation is to get Dirichlet forms
related to the Gibbs perturbations of Gamma measure G, on K(R?).

Let us briefly indicate, where to find the main steps of the above program:
In Section 6.1, we construct an extrinsic (VK,), an intrinsic (VE,) and a

joint (VX) gradient (cf. Subsections 6.1.2, 6.1.3 and 6.1.4). They exist for
all cylinder functions

F € FOFP(K(RY), C(RY) =: Sk

(cf. Definition 6.1.5). In Section 6.3, we get extrinsic, intrinsic and joint
integration by parts formulas w.r.t. Gy (cf. Theorems 6.3.19, 6.3.33 and
6.3.39). This is the main step to consider corresponding Dirichlet forms. In
order to apply the Dirichlet form approach (compare the 4" point), we show
in Section 6.2 that (cf. Theorem 6.2.7 and esp. Corollary 6.2.8)

Sk C L*(IK(R?),Gy) is dense.
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Let us consider the bilinear form (cf. (6.3.46))

E9(F,G) = /

<V]KF(77), V]KG(n)> Go(dn), VF,G € Sk.
Using the integration by parts formula, we prove that it is closable and that
its closure is a conservative Dirichlet form (cf. Theorem 6.3.48). Analogous
results hold in the intrinsic and extrinsic case (cf. Theorems 6.3.29 and
6.3.38).

We deduce the above results for more general measures on K(R9):

1. Let Gy on K(R?) be a Levy measure (cf. Definition 3.1.5) whose inten-
sity measure A on R, has first and second moments, i.e.,

ml()\)erg()\):/ (54 s*) A(ds) < oc.

Ry

Then the intrinsic results hold for Gy (cf. Theorems 6.3.8, 6.3.14 and
Proposition 6.3.12 in Subsection 6.3.1).

2. The extrinsic, intrinsic and joint results are extended to the Gibbsian
case (cf. Theorems 6.3.19, 6.3.33, 6.3.39; 6.3.29, 6.3.38 and 6.3.48).

The above results are extended to a connected, orientated C'*° Rieman-
nian manifold X, which we fix from now on. Particular results of this chapter
are published in [Hagl1].

6.1 Differential geometry on the cone K(X)

Let us start our scheme by introducing a differential geometry on K(X). We
construct a gradient on functions over IK(X) consisting of an extrinsic part
related to the motion of marks (cf. Subsections 6.1.2) and an intrinsic one
related to the motion of positions (cf. Subsections 6.1.3). They are joined to
get the gradient w.r.t. changing marks and positions (cf. Subsections 6.1.4).1

!For Subsection 6.1.2, it is sufficient that X is a locally compact Polish space. But, in
order to keep a clearer structure, we already fixed X to be a connected, orientated C*°
Riemannian manifold at the beginning of this chapter.
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6.1.1 Group of motions

Similar as in [KLU99, Section 2|, we consider the group of continuous cur-
rents, i.e., all continuous mappings

X sz a(r) eRy

being equal to 1 outside a compact set. We define a multiplication ajay in
this group as the pointwise multiplication of the mappings a; and as and
denote this group by Rf .

Let Diffy(X) denote the group of diffeomorphism on X with compact
support, i.e., which equal the identity map idx outside of a compact set. It
acts in RY by automorphisms: for each ¢ € Diffy(X), we have

X ~1 X
Rf 3a—aop " €RIL.

Thus, we can endow the Cartesian product of Diffo(X) and R with the
following multiplication: for g1 = (¢1,a1), g2 = (2, a2) € Diffp(X) x R

9192 = (p1 0 @2, ar(az 0 7))
and obtain a semidirect product
® := Diffy(X) X RY

of the groups Diffy(X) and RZ. The group & acts on R; x X for each
g=(a,v) € & via

Ry X X 3 (s,2) — g(s,z) = (a(y(x))s,¥(x)) € Ry x X.

6.1.2 Extrinsic Gradient
We define for each ¢t € R, and h € Cy(X) the translation

My, - K(X) — K(X)
n = nti=ehy = Z @ 5,

zeT(n)

Definition 6.1.1. The extrinsic directional derivative of a function F :
K(X) — R in direction h € Cy(X) is defined as

Y

t=0

d
VeinF(n) = yrd (n?")

whenever the expression on the right-hand side exists.
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Remark 6.1.2. 1. The transformation only changes the marks of the dis-
crete measure 1. Therefore, we call them extrinsic.

2. By definition the directional derivate fulfills the product rule, i.e., for
F,G :K(X)— R for which the directional derivative exists we get

Vern(F - G)(n) = Ve F (1) - G(n) + F(n) - Vi G ().

Definition 6.1.3. We choose the extrinsic tangent space of K(X) at n €
K(X) to be

TP (K) = L*(X, ). (6.1.1)

Definition 6.1.4. The extrinsic gradient VX
is defined as

K, of a function F: K(X) - R
K ext
Ve:vtF IK(X) — T (IK)
= (VeF)(n) € T7(K),

exrt

whenever the extrinsic directional derivative of that function in each direction
h € Co(X) exists and it holds that for all h € Cy(X)

eacth <V]<Ia§:tF h>Text(]K) <v]i<th h>< ) (612)

Existence for cylinder functions
We show the existence of the extrinsic gradient for some cylinder functions:

Definition 6.1.5 (Cylinder functions). Let k,l € N5° and
CH(X) :== C*(X) N Cy(X).

By FCF(K(X),Ch(X)) we denote the set of those cylinder functions F :
K(X) — R that can be represented as

where N € N, gp € C’f(RN) and ¢; € C(l)(X) fori=1,... N.

Remark 6.1.6. The set of cylinder functions that we consider differs from
the usual one that one might expect to use (cf. e.g. [AKR98a, KLR99]):
For the configuration space I’(Rd) one normally calculates the gradient for
FC2(D(RY), Co(Ry x RY)). But, this does not fit our geometrical structure.
However, the set FC}HIK(X),Co(X)), which we consider, is sufficient to de-
fine the Dirichlet forms because it is dense in L*(KK(X),Gy) (cf- Corollary
6.2.8).
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Fix ' = gF(<¢1>'>>"'v<¢N7'>) € ‘Fcl;l(K(X)>CO(X))7 where N € N,
gr € Cg(RN) and ¢z € Co(X) for i = 1,...,N.

Proposition 6.1.7. For each h € Cy(X) and each n € K(X), we get

(Vexth )(n) = Z 9igr({p1,m)s - - -5 (on, M) (N, Pi>T;’“(IK)-

Proof. The formula for the directional derivative follows by the chain rule:
Fix h € Cy(X) and n € K(X). Then

d d
Veaunl') = FEn)| = —gr((p,e™n), . (pn, "))
t o dt =0
th th\\ 4 th
= ZalgF(<plae 7]>77<pN76 77>)E</)u€ 77))
— t=0
Moreover,
d
et = 2 Z pil@)e"n(x) = 3 h(@)pi(x)e™In(a)
zeT(n z€T(n)
= (hpic’ ,'fi>- (6.1.4)
(The sums are finite because p; € Co(X), cf. (3.1.1)). With (6.1.1) we get
o) = (b pic™
dt Pis 77 ) Pi Text(K)
and conclude (t=0)
(VanF Zang P1m)s - (o M) (hy i) e (x0)-
O
Proposition 6.1.8. The gradient exists and is
v]flfth ZagF P17 7"'7<pN777>)pi7 fOT a’llneK(X)

Explicitly writing the argument x € X we see

(Veul ZagF p1n), - - (on,m)) pil).
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Proof. By Proposition 6.1.7 and Definition 6.1.3 we have for all h € Cy(X)
that

N
(Ve F ), Wy rgaa) = Y Bigr((pr, 1) - {oxsm)) (e pi) sy
=1

=(VexenF) ().

6.1.3 Intrinsic Gradient

In Subsection 6.1.2 we constructed a gradient for the motion of the marks,
now we define one for the motion of the positions in the state space X.

Here, we proceed similarly as in the case of a marked configuration space (cf.
[KdSSU98, Section 3]).2

Let V(X)) denote the set of all C'*-vector fields on X (i.e. smooth sections
of the tangent space 7' (X)). We use that subset V((X) C V(X) which
consists of all those vector fields with compact support.

For any x € X, v € Vo(X) the curve R 3¢ — ¢?(z) € X is defined as
the solution to the following Cauchy problem

{ 2 po(z) =v(¢¥())
o(z) =z

Since v € V(X)) has compact support, there exists a solution to this Cauchy
problem. Furthermore, the mappings {¢},t € R} form a one-parameter sub-
group in Diffy(X).

We fix v € V5(X). Having the group ¢}, t € R, we can consider for any
n € K(X) the curve R 3t +— ¢7*(n) € K(X), i.e., for all f € Cy(X) we
have

/ ) (607n) (dy) = / F@r@)ndn) = Y sef(61()).
X X zeT(n)
Hence,

RSt ¢ n= Y s:05) € K(X). (6.1.5)

zeT(n)

2In this subsection we use more of the structure of X, namely the fact that X is a
connected, orientated C*° (non-compact) Riemannian manifold (cf. Definition 6.1.11 and
Proposition 6.1.14).
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Definition 6.1.9. For a function F' : K(X) — R we define the intrinsic
directional derivative along the vector field v € Vo(X) as
(Vi

d
int,vF)(n) = d_

=0
provided the right-hand side exists.

Remark 6.1.10. [t is called intrinsic because only the positions change while
the marks are fized (cf. (6.1.5)).

Definition 6.1.11. We define the intrinsic tangent space T,"(IK) to the cone
K(X) at n € K(X) to be the Hilbert space L*(X — T (X),n) of measurable
n-square integrable sections (measurable vector fields) V,, : X — T (X)) with
the scalar product

Vi Vi = [ (V). V@) con(da).
where V), V2 € TI"(K).
Remark 6.1.12. If p € C3°(X), then V¥p € T"(K) for all n € K(X).

Definition 6.1.13. Let F : K(X) — R be such that the intrinsic directional
derivative VX . F exists for all v € Vo(X). The intrinsic gradient VX, of F

nt,v int

is defined as the mapping K(X) 3 n— (Vi F)(n) € T,"(K) such that

nt

(VE,F)0) = (VEE) ), gz for all v € Vy(X). (6.16)

nt,v int
The intrinsic gradient V% is defined for all those functions for which the

nt
above holds.

Existence for cylinder functions

Fix F' = gr((p1.m), ..., {pn, 1)) € FCF(K(X), C5°(X)).

Proposition 6.1.14. For all v € V(X)) the intrinsic directional derivative
VE F exists:

wnt,v

(Vi F) (1) = Z&-QF((m,n% o o) (Vi pi ).

Here, VX p is the directional derivative of p € C5°(X) along the vector field
v e V(X), ie.,

(Vip)(x) = (V¥ p(a), v(2))r,x),
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where VX denotes the gradient over X. Furthermore,

N
(Viseo)) = O 0igr(prm), - (ons )V pi, 0) g -
=1

Proof. For any n € K(X), v € V5(X) we have

F(¢y™n) = gr({pr, ¢/ n), .-, (on, 81" n))
- gF(<p1O¢§7n>7"'7<pNo¢;}?n>>‘

This implies the first assertion. The second one follows by the linearity of
the pairing and using that (Vi p)(z) = (V¥ p(2), v(2))7,(x)- O

6.1.4 Joint gradient

After having defined an extrinsic and an intrinsic gradient, we join them to
obtain a gradient over the cone IK(X) w.r.t. both components.

Definition 6.1.15. Let h € Cy(X) and v € Vo(X), then the directional
derivative of a function F : IK(X) — R at the point n € IK(X) is defined to
be

(Vo)) = (Ve lF)(01) + (Vi o F) ()
We set the tangent space of K(X) at n € K(X) to be
T,(K) :== T7Y(K) & T,"(K) (6.1.7)
and define the gradient as
VE = (VE, Vi)

whenever the objects exist.

Existence for cylinder functions

Fix F = gr({p1, ), - (o, 1)) € FOR(K(X), C(X).
Proposition 6.1.16. The gradient VX of F exists and equals

S E () = (3 darClon - oo
> dr((pn o (o101 )

= 2 grllprm) o onm) (0 Vi) € T(K)
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and for all h € Cy(X) and v € Vo(X) we have
(VEF®), (h,v)) g, ) = Vo F ().

Proof. Using Definition 6.1.15, the result follows by Propositions 6.1.8 and
6.1.14. For the formula, we calculate:

(V). (h0)) g, e

=2 Agr(lprn) - () (02 Vi) » (s 0)) s

N
= Z aigF(<p17 77)7 SRR <pN7 77>) <<p27 h>TﬁXt(]K) + <vXpi7 U>Tni“t(IK)>
=1

=V, F(n).

6.2 Dense subsets of L*(K(X),G)

Let G, be a fixed Levy measure with Levy intensity measure A on R,. In
order to obtain a Dirichlet form, we will have to show that the corresponding
bilinear form is densely defined in L*(K(X),Gy). It is sufficient to prove

FCP(K(X),C5°(X)) € L*(Gy) == L*(K(X), B(K(X)),Gy) is dense,
which is the task of this section.

Remark 6.2.1. In the case of a configuration space I'(R?) over R?, the
dense set one normally considers is FOX®(T'(RY), Cg°(R?)). Since K(X) can
be embedded as a topological subspace in T(X) and Gy(K(X)) = 1, the set
FCOP(K(X),CP(Ry x X)) lies dense in L*(IK(X), Gp).

Although this set is large enough to construct a Dirichlet form on it, we
have to prove that FC(K(X),C5o(X)) C L*(K(X),Gy) is dense because

the gradient VEX) only act on cylindrical functions of the latter class.

A general strategy for showing the denseness of cylindrical func-
tions

As a motivation for our strategy, we first of all repeat some facts about the
Borel o-algebra of the underlying space X and cylindrical functions.
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Remark 6.2.2.

As in [MR92, Section 11.3a)], let us suppose for this motivation that S is a
locally convex topological real vector space which is a Suslin space, i.e. the
continuous image of a complete separable metric space.

1. [Bad70, Exposé n® 8, N° 7 Corollaire], as well as [Sch73, Part II,
Ch. I, Thm. 3, p.162], implies that the Borel o-algebra of S, B(S),
coincides with the one generated by the dual space of S, i.e.

B(S) = o(S5"), (6.2.1)
where S’ denotes the topological dual space of S.

2. By [Sch73, Part I, Ch. I, Lemma 4, p.162] there exists a countable
subset of S’ separating the points in S. Let

FCR(S,8") ={f(li,....In) INEN, feCPR"), lj,....Iy €5}
denote the set of cylindrical functions.

3. By the Lindeldf property, one gets that FC°(S, S") separates the points
n S.

4. Using (6.2.1), one shows that (cf. [Hag08, Proof of Thm 4.1.15, (a)
Claim, P.52], resp. cf. the technique below for the denseness argument)

FC(S,8")  L*(S,B(S), u) dense w.r.t. L*(S, ),
where p is a probability measure on (S, B(S)).

Unfortunately, we do not have these nice properties for the cone K(X).
Thus, we need more arguments to get the point separating set and to deduce
the denseness result.

6.2.1 A set of point separating functions

We show that there exists a countable subset Sk of FCp°(IK(X), C5°(X))
which separates the points of K(X). Since X is separable, there exists a
countable set Dx of points which lies dense in X, i.e.,

Vee X, r>0, 3¢ € Dx : d(x,q) <,

where d := dx : X x X — R denotes the metric in X. We denote for each
r € R the ball with radius r around g € X by

B,(q) :={z € X| d(z,q) <r} and B, := B,(0). (6.2.2)
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Definition 6.2.3. We consider the countable family of functions

Sic= 1 U Ulew(bogad)} € FORIK(X), G (X)).

NeNgeDx reQ

Here, we choose ¢y € C°(R) monotone such that

en(r) > -1 ifr<0
CN(T) =r if0<r<N (6.2.3)
en(r) S N+1 if N<r

and ., € C2(X) with (cf. (6.2.2))
ﬂBr/lo(Q) < Pgr < ﬂBr(q)~ (624)

Remark 6.2.4 (Existence of these "spiked" functions).
The function g, has a “spike” centered at q of heights 1.

1. In the case of X being R?, d € N, we can obtain these functions in the
following way: We define fore >0 g. € Cg°(X) such that supp g. C B
and obtain ¢,, € CF°(X) by setting

i 1 ifd(-q) <,
Pgr() = { rda) <3 } = 1B, ()

0 else,

and Ongr = Gr/10 * PN, where x denotes the convolution of two
functions.

2. In the general case of X being a connected Riemannian manifold, the
existence of the functions ¢,,, ¢ € X and r € R, follows by the exis-
tence of smooth bump functions (cf. [Lee03, Proposition 2.26,P.55]): If
r <0, then we choose ¢, , = 0. Otherwise, we apply the mentioned re-
sult for the closed set B, 10(q) and the open set {x € X|dx(x,q) <r/2}.

Here, we used that the ("distance") metric d = dx, which corresponds
to the Riemannian metric, exists for any connected Riemannian man-
ifold and that its metric topology is the same as the original manifold
topology (cf. [Lee03, Proposition 11.20, P.278]).

Proposition 6.2.5. The countable set Sk separates the points of IK(X).

Proof. First, we sketch the idea of the proof: Fix {n,n'} € K(X). Initially
we find a compact set Ay € Ry x X on which the two elements 7, 7' € K(X)
differ. Then we consider the function ¢, 5 being supported by Byq. If the
associated function in $ does not separate the points, we "change the spike
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of po n* and choose an "appropriately spiked function ¢, that separates n
and 7.

It is important to identify a correct “spike”. Therefore, we will order the
points of 1 and 1’ lying in the strip R, x By,1 appropriately, consider the
first point Z; which belongs only to one of them and does not lie on the
border of the strip and "cut the sum over the marks of the ordered points.

Fix n,n" € K(X): n # n’ and consider the covering (Ay)yen of Ry X X
where Ay = ([%,N] X BN). We find N € N such that there exists z, €
nN Ay with z, # 2’ for all 2’ € n’ N Ay or 2 € n' N Ay with 2/, # & for all
z €nNAy. (From now on, ' indicates a property related to 7’.) Set

M = <ILBN+1777> < 00, M = <ILBN+1777/> <oo and
M = max(M, M').

Here, they are finite by the definition of IK(X) (cf. (3.1.1)).

If (n,pon) # (0, o), then (-, o) separates these points and we
choose cp((:, po,n)) € Sr(x) to separate n and 7.

Otherwise, we have to identify the correct "spike": We count some points
of n and 7’ lying in the strip Ry x By 1: Let us define for the fixed parameter
N and M the set

B = BN,M I:]O, M] X BN+1.

It contains all the points of the restriction of 7, resp. 7/, to the strip R, X
By 1. We enumerate the points of ng, resp. 7, lying in B by sorting them
by the size of their marks, i.e.

[n5]

nB:U{in}: (M2)512322-~25nz...and
n=1
g

ng:U{i";: (M'>) s\ >sh > >8 >....
n=1

Furthermore, we assume that the points of nj; are ordered such that the or-
dering of n’; N np in 1z is the same as in 7. (This is possible because for
each mark there are at most finitely many points # having that mark.)

For the next step we need a formal fail safe for the case that one of the ele-
ments has just finitely many points in the strip and they are "contained” in the
other one. If [np| < [njp|, we pick z1 € X\{z1,... 2y 21, 2, 2000t
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and set s, 41 = 0 and x,,41 = 1. If [n3] < |nB|, we do a similar defini-

tion, namely we choose @ € X\{Z1, ..., Ty |, T 415 7,5 - - - ,xi%|} and set
/ /

=0 and Tl 141 = L1

/
s
[ngl+1

Fix d € N to be the smallest index such that the corresponding "points®
do not lie both in 1 and 1" and on the border of the strip, i.e., such that

(md # xl, or s4 # 3&) and
<d(:vd,0) < N+1ord(z),,0) <N+ 1).

(At the latest this will happen at &4 = &, or &/, = Z’,.)

If 24 = 2/, then w.lo.g. s, < s4. (Otherwise we change the role of 7 and
n'.) If x4 # 2/, then w.l.o.g. d(z4,0) < N + 1 (It is not on the border of the
strip).

We will identify the "correct” spike, i.e., the correct function ¢, ,, which
separates the points. To this end, we choose t' € N such that for all n > ¢/,
n € N, the sum of the remaining marks is small, i.e.,

[nBl

1
Z Sp < €q:= §<Sd —85),

k=n+1

where 3
d :=min{k > d|s}; < s4}

is the smallest index after d such that the corresponding mark differs from
sq and set s’ = 0. If 24 = 2/, then d = d. If || < oo, we choose t' = |1].

The next idea is that there shall be no difference between the functions
fn and @y for the first ¢ points of 3 except maybe for the point x4. To this
end, we calculate the minimal distance of x4 to these points and the border
of the strip. In detail, we choose r € QQ such that

0 <7 <min{d(zq, 2})|1 <k <t @) # 24} A (N +1—d(zq,0)).

Due to the definition of K(X), there is at most one z}, k < |njz|, such that
x) = xq. Thus, we set

d' = min{k|z}, = x4} and 2/ := 0.
As a last step we choose a ¢ € Dx such that d(z4,q) < {5 and choose

Pgr < L.
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This ¢, separates n and 7':

In5]
(Pars) = (Paa ) =Y _ 5kPqr(@r) + S40g.0(Ta)
—
k#d 20
t In5]
- Zfi%,r(%) Sd/SOqT xd’ Z SkSOqT )
1?72}' =0 =s,¢q, r(xd) kk;(}tl <1
>(sq— Sil/)soq,r(xd) — &d
1
=(84 — 8iy) — 5 (80— s7)
1
>(sq— Sly) — §(Sd — sly) >0, (6.2.5)

where, by the definition and ordering of the points, we have s}, < s; because
(Sa, xaq) # (S, xq) and d(x4,0) < N 4 1. Since d is the smallest index k such
that s}, < s4, we get sl < SZZ;
Furthermore, we choose N € N such that
N > max ({(pgr,n), (¢qr,1)) < 00,

Hence (using also (6.2.5)), ¢ ({@qr,)) € Sk separates n and 1’. Therefore,
Sk separates the points in K(X). O

6.2.2 Denseness criterium

We show that FCO&(K(X),C5°(X)) € L*(K(X),u) is dense, where pu €
M K(X)).

Definition 6.2.6. Let (Z,B) be a Borel space and ' a set of B-measurable
functions f: Z — R. Then we define for k € NU {0,000} the set of finitely
based functions FCF(Z,F) by

he FCJ(Z,F) = h()=g(fi(),-.., fn()), (6.2.6)
where N € N, g € CF(RY) and f; € F for 1 <i < N.

Theorem 6.2.7. Let (Z,B) be a standard Borel space® and u be a finite
measure on it. Assume that there exists a countable set and exists | € N U
{0, 00} such that

S = {fun € N} C FCL(Z,F) = M

3We recall its definition in Section A.1.
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and that S separates the points of Z. Here, I is a set containing measurable
functions f : Z — R.
Then for any k € NU {oco}

M C L¥(u) == L*(Z,B, u) dense w.r.t. L*(p). (6.2.7)
Before we prove this theorem, we note that it is sufficient for our purpose:
Corollary 6.2.8. For any finite measure pn on (K(X), B(K(X)))
FCF(K(X), Cg°(X)) € L (p) == L*(K(X), BIK(X)), p)
is dense w.r.t. L*(u). In particular, this holds for = G.

Proof. Since K(X) is homeomorphic to T'y(X) € B(I'(X)) (cf. Subsection
3.1.2 and Remark 2.2.8), we obtain by Theorem A.1.6 that (IK(X), B(K(X)))
is a standard Borel space.

Therefore, Proposition 6.2.5 and Theorem 6.2.7 yield the claim, where we
consider the following set of measurable (cf. Lemma 2.1.1) functions

F:={(¢,")l¢ € C57(X)}.
0

Proof of Theorem 6.2.7. We use a monotone class argument (see [R6c05,
Definition 1.11.7, Satz 1.11.11, p.54f] or [Pro05, I Theorem §|):

= ﬁLk(/ﬁ) - Lk(/l)

is a monotone vector space.*

4Clearly, 1 € 6. Let (fu)nen be a sequence in §) such that 0 < f; < fo < --- <
fn  f and f bounded. We have to prove that f € §. By the Lebesgue dominated
convergence theorem and a diagonal argument there exists a sequence g, € 1 such that
f = L*¥(p) — lim, 00 gn € H: Indeed, since the sequence (f,)nen(€ L*(p)) converges
pointwisely monotone increasing to f and is bounded by f € L (u) C L*(u), the Lebesgue
dominated convergence theorem gives us that
Lk(:u’) — lim fn = f

n—oo

and thus w.l.o.g (eventually considering a subsequence) || fn — fl| () < L For each f, €

$ there exists a sequence gy, ,, € M such that f,, = L¥(u) — limy,— 00 gnm. Furthermore

w.l.o.g for all m € N: m > n we have || f, — gn7m||Lk(H) <
Defining g,, := gn,» Wwe obtain

1

L
2

lgn = Fllzrey < lgnn = Fall gy + 1 = Fllzwg < =

and hence f € 9.
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Moreover, 91 is a set of bounded functions, which is closed under multi-
plication. Then (by monotone classes, e.g. [R6c05, Satz 11.1.11] or [Pro05,
I Theorem 8|) (M), C $. Here, o(M), denotes the set of all bounded,
o (9)-measurable functions.

Claim: o) =B (6.2.8)
This yields
monotone
classes — Lk
mc L) 2 oom), T° 9= * (6.2.9)

and hence we are done because the indicator functions are measurable.

Proof of the Claim(cf (6.2.8)):
Since we would like to apply Kuratowski’s Theorem (cf. Theorem A.1.7),
we set D := o(%) = o({f, | » € N}), which is countably generated, and
consider
id:  (Z,B) — (Z,D)
z oz,

The function id is one-to-one and measurable because the f,, are measurable.
(Z,D) is even a separable Borel space (cf. Definition A.1.4) because

Vz e Z: {2} = ({fa = ful2)} € D.

The subset inclusion is obvious. 2z is the only element in the intersection
because 3 is point separating; and thus for every y # z there exists an’ € N

such that fu(y) # fu(2).

Hence, by Kuratowski’s Theorem (cf. Theorem A.1.7) id~! is an isomor-

phism and B = D. Therefore, B=D C o{IM} C B. O
Remark 6.2.9 (Further extensions). The above proof can be generalized:

1. The arguments work for any complete, separable metric space X, for
which the countable set Sk(x) (cf. Definition 6.2.3) exists and m(A) <
oo for all A € B(X) bounded.

2. The method to show the denseness also works
(a) for configuration spaces. Then we consider s, =1 and
NX)={n e K(X)|VA € B.(R; x X)VT € nps, = 1}.
(b) C(X) being replaced by {f : X — {0,1,2} measurable}.
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6.3 Integration by parts and Dirichlet forms

Now we proceed to construct Dirichlet forms via the scheme that we outlined
at the beginning of this chapter.

Let X still be a connected, orientated, separable C*°-Riemannian mani-
fold X with Riemannian metric dx. It is equipped with its Borel o-algebra
B(X). Let

m(dx) = po(dx) (6.3.1)

be a non-atomic Radon measure on the state space X with Riemmanian
volume element v, where p > 0 v-a.e. is a density such that p% € Hﬁ)’f(X ,0),
which denotes the local Sobolev space of L2 (X, v).

Further on, we denote the logarithmic derivative of m by

_ V¥(2)
p(x)

X sz M™(x): € T.(X), (6.3.2)

where VX denotes the gradient on X and 8™ := 0 on {p = 0}.

6.3.1 Intrinsic motion for Levy measures

We do not have a quasi-invariance principle, thus we cannot go on with the
construction scheme at the second point (as done, e.g., in [AKR98a|). This
is due to the fact that the measure on R, is infinite.

Let A be a Levy measure on R, with finite first moment, i.e., m;(\) < oo,
and G, the corresponding Levy process (cf. Theorem 3.1.7).

Definition 6.3.1. For any v € V(X)) we define the intrinsic logarithmic
derivativeof G, along v as

K(X)3n = (Baa(n), o)) == (0, 57

= /X (B (2), 0(2)) gy ) + div™ v (),

where divX is the divergence on X with respect to m.
Remark 6.3.2. The intrinsic logarithmic derivate s independent of \.

Lemma 6.3.3. Let v € Vo(X). If the first moment of \ exists, i.e.,

my(N) ::/]R sA\(ds) < oo, (6.3.3)
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then (BS(-), v)pim(y € L'(K, Gx). Moreover, if the second one is finite, i.e.,

int

ma(N) = / s2\(ds) < oo, (6.3.4)
R4
then
<5¢g¢ﬁ(')>U>Tint(K) € L*(K,G)).
Proof. We define
f(@) == (v(x), B™(@))1r,x) + divio(z), = € X.

We recall (compare Theorem 3.2.6) the formula for the first and second mo-
ments of the measure Gy, namely for all finitely supported Borel-measurable
function f > 0 we have

/ DG = m ) s (6.3.5)
/K (X)<n, FY2Ga(dn) = ma(N){(f?, m) + mi(N)(f, m)*. (6.3.6)

Therefore, it is sufficient to show that f € L'(X,m) N L*(X,m). To this
end, we use the assumption that pz € H:2(X,0) to show that f € L'(X,m).
Once obtained this property we deduce by the compactness of the support
of v that each f is even in L'(X,m) N L*(X, m).

First of all, we note that, due to v € V(X), X being finite-dimensional
and (6.3.5), the integral over the divergence part is finite, i.e.,

/XdiVXv(a:)m(dx) < Cm(A) < o0,

where we choose C' > 0 and A € B.(X) appropriately. Moreover, by Cauchy-
Schwartz

[ @) B @moomdn) < [ @l -l 8 @l com{d)

<Clx <C1lx

<o/ pmn(d@)% ( [

N

2
V¥p

p

()

p(ﬂﬂ)v(dﬂf))

T:(X)
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Since p% € H?(X,v), ie.,

loc
/A

the above product is finite. To show f € L?(X,m), we remark

2
V¥p

. +|p2Po(dz) < 0o A € Bu(X),
p2

T X

ILp>0

/X (@) Prm(da) = /X 0(2) 2, 0|8 (2) 2 ()
<c? / 187 (@) 2. e ()

and conclude, as above, the assertion. O
Having a closer look at the last proof, we get

Corollary 6.3.4. Let p € N such that for all k € {1,...,p}
my(N) ::/ sFA(ds) < oo. (6.3.7)
Ry
Then p*/? € HP(X,0) implies

(BA), vypmaey € (] LFK,Gy).

1<k<p

For G, = Gy, 0 > 0, this holds for any p € N. In particular, in the basic
model setting, we have

<B¢grft(')aU>Tﬁm(ﬂ<)€ ﬂ LF(K,G)).

1<k<oo

Theorem 6.3.5. Let mi(\) < co. Then for all F, G € FCHK(X), Ca(X))
and any v € Vo(X) we have an integration by parts formula

/K (T FYa)GnGa(an) =~ / F(n)(V%,,G) ()G (dn)

K(X)

- /]K(X) P )G ) (87:(n), v}y o Ga(dn).

Proof. Let An(dt) := 11 (t)A(dt), which is finite. By Theorem 3.1.7, for
each )\, there exists a Poisson measure P, . By definition, the gradient only
“notes” changes in a finite set on the position space, it is continuous and
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(N — Nay, La), where A € B.(X): Ay € Ry x A, becomes for Ay X
arbitrarily small. Hence, Lebesgue’s dominated convergence theorem yields

/ (Vi )G = |l / (Vi o) (1) G2 (dn)
K(X) AneBe(R+xX) Jx(x)
AN /Ry xX
= i li vk F d
ANEBCI(IIIR}+Xx)ngIOIO ]K(X)( int,v )(nAN)g)\n( 77)
AN /RyxX

Now we have a finite intensity measure A, on R,. Thus, we can use the
assertion of [KdSS98, Theorem 3.5|, which is valid in this setting.” Hence,
the last line equals

- 1i 1i F 9 int d
At ) e J (M ) {Bisi (1), 0) e ) G ()
AN/‘RJFXX

—— [ F)(BE . v Galdn),
K(X)
where the finiteness follows by Lemma 6.3.3. ]

Adjoint of the intrinsic gradient

Definition 6.3.6. A function V is called an intrinsic vector field iff it is of
the following form

V(n) = Z gi(n)v;

where fori = 1,...,N g € FC*(K(X),C5°(X)) and v; € Vy(X). By
Veyx (K(X)) we denote the set of all these intrinsic vector fields.

Lemma 6.3.7. Let Vi, Vs € Vo x (K(X)). If mi(A\) < oo, then

/IK(X) (Va(n), Va(0)) e o) Gald) < o0

Proof. The intrinsic vector fields are bounded and finitely supported. Thus
the integral is finite because the first moments of the Levy measure A are

5The cutoff in R, does not void the assertion because the quasi-invariance property of
Gy, holds (cf. [KdSS98, Proposition 2.8]) and the integration by parts formula is obtained
by using this property.
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finite (cf. (6.3.5)): Indeed, there exist A € B,(X) and C,C > 0 such that

(Vi(n), Va(n)) pime ) G (d)

Theorem 6.3.8. Fiz V := Y.~  giv; € Veux(IK(X)). Let X be a Levy mea-
sure on R,y with my(X) +ma(\) < co. Then for all F € FCHK(X),C}(X))

/]K( <vmt V(n)>Tint(]K) gk(dn) =

/]I;(X) Z <vmtg’u UZ>T‘M(IK)
_/M(X) F) B, V m)rym o Ga (), (6.3.9)

where all the integrals are finite. We can reformulate it as

((V%t) V) (n) =— XN: <v]i17<1tgi<n>7 Ui>T}7nt(IK)

=1

— (B, V(). (6.3.10)

Proof. The finiteness of the involved integrals follows by Lemma 6.3.7. The
integration by parts formula (cf. Theorem 6.3.5) yields the result. Indeed,

/ <(VEtF)() (77)>T;7m(ﬂ<)g>‘(dn)
—Z / 1) (T F 1), 05 g0 G ()
_z Loy F (ST~ (52200 1)) G2

:/IK( ( i<v1ntgz Tmt <5mt( ), V(n )>T}]nt(]1<))g,\(d77)
:/K(X) Fn )<(Vﬁt); V) (m)Ga(dn),
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where we used the definition of the adjoint in the last line. O

Intrinsic bilinear form

We define for F, G € FC*(K(X),C5°(X)) a gradient bilinear form, namely
Em(F.G) = /mo (Vi (1), VG (1)) gy 1) 9 (d)- (6.3.11)

Remark 6.3.9. By Lemma 6.5.7, £

(F, Q) is finite and by Theorem 6.2.7
densely defined.

Definition 6.3.10. For F = gr({p1,1),...,{pn,n)) € FCEK(X),C(X))

we define the intrinsic generator of Slgn*t

(LG F)) == (S F) () = (B8), (TRF) () 2y

=~ (S50 F) ) = S dar(lor .. dow) [ A¥pia)inta)

—Z@QF(@l,n),---,(pN,n>)/}((ﬁm(x%VXpi(x)m(x)dn(fv), (6.3.12)

where AX denotes the Laplace-Beltrami operator on X and

N
(SEOF) () =7 kg ((prm)s - (o IET s T pr) ey

k=1

Corollary 6.3.11. Let my(A\) + ma(A) < co. We rewrite the bilinear form
using the intrinsic generator: For all F,G € FCZ(K(X),C5 (X)) we obtain

ARG = [ (LHPmGmGadn). (6.313)
K(X)
Proof. The result follows by Theorem 6.3.8. ]

Proposition 6.3.12. Let my(\) + ma(A) < oo. Then the bilinear form
(ER FOR(K(X),Cs0 (X)) is well-defined, positive definite, symmetric and
closable.

Proof. The symmetry and positive definiteness of the form are clear:

EQF,G) = / ( )<V¥§tF<n>,vﬁtG<n>>T,;m<mgA<dn> =EN(G,F) (6.3.14)
K(X
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and
ER(F,F) :/( )(VﬁtF(n),V?EtF(n)>T,;nt<u<>Qx(dn) > 0. (6.3.15)
K(X

The closability now follows by [MR92, Proposition 1.3.3]. m

Intrinsic Dirichlet form

FOr(K(X), C5*(X))) by (€5, D(ER)).

int int

We denote the closure of (E.Q*

int >

Definition 6.3.13. A Dirichlet form (£,D(E)) is conservative, if
1€ D) and £(1,1) = 0.
Theorem 6.3.14. Let my(\)+ma()\) < oo. The closure (£, D(ES)) of the

nt?
intrinsic bilinear form (£3%, FOX(K(X), Cs°(X))) is a conservative Dirich-
let form.
Proof. We give the details to get the contraction property. Let p. € CZ(R):
L) p.: R = [—e,14+¢]and p. <1,2.) p(t) =t Vt € [0,1] and 3.) Vt; >ty :
pe(tr) < pe(ta). Then |pe(t)| < [pL(t)][t] < [t] because pc(0) = 0 and p. < 1.
Hence,

£%(p. o F,p. o F)

int

= /]K(X)<v£§t(p£ o F')(n), Vgt(pa o F)(”»T,,]K(X)g)\(dn)

= /]K(X)/XZai(paOgF)(<p1’77>7"'7<pN7n>)

3,j=1

0;(p= © gr)((pr, ), - (o, m)){V pi(), V7 p; (%)), x)n(dw)Ga(dn),

= / F 2 az F 17 g e e ey N’
/IK ) /X S Bugr (o b (owo )

ij=1

0igr({pr,m), -, (o, (V¥ pi(), V¥ pji(@)) 1, x)n (d) G (d)

N
< [ [ drttpee tov)
K(x)JX 52
B9 (o1, ) (s (V™ pi(2), V™ 3 (2) s ()G ()
= gl%t\ (Fv F)
By [MR92, Propositions 1.4.7 and 1.4.10] the closure of the bilinear form is
in fact a Dirichlet form. That it is conservative is obvious. O

Example 6.3.15. Chosing \(dt) = 0t 'e'dt, we obtain a Dirichlet form

55& for the Gamma measure Gy.
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6.3.2 Extrinsic motion related to Gibbs measures

In this subsection we construct a Dirichlet form describing the motion of
marks. To this end, we enter the general scheme at the second point using the
(extrinsic) quasi-invariance property of Gy. By [LSO01] this quasi-invariance
property only holds for particular measures. Of those, the Gamma measures
are prominent examples (for details cf. [LS01, Theorem 1]|). Hence, we as-
sume from now on that A = Ay, 6 > 0 fixed.

We deduce the Dirichlet form describing the movement of positions (and
marks, cf. Subsections 6.3.3 and 6.3.4) w.r.t. a fixed Gibbs measure p
corresponding to the pair potential ¢. From now on, we assume that (¢)k(x)
holds and that

IK\| <o VA € B.(X). (6.3.16)
Remark 6.3.16. The property stated in (6.3.16) is equivalent to
{Ag|A € B.(X)} C Q.(X),

where we use the notation introduced in (5.1.15). Hence, the assumption
(6.3.16) allows us to use for the construction of the Dirichlet forms the usual
cylinder functions

FOF(K(X), G5 (X))

One can avoid this condition. For k € N§° let C§ o(X) denote the set of
k-times continuously differentiable functions f that vanish outside of a set
Ay € Q(X). If (6.53.16) does not hold, one can rewrite all the results of
Chapter 6 using Cf o(X) instead of CF(X), e.g.,

FCO(K(X),Coo(X)) replaces  FCo(K(X), Co(X)).

But for the simplicity and clarity of the outline, we assume it.

Adjoint of the extrinsic directional derivative

Before we obtain the integration by parts formula, we introduce

Definition 6.3.17. For each h € Cy(X) and n € K(X) we define the fol-

lowing extrinsic logarithmic derivative

<55$t(n)7 h’>Tﬁ"t(]K) ::0<h7 m> - <h'7 77> - 5 <h'7 ¢>Tn®n 5 (6317)

where

(18, = | . /| D) (@) R ). (6319
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Lemma 6.3.18. Let (¢)k(x) (and (6.5.16)) hold. For each h € Co(X), we
have

(Ba(n); et () € ﬂ LP(IK(X), ). (6.3.19)

Proof. For each k € Ny there exists A € Q,(X) and C' > 0 such that

[ ot < € [ (14 00+ (g n)”) )

2k
2k ;
< CkZ( ) / (Tuig,m)” p(dn) < oo, (6.3.20)
—o \J K(X)
where we deduce the finiteness by Theorem 5.3.10. O]

Integration by parts for the extrinsic directional derivative

Theorem 6.3.19. Let (¢)k(x) (and (6.8.16)) hold. Then we have for F,G €
FCP(K(X),Co(X)) and h € Cy(X) the following extrinsic integration by
parts formula

/ VW F(n)C(nu(dn) = — / F(n)VX, .G () u(dn)
K(X) K(X)
- /}K o PG ) Baon ()

It can be rewritten as

((VEL)™G) () = = (VEG™), h)res
_G(n)< ext(ﬁ) >Text K)- (6321)

Remark 6.3.20. This integration by parts formula for the Gibbs measure
1 is independent of the concrete structure of the Gibbs measure: It only
depends on the potential ¢ (and, of course, on the Gamma measure Gy and
the direction h € Co(X) of the directional derivative).

Proof of Theorem 6.3.19. To prove this result we use the (DLR) property
of the measure p. The integrability of the logarithmic derivative is given in
Lemma 6.3.18.

By the product rule, it is enough to prove the integration by parts formula
for G = 1. Fix A € Q.(X) such that F(nz) = F(n) and h = hlz. Let
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Uz € Q.(X) be chosen as in (FR). In particular, ¢(z,y) = 0 if € A and
y ¢ Ux. Let A € Q.(X) be such that Uz C A.
Using the (DLR) equation (cf. (6.3.18) in Definition 5.3.5), we get

Ve F (mu(dn) = VaenE (na)p(dn)

K(X) K(X)

:/ / VesenF(na U &ac)maldnalé)pu(de)
K(x) JE(A)

[ e | TEGFaae 0 ). (6322
k(x) Za(8) Jr(a)

where G denotes the Gamma measure on K(A). We calculate the inte-

gration by parts formula for the inner integral. Since each factor in the

integrals below is continuously differentiable and the logarithmic derivative

is in (,ey LP(K(X), p) (cf. Lemma 6.3.18), we may interchange the differ-
entiation and integration.

VanF (n)e PHata0 G, (dn)

K(A)
d
-2 F(ethn)e—ﬁHA(nAlﬁ)ge(dn)
dt ]K(A) =0
d _ —th thhgg(n)
_ v F(n)e BHA(e ﬂAlE)—dge(n)
dt Jx(a) dGe(n) =0
d - _
== F(n)exp (— BHa(e™™nal€) — 0(th,m) — (™™ — 1,1))dGy(n)
dt K(A) -0
(6.3.23)
We calculate the derivate of the relative energy:
d
— Ha(e™"[€)
dt —to
d —th(z) . — —th(x
7( o e M sgay)+ Y e s, y>)
@ yeT(MNA z€T(n)NA t=to
yeT(§)NA®
=— Z (h(x) + h(y))e M@ e~ 0hW s, (3, y)
m,yET(n)ﬂAﬂA
- Z h(z)e " @ s s, 6(x,y) (6.3.24)
xET(n)ﬂAﬂA
yer(§)NANUL

- <h7 ¢>Tn®n’
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where the second sum in (6.3.24) vanishes because Uz C A. Interchanging
integration and differentiation in (6.3.22) and plugging (6.3.24) into (6.3.23),
yields

/ VK F(n)ePPams0G, (dy)
K(A) ’

= / F(n)(Ble(n), hygeseye” 010Gy (dnp). (6.3.25)
K(A)
Plugging (6.3.25) back into (6.3.22), we get using the (DLR) equation

VewenF () p(dn)
K(X)

— 1 M ot e—ﬁHA(n\S) p
/IK . ( G /K o PG By G <dn>)u<ds>

- /IK o PO ). Bt

which implies the claim. O

Adjoint of the extrinsic gradient

Definition 6.3.21. A function V is called a extrinsic vector field iff it is of
the following form

where g; € FCRP(K(X),Co(X)) and ¢; € Co(X) for i = 1,...,N. By
Veyr, (K(X)) we denote the set of all these extrinsic vector fields.

Remark 6.3.22. For F € FC*(K(X), Co(X)), we have VE,F € V,,,(K(X)).

Lemma 6.3.23. Let Vi, Vs € Veyr, (K(X)), then

/]K(X) (Va(1), Va () e ey 1) < 0.

Proof. The extrinsic vector fields are bounded and finitely supported. Thus
the integral is finite because the first moment of p is finite (cf. (5.3.13)). O
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Theorem 6.3.24. Fiz V = SV gi¢y € Vour, (K(X)). Let (@)k(x) (and
(6.3.16)) hold. Then we have for all F € FC}HK(X), Co(X))

/ <VE§:tF( >Text(]K) /,L(d??) =
K(X)

—/IK(X)F ZWW% M), G4 ) s ey ()
N /K(X) E@){Bean(n), V (0)) e ayaldn) (6.3.26)

where all the integrals are finite. We can reformulate it as

<<VE§“ ) Z <veactgl )7 ¢i>Tﬁ’“(]K)
_< 5xt(77)>v(77)>7’;;xt(ﬂ<)- (6.3.27)

Proof. The finiteness of the involved integrals follows by Lemma 6.3.23. Sim-
ilar as in Theorem 6.3.8, we use the integration by parts formula (cf. Theorem
6.3.19) to derive the result. O

Extrinsic bilinear form

We define for F,G € FC°(K(X),Co(K(X))) the bilinear form
ER.G) = [ (VA VRGO o). (6325)

Remark 6.3.25. [t is finite (¢f. Lemma 6.5.23) and densely defined (cf.
Corollary 6.2.8).

Definition 6.3.26. For each F' € FC(K(X),Co(X)) we define the extrin-
sic generator for all n € K(X) by

(L F)n) 1= = (SECTF) (1) = (Blam), VEF (0)rpexo,

where for all n € K(X)

(St F)Y0) =" dkgr({prn), - (ow. W) (P )T (-
l,k=1
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Corollary 6.3.27. Let (¢)xx) (and (6.3.16)) hold. We have for F, G €
FCP(K(X),Co(X)) that

gewt(F G) /]K( <ve$t ) Vgt 77)>T$xt(ﬂ<) H’(dn)

- /]K e E)G (i) (6.3.20)

Proof. The claim follows by Theorem 6.3.24. Namely, for an arbitrary cylin-
drical function F(n) = gr({p1,n),...,{(pn,n)) € FCF(K(X),Co(X)) we
choose ¢; = p; forv=1,..., N and
9i(n) = digr((pr,m); -, (P> m)).
O

Proposition 6.3.28. Let (¢)kx) (and (6.3.16)) hold. Then the bilinear
form (&L, FCP(K(X), Co(X ))) zs closable, symmetric and positive definite.

ext)r

Proof. This assertion follows similarly to Proposition 6.3.12 with the obvious
adaptions. O

Extrinsic Dirichlet form
We denote the closure of (EL,, FCP(K(X), Co(X))) by (Eb, D(EL))-
Theorem 6.3.29. Let (¢)k(x) (and (6.3.16)) hold. Then (L, D(EL,)) is a

conservative Dirichlet form.

Proof. The claim follows as in Theorem 6.3.14 with the obvious changes.
O

6.3.3 Intrinsic motion related to Gibbs measures

From now on, let (¢)kx) (and (6.3.16)) hold and, in addition, ¢ € C*'(X xX).

Integration by parts for the directional derivative
Before we calculate the integration by parts formula, we introduce

Definition 6.3.30. Let (¢)k(x) (and (6.5.16)) hold and ¢ € C'(X x X).
For each v € Vo(X) and each n € K(X) we define the intrinsic directional
logarithmic derivative

0= (Bl (), O)zime ey =850, V) sy — BV 0, 0)g, oo (6.3.30)



6.3. DIRICHLET FORMS 173

Here,

B91), )y = /X (™ (), 0(@)) g + divSvo(x)n(de)
and
(V6,0)5, 57, = /X /X (VX(x. ). (0(2), () n(dz)n(dy)  (6.3.31)

Remark 6.3.31. Note that

(Vo v)ner, = D (V¥o(x,y), (v(),0(y)) sesy

z,yeT(n)
= Y @0 )(0(@) + Dbl ) w)) sa5 (6332)
z,yeT(n)
Lemma 6.3.32. We have
0= (Blu(n), V) € () LF(K (6.3.33)
keN
Proof. As in (6.3.20), we get the integrability of (Bf(-), V)7 g)- O

Theorem 6.3.33. Let (¢)k(x) (and (6.3.16)) hold and ¢ € C*(X xX). Then
for each v € V(X)) and F, G € FCr(K(X), COO( )) we have an intrinsic
integration by parts formula for the gradient VX

nt, v

/ (Vi F) ()G (n)pu(dn) = — / Fn) (VE,,G) ()u(dn)
K(X) KX
- /MX) E(n)G (1) (Bina(n), 0z ayu(e)- (6.3.34)

Proof. Tt is enough to deduce the claim for G = 1. There exists A € Q(X) :
F(n) = F(nz) and v = 1zv. Using the (DLR) property, we have for an
arbitrary A € Q.(X) with A D Ux

/ (Vﬁim )() (dn)=/]K(X) (V}Ew )(m)ﬂ(dn)
= oo fo (F5F )ty i

/ (v F) (112 U €a0)e= P0G (dns ) ().
K(A)
(6.3.35)

N /]K(X) Za(§)
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Since both factors in the integrand are in (1) LP(IK(A), G5, we get using
(the proof of) Theorem 6.3.5 that

/]K(X) (Vﬁt ) (1) (k)

1 / _ G
o I o L el G AN R
/]K(X) Za(€) JKa : Tia ()

5 S Ha ((60)7) nle)

)geA(dm)u(dﬁ)- (6.3.36)

t=0

Hence, it remains to calculate

Gt (@0 ne)|
—5 Y e @@ 60 ) s,
z,yeT(N)NA
+ Z ?J) Sz Sy
zeT(n)NA =0
yer(§NAC
= 525y (010 ((81) 7 (2), (8)) 7' () (W(2))
z,y €T(nNA

+ 029 ((67) (@), (6)) ' () (ely))

t=0

= > sy (0, ) (@) + Da0(x, ) (t(2)))

zyer(n)NA

(6.3.37)

t=0

Here, we used that ¢((¢?) ' (2), (¢¥) '(y)) =0 for all t, € A and y ¢ Ux.
Hence, it is sufficient to consider

X >z () = (% (cbt")l) (z)

() o twnr@n) (o) @i w)
- ((%gg) o ((qsg)l(g;)))l (v(z)). (6.3.38)

Moreover, v € V5(X) is a smooth, compactly supported vector field and (cf.
e.g. |[Hag08, Theorem 4.2.11]) the derivative in (6.3.38) is bounded; therefore,
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¥y is uniformly bounded for small ¢. Setting ¢t = 0 yields

vo=— (o) o (697 )) 0t = ~vta)

We plug (6.3.38) back into (6.3.37) and see that the later equals

Z Smsy (al¢(x7 y)U(I) + 82¢(l’, y)U(y))

zyer(n)NA
—(Vo, 13v)1,01, = —(VO, V)10, (6.3.39)
Using (6.3.39) in (6.3.36), yields the claim. O

Adjoint of the intrinsic gradient
Lemma 6.3.34. Let V1, Vs € Vo x(IK(X)), then

/IK(X) (Valm), Vo)) aoy () < 00

Proof. The claim follows similarly as in Lemma 6.3.23 because V; and V5 are
bounded and finitely supported (cf. also Definition 6.3.6). ]

Theorem 6.3.35. Let (¢)k(x) (and (6.3.16)) hold and ¢ € C'(X x X). Fix
N
V=" giv; € Veux (K(X)).
i=1

Then for any F' € FC(K(X),Cgo(X))

_ /K . F(n) (Z( Vintw9:) (1) = é;t<n),v<n>>mm(m> p(dn). (6.3.40)

=1

In other words,

(VE)™ V) () = (= VE09) (1) = (Bay(m), V() rmrey- (6.3.41)

=1
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Proof. The claim follows by the intrinsic integration by parts formula of the
Gibbs measure p (cf. Theorem 6.3.33):

[ TEE@Voaan) = [ S (TR 0, v)atmn(

()
‘ /K . F(n)- <_vﬁt,mgi(n) — gi(n){ ﬁt('rz),vi(n)mm(m) u(dn).

which implies the result by the linearity of the logarithmic derivative. ]

Intrinsic bilinear form

We define for F,G € FC*(K(X), Cg°(X)) the intrinsic bilinear form
EF.C) = [ (V) VR0 (i)

Proposition 6.3.36. Let (¢)k(x) hold and ¢ € CH(X x X). The bilinear
form (Eh,, FC(K(X),C§°(X))) is well-defined, closable, symmetric and

wnt?

positive definite.

Proof. By Lemma 6.3.34, the integral is finite. Since FC°(K(X),C5(X)) C
L*(K(X), p) dense (cf. Corollary 6.2.8), the bilinear form is densely defined.
Thus, the bilinear form is well-defined. The other properties follow as in the
proof of Proposition 6.3.11. O

Corollary 6.3.37. For F, G € FC(K(X),C5*(X))
ARG = [ PO G) )
K(X)

where we define the intrinsic generator L% , as

(Ll;nt G) (77) = ((v]ilfzt)*’u v]iIthG) (77)

N
62
- E 8-8496 ((901777>7 ceey <90N7 77>) <VX(101'7 VX90j>T;‘,“t(lI<)
iUj

1,j=1

- ZaigF«pla 77>7 T <pN77]>)(/XAX,Oz(l’)d7]<l’>

+/XW’”(QJ),VXpi(ﬂf))szdn(iv)—<V¢, VXPi(fE))Tn@eTn) (6.3.42)

Proof. To calculate the generator, we use V() = VE.G(n) in (6.3.40) and

int
follow the arguments to prove Corollary 6.3.11 with the obvious changes. [J
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Intrinsic Dirichlet form

We denote the closure of (&

int»

FO(K(X), G52 (X)) by (&,

int»

D(Eni))-

Theorem 6.3.38. Let (¢)k(x) hold and ¢ € C'(X x X). Then the closure
(EF,D(EM)) is a conservative Dirichlet form.

Proof. As for the proof of Theorem 6.3.14, the claim follows by showing the
contraction property. 0]

6.3.4 Joint motion related to Gibbs measures

In this subsection we combine the extrinsic and intrinsic considerations to get
a gradient Dirichlet form that corresponds to VX and describes a movement
in both components.

Adjoint of the directive derivative

Theorem 6.3.39. Let (¢)ix) (and (6.5.16)) hold and ¢ € CHX x X).
For each h € Cy(X), v € Vo(X) and n € K(X) we define the following
logarithmic derivative

<6“(77)7 (h7 U)>T7;(]K) = <65xt(n)7 h>TSXt(IK) + <ﬁz’l;t<7]>7 U>T,i7m(]K)‘

We obtain for all F, G € FCHK(X),Cy(X)), all h € Co(X) and all v €
Vo(X) an integration by parts formula , i.e.,

/]K " Vi F(n)G(n)p(dn) = — / F(n) Vi, G (n)u(dn)

K(X)

= [ FaGmE ). () ontdn)
K(X)
Proof. The result follows by Theorems 6.3.19 and 6.3.33. [

Adjoint of the gradient

Definition 6.3.40. A function V : K(X) — R is called a joint vector field,
iff it is of the following form

Vi(n) = (Z gi(moi Y hi(n)vz)

=1

where for i = 1,...,N g, h; € FC(K(X),C(X)), ¢ € Co(X) and
vj € Vo(X). By Vou(IK(X)) we denote the set of all these joint vector fields.
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Moreover, we denote for each such V' its projection to Veur, (K(X)),
respectively to Vi, x (K(X)), by

N N
= Zgi(n)qﬁi, respectively by Vx 1= Z hi(n)v

i=1 =1
Remark 6.3.41. Let F' € FCP(K(X),C5°(X)) then VEF € V,,(K(X)).
Lemma 6.3.42. Let V1,V € V., (K(X)), then

/]K(X) Vi), Vo)), ) #(dn) < 0. (6.3.43)

Proof. Using equation (6.1.7), this follows by Lemmas 6.3.23 and 6.3.34. [J
Theorem 6.3.43. Let (¢)x(x) (and (6.3.16)) hold and ¢ € C'(X x X).Fix

V= (Z 9iPi, ZM%) € Veu(K(X)).

=1 =1

Then we have for all F € FC(K(X), C5°(X))

| T E 0LV W)
K(X)
= / |:Z <V€xtg2 )7 ¢i>T§Xt(]K)
K(X)
+ <vmt )7 /Ui>TTi7nt (K) :| M(dn)

- /IK OO VOront),  (6341)

where all the integrals are finite. We can reformulate in terms of the adjoint

((VK)*’“ V) ()

:_Zwmgz , bi) rost () — (Bt () Viy () x)

Z znt )7vi>T%nt(K) - <ﬂmt( ) VX( ))T,%““(IK)' (6345)

=1

Proof. This follows by the definition of 7},(IK) (cf. (6.1.7)) and by Theorems
6.3.24 and 6.3.35. The finiteness of the involved integrals follows by Lemma
6.3.42. -
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Bilinear form

We define for F,G € FC*(K(X),Cg°(X)) the joint bilinear form

&(r.6) = [ | (TEF ), TGl (6.3.46)

Remark 6.3.44. It is finite by Lemma 6.3.42 and densely defined by Corol-
lary 6.2.8.

Definition 6.3.45. We define for all F € FC°(K(X),C5°(X)) the intrinsic

generator as

(L F)(n) := (L F) () + (L F) (1)
= (S¥OF) (1) = (6" (), VEF (0)) 7, 0,
where n € IK(

)

)
(SN F) () 1= (SEX F) () + (S5 F) (o),

(Lt F)() 1= = (SEXOF ) (1) = (Blaln), VEF (1) amd
(Lo F)0) i= = (SEF) (1) = (Bham), VEF (1))

Corollary 6.3.46. For I, G € FC*(K(X),Cg°(X)) we get

EMF,G) = /K " (VEF(n), VEG( )>Tn(m p(dn)

- [ @ RwGmuan). (6347

K(X)
Proof. This follows by Theorem 6.3.43 and by Corollaries 6.3.11 and 6.3.27.
O

Proposition 6.3.47. (&*, FCP(K(X),C5°(X))) is a closable, symmetric
positive definite bilinear form.

Proof. This follows by (6.1.7), Proposition 6.3.28 and Corollary 6.3.37. [J

Dirichlet form
We denote the closure of (£#, FC*(K(X),C5°(X))) by (E#,D(EM)).

)
Theorem 6.3.48. Then the closure (of the bilinear form) (E*,D(E")) is a
conservative Dirichlet form.

Proof. This follows by the arguments used to prove Theorems 6.3.29 and
6.3.38. O
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Chapter 7

Equilibrium processes

In Chapter 6 we obtained extrinsic, intrinsic and joint gradient Dirichlet
forms. Now, we want to actually construct corresponding diffusions on
K(R?). We achieve this, e.g., for the Gamma measure Gy in the basic model
framework. The obtained diffusions are measure-valued diffusions.

According to [Hoc91| and [Sko97] the theory of measure-valued stochas-
tic processes was initiated by [Daw75|. “Measure-valued processes have been
used to describe the dynamics of populations whose underlying distribu-
tions are continuously changing, and which are therefore described via a
distribution or random measure at each fixed time. They also arise as the
diffusion approximation to certain real-valued processes describing spatially-
distributed systems. Applications that lead to measure-valued processes in
the diffusion limit include models that describe the behavior of systems of
branching and diffusing particle [.. .|, models describing frequency distribu-
tions of alleles in neutral, non-neutral and interactive populations |[...|; and
the continuous limit of hierarchically-structured branching and branching
diffusion systems [...].”! (For details, references and examples we refer to
the survey paper [Hoc91].)

Prominent examples for genetic models are the Fleming-Viot processes,
which are supported by spaces that consist of probability measures (cf. [EK93,
RS95, EK95|, where [EK93| is a survey). A (technical) advantage of treat-
ing processes on the space of probability measures is that this space can be
equipped with the Wasserstein-metric making it Polish (cf. Theorem A.2.8).
This is quite useful for showing the quasi-regularity property.

In [Dyn89] the Ornstein-Uhlenbeck, the Fleming-Viot and the Dawson-
Watanabe process are considered in a unified view. More recent publications

!This is quoted from [Hoc91, P.212].

181
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consider entropic measures and Wasserstein diffusion (cf. [vRS09, AvR10]).

As we pointed out in Chapter 6, to a Dirichlet form, there exists an
associated diffusion if and only if the Dirichlet form is quasi-regular and
local. Hence, our task is to find conditions for the Dirichlet forms to be
quasi-regular (and local) in our setting.

In [BBRO6, P.269] it is outlined “that for any semi-Dirichlet form (€, D(£))
on a measurable Lusin space F there exists a Lusin topology with the given
o-algebra as the Borel o-algebra so that (£, D(E)) becomes quasi-regular.
However one has to enlarge E by a zero set.” But, this set might not be
exceptional, and hence, the associated process might not be located on F. In
[BBROS8, Theorem 2.2| a condition is presented such that there exists a right
process with state space E. Unfortunately, we cannot apply these results
because we do not know whether IK(X) is a Lusin space.?

To get the quasi-regularity, we use a technique presented in [RS95| (cf.
also [MRO0| and [KLRO6, Section 6]). It uses that the underlying state space
is Polish. Hence, in our situation, our first task is to find a proper underlying
Polish space.

Having the above remarks in mind, an initial idea is to treat this issue
in the spirit of Fleming-Viot processes. In Section 7.1, we embed K(X)
into the well-known Polish space M(X) of all Radon measures over X (cf.
Section A.2). Here, as before (cf. Chapters 6), we consider a connected,
orientated C*°-Riemannian manifold X and a measure m(dz) = p(x)o(dz)
on (X, B(X)) with

p€ HY(X,0). (7.0.1)

Then we obtain a process describing an extrinsic motion (cf. Theorem 7.1.1),
if X is compact.

This is a good start, but those diffusions that we want to construct in the
following

e for extrinsic, intrinsic and joint motion
e are located in IK(R?) and

e are related to Gibbs perturbations of G, w.r.t. to a pair potential
0 < ¢ e C'R? x R?) as treated in Section 5.3 (cf. (¢)x(ra))-

2A Lusin space is the continuous one-to-one image of a Polish space.
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And the results in Section 7.1 do not provide this. Hence, we have to analyze
our situation more carefully.

A main difficulty to obtain diffusions on K(R9) is to find the correct
underlying Polish space for the quasi-regularity property.?

For simplicity, let X = R% d € N, and m be the Lebesgue measure dx
on R?. We define a functional dis, (cf. Definition 7.2.7) on the configuration

space of multiple configurations in R% (cf. (7.2.1)), which is a metric on (cf.
Definition 7.2.9)

P (RY) .= {7 e T(RY)|dg, (v,0) < oo} .

The space (f‘f(Rd>,dfxf) is Polish (cf. Theorem 7.2.11); and it is the space
on which we will work.

Consider the pre-Dirichlet form defined for all F € FC°(I'f(R?), Co(RY))
(cf. (7.2.15)) via (cf. Definition 7.2.18)

£ () ::/ff@d) /@d (\/Ed%F(v))g

+ (%%Wv)) v(ds, dz)Py(dy).

Its closure (P17 D(EPo1'1)) is a conservative Dirichlet form (cf. Theorem
7.2.22). As an essential step to obtain an associated diffusion, we prove that
this Dirichlet form is quasi-regular (cf. Theorem 7.2.39).

We get a conservative diffusion? ML’ that is properly associated with
(EPeLs D(EPoLs)) (cf. Theorem 7.3.7). One drawback is that the process is
only constructed on I'(R%). In Theorem 7.3.12 we prove that it is actually a
diffusion on the set I'x (R?) consisting of all pinpointing configurations with
finite local mass dj, (@) (cf. Definition 7.3.8). For the proof we show that

DR\ (RY) is EPeL'r-exceptional by extending a technique presented in
IRS9S].

In Section 7.4 we transfer this result to the cone K(R?) and get a main
result of Chapter 7 (cf. Theorem 7.4.4 and Corollary 7.4.5):

3Since we do not know whether IK(X) is a Lusin space, we cannot apply the abstract
results [BBR06, BBROS].
4A diffusion is a strong Markov process with continuous sample paths
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e There exist extrinsic, intrinsic and joint diffusions on K(R?), d > 2,
describing the motion of marks and positions.

e In particular, there exists a diffusion describing the motion of the dense
set 7(n;) € RY, where 1, € K(R?) for all t > 0.5

The above results extend to more general situations (cf. Theorem 7.4.4):

1. We can equip the Lebesgue measure dz with a density p € Hllo’c2 (R?, dx)
such that m(dz) = p(z)dx fulfills (cf. (7.2.12))

m ({z e R? | |z| < k}) < MC".

2. In addition to the first extension, Gy can be replaced by a Gibbs per-
turbation of Gy w.r.t. some non-negative potential ¢ € C*(R? x R9).

7.1 An extrinsic process moving finite measures

We show the quasi-regularity property of an extrinsic Dirichlet form. Then
there exists a corresponding Markov process (cf. Theorem 7.1.1 for the exact
properties and for their definitions [MR92, Definitions IV.1.5, IV.1.8 and
IV.1.13]).

Let X be compact for this section.

7.1.1 Embedding of K(X)

K(X) can be embedded into M (X)), which denotes the space of Radon mea-
sures. And, more importantly, the gradient and bilinear forms are well-
defined, if we replace

FCOF(K(X), Co(X)) by FCOZ(M(X), Co(X)), resp.
FCOF(K(X), G (X)) by FC*(M(X), C°(X)).

For the Dirichlet forms we use that any Gamma measure Gy, as well as all
other considered measures, has full mass on on the cone K(X). Hence, the
results that we obtained in Chapter 6 are carried over.

5The extrinsic motion exists also for d = 1.
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Extending of well-known objects For each h € Cy(X) and n € M(X),
we extend the definition of the translation given in Subsection 6.1.2: It acts
on each Radon measure by equipping it with a density, i.e.,

My (n)(dz) = eh(x)n(dm).

We get similar to Proposition 6.1.7 for each F' € FCP(M(X),C5°(X)),
h € Co(X) and n € M(X)

N
(VienF)m) = 0igr({p1,n), -, (pns ) (hs pi) e (),
=1
where TX(M) := L*(X,n).

7.1.2 Quasi-regularity of extrinsic Dirichlet forms

Theorem 7.1.1 (compare also [RS95, Theorem 3.4 or p.31f]). Let X be
compact and p be a probability measure on (M(X), B(M(X))) having full
support on K(X) and finite first moment, i.e.,

E,[(1,)] < oo.

For all F, G € FCP(M(X),Cy(X)) we define the extrinsic bilinear form
ELM(F,G) = /M( )<VﬁitF (1), VG (n)) s ay (). (7.1.1)
X

We assume that it is closable and that its closure (', D(E"M)) is a Dirich-

ext ext

let form. Then this Dirichlet form is quasi-reqular and there exists an as-
sociated p-tight special standard process, which is properly associated with
(€ DELT)).

Theorem 7.1.2. Let m(X) < oo and pu be a Gibbs measure as treated in
Section 6.3. Then (£"M D(E%M)) is quasi-reqular and there exists an as-
sociated p-tight special standard process, which is properly associated with
(" DELT)).

Proof. As in Section 6.3, we obtain that the bilinear form is closable and
that the closure (£4M, D(E"M)) is a conservative Dirichlet form because s

has full support on K(X) (cf. also Theorem 6.3.29). Thus, Theorem 7.1.1
implies the assertion. O

This is our motivation to prove Theorem 7.1.1, for which we use:



186 CHAPTER 7. EQUILIBRIUM PROCESSES

Definition 7.1.3. Let p and p; be two metrics on E. They are uniformly
equivalent if

id: (. p1) = (. p)
and its inverse are uniformly continuous.

Lemma 7.1.4. Let (E,p) be a metric space. If ¢ € C°(R) is a strictly
increasing function (i.e. @' > 0) with decreasing derivative, ©(0) = 0 and
¥'| <1, then

pri=@op
is a bounded metric, which is uniformly equivalent with p.

Proof. The boundedness, symmetry, positivity and triangle inequality (¢ is
increasing!) for the metric p; are clear. It remains to show that id : (E, p;) —
(E,p), as well as its inverse, is uniformly continuous. For the inverse this
property is obvious (p; < |¢'| - p < p). Since ¢’ o (,0*1|R(T € C(R{) and

Jeg > 0: gp’((p_l(O)) > g9 > 0, there exists 0; > 0 :
(7' (r) = % Vr>0:|r| <.

For € > 0 pick ¢ := min(d;, %¢). Then for all z,y € E with pi(z,y) <6

1

—1
ry) — ry) £ max — (e,
plasy) = ¢ (mloy) £ | max go’(so‘l(r))pl( g

1 €
< max ——0 2

1
—_ .2 e <e.
0<r<s go’(gp_l(r)) - %2 2 £=e

]

Proof of Theorem 7.1.1. Since X is a complete, separable metric space, by
Corollary A.2.10 M(X) is again Polish. Moreover, by Theorem A.2.11, there
exist uniformly continuous functions (¢;);ey on X, such that ||¢;]/-c < 1, and
they are sufficient to get the metric which generates the topology on M(X):

po(n,v) = sup(di,n —v), n,ve M(X).

Similar as in Subsection 6.1.2 (compare Definition 6.1.4 and Proposition
6.1.8) we have for F(-) = gr({p1,-),.-., {pn, ) € FOLM(X), (X)) and
n e M(X)

(VgitF)(n) = ZaigF(<p1777>> o {powsm))pi € TSXt(M) = L2<X7 n)-



7.1. AN EXTRINSIC PROCESS MOVING FINITE MEASURES 187

The Dirichlet form (€M, D(E%M)) is of the type studied in [RS95, Section

ext ext

3] with core FCP(M(X),Ch(X)); and for F,G € FCP(M(X),Ch(X)) we
set for all n € M(X)

SEF,G) () = (Ve F) (), (VELG)( ))Tget (M)
:Z@igF(<p1,77> o Z@go pLmYs - (P> m))
x (pi(x)p;(w), ).

By [RS95, Lemma 3.2, S satisfies [RS95, (3.6)]: For any smooth function
¢ on R with ¢(0) =0 and |¢’| <1 we obtain

1SS (F.¢0G)(n)| = ‘/}(Zaigp(<pl,n>7.-.,<pN,n>)pi(w)

DL CLF ORI NACLICE

ng<<P1ﬂ7>a><,0N,77>) ,<G(T/))|
Z@ga oo || [ p@s @)
\S(f;t (F,G)(n)|.
Let ¢ be as in Lemma 7.1.4, then, by the same lemma, p; := @ opis a

bounded metric uniformly equivalent with p. Since (M(X), po) is separable,
there exists a countable dense set (;);eny C M(X). We define

fis() := o((&5,m — vi)) YV € M(X).

Then we obtain, using that ¢ is increasing,
sup fi;(n) = @(sup(e;,n—vi)) = v(po(n,vs)) = p1(n, 1i).
j J

In order to apply [RS95, Theorem 3.4] it remains to show

Slilp ext(fm) S Ll(./\/l(X),,u).

J



188 CHAPTER 7. EQUILIBRIUM PROCESSES

We have
Soa(fi)(n) = /X(w’(@jm —vi)))?¢3 (x)n(dx) < (1,7),

which, by assumption, is integrable w.r.t. . Thus the Dirichlet form
(&M D(E4M)) is quasi-regular by [RS95, Theorem 3.4]. By [MR92, Theo-

ext ext

rem IV.3.5, p.103] we obtain the mentioned associated Markov process. [

7.2 Quasi-regularity on multiple configurations

In this section, we prove that (Epg’ff,]:(]g’o(ff(l@d), Co(R%))) is closable and

ext
that its closure is a quasi-regular Dirichlet form (cf. Subsections 7.2.4 and

7.2.6). To that end, we show that (ff(Rd>,df\f) is a Polish space (cf. Sub-

section 7.2.2).
For our considerations we need the configuration space of multiple locally
finite configurations in X

F(X) = {7 = Zmy5y

yey

my, € N and v(A) < 0o, ¥ A € B.(X) } . (7.2.1)

An equivalent representation is

A~

N(X) = {& = (n",7)|y € (X)), n?:vy— N}. (7.2.2)

We define [ja] := >_ . n7(y). Here, the function n” yields the number of
points at each position y € 7. I'(X) C M(X) is equipped with the vague
topology O(T'(X)) inherited from M(X). The corresponding Borel o-algebra
is denoted by B(I'(X)).°

. A~ . A

We fix p to be a probability measure on (I'(X), B(I'(X)) such that

. A

(h,-) € LYT(X), p) for all h € CF(X). (7.2.3)

7.2.1 The embedding space for compact X

Let X be compact. We define the set of multiple configurations with finite
mass by

(X)) = {7 e P(X)|(y, s @ 1(x)) < oo} , (7.2.4)

SFor details, we refer to, e.g., [AKR98a].
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where F(X ) is defined by (7.2.1). We equip I’ f(X ) with the subspace topology

~ . ~

O(T'4(X)) of (T(X),O(I'(X))) and denote by B(I';(X)) the corresponding
Borel o-algebra.

Remark 7.2.1. If we consider the subset of pinpointing configurations, then
we get I'¢(X), which corresponds to the cone K(X) (cf. (2.2.20) and also
the proof of Theorem 5.3.7).

We define a metric which yields an alternative (and for the later consid-
erations very useful) description of I'f(X):

Definition 7.2.2. Fiz q € (0,1). Then we choose a sequence (fy), 5 such
that f, € C*(R,),

ﬂ[qngn—l] S fn S ﬂ[qn+l7qn—2] and |f7/1| S qi(n+3)ﬂ[qn+17qn]u[qn—1,qn—2}.
(7.2.5)

We define the metric

d(7,7) = D v =7 fa(s)s®@ 1)) ¥y, ¥ €T(X).  (7.26)

n=—oo

Remark 7.2.3. Note that (I';(X),d;) is a metric space: The triangle in-
equality is clear and the rest follows by the following equivalence

de(v,9) <oo < (y,1(z)s) < oo,

which holds for each v € T(X) because

[e.9]

(7, 1(@)s) < > (1 L@ fuls)s) < D (7, L(@) Liguer guzys) < (7, L(x)3s).

n=—oo n=—oo

Definition 7.2.4. Let dyr denote the metric defined in [MR00, (3.12)]. On
I'¢(X), we introduce the metric

di,(1,7) = dur(7,7) +ds(1,7), Vv, A € TH(X).

Remark 7.2.5. Let us summarize a few properties of dyr (cf. [MROO,
Subsection 3.2, esp. (3.12), and (3.3)]):

dur(7,7') = sug cxé (@ (D70 7)) s (7.2.7)

ke
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where 0 < ¢ N\ 0, £ € CP(R) with 0 < ¢ < 1 on [0,00], £(E) =t on
[—1/2,1/2], & >0 and " <0, ¢ == (1 4 0k)/0k 9E, 5,

Tx(1.7) 1= sup {[5.:(1) = 94 (7|4 € BX), e > 0},

=A@ A D) ad ) = [ s,

JAe (5%> =

Here, dg denotes the metric on X (cf. (2.2.6)) and (Ej)ren, consisting
of bounded sets, is a well-exhausting sequence of X with (O )ken being the
corresponding sequence of strictly positive numbers.

This means that

UEB.=X and EY C Epy, VkeT,

where we define A .= {1 € )A(|dX(x,A) < ¢} forall Ae B(X) ande > 0
and (0g)ker s a sequence of strictly positive numbers.

Theorem 7.2.6. If (X,dx) is a compact and complete separable metric
space, then (I';(X), dff> is a complete and separable metric space.

Proof. Let (vx)ken be a dff—Cauchy sequence. Then it is a dygr- and a dy-
Cauchy sequence. We define for n € Z

Y=y, L@) fuls)s) Yy eT(X)
and get the following embedding:

[(X) « Ty(X) — I
ST I TR (%ﬁ")>

n=—oo

. ~

Since (vk)ren is a dyr-Cauchy sequence in the complete space (I'(X), dyr),

we deduce by [MR00, Proposition 3.9] that it converges vaguely to a multiple
configuration 4, € T'(X). By the vague convergence, 4™ converges point-
wisely to 7(()"). Since (vlin))zo:_oo, k — oo, is a dsp-Cauchy sequence in the

Banach space [!, it converges to an element a = (a(”))zo:_oo € ['. The !
convergence implies pointwise convergence, thus

%()n) =a™ VneZ
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because the pointwise limits have to coincide. Hence, 7o € I f(X ) because
Y € D(X) and a € !, ie.,

df(’707®> - Z (70, L(z) fu(s)s) = Z a™ < oc.

Therefore, (I'j(X), di,) is a complete metric space.

[t remains to prove the separability: To that end, let $
dense set in (F(X ), dvr). We define

B(R) be a countable

S x) = {’yK ={(s,2) €7]¢" <s<qF, reX} ‘7 € Sy K € N}.

This is a countable and dense subset of (F f(X ) dff). Indeed, let ¢ > 0 and

v E Ff(X) Since there exists K := K such that ¢, < ¢ and £ <1 for all
k> K, we get (cf. (7.2.7))

dMR(”Y, ’)/k) <e Vk> Kyg. (728)

Moreover, since dy(7, &) < oo,

3K > Kyp: V> K > (7, fal(s)slx(x))]| <e. (7.2.9)

|n|>k—2
nez

~

Since Sf(f() C F(X) 5 vk dense, there exists 7' € Sf(j():

dMR(’YK;'VI) <e and
€
(Ve — 7 Lx fu(s)s)] < S VneZ: |n|<K+4. (7.2.10)
We pick vy, o, then

dur(Vis Vicra) < dur(n, ) < e (7.2.11)

because we have less points outside of [¢¥,¢7] x X, in which lie all the
points of vx. Furthermore,

9
‘<’}/K — ’y}{+2, ILan(S)S)‘ < W Vn € Z
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because (frx+1(5)s, vx) = 0 and (fr4+m(5)s, Vi4o) = 0 for all m > 3. Thus,
dir, (7 Vics2) < dur (7. vi) + dur (VK, Vicy2) T A (v, 7x) + dp(Vi Vi 12)

<e by 728) <e by (7211)

<24 3 [ Sl @)+ Y [(qi fal)sL(a)

$
-0 Vn<K-2 InI2K-2  cy

Y 0 LT @)+ S [ = Vs Fal9)sTx(@))]

|n|>K—2 [n|<K+3

-
< e 2-Inl-2

—~
<e by (7.2.9)

15
+ D [ =Yk Fals)shx(@))] < 26 +2e+ S(14+2°+1) <5,
|n\>K+3

70

which shows the separability. O

7.2.2 Identifying a proper Polish space for X = R

Let X = R% d € N. We restrict the assumptions on m to get the corre-
sponding assertions of Theorem 7.2.23 (and 7.2.29 and 7.2.31).

Basically, we assume that the mass does not “grow too fast”. Then, using
a well-exhausting sequence { X }ren of R, we replace 1x by an infinite sum,
as we did replace 1g, s by > sfn(s).

Definition 7.2.7. If m(R?%) < oo, then we choose T = {1}, X; = R¢ and
¢1 = Lx. Otherwise, let § = 1/2 and define for k € 1:=N

X = {z e R |2| <k}
We assume that
31 < M,C <o0: m(Xy) < MC*,  Vkel. (7.2.12)
Fiz (¢1)ken C C°(R?) such that

le\Xk < (bk < 1 1/4\X 1/4 and

|az¢k:| < 41 1/4 V1 S 7 S d’ (7.2.13)

o 1/4
where for all A € B(RY) and & > 0, we set
Af = {x € X}dx(x,A) < 5} and A= {x € X‘dx(x,Ac) > z—:} .
We define for all y,~' € I'(R%)
”7’7 =2 Z Z ¢k fn( )577_7/”6[0’00]'

n=—oo kel
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Remark 7.2.8. Definition 7.2.7 is consistent with Definition 7.2.2. If R¢ is
equipped with the Lebesque measure, i.e. p =1, then (7.2.12) is fulfilled.

Definition 7.2.9. We define

di,(7,7) = dp(7,7) + dur(7,7), V1.7 € T(RY),
and the set of multiple configurations with finite mass dff by

P (RY) = {7 e T(®RY)|dz, (v,0) < oo} , (7.2.14)

where I'(RY) is defined by (7.2.1). We equip I';(X) with the subspace topology
O(I4(X)) of (T(X),OI(X))) and denote by B(I's(X)) the corresponding
Borel o-algebra.

Remark 7.2.10. Note that dy is a metric on I'f(RY).

Theorem 7.2.11. Let the conditions stated in Definition 7.2.7 hold. Then
(Ff(]Rd), dff>) is a complete, separable metric space.

Proof. Making the obvious appropriate adaption of the proof of Theorem
7.2.6 yields this result. ]

7.2.3 Bilinear forms on I'(X)

We outline the bilinear forms that correspond to the extrinsic and intrinsic
ones defined in Chapters 6.7

. ~ . A

Let u be a probability measure on (I'(X), B(I'(X)) such that u(I' (X)) =
1 and (7.2.3) holds.

Smooth cylinder functions on I';(X) We will also use some sets of
smooth cylinder functions. For all k,l € Ny U {cc0}, we write

FCy (I4(X), Gy(Y)).

By definition, FCF(T', C}(Y')) consists of all functions F which can be repre-
sented as

FB/V'_)F(/Y):gF(<901>’7>7""<90N”7>)’ (7'2‘15)

with some N € N, gr € CF(RY) and ¢; € C(Y), 1 <i < N.

"For this subsection we do not assume anymore that X is compact.
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Extrinsic bilinear forms

Definition 7.2.12. For all F, G € FC(T((X),C5(X)) we define the

extrinsic bilinear form
erlr () =gl () / / (f Fy ) (ds, de)yu(dn).
Lp(X

Remark 7.2.13. Fiz F, G € FO(I'4(X),C5°(X)). Note that E"

mt(F’ G) <
oo. We denote

Sealpi () 1= 5-5-(8) -54(0)

s
and the extrinsic bilinear square field operator

SE(F.G)(~ Zanan, eat( i P5)(2))
=1 7=1

:/XZZ VF 0G Senlipi, 3) (£)7(d2),

where O;F = algF(<fYa (101>7 ceey <77 QDN>)f a]G = anG((Va 951>? SRR <’77 @N))
Then we can rewrite the bilinear form

51 (F G = / o SR )t

Remark 7.2.14. Heuristically, we get for F € FCX(I'1(X), {idg, ®¢ | ¢ €
C(X)}) that

Seat(idr, R, idg, ®(/gg)(f) = Séz@)@g@)
Intrinsic bilinear form

Definition 7.2.15. For all F € FC(T'1(X), C5°(X)) we define the intrin-
sic bilinear form

. 2
0T (F) = €M (F,F) /F / ( di 7) ~(ds, da)p(dv).
f

Remark 7.2.16. Fiz F, G € FO(I'4(X),C5°(X)), we have £ (F,G) <

oo and

nt

£ (F.G) = / o SR Y w(a).
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Here, the square field operator is

Sii(F.G)(y) = Z O F Z 8, G, Sine(i, §5)(2))

- /X S° DT OF 66 i, #)(@)7(da),

i=1 j=1

where a’LF = aigF(<77301>7“'7<77 QON>)7 ajG = ang(<’Y7 @1)7"'7<’77 @]\7>)
and

Sinlee 81)(@) = V@DV E5 ()
Remark 7.2.17. Heuristically, we get for F' € ngo(ff(X), {idg, R | ¢ €
CP(X)}) that
Sin(idr, ®dy,idr, ©6;)(&) = s(V¥i(x), V¥ ;(2))7, (x)-
Joint Bilinear forms

Definition 7.2.18. For all F, G € FC(I'4(X), Cs°(X)) we define the joint

bilinear form

" (F,G) = €l (F,G) + Ly (F,G).

int

Remark 7.2.19. Note that EM11(F,G) < oo and

£l (F.G) = / ST(F, G)(7)pld),

Ly
where the square field operator is
S'(F,G)(7) :=SLF.G)(7) + SL(F.G)()
N N
= [ 33" 0F 06 St p)lan(da),
X =1 j=1
and
S(pi, @5) () =Sear(i, §3)(&) + Sine(i, $5)(2)
N~ a 1 . Lo
=spi(2)@;(2) + E<VX%‘(SU)7 VXQDj(x»Tx(X)-
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7.2.4 Closability of the bilinear forms

We identify some Gibbs measures for which the corresponding bilinear forms
are closable.

Let X = R4 d € N, m on (RY, B(R?) and (¢x)reny C C5°(RY) such that
(7.0.1), (7.2.12) and (7.2.13) hold. Assume that u is a Gibbs perturbation of
Py w.r.t. a pair potential

V(*%a g) = SI¢(:'E7 y)syv

where ¢ € C'(R? x R?) such that (¢)y g holds (cf. Subsection 5.3.3).

Extrinsic bilinear form

Theorem 7.2.20. The extrinsic bilinear form (82’;’“, FCX(T 1 (RY), Co(RY)))
is closable and the extrinsic generator is for all v € T'j(RY)

(Lt DY) = [ st ) = s r o) (1423 oo, ) (a)
" (7.2.16)
We have
L' F e (I (Fyp). (7.2.17)

peEN
The closure of (5;@’”, FOR(T1(RY), Co(RY))) is denoted by (5;’;’”, D(Efxﬁu))
It is a conservative Dirichlet form.

Proof. The idea to use the integration by parts formula of the Lebesgue
measure on R, to prove the assertion is from [AKR98b, Theorem 4.3].

Fix F = gF(<¢1a ’7>a Tt <¢N7 7)) S ‘FCboo(Pf(Rd)? CO<Rd)) and A’ € Bc(Rd)
such that o1, ..., N are supported by A’. Let Uy € Bc(Rd) :

o(z,9) =0, VielAgelUuy.

The integrability (cf. (7.2.17)) follows because there exists C' > 0 such that

(L P)() <2051y 1) (14 Ol 5,7)) € () (),

peEN

where we used Theorem 5.3.10. Fix A € B,(X) with ¢y ¢ A. By (DLR),

/ SE P () uldy) = / / (A)Sf)é(F)(v)m(dvlf)u(f) (7.2.18)

I'p(X)
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Since |y4| < oo for all v € T'(R%), the inner integral equals p-a.c.

1 1 i
ZA<€> Z ﬁ N Sext(F>(Z 5:}01)
N=0 i=1
N N
X exp ( =Y Vi@nd) -2 ) V(:&i,g)) []r ©@m(dz,). (7.2.19)
4,j=1 1g§€z§§A]CV =1

By the choice of A, the second summand in the exponent vanishes. We write
F(Zf\il dz,) as F(s1,21,...,sn,2n), define h(s) :=s, s € R, and use

N
s . 2
ngt(F)(Slwh---,SN,xN) = E (asz-F(317$17-~,8N7$N)> h(si). (7.2.20)

=1

Then the last integral equals

z’i:vl://\lvl /Ax /A]R (85, F(s1,21,....5n,2n)) h(s;)

1<j<N,
i#]

,j=1

Using the integration by parts formula for the Lebesgue measure and the
symmetry of the potential V' yields that the inner integral equals

~ d2
_/ F(317$17"'7SN7$N)< F(‘Sl?ajla"'as’rwajn)
A

2
- ds;

d R (s;) d

+—F(sl,x1,...,sn,xn)<——2 E V(si, @iy Sj, %)

dSi h(Sz) 152N d i Jrd
J#i

+)>h(si>Ae(si>p<xi>

V(sia Ly Siy xl) +

B ds; Ao (si)p(x;)
N
X exp ( -3 V(:ei,@j))dsi +/ . ds;
ij=1 OAg,,
-0
=: / F’(sl, Ti,...,5N, :JcN)(Lth’“ F) (v, Z;)ds;. (7.2.22)
A

Ry
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Using the additivity of (L @ft“ F)(v,#;) and

W(si) | Ao (si)p(x;) _ 1 1
hs) T Ma(sple) s LTS Th

we get, plugging (7.2.22), (7.2.21), resp. (7.2.19) back in,

/ SHF)(uldr) = / PO F)uldy).  (7.2.23)
' (X) Ly (X)

Obviously, (E.4", FC (I j(RY), Cy(RY))) is positive definite and symmet-
ric. Hence, by [MR92, Proposition 1.3.3.], it is closable. By arguments sim-
ilar to the proof of Theorem 6.3.14, we see that its closure is a conservative
Dirichlet form. O

Intrinsic bilinear form

Theorem 7.2.21. Let ¢ € Cl( R? x RY) such that (¢)ggay holds. Then
the intrinsic bilinear form (& A FCp° (T4 (RY), Co(R%))) is closable and the

nt

intrinsic generator is for all v € T f(Rd)

Ffu d
(L P Z/Rds(dx ) FO)+ o)
x (1$ (e - 2Zsym¢<w,y>) Wdd),  (1224)

ST

where r = (x(k))zzl. We have

nt

L' F e (I (Eyp). (7.2.25)

peEN

The closure of (5 e fCOO(Ff(Rd), Co(Rd))) is denoted by (Sf'f’“ D(Sff’”)).

nt ) nt ) int
It is a conservative Dirichlet form.

Proof. Adapting the proof of Theorem 7.2.21 appropriately, we get this re-
sult. In detail, we choose h(s) = * and the equation corresponding to (7.2.20)
is

d 2
ngt( )(S1, 215, SN, TN) Z Si Z( B sl,xl,...,sN,:r;N)) .
=1

1 z

]
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Joint motion of marks and positions

Theorem 7.2.22. Let ¢ € CH(RY x R?) such that (¢)x(ray holds. Then the
joint bilinear form (Eff’“,fC’g’o(f‘f(Rd),C’O(Rd))) is closable and the joint
generator is for all v € T'j(R?)
Lrerp = LMF + LLF € () DP(E, ). (7.2.26)
peN

The closure of (Sff’“,]:C'boo(ff(Rd), Co(RY))) is denoted by (EXr+ D(EL 1Y),

It is a conservative Dirichlet form.

Proof. This follows by Theorems 7.2.20 and 7.2.21. [

7.2.5 Quasi-regularity for compact X

Let X be a compact and complete, separable metric space and p be a prob-

A~ A

ability measure on (I';(X), B(I';(X))) with
(idg, @1x,-) € LNI'H(X), ). (7.2.27)

Theorem 7.2.23. We assume that (Eu’ff FOR(T(X),05°(X))) is closable

ext

and that its closure (525",@(5;{’[)) is a Dirichlet form. Then it is quasi-
reqular.

Proof. We will apply [MR00, Proposition 4.1] to get this quasi-regularity.
By Remark 7.2.13, the conditions (S.1), (S.2), (S.3) and (D.1) in [MROO,
Sections 1.1 and 2.1, cf. p. 267 and 281] are fulfilled. Thus, we show that

di, (-7) = dnr(- %) + dg (7)) € DEL™) and

SEaldy, (7)) <m e LHTH(X), ),

where 7 is independent of 7/. We prove that dff (+,7') can be approximated for
each v/ € T'(X) in the (55;5{)-norm, ie., in FOR(TH(X),02(X)@CP(R,))
C FCP(Ip(X), C5°(X)) there exist elements Fjj, such that

(Eed)"” = lim P = dp (7)€ D(EG™).

ext,1 ext
l—o00
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It is sufficient to prove the claim for each component of the metric dff

separately, i.e., we have to show that there exists n € L'(I';(X), ) :

vy € T4(X) IEN ) ipen, (Fip)ipen € FCR (LX), O (X)) -
Fj=F)N®+ Fy Vk1€N, for I,k — oo

. 1/2
F — dar(-,7') and Fy, — dg(-,9') in (5;{{) -norm,

SEo(darr(- 7)) < nand ST (ds(-,7) <7

because S, (Fi) < QSerxt(ﬂf‘,fR) +25% (F.;). For the metric dyg we get this

result by the arguments of [MRO0O0, Proposition 4.8]. Hence, to obtain the
quasi-regularity of Eext , it is Sufﬁment to show that there exist Fj, [,k € N,
in the core FC*(I'p(X), C5°(X)) with

Jim Py = 301 =7 @) fu(s)s)] = dil7') € DIEG" ™) and

l—00 n=1

SE(ds(- 7)) < e LI (X)), ).

This we prove now: Fix 7' € I';(X) and choose g(z) = T, T € [0,00),
g(00) := 1. We define for all [,k € N (cf. [MROO, Lemma 4.7, Proof of (i)])

Fip: Tp(X) — [0,00)

v o g( 3 ¢l<<v—v',n<x>fn<s>s>>), (7.2.28)

n=—k

where 0 < ¢; € C3°(R) such that for all t € R

put) =t @i(0) =0, l¢il <1, ¢1(0) =0, @it)—> sign ¢,

1 1 1
ar) =l Vrog<lrl<l—o @) =1 Vr:|r|>1+7 and
" 0, rle]3i—1[ U Ji+1 00],

)l =< { 4l,  otherwise.

) iy 1/2
LkeN 1S & (gext 1)

Then Fpy € FC(I'p(X), C5°(X)). We check that (Fjy)
Cauchy sequence, i.e.,

lim ( /  SEa(Fig — Fo ) (7))
Lp(X)

L' =0
k,k'—o00

+ /r'f(f() (Fix — Frw)® (v)u(dv)) = 0. (7.2.29)
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We treat the L*(I'j(X), p) part first. Since 0 < g < 1, we have |Fj;| < 1.
Thus, we may apply Lebesgue’s dominated convergence theorem and take
the limit pointwisely. Since g is continuous, by Lemma 7.2.24 below the L?
part becomes arbitrarily small.

It remains to treat the second part. This we do in Lemma 7.2.25 below,
which is applicable by (7.2.27).

All in all, we obtain that (Fj), oy 1S & (SQE{(X))I/Q—CauChy sequence.

Therefore (cf. the bound obtained in (7.2.35) below and also [MR00, Lemma
4.7(1)] for the second assertion),

Jim Fi =g (Z =, n<x>fn<s>s>|) —dy(-7) € D(EL™) and

l—00 n=1

Sexe(ds(-7) < lim SLy(Fii) € L'(EA(X), p).

l—00

Thus, it remains to show Lemmas 7.2.24 and 7.2.25:

Lemma 7.2.24. For n € Z we abbreviate

Tn =20 (7,7) 1= (v =7, 1(@) fu(s)s). (7.2.30)
Then
k K
”lliinoo Z oi(xy,) — Z o (z,)| = 0. (7.2.31)
k:k’—mo n=—*k n=—Fk'

Proof. Since Y |x,| < ds(v, D) + df(7, D) < oo, we get

Ve>0 3k, €N : Zmngs for all k > k.

[n|>ko

Fix € > 0 with corresponding ky and let

1
b= min {xn}xn #£0A|n| <ko}Ae

V(de(v,2) +ds(v,9)),  (7.2.32)
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then we have for k, k' > kg and [,I' > [, that

k K
Z oi1(@n) — Z o (Tn)
n=—k n=—k’
= Z Sgpl(l‘n) - Qpl’(xn)2+ Z ei(Tn) — Z ev(n)
TROSPSTRO o (@n) =1, () =0 kOZI%ZISk koZIEVL@k'
< Y s leal + > el l2al < 26,
nez nez
ko<|n|<k ko<|n|<K’
and (7.2.31) is shown. O

Lemma 7.2.25. Let (idg, ®1x,-) € L'(I';(X), u), then

lim SE(Fui — Fo ) (n)u(dy) = 0. (7.2.33)

L'—oo JP (X
k.k'—s00 5 (X)

Remark 7.2.26. If pu is a Poisson measure, we can use Mecke’s identity
(¢f. Remark 1.1.6). This yields for F € FCP(I't(X),C5(X)) and for u-
a.e. 7 €'¢(X) that (cf. Remark 7.2.13)

SL(F)Y) = [

X

N i 2 A
(; (Y + (sr)) - \/§£¢z($)> A ®@m(dz).

But, we can prove the lemma without Mecke’s identity.

Proof of Lemma 7.2.25. We prove this lemma by arguments similar to those
used to prove Lemma 7.2.24. We want to apply Lebesgue’s dominated con-
vergence theorem. Hence, we estimate

Sha(Fik = Fiw)(7) < 255, (Fi) (7) + 285 (Fr ) (7).
We set
92(5) = - (Ful5)9) = Fu(s) + s 1(5).
Then, using (7.2.5),

n—2

|9 ()] SLignrt gn-2)(5) + ¢~ " Lgnis gnjopgn-1,9n-2/(5)g
f;(l + q__5)ﬂ{qn+4’qn72](8).
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Moreover, g" < 1 and ¢; < 1Vl € N. Hence (cf. Remark 7.2.13), the
integrand in ngt(ﬂ,k)(v) is dominated by

Z (Zw n )(w;m)gn(sx)ﬂx(m) s
<o 3 (s lx(@l ) <0147 30 Lo g
<so(14¢7%) [31x(z)]?. (7.2.34)

To summarize, we have obtained a bound for the integrand in (7.2.33) that

is independent of y’ and by assumption integrable. This means that there
exists n € L*(T';(X), ) such that

lim sup SL, (Fix)(7) < (1+q‘5)/szl31x(f€>lzv(dfﬁ) <n(v). (7.2.35)
1,k /oo X

So, by Lebesgue’s dominated convergence theorem, we may take the limit
in (7.2.33) pointwisely. Using z,, as set in (7.2.30), we get

Sext(E k— E/ W)(V)
k k

- (g'(n;wn)) 3 e Varn(so)
- g(z or(an) Z )52 2@

-/ ((Z )z (s2) — Z so;,<xn>@gn<sx>)g’(n§k_jk o)
+Z () v/Fn(52) (g(z ei(an)) - g(Z wn))))?(d@

By the choice of ¢, in particular [ > [y, i.e., |x,| < (cf. (7.2.32)),

ot [ ekl < 402, for o, € L1, <
(el < { B9 for |a] € (11— 1) U (14 ,00) J =%

Hence, using also (7.2.34), the sum in the last summand in (7.2.36) is dom-
inated by 4(1 4+ ¢~°) - 31x(x). Moreover, using in addition (7.2.31) and the
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continuity of ¢’, the last summand in (7.2.36) becomes arbitrarily small for
Lk, UK 7 oo. It remains to prove that the first summand in (7.2.36) be-
comes arbitrarily small. Since ¢’ is bounded, this follows by Lemma 7.2.27
below.

Lemma 7.2.27.

k
l,ll’iinoo Zk (xn)\/ Sz0n Sa: z;/‘pl’ xn vV sscgn(sx) :/ 7 (7237)
kK —o00 1= n=

Proof. This we deduce similarly to the proof of Lemma 7.2.27. Namely,

Ve> 03k €N: > 4/spgu(s,) <c forall k> k.

nez
|’n|>k0

Let € > 0 with corresponding k; and

I 1
— = \/ d ’g _|_d /,g ’
2 min{xn‘xn%()/wmgkl}/\e (dy(v,2) (v, 92))

then we get for k, k" > ki and [,I’ > [, that

Z 901 Tn \/ggn S:Jc Z ()Ol’ Tn, \/5 n(Sz>

n=—k n=—k'

Y (@) — 20 (n))V/5agn(52)

—k1<n<—k1

=}, (n)—p}, (2n)=0

+ Z ‘P;($R>\/S—ﬂc n(82) — Z QOE’(xn)\/ign(sx)

ne”Z, ne”z,
ki<|n|<k k1<|n|<K’
< E 4\/ s:c.gn(sx) + E 4\/ ngn(sw) < 257
nez nez
k1<|n|<k k1 <|n|<K'

and (7.2.43) is shown.
This concludes the proof of Lemma 7.2.25.
And thus, also the proof of Theorem 7.2.23 is completed.

Remark 7.2.28. Actually, Theorem 7.2.23 holds also if we choose Cg°(Ry)®
C3°(X) instead of C§°(X) (cf. (7.2.28)).
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Intrinsic bilinear form
Theorem 7.2.29. Let (ngf,fC?(ff(X),Cgo(X))) be closable. Assume
that its closure (€17, D(E}")) is a Dirichlet form. Then it is quasi-reqular.

Proof. The arguments used for Su’ff in the proof of Theorem 7.2.23 hold

ext

for &M , if we replace ext by int and use Lemma 7.2.30 instead of Lemma

int

7.2.25.
Lemma 7.2.30. We have

im [ SE (g — Foa)()p(dy) = 0. (7.2.38)

IlI'—o00 (X
k. —o0 5(X)

Proof. Because of Remark 7.2.16, the claim follows by

2
= 0.
Te(X)

S (5, F2® 1) (2) = = [V¥ (ids, 2 ® L) (3)

g

=0

Hence, Theorem 7.2.29 is proved.

Joint bilinear form

Theorem 7.2.31. Let (Eﬂ’f-f,}"C'fo(ff(X), CSO(X))) is closable and that its

closure (EL1 D(EWL1)) is a Dirichlet form. Then it is quasi-regular.

Proof. This follows by the arguments of the proof of Theorem 7.2.23, where
we replace Lemma 7.2.25 by Lemma 7.2.32.

Lemma 7.2.32. Let (idp, ®1x,-) € L'(T';(X), u), then

lim S"(Fui — Fr)(y)nldy) = 0. (7.2.39)

LU'—oo JP (%
kK — o0 #(X)

Proof. The claim follows by Lemmas 7.2.25 and 7.2.30 because (cf. Remark
7.2.19)

ST (Fip — Fup)(7) =S (Fig — Figo)(7) + Sk (Fig — Fipr) ()

Therefore, Theorem 7.2.31 is shown.
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7.2.6 Quasi-regularity for X = R?

From now on, we fix X = R? d € N, m on (R% B(R?), (¢p)ren C C°(RY)
and y as in Subsection 7.2.4. This means that we fix X = R, d € N, m
on (R B(R?) and (¢ )ren C Cg°(R?) such that (7.0.1), (7.2.12) and (7.2.13

~

hold. And p is a Gibbs perturbation of Py w.r.t. a pair potential V (Z,q) =
s:0(x,y)s, with ¢ € C'(R? x R?) satisying (@) (ray-

Proposition 7.2.33. Let i1 be as described above. Then

[ Oyt < o
i'(Rd)

In particular, T (RY) € B(T(RY)) and u(T';(RY)) = 1.
Proof. We note that dy. (-, () is a local mass map (w.r.t. A\g @ m):

/X di, ({2}, @)X ® m(di)

3
§2/ 3szA0(dsz) Y ———m(Xiq) < 6/ Sz Mg(ds;)3C < o0,

+

where we applied (7.2.12) and (7.2.13). The measurability follows as in
Proposition 7.2.1. Hence, by (the proof of) Theorem 4.3.34 (cf. Remark
5.2.12) the assertion follows. O

Extrinsic motion

Theorem 7.2.34. Let p be as above. Then (5” & FOR(15(RY), Co(RY)))

ert

is closable and its closure (Sé;t f,D(Egzt 7)) is a quasi-regular Dirichlet form.

Proof. By Theorem 7.2.20, we get the closability. To show that the Dirichlet
form is quasi-regular, we assume that w.lo.g. I = N. Replacing Fj; in
(7.2.28) by

E,k: Ff(Rd) — [0 OO)

T o g( Z > (=i >fn<s>s>>),<7.2.4o>

—k icl

we obtain the result adapting the arguments appropriately. In particular,
we use Lemmas 7.2.35 and 7.2.36 instead of Lemmas 7.2.24 and 7.2.27 and
follow the arguments of Lemma 7. 2 25 in this new situation. In more detail, in
(7.2.34) 1x is replaced by 2> . By Proposition 7.2.33, the changed

i M(QC 9252
estimate is integrable.
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Lemma 7.2.35. Forn € Z, i € I we abbreviate

Tnyg = xn,i(’% ’7/) = <'}/ - ’7/7 ¢z(x)fn(5)3> (7241)
Then
k k!
. Z Z W(Tni) = Y pulang)| = 0. (7.2.42)
kK —oco 1€ = n=—k'

Proof. This follows by the same kind of arguments as Lemma 7.2.24. [
Lemma 7.2.36. Let (idz, ® Y ,c; 5rmey Lx.,-) € LT p(RY), ). Then

m Z |¢1 ZSOZ Tn fn Sz x Z 901/ Ty fn Sz
el

L,I' =00

kK o0 1€ n=k
(7.2.43)
Proof. This follows by the same kind of arguments as Lemmas 7.2.27 and
7.2.24, and using (7.2.12) instead of (7.2.27). O
Therefore, Theorem 7.2.34 holds. O]

Intrinsic motion

Theorem 7.2.37. Let u be as above. Then (5“ & FOR (I p(RY), Co(RY)))

nt )

is closable and its closure (Sf:lt n D(E;t 7)) is a quasi-regular Dirichlet form.

Proof. The proof is similar to the changes used to prove Theorem 7.2.34,
where we apply Lemma 7.2.38 instead of Lemma 7.2.30.

Lemma 7.2.38. Let (idg, ® >, mﬂxﬂ Y€ LNTf(RY), y). Then

1l =00 (R4
kK —00 5 (RY)

Proof. The integrand Smt(Fl,k)(V) is dominated by

1

- Yoo d0d wl@ma)d (Y eul@im) @ (win)ei(im)
T gjel icl jel T
_kgm,ngk\ —k<n<k R —k<m<k > =

<1 <1

1

1 N )
fn(sﬂv)sxmfm(sx)sxm ‘V Cbi(x)!Tm(X) .



208 CHAPTER 7. EQUILIBRIUM PROCESSES

Since )
‘Vx¢z(x) |TI(X) S 42d]1Xi1/4\X;1/4 ($) 1X1/4\X;1/4 (iL‘)

1 j -1

the last line is dominated by

2 2 ]. ]_
44ds, (Z fn(Sz)) Z M 2C) ME20) 1X3/4\X;11/4<x)]lx;/4\X’1/4 (x)

j—1
nez i,jel

<3

§122d$$z L - ( L 1 + L -+ L - 1> 1X1/4 X71/4({L‘)
2 M(20) \M2C)*1 " M) M(20)=1) “x!"\xy
1
<12%ds, -3~ (Lx,,, (2) + Ly, (2) + 1x,_, (2)) ,
Moy T

where we used (7.2.13) and that each set B; := Xil/ 4\Xi111/ * overlaps at most
with the three sets B;.1, B;, B;_1, resp. (for the last step) with X1, X
X,;_1. By assumption the last line is integrable.

Hence, following and adapting the arguments as in Lemma 7.2.25 (cf.,
e.g., (7.2.36)) combined with Lemma 7.2.36, yields the proof. O

Hence, Theorem 7.2.37 is proved. O

Joint motion
Theorem 7.2.39. Let p be as above. Then (EWTs, FOR (T ((RY), Co(RY)))
is closable and its closure (EY7, D(EWYT)) is a quasi-regular Dirichlet form.

Proof. With the same reasoning as given in the proof of Theorem 7.2.31, it
is sufficient to combine Lemma 7.2.38 with the analogue version of Lemma
7.2.25 to prove this result. O

7.3 Diffusions on multiple configurations

We show that the associated processes for the above considered quasi-regular
Dirichlet forms are diffusions (cf. Subsection 7.3.1). Then we give conditions
to see that they actually sit on I'k(x) C I'f(X).

As in Subsection 7.2.6, we fix X = R% d € N, m on (R B(R%) and
(r)keny C C°(RY) such that (7.0.1), (7.2.12) and (7.2.13) hold. And u is a
Gibbs perturbation of Py w.r.t. a pair potential

V(2,9) = $:0(2,9)sy,
where ¢ € C1(R? x RY) satisfies (@) k(may (cf. Subsection 5.3.1).
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7.3.1 Diffusions on multiple configurations

We briefly mention the locality of the considered quasi-regular Dirichlet
forms, before we present the associated diffusions.

Locality

Definition 7.3.1 (cf. [MR92, Def. V.1.1, p.148|). Let E be a Lusin space and
p be a measure on it. A quasi-reqular Dirichlet form (€,D(E)) on L*(E, )
is said to have the local property (or to be local) if for all F,G € D(E) with
supp(|F'| ) N0 supp(|G|p) = 0, we have

E(u,v) =0.

Proposition 7.3.2. The Dirichlet form (Eu’ff D(E“’ff)) is locall.

ext ext

Proposition 7.3.3. The Dirichlet form (Sy’ff D(E”’ff)) is local.

wnt wnt

Proposition 7.3.4. The Dirichlet form (E*1s D(E#T1)) is local.
Proofs of Propositions 7.3.2, 7.3.3 and 7.3.4. This is evident using the proof
of [MROO0, Proposition 4.12| (cf. also [MR92, Ex. V.I.12(ii), p.154]. O

Associated diffusions

Theorem 7.3.5. Let X = R, m and p be as described above. Then there
exists a conservative diffusion process (i.e., a conservative strong Markov
process with continuous sample paths)

#
Megft = (Q, F, (Ft)tzo ) (@t)tzo ) (X(t)>t20 ) (Pv)yeff(f())

ext ext

(u-versions) of F € L*(T';(X), n) and all t > 0 the function

on Ff(X) which is properly associated with (Su’ff D(é'“’ff)), i.e., for all

~

F(X) 37 o pF() = / F(X(t))dP,

. I . . . Ny I
is an 8,7 -quasi-continuous version of exp(—tL., )F, where L.’ is the

generator of (525’(,2?(555’()) (cf. [MR92, Section 1.2]). M is up to p-
equivalence unique (cf. [MR92, Theorem VI.6.4]). In particular, M s p-
symmetric (i.e., [ GpFdp = [ Fp,Gdu for all F,G : T§(X) = R, B(I'f(X))-

measurable) and has p1 as an invariant measure.
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Proof. Since the Dirichlet form is quasi-regular (cf. Theorem 7.2.23 resp.
7.2.37) and local (cf. Proposition 7.3.2) this follows by [MR92, Theorem
IV.3.5 resp.V.1.1]). ]

Theorem 7. 3 6. The assertions of Theorem 7.5.5 hold with 5“ g and Mmt

int

replacing 7,7, resp. Mm

ext ’

Proof. Since the Dirichlet form is quasi-regular (cf. Theorem 7.2.29 resp.
7.2.37) and local (cf. Proposition 7.3.3) this follows by [MR92, Theorem
IV.3.5 resp.V.1.1]). O

Theorem 7. 3 7. The assertions of Theorem 7.3.5 hold with EPLr and MEs

replacing €17 | resp. ML/,

ea:t )

Proof. Since the Dirichlet form is quasi-regular (cf. Theorem 7.2.31 resp.
7.2.39) and local (cf. Proposition 7.3.4) this follows by [MR92, Theorem
IV.3.5 resp.V.1.1]). O

7.3.2 Exceptional set

The next theorems yield that the constructed diffusions over ['(RY) actually
sit on I (RY)  T;(RY), if d > 2.

Definition 7.3.8. We denote the set of pinpointing configurations with
local mass di (2, -) by

Ik (RY) = {7 e PyRY|y(Ry x {2}) <1 Vae ]Rd} .

Remark 7.3.9. In general T (RY) € Tj(R?) (¢f. Definition 4.3.12).

Theorem 7.3.10. Let X = R, d > 1, and pu be as described in the be-
ginning of Section 7.3 with ¢ > 0. Then the set F(Rd)\F]K(]Rd) is £

exrt

exceptional and the assertions of Theorem 7.3.5 hold with Ff(]Rd) being re-
placed by T (RY). In particular, this holds for the set T'(R)\T'j(R?).

Proof. Compare the proof of Theorem 7.3.12. n

Theorem 7.3.11. Let X = Rd d > 2, and p be as above with ¢ > 0. Then
the set I’(Rd)\F]K(]Rd) is £ -exceptional and the assertions of Theorem

nt

7.3.6 hold with Ff(]Rd) being replaced by F]K(]Rd) In particular, this holds for
the set T(R)\T';(R?).
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Proof. See the proof of Theorem 7.3.12. ]

Theorem 7.3.12. Let X = R? d > 2, and p be as above with ¢ > 0. Then
the set T(RY)\Ik(RY) is EMLs-exceptional and the assertions of Theorem
7.8.7 hold with T ;(R%) being replaced by T (R?). In particular, this holds for
the set T(R)\T';(R?).

To prove these results, we use the following Proposition.

Proposition 7.3.13. Let (£,D(E)) be a Dirichlet form with Polish state
space E. The union of an increasing sequence of E-exceptional sets is &-
exceptional. The same holds for the intersection of a decreasing sequence of
E-exceptional sets.

Proof. Let (Ap)nen be an increasing sequence of £-exceptional sets. By
[MR92, Theorem II1.2.8], we have using the notation of [MR92, Section I11.2]

Capy, , (U An) = sup Capy, , (A,) =0,

neN nz1

where we used that the capacity Capy, ,(A) of A C E corresponding to the
two excessive functions h and ¢ (cf. [MR92, p.78]) is 0, i.e.,

Capy, ,(A) = 0, if and only if A C E is £-exceptional

(cf. [MR92, Theorem II1.2.11]). This yields the first assertion.
For the second one, let (A,,),en be a decreasing sequence of £-exceptional
sets. By [MR92, Theorem I11.2.8],

Caph,g (ﬂ An) = ér;fi Caph,g (An) =0.

neN
]
Proof of Theorems 7.3.12, 7.3.10 and 7.3.11.

We extend the idea used to prove [RS98, Proposition 1|: Namely, by Propo-
sition 7.3.13, it is sufficient to show for all @ € N that the set

sup
ye [_av_a]d

N, = {7 e T(RY) {x c 7(.@ € [, ¢%] x {y}}‘ > 2}

is exceptional because |J,cn Na = f(Rd)\FK(Rd). Fix a € N. We show
that the function u := w,) = 1y, is quasi-continuous. This we will show by

approximating v with continuous functions w,, € D(E “jf).
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To this end, we start with a smooth partition of R Let ¢ € C°(R)
satisfy Tjo1) < ¢ < 1j_1/2.3/9 and |¢'| < 31_1/93/9. For any n € N and
i=(iy,...,iq) € Z* we define a C$°(R%) function by (compare [RS98, (12)])

buale) =0 (1L ’i[las(nwk ~ ).

Moreover, we note that ¢;,, < I;,, where
d
Lin(2) =1 2] H Li_1/2,3/21(ns, — ig)
k=1

d
—]1[6—2a eQa H I[ [—1/2, 3/2] nry — Zk)
k=1

We calculate the partial derivatives

Lin(s d
o) = ) = (5 ) g T ot i

2
. Lin(s) +1 o | |
0;¢in(T) =0 (%) &' (nxy — ip)n H d(nxy, — i) 1<7<d.
k=1,k+j

Hence,

3

as
Let 1 be a smooth function on R satisfying L) < ¢ < Ipooy and 9] <
21(2,5). We pick the lattice A, := [—na,na]® N Z* and define a continuous

clement of D(E-L1E) by

) i= 0 (sup(n) ). (732)
1€EAR

Then wu,, — u pointwisely for n — co. Namely, for a fixed v we have |y(a)| :=
IyN([e™%, e?] x [—a, a]?)| < co. Hence, there exists a fixed and finite number of
points z € 7(y(a)), which have a minimal distance ex to each other. Choose
n large enough such that in each box B;,, := [—1/2n,1/2n]? + i/n there are
only points having the same support. Hence for the chosen n = n(7y):

|1, if vy € N,
““”_{0, if v ¢ N,.
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It suffices to show that sup, gnts (U, up) < 00 to apply [RS98, Lemma
1]. We prepare to estimate S* (u,):

2
<w/ <S€1ilp <¢ivn’7>>) < 41{“/|SUPieAn (Bi,ny)>1} < 4]1{7|suPiEAn (Lin,7)>2}
(7.3.3)

where we use that (me’w € Ny for the final inequality. Hence, using first
ST (u V) < ST (u) v ST (v), then (7.3.1) and (7.3.3), we get

ST (un)(7) = (w' (sulo<cbi,n,7>)>QSf (Sup<¢i,n7 ->) (7)

i€AR i€AR

< (v (sup e 7>))2 sup 5T (g1,) (7)

€A, i€A,

2
= (#/ (sup <¢i’n,’}/>>) sup [ i ‘Vng%n(j) 2 + |\/§80¢m(@)|27(d§:)
1€AR i€An JRA Sz

<4 (4 supye u, (i) 22y (02 + 1) sup (L, )

ZEAiyn

§3662a(n2d—{— ]_) Z :H-{V|([i7n,’y>22}<ji,n7’y>' (734)

ieAiyn

By the proof of Proposition 4.2.3, more detailed by (4.2.5), we see for u being
a Gibbs measure with non-negative potential as considered in Chapter 5 that

2
/ (i ) < 2 ( / zz-,n@)mm(dfc))
{V[{Zi,n vy >2} R

d
< / Ly 50 g20) (52 )M (dsy) ( / 1[_1/273/2}(71%—ik)m(dx)) (7.3.5)
Rt k=1 Q7R y
SC?;OO Sm([*l/{ﬂ]_ﬁfk)

where we used that

—1/2 41 3/2+1
_1/2§nxk_ik§3/2@ﬂ<xkgﬂ_
n n

Since m(dx) = p(x)dx, by (7.3.4) and (7.3.5)

/1'4 o S™(un) (Vp(dy) < 3662 (nd + 1) Z Cm ([ﬂ, %r + 1)2

n n n
ieAi,n

= 36e**(n*d + 1)C Z </[1/2 » p(a:)da:) :

iGAiyn ’7i| d+i/n

n n
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By Cauchy-Schwartz, p € L2 (RY dx) (cf. (7.0.1)) and the translation in-

loc
variance of the Lebesgue measure, the later sum is dominated by

iGAi,n n ’n N n
NS

-~

[0 (@) d2SC ()< —(2/n)"

Summing up, we get that for d > 2 there exists C' < co:

sup S”’ff(un) < C'sup (n*?d+n"%) < o0. (7.3.6)
neN neN

This concludes the proof of Theorem 7.3.12. Moreover, we note that with
the same choices and (similar) calculations, we get that

sup gl (1) <C'sup (n™?) <oo ford>1and

ext
neN neN

sup grls (up) <C'sup (n2_dd) <oo ford>2.

int
neN neN

Hence, Theorems 7.3.10 and 7.3.11 are also shown. O
We summarize the last three results:

Theorem 7.3.14. Let X = R, d > 2, and p be as above. Then the set
DRI\ (R?) is &Ly, resp. EL,- or EM,-exceptional. In particular, this

ext™ nt”

holds for the set T(RY)\I';(R?).

Proof. This is clear by the last three theorems. O

7.4 Diffusions on the cone

Our final goal is to obtain a diffusion on the cone K(R?). To that end, we
have shown in Theorem 7.3.14 that the set of points in I f(Rd) that are not
pinpointing is exceptional. Hence, the corresponding Markov process sits on
the subset of pinpointing points in I';(R%), which is denoted by I'x (R?). This
subset equals T'(R?) if m(R?) < co.

7.4.1 Diffusions on K(R?)

By the next theorem, we will obtain diffusions on the cone K(R?) in the basic
model framework (cf. also Corollary 7.4.5).
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Theorem 7.4.1. Let the conditions of Theorem 7.3.14 hold. Then the con-
structed diffusions describe motion of marks and positions on the cone K(R?).

Proof. There exists an injective map that maps I'x (RY) in K(RY). If m(RY) <
oo, then Tk (RY) = I';(R?) and the map is bijective. O

Extrinsic motion on K(R%)

Theorem 7.4.2. Let X = R? d >0, and m be such that (7.0.1), (7.2.12)
and (7.2.18) hold. (In particular, in the basic model framework this holds.)
Let u be a Gibbs perturbation of Gy w.r.t. a pair potential 0 < ¢ € C1(RIxR?)
for which (¢)kx) holds (cf. Subsection 5.8.1 and Definition 5.8.5). Then
there exists a diffusion on IK(R?) describing an extrinsic motion.

More precisely (cf. Theorem 7.3.5), there exists a conservative diffusion
process (i.e., a conservative strong Markov process with continuous sample
paths)

K(R¢
Mex(t )= (Q,F, (Ft)tzo ) (@t>t20 ) (X<t))t20 ) (P’Y)UEIK(Rd))

on K(R?) which is properly associated with (EM’IK D(é’“’K)),g i.e., for all

ext ext

(n-versions) of F € L*(K(R?), u) and all t > 0 the function
K(RY) 500 pFl) = | FX(0)aP,
0

. K . . . K K .
is an EL -quasi-continuous version of exp(—t L) F, where LY is the gen-

erator of (EM’IK D(g“’K)) (cf. [MR92, Section I1.2]). M is up to p-equivalence

ext ext

unique (cf. [MR92, Theorem VI.6.4]). In particular, M is p-symmetric (i.e.,

[GpFdp = [ FpGdp for all F,G : K(RY) — R, B(I'j(X))-measurable)
and has p as an invariant measure.

Proof. By Theorem 7.2.20, the assumptions of Theorem 7.2.34 (and Propo-
sition 7.2.33) are fulfilled.

To actually obtain continuous paths in K(R%), we show the following
claim: If v, — v in (I‘f(Rd),dff), then (7,,sf(z)) — {(v,sf(x)) for all

8This is the Dirichlet form on K(R?) that corresponds to (5u,l“f D(S“’ff)), ie.,

ELR(F) () = €Lt (F(T~ (),

where T : T(R?) — K(R?) (cf. (3.1.2)). This holds because I';(R?)\I'x(R%) is excep-
tional.



216 CHAPTER 7. EQUILIBRIUM PROCESSES

f e Co(R%). We use the notation of Definition 7.2.7 to deduce this claim.
There exists k € I such that

S < M oo Ly, -

For all € > 0, we find I € B.(R, ) such that
de(yN (I x Xy), D) < e.

Let gv € C5°(R4) be such that 1 1N < gn- By the vague convergence there

exists Ny such that for all n > N

[(fan;m) — (fan, M| <e.

By the dy convergence, there exists Ny > Ny such that for all n > N,
di(vn N (I x Xg),yN (I x X)) <e.

Hence, for all n > Nj, we get, using also Definition 7.2.7,

[(sf (), m) = (s (@), )]

<|(sgn () f (@), 1) — (59w (5)f (@), )| + M2C)*|| flloo
X (df(n NI X Xi), @) +dp(y N (I x Xi), D))

<&+ MO flloo (ds (o 1 (12 % Xi), 701 (12 x X1)
+ df(’7 N (IC X Xk), @) + 8)
<+ 3eM(2C)*|| | oo-

This shows the claim.

Therefore, the assertions follow by Theorem 7.4.1, which projects the
diffusions sitting on I'x (R?) (cf. Theorems 7.3.10 and 7.3.5) onto K(R?). [
Intrinsic Motion
We obtain a result for the intrinsic motion that is similar to Theorem 7.4.2.

Theorem 7.4.3. Let X = R%, d > 2, and the assumptions of Theorem
7.4.2 hold. Then there exists an analoguos diffusion on K(R?) describing an
mntrinsic motion.

Proof. The claim follows similarly to the proof of Theorem 7.4.2, where we
replace the “extrinsic” arguments by their “intrinsic” counterparts. O
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Joint motion of marks and positions

We obtain a result for the motion of marks and positions on K(R?) that is
similar to Theorem 7.4.2.

Theorem 7.4.4. Let X =R, d > 2, and the assumptions of Theorem 7.4.2
hold. Then there exists a diffusion on K(RY) describing the joint motion of
marks and positions.

Proof. The result follows similarly to the proof of Theorem 7.4.2, where we
use instead of the “extrinsic” arguments the corresponding “joint” ones. [

Corollary 7.4.5. Assume that we are in the basic model framework with
d > 2. Then there exist extrinsic, intrinsic and joint diffusions on K(R?)
describing the motion of marks and positions. In particular, there exists a
diffusion describing the motion of the dense set T(n;) € RY, where n; € IK(RY)
for allt > 0.

Proof. This follows from Theorems 7.4.2, 7.4.3 and 7.4.4, which hold in this
case for u = Gy. ]

7.4.2 Extension of Dirichlet forms on K(R?)

We show a connection to Dirichlet forms considered in Section 6.3.
We fix X =R? d > 2, and m(dr) = du.

Theorem 7.4.6. Under the assumptions of Theorem 7.4.2, we have
FC= (T (RY), {ide, @0|p € CRRY}) € D (£4").

In particular for the Lebesque measure on Rf{, the Dirichlet form that corre-
sponds to £ over T'1(R?) is extended by (Erf’P",D(é’Ff’Pe)),

ext ext ext

Proof. Similar as in the proof of Theorem 7.2.23, we approximate

F e Fo (ff(ﬂiad), {idg, ®p|p € ch(Rd>})

by elements Fj, € FC(T'(RY), Co(R%)) in the (5&;:’{)—norm.
Since gr € C°(RY) and because of the structure of SL

oxt, 1t 1s sufficient
to consider w.l.o.g. F' = gp((-,idr, ®¢)). We choose

Fy = gr ((, fr - idr, ®p)), forkeN
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where the fj, € C§°(R,) such that
L or < Je < Lip—r-1 9041 and
FL5)] < 32 Dy sy (5) + L (5
Obviously, the Fy, k € N, converge pointwisely to F' for & co. We check

that (Fy)ken form a (E(i’;’f) Cauchy sequence, i.e.,

& / A ngt(Fk—ka)(v)u(dv)Jr/ (Fe = Fo)u(dy) | =0.
k,k'—o00 iy (k) i, ()
(7.4.1)

We treat the L?(I';(R%), 1) part first. Let gp be bounded by C. Then also
sup;en || F1lloo < C. Thus, we may apply Lebesgue’s dominated convergence
theorem and take the limit pointwisely. Since ¢ is continuous, the convergence
follows by

<’}/, (]lR+ — fk) . idRJr ®QO> < <’Y, l[gfk,Qk]c id]R+ ®QO>IH—O>OO (742)

Let us consider the first part in (7.4.1). Again we will use Lebesgue’s
dominated convergence theorem. Fix A € B.(R?) and M, < oo such that
¢ < My1a. We define

g(s) == fr(s) + sfi(s) and note |g;(s)| < Thp-r—1 gr+1).
(Fy, — F) < 28T (F}) 4 25T

S
Since S oxct oxct

ext

SL(PO) =g (S, 99)) - [ s (a(9)e@) 9 (a)

§49C’2J\/[37 / Sz la(z)y(dT).

Rd

(Fy), it is sufficient to consider

Hence (cf. Theorem 5.2.10),

/ ) Sfxt(Fk)u(dy) < 4902M£/ sIa(z)Ag @ m(dz) < 0.

I'p(X) R

Thus it is sufficient to prove the convergence pointwisely. Since g is contin-
uous, the pointwise convergence follows by (7.4.2) because

ngt(Fk — F)()
= /Rd ((g;(w, fre @) = g ((y, fiv - idm, ®¢>)>9k(5r>9@(1‘)

- g%((% S - idg, ®‘P>) (gk’(5x> - gk(sx)>@($)) 250&’7(6%)-

Thus, the claim follows. O
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Theorem 7.4.7. Under the assumptions of Theorem 7.4.2, we have
FO (ff(Rd), {idg, ®¢|p € CgO(Rd)}) cD (52;’“) .

In particular for the Lebesgue measure on Rd, the Dirichlet form that corre-
sponds to £7% on T ;(R?) is extended by (Srf’% D(Srf’P")),

int nt ) int

Proof. This follows by adapting the arguments of the proof of Theorem 7.4.6
in an obvious way and using that there exists M < oo and A € B,.(R%) such
that R? 5 z — \VRdgp(.rﬂTz(Rd) < M1a. O

Theorem 7.4.8. Under the assumptions of Theorem 7.4.2, we have
Fog (14 (R?), {ids, ®¢lp € CFRY}) D (5]

In particular for the Lebesque measure on Rd, the Dirichlet form that corre-
sponds to £9% on T't(R?) is extended by (E7rTo, D(ET177)).

Proof. This follows by combining the arguments of Theorems 7.4.6 and 7.4.7.
]
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Appendix A

Spaces of measures

We briefly outline some general facts concerning measurable spaces and the
space of finite Radon measures that we use in our considerations.

In Section A.1, we present some facts about standard Borel spaces. (Borel
space in the notion of [Pat67| are measurable spaces.)

In Section A.2, we collect some results concerning the space M (X)) of all
non-negative finite Radon measures over X, and also the space of probability
and the one of general finite Radon measures. Corollary A.2.10 and Theorem
A.2.11 allow us to prove the quasi-regularity in Section 7.1.

A.1 Kuratowski’s theorem

Definition A.1.1 (see [Pat67, p.1]). Let Y be a topological space. The Borel
o-algebra By of Y is defined to be the smallest o-algebra of subsets of Y which
contains all the open subsets of Y.

Definition A.1.2 (see |Pat67, Definition VI.1.2, p.6]). A Borel space (or
a measurable space) (Z,B) is a pair, where Z is an abstract set and B is a
o-algebra of subsets of Z.

Definition A.1.3. A set or a class of sets D is called denumerable, if there
exists a surjective map j : N — D.

Definition A.1.4 (see [Pat67, Definition V.2.1, p.132|). A Borel space (Z, )
is said to be countably generated if there exists a denumerable class D C B
such that D generates B. (Z,B) is called separable if it is countably generated
and for each z € Z, the single point set {z} € B.

Definition A.1.5 (see [Pat67, Definition V.2.2, p.133|). A countably gener-
ated Borel space (Z,B) is called standard if there exists a complete separable
metric space Y such that the o-algebras B and By are o-isomorphic.

221
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Theorem A.1.6 (see [Pat67, Theorem V.2.2,p.133|). If the Borel space
(Z,B) is countably generated, then there exists a separable metric space Y
such that B and By are o-isomorphic.

If Z is a separable metric space and By the class of Borel subsets of Z,
then (Z,By) is standard if and only if Z is a Borel set in some complete sep-
arable metric space Z in which Z can be embedded as a topological subspace.

In this case Z 1s a Borel set in every complete separable metric space in
which it 1s a topological subspace.

Theorem A.1.7 (Kuratowski, see [Pat67, Theorem V.2.4, p.135]). Let (Z, B)
be a standard Borel space, (Y,C) be a countably generated one and ¢ a one-
to-one map of Z into Y which is measurable.

Then Y' := ¢(Z) € C and ¢ is a Borel isomorphism between the Borel
spaces (Z,B) and (Y',Cys), where Cy: := {ANY'|A € C} is the trace o-
algebra.

A.2 Properties of Radon measures

In this section we only consider finite measures. The main property that
we prove in this section is that the space of all finite non-negative Radon
measures over a complete, separable metric space X is Polish (cf. Corollary
A.2.10) and that its metric can be described by a supremum of countably
many functions (cf. Theorem A.2.11).

To that end we collect some results concerning spaces of (finite) measures
over metric spaces. A good reference is [Bog07a, Bog07b|, whose setting
even includes general topological spaces. Note that measures in the sense of
[Bog07b| can be negative and are finite, cf. [Bog07a, 1.3.2. Definition]. We
call those (possibly negative) measures finite “signed measures”.

Let X be a topological space.

Definition A.2.1 (see [Bog07b, Definitions 7.1.1., 7.1.5, 7.2.1]). 1. A count-
ably additive (finite) signed measure on the Borel o-algebra B(X) is
called a Borel measure on X. By Mpg(X) we denote the set of all
Borel measures.

2. A Borel measure p on X s called a finite Radon measure if for every
B € B(X) and € > 0, there ezists a compact set K. C B such that

ul(B\K:) <.

By M,.(X) we denote the set of all Radon measures.
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3. A Borel measure j on a topological space X is called T-additiveif for
every increasing net of open sets (Ux),c, in X, one has the equality

||<U> m 1] (U) (A21)
If (A.2.1) is fulfilled for all nets with \J, Uy = X, then p is called
mo-additive. By M, (X) we denote the set of all T-additive measures.
Moreover, let us denote by ME(X), M} (X), MS(X) the corresponding
classes of non-negative measures.

Definition A.2.2. A nonnegative set function p defined on some system of
A of subsets of a topological space is called regular if for every A € A and
every € > 0, there exists a closed set F, such that F. C A, A\F. € A and
p(A\F,) <e.

An additive set function p of bounded variation on an algebra is called
regular if its total variation |u| is regular.

Remark A.2.3. We emphasize that in the setting that we treat we do not
have to distinguish them (cf. Theorem A.2.5).

Definition A.2.4 (see [Bog07b, 6.1.2 Definition|). 1. X is called Haus-
dorft if every two distinct points in X possess disjoint neighborhoods.

2. A Hausdorff space X is called regular if, for every point v € X and
every closed set Z C X not containing x, there exist disjoint open sets
U and V' such that x e U, Z C V.

3. A Hausdorff space X is called completely regular if, for every point
r € X and every closed set Z € X\{x}, there exists a continuous
function f: X — [0,1] such that f(x) =1 and f(z) =0 for all z € Z.

Theorem A.2.5 (see [Bog07h, 7.1.17 Theorem and 7.2.2. Proposition|).
Let X be a metric space. Then every Borel measure p on X is reqular. If X
15 complete and separable, then the measure p s Radon.

Proposition A.2.6. 1. Every Radon measure is T-additive.

2. Fvery T-additive measure on a reqular space is reqular. In particular,
every T-additive measure on a compact space is Radon.

3. Every Borel measure on a separable metric space X s T-additive.

From now on X shall be a metric space. Let us introduce a norm on
M. (X) that will turn out to be consistent with the weak topology.
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Definition A.2.7 (see [Bog07h, Section 8.3, P.181|). Let (X, px) be a metric
space. We define the Kantorovich-Rubinshstein norm on M, (X) via

Il i=sup{ [ auls € Lin(X)swpls@l < 1), (a2
X T
where the space of Lipschitz functions with Lipschitz constant 1 is defined by
Lipy(X) = {f: X = R||f(z) = f(y)| < px(2,y), Yo,y € X}.

By p, we denote the corresponding metric, i.e.

po(n.v) = In— vl for all n,v € My(X).

Theorem A.2.8 (see [Bog07h, 8.3.2 Theorem|). The topology generated by
| - |lo coincides with the weak topology on the set MI(X) of nonnegative -
additive measures. In addition, on the set P, of probability T-additive mea-
sures the weak topology is generated by the Lévy-Prohorov metric:

dp(p,v) =inf{e > 0: v(B) < u(B°) +¢, u(B) <v(B°)+e, VBe B(X)},
where B¢ := {x|dist(x, B) < €}.
Theorem A.2.9 (see [Bog07b, 8.9.4 Theorem|). Let X be completely regular.

1. The space M (X) equipped with the weak topology is metrizable iff X is
metrizable. In that case, the metrizability of M by a complete metric
is necessary and sufficient for the metrizability of X by a complete
metric.

2. If X is separable, then M, (X), as well as MI(X), is separable in the
weak topology.

The same assertions hold, if we replace MF(X) by P-(X) which denotes the
space of all T-additive measures over X with total mass 1.

Corollary A.2.10 (see also [Sch73, Part 11, Appendix, Thm. 7, p.385]).
Let X be a complete, separable metric space. Then the set M (X) of non-
negative (finite) Radon measures, which coincides with the one of nonnega-
tive Borel and T-additive ones in this case, together with the metric p, is a
complete separable metric space.

Theorem A.2.11. Let X be a complete, separable metric space. Then there
exists a countable sequence (¢;),oy of uniformly continuous functions on X
with ||¢illee < 1 and

po(n, 1) = sup{¢s,n —n')  Vn,n' € MI(X).
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Proof. By the separability of X there exists a countable dense set $x :=
{z; € X|i € N}. Forall r € Q, for all {¢;|7 € N} C Q and for all {z;|i € N} C
Sy such that there exists f € Lip;(X) with ||f|lcc < 1 and |f(z;) — q| <7
we choose ¢ = ¢ (2,9 = f € Lip;(X) and denote the countable union of
all these by

® = {¢]i € N}.

We have that Vn,n’ € MT(X), Vo > 0 3fs € Lip;(X) : || flleo <1 and

mmmv—aslyumm—ﬂxmy

Moreover, there exists ¢5 € ®:

NS

| f5(wi) — ¢s(zi)| <
We define for all j € N
Aj = Bg/4($j) N U Al

\V/fL’i € Sx.

and obtain, using in addition the Lipschitz continuity,

o(n,n') =0 < Z (/ ’fa —fs l‘j)| + | fo(z;) — ¢5(9€j)U77 —1|(dx)

jeN <5/4 <5/4
/m% — o)1 — 1) + /% nnw@
<5/4

3
<351 =l + / 05(2) () — 1) (d)
<ol - n||tv+sup/¢z (n— ) (dx)

Szﬂm—nﬂw+pdm#%

where we denote for each € M. (X) by ||n]]ty its total variation norm, which
is finite because we treat finite non-negative measures 7. Hence, we obtain
taking the limit 6 \ 0 that

pwm<M5M7MHw/@ )(n — )(d)

= sup / ¢i(x)(n —n')(dz) < po(n,n).

pie®JX
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Remark A.2.12. If (under stronger assumptions on the space X ) the func-
tions in Theorem A.2.11 could be chosen to be continuously differentiable,
then the arguments of Sections 7.1 would even yield an associated diffusion
for the Dirichlet form (E5%, D(EY%)) and not only for (£5%, D(ES)).!

exty

'If one considers Fleming-Viot processes, then one only considers movement w.r.t.
marks (cf. e.g. [RS95, Section 4(c), p.31]).
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