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1 Introduction

The Heusler compounds are a class of intermetallic compounds with the gen-
eral chemical formula X2YZ, where X, Y are transition metals, and Z is a main
group element. They crystallize by definition in the L21 structure (Fig. 1.1),
a face centered cubic structure (space group Fm3̄m) with a four atom basis.
The coordinates of these four sites A, B, C, and D, are given by A = (0, 0, 0),
B = ( 1

4 , 1
4 , 1

4 ), C = ( 2
4 , 2

4 , 2
4 ), D = ( 3

4 , 3
4 , 3

4 ). The structure has inversion sym-
metry, making two sites (A and C) equivalent. These are occupied by the X
element. In the Wyckoff notation, the A and C cites are named 8c, and the
other two sites are denoted as 4a, 4b.

The prototype of the Heusler compounds is Cu2MnAl, which was discovered
by Friedrich Heusler in 1903 [1]. The compound, the crystal structure of which
was determined by Bradley and Rodgers in 1934 [2], is a ferromagnet with a
high Curie temperature, though none of its constituents is ferromagnetic by
itself.

Today, we know more than 1000 Heusler compounds [3], which have a mul-
titude of different properties. Most known quantum mechanical ground states

Figure 1.1: Left: Conventional (cubic) unit cell of the L21 (Heusler) structure. Right:
Conventional (cubic) unit cell of the XA (inverse Heusler) structure. X sites are red, Y
and Z sites are blue and green respectively.
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1 Introduction

of solids are represented within this class. Just to mention a few, there are fer-
romagnets (Cu2MnAl [1]), ferrimagnets (Mn2VAl [4]), semiconductors (Fe2VAl
[5]), heavy fermion systems (Cu2CeIn [6]), and superconductors (Ni2ZrGa [7]).

One particularly intriguing property, which is predicted for a number of
magnetic Heusler compounds, is half-metallic ferro-/ferrimagnetism (HMF):
for either the majority or minority density of states a gap is present around
the Fermi energy. Thus, the material behaves metallic for one spin species,
and semiconducting or insulating for the other one. The half-metallic ferro-
magnetism of a Heusler compound was first predicted by Kübler et al. for
Co2MnSi [8]. The Co2-based half-metallic Heusler compounds have a gap for
the minority states. This property is particularly interesting for spin-electronic,
or spintronic, applications, which make use of spin-polarized currents. These
include in particular giant and tunnel magnetoresistive devices. The full spin
polarization of the current carriers in a HMF gives rise to large magnetoresistive
effects.

A half-metallic ferrimagnet has advantages over the well-known half-metallic
ferromagnets: due to the internal spin compensation it has a rather low mag-
netic moment, while the Curie temperature remains fairly high. A low mag-
netic moment gives rise to low stray fields, which is desired for spintronics, as
is a high Curie temperature and thus a good thermal stability of the compound
[9]. The most prominent Heusler compound out of this class is Mn2VAl, which
has been studied thoroughly by experiment and theory [4, 10, 11, 12, 13]. Sev-
eral other material classes have been proposed to be half-metallic ferrimagnets,
e.g., Cr0.75Mn0.25Se and Cr0.75Mn0.25Te in the zinc blende structure [14], or Cr
antisites in CrAs, CrSb, CrSe, and CrTe, having the zinc blende structure [15].

Ideally, an electrode material for spintronics would be a half-metal with
zero net moment. This can not be achieved with antiferromagnets because of
the spin-rotational symmetry (resulting in zero polarization), but well chosen
half-metallic ferrimagnets can be tuned to zero moment. This property is
also known as half-metallic antiferromagnetism, and has been first predicted
for Mn and In doped FeVSb [16]. Among others, La2VMnO6 and related
double perovskites [17] and certain diluted magnetic semiconductors have
been later predicted to be half-metallic antiferromagnets as well [18]. However,
half-metallic antiferromagnetism is limited to zero temperature and a small
macroscopic net moment is expected at elevated temperature—in particular
near the Curie temperature—because of the inequivalent magnetic sublattices
[19].
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Structure of this work

A major focus of this work is put on the direct comparison of theoretical
and experimental properties of thin films of various ferrimagnetic Heusler
compounds. Parts of this work are purely theoretical, aimed toward a basic un-
derstanding of the properties of ferrimagnetic Heusler compounds. Other parts
combine experimental work and theoretical approaches to explain the data
or to test predictions. The basic and most used experimental and theoretical
methods are outlined in Chapters 2 and 3.

Predicting new ferrimagnetic Heusler compounds

A very interesting class of Heusler compounds that has received considerable
theoretical, but only few experimental attention to date, are the half-metallic
ferrimagnets Mn2YZ, where Y = V, Cr, Mn and Z is a group III, IV, or V element
[20, 21, 22]. Following the Slater-Pauling rule connecting the magnetic moment
m and the number of valence electrons NV via m = NV − 24 in the half-metallic
Heusler compounds [23], it is expected to find another series of ferrimagnetic
half-metals in the Mn2TiZ system with −3 to −1 µB per formula unit (f.u.).
The negative moment indicates that the half-metallic gap would appear for
the majority states, just as in the case of Mn2VAl. These compounds could—if
they are half-metals—provide another series of potential electrodes for spin-
dependent applications and could also become a starting point for half-metallic
antiferromagnetism.

Chapter 4 discusses the properties of this newly predicted class of ferrimag-
netic Heusler compounds.

Explaining the exchange interactions of inverse Heusler
compounds

Closely related to the Heusler compounds are the so-called inverse Heusler
compounds, which have a similar lattice structure (see Fig. 1.1), but miss
the inversion symmetry (space group F4̄3m, prototype Hg2CuTi). Here, sites
B and C are occupied by the same element. These compounds are Heusler
compounds in a generalized sense, i.e., a face-centered cubic structure with the
above given atomic positions. This occupation is preferred with repect to the
Heusler structure if X has less valence electrons than Y [24, 25].
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1 Introduction

Recently, the Mn2YZ inverse compounds have attracted considerable theo-
retical and experimental activities, where Y = Fe, Co, Ni, Cu [25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37]. Half-metallic ferrimagnetism has been predicted
for numerous compounds from this class [28]. The Mn2YZ compounds also
follow the Slater-Pauling rule connecting the magnetic moment m and the
number of valence electrons NV via m = NV − 24 in half-metallic Heusler
compounds [23].

The computed exchange interactions and associated properties of the Mn2CoZ
compounds are discussed in Chapter 5.

A weak cobalt-based ferrimagnet

The material class of Co2YZ Heusler compounds has been the subject of ex-
tensive studies in the context of spintronics during the last decade. These
compounds are of interest because many of them are predicted as half-metallic
ferromagnets with full spin polarization at the Fermi edge.

The Heusler compound Co2TiSn (CTS) is predicted to be a half-metallic
ferrimagnet with a magnetic moment of 2 µB/f.u. and it has a high formation
energy of the Co-Ti site-swap defect [38, 39]. Usually, disorder destroys the
half-metallicity. Hence, making use of Heusler compounds which exhibit low
disorder or high tolerance of the ground state properties against disorder is
highly desired.

In Chapter 6 the electronic structure of thin films of the weak ferrimagnet
Co2TiSn is discussed.

Achieving full magnetic compensation

Galanakis et al. pointed out that it may be possible to synthesize a HMFi
by substituting Co for Mn in the Heusler compound Mn2VAl [40]. Mn2VAl
is a (potentially half-metallic) ferrimagnet with antiparallel coupling of Mn
and V moments and a total moment of -2 µB per formula unit. The high
Curie temperature of 760 K makes it interesting for practical applications.
Numerous experimental [4, 10, 11, 41, 42] and theoretical [12, 13, 20, 43, 44]
studies are found in the literature. Following the Slater-Pauling rule for Heusler
compounds, m = NV − 24 [23], the magnetic moment m is to be taken as
negative, because the number of valence electrons NV is 22. Thus, by adding
effectively two electrons per unit cell, the magnetization should vanish. This
can be achieved by substituting one Mn with one Co atom, which has two
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additional electrons. Ab initio simulations were carried out on this system in
the L21 structure with Mn and Co randomly spread across the Wyckoff 8c sites
and V and Al on the 4a and 4b sites. Indeed, a HMFi is found with magnetic
moments of: -1.388 (Mn), 0.586 (Co), 0.782 (V), 0.019 (Al) [40]. It was shown
by Luo et al. that the site occupation preference in Mn2YAl depends on the
number of valence electrons of Y: if it is lower than the one of Mn, Y would
preferentially occupy the 4a/b sites, but if it is higher, Y would rather occupy
the 8c sites together with Mn, changing the structure to the Hg2CuTi type [45].
Accordingly, one can expect an occupation as proposed by Galanakis et al. in
Mn2−xCoxVAl (MCVA).

Chapter 7 focusses on the synthesis and characterization of thin films of the
ferrimagnetic Mn2−xCoxVAl system.

The first thin films of an inverse Heusler compound

To date, the inverse Heusler compounds were studied only in the bulk. For
many practical applications, such as in tunnel or giant magnetoresistance
(TMR, GMR) devices, thin films are necessary.

Additionally, it can be very difficult to prepare high-quality single crystals of
(inverse) Heusler compounds, so preparation of epitaxial thin films provides
an attractive alternative route to study anisotropic properties of these materials.

The final Chapter 8 deals with the relation between the inverse Heusler
compound Mn2CoGa and the Heusler compounds Mn2VGa and Co2MnSi.

13



2 Experimental Methods

Within this work, thin films have been prepared and characterized. This
chapter gives a brief introduction into the main techniques of preparation
and characterization. All samples were prepared by DC and RF magnetron
co-sputtering and electron beam evaporation. The structural characterization
of the films was performed by x-ray diffraction and reflectivity. The chemical
composition analysis was done by hard x-ray fluorescence. Element- and site-
resolved measurements of the electronic and magnetic structure of the samples
were carried out by soft x-ray absorption spectroscopy.

2.1 Sample Preparation

All thin film samples presented in this work were deposited by DC and RF
magnetron co-sputtering [46] on MgO substrates with (001) orientation. The
apparatus used for the deposition is a customly designed machine built by
BESTEC, BERLIN. Its ultra-high vacuum recipient is equipped with (at the
time of writing) seven three-inch magnetron sputter sources and an electron
beam evaporator. The sources are placed in a confocal geometry, with the
substrate carrier in the focus, see Fig. 2.1. Five of the sources are driven by DC
generators, the other two sources are driven by an RF generator, operated at
13.56 MHz. This allows to co-sputter metals and insulators. The sample carrier
can be rotated to obtain homogenous thickness and stoichiometry across a
diameter of about 100 mm. It can be radiatively heated with a ceramic heater
with a power of up to 1000 W, yielding a sample carrier temperature of over
900◦C. High purity (6N) argon is used as the sputter gas, typically at a pressure
of 2 · 10−3 mbar. A reactive gas (oxygen or nitrogen) can be added if desired.

The electron beam evaporator is mostly used to deposit a protective MgO
film on top of the sample, in order to protect the film below from oxidation.
It is usually operated at 6 kV and a beam current of 10 mA (for MgO). The
deposition process can be calibrated and monitored with a film thickness
sensor.

14



2.2 Structural Characterization

Figure 2.1: Technical drawing (cross section) of the BESTEC sputter machine [47].

2.2 Structural Characterization

2.2.1 X-Ray Diffraction

The diffraction of x-rays is a well known and versatile tool to determine the
structure of a crystalline solid [48]. Bragg’s law relates the lattice spacing d, the
wavelength λ and the diffraction angle θ via

λ = 2d sin θ. (2.1)

In a cubic material, the lattice spacing can be expressed with Miller’s indices
h, k, l and the lattice constant a, such that one can express Bragg’s law as

sin θhkl =
λ

2a

√
h2 + k2 + l2. (2.2)

Bragg’s law describes at which diffraction angles one can possibly find an x-ray
reflection, but it does not predict the intensity. The intensity I(hkl) of an x-ray

15



2 Experimental Methods

reflection from the (hkl) plane of a thin film on a substrate is given by

I(θhkl) ∝ |F(hkl)|2 LP(θhkl) DW(θhkl) ODFhkl(ϕ, ψ). (2.3)

The structure factor F(hkl) contains the information on the crystal structure. It
is derived as a Fourier transform of the charge density of the solid, giving

F(hkl) = ∑
j

f j(θhkl)e
2π i (hxj+kyj+lzj), (2.4)

where f j(θhkl) is the atomic form factor and xj, yj, zj are the coordinates of site
j in the unit cell. f j(θhkl) equals the atomic number in the long wavelength
(λ→ ∞) or forward scattering (θ → 0) limit.

The Lorentz-Polarization factor includes the diffraction geometry and po-
larization effects from the diffraction. For a powder or powder-like film it is
given as

LP(θhkl) =
1 + cos2 2θhkl

sin2 θhkl cos θhkl
, (2.5)

where the numerator describes the polarization and the denominator the
diffraction geometry (the Lorentz term). The temperature or Debye-Waller
factor DW(θhkl) takes into account lattice vibrations, which are negligible in the
cases discussed in this work. Finally, the pole density or orientation distribution
function ODFhkl(ϕ, ψ) describes the distribution of crystal orientations with
respect to the Euler angles ϕ, ψ. It accounts for texture and epitaxial growth
and it can be interpreted as a set of two-dimensional rocking curves.

Disorder is accounted for by appropriate weighting of fi(θhkl) with the site
occupancies. Further, in a more general expression the atomic form factor
contains anomalous scattering corrections which depend on the energy E:

f (θ, E) = f0(sin θ/λ) + f1(E) + i f2(E), (2.6)

where E = hc/λ. These corrections are important close to atomic absorption
edges. They are tabulated or computed with the Cromer-Liberman method
[49, 50]. Therefore, expression (2.3) is most conveniently evaluated numerically.

For Heusler compounds, we can divide all possible x-ray reflections (those
allowed by the extinction rules for the face centered cubic lattice) into three
groups with three different structure factors [51]:

• h, k, l all odd ((111), (311), (331), (333), (511), (531),...)

|F(111)|2 = 16
[
( fA − fC)

2 + ( fB − fD)
2
]

(2.7)
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2.2 Structural Characterization

• h + k + l = 2(2n− 1), n = 1, 2, . . . ((200), (222), (420), (600), (442),...)

|F(200)|2 = 16 [( fA + fC)− ( fB + fD)]
2 (2.8)

• h + k + l = 4n, n = 1, 2, . . . ((220), (400), (422), (440), (620), (444),...)

|F(400)|2 = 16 [ fA + fB + fC + fD)]
2 (2.9)

The structure factors are given here neglecting the anomalous correction terms.
The third group of reflections is independent of chemical disorder on the
four sublattices, making it a fundamental reflection. The other two groups
depend on disorder; the first group vanishes if B-D order is not present, i.e., the
structure is equivalent to the B2 structure (a primitive cubic structure with two
atoms in the basis). The second group vanishes, if additionally A/C-B/D order
is missing, such that the structure becomes equivalent to the A2 structure (a
primitive body-centered cubic structure). In the latter case, the four sublattices
are randomly occupied.

The width of the reflections has contributions from the instrument itself,
from the size of the crystallites and from strain within the crystallites. With a
Gaussian instrumental peak broadening and a Lorentzian convolution of grain
size and strain effects, one seperates the contributions by

B2
obs = B2

inst + B2
ss, (2.10)

where

Bss · cos θ =
kλ

D
+ 4 ε [hkl] sin θ. (2.11)

Bobs is the observed integral width, Binst the instrumental width, Bss the size-
strain width, the shape factor k = 0.9, the coherence length (grain size) D and
the averaged [hkl] component of the strain tensor ε [hkl]. This scheme is called
Williamson-Hall analysis [52]. The instrument used for this work, a PHILIPS

X’PERT PRO MPD, is equipped with Bragg-Brentano optics, collimator point-
focus optics, and an open Euler cradle. It is operated with Cu Kα radiation
(λ = 1.5419 Å).

2.2.2 X-Ray Reflection

For very small angles of incidence, a crystal can be described as an effective
medium, i.e., in terms of optical theory. It is convenient to write the refractive

17



2 Experimental Methods

index in the x-ray regime as n = 1 − δ + iβ, where δ, β are small positive
numbers. The refractive index is smaller than unity for x-rays, so the phase
velocity of x-rays is slightly larger in the medium than in vacuum. This gives
rise to a total external reflection of the x-rays up to a critical angle θc. Neglecting
absorption (β = 0) one finds

θc =
√

2δ ∝
√

naRe f (0) ∝
√

naZ ∝
√

ρ, (2.12)

with the number of atoms per volume na, the forward scattering limit of the
atomic form factor f (0), the nuclear charge Z and the mass density ρ [53].
Therefore, one can determine the mass density of a film by determining the
critical angle. For a compound, the stoichiometry has to be known approxi-
mately in order to apply the proper anomalous scattering corrections. Above
the critical angle, the reflectivity drops quickly as 1/θ4.

Penetration of x-rays into a thin film on a substrate gives rise to partial reflec-
tions at the interfaces. These add up coherently and produce an interference
pattern similar to the Fabry-Perot effect, the Kiessing fringes. From the spacing
of the maxima or minima θm+1 − θm one can determine the film thickness d:

d ≈ λ

2
1

θm+1 − θm
, θ � θc. (2.13)

Roughness reduces the amplitude of the oscillations and can complicate the
determination of the film density. In practice, an x-ray reflectivity measurement
is fit numerically with the Parratt formalism, which includes absorption and
roughness and allows to fit multiple layers [54].

2.3 Chemical Composition Analysis by X-Ray

Fluorescence

Hard x-ray fluorescence is a widely used tool for chemical composition analysis
of elements heavier than sodium. A photon interacting with an atom can
promote an electron to the continuum if the photon’s energy is higher than the
electron’s binding energy. Figure 2.2 (left) shows the term scheme of the lowest
absorption edges, the K-edge and the L1,2,3-edges. The created vacancy (the
core-hole) is filled by electrons from higher levels, either via the Auger process
emitting another electron, or radiatively by emission of a photon. The latter
process is the x-ray fluorescence, and its probability (the fluorescence yield)

18



2.3 Chemical Composition Analysis by X-Ray Fluorescence

1s
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2p3/2

2p1/2

2p3/2

Kβ

Figure 2.2: Left: x-ray absorption from core levels. Right: some x-ray emission transi-
tions. Spin-orbit splitting of 3p and 3d states is omitted.

depends on the shell and the binding energy: the higher the binding energy, the
larger the fluorescence yield. Figure 2.2 (right) gives an overview of the high-
energy x-ray emission lines. The energies are characteristic for the emitting
atom, which is why they are called characteristic radiation. The intensities
are nearly independent on the chemical environment, so the characteristic
radiation can be used for stoichiometry analysis of solids.

During this work, an energy dispersive x-ray detection system has been
implemented into the x-ray diffractometer. It consists of an AMPTEK XR-100CR
Si-PIN detector1 and a digital pulse processor. The detector is located within a
He enclosure with Kapton windows, to allow analysis of light elements, the
characteristic radiation of which is otherwise attenuated by air.

A (thin film) sample is excited by the continuous bremsstrahlung from the
Cu anode tube, operated at 40 kV. If necessary, a 400 µm thick Al foil removes
the characteristic Cu radiation from the excitation spectrum, which is modeled
with Ebel’s model [55]. The fluorescence spectrum of the sample is post-

1Trivia: The same type of detector was on the NASA Pathfinder mission to Mars.
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2 Experimental Methods

Figure 2.3: Detection modes of
soft x-ray absorption: (total)
electron yield and substrate
luminescence.

x­r
ay

sample

secondary
electrons visible

light

processed to remove escape and sum peaks, smoothed, and the background is
removed. Finally, a fundamental parameters analysis based on a non-linear
fitting procedure is performed by the analysis software shipped with the
detector.

The fundamental parameters analysis is carried out entirely without the
need for standards. The geometry, filters, environments and properties of the
source and the detector are supplied, everything else is based on tabulated
atomic parameters and accurate physical modeling of the setup. Effects of re-
absorption and secondary fluorescence are taken into account in dependence
on the sample thickness.

2.4 Soft X-Ray Absorption Spectroscopy

Soft x-rays (≈ 100 eV - 2000 eV) absorbed by the 2p levels of 3d transition metals
allow to probe the unoccupied 3d and 4s states. The absorption is detected
either by the sample drain current, which is proportional to the total electron
yield (TEY) of secondary electrons [56], or by measuring the substrate visible
light luminescence [57], see Fig. 2.3. In the first case, one has a very surface
sensitive measurement, because the secondary electrons have a typical escape
length of 2 - 3 nm. In the latter case, a thickness integrated measurement is
obtained, but the film thickness is limited to about 50 nm.
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2.4 Soft X-Ray Absorption Spectroscopy

2.4.1 X-Ray Absorption Near Edge Structure

The unoccupied states in a solid (or in a molecule) give rise to resonant ab-
sorption, and result in an x-ray absorption near edge structure (XANES, also
near edge x-ray absorption fine structure (NEXAFS)). This can be used to
extract information on hybridizations or orientation dependence of orbitals.
Several dichroic effects can be observed in x-ray absorption, some of which are
associated with magnetism; these are presented in the following.

2.4.2 X-Ray Magnetic Circular Dichroism

X-ray magnetic circular dichroism (XMCD) occurs if the spin-up and spin-
down final states are different, i.e., if the system is ferromagnetic. A circularly
polarized (with a single photon helicity) x-ray beam is absorbed by the sample,
which is magnetized parallel or antiparallel to the beam direction, see Fig. 2.4.
The resulting spectra, µ+(E) and µ−(E), can be combined to the average x-ray
absorption and the difference spectrum,

XAS(E) =
1
2
(µ+(E) + µ−(E)) (2.14)

XMCD(E) = µ+(E)− µ−(E). (2.15)

These spectra can be evaluated with the XMCD sum rules to obtain spin and
orbital moments of the absorber [58]. One defines integrals p, q and r as

p =
∫

L3

dE (µ+ − µ−)

q =
∫

L3+L2

dE (µ+ − µ−)

r =
∫

L3+L2

dE
(

µ+ + µ−

2
− S

)
A no-free-parameter two-step-like background function S with thresholds set
to the points of inflection on the low energy side of the L3 and L2 resoncance
and step heights of 2/3 (L3) and 1/3 (L2) of the average absorption coefficient
in the post-edge region (”post-edge jump height η”) is intruduced here. It
accounts for the absorption into delocalized, s-like states.

Sufficiently far away from the absorption edges, interactions among the
atoms in the samples can be neglected [59] and the post-edge jump height
η is proportional to ∑i Xiσai, where Xi is the relative concentration of atom i
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in the sample and σai is its total atomic absorption cross section. As pointed
out by Stöhr [60], the number of unoccupied 3d states Nh is proportional
to the integral r via r = CNhη. The constant C depends on the transition
matrix elements connecting the core and valence states involved in the 2p
– 3d transitions and has been analyzed by Scherz for different 3d transition
metals (CTi = 5.4 eV, CV = 5.3 eV, CCr = 5.7 eV, CMn ≈ 6.0 eV, CFe = 6.6 eV,
CCo = 7.8 eV, CNi = 8.1 eV; the Mn value is interpolated between the other
data) [61]. When neglecting the spin magnetic dipole term 〈TZ〉 in the XMCD
sum rules, the spin and orbital magnetic moments mspin and morb and their
ratio are then given as

morb = − 1
Phν cos θ

4q
6Cη

(2.16)

mspin = − 1
Phν cos θ

(6p− 4q)
2Cη

(2.17)

morb
mspin

=
2q

9p− 6q
(2.18)

with the elliptical polarization degree Phν and the angle θ between magnetiza-
tion and x-ray beam direction.

2.4.3 X-Ray Magnetic Linear Dichroism

X-ray magnetic linear dichroism (XMLD) arises as the difference between
parallel and perpendicular orientation of x-ray polarization and magnetization
when using linearly polarized light (see Fig. 2.4):

XMLD(E) = µ‖(E)− µ⊥(E). (2.19)

Because XMLD is essentially given as the difference between ∆m = 0 and
the averaged ∆m = ±1 transitions, it is a sensitive probe of the local crystal
field. For systems with m degeneracy, i.e., spherical symmetry, it is approxi-
mately given by XMLD(E) ≈ ∓ 0.1 ∆ d

dE XMCD(E). ∆ describes the core-level
exchange splitting due to the local magnetic field. ∆ and the XMCD scale with
the local spin magnetic moment, which gives rise to a quadratic dependence
on the local spin moment [62, 63, 64]. In contrast to XMCD, XMLD is only
sensitive to the direction of the spin moments, not their orientation. This al-
lows to probe antiferromagnetic and ferrimagnetic materials with XMLD. For
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Figure 2.4: X-ray magnetic circular dichroism and x-ray magnetic linear dichroism.
For XMCD light of constant helicity is used; the magnetization is switched between
parallel and antiparallel to the beam. For XMLD linearly polarized light is used. The
magnetization is switched between parallel and perpendicular to the polarization
direction.

local moments, the core-level exchange splitting is stronger than for itinerant
moments, which leads to an enhanced XMLD amplitude. Therefore, XMLD
can be used as a probe for the locality of magnetic moments by comparison
with reference systems. In contrast to XAS and XMCD, the magnetic linear
dichroism is strongly anisotropic in cubic systems [62].

2.5 Other Techniques

Additional characterization of some samples involved magnetic characteriza-
tion with superconducting quantum interference devices (SQUID) and chemi-
cal analysis with inductively coupled plasma optical emission spectroscopy
(ICP-OES).

Electrical four-point transport measurements in dependence on the sample
temperature down to about 20 K were performed in a cryostat. Magnetore-
sistance was measured using a variable permanent magnet (coaxial Halbach
cylinder configuration, Magnetic Solutions Multimag) with a maximum field
strength of 10 kOe in the cryostat. Measurements up to 500 K were done in
a vacuum furnace. For these measurements, the samples were prepared by
standard photolithographic techniques.
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3 Theoretical Methods

The theoretical parts of this work have been carried out with computer codes
based on density functional theory (DFT). Different implementations of DFT
come with individual advantages and disadvantages. As a user, one has to
decide which implementation is best suited for the problem to be investigated.
This choice depends to a large part on the feature set of the various computer
codes, but also on the suitability of the basis set for the problem. For this work,
the full-potential linearized augmented plane waves (FP-LAPW) method, the
spin-polarized relativistic Koringa-Kohn-Rostoker (SPRKKR) method, and the
real-space relativistic full multiple scattering method (implemented in FEFF9)
have been used.

In this chapter, the basic ideas of DFT are outlined following Richard Martin’s
textbook [65]. The descriptions of the computer codes involve details of the
basis sets and the solution methods. Particular focus is put on the relevant
features provided in the codes. Two important methods, the calculation of
Curie temperatures within an effective Heisenberg model and the computation
of x-ray absorption spectra, are discussed in individual sections. Atomic units
(e2 = h̄ = me = 1) are used throughout this chapter.

3.1 Density Functional Theory

Density functional theory as formulated by Hohenberg and Kohn in 1964 [66]
is an exact theory of an interacting electron gas in an external potential. In the
case of a solid or a molecule, the external potential is the Coulomb potential of
the nuclei, which are assumed as fixed (Born-Oppenheimer-Approximation).
The Hamiltonian of the many-electron system can be written as

Ĥ = −1
2 ∑

i
∇2

i +
1
2 ∑

i 6=j

1∣∣ri − rj
∣∣ + ∑

i
Vext(ri) + Enn (3.1)

in which the first term is the kinetic energy, the second term is the Coulombic
repulsion between electron pairs, and the third term describes the energy of the
electrons in the external potential. Enn is the classical interaction of the nuclei
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3.1 Density Functional Theory

and also contains all other contributions to the energy that do not influence the
electrons. The stationary solution of the N-electron Schrödinger equation has
the form Ψ(r1, . . . , rN). The electron density n(r) is given by the expectation
value of the density operator n̂(r) = ∑i=1,N δ(r− ri):

n(r) =
〈Ψ|n̂(r)|Ψ〉
〈Ψ|Ψ〉 . (3.2)

The total energy is the expectation value of the Hamiltonian:

E = 〈Ĥ〉 :=
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 . (3.3)

3.1.1 The Hohenberg-Kohn Theorems

Hohenberg and Kohn proved the following theorems:

• Theorem I: For any system of interacting particles in an external potential
Vext(r), this potential is determined uniquely up to an additive constant
by the ground state particle density n0(r). Since the Hamiltonian is thus
fully determined up to a constant shift of the energy, it follows that the
many-electron wavefunctions are determined. Therefore all properties of
the system are completely determined by the ground state density n0(r).

• Theorem II: A universal functional for the energy E[n] in terms of the
density n(r) can be defined, valid for any external potential Vext(r). For
any particular Vext(r), the exact ground state energy of the system is
the global minimum value of this functional, and the density n(r) that
minimizes the functional is the exact ground state density n0(r). The
functional E[n] alone is sufficient to determine the exact ground state
energy and density.

In short, the Hohenberg-Kohn theorems state that there is a one-to-one corre-
spondence between the ground-state density and the ground-state potential,
and that the ground-state density is the global minimum of the energy func-
tional E[n]. Thus, it can be determined from a variational calculation.

In analogy to the many-electron Hamiltonian (3.1), the Hohenberg-Kohn
total energy functional EHK[n] is

EHK[n] = T[n] + Eint[n] +
∫

d3r Vext(r)n(r) + Enn (3.4)
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where T[n] is the electron kinetic energy and Eint[n] is the interaction energy
among the electrons. These terms can be gathered in a universal functional of
the density, i.e., one that is the same for all electron systems:

FHK[n] := T[n] + Eint[n]. (3.5)

If this functional was known, one could find the ground state by minimization
of the total energy with respect to the density n(r).

A generalization to spin-polarized systems is easily possible. A Zeeman
term is added to the Hamiltonian, which is different for spin up and down
electrons in the presence of a magnetic field. In this case, two densities, one for
each spin, are defined and satisfy the Hohenberg-Kohn-Theorems individually.
Then the density is n(r) = n(r, ↑) + n(r, ↓), and the spin density is given by
s(r) = n(r, ↑)− n(r, ↓).

3.1.2 The Kohn-Sham Ansatz

Although it is in principle sufficient to find the density of a given material to
understand its properties, there is no way known how to extract them from the
density. Further, the functional FHK[n] is not known in general. Therefore, the
density functional theory as formulated by Hohenberg and Kohn is of minor
practical relevance.

Kohn and Sham proposed in 1965 to replace the full interacting many-body
problem with a simpler, non-interacting auxiliary problem [67]. Their ansatz
rests on the assumption that the ground state density of the interacting sys-
tem can be expressed by the ground state density of a properly chosen non-
interacting system. The key idea is to re-introduce orbitals for non-interacting
electrons and put the many-body problem into an exchange-correlation func-
tional of the density. This way, the Hohenberg-Kohn functional FHK[n] becomes
simply the kinetic energy of the non-interacting ficticious electrons.

The auxiliary Kohn-Sham Hamiltonian, replacing (3.1), is defined by

Hσ
KS(r) = −

1
2
∇2 + Vσ

KS(r), (3.6)

where σ denotes the spin-index. The N = N↑ + N↓ electrons occupy orbitals
ψσ

i (r) with the lowest eigenvalues εσ
i determined by the Schrödinger-like

Kohn-Sham equations
(Hσ

KS − εσ
i )ψσ

i (r) = 0. (3.7)
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The density of the Kohn-Sham system is given by

n(r) = ∑
σ

Nσ

∑
i=1
|ψσ

i (r)|
2 , (3.8)

and the Kohn-Sham kinetic energy is

Ts =
1
2 ∑

σ

Nσ

∑
i=1
|∇ψσ

i (r)|
2 . (3.9)

The classical Coulomb interaction energy of the electron density with itself is
given by the Hartree energy

EHartree[n] =
1
2

∫
d3r d3r′

n(r)n(r′)
|r− r′| . (3.10)

With these ingredients, the Hohenberg-Kohn total energy functional (3.4) can
be rewritten as

EKS = Ts[n] + EHartree[n] +
∫

d3r Vext(r)n(r) + Enn + Exc[n] (3.11)

The many-body effects of exchange and correlation are put into the exchange-
correlation functional Exc[n]. Now, the Kohn-Sham potential Vσ

KS(r) can be
expressed in terms of variations with respect to the density as

Vσ
KS(r) = Vext(r) +

δEHartree

δn(r, σ)
+

δExc

δn(r, σ)
=: Vext(r) + VHartree(r) + Vσ

xc(r).

(3.12)
As (3.12) depends on the density computed from the solution of (3.7), one has
to iterate the equations to self-consistency, starting from an initial guess (from,
e.g., a superposition of atomic densities).

3.1.3 The Exchange-Correlation Functional

The Kohn-Sham ansatz is an exact way to find the exact ground-state density
and total energy, no approximations have been made yet. Unfortunately, the
exchange-correlation functional is not known. The major obstacle of solving the
full many-body problem has been reformulated with the Kohn-Sham equations,
so that most of the total energy of the electron system is calculated correctly.
Only a small fraction of the total energy, the exchange-correlation energy,
has to be approximated. Two different paradigms for the derivation of the
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approximations can be distinguished: empirical and non-empirical. While
empirical functionals are constructed to match experimental datasets as good
as possible, non-empirical functionals are constructed based on known physical
constraints, which the functional has to obey.

Local spin density approximation (LSDA)

The simplest approach to the problem of the exchange-correlation functional
is to use only local quantities. Usually it is split into a sum of exchange and
correlation contributions, which are derived from the homogeneous electron
gas (HEG),

ELSDA
xc [n↑, n↓] =

∫
d3r n(r)

[
eHEG

x (n↑(r), n↓(r)) + eHEG
c (n↑(r), n↓(r))

]
.

(3.13)
The exchange contribution is known analytically, and the correlation term
is typically a parametrized expression based on Monte-Carlo simulations.
Various parametrizations have been proposed, named after their authors. A
popular form is that proposed by Perdew and Wang (PW92), which is improved
over earlier forms [68].

One can expect the LSDA to work best in systems that are close to the HEG,
like simple metallic solids. Surprisingly, it does even perform quite well for
molecules, though it has a tendency to overbind, i.e., binding energies are too
large and bond lengths are too short. Thus it is not good enough to be useful
for thermochemistry, still it provides very good structural properties.

Generalized gradient approximation (GGA)

In addition to the local density, one can add information about the gradient
of the density to get better approximations for systems with strongly varying
density. Functionals that take into account gradients are called generalized-
gradient approximations (GGA). They take the general form

EGGA
xc [n↑, n↓] =

∫
d3r n(r) eGGA

xc (n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|), (3.14)

and are typically referred to as semi-local functionals. The standard GGA
functional of the non-empirical type is the Perdew-Burke-Ernzerhof (PBE)
functional, which largely corrects the overbinding of LSDA and usually over-
estimates the bond lengths slightly [69].
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Non-collinear spin density

Usually, the spin density has a common axis; it is collinear. Non-collinear
calculations, with a spin axis that varies in space, involve a modified treatment
of the Kohn-Sham equations and the exchange-correlation functional. The
Kohn-Sham Hamiltonian becomes a 2 × 2 matrix, to which the exchange-
correlation potential contributes off-diagonal components. By finding the local
axis of spin quantization for every point in space, the usual form of the LSDA
can be used. GGA expressions have to be modified involving the gradient of
the spin axis.

3.1.4 Periodic Boundary Conditions

Periodic boundary conditions, which are naturally present in an extended
crystal, allow to evaluate the Kohn-Sham equations in reciprocal space. The
foundation for this is given through the Bloch theorem,

T̂nψ(r) = ψ(r+ Tn) = eik·Tnψ(r), (3.15)

in which Tn = n1a1 + n2a2 + n3a3 describes a translation along the lattice
vectors ai with |ni| = 0, 1, 2, . . . Eigenfunctions of the periodic Hamiltonian
can be written as

ψk(r) = eik·ruk(r), (3.16)

where uk(r+ Tn) = uk(r). The eigenstates of the Hamiltonian can be found
seperately for each k in the Brillouin zone, leading to bands of eigenvalues εi,k.
One finds intrinsic properties of a crystal per unit cell – such as the number of
electrons, the magnetization, the total energy, etc. – by averaging over the k
points, where Nk is the total number of k points. The density is given by

n(r) =
1

Nk
∑
k

nk(r). (3.17)

The density of states ρ(E) is calculated from the energy bands εi,k as

ρ(E) =
1

Nk
∑
i,k

δ(εi,k − E). (3.18)

Obviously, an adequate k point sampling of the Brillouin zone is crucial for
numerically exact calculations. In reciprocal space calculations, the mesh of k
points has to be made dense enough to obtain good numerical convergence of
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the quantities under investigation. Symmetry operations are applied to reduce
the number of k points, such that only the irreducible wedge of the Brillouin
zone is used.

3.2 Implementations of DFT Used in This Work

3.2.1 The Elk FP-LAPW code

Elk is an open-source full potential linearized augmented plane waves (FP-
LAPW, FLAPW) code [70]. FLAPW treats core and valence electrons simul-
taneously, and is generally considered the most accurate method to solve the
Kohn-Sham problem.

The FLAPW method starts from the muffin-tin partitioning. The unit cell
is devided into spheres, centered on the nuclei (the muffin-tins) and a region
in between (the interstitial). The basis set is built from spherical harmonics in
the muffin-tin spheres and plane waves in the interstitial. This is referred to
as an augmented plane waves (APW) basis, which was originally suggested
by Slater. Matching conditions on the muffin-tin boundary can be imposed to
arbitrary order. The basis set used by Elk is a linearized version of the APW+lo
method [71]. It can be expressed as

φk(r) =


∑
G

cGei(G+k)·r r ∈ interstitial

∑
lm

αklmul(r, E1
l )Ylm(r̂) r ∈ muffin-tin

(3.19)

where r = |r| and r̂ = r/r. The plane wave coefficients cG are variational
quantities, and the αklm are determined by the matching conditions at the
muffin-tin boundary. Matching to zeroth order (i.e., only the value of the wave
function) and obtaining the solutions ul(r, E1

l ) (one per angular momentum l)
of radial Schrödinger equations at fixed energy E1

l is sufficient, if local orbitals
are added to the APW set. The local orbitals (lo/LO) are represented by radial
functions and spherical harmonics in the muffin-tin spheres and are forced to
zero on the muffin-tin boundary. They do not depend on k. Two types of local
orbitals are added to the basis set:

φlo
lm(r) =

(
βlmul(r, E1

l ) + γlmu′l(r, E1
l )
)

Ylm(r̂) (3.20)

φLO
lm (r) =

(
δlmul(r, E1

l ) + εlmu′l(r, E1
l ) + ζlmul(r, E2

l )
)

Ylm(r̂) (3.21)
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The local orbital coefficients βlm and γlm are determined by the condition to
have the local orbital wave function zero at the muffin-tin boundary and its
normalization. Similarly, δlm, εlm, and ζlm are determined by the wave function
and its derivative being zero at the muffin-tin boundary, and its normalization.
The second type of local orbitals have atomic-like wave functions and are used
to describe semi-core states. The local orbitals greatly improve the flexibility of
the basis set at very low computational cost.

The radial functions and derivatives ul(r, E1
l ), u′l(r, E1

l ), ul(r, E2
l ) are solu-

tions of the radial Schrödinger equation at fixed energies Ei
l , which results in

a standard linear eigenvalue problem. The linearization energies E1
l have to

be chosen approximately in the center of the valence bands. The lineariza-
tion energies E2

l are at the approximate energy of the semi-core state, and are
searched automatically. The variational coefficients cG are obtained from the
Rayleigh-Ritz variational principle.

Core level electrons are treated separately in a fully relativistic way with
the radial Dirac equation. Spin-orbit coupling can be included for the valence
states in a second-variational step by adding a σ ·L term to the Hamiltonian.

The crystal potential V(r) is expanded similar to the wave functions,

V(r) =


∑
G

VGei(G+k)·r r ∈ interstitial

∑
lm

Vlm(r)Ylm(r̂) r ∈ muffin-tin.
(3.22)

This constitutes the full potential treatment, which is to be contrasted with
a spherical approximation (usually called atomic spheres approximation). It
corresponds to a truncation of the potential expansion at l = 0 and G = 0.
Thus, the potential in the muffin-tins would be spherically averaged, and the
potential in the interstitial would be constant. The potential expansion of (3.22)
allows to treat the full potential without shape approximations.

3.2.2 The Munich SPRKKR package

The Munich SPRKKR package is a spin polarized relativistic implementation
of the Korringa-Kohn-Rostoker Green’s function method. It determines the
eletronic structure of a periodic solid by means of multiple scattering theory.
The method is described in detail in a review article by the authors of the
code [72]. Another very instructive introduction is given by Mavropoulos and
Papanikolaou [73]. Here, the main ideas are summarized in short.
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One starts from a formal introduction of the Green function G(r, r′, E)
through the Schrödinger equation:

(E− H) G(r, r′, E) = δ(r− r′). (3.23)

G(r, r′, E) has the following spectral representation:

G(r, r′, E) = lim
η→+0

∑
ν

ψν(r)ψ∗ν(r
′)

E− Eν + iη
, (3.24)

where Eν are the eigenvalues of the Hamiltonian H, and η is a small positive
real number. From the Green function, the density of states ρ(E) and the charge
density n(r) are obtained as

ρ(E) = − 1
π

Im
∫

d3r G(r, r, E), (3.25)

n(r) = − 1
π

Im
∫ EF

dE G(r, r, E). (3.26)

The Green function contains all information which is given by the eigenfunc-
tions, both are equivalent. All physical properties of the system can be found,
if the Green function is known.

There are several ways of calculating the Green function, the most important
and flexible of which is multiple scattering theory (MST). The solution of the
electronic structure problem is broken up in two parts, a potential related one
and a geometry related one.

In the full-potential formulation, the unit cell is divided into Wigner-Seitz
polyhedra, centered on the nuclei. The potential of site n is expanded in
spherical harmonics, Vn(r) = ∑L Vn

L (r)YL(r̂), with L := (l, m). The potential
of site n is zero outside its polyhedron. In contrast to FLAPW there is no
interstitial region.

In a first step, the single-site scattering problem, i.e. the scattering of a plane
wave on the potential of site n, is solved individually for all sites. The scattering
solutions ψn(r, E) for the isolated potential wells Vn(r) are obtained from the
Lippmann-Schwinger equation, an integral form of the Schrödinger equation:

ψn(r, E) = ψ0(r, E) +
∫

d3r′ G0(r, r′, E) Vn(r) ψn(r, E), (3.27)

with the free-electron wave function ψ0(r, E) = eik·r and the corresponding
Green function

G0(r, r′, E) = −e−i
√

E |r−r′ |

4π |r− r′| . (3.28)
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The scattering behaviour of the potential Vn(r) can be expressed in terms of a
tn-operator,

tn = Vn + Vn G0 tn (3.29)

= Vn(1− G0 Vn)−1, (3.30)

where the arguments have been dropped for clarity. It is related to the radial
part of the scattering solution outside the polyhedron of site n.

Instead of working with the Lippmann-Schwinger equation, one can write a
Dyson equation (in operator form) for the single-site scattering problem:

Ĝn(E) = Ĝ0(E) + Ĝ0(E) V̂n Ĝn(E) (3.31)

= Ĝ0(E) + Ĝ0(E) t̂n(E) Ĝ0(E). (3.32)

Analogous equations are found in the multiple-scattering case:

Ĝ(E) = Ĝ0(E) + Ĝ0(E) V̂ Ĝ(E) (3.33)

= Ĝ0(E) + Ĝ0(E) T̂(E) Ĝ0(E), (3.34)

where the multiple-scattering T-matrix operator has been introduced. It can be
expanded as

T̂(E) = ∑
nn′

τ̂nn′(E). (3.35)

The scattering path operator τ̂nn′(E) is defined to transfer an electron wave
incoming at site n′ into a wave outgoing from site n with all possible scattering
events in between incorporated. In an angular momentum basis (denoted by
underlines), τ̂nn′(E) has the following equation of motion:

τnn′(E) = tn(E)δnn′ + tn(E) ∑
m 6=n

Gnm
0 τmn′(E). (3.36)

For a finite system, this equation is solved by matrix inversion,

τ(E) =
[
t(E)−1 − G0(E)

]−1
. (3.37)

The double underlines denote matrices with respect to angular momentum
and sites. The matrix in square brackets is known as the real-space KKR
matrix. For a periodic solid with sites n at positionsRn, one finds by Fourier
transformation

τnn′(E) =
1

ΩBZ

∫
ΩBZ

d3k
[
t(E)−1 − G0(k, E)

]−1
eik·(Rn−Rn′ ), (3.38)
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with the (reciprocal space) structure constants matrix G0(k, E) being the Fourier
transformed of the real-space structure constants matrix G0(E).

The formalism outlined above is very general with respect to the Hamilto-
nian H. In practice, the Kohn-Sham equations are solved in the usual iterative
way, to self-consistency.

A major advantage of the Green’s function formalism is the connection of a
perturbed system and a reference system through the Dyson equation:

Ĝ = Ĝref + Ĝref Ĥpert Ĝ. (3.39)

This equation gives also the formal background for the scheme described
above, in which the free-electron system is the reference system, and the pertur-
bation Hamiltonian is given by the potential of the system under investigation.
Because MST seperates the electronic structure problem into a geometric and a
potential part, it is easy to treat impurities in a perfect host material without
using supercells or large clusters, as in other methods:

τimp =
[
(τhost)−1 − (thost)−1 + (timp)−1

]−1
. (3.40)

Similarly, disordered systems are treated within the so-called coherent potential
approximation (CPA). An auxiliary CPA medium is introduced, in which the
concentration average of the constituents causes no additional scattering. For
a binary alloy with concentrations xA, xB, this can be expressed with the
scattering path operator matrices:

xAτAnn + xBτBnn = τCPAnn. (3.41)

In analogy to the impurity problem, the component projected scattering path
operator matrices are given as

ταnn =
[
(τCPA)−1 − (tCPA)−1 + (tα)−1

]−1
, α = A, B. (3.42)

The matrix dimension of the multiple-scattering problem is Nscatterers · (lmax +

1)2. Therefore, one tries to keep the angular momentum cutoff as small as
possible, typically lmax = 3 for d-electron systems. In principle, one would
have to take the angular momentum expansion to infinity to obtain the charge
density correctly. Due to the truncation, the charge density is somewhat
incomplete, leading to a slight miscalculation of the Fermi energy. This problem
can be resolved by an analytically exact expression to obtain a correct charge
normalization, the Lloyd formula [74, 75].
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Only valence electrons are treated with the MST. Core electrons, which are
well localized within the polyhedra, are treated relativistically with the Dirac
equation. The Hamiltonian for the valence electrons can be chosen either scalar-
relativistic (neglecting spin-orbit coupling) or fully relativistic, depending on
the problem being investigated.

3.3 Curie Temperatures from an Effective

Heisenberg Model

In the classical Heisenberg model of localized spins, the Hamiltonian of the
spin system is given by

H = −∑
i,j
eiej Jij, (3.43)

with the Heisenberg pair exchange coupling parameters Jij, and unit vectors ei
pointing in the direction of the magnetic moment on site i. SPRKKR allows to
calculate the exchange coupling parameters by mapping the (itinerant) system
onto a Heisenberg Hamiltonian. The parameters are determined within a
perturbative real-space approach using the theory by Liechtenstein et al. [76].
In this approach, the energy difference ∆Eij = Jij (1− cos θ) associated with a
rotation of the spins on sites i, j in opposite directions ±θ/2 is mapped onto
the Heisenberg Hamiltonian via

Jij = −
1

4π
Im
∫ EF

dE Tr (t−1
i↑ − t−1

i↓ ) τ
ij
↑ (t

−1
j↑ − t−1

j↓ ) τ
ji
↓ , (3.44)

where ↑, ↓ denote the up- and down-spin t and τ operators as discussed in
the previous section (note the changed indices for better legibility). The real-
space calculation gives direct access to the distance-dependence of the pair
exchange coupling parameters. A necessary condition for the applicability
of this approach is the locality of the spin moments, i.e., the magnitude of
the moments should not change on rotation. This condition is not fulfilled in
itinerant systems.

From the Jij the Curie temperatures can be calculated within the mean field
approximation (MFA). For a single-lattice system the Curie temperature is
given within the MFA by

3
2

kBTMFA
C = J0 = ∑

j
J0j. (3.45)
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In a multi-sublattice system, denoted by indices µ, ν, (as, e.g., the Heusler
compounds with four sublattices) one has to solve the coupled equations

3
2

kBTMFA
C 〈eµ〉 = ∑

ν

Jµν
0 〈e

ν〉 (3.46)

Jµν
0 = ∑

r 6=0
Jµν
0r

where 〈eν〉 is the average z component of the unit vector eν
r pointing in the

direction of the magnetic moment at site (ν, r). The coupled equations can be
rewritten as an eigenvalue problem:

(Θ− T I)E = 0 (3.47)
3
2

kBΘµν = Jµν
0

with a unit matrix I and the vector Eν = 〈eν〉. The largest eigenvalue of the Θ

matrix gives the Curie temperature [43, 77]. To converge the Curie temperature
with respect to the real-space cluster radius, one has to compute pair exchange
coupling parameters up to typically rmax = 3.0 a, where a is the lattice constant.

To estimate the accuracy of our method for the Curie temperature determi-
nation of Heusler compounds, we calculated the Curie temperatures of some
compounds at their respective experimental lattice parameters. The calculated
and experimental values are given in Table 3.1. Further values, obtained using
the same method, can be found in Ref. [80]. For the Co-based ferromagnetic
compounds, the calculated mean-field values are in good agreement with ex-
periment. However, in the case of the two ferrimagnetic Mn-based compounds,
the MFA Curie temperature is about 25 % lower than the experimental one.
The latter compounds might have more itinerant character, similar to the case

MFA expt. Ref.

Co2MnSi 1049 K 985 K [51]
Co2TiSn 383 K 355 K [78]
Mn2VAl 605 K 760 K [11]
Mn2VGa 560 K 783 K [79]

Table 3.1: Calculated and experimental Curie temperatures of some Heusler
compounds.
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3.4 X-Ray Absorption Spectra from Electronic Structure

of fcc Ni, where the MFA value is about 380 K, in contrast to the experimental
value of 630 K [76].

3.4 X-Ray Absorption Spectra from Electronic

Structure

3.4.1 General Considerations

In a first approximation, one can describe the absorption of x-rays by a medium
as a single-step process: electrons from an occupied core orbital are excited into
unoccupied states above the Fermi energy, such that the energy dependence
of the absorption is governed by the structure of the unoccupied states. In
first order perturbation theory with the electric dipole approximation, we can
express the energy-dependent optical (and x-ray) absorption spectra µα(ω)

with Fermi’s Golden Rule:

µα(ω) ∝ ∑
i, f

∣∣∣〈ψ f |pα|ψi〉
∣∣∣2 δ(E f − Ei −ω), (3.48)

where α denotes the polarization, ω the photon energy, i, f label the initial and
final wave functions, Ei, f the corresponding energy levels, and pα = −i∇α the
momentum operator with direction α. If only a single initial state – as in the
case of x-ray absorption – is considered and the momentum matrix elements
|〈ψ f |pα|ψi〉|2 are assumed as energy-independent, this expression reduces to
the density of states, modified by the dipole selection rules. Absorption from s
states probes the p-projected density of states, absorption from p states probes
s and d states.

First order perturbation theory assumes an infinitesimal depletion of the
initial state during the absorption process. This approximation is, however,
often not justified. When a photon is absorbed by a core-level electron, it is
promoted to the valence states, leaving a core-hole. The propagating electron
can interact with the core-hole, as well as all other electrons. All effects of
this kind are condensed in the expression core-hole correlations. The extent,
to which these correlations have to be taken into account depends on the
absorption edges, the absorbing atom and the system, in which it is embedded.
This will be discussed in more detail later.
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3.4.2 Elk

A more general formulation of optical properties is given through the optical
conductivity tensor σαβ(ω) [81]:

σαβ(ω) =
i

Ω ∑
k

∑
i, f

1
ωi f ,k

 Πα
i f ,kΠβ

f i,k

ω−ωi f ,k + iη
+

(Πα
i f ,kΠβ

f i,k)
∗

ω + ωi f ,k + iη

 , (3.49)

where α, β denote the polarization, Ω the unit cell volume, ωi f ,k = E f ,k − Ei,k
the transition energy. The parameter η smooths the poles of the sum with a
Lorentzian and can be interpreted as a phenomenological (inverse) lifetime
broadening. The dipolar transition matrix elements Πα

i f ,k are determined by

Πα
f i,k =

∫
ψ∗f ,k(r)p

αψi,k(r) dr. (3.50)

The optical conductivity tensor and the dielectric tensor εαβ(ω) are related by

εαβ(ω) = δαβ +
4πi
ω

σαβ(ω) (3.51)

with the Kronecker delta δαβ; in the high-frequency limit, the diagonal com-
ponents converge to 1 and the off-diagonal components go to zero. The x-
ray absorption, x-ray magnetic circular dichroism, and x-ray magnetic linear
dichroism of a cubic material with magnetization along the z-axis (which is not
necessarily parallel to one of the crystal axes) can be calculated as

XAS(ω) =
1
3

Tr[ Im(ε(ω)) ] (3.52)

XMCD(ω) = Im(σxy(ω)) (3.53)

XMLD(ω) = Im(εzz(ω)− εxx(ω)). (3.54)

This very general formulation is adopted in the Elk code, and also includes
a spin-orbit correction term in the dipolar transition matrix elements. The code
does not consider transitions from core orbitals, so that the orbitals of interest
have to be described as valence by the local orbitals method.

3.4.3 SPRKKR

SPRKKR treats the x-ray absorption on a fully relativistic level, such that spin-
orbit effects are naturally included. In the KKR formalism, it is convenient to
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rewrite (3.48) using the identity

− 1
π

Im G(E) = ∑
f
|ψ f 〉〈ψ f | δ(E f − E) (3.55)

for the Green’s function to obtain

µα(ω) ∝ ∑
i
〈Φi|X∗αIm G(Ei + ω)Xα|Φi〉 θ(Ei + ω− EF). (3.56)

The Φi are the core level wave functions of the initial states, and Xα =

− 1
c jel ·Aα represents the coupling of the electronic current density to the

radiation vector potential. X-ray absorption and circular dichroism are com-
puted following their definitions:

XAS(ω) =
1
2
(µ+(ω) + µ−(ω)) (3.57)

XMCD(ω) = µ+(ω)− µ−(ω). (3.58)

3.4.4 The FEFF9 code

The FEFF9 code is an implementation of the relativistic real-space multiple-
scattering Green’s function method within the muffin-tin approximation [82].
Correspondigly, most of the mathematics described in 3.2.2 apply here as
well. The muffin-tin approximation (not to be confused with the muffin-tin
partitioning in FLAPW) assumes spherical potentials in the muffin-tins and a
constant potential outside. The first versions of FEFF were designed to compute
the extended x-ray absorption fine structure (EXAFS) of molecules and solids,
which originates from multiple scattering of the excited photoelectron from the
surrounding atoms. Therefore, it was naturally based on multiple-scattering
theory, but employed a scattering path expansion for the Green’s function:

Gsc = Ḡ0TḠ0 + Ḡ0TḠ0TḠ0 + . . . (3.59)

The Greens’s function of the system is given as the sum of the central (absorber)
atom and the multiple-scattering contribution above, G = Gc + Gsc. The
Green’s function Ḡ0 refers to the damped free-electron Green’s function, as
calculated with a complex self-energy and core hole lifetime. The expansion
is a very efficient and fast way to compute EXAFS, which are relevant at
energies about 10 eV above the absorption threshold up to a few hundred eV.
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For low energies, i.e., very distant scattering events, the convergence of the
expansion is bad, such that the near-edge region (x-ray absorption near edge
structure, XANES) is not described correctly. For this region, the full multiple-
scattering (FMS) as described by Eq. (3.37) has to be considered. Further, a
self-consistent potential is required for accurate results. Both the FMS as well
as the self-consistency are implemented in FEFF9, allowing accurate XANES
calculations. However, the spin treatment is not self-consistent. One has to
impose a particular magnetic moment for a given site in the cluster, which is
then adjusted by a rigid shift of spin up and down densities. The computation
of circular dichroism is accordingly limited to cases, where the rigid shift is a
good description of the actual band structure.

The major advantage of the FEFF code is a self-consistent treatment of
core hole effects. The x-ray absorption can be described in the final state
approximation, removing an electron from the initial state and adding it to the
final states. This gives rise to a redistribution of the bands, often improving
the agreement between experiment and calculation, in particular for K edges.
It is difficult to treat these effects in reciprocal space methods (large supercells
have to be constructed), whereas the treatment in a real space cluster approach
is quite natural.

3.4.5 More Advanced Treatment of the
Core-Hole–Photoelectron Interaction

As indicated above, self-consistent inclusion of a core hole improves agreement
between experiment and calculation in many cases. However, this is just
an approximate treatment of the excited state, and some problems remain.
One of the most prominent examples of failure of the standard independent
particle approximation (IPA) of x-ray absorption as outlined above is the L3,2
absorption of 3d transition metals. Within the IPA, the branching ratio of
the two absorption peaks corresponds to the statistical 2:1 ratio, due to the
occupation of the 2p3/2 level with four electrons and of the 2p1/2 level with
two electrons. However, in light 3d transition metals, such as Sc or Ti, this ratio
is close to 1:1, whereas for Ni it is larger than the statistical ratio. More recent
computation schemes go beyond the simple IPA and can partly resolve these
problems.

Two major approaches to treat the core-hole–photoelectron interaction in
a more sophisticated way have been developed: the time-dependent den-
sity functional theory (TD-DFT) and an explicit many-body perturbation the-
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ory (MBPT) calculation with the Bethe-Salpeter-Equation. Neither of these
approaches has been used in this work, but for completeness they shall be
outlined briefly.

In the TD-DFT one finds the linear interacting density response function χ

from a Dyson equation relating it to the non-interacting χS via

χ(r, r′, ω) = χS(r, r′, ω)

+
∫ ∫

d3x d3x′ χS(r,x′, ω)K(x,x′, ω)χ(x′, r′, ω). (3.60)

Here, the TD-DFT Kernel K has been introduced, which consists of the Coulomb
interaction and a frequency-dependent exchange-correlation kernel:

K(r, r′, ω) =
1

|r− r′| + fxc(r, r′, ω). (3.61)

Similarly as in the DFT, the major problem here is to approximate the unknown
exchange-correlation kernel fxc. Different approximations have been proposed,
with varying success [83, 84, 85]. To date, no universal Kernel is known that is
equally well suited for all systems of interest.

The Bethe-Salpeter-Equation (BSE) is derived from many-body perturbation
theory, and is commonly written as an eigenvalue problem in reciprocal space
[86]:

∑
h′e′k′

He−h
hek,h′e′k′A

λ
h′e′k′ = Eλ Aλ

hek. (3.62)

The electron-hole interaction Hamiltonian consists of a diagonal part, a direct
(Coulombic) term and an exchange term,

He−h = Hdiag + Hdir + Hx, (3.63)

which can be expressed as

Hdiag
hek,h′e′k′ = (εhk − εek)δhh′δee′δkk′ , (3.64)

Hdir
hek,h′e′k′ = −

∫
d3r d3r′ ψhk(r)ψ

∗
ek(r

′) W(r, r′) ψ∗h′k′(r)ψe′k′(r
′), (3.65)

Hx
hek,h′e′k′ =

∫
d3r d3r′ ψhk(r)ψ

∗
ek(r) v̄(r, r′) ψ∗h′k′(r

′)ψe′k′(r
′), (3.66)

with the Kohn-Sham eigenvalues ε(e,h),k, the screened Coulomb potential
W(r, r′) and the short-range part of the bare Coulomb potential v̄(r, r′) [86].
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The imaginary part of the dielectric function is calculated from the eigenvalues
Eλ and the coupling coefficients Aλ

hek:

Im εxx(ω) =
8π

Ω ∑
λ

∣∣∣∣∣∑hek
Aλ

hek
〈hk| − i∇x|ek〉

εek − εhk

∣∣∣∣∣
2

· δ(Eλ −ω) (3.67)

The BSE gives a physically transparent picture of the absorption process:
excitonic effects, i.e. excited states in the band gap of insulators, are due to
the direct term (describing the Coulomb attraction of the valence states by
the core-hole); spectral weight transfers, as in the above mentioned case of
L3,2 absorption, are caused by the exchange term, which mixes the various
transition channels [86]. The excitonic effects are partly accounted for by the
final state approximation.

The BSE is currently the state-of-the-art treatment of the optical and x-ray
absorption process. However, its use is restricted to small systems with a few
atoms, because the calculation of the matrix elements in the BSE Hamiltonian
and its diagonalization are very cumbersome.
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4 Ab initio prediction of ferrimagnetism,

exchange interactions and Curie

temperatures in Mn2TiZ Heusler

compounds

4.1 Introduction

In this chapter, ab initio calculations of the properties of the (hypothetical)
Mn2TiZ compounds, crystallized in the L21 structure, are discussed. No exper-
imental data are available for this system, and only Mn2TiAl has been studied
theoretically before [87]. However, it is expected that parts of this series will
exist in the L21 structure, seeing that Mn2VAl and Mn2VGa, as well as parts of
the Co2TiZ series have been prepared [79, 88, 89].

The calculations presented in this study were performed within two differ-
ent density functional theory-based band structure codes: the full-potential
linearized augmented plane waves (FLAPW) package Elk (Chapter 3.2.1) and
the full-potential Korringa-Kohn-Rostoker Munich SPRKKR package (Chap-
ter 3.2.2). Although both methods are in principle equivalent for crystalline
systems, there are subtle differences associated with their numerical implemen-
tations, and thus it is worth to compare both methods on the rather complex
intermetallic system Mn2TiZ.

Elk was used to determine the theoretical lattice parameters and the total
energy differences between ferrimagnetic and nonmagnetic states. These
calculations were carried out on a 12× 12× 12 k point mesh (72 points in the
irreducible wedge of the Brillouin zone). The muffin-tin radii of all atoms were
set to 2.0 a.u. to avoid overlaps at small lattice parameters. The equilibrium
lattice parameters a were determined using a third-degree polynomial fit to the
total energies. To obtain accurate magnetic moments and densities of states,
the calculations were performed at the equilibrium lattice parameter using a
16× 16× 16 k-mesh (145 points in the irreducible wedge) and nearly touching
muffin-tin spheres.
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Figure 4.1: Total energies of the investigated compounds in dependence of their lat-
tice parameters. The results for the ferrimagnetic and the non-magnetic states are
represented with + and ×, respectively.

The SPRKKR calculations were performed on the theoretical equilibrium
lattice parameters determined with Elk. The calculations were carried out in
the full-potential mode with an angular momentum cutoff of lmax = 3 on a
22× 22× 22 k point mesh (289 points in the irreducible wedge of the Brillouin
zone). Both the full potential as well as the increased angular momentum
cutoff are necessary to ensure accurate results. The DOS were calculated on a
denser mesh of 1145 k points with 0.5 mRy added as the imaginary part to the
energy.

The exchange-correlation potential was modeled within the generalized
gradient approximation of Perdew, Burke, and Ernzerhof in both schemes
[69]. The calculations were converged to about 0.1 meV. All calculations were
carried out in the scalar-relativistic representation of the valence states, thus
neglecting the spin-orbit coupling.
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Heisenberg pair exchange coupling parameters and MFA Curie temperatures
were obtained as described in Chapter 3.3. In order to separate the two Mn
lattices, the calculations were run in F4̄3m space group, in which the Mn atoms
are not equivalent by symmetry. The r-summation in Eq. (3.46) was taken to a
radius of Rmax = 3.0 a, which has been shown to be sufficient for half-metallic
Heusler compounds [90, 80].

4.2 Results

4.2.1 Energy minimization and lattice parameters

Three types of magnetic starting configurations were tested: ferro-, ferri-, and
nonmagnetic. It was found for all compounds that the ferromagnetic config-
urations were unstable and converged into the ferrimagnetic state. Fig. 4.1
displays the total energies of the ferrimagnetic and the nonmagnetic configura-
tions in dependence on the lattice parameters a. We find that the ferrimagnetic
state has always lower energy than the non-magnetic state; the difference
in total energy reduces with increasing number of valence electrons, but it
increases within the groups with the atomic number. The lattice parameters
follow roughly a linear dependence on the atomic radius of the Z element with
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Figure 4.2: (a): Dependence of the lattice parameter a on the atomic radius of the Z
element. (b): Normalized magnetic moments of Mn and Ti in dependence of the lattice
parameter.
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Elk SPRKKR
Mn2TiZ a (Å) m mMn mTi P (%) m mMn mTi P (%)

Al 5.96 2.98 1.83 -0.57 21 2.98 1.76 -0.49 82
Ga 5.95 2.95 1.84 -0.60 45 2.97 1.77 -0.53 79
In 6.23 3.17 2.17 -0.86 7 3.08 1.98 -0.82 32
Si 5.78 1.98 1.16 -0.31 94 1.98 1.13 -0.26 87
Ge 5.87 1.97 1.20 -0.37 94 1.97 1.16 -0.33 89
Sn 6.14 1.97 1.32 -0.51 97 2.00 1.25 -0.48 93
P 5.68 0.30 0.18 -0.05 -3 — — — —

As 5.82 0.94 0.59 -0.20 84 0.97 0.61 -0.22 58
Sb 6.07 0.97 0.65 -0.25 88 0.98 0.62 -0.24 79

Table 4.1: Results of the ground state properties calculations with Elk and SPRKKR.
The total magnetic moments are given in µB per formula unit, the atomic magnetic
moments are given in µB per atom. The SPRKKR results for Mn2TiAs were obtained
with a = 5.95 Å (see text).

the correlation coefficient of r = 0.92 (Fig. 4.2 (a)). Some compounds show a
strong asymmetry of the total energy curve in the ferrimagnetic configuration
and even kinks in the curves for very large a. This is caused by a steep increase
of the magnetic moments for increasing a which causes a stronger binding.
However, this effect is never strong enough to shift the equilibrium lattice
parameter to such a high-m state. The equilibrium lattice parameters are sum-
marized in Table 4.2.1. Typically we find the equilibrium lattice parameters of
Heusler compounds obtained with Elk to be accurate within ±0.5 % compared
to experiment.

4.2.2 Magnetic moments and densities of states

The results of this subsection are summarized in Table 4.2.1 and Fig. 4.3.

Mn2TiAl, Mn2TiGa, Mn2TiIn

From the rule m = NV − 24 we expect to find a magnetic moment of 3 µB/f.u.
for these compounds. The FLAPW calculations show small deviations from
this rule, indicating that the compounds are not perfect half-metals. This is
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confirmed by the DOS, which show spin polarizations at the Fermi level below
50 %, and in particular only 7 % for Mn2TiIn, where the magnetic moment is
enhanced to 3.17 µB/f.u.. This arises from the large lattice parameter and the
fact that all three compounds do not form a gap in the DOS. The Fermi level
for Mn2TiAl and Mn2TiGa is in a region with low DOS for both spin channels
(see insets in Fig. 4.3), but both of them have a very large empty minority spin
DOS right above EF. Small variations of the lattice parameter would thus lead
to strong variations of the spin polarization.

The calculations performed with SPRKKR reproduce the magnetic moments
obtained in Elk very well. Although the total moments are practically equal, a
larger deviation is found for the atom-resolved moments. The Fermi energy
is found at slightly different positions in the DOS, and the detailed structures
observed in Elk around EF are less pronounced, especially the dip in the spin-
down states at EF. This leads to significantly higher spin polarization values in
SPRKKR. However, the trend that Mn2TiIn has the lowest polarization within
this group is reproduced.

Mn2TiSi, Mn2TiGe, Mn2TiSn

According to the “rule of 24” a total magnetic moment of 2 µB/f.u. is expected.
Again, small deviations from this rule are observed; all moments are lower by
about 1.5 %. In Elk, the three compounds are found to form a half-metallic gap
in the majority spin states slightly above EF. The gap onset above EF (width)
is 0.16 eV (0.49 eV) for Si, 0.24 eV (0.25 eV) for Ge, and 0.19 eV (0.01 eV) for Sn.
Nevertheless, the spin polarization is above 90 % in these calculations. The
structure of the DOS around EF leads to a stable spin polarization and magnetic
moment upon isotropic lattice compression or expansion. For this series,
having the same valence electron counts and nearly half-metallic DOS, one can
observe clearly a narrowing of the bands, i.e., the DOS are contracted towards
EF, while the Fermi level itself moves upwards. This is directly associated
with the gradually increasing lattice parameter in this series, which reduces
the overlap of the 3d orbitals and thereby reduces the itinerancy of the system.
An increased localization of the electrons provides also an explanation for the
increasing atomic magnetic moments along this series. Similar behavior has
been observed earlier for Co2MnZ, with Z = Si, Ge, Sn [91, 92] and Ni2MnSn
[93]. In the first case the Mn moment is increased and the Co moment is
lowered along the series, keeping the total moment integer. Calculations on
Co2MnSi with increased lattice parameter reproduced this behavior. In the
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Figure 4.3: Densities of states calculated with Elk. The majority DOS is pointing up, the
minority DOS is pointing down. The insets for Al and Ga show the region around the
Fermi energy.

second case, the pressure dependence of the moments was studied. Under
increasing pressure, i.e., with reduced lattice parameter, both the Ni and the Mn
moment decrease, and thus the total moment decreases. However, Ni2MnSn is
not a half-metal, hence the total moment is not restricted to an integer value.
Consequently, both observations on quite different ferromagnetic Heusler
compounds are in accord with our case of (nearly) half-metallic ferrimagnetic
Heusler compounds.

The magnetic moments and DOS from SPRKKR are in very good agreement
with the ones obtained from Elk. However, the Fermi level is found at a lower
position, giving rise to the slightly reduced polarization values.
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Mn2TiP, Mn2TiAs, Mn2TiSb

In these cases a total magnetic moment of only 1 µB/f.u. is expected. Because
of the very small lattice parameter of Mn2TiP, its spin-splitting is small with
only 0.3 µB/f.u. in the Elk calculation. The situation of Mn2TiAs and Mn2TiSb
is similar to that of Mn2TiSi and Mn2TiGe. A majority spin gap is formed
above the Fermi level with onset (width) of 0.29 eV (0.53 eV) for As and 0.19 eV
(0.44 eV) for Sb. Though not being half-metallic, both compounds have spin
polarizations of more than 80 %.

Finally, the magnetic moments of Mn2TiSb in SPRKKR agree very well with
those obtained with Elk. But again, the Fermi level is lower and the spin polar-
ization is reduced. For Mn2TiP and Mn2TiAs the situation is quite different.
They can not be converged into ferrimagnetic states at the equilibrium lattice
parameters determined by Elk; instead, they are found to be nonmagnetic.
This is caused by the tiny energy difference between the ferrimagnetic and
the nonmagnetic configuration, which leads to a numerical instability of the
ferrimagnetic state. By increasing the lattice parameter of Mn2TiAs by about
2 % to 5.95 Å, the separation is increased artificially to about 30 meV/f.u. and
the calculation converges into the ferrimagnetic state. Because of this, the prop-
erties obtained with SPRKKR for this compound have to be taken with care: in
all other cases the individual atomic moments are slightly lower in SPRKKR
than those from Elk; here instead, larger moments are found. However, the
same procedure can not be applied to Mn2TiP, within a reasonable range of
lattice parameters.

General remarks

It is worth to note that the magnetic moments of the Z component are always
below 0.06 µB and that they are always parallel to the Ti moment. In detail,
the values are Al 0.044 µB, Ga 0.052 µB, In 0.058 µB, Si 0.034 µB, Ge 0.035 µB, Sn
0.034 µB, P 0.0062 µB, As 0.018 µB, and Sb 0.017 µB.

Another property worth noting is the fact that the ratios mMn/m and mTi/m
follow a linear dependence (with correlation coefficients of r ≈ 0.9 in both cases
for the Elk data) on the lattice parameter (and hence the interatomic distances)
independently on the Z type, see Fig. 4.2 (b). As mentioned above, with
increasing lattice parameter the itinerant character of the system is reduced
and localizes the moments gradually on the atoms. Therefore, the influence
of the Z component in Mn2TiZ is twofold. First, it determines the lattice
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4 Ferrimagnetism, exchange and Curie temperatures in Mn2TiZ

parameter of the compound and following from that, the degree of electron
localization. And second, the total magnetic moment is determined via the
number of electrons supplied, if the lattice parameter does not exceed a certain
range (which is not the case for P and In).

4.2.3 Exchange interactions and Curie temperatures

The exchange interactions are investigated here for Mn2TiGa, Mn2TiGe, and
Mn2TiSb, which are representative compounds for their respective Z group.
Fig. 4.4 (a) displays the Jij calculated for the intra-sublattice interaction Mn1(2)-
Mn1(2) and the inter-sublattice interactions Mn1(2)-Mn2(1) and Mn-Ti of the
three compounds. All other interactions are very small and can be neglected
for the following discussion.

In all three cases it is clear that the Mn1(2)-Mn2(1) inter-sublattice interaction
provides the largest contribution to the exchange. Further, the nearest neighbor
interaction of Mn-Ti is always negative, hence all compounds are ferrimagnets.
All interactions are mostly confined within a radius of 1.5 a. Apart from these
similarities, there are many interesting differences.

First, we discuss the details of the dominating inter-sublattice interaction
Mn1(2)-Mn2(1). The first and second nearest neighbors provide a large, positive
exchange. The second nearest neighbors have two different values of Jij. This
is a feature that is not observed in frozen-magnon calculations (see, e.g. [43]),
because the Fourier transform that is necessary to obtain the exchange param-
eters involves a spherical averaging. Instead, with the real-space approach
used here we observe a difference for Mn atoms with a Ti atom or a Z atom in
between. We found larger values on the Mn atoms mediated via Ti and lower
values on the Z mediated ones. The nearest Mn neighbors have a distance of
about 2.95 Å, and the exchange is apparently indirect. For direct exchange, one
would expect a scaling with the magnetic moments, which is not observed
here. It rather oscillates with the sp electron number. A similar result has
been obtained earlier on other half and full Heusler compounds [94]. The ratio
of the nearest and second nearest neighbor coupling is significantly reduced
with increasing electron concentration, and the nearest neighbor interaction
dominates in Mn2TiSb.

The antiferromagnetic Mn-Ti interaction is only significant for the nearest
neighbors. Accordingly, the interaction between Mn and Ti, which have a
distance of about 2.55 Å, is essentially given by direct exchange coupling and
the scaling with the Ti moment corroborates this assumption.
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Figure 4.4: Heisenberg exchange parameters Jij in dependence on the normalized dis-
tance r/a. (a): Jij for Mn2TiGa, Mn2TiGe, Mn2TiSb for their respective equilibrium
lattice parameters. (b): Jij for Mn2TiGe with different lattice parameters. Note the
different scales of the vertical axes in the top row.

The intra-sublattice interaction of Mn1(2)-Mn1(2) exhibits a notable oscillatory
behavior. In the two cases with odd valence electron number it is positive
for the nearest neighbors, negative for the second, and again positive for the
third nearest neighbors. For Mn2TiGe with its even electron count the first
two neighbors have negative and the third neighbor has positive interaction.
So in the latter case, the total Mn-Mn intra-sublattice interaction is effectively
antiferromagnetic.

In order to study the dependence of Jij on the lattice parameter as a possible
explanation for the differences discussed above, additional calculations on
Mn2TiGe have been performed with lattice parameters of (5.87± 0.2) Å. This
compound was chosen because of the wide (pseudo-)gap for the spin-up states,
which warrants a stable total magnetic moment and minimal band structure
effects over the range of a used here.

The results from these calculations are given in Fig. 4.4 (b). Obviously, the
changes here are rather subtle and can not account for the the large differ-
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4 Ferrimagnetism, exchange and Curie temperatures in Mn2TiZ

ences discussed above. However, we note a reduction of the nearest neighbor
Mn1(2)-Mn2(1) interaction and of the Ti mediated second nearest Mn1(2)-Mn2(1)

neighbor. Meanwhile, the Mn-Ti interaction increases, in agreement with
increased Mn and Ti moments.

The strong confinement of the exchange interactions to a sphere with a radius
of about 1.5 a is reflected in the Curie temperature calculated as a function of
the cluster radius which is nearly converged at r & 1.5 a, see Fig. 4.5 (a). At
larger radii a weak oscillation of TMFA

C is observed, indicating long-ranged
RKKY-like behaviour.

A deeper discussion of the exchange interaction is beyond the scope of this
work. However, it was recently shown for numerous half and full Heusler com-
pounds that various exchange mechanisms—such as RKKY, superexchange
and Anderson s-d mixing—contribute to the indirect exchange interactions
[94].

The relevant contributions to the J0 matrix in Eq. (3.46) are displayed in
Fig. 4.5 (b). In agreement with the previous discussion it is found that the
inter-sublattice interaction Mn1(2)-Mn2(1) provides the largest contribution,
followed by the Mn-Ti interaction, which can become as large as the Mn1(2)-
Mn2(1) interaction in Mn2TiIn. The intra-sublattice interaction Mn1(2)-Mn1(2)

is generally weak, positive for Al, Ga, In, and negative for Si, Ge, Sn. All other
inter- and intra-sublattice contributions are below 1 meV. A negative intra-
sublattice contribution means that the interaction acts against the ferromagnetic
order on this lattice and thus reduces the Curie temperature.

Table 4.2 summarizes our calculated Curie temperatures. They are well
above room temperature for the compounds with 21 and 22 valence electrons,
but considerably lower for Mn2TiAs and Mn2TiSb. The Curie temperature
scales roughly linear with the total magnetic moment. Within one group, the
Curie temperatures are comparable, though a trend to decrease with increasing
atomic number of the Z component is clear for 21 and 22 valence electrons.

The Curie temperatures of Mn2TiAl, Mn2TiGa and Mn2TiIn are quite similar.
The slightly reduced TMFA

C of Mn2TiIn is caused by the steep reduction of

Mn2TiZ Al Ga In Si Ge Sn P As Sb

TMFA
C (K) 665 663 630 424 398 354 — 132 156

Table 4.2: Curie temperatures TMFA
C calculated in the mean-field approximation.
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Figure 4.5: (a): The Curie temperature TMFA
C in dependence on the normalized cluster

radius r/a taken into the summation. (b): r-summed exchange coupling parameters J0.

the Mn1(2)-Mn2(1) interaction. On the other hand, a simultaneous increase
of the Mn-Ti interaction stabilizes TMFA

C at a still high level (see Fig. 4.4 (b)).
In the series Mn2TiSi – Mn2TiGe – Mn2TiSn the Mn1(2)-Mn2(1) interaction
decreases, but here the increase of the Mn-Ti interaction can not compensate
this and hence the Curie temperature decreases. In any case, the Mn1(2)-Mn2(1)

interaction provides the dominant contribution to TMFA
C , only in Mn2TiIn the

Mn-Ti interaction is dominant. The significantly lower Curie temperature of
Mn2TiAs with respect to Mn2TiSb can be attributed to the artificially increased
lattice parameter used in the calculation.

The dependence of the exchange parameters and TMFA
C on the lattice con-

stant was studied for Mn2TiGe. The corresponding terms of the J0 matrix, the
Curie temperature and the magnetic moments are presented in Fig. 4.6 (a)-(c).
A decrease of the Mn1(2)-Mn2(1) interaction and simultaneously of TMFA

C with
increasing a is observed, although both mMn and mTi increase. Obviously, the
individual moments play only a minor role in the exchange and the interatomic
distances are more important. The Mn-Ti as well as the Mn1(2)-Mn1(2) inter-
actions become stronger with increasing a, but they nearly compensate each
other. In agreement with a direct exchange coupling, the Mn-Ti interaction
scales with the magnetic moments. The changes in J0 reproduce very well the
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Figure 4.6: Dependence
of J0 (a), TMFA

C (b) and
magnetic moments (c) on
the lattice parameter in
Mn2TiGe.
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changes observed in Fig. 4.5 (b) for the Si – Ge – Sn series.
Put in terms of a pressure dependence, we observe dTC / dp > 0, i.e., the

Curie temperature increases with increasing pressure. Kanomata et al. pro-
posed an empirical interaction curve for Ni2MnZ and Pd2MnZ full Heusler
compounds that suggestes dTC / dp > 0 for these compounds [95]. The ori-
gin of this behavior is attributed to the Mn-Mn distance and the indirect
exchange between the Mn atoms, which fully carry the magnetism of the
compounds. Hence, all other interactions can be neglected. A numerical con-
firmation by first principles of this interaction curve was given recently [93].
For half-metallic Heusler compounds of type Co2YZ Kübler et al. analyzed
the dependence of TC on the valence electron number, which is approximately
linear, and scales thus with the total magnetic moment [96]. Further it was also
proposed for Co2MnZ compounds to have dTC / dp > 0, although the Co atom
participates significantly in the exchange interactions [92]. Experimentally this
dependence on the lattice parameter was even observed for the Co2TiZ series
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(with Z = Si, Ge, Sn), where the Ti atoms have nearly vanishing magnetic
moment [88].

Interestingly, the magnetic moments of Mn and Ti in Mn2TiGe vary within
the same range as the moments for different compounds shown in Fig. 4.2(b),
while the total moment remains fixed at 2 µB / f.u. These findings demonstrate
the strong influence of the lattice parameter, while the details of the electronic
structure of the Z element are less important. Consequently, the Z element
influences the properties of the Mn2TiZ compound mainly via its number of
valence electrons and its atomic radius, which determines the equilibrium
lattice parameter.
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5 Exchange interactions and Curie

temperatures of Mn2CoZ compounds

5.1 Introduction

In the literature it has been noted that the Mn2YZ inverse Heusler compounds
with Hg2CuTi structure are dominated by direct exchange between the nearest
neighbor Mn atoms, but direct calculations of the exchange interactions are
missing. It is the scope of this chapter to provide these calculations for the
Mn2CoZ compounds. We focus on this compound series because it has been
experimentally synthesized, and band structure calculations suggested very
large atomic moments and half-metallicity in most cases.

The half-metallicity of Mn2CoZ is constituted by two processes [28]. First, a
broad covalent gap of Mn(B) is created by covalent hybridization with Co and
Mn(C), which form the (double tetrahedral) nearest neighbor shell. However,
the final size of the minority gap is determined by the eu-t1u splitting in the
hybridization of Co and Mn(C), which form each other’s (octahedral) second
nearest neighbor shells. Mn(B) states do not contribute to this hybridization
because of the different symmetry transformations. Thus, the band gap is
a d-d gap [97]. This situation is similar to the one in the Co2MnZ Heusler
compounds, where the eu-t1u splitting of the Co-Co hybridization governs the
minority gap [23].

The calculations were performed with the spin-polarized relativistic Korringa-
Kohn-Rostoker package Munich SPRKKR, see Chapter 3.2.2. The calculations
were carried out in the full-potential mode with an angular momentum cutoff
of lmax = 3 on a 28× 28× 28 k point mesh (564 points in the irreducible wedge
of the Brillouin zone). In order to further improve the charge convergence
with respect to lmax, we employed Lloyd’s formula for the determination of
the Fermi energy [74, 75]. The exchange-correlation potential was modeled
within the generalized gradient approximation of Perdew, Burke, and Ernzer-
hof [69].All calculations were carried out in the scalar-relativistic representation
of the valence states, thus neglecting the spin-orbit coupling.
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Mn2CoZ a (Å) mtotal mCo mMn(B) mMn(C) mZ

Al 5.84 1.99 0.94 2.69 -1.59 -0.05
Ga 5.86 2.01 0.93 2.88 -1.78 -0.03
In 6.04a 1.95 0.99 3.16 -2.18 -0.02
Si 5.70 2.99 0.84 2.66 -0.50 -0.01
Ge 5.80 2.98 0.87 2.83 -0.72 0.01
Sn 5.96a 2.98 0.83 2.96 -0.81 -0.01
Sb 5.90 3.97 0.88 2.95 0.15 0.00

a exp. lattice parameters: Mn2CoIn 6.14 Å, Mn2CoSn 6.06 Å

Table 5.1: Lattice parameters used for the calculations and resulting total and site
resolved magnetic moments. The total magnetic moments are given in µB per formula
unit, the atomic magnetic moments are given in µB per atom.

Heisenberg pair exchange coupling parameters and MFA Curie temperatures
were obtained as described in Chapter 3.3. The r-summation in Eq. (3.46) was
taken to a radius of rmax = 3.0 a, where a is the lattice constant.

The lattice parameters were taken from Liu et al. [28], who provide exper-
imental values for Z = Al, Ga, In, Ge, Sn, Sb. For Mn2CoSi we assumed the
Mn2CoGe parameter reduced by 0.1 Å, which is observed, e.g., for Co2MnSi
– Co2MnGe [51]. The calculations of Mn2CoIn and Mn2CoSn were unstable
at the experimental lattice parameters, but could be stabilized with slightly
reduced values. All lattice parameters used here are summarized in Table 5.1.

5.2 Results

5.2.1 Magnetic moments

The electronic structure calculations yield a half-metallic ground state in all
cases with the exception of Mn2CoGa and Mn2CoIn. Our results for the total
and site resolved magnetic moments are summarized in Table 5.1. The total
magnetic moments closely follow the Slater-Pauling rule for half-metallic
Heusler compounds, so that we have magnetic moments of 2, 3, or 4 µB / f.u.
if Z is a group III, IV, or V element, respectively. Small deviations from the
integer values arise from the angular momentum truncation at lmax = 3, which
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gives rise to a very small DOS in the minority gap. This is a typical observation
when using the KKR method on ferromagnetic half-metals (see, e.g., Galanakis
et al. [23]). The magnetic moment of the Co atom is nearly constant for
different Z materials, being about 0.9 µB. Similarly, the Mn(B) atom has a
nearly constant magnetic moment in the range of 2.69 to 3.16 µB. In contrast,
the moment of the Mn(C) atom changes considerably with the valence electron
number and determines finally the total moment. All Mn2CoZ compounds are
ferrimagnetic due to the Mn(C) atom with the exception of Mn2CoSb, which
is a ferromagnet. In all cases the Z atom is nearly unpolarized. Only small
changes are observed for the site resolved moments when Z is changed within
one group. The increase of the absolute value of the Mn moments within one
group can be traced to the lattice parameter change upon Z change. The orbital
overlap is reduced with increasing lattice parameter, giving rise to weaker
hybridizations (which is also the reason for the gap width reduction). Because
of this reduction of itinerancy the quenching of the atomic moments is less
effective and the moments become more atomic-like, i.e., larger. This situation
is similar to the one described in Chapter 4.

Our results differ considerably from those given by Liu et al. [28], who used
the full potential linearized augmented plane waves (FLAPW) method. The
total magnetic moments are in very good agreement, but the atomic moments
are smaller in our calculations by 0.3 to 0.7 µB for Mn(B) and Mn(C). In contrast,
the magnetic moments of the Co atoms are nearly equal. Most notably, in our
calculations Mn2CoSb is ferro- instead of ferrimagnetic. Therefore, we have
checked our SPRKKR results with the FLAPW package Elk [70]. Our FLAPW
results are concordant with the SPRKKR data, leaving the discrepancies with
Liu et al. unexplained.

Apart from these differences, the DOS are in good agreement with [28] and
all conclusions about the electronic structure given there are transferable to
our calculations.

5.2.2 Exchange interactions and Curie temperatures

Figure 5.1 shows the Heisenberg exchange coupling parameters obtained from
our calculations. To ease the following discussion, refer to Table 5.2 for the
atomic coordinations.

We start with the discussion of the Al–Ga–In series. It is notable that the
exchange interactions are tightly confined to clusters of radius r ≤ a. In partic-
ular, the inter-sublattice interactions have significant contributions only for the
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Figure 5.1: Heisenberg exchange coupling parameters Jij for the Mn2CoZ compounds
as a function of the interatomic distance r. Note that the intra-sublattice interactions
have been multiplied by 3 for clarity.
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distance (r/a) 0.433 0.50
symmetry Td Oh

Co Mn(B) / Z Mn(C)
Mn(B) Mn(C) / Co Z
Mn(C) Mn(B) / Z Co

Z Mn(C) / Co Mn(B)

Table 5.2: Nearest and second nearest neighbor coordinations in Mn2CoZ.

nearest and second nearest neighbors, while the intra-sublattice contributions
are significant up to r = a. An exponential damping of the exchange interac-
tions is expected for half-metals [90]; in the cases of Ga and In the damping is
also present, but not as efficient as in the half-metallic case of Al. One observes
clearly the dominating Co-Mn(B) and Mn(C)-Mn(B) nearest neighbor inter-
actions, where the Mn(C)-Mn(B) interaction is clearly the stronger one. The
Co-Mn(B) (second nearest neighbor interaction) is much weaker in comparison.
In the graphs we omit the interactions with Z, because these are effectively zero
for all distances. Co and Mn(C) couple antiferromagentically to Mn(B), while
Co and Mn(B) couple ferromagnetically. Hence, the antiparallel alignment of
the Mn(C) moment is stable with respect to Mn(B) and Co. On the other hand,
the intra-sublattice interactions are negative, which leads to a destabilization
of the parallel alignment of the moments on one sublattice. It should be noted
that in the Al–Ga–In series the Mn(C)-Mn(C) interaction is reduced on the first
shell, while it is increased on the second shell at r = 1, where it becomes larger
than the Co-Mn(C) inter-sublattice interaction.

For the Si–Ge–Sn series some differences to the previous results are notable.
The most evident one is the much lower Mn(C)-Mn(C) interaction, but also the
Co-Mn(B) interaction is significantly reduced. In particular, the Mn(C)-Mn(B)
interaction is reduced by a factor of about 3, in very good agreement with the
reduction of the Mn(B) moment. This indicates a strong direct exchange inter-
action, which is feasible because of the small Mn(B)-Mn(C) distance of typically
2.53 Å. It is remarkable that the Co-Mn(B) interactions are even slightly in-
creased with repect to the Al–Ga–In series, although the site-resolved magnetic
moments are systematically lower. The additional loosely bound sp electron
augments the direct exchange coupling here. Finally, the intra-sublattice inter-
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Mn2CoZ Al Ga In Si Ge Sn Sb

TMFA
C (K) 890 886 845 578 579 536 567

Table 5.3: Curie temperatures TMFA
C calculated in the mean-field approximation.

action of Mn(B)-Mn(B) is found to be positive in all three compounds on the
first shell, but the other intra-sublattice parameters are still negative.

Mn2CoSb is special in this respect, since it is a ferromagnet with a small
positive magnetic moment on the Mn(C) site. Accordingly, the Co-Mn(C)
and Mn(C)-Mn(B) interactions are positive, and their values are in reason-
able agreement with the reduction of the Mn(C) moment. In contrast, the
Co-Mn(B) interaction is still large and is with the exception of Mn2CoSi the
largest one among all discussed compounds. The Mn(B)-Mn(B) interaction is
negative again on the first and second shells. Such a periodicity with respect
to the valence electron count of the system has been predicted by Şaşiog̃lu for
some full Heusler compounds and occurs in the presence of indirect exchange
interactions mediated by the conduction electrons [94].

From the exchange coupling parameters described above we calculated the
Curie temperatures within the mean field approximation (see Table 5.3). The
series Al–Ga–In has surprisingly high values of more than 800 K, even reaching
almost 900 K for Mn2CoAl. For the Si–Ge–Sn series we found moderate values
between 500 and 600 K. The Curie temperature of Mn2CoSb is similar as for
the Si–Ge–Sn series. This is surprising at a first glance, because the Mn(C)-
Mn(B) exchange interaction is so small here. It can be understood if we neglect
all interactions but Mn(C)-Mn(B) and Co-Mn(B). In this case, Jµν

0 becomes a
singular 3× 3 matrix with two nonzero eigenvalues, which have the form of a
root mean square of the Co-Mn(B) interaction and the Mn(C)-Mn(B) interaction.
Obviously, if one interaction is significantly larger than the other (as, e.g., in
Mn2CoSn), then the eigenvalues will be dominated by the larger interaction.
This and the increased Co-Mn(B) exchange interaction explain the unexpected
behaviour.

However, what is most exciting about these results is the fact that Mn2CoAl,
Mn2CoGa, and Mn2CoIn have the possibly highest Curie temperature among
all ferrimagnetic intermetallic compounds reported to date. The Curie tem-
perature decreases from one Z group to another, although the total moment
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increases. A behaviour like this is unique to the Mn2 based inverse Heusler
compounds. The Co2- and Mn2-based genuine Heusler compounds show a
scaling of the Curie temperature roughly proportional to the total moment
upon change of the Z element, see Ref. [96] and Chapter 4. Nevertheless,
the Mn2CoZ compounds can be related to the Co2-based Heusler compounds
with the sum of the absolute values of the site resolved magnetic moments
m̃total: in, e.g., Mn2CoAl we have m̃total = 5.27 µB, which is close the value of
ferromagnetic Co2MnSi (5 µB). The latter has a Curie temperature of 985 K [51],
which is close to TMFA

C of Mn2CoAl. Further, the Curie temperature and m̃total
are decreased with increasing Z electron number in Mn2CoZ.

Naturally, the question about the accuracy of our Curie temperature calcula-
tion arises here. For the Mn2CoZ series only few data are available. Lakshmi
et al. reported TC = 605 K for disordered Mn2CoSn [31]. Dai et al. reported
485 K for disordered Mn2CoSb [32]. Hence, the TMFA

C value underestimates the
measured value in Mn2CoSn and overestimates it for Mn2CoSb, so no system-
atic trend can be stated here. It is a priori not clear which type of disorder can
increase or decrease the Curie temperature, since the exchange interactions
are highly site specific and quite complex. However, the calculated values
reproduce the measured data within ±100 K.

In Figure 5.2 we show the calculated Curie temperatures in dependence on
the cluster radius taken into the summation in Equation (3.46). As expected
from the Jij plots in Figure 5.1, TMFA

C is already determined by the nearest
neighbor interactions in all compounds. Only weak changes are observed with
increasing cluster radius and TMFA

C is well converged at r = 1.5 a. This plot
helps us to identify the origin of the reduced Curie temperatures of Mn2CoIn
and Mn2CoSn, which is apparently not the same. For Mn2CoIn we can assign
the jump at r = a to the strong antiferromagnetic intra-sublattice interaction
of Mn(C)-Mn(C). In Mn2CoSn, the reduced ferromagnetic Mn(B)-Mn(B) intra-
sublattice interaction on the third neighbor shell at r = 0.707 a is responsible
for the reduction.

In order to shed some more light on the character of the exchange interactions
and their dependence on the site specific magnetic moments, we calculated the
ground states and exchange coupling parameters for Mn2CoGe in the range
of a = 5.60 . . . 5.95 Å. Thereby we can separate the influence of the Z valence
electron count and the binding energy from geometric effects. The compound
is a ferrimagnetic half-metal over the whole range, so we can expect minimal
band structure effects on the calculations.

On the other hand, the site resolved magnetic moments change considerably
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Figure 5.2: Curie temperatures TMFA
C as a function of the cluster radius taken into

account.

with the lattice parameter (Figure 5.3 (a)). Their absolute values increase with
increasing lattice parameter as already explained above. All moments vary
approximately linearly such that the total moment remains at 3 µB / f.u. The
moment of Mn(C) changes within the investigated range by more than a factor
of three, from -0.34 to -1.12 µB. The compensation comes mostly from the Mn(B)
site, and the Co moment remains fairly constant.

To display the exchange interactions in a compact form, we show the relevant
contributions to the Jµν

0 matrix (Equation (3.46)) in Figure 5.3 (b). The Co-
Mn(B) interaction sum is nearly constant, although the magnetic moments
increase. The nearest neighbor interaction remains nearly constant, but the
weak longer-ranging interaction is significantly decreased and accounts for
the decrease in the interaction sum. The constant nearest-neighbor interaction
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is a result of two opposing processes, namely the increase of the moments
and the reduction of exchange efficiency due to longer interatomic distances.
In contrast, the interactions involving Mn(C) change considerably with the
interatomic distance. The Mn(C)-Mn(B) exchange interactions increase by a
factor of four, in agreement with the product mMn(B) ·mMn(C). Further, the Co-
Mn(C) interaction increases more than linearly with the lattice parameter, but
the interaction is presumably indirect and no simple dependence is obvious.
All these interactions lead to an increase of the Curie temperature with the
lattice parameter. In contrast, the antiferromagnetic Mn(C)-Mn(C) exchange
interaction counteracts the ferrimagnetic order in the compound and reduces
the Curie temperature. This influence is, however, negligible at small lattice
parameter, but becomes quite large at the highest values, even compensating
the Mn(C)-Mn(B) interaction. Notably, the Mn(C)-Mn(C) interaction is entirely
governed by the nearest neighbor interaction and depends approximately on
m2

Mn(C).
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5.2 Results

Figure 5.3 (c) displays the Curie temperature in dependence on the cluster
radius. The general features of the exchange interactions are the same for all
lattice parameters considered. However, there are some subtle differences
on the second and third shells at r = 0.5 a and r = 0.707 a, respectively. The
change on the second shell can be traced back to the increased Co-Mn(C)
interaction. Relative to the second shell, the contribution of the third shell
is reduced. This arises from the increased antiferromagnetic Mn(C)-Mn(C)
interaction discussed above. For clarity, Figure 5.3 (d) shows that the resulting
Curie temperature TMFA

C increases from 526 K to 631 K with increasing lattice
parameter.

In terms of a pressure dependence, the Curie temperature of Mn2CoGe is
thus predicted to decrease upon hydrostatic pressure, i.e., dTC/dp < 0. This
situation is very different from that in Heusler compounds, where usually
dTC/dp > 0 is found. However, it is in agreement with Castelliz’ [98] and
Kanomata’s [95] empirical interaction curves. They propose a negative pressure
coefficient of TC for short Mn-Mn distances as in hexagonal MnAs or MnSb, but
a positive coefficient at larger distances as in the Heusler compounds X2MnZ.
Ab initio calculations by Yamada et al. on hexagonal MnAs [99] and by Şaşiog̃lu
et al. on the Heusler compound Ni2MnSn [93] are in agreement with the
experimentally observed pressure dependencies. As shown in Chapter 4, we
have also calculated a positive pressure coefficient of TC in the (hypothetical)
Mn2TiZ Heusler compounds. The Mn-Mn distance in the Mn2CoZ compounds
is even smaller than in the hexagonal MnAs or MnSb compounds, so a strong
negative pressure dependence of TC is in good agreement with the available
experimental data.

Since the lattice parameter dependence of the Curie temperature is positive,
the reduction of TMFA

C in Mn2CoIn and Mn2CoSn (which have the largest lattice
parameters within their groups) can be ascribed to a binding energy effect due
to the high-lying valence states in In and Sn.
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6 Electronic structure of fully epitaxial

Co2TiSn thin films

6.1 Introduction

Co2TiSn has been the subject of many experimental and theoretical studies. The
ground state properties obtained by density functional theory (DFT) depend
sensitively on the choice of the DFT method [23, 38, 39, 100, 101, 102, 103,
104]. The potential has strong non-spherical components and thus only a full-
potential treatment in connection with the generalized gradient approximation
(GGA) to the density functional yields a half-metallic ground state [38, 101].

Experiments conducted on bulk CTS find a lattice parameter of 6.07 Å, a
magnetic moment of about 1.95 µB/f.u. and a Curie temperature (TC) around
355 K [38, 88, 105]. Further, it is found to have a strongly anomalous tempera-
ture dependence of resistivity, the temperature coefficient becomes negative
above the Curie temperature. A large negative magnetoresistance reveals the
importance of spin fluctuations in the compound [78].

A rather new development aims at the thermoelectric properties of Co2TiSn,
which has a large and constant Seebeck coefficient of−50 µV/K above TC in the
bulk [88]. There have been some efforts to understand the unusual transport
properties of CTS by ab initio band structure and semi-classical transport theory
[88, 106]. These properties make CTS interesting for a possible application in
spin caloritronics, which attempt to make use of the interactions between heat
and spin. An implementation into thin films is of particular importance for
such applications.

Only two studies on thin films of CTS are available as far as we know. Gupta
et al. applied pulsed laser ablation to grow CTS on Si (001) substrates from a
stoichiometric target at growth temperatures up to 200◦C [107]. The authors
found off-stoichiometric, polycrystalline films with (011) texture. Suharyadi et
al. utilized an atomically controlled alternate deposition technique based on
electron beam evaporation [108]. They have grown (001) oriented, L21 ordered
films on Cr buffered MgO (001) substrates at growth temperatures up to 600◦C
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and investigated them by nuclear resonant scattering.
In this chapter we present a successful preparation technique based on

DC magnetron co-sputtering. We present data on the structural and mag-
netic properties of our films. Further, we characterize the electronic transport
properties which make CTS a particularly interesting compound. Finally we
discuss the electronic structure of our CTS films based on soft x-ray absorption
spectroscopy and ab initio electronic structure calculations.

6.1.1 Experimental details

The samples were deposited using the BESTEC UHV sputtering system, see
Chapter 2.1. With the quartz sensor and x-ray reflectometry (XRR), the film
stoichiometry of a compound can be set up with a relative accuracy of about
±10 %. Inductively coupled plasma optical emission spectroscopy (ICP-OES)
was used to fine-tune the sputter parameters. For the samples deposited at high
temperature we checked the stoichiometry by energy dispersive x-ray analysis
(EDX) in an electron microscope and found no deviation from the stoichiometry
of room temperature deposited films of same thickness. The sputtering power
ratios were 1 : 1.67 : 0.34 (Co:Ti:Sn). The voltages were constantly monitored
during the deposition, which remained constant throughout all deposition
processes, ensuring the reproducibility of the method. Cross-talk effects on
the Sn target constituted a serious problem for the deposition process due
to the low sputtering power applied to the source. This was suppressed by
a chimney-like cylinder put around the source, such that there was no line-
of-sight from this target to another. The compound was deposited at a rate
of 1.5 Å/s. Sample rotation was set to 28 rpm, making sure that with each
turn only one primitive cell was deposited. All elemental targets had 4N
purity. The sputtering pressure was set to 2 · 10−3 mbar. With this technique
we have fabricated thin film samples with a precisely set up stoichiometry of
Co2.0Ti1.0Sn1.0, with errors of < 3% for the individual constituents.

All samples used in this study had the following stack sequence: MgO (001)
/ MgO 5 nm / CTS 18 nm / MgO 2 nm. The lower MgO was deposited by
RF sputtering at 2.3 · 10−2 mbar to ensure good crystallinity of the buffer. The
upper MgO was deposited by e-beam evaporation from single crystal MgO
slabs after cooling the samples to less than 100◦C. The base pressure during
deposition with the heated substrate was always below 5 · 10−8 mbar.

Resistivity was measured in standard in-line four-probe DC geometry in a
closed-cycle He cryostat and a vacuum furnace. The resistivity ρ is calculated
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6 Electronic structure of fully epitaxial Co2TiSn thin films

from the film thickness d, the voltage U and the current I as ρ = d · (π/ ln 2) ·
(U/I). Magnetoresistance was measured with a variable permanent magnet
(coaxial Halbach cylinder configuration, Magnetic Solutions Multimag) with
a maximum field strength of 10 kOe in the cryostat. The data were taken by
driving full magnetization loops and then averaging the points for each field
magnitude.

The Seebeck coefficient was determined in a home built setup in air. The
sample was contacted with platinum tips. It was measured at an average
temperature of T̄ = 310 K with a temperature gradient of ∆T = 10 K.

Magnetic measurements were taken using a superconducting quantum inter-
ference device (SQUID) at temperatures in the range of 5 K to 400 K in magnetic
fields of up to 50 kOe.

X-ray diffraction (XRD) and reflectometry (XRR) have been performed in the
Philips X’Pert Pro MPD in Bragg-Brentano configuration. Texture characteri-
zation was additionally performed with collimator point focus optics on the
open Eulerian cradle.

Temperature dependent x-ray absorption spectroscopy (XAS), x-ray mag-
netic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD)
was performed at BL 6.3.1 and BL 4.0.2 of the Advanced Light Source in Berke-
ley, USA. The element-specific magnetic properties were investigated at the
Co- and Ti-L3,2 edges in surface-sensitive total electron yield mode (TEY)[56]
for temperatures between 20K and 370K.

For XMCD, the sample was saturated by applying a magnetic field of max.
± 20 kOe along the x-ray beam direction using elliptically polarized radiation
with a polarization of Phν = ±60% (BL 6.3.1) and Phν = ±90% (BL 4.0.2),
respectively. The x-rays angle of incidence with respect to the sample surface
was α = 30◦ (BL 6.3.1) and α = 90◦ (BL 4.0.2), respectively. I+ and I− denote
the absorption spectra (normalized to the x-ray flux measured by the total
electron yield of a Au grid in front of the sample) for parallel and anti-parallel
orientation of the photon spin and the magnetization of the sample. The
XAS and XMCD spectra are defined as XASc = (I+ + I−)/2 and XMCD=

(I+ − I−), respectively. To calculate the element-specific spin and orbital
magnetic moments from the data we applied sum-rule analysis, see Chapter
2.4.2.

Anisotropic XMLD spectra were taken at BL 4.0.2 with 100% linearly polar-
ized light in normal incidence using the eight-pole electromagnet end station
[109]. The magnetic field for switching the magnetization of the sample was
applied parallel and orthogonal to the polarization vector of the incoming light,
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the according absorption spectra normalized to the x-ray flux are denoted as I‖

and I⊥. The XAS and XMLD spectra are then defined as XASl = (I‖ + I⊥)/2
and XMLD= (I‖ − I⊥), respectively. Spectra were taken with magnetic fields
aligned along the [100] and the [110] directions of the Co2TiSn films. The
applied magnetic field of 4.5 kOe was canted out of the surface plane by 10◦

to improve the electron yield signal. However, the XMLD results are nearly
unaffected by this because the demagnetizing field perpendicular to the film
plane is so strong that the magnetization is tilted out-of-plane by less than 5◦

(measured by analyzing the XMCD asymmetry for different tilting angles).
The XMCD and XMLD spectra were taken by switching the magnetic field

at each energy point. To remove non-dichroic artifacts we performed mea-
surements for positive and negative polarization (XMCD) or different spatial
orientations of the polarization vector (XMLD) and averaged the corresponding
spectra.

6.1.2 Theoretical approach

The electronic structure probed by x-ray absorption spectroscopy has been
investigated in direct comparison with ab initio electronic structure calculations.
We used two different approaches to this end. First, electronic structure calcu-
lations were performed with the Munich SPRKKR package, see Chapter 3.2.2.
And second, in order to take care of the excited state band structure, which is
actually probed in XAS, spectrum simulations were carried out in FEFF9, see
Chapter 3.4.4.

In SPRKKR, the band structure and the ground state properties were calcu-
lated in the fully-relativistic representation of the valence states, thus including
spin-orbit coupling. The angular momentum cutoff was set to lmax = 3 (spdf -
basis) and the full potential was taken into account. The bulk lattice parameter
of a = 6.07 Å was used. The exchange-correlation potential was modeled with

mCo
spin mCo

orb NCo
h mTi

spin mTi
orb NTi

h

0.96 0.04 2.06 -0.03 0.01 7.65

Table 6.1: Results of band structure calculations with SPRKKR. The magnetic moments
are given in µB / atom.
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6 Electronic structure of fully epitaxial Co2TiSn thin films

the generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof
parametrization.

The resulting atomic magnetic moments were then used as input parame-
ters to FEFF9, which is not spin self-consistent. The self-consistent potential
was obtained on a cluster of 59 atoms and the x-ray absorption near edge
spectrosopy (XANES) was calculated on a cluster of 229 atoms. The complex
Hedin-Lundqvist self-energy was applied and the calculations were done with
the final state rule, including a full screened core hole on the absorber. The
angular momentum for the full multiple scattering was taken to lmax = 3.

The ground state described by the SPRKKR calculation is not half-metallic
with the experimental lattice parameter, in contrast to calculations with full
potential linearized augmented plane-waves codes [38, 104]. The Fermi energy
is slightly above the minority spin gap; a small increase of the lattice parameter
would move EF into the gap. This is due to the angular momentum truncation
at lmax = 3, which is insufficient to capture the non-spherical components
of the density. For technical reasons, it can not be taken to higher values.
However, this does not significantly change the shape of the calculated XAS
spectrum. The total spin moment is 1.9 µB / f.u. and the total orbital moment is
0.09 µB / f.u.. The atom-resolved magnetic moments and the numbers of holes
for Co and Ti are given in Tab. 6.1. The negative Ti spin moment indicates a
weakly ferrimagnetic behavior of CTS.

6.2 Experimental results

6.2.1 Structure

XRD and XRR were utilized to investigate the structure of the films. Figure 6.1
displays a set of data that were extracted from the measurements. As is clearly
visible in Figure 6.1 (a), the films show Laue oscillations on the (002) reflection
that become more pronounced with increasing deposition temperature. Laue
oscillations are only observed if the crystalline coherence is very good and
the roughness is small. While the two films deposited at lower temperatures
show only weak oscillations, the two films deposited at higher temperature
exhibit pronounced fringes. Only weak asymmetry of the fringes is observed
for TS = 700◦C, indicating nearly homogeneous (or no) strain along the growth
direction.

Four intense (111) reflections have been observed in pole figure analysis at
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Figure 6.1: (a): X-ray diffraction scans of the (002) reflections showing Laue oscillations.
(b) X-ray reflectometry (XRR) scans. The dashed line represents the best fit to the
experimental curve with TS = 700◦C. (c): Full-widths at half-maximum (FWHM) of
the rocking curves and effective density determined by XRR. (d): Out-of-plane lattice
parameter c.

the expected tilt angle of Ψ = 54.74◦ for all samples. The intensity increases
considerably with increasing deposition temperature. The epitaxial relation-
ship is Co2TiSn [100] ‖MgO [110], which is commonly observed for Heusler
compounds on MgO (001) substrates.

The out-of-plane lattice parameter c measured on the (004) reflection, dis-
played in Figure 6.1 (d), is found to increase with increasing deposition tem-
perature and converges for the highest deposition temperatures. For 700◦C,
we find a lattice parameter of c = 6.105 Å.

The full-width at half-maximum (FWHM) of the rocking curves measured on
the (004) reflections are displayed together with the density determined by XRR
in Figure 6.1 (c). For high deposition temperature the rocking curve FWHM
is found to be as low as 0.6◦, which demonstrates the narrow orientation
distribution of the individual film grains.

XRR provides indirect information on the film morphology. The density
determined by XRR has to be seen as an effective density, which only reflects
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6 Electronic structure of fully epitaxial Co2TiSn thin films

the real film density if the surface roughness is low with a Gaussian distribution
on a small lateral scale. In Fig. 6.1 (b) we present the XRR curves of our samples.
The roughness is high for the two samples with lower growth temperature,
which is identified by a quick vanishing of the Kiessing fringes. The MgO
cover layer does not show up as an individual resonance. We find an increase
in the XRR density for deposition with 600◦C and more, while the roughness
is greatly reduced and the MgO cover layer becomes visible (see arrow). The
XRR roughness of the film with TS = 700◦C is 0.3 nm. The scans for the two
lower deposition temperatures can not be fit with the Parratt algorithm [54].
They show two main Fourier components at 18 nm and 23 nm, and a difference
component at 5 nm. A columnar growth with high and low grains that have
18± 5 nm thickness can be inferred from this. At higher temperatures, the
growth changes to a mode with large and smooth grains of equal height. This
behavior has been confirmed by atomic force microscopy.

From Thornton’s model[110] of film growth for sputtered films it is expected
to find a transition from a fine-grained columnar structure to a regime with
large grains governed by bulk diffusion and recrystallization at about half the
melting temperature, TS/Tm ≈ 0.5. In fact, the melting point of Co2TiSn is
1720(20) K,[111] i.e., this transition is expected around 600◦C.

With the experimental bulk lattice parameter a = 6.07Å, the density of the
compound is calculated to be 8.446 g/cm3. If one assumes a perfect, strained
epitaxial growth on the MgO substrate, the lattice will be distorted tetragonally,
with an in-plane lattice parameter a =

√
2 · 4.21Å = 5.95Å and accordingly

expanded out-of-plane. If the volume remained constant, the out-of-plane
lattice parameter would be 6.32 Å. For the film deposited at 700◦C, we mea-
sured c = 6.105 Å. Recalculating the density for this tetragonal configuration
gives ρ = 8.74 g/cm3, which is in close agreement with the measured density
of ρ = 8.7 g/cm3. This result supports the growth model discussed above.
Further, we have shown in a recent paper by ab initio theory that a tetragonal
distortion of Co2TiSn can easily occur because of the low energy associated
with the distortion [104]. It is of the order of 50 meV / f.u., and is thus easily
activated during the growth. However, at lower temperatures this constitutes
a metastable state.
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6.2.2 Magnetism

SQUID measurements taken on the sample with TS = 700◦C give a magnetic
moment of m = 1.6(1) µB / f.u. and a Curie temperature of TC = 375(5)K (Fig.
6.2). The Curie temperature is higher than in bulk samples, where it has been
reported to be about 355 K. The coercive field is 160 Oe at 20 K and 150 Oe at
room temperature. Since the magnetization declines sharply at TC, we can
conclude that the films consist of a single magnetic phase.

6.2.3 Electronic transport

Resistivity and magnetoresistance have been measured on a sample deposited
at TD = 700◦C; the data are shown in Fig. 6.3. The resistivity shows clearly
the cusp-type resistivity anomaly that is also observed for bulk samples of
Co2TiSn at TC. Details of the transition can be found by analyzing the first and
second derivatives of the resistivity curve. We define the onset of the as the first
inflection point of the resistivity; it is found at 350(5) K. The maximum of the
resistivity is at 395(5) K, i.e., 20 K above TC. The offset of the transition, given
by the second inflection point, is at 440(5) K. At TC = 375(5)K we find the
maximal change rate of the resistivity’s slope, identified by a clear minimum
of the second derivative.

By plotting the logarithm of the resistivity against 1/T for the data points
above the second inflection point, we find the effective gap width of the param-
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Figure 6.2: Magnetization in dependence of the sample temperature (markers). It was
taken as a temperature sweep with a constant field of 100 Oe. The solid line is a guide
to the eye.
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tom: Corresponding magnetoresistance for fields of 1 kOe to 10 kOe with the magnetic
field ~H in the sample plane and the current~j ⊥ ~H.

agnetic state to be Eg = 6.5± 0.5 meV. This is considerably smaller than the gap
width of 12.7± 1 meV reported for bulk samples. However, it has been argued
by Barth et al. that an actual transition to a semiconductor is improbable. They
found significant differences for the calculated conductivity tensors between
spin-polarized and unpolarized calculations. By mixing the states weighted
by a molecular field approximation for the magnetization, they could partly
explain the anomalous behavior of the resistivity [88].

Compared with bulk samples, we also find a notably lower residual resis-
tivity ρ(20K) = 89 µΩcm and a total resistivity amplitude (ρmax − ρmin) =

216 µΩcm, compared to 310 and 205 µΩcm [78], or 245 and 135 µΩcm [88],
respectively. The residual resistivity of a metal is mainly given by its defect
density, i.e., dislocations, disorder, impurities and grain boundaries. In a thin
film, one has to take the interfacial scattering into account. Our thin films
have very low residual resistivity compared to bulk samples, which might
indicate that their crystalline properties are superior to those of bulk samples.
We attribute this to large, flat grains and good chemical order.
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The temperature dependence of the resistivity is well described by a T2

term up to 180 K, which is mainly attributed to electron-electron scattering.
Above 180 K up to the first inflection point the curve is better fit by a T3 law.
In bulk samples, the parabolic shape of the resistivity curve at intermediate
temperatures is less pronounced than in our films. However, the overall shape
is in agreement with the curves found by other authors.

The magnetoresistance (MR) of the film, defined by MR(H, T) = (ρ(H, T)−
ρ(0, T))/ρ(0, T), shows strongly nonlinear behavior. At low temperature only
weak MR is found. With increasing temperature an increasing MR is observed,
which is negative over the whole temperature range, i.e., the resistivity is lower
if a magnetic field is applied. It has a pronounced, nonlinear dependence on
the applied magnetic field. With an available magnetic field of 10 kOe the MR
was by far not saturated. A distinct extremum is observed at large fields right
below TC, being the global minimum of the curve at fields larger than 7 kOe.
Above TC the MR vanishes. The appearance of the extremum and its amplitude
are in agreement with the data published by Majumdar et al. [78]. The MR can
be explained in terms of spin fluctuations and associated spin-flip scattering:
at low temperature, the fluctuations are nearly zero and a small magnetic field
is sufficient to saturate the film. With increasing temperature, fluctuations
become more important, but can be suppressed by enforcing a particular spin
orientation in a strong field. This picture is supported by the shift of the first
minimum with increasing magnetic field, denoted by the dashed line in Fig.
6.3. The MR is enhanced at TC because the spin fluctuations are strongest at the
transition temperature and the ferrimagnetic state is stabilized in a large field.
Furthermore, the MR has no traceable anisotropic MR (AMR) contribution:
the typical inversion of the MR at zero field for~j ⊥ ~H compared to~j ‖ ~H is
missing.

The Seebeck effect has been measured on the same sample as the resistivity.
It was S = −14± 2 µV / K at 310 K, which is about 2.6 times lower than in
the bulk (−37 ± 2 µV / K) [88]. This is in agreement with the much lower
resistivity of our films compared to bulk samples. Barth et al. point out that
the Seebeck coefficient can be enhanced by scattering on grain boundaries or
impurities, [88] which appear to be rarer in the films. On the other hand, the
Seebeck coefficient is proportional to ν/σ, with the electrical conductivity σ

and the thermal conductivity ν. Thus, the lower S may also indicate a lower
heat conductivity of the film.
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6.2.4 Interfacial chemistry

XMCD and XASc measurements were performed at BL 6.3.1 at 20K and at RT
for films deposited on MgO single crystalline substrates (TS=400◦C, 500◦C,
600◦C, 700◦C, and post-annealed samples).

The Co XMCD signals for different deposition temperatures show two no-
table trends: the Co magnetic moment, measured at 20 K, and the ratio of
the Co XMCD signals measured at RT and at 20K increase with increasing
TS. This implies that the chemical order improves with increasing substrate
temperature, resulting in higher saturation magnetization and higher Curie
temperature. That is in agreement with SQUID measurements on the same
samples.

At TS = 400, 500◦C we found multiplet structures on the Ti L3,2 edges, which
indicate formation of interfacial TiO2 [112]. These structures almost vanish at
TS = 600◦C and are not traceable at TS = 700◦C anymore. The spectral shapes
of the XMCD signals on Co and Ti do not change on the other hand, only the
amplitude is reduced at lower deposition temperature. The large roughness of
the films deposited at the lower temperatures leads to an incomplete covering
with the protective MgO layer. The CTS compound is thus oxidized in air,
which is particularly observed as surfacial TiO2, which is not magnetic.

In vacuum post-annealed samples have been additionally investigated for
their interfacial chemistry. Annealing at temperatures above 350◦C resulted
in formation of interfacial TiO2. Naturally, this will also happen at the lower
interface to the MgO substrate. Because of the high growth temperatures, we
can expect an oxide thickness of several nanometers. This effect may account
for the low average magnetization measured in the SQUID. An oxidized bottom
layer of 3 nm thickness can account for the deviation from the nearly 2 µB / f.u.
measured in the bulk and predicted theoretically.

Using the results from this systematic analysis we chose two samples for
in-detail investigations described in the next section.

6.2.5 Element specific magnetization

Highly resolved XMCD and XMLD spectra were taken at BL 4.0.2 at 20K for
the samples deposited at 400◦C and 700◦C, respectively (see Fig. 6.4 and 6.5).
Whereas the XASc spectra show significant differences for the two deposition
temperatures for Co and Ti, the shape of the XMCD spectra does not depend on
the deposition conditions. For Co the deposition at higher temperature results
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Figure 6.4: Normalized XASc and XMCD spectra of Ti and Co measured at 20K for
samples deposited on MgO single crystals at 400◦C and 700◦C, respectively.

in a more pronounced fine structure, consisting of a double peak at the L3
resonance and a shoulder about 4 eV above the resonance. These structures are
also reflected in the L2 resonance, but less pronounced. Klaer et al. investigated
Co2TiSn bulk samples (in situ fractured in UHV for XMCD investigation)
[113]. They also observed a double peak structure at the L3 resonance, but less
pronounced compared to our sample deposited at 700◦C. Moreover, the double
peak structure at the L2 edge was not found in these bulk samples. Yamasaki
et al. [114] have also investigated bulk samples (in situ scraped in vacuum for
XMCD investigation), but in contrast to the results by Klaer et al. and us they
observed three separated peaks at the L3 edge and only one broad peak at the
L2 resonance. Obviously, their samples had a different electronic structure.

Our Co XMCD spectra also show the double peak structure at the L3 edge,
while at the L2 edge only a shoulder is visible. Again, the structures in our
XMCD spectra are sharper than those given by Klaer et al. and Yamasaki et al..
Our Ti XMCD spectra shown in Fig. 6.4b are similar to the data by Klaer et al.;
Yamasaki et al. do not provide data on the Ti L-edges. However, the shape is
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6 Electronic structure of fully epitaxial Co2TiSn thin films

very different compared to data collected by Scherz et al. [115] on the system
Fe/Ti/Fe(110). Therefore the relative alignment of the Co and Ti magnetic
moments is not obvious from a comparison with their reference data.

In order to get further insight into the element specific magnetic properties,
we applied the XMCD sum rules (Chapter 2.4.2). The results of the sum-rule
analysis for the Co XMCD spectra are summarized in Tab. 6.2.

The Co spin moment is close to 1µB for a deposition temperature of 700◦C.
For the deposition at 400◦C the Co spin moment is a factor of two smaller,
but the orbital to spin moment ratio is nearly identical for both deposition
temperatures; the orbital moment is parallel to the spin moment. Both the
spin and orbital moments are in very good agreement with the theoretical
results. The number of d-holes is lower than for pure Co metal (1.75 and 1.5 for
Co2TiSn deposited at 700◦C and 400◦C, respectively, and 2.4 for pure Co[61]),
which indicates a rather large charge transfer to the Co d states in Co2TiSn. It
is actually even a bit lower than the theoretical value of 2.06.

While the sum rules work well for Co, core-hole - photoelectron interac-
tion and dynamical screening effects of the x-ray field prohibit their direct
application to the early 3d transition metals [84]. The interaction leads to an
intermixing of the L3 and L2 resonances, which is the reason for the deviation
from the statistical branching ratio of 2:1 for the two edges. The intermixing,
also known as jj-mixing of the 2p1/2 and 2p3/2 levels, leads to wrong results
when the sum rules are applied to the early 3d transition metals. It has been
suggested by Scherz that one can estimate the Ti spin moment by multiplying
the result from the sum rule analysis by a factor of 4 [61]. This result has been
obtained on the Fe/Ti/Fe(110) trilayer system. On the other hand, it must
be expected that this correction factor itself depends on the actual electronic
structure and thus the screening strength. The direct result from the sum rule

Table 6.2: Results of the sum rule analysis of the Co XMCD spectra measured at 20K for
the samples deposited at 400◦C and 700◦C, respectively.

TS mspin morb morb/mspin Nh

400◦C 0.48µB 0.025µB 5.2% 1.50
700◦C 0.98µB 0.055µB 5.6% 1.75
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Figure 6.5: Normalized XASl and XMLD spectra of Co measured at 20K in the [100] (a
and b) and [110] (c and d) directions for samples deposited on MgO single crystals at
400◦C and 700◦C, respectively.

analysis is mspin = −0.038 µB for the sample deposited at 700◦C, which is
in good agreement with the theoretical result. In particular, an anti-parallel
alignment with the Co spin moment is found. It is worth to mention, that the Ti
orbital moment (the apparent value is morb = 0.022 µB) is aligned anti-parallel
to the Ti spin moment. The latter is in accordance with Hund’s rules, which
expect an anti-parallel alignment of the spin and orbital moment, because the
Ti 3d shell is less than half filled. Because of the formation of interfacial TiO2
the XMCD data can not be quantified for TS = 400◦C. However, all qualitative
conclusions with respect to the alignment of the Co and Ti orbital and spin
moments are preserved for lower deposition temperatures, because the shapes
of the Co and Ti XMCD spectra do not depend on TS. In summary, the XMCD
results are in very good agreement with theoretical expectations.

In general it is expected, that the XMLD signal is proportional to the square
of the total magnetic moment of the individual atoms (XMLD = βl · 〈mtotal〉2),
whereas the XMCD signal should be directly proportional to the magnetic
moment (XMCD = βc · 〈mtotal〉) [62]. Comparing the XMCD and XMLD signals
(normalized to the post-edge jump height η, because the number of 3d-holes

79



6 Electronic structure of fully epitaxial Co2TiSn thin films

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

 

 

n
o
rm

a
liz

e
d
 X

M
L
D

-

s
ig

n
a
l 
[1

1
0
]

(normalized XMCD-signal)
2

Figure 6.6: Normalized Co XMLD signal for the [110] direction as a function of the
square of the normalized XMCD signal. The data points correspond to measurements
taken at 20K, 300K and 370K. The sample was deposited on MgO single crystals at
700◦C.

Nh is different for the samples deposited at 400◦C and 700◦C, respectively) for
Co, it is interesting to note that XMLD/XMCD2 is about 65% larger for the
sample deposited at 400◦C than for the 700◦C sample. In the simple picture
that the proportionality factors βc and βl are the same for both deposition
temperatures, this means that in the disordered 400◦C sample some of the Co
atoms are anti-ferromagnetically coupled to the other Co atoms. On the other
hand it is known, that the XMLD effect can become quite large in systems
with localized electrons. The magnitude of the XMLD is given essentially
by the magnetic moment and the 2p level exchange splitting, which itself
is proportional to the magnetic moment. Actually, without the exchange
splitting of the 2p levels, the XMLD would vanish. Localized 3d electron states
increase the 2p-3d exchange interaction, giving rise to an enhanced XMLD [63].
Therefore, the decrease of XMLD/XMCD2 with the deposition temperature
could also hint to a higher degree of localization of the Co moments for the
400◦C sample. This is in agreement with an oxidized surface, in which the
electrons should be more localized. However, the fine structure at the Co-L
edges becomes more pronounced for higher deposition temperature (see Fig.
6.4a, 6.5a and 6.5c) which might indicate a higher degree of localization for
higher deposition temperatures. The electron localization would give the Co a
more atomic character, and atomic multiplets would become important, giving
rise to a fine structure on the x-ray absorption spectrum. On the other hand,
this would contradict the XMLD result. The maximum amplitude of the XMLD
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6.3 Electronic structure

for TS = 700◦C is 5.7 % at the Co L3 edge in the [110] direction. Thus, the Co
3d states take an intermediate position between the elemental ferromagnets
Co and Fe, that have around 2 %, and strongly localized systems like Mn in
(Ga, Mn)As, which has about 12 % [63]. Obviously, this discrepancy needs to
be investigated by direct ab initio calculations of the absorption spectra, which
will be discussed in Sec. 6.3.

For the sample deposited at 700◦C the XMCD and XMLD effect was studied
also at elevated temperatures. The normalized XMCD signals of Co and Ti
have the same shape at 20 K, 300 K and 370 K. Furthermore, the Ti XMCD
asymmetry changes by the same factor as the Co asymmetry between 20K
and 370K. Therefore the ratio between the Ti and Co magnetic moments is not
significantly changed at elevated temperatures. The temperature dependence
of the XMLD signal was measured for the [110] direction. As shown in Fig.
6.6, the XMLD signal scales well with XMCD2, which was also found for
other materials like (Ga,Mn)As [63] in accordance with the above mentioned
expectation.

6.3 Electronic structure

As discussed above, the fine structure observed at the Co L3,2 edges can have
its origin in atomic multiplet effects related to electron localization or simply
in the particular (itinerant) electronic structure of Co2TiSn. The experimental
XAS and XMCD spectra are compared to calculations with SPRKKR and FEFF9
in Fig. 6.7.

The SPRKKR spectra show broad edges and some weak shoulders on the
high energy side of the white lines. Further, the ratio of the L3 and L2 XMCD
signals is incorrect, the L3 XMCD is too small.

Bekenov et al. have calculated the XAS/XMCD spectra of CTS ab initio
using the spin polarized relativistic linear-muffin-tin-orbital (SPR LMTO)
method.[116] Their simulations do not reproduce the double-peak structures
and are rather similar to our SPRKKR spectra.

In FEFF9, the SPRKKR spectrum can be principally reproduced when the
ground state density is used. Instead, if the density in the presence of a
screened core hole is calculated, we find a structure that is very similar to the
experimental spectrum. Because the self-consistency algorithm of FEFF9 is
only accurate within 1 eV in its determination of the Fermi energy, one can
use a small energy shift for fitting, thereby moving EF within the density of
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Figure 6.7: Comparison of the calculated Co L3,2 XAS and XMCD spectra carried out
in FEFF9 and SPRKKR to experimental spectra. The XMCD signals have been scaled
to 90% to account for the experimental polarization degree. The experimental and the
FEFF9 spectra are scaled to 1 in the post-edge region. The SPRKKR spectra are scaled
to match the experimental L3 resonance. The theoretical spectra are aligned in energy
with the experimental spectrum.

states (DOS). With a shift of -0.2 eV we obtained the spectrum shown in Fig.
6.7. Obviously, both the double-peak structure of the white line as well as the
small shoulder 4 eV above the white line are reproduced. Also the double-
peak structure of the XMCD signal is well reproduced. Notably, not only the
shape of the spectrum is basically correct, but also the intensities match the
experimental data very well. However, the double-peak splitting of the L3 line
is calculated as 1.3 eV, compared to a measured splitting of 1.5 eV.

Since FEFF9 is based on the local density approximation within the den-
sity functional theory—and thus relies on single-particle theory—it does not
account for atomic multiplet effects, which naturally are many-body effects
arising from wave-function coupling. Consequently, we conclude that the fea-
tures observed in our experimental spectra do not arise from multiplet effects
and electron localization. Instead, they are features arising from the excited
state band structure due to the presence of a core-hole. This is consistent with
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the XMLD measurements discussed above, which indicate rather itinerant
moments.

Our conclusion is further supported by the analysis given by Klaer et al.,
who found that the observed structures can not be explained by charge-transfer
multiplet theory [113]. They state that the splitting arises from a nearly pure
Co eg state above EF giving rise to the first peak, and from a Co-Ti hybrid state
of t2g character, which results in the second peak. Since the t2g states have more
itinerant character, the core hole is more screened by the surrounding atoms,
while the eg states are significantly lowered in energy. This core-hole correlation
energy ∆EC was assumed to be 0.5 eV and confirmed by a measurement on
Co2TiSi. Neglecting the (only weak) energy dependence of the transition
matrix elements, and using this core-hole correlation energy and spectral
deconvolution, they finally found that the Fermi level of Co2TiSn is at the edge
of the minority valence band, i.e., Co2TiSn would be on the verge of being a
half-metal. With the same method, they found that Co2MnSi has half-metallic
character for the unoccupied density of states.

Using the FEFF9 calculations, we can invert this procedure. From ab initio
calculations we found the Fermi energy by fitting the experimental spectrum.
Now we can use the same Fermi energy and investigate the ground state DOS
calculated by FEFF9. The Co site projected dDOS are shown together with the
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6 Electronic structure of fully epitaxial Co2TiSn thin films

SPRKKR calculation in Fig. 6.8. First, we shall note that the ground state DOS
from FEFF9 and the SPRKKR calculation produce principally the same features,
but FEFF9 underestimates the splitting between the bonding and the anti-
bonding states. This is because of the spherical potential approximation and
the use of the von Barth-Hedin exchange correlation potential. The unoccupied
DOS are however in good agreement. Because of finite cluster size effects, the
DOS from FEFF9 is broadened. The minority states gap can be identified just
below the calculated Fermi level. When comparing the DOS in presence of the
core hole to the ground state, we find that the curve is mainly shifted to lower
energies by ∆EC ≈ 0.3 eV. In the unoccupied DOS, this is best seen for the
minority eg peak, which shifts below the calculated EF. Instead, the Co-Ti t2g
peak at 1.4 eV remains essentially unaltered. That is in remarkable agreement
with the procedure given by Klaer et al.. When the same Fermi level is applied
to the ground state density as to the excited state density, we can conclude
from our data that Co2TiSn has half-metallic character with EF right below the
minority valence band (see dotted energy level in Fig. 6.8).

Finally, we shall discuss the limitations of our model. As mentioned above,
the ab initio calculation underestimates the double-peak splitting of the XAS by
about 0.2 eV. This introduces an uncertainty in the Fermi energy determination
by spectral fitting of the order of the correction itself. With the currently avail-
able level of ab initio theory this issue can not be resolved and it remains unclear
if Co2TiSn is a half-metallic ferrimagnet. At least, a full potential treatment
would be desirable, and spin self-consistency with more advanced exchange
correlation functionals may help to resolve problems with the exchange split-
ting. On the other hand, the SPRKKR calculation finds the t2g peak at slightly
lower energy than FEFF9. Thus it is possible that a more accurate calculation
of the XAS requires approaches going beyond DFT.
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7 Ferrimagnetism and disorder of epitaxial

Mn2−xCoxVAl Heusler compound thin

films

7.1 Introduction

In this chapter, we attempt to test Galanakis’ prediction of a full magnetic
compensation in the Mn2−xCoxVAl (MCVA) system [40]. For many practical
applications it is necessary to prepare high quality thin films of the magnetic
materials. Therefore one has to find suitable deposition techniques and opti-
mize the parameters. The parent compounds Mn2VAl and Co2VAl [117, 118]
have been successfully synthesized in the bulk and epitaxial growth of Mn2VAl
films with L21 ordering on MgO (001) single crystals was also demonstrated
[119, 120]. Experimental results on the structural and magnetic properties of
epitaxial Mn2−xCoxVAl thin films are presented here.

Disorder is a major concern when dealing with half-metallic Heusler com-
pounds. The presence of disorder has been repeatedly demonstrated for Co2-
based Heusler bulk and thin films (see, e.g., [121, 122, 123, 124]). Theoretical
studies have investigated the impact of disorder on the magnetic properties
and the half-metallicity of the compounds [39, 125, 126, 127, 128, 129]. For
some compounds major impact of disorder on the half-metallicity is observed,
which also depends on the type of disorder. Particularly, Picozzi et al. [125]
found that a Mn atom substituting a Co atom in Co2MnSi, which has Mn as
nearest neighbors, would couple antiparallel to the surrounding Mn atoms,
and thus reduce the total magnetization drastically. The strong dependence of
the magnetic moment of Mn on its chemical and magnetic environment has
been demonstrated by, e.g., Rader et al. [130]. Hence, disorder bringing Mn
into nearest-neighbor positions has to be controlled.
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7.2 Methods

7.2.1 Experimental details

The samples were deposited with the BESTEC sputter system (Chapter 2.1).
Elemental targets of Mn, Co, V, and Al of 99.95 % purity were used. The sput-
tering pressure was set to 2 · 10−3 mbar. The correct sputter power ratios were
set up using a combined x-ray reflectivity and x-ray fluorescence technique.

All samples used in this study had the following stack sequence: MgO
(001) single crystal / Mn2−xCoxVAl 18 nm / Mg 0.5 nm / MgO 1.5 nm with
x = 0 / 0.5 / 0.9 / 1.0 / 1.1 / 1.5 / 2. The upper MgO was deposited by e-beam
evaporation. Diffraction measurements on Mn2VAl films deposited at various
temperatures revealed that a substrate carrier temperature of at least 600◦C
was necessary to obtain good order, but temperatures above 700◦C lead to
strong Mn sublimation, which can not be reliably compensated by higher
sputtering power (compare with [119]). Therefore all samples discussed in this
paper were deposited at a carrier temperature of 700◦C. The protective Mg /
MgO bilayer was deposited after cooling the samples to prevent oxidation and
interdiffusion.

X-ray diffraction (XRD), reflectometry (XRR), and fluorescence (XRF) were
performed in the Philips X’Pert Pro MPD diffractometer with Bragg-Brentano
and collimator point focus optics, the open Euler cradle and the Amptek
fluorescence detector in a He enclosure.

X-ray magnetic circular dichroism (XMCD) was measured at beamline 6.3.1
of the Advanced Light Source (Berkeley, CA, USA). A magnetic field of ±
1.6 T parallel to the incoming x-ray beam was applied, the sample surfaces
were inclined by 30◦ with respect to the incoming beam. Element specific
magnetic hysteresis loops were taken with a magnetic field of up to ± 2 T.
The magnetic field was switched for every energy point to obtain the dichroic
signal. Data were taken at 20 K, 150 K, 200 K, and 300 K. All XMCD spectra
were taken at least twice, with circular polarization degrees of +60 % and -
60 %, respectively. Systematic measurements were performed in the surface
sensitive total electron yield mode, and the visible light fluorescence of the MgO
substrate was detected by a photo diode behind the sample (see Chapter 2.4).
Thus, bulk information of the films could be obtained in x-ray transmission.
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7.2.2 Electronic structure calculations

Electronic structure calculations of disordered compounds were performed
with the Munich SPRKKR package, see Chapter 3.2.2. The ground state self-
consistent potential calculations were performed on 834 k points in the irre-
ducible wedge of the Brillouin zone. The exchange-correlation potential was
approximated with the Perdew-Burke-Ernzerhof implementation of the gener-
alized gradient approximation [69], the Fermi energy was determined using
Lloyd’s formula [74, 75]. The angular momentum expansion was taken up to
lmax = 3. A scalar relativistic representation of the valence states was used
in all cases, thus neglecting the spin-orbit coupling. For Mn2VAl the atomic
spheres approximation was applied and Co2VAl was treated with full poten-
tial calculations. Half-metallic ground states were obtained for Mn2VAl and
Co2VAl with their respective bulk lattice parameters. To account for disorder,
the coherent potential approximation (CPA) was used. In our calculations with
the ideally ordered L21 structure, Mn2VAl has a total moment of 2.01 µB/f.u.,
with 1.54 µB on Mn and -1.03 µB on V. Co2VAl has a total moment of 1.99 µB/f.u.,
with 0.87 µB on Co and 0.28 µB on V. These values are in good agreement with
calculations presented by other authors [131].

7.3 Experimental results and discussion

7.3.1 Lattice structure

All MCVA films were found to be highly epitaxial with MCVA [001] ‖MgO
[001], rocking curve widths of 0.6◦ to 1.5◦, and an MCVA [100] ‖MgO [110] in-
plane relation. Laue oscillations observed at the (002) reflections demonstrate
the lattice and interface coherence of the films in the two limiting cases of
Mn2VAl and Co2VAl (Fig. 7.3.1(a)). For x = 1, however, the oscillations are
less pronounced.

Figure 7.3.1(b) displays the out-of-plane lattice parameter c as a function of
x. According to Vegard’s law [132], a linear decrease of the lattice parameter
with increasing x can be expected for a simple substitutional model. However,
a significant deviation from this law is observed at x = 1. This indicates, as
we will see in detail later, a structural and magnetic order-disorder transition.
For Mn2VAl, c is slightly lower than the bulk value of 5.875 Å [42]; Co2VAl
has also a slightly reduced c compared to the bulk value of 5.77 Å [117]. This
is compatible with a tetragonal distortion caused by the epitaxial matching
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Figure 7.1: (a): θ-2θ scans of the (002) reflections of Mn2VAl (x = 0), Mn1Co1VAl (x = 1),
and Co2VAl (x = 2). Clear Laue oscillations are visible in both cases. (b): out-of-plane
lattice parameter c as function of x. (c): Order parameters SB2 and SL21 as functions of
x. (d): Microstrain ε[001] and (e): coherence length D and as functions of x. The dashed
line in (e) denotes the film thickness.

with the substrate: the lattice is expanded in the plane and shrinks in the
out-of-plane direction. For the case of Co2TiSn we have recently performed
first principles calculations of the change in total energy for this type of lattice
distortion. In this case it is of the order of 25 − 50 meV, and is thus easily
activated during the film growth [104]. For the compounds presented here, we
expect a similar energy range.

Takamura’s extended order model for Heusler compounds [133] was ap-
plied to obtain the order parameters SB2 and SL21 from the measured XRD
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peak intensities. The order parameters describe the relative occupation of the
individual sublattices of the structure with the ”right” and ”wrong” atoms.
The degree of B2 order (i.e., the degree of ordering between the X and the Y/Z
sublattices) is defined as

SB2 =
nMn/Co on X-sites − nrandom

Mn/Co on X-sites

nfull order
Mn/Co on X-sites − nrandom

Mn/Co on X-sites

. (7.1)

Correspondingly, the degree of L21 ordering is defined by

SL21 =
nV on Y-sites − nrandom

V on Y-sites

nfull order
V on Y-sites − nrandom

V on Y-sites
. (7.2)

Therefore, SB2/L21 is 1 if the compound is fully ordered and is reduced with in-
creasing disorder. SB2/L21 = 0 means random occupation of the sublattices.The
order parameters can be obtained from x-ray diffraction measurements, by
comparing the experimentally observed intensity ratios with calculated ideal
values, see Chapter 2.2.1 and Ref. [133] for details. Unlike Webster’s model
[51], Takamura’s model takes the dependence of SL21 on SB2 into account.

The structure factors were obtained from the measured intensities by cor-
recting for the Lorentz-Polarization term and the temperature factor with an
effective Debye-Waller factor of Beff = 0.4. SB2 is calculated from the four
structure factor ratios of (002) and (222) versus (022) and (004), respectively.
SL21 is calculated as the average of the (111) structure factor versus (022) and
(004). The full atomic scattering factors including angular dependence and
anomalous corrections were used in the numerical model calculations. As
shown in Fig. 7.3.1(c), the Mn2VAl films are ordered in the L21 structure with
significant V-Al disorder (SL21 ≈ 0.4). With increasing Co content, the L21
order disappears in the alloy system; Co2VAl does not show any sign of L21
ordering. On the other hand, the degree of B2 order increases slightly with
increasing Co content, from SB2 = 0.7 to SB2 = 0.8, i.e., 85 % to 90 % of the Co
atoms are on the 8c sites. However, we note here that disorder between Co,
Mn, and V can not be identified with this method, because the atomic form
factors are too similar.

A Williamson-Hall analysis (Chapter 2.2.1) of the integral peak widths of
the (002), (004), and (006) reflections was performed. The analysis results are
displayed in Fig. 7.3.1(d) and (e). The measured coherence length matches the
film thicknesses quite well within the accuracy of the measuring and fitting
procedure. A clear trend of increasing strain can be observed, from 0.18 % to
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Figure 7.2: Experimental XMCD spectra for V, Mn, and Co at 20 K. The corresponding
XAS spectra were normalized to a post-edge jump height of 1. The spectra for x =

0.9, 1.1 are similar to x = 1 and are omitted for clarity.

0.47 %. The lattice mismatch of Co2VAl (3.1 %) is about 2.4 times as large as the
mismatch of Mn2VAl (1.3 %) with MgO. The same factor applies to the strain
values, which verifies the high quality of the epitaxy. The lower degree of film
coherence, the deviation from Vegard’s law and the rather low strain in spite
of the large lattice mismatch indicate an increased density of lattice defects in
Mn1Co1VAl. The defects allow for relaxation of the film, which can reduce the
microstrain at a loss of coherence.

Ziebeck and Webster found that Co2VAl crystallizes in the L21 phase, but
exhibits some preferential V-Al disorder [117]. The samples measured by them
were annealed at 800◦C for 24h. The samples by Kanomata et al. were annealed
at up to 1200◦C, and still exhibited a complex grain structure consisting of
L21 and B2 ordered fractions. Deposition at 700◦C may thus be insufficient to
promote L21 order in Co2VAl. However, as stated initially, a higher deposition
temperature was not usable because of Mn sublimation.

7.3.2 Magnetic and electronic structure

We begin with a discussion of the XMCD spectra in dependence on x, which
are shown in Fig. 7.2. For x = 0, i.e., for pure Mn2VAl, we find an antiparallel
alignment of the Mn and V moments, which was verified with element specific
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Figure 7.3: Normalized XMCD spectra of Mn and V in electron yield and luminescence
detection.

hysteresis loops (not shown). This is preserved up to x = 0.5, going along with
an antiparallel coupling of Co to Mn. Here, we find the predicted ferrimagnetic
order with the Co and V moments pointing opposite to the Mn moments.
With further increasing x, all magnetic moments point in the same direction;
the alloys become ferromagnets. This transition is closely related to chemical
disorder which is indicated by the deviation of the lattice parameter from
Vegard’s law. Across the stoichiometry series the shape of the spectra changes
significantly. Most prominently, the splitting of the V and Mn lines vanishes at
x = 0.9 and above. The appearance of this splitting is directly correlated with
the appearance of ferrimagnetism. The line shape of the Mn XMCD for x = 1.5
is very similar to the Mn line shape in Co2MnAl or Co2MnSi [134]. For the
ferrimagnetic coupling of Co and Mn, they have to be second nearest neighbors
on octahedral positions. Co and Mn on tetrahedral nearest-neighbor positions
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7 Ferrimagnetism and disorder of epitaxial Mn2−xCoxVAl

couple ferromagnetically, as in Co2MnGe [51] and the other Co2Mn-based
Heusler compounds.

To assert that the complex shape of the Mn and V spectra is not a surface
effect, we have measured the transmitted x-ray intensity in luminescence
detection at room temperature for Mn2VAl. The XMCD spectra are almost
equal in total electron yield and in transmission (see Figure 7.3.2), although
in both cases the L3 pre-peak is more pronounced in transmission. However,
compared to the total area of the peaks, this deviation is small. The fine
structure of the spectra is consequently related to the electronic structure of the
films rather than to a surface effect.

Using the sum rule analysis (Chapter 2.4.2) we extracted the spin and orbital
magnetic moments from the XMCD spectra. Table 7.1 summarizes the total
magnetic moments obtained from sum rule analysis and provides estimates of
the Curie temperatures obtained from temperature dependent XMCD for x =

0, 1, 2 (the spectra are not shown here). Figure 7.3.2 displays the element specific
total moments in dependence on x. Because of core-hole – photoelectron
interactions, the sum rules fail for the early 3d transition metals [84]. To
compensate the resulting spectral mixing effects, the apparent spin magnetic
moments can be multiplied with correction factors as suggested by Dürr et
al. and Scherz et al., i.e. 1.5 for Mn [135] and 5 for V [136]. Actually, the
applied correction factors depend on the actual electronic structure and can
not be simply transferred to different systems. However, we assume that this
influence is rather small, so that quantitative results can be obtained.

In Mn2VAl we find a lowered Mn moment (1 µB) and an enhanced V moment
(−1.1 µB), resulting in a total magnetization of 0.88 µB/f.u. No change of the

mtot TC

Mn2VAl 0.88 �RT
Mn1.5Co0.5VAl 0.1 -
Mn1.0Co1.0VAl 1.09 ≈ 350 K
Mn0.5Co1.5VAl 2.29 -
Co2VAl 1.66 ≈ 210 K

Table 7.1: Experimental total magnetic moments at 20 K (given in µB / f.u.) and esti-
mated Curie temperatures derived from temperature-dependent XMCD.
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Figure 7.4: Element specific magnetic moments as functions of x. Ferrimagnetic (FiM)
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magnetic moments was observed at RT as compared to 20 K, hence the Curie
temperature is much higher than RT. The film is not well described by a pure
L21 order model. As discussed earlier, the film has some disorder between
Mn and (V,Al). In this case, Mn atoms reside on sites surrounded by other
Mn atoms, which couple antiferromagnetically at short distance. Indeed, by
calculating the self-consistent potential in SPRKKR with 20% Mn-Al or Mn-V
swap, we find antiparallel coupling of the antisites, similar to the findings
by Picozzi et al. for Co2MnSi [125]. For Mn-Al swap, the Mn(8a) moment is
reduced to 1.22 µB and the Mn on the Al site has −2.48 µB. The V moment is
reduced to −0.83 µB. This results in a total magnetization of 0.85 µB/f.u., and
the average Mn moment is consequently 0.85 µB. In the case of Mn-V swap,
the Mn(8a) moment remains at 1.58 µB and the Mn on the V site has −2.63 µB.
The V moment on the 4b site is −0.87 µB and +0.84 µB on the 8a site. In this
case the total moment is 1.78 µB/f.u., with an average Mn moment of 1.16 µB.
Further, the case of Mn-Al swap is energetically preferred with respect to the
Mn-V swap. Seeing the low total and Mn moments and the high V moment,
a preferential Mn-Al swap in Mn2VAl is thus in good agreement with the
structural and the magnetic data. Our calculations show that the 20 % Mn-Al
disorder and B2 disorder barely influence the half-metallic gap of Mn2VAl. For
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7 Ferrimagnetism and disorder of epitaxial Mn2−xCoxVAl

B2 disorder, the total magnetic moment also remains unaffected. In contrast,
20 % Mn-V disorder destroy the gap. This is in contrast to the findings by Luo
et al., obtained with a supercell approach in a pseudopotential code. They state
that the gap is preserved under 25 % Mn-V disorder [24].

Co2VAl has a reduced Co moment (0.69 µB) and a V moment of 0.28 µB,
giving a total magnetization of 1.66 µB/f.u. The film has B2 order, which is
expected to reduce the magnetization from the highly ordered L21 case. We
find magnetic moments of 0.75 µB for Co and 0.4 µB for V in a B2 ordered
SPRKKR calculation, with a total moment of 1.86 µB/f.u., in good agreement
with our measurements. Some additional disorder involving Co and V could
explain the further reduced moments. The Curie temperature is about 210 K
(see Table 7.1), which is significantly lower than the value for bulk samples
(310 K [117]). A calculation of the Curie temperature with SPRKKR within
the mean field approximation (Chapter 3.3) yields 352 K in the L21 case and
165 K in the B2 ordered case. The observed significant reduction of the Curie
temperature in the disordered alloy is thus in agreement with theory. The
half-metallic gap of Co2VAl vanishes in the B2 structure.

At x = 0.5, a nearly complete magnetic compensation with a total moment of
only 0.1 µB/f.u. is observed. Remarkably, at x = 1.5 the total magnetic moment
becomes larger than 2 µB/f.u., caused by the high Mn moment of 1.67 µB. This
is in agreement with the different Mn line shape: in, e.g., Co2MnAl, in which
Mn has a similar line shape, Mn has a moment of about 3 µB [51]. Thus, the
mechanism mainly responsible for the ferromagnetic coupling of all moments
is the preferentially tetrahedral (instead of octahedral) coordination of Mn
atoms with Co.
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8 Itinerant and local magnetic moments in

ferrimagnetic Mn2CoGa thin films

probed by x-ray magnetic linear

dichroism: experiment and ab initio

theory

8.1 Introduction

In this chapter, we investigate the properties of epitaxial thin films of the
inverse Heusler compound Mn2CoGa, which is investigated theoretically in
Chapter 5.

Epitaxial thin films of Mn2CoGa with (001) orientation were prepared with
the BESTEC sputter machine on MgO (001) substrates. A Mn50Ga50 target and
an elemental Co target were used for the deposition. The resulting Mn:Ga ratio
in the films was 2.2:1, as determined by x-ray fluorescence. Co was added to
match the Ga content, i.e., the stoichiometry of the unit cell can be written as
Mn2.1Co0.95Ga0.95.

Among the various heat treatments tested, deposition at 200◦C and in situ
post-annealing at 550◦C was found to provide optimal film quality. The lattice
parameter perpendicular to the surface was 5.81 Å, which is slighty smaller
than the bulk value of 5.86 Å [28]. A small tetragonal distortion of the film
is induced by the lattice mismatch with the substrate, hence the lattice is
expanded in the film plane and compressed perpendicular to the plane. The
bulk magnetization measured by a superconducting quantum interference
device (SQUID) corresponds to 1.95(5) µB / unit cell, which is very close to
the bulk value. No significant change of the magnetization between 5 K and
room temperature was observed, which is consistent with a Curie temperature
higher than 600 K.

X-ray absorption (XAS) measurements were performed at BL4.0.2 of the
Advanced Light Source in Berkeley, CA, USA. X-ray magnetic circular (XMCD)
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8 Itinerant and local magnetic moments in ferrimagnetic Mn2CoGa

and linear dichroism (XMLD) measurements were taken at room temperature
in x-ray transmission through the film by collecting the visible and ultraviolet
light fluorescence from the substrate with a photodiode. [57] The sample was
saturated with a magnetic field of 0.6 T and the circular or linear polarization
degree was 90 % and 100 %, respectively.

We computed the XAS, XMCD and XMLD using the Elk code (Chapter
3.4.2). The experimental bulk lattice parameter was chosen for the calculations;
the small distortion and off-stoichiometry have negligible influence. The
Brillouin zone integration was performed on a 16× 16× 16 k-point mesh in the
irreducible wedge, the Perdew-Burke-Ernzerhof functional [69] was chosen for
exchange and correlation, and spin-orbit coupling was included in a second-
variational scheme. A half-metallic ground-state was obtained with a total
spin magnetic moment of 2 µB/f.u., and site resolved spin (orbital) moments
as follows: Co 1.03 µB (0.046 µB), Mn(B) 2.91 µB (0.011 µB), and Mn(C) −1.93 µB
(−0.019 µB). A detailed discussion of the electronic structure is given in Ref.
[28].

8.2 Results

The experimental x-ray absorption and circular dichroism spectra are shown
in Fig. 8.1 (a) and (b). Both x-ray absorption spectra have the typical shape
of a metallic system without pronounced multiplets. However, the XMCD
spectrum of Mn shows some uncommon features (see arrows in Fig. 8.1a). The
Co XAS exhibits fine structures at the L3 and L2 resonances. There is a weak
shoulder about 2.6 eV above threshold and a more pronounced one at 5 eV
above threshold. The Co XMCD spectrum reflects the shoulder in the XAS. The
Co and (effective) Mn moments are parallel. All these features are reproduced
by the ab initio calculations (Fig. 8.1 (c) and (d)), which are broadened with a
Lorentzian of 0.3 eV width to account for lifetime effects. We can thus identify
the features in the spectra as band structure effects. The 5 eV feature in the
Co XAS results from transitions into an s-d hybridized state of Co and Ga.
It is commonly observed for Co in Co2YZ type Heusler compounds, but its
position depends on the Z element. The asymmetric line shape and the broad
tails of the resonances are a consequence of 2p-3d e-e correlation [137], which
is neglected in our simulations. Electron-hole correlations can significantly
alter the shape of the XAS or XMCD spectra of 3d transition elements, even
in a metallic environment (see Chapter 6). Thus, the good agreement of our
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Figure 8.1: Top: experimental XAS and XMCD spectra of (a): Mn and (b): Co in
Mn2CoGa. Middle: theoretical XAS and XMCD spectra of Mn2CoGa. (c): Mn XAS and
XMCD. (d): Co XAS and XMCD. Bottom: decomposition of the Mn XAS (e) and XMCD
(f) for the two inequivalent Mn sites. The theoretical spectra are normalized to 1 about
40 eV above the L3 edge and are shifted to match the experimental absorption onset at
L3.

calculations with the experimental spectra indicates an effective screening of
the 2p core-hole.

In Fig. 8.1 (e) and (f) we show the decomposition of the calculated XAS and
XMCD into the Mn(B) and Mn(C) components. We find that the core levels of
Mn(B) and Mn(C) are slightly shifted (about 0.15 eV) against each other. The
shapes of the spectra as well as the branching ratios are different, the Mn(B)
branching ratio is significantly larger than the one of Mn(C). The decomposition
of the XMCD spectrum shows two different signals with opposite signs. The
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8 Itinerant and local magnetic moments in ferrimagnetic Mn2CoGa

antiparallel Mn(C) contribution is responsible for the features marked in the
experimental spectrum. These features are less pronounced in the experimental
spectrum, which indicates a smaller core-level shift than the calculated one.

A sum rule analysis was performed to obtain the spin and orbital magnetic
moments from the XMCD data (Chapter 2.4.2). The resulting magnetic moment
ratios are: mMn

spin / mCo
spin = 0.48, mMn

orb / mMn
spin = −0.013, mCo

orb / mCo
spin = 0.055.

Using the bulk magnetization we derive the element specific moments. The
average Mn spin moment is 0.47 µB per atom and the Co spin moment is
0.98 µB per atom. The average orbital moment of Mn is -0.006 µB per atom,
being antiparallel to the spin magnetic moment. For Co we find 0.055 µB for
the orbital moment. In this analysis the apparent Mn spin moment has been
multiplied by 1.5 to compensate the 2p1/2 - 2p3/2 channel mixing, as suggested
by Dürr et al [135]. These values match the theoretical values within the errors.
Both the positive Co orbital moment as well as the small negative Mn orbital
moment are in agreement with the calculation. The orbital moments of all
atoms are parallel to the respective spin moments, but the orbital moment of
Mn(C) is larger than the one of Mn(B), resulting in the effectively antiparallel
alignment.

The single crystalline character of epitaxial films allows to make use of the
anisotropic x-ray magnetic linear dichroism, which is a sensitive probe of the
local crystal field. By comparison with reference system, XMLD provides
information on the locality of magnetic moments, see Chapter 2.4.3 for details.

It was shown that the Mn moment has a local character in the Heusler
compounds Co2MnSi (CMS) and Co2MnAl (CMA).[134] Kübler et al. proposed
an exclusion of minority d electrons from the environment of Mn, giving rise
to a local moment composed of itinerant electrons [8]. A similar mechanism
can give rise to a local Mn(B) moment in Mn2CoGa [28]. Therefore, we chose
CMS as a reference system with similar crystal structure for local moments.
Mn2VGa (MVG), also crystallizing in the Heusler structure, is postulated to be
itinerant, and is chosen as a reference system for itinerant Mn moments.

A simple theoretical test for the (non-)locality of spin moments is based on
non-collinear spin configurations. We performed self-consistent calculations
for non-collinear configurations (without spin-orbit coupling) in which the
magnetic moment of interest was tilted by an angle ϑ out of the common
magnetization axis. Only the directions were fixed, and the magnitudes were
determined self-consistently. A local moment would not change in magnitude
when tilted. In Fig. 8.2 the relative changes of the magnetic moments for
Mn2CoGa and the reference systems CMS and MVG are shown. In Mn2CoGa,
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Mn(B) has a weak dependence on ϑ, whereas Mn(C) and Co change signifi-
cantly on tilting: Mn(B) has local character, whereas Mn(C) and Co are rather
itinerant. Both the Co and the Mn moment in CMS have weak or no depen-
dence on the tilt angle, showing clearly the locality of both moments. MVG
in contrast, is an itinerant system; both the Mn and the V moment depend
strongly on ϑ. Mn2CoGa has a more complex magnetic structure than the refer-
ence compounds, being a hybrid between itinerant and local magnetism. Local
moment systems can be described within the Heisenberg model. This has been
successfully applied to explain the Curie temperatures in CMS and related
compounds [80]. For MVG, this model underestimates the Curie temperature,
similar to fcc Ni (Chapter 3.3). This can be seen as experimental evidence
for the itinerancy of MVG. Consequently, we expect significant deviation of
experimental Curie temperatures from theoretical values for Mn2CoGa.

We have performed XMLD measurements for Co and Mn along the [110]
direction of the film. In Fig. 8.3 we show the experimental and theoretical
spectra of Mn2CoGa and the reference compounds. All XMLD data were taken
at the same beamline and are directly comparable in terms of energy resolution.

The Co XMLD of Mn2CoGa is very similar in shape to the signal of CMS, all
fine details are reproduced. The computed spectrum of Mn2CoGa resembles
the general shape of the experimental data, although the negative contributions
are overestimated. These are in the tails of the resonances, in which e-e corre-
lation plays a role, which we neglect as stated above. The local crystal fields
are consequently similar in Mn2CoGa and CMS, and the ab initio calculation is
able to describe these reasonably well.
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For Mn, we find that the Mn2CoGa and the CMS signals are virtually equal at
L3. At L2 however, they are somewhat different. Mn2CoGa has an overall less
pronounced structure and less intensity here. The MVG signal is much weaker
and has an entirely different shape, which indicates different crystal fields
acting on Mn on a B or C position. The computed spectra of Mn(B) in Mn2CoGa
and for CMS resemble the experimental data at L3 very well. At L2, significant
deviation is observed, particularly for CMS. The main peak at L2 in CMS
stems from a feature in the XAS that was assigned to an atomic multiplet, that
survives the band formation and corroborates the locality of the moment [134].
In Mn2CoGa this feature is less pronounced, leading to a better agreement
of experiment and theory. Less locality of the Mn(B) moment in comparison
to CMS can be inferred from that. The influence of the Mn(C) spectrum in
Mn2CoGa can not be traced in the experimental data. The calculated Mn(C)
spectrum is, however, very similar to the computed XMLD of MVG. This, in
turn, agrees only modestly with experiment. Because of the similarity of the
computed spectra, we assume that the actual Mn(C) contribution would have
similar shape as the measured MVG spectrum. The Mn2CoGa XMLD is, in
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conclusion, clearly dominated by the Mn(B) signal.
Now we turn to the observed intensities of the XMLD signals. Fig. 8.4 shows

a comparison of the maximum XMLD signals (defined as (I|| − I⊥)|max/[(I|| +
I⊥)/2]|max) at the L3 edges versus the squared spin magnetic moments of Co
and Mn for CMS, CMA, Co2TiSn (CTS), MVG, and Mn2CoGa. The CTS data
were taken from Chapter 6. The Co XMLD amplitudes are close to a common
line for CMS, CMA, and CTS. CMS is a bit above though, indicating a stronger
locality of the Co moment in CMS than in CMA or CTS. The Mn2CoGa signal
is about a factor of 2.5 smaller than expected from the references. In agreement
with the locality test described above, this shows the itinerancy of the Co
moment in Mn2CoGa. Because of the antiparallel Mn moments, the Mn XMLD
of Mn2CoGa is very strong compared to the Mn spin moment, and it is far off
the line given by CMS and CMA.

With the linear fits through the CMA and CMS points as a guide for local Mn
moments and through the MVG point for an itinerant system we can predict
the Mn XMLD amplitude of Mn2CoGa. We treat the Mn XMLD of Mn2CoGa
as a superposition of the spectra from CMA/CMS and MVG. Our FLAPW cal-
culation gives a Mn(B)/Mn(C) spin moment ratio of −1.5. With this value and
the measured sum mMn(B)

s + mMn(C)
s ≈ 0.94 µB we obtain mMn(B)

s = 2.82 µB and
mMn(C)

s = −1.88 µB. According to the errors of the magnetic moments of the ref-
erence data, we expect an XMLD of (2.7± 0.5)% for Mn2CoGa. The measured
value of 1.53% is clearly below this range; the ratio determined directly from
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8 Itinerant and local magnetic moments in ferrimagnetic Mn2CoGa

the XMLD is −1.7, which leads to mMn(B)
s = 2.28 µB and mMn(C)

s = −1.34 µB.
Though this is still reasonable, it seems much more likely that the lower XMLD
in Mn2CoGa indicates a lower degree of Mn(B) spin moment locality than in
CMS. However, the Mn(B) moment is clearly not purely itinerant.
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9 Concluding remarks

Ab initio computations for the Mn2TiZ Heusler compound series with Z = Al,
Ga, In, Si, Ge, Sn, P, As, Sb, suggest that these compounds can exhibit ferri-
magnetism in accordance with the rule m = NV − 24. These calculations were
performed with two different, state-of-the-art density functional theory meth-
ods: the full-potential linearized augmented plane waves method (FLAPW)
and the (full-potential) spin-polarized relativistic Korringa-Kohn-Rostocker
method (SPRKKR). The results are in good agreement with each other. Most of
the compounds have large spin polarization and a spin-up gap forms above
the Fermi energy. The Curie temperatures calculated within the mean-field
approximation indicate that the compounds with 21 and 22 valence electrons
will be ferrimagnetic at room temperature. A thorough understanding of the
influence of the Z component on the properties of the compounds has been
established on the basis of ab initio band structure and exchange coupling
calculations. It was found that the pressure dependence of TC is positive, in
agreement with ferromagentic full Heusler compounds. Because of their large
and stable spin polarizations and their high Curie temperatures we propose
in particular Mn2TiSi, Mn2TiGe, and Mn2TiSn as candidates for spintronic
applications.

We have performed ab initio band structure calculations with the SPRKKR
method on the Mn2CoZ inverse Heusler compounds with the Hg2CuTi struc-
ture. The exchange interaction parameters obtained from the calculations are
found to be governed by the Co-Mn(C) exchange, which is of direct nature. In
the case of Z = Al, Ga, and In, the Mn(C)-Mn(C) interaction is the dominating
one, which is direct as well. The indirect, long-ranged interactions are exponen-
tially damped and thus weak, and the intra-sublattice interactions are mostly
antiferromagnetic. Curie temperatures calculated within the mean-field ap-
proximation are in reasonable agreement with experimental data for Mn2CoSn
and Mn2CoSb. The Curie temperatures show an anomalous dependence on
the total moment, which is different from the full Heusler compounds. For
Mn2CoAl we predict an exceptionally high Curie temperature of 890 K, al-
though the total moment of the compound is only 2 µB / f.u. The dependence
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9 Concluding remarks

of the exchange parameters on the lattice parameter in Mn2CoGe suggests
a negative pressure dependence of TC in the Mn2CoZ compounds, which
originates from the exchange interactions of Mn(C)-Mn(B) and Co-Mn(C).

We have grown thin films of the Heusler compound Co2TiSn by DC mag-
netron co-sputtering. Structural investigations revealed highly ordered, fully
epitaxial growth of Co2TiSn thin films on MgO (001) substrates at growth tem-
peratures above 600◦C. A low residual resistivity supports the conclusion of
well ordered films. The resistivity has a pronounced cusp-type anomaly at TC.
A large magnetoresistance has been observed and can be explained in terms
of spin fluctuations. From the XMCD measurements we find a total magneti-
zation of 1.98± 0.05 µB / f.u., where the uncertainty arises from the unknown
systematic error in the estimate of the Ti spin moment; the reduced average
saturation magnetization of the best film (TS = 700◦C, m = 1.6(1) µB / f.u.)
can be easily explained by an oxidized bottom interface layer of 3 nm thickness.
The results for the element specific spin and orbital magnetic moments are in
quantitative agreement with ab initio band structure theory. The fine structures
observed for the Co L3,2 edges were explained by direct calculations of the XAS
using FEFF9. Inclusion of the core-hole potential was found to reproduce the
split white lines, assessing them as band structure effects. Formation of atomic
multiplets can be ruled out, in agreement with XMLD results. However, due to
shortcomings of the theoretical modeling, it remains unclear whether Co2TiSn
is a half-metallic ferrimagnet or not.

Epitaxial thin films of Mn2−xCoxVAl have been synthesized on MgO (001)
substrates by DC and RF magnetron co-sputtering. It was intended to observe
a ferrimagnetic compensation of the magnetization at x = 1. The films have
significant chemical disorder, depending on the degree of Mn-Co substitution.
Mn2VAl was found to be L21 ordered, with a preferential Mn-Al disorder and
additional V-Al disorder. The Mn-Al disorder reduces the total moment consid-
erably, because the nearest-neighbor Mn atoms couple antiferromagnetically in
this configuration. Accordingly, the magnetization of Mn2VAl is very sensitive
to disorder involving Mn. However, the band structure calculations suggest
that only Mn-V disorder has an influence on the half-metallic gap. Because
of the disorder, a nearly complete magnetic compensation was observed for
Mn1.5Co0.5VAl. With further Co substitution, the electronic structure changes
considerably, and a parallel coupling of Co, Mn, and V was observed. We
suppose that Co and Mn become preferentially nearest-neighbors, which leads
to a parallel coupling of their magnetic moments. The Co2VAl films, being the
second extremum of the substitutional series, had B2 order. The band structure

104



calculations with B2 order suggest reduced moments, but the experimentally
determined moments are even lower, which indicates additional disorder in-
volving Co. The Curie temperature was significantly reduced, which is in
agreement with the trend observed in the mean field calculation. It is in princi-
ple possible to obtain a high degree of L21 order in bulk Co2VAl by appropriate
thermal treatment, but our maximum substrate temperature was limited by
Mn evaporation. While it may be possible to obtain the correct occupation for
the ferrimagnetic compensation in the bulk, it seems not possible to obtain
films with a high degree of order.

We have prepared epitaxial films of the ferrimagnetic inverse Heusler com-
pound Mn2CoGa by co-sputtering and obtained good film quality by deposi-
tion at 200◦C and in situ post-annealing at 550◦C. We found good agreement
of the experimental L3,2 x-ray absorption and dichroism spectra with ab initio
calculations within independent particle theory. The total and element re-
solved magnetic moments are close to theoretical values. X-ray magnetic linear
dichroism spectra were taken to provide information on the locality of the Co
and Mn moments. Non-collinear electronic structure calculations provided the
footing for the interpretation of the observed XMLD amplitudes. The locality
of the Mn(B) moment is not as pronounced as in Co2MnSi, the Co and Mn(C)
moments have clearly itinerant character. Because of these findings, we expect
significant deviation of experimental Curie temperatures from the predicted
ones in the Mn2CoZ compounds.

In all experimental parts of this work, density functional theory has proven
to be an indispensable tool for the interpretation of the obtained data. Di-
rect comparison of experiment and ab initio theory provides a much deeper
understanding of the underlying physics than empirical work alone.
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[19] E. Şaşiog̃lu, Phys. Rev. B 79, 100406(R) (2009).

106



Bibliography
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[60] J. Stöhr, J. Elect. Spect. Rel. Phen. 75, 253 (1995).

[61] A. Scherz, PhD thesis, Freie Universität Berlin (2004).
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[135] H. A. Dürr, G. van der Laan, D. Spanke, F. U. Hillebrecht, and N. B. Brookes,
Phys. Rev. B 56, 8156 (1997).

[136] A. Scherz, H. Wende, K. Baberschke, J. Minar, D. Benea, and H. Ebert, Phys. Rev.
B 66, 184401 (2002).

[137] L. Pardini, V. Bellini, and F. Manghi, J. Phys.: Condens. Matter 23, 215601 (2011).

113



Acknowledgements
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