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Abstract: In human-machine interaction scenarios, low latency recognition and reproduction is crucial for successful
communication. For reproduction of general gesture classes it is important to realize a representation that is
insensitive with respect to the variation of performer specific speed development along gesture trajectories.
Here, we present an approach to learning of speed-invariant gesture models that provide fast recognition and
convenient reproduction of gesture trajectories. We evaluate our gesture model with a data set comprising
520 examples for 48 gesture classes. The results indicate that the model is able to learn gestures from few
observations with high accuracy.

1 INTRODUCTION

In human-human interaction we find that ges-
tures between communicating people are tightly in-
terweaved and thereby successfully support and struc-
ture interaction. Obviously, the interactands make
sense of their observations incrementally and can
foresee the continuation and/or intervene and react
themselves gesturally without significant delay. Such
processing scheme seems to be a crucial prerequi-
site for successful communication, and gives rise
to the question how we can implement or optimize
similar low-latency responses with machine learning
approaches – particularly in case of the continuous
multivariate observations that occur in body gestural
communication. This application becomes further-
more relevant as we witness a dramatic evolution in
sensing technology over the past years, starting with
high-end time-of-flight cameras in general and con-
tinued with low-cost systems such as the Microsoft
KinectTM, which promise to make gestural communi-
cation available as standard interface.

Gestures can be understood and represented as
multivariate state trajectories of joint/end effector
state over time, and their correct recognition and in-
terpretation are most relevant for multimodal dia-
logue systems. However, in addition to recognition, it
would also be most useful if the system could also re-
produce (or imitate) gestures, using one and the same

model. Particularly imitation is a behavior pattern ob-
served frequently in human-human interaction. Be-
yond communicative functions, gesture reproduction
is also needed if machines are to learn motion pat-
terns from example, thus allowing to command future
robots or agents by just showing an interaction. In
such a context, an abstraction of temporal variation of
gesture execution enables a speed-invariant modeling
and reproduction, and assures a most flexible applica-
bility.

A common approach for the analysis of gesture
trajectories are hidden Markov models (HMMs) (Ra-
biner, 1989). HMMs provide good representation
properties for time series data and reach excellent re-
sults in various applications (Rabiner, 1989; Garrett
et al., 2003; Kellokumpu et al., 2005). In case of
gesture data, HMMs can not only represent gesture
classes but can also be used to generate new ges-
tures (Kulić et al., 2008; Kwon and Park, 2008; Wil-
son and Bobick, 1999). Furthermore, HMMs have
also been applied to imitation learning of body move-
ments (Calinon et al., 2010; Inamura et al., 2003;
Amit and Mataric, 2002). However, the training of
HMMs usually requires a large number of examples
which complicates their application in gesture learn-
ing. In particular, for estimation of transition proba-
bilities many observations are necessary. In general,
supervised learning techniques, such as support vec-



Figure 1: In our setup, demonstrated right hand gestures are captured and preprocessed within the motion capture module
and the resulting 3d trajectories are stored as time series. OMM prototypes are computed from different demonstrations and
performed by the virtual agent Vince, as the result of the prototype learning process.

tor machines, can successfully be used with a much
smaller number of examples but they do not provide
a model for reproduction of gestures. Furthermore, a
rejection class or criterion would be difficult to realize
with a merely discriminative learning approach.

We approach the problem of learning prototype
representations from few data examples in the con-
text of learning gestures, i.e., expressive wrist move-
ments executed in free space. We collected a data set
that contains 3-dimensional trajectories of the right
hand wrist for 48 gesture classes. For data anal-
ysis, we used a simplified, speed invariant genera-
tive model whose parameters are interpretable in data
space. Its model architecture is similar to the archi-
tecture known from HMMs, but does not include any
transition probabilities. We conduct experiments re-
garding prototype and generalization properties for
gesture trajectories when only few examples are avail-
able.

2 SETUP AND DATA

Our setup is optimized towards imitation learn-
ing during human-agent interaction. It com-
prises a time-of-flight camera, a marker-free track-
ing software and a humanoid virtual agent called
Vince (see Figure 1). The time-of-flight camera
(a SwissRangerTM SR40001) captures the scene in 3d
at a frequency of ≈ 30 fps. The scene data are used by
the software iisuTM 2.02 to map a human skeleton on

1http://www.mesa-imaging.ch
2http://www.softkinetic.net

the present user in the scene. We extract the relevant
information of the skeleton, such as the user’s height,
spatial positions of the wrists and the center of mass
to compute the normalized 3d positions of the wrists
with respect to the user’s body size. Within a body-
correspondence-solver submodule, the wrists’ posi-
tions are transformed (rotated and scaled) from the
coordinate system of the camera to egocentric space
of the virtual agent which stays face-to-face to the
human demonstrator. In the current study we focus
on the right wrist and record these data as time series
for each performed gesture. During data acquisition,
Vince imitates the subject’s right hand movements in
real time. In this way, the demonstrator receives vi-
sual feedback on how Vince would perform those ges-
tures. It is worth noting that the ambiguous position
of the elbow at each time step is not captured but com-
puted with the aid of inverse kinematic (Tolani et al.,
2000).

Overall, 520 examples from 48 different gesture
classes were captured in the format of 3d wrist move-
ment trajectories with time stamps. Each trajec-
tory starts from and ends at the rest position of the
right hand, whereas the gestures were demonstrated
at different velocities and require an average execu-
tion of 4.75 seconds. The performed gestures ranged
from conventional communicative gestures (“wav-
ing”, “come here” and “calm down”) over iconic ges-
tures (“circle”, “spiky”, “square”, “surface” and “tri-
angle”) to deictic gestures (“pointing” to left, right
and upward). These gestures have been performed
as 48 different classes, each with respect to some of
the following variant features: size (e.g. small and
big circle), performing space (e.g. drawing a circle at
the right side or in front of oneself), direction (clock-



wise or counter-clockwise), orientation (horizontal or
vertical), repetition (repeating some subparts of the
movement, such as drawing a circle once or twice, or
swinging the hand for several times during waving).
The complete data set is available as supplementary
material3.

Here, we use a simplified gesture model to pro-
vide robust recognition and learning from few ex-
amples. The essential simplification arises from a
speed invariant representation of gesture trajectories,
since the meaning and intention of most gestures are
independent of the temporal variation of execution
speed. Moreover, the fluctuation of speed might lead
to an over-detailed representation which lacks suffi-
cient generalization.

3 ORDERED MEANS MODELS

In order to learn speed invariant prototype rep-
resentations, we use a specialized generative model
which we refer to as an ordered means model (OMM).
OMMs have been successfully applied to classifica-
tion of time series data before (Wöhler et al., 2010;
Grosshauser et al., 2010). Similar to HMMs, OMMs
are generative state space models that emit a sequence
of observation vectors O = [o1, . . . ,oT ] out of K hid-
den states. As a distinguishing feature, OMMs do not
include any transition probabilities between states.
This leads to a simplified model architecture that in-
trinsically provides a speed invariant representation of
time series such as the gestures trajectories analyzed
in this study.

3.1 Model Architecture

In OMMs, the network of model states follows a left-
to-right topology, i.e. OMMs only allow transitions to
states with equal or higher indices as compared to the
current state. The emissions of each state k are mod-
eled as probability distributions bk(·) and are assumed
to be Gaussian with bk(ot) = N (ot ;µk,σ). The stan-
dard deviation parameter σ is identical for all states
and is used as a global hyperparameter.

With regard to the above model architecture, an
OMM Ω is completely defined by an ordered se-
quence of reference vectors Ω = [µ1, . . . ,µK ], i.e. the
expectation values of the emission distributions bk(·).

3
http://www.techfak.uni-bielefeld.de/ags/

ami/publications/GSLMHK2012-LLR/

3.2 Length Distribution

To provide a fully defined generative model, OMMs
require the definition of an explicit length distribu-
tion P(T ) either by domain knowledge or by estima-
tion from the observed lengths in the training data.
This, however, may not be possible due to missing
knowledge or non-representative lengths of the ob-
servations. To circumvent the definition and estima-
tion of a length model we assume a flat distribution
in terms of an improper prior with equally probable
lengths.

For a given length T , we define each valid
path qT = q1 . . .qT through the model to be equally
likely:

P(qT |Ω) =

� 1
MT

·P(T ) if q1 ≤ q2 ≤ ..≤ qT ,
0 else

(1)
where MT is the number of valid paths for a time se-
ries of length T through a K-state model:

MT = |{qT : q1 ≤ q2 ≤ · · ·≤ qT}| (2)

=

�
K +T −1

T

�
. (3)

Since all paths are equally likely, there is no equiva-
lent realization in terms of transition probabilities in
HMMs.

3.3 State Duration Probabilities

The absence of state transition probabilities leads
to modified state duration probabilities in OMMs.
The state duration probabilities of HMMs depend on
the transition probabilities and are geometrically dis-
tributed. In OMMs, the probability Pk(τ) to stay τ
time steps in state k depends on the sequence length
T and the number of model states K. Considering
the combinatorics of the path generation process (see
Eq. 1 and Eq. 2), the duration probability distributions
of OMMs follow

Pk(τ) =
�

T+K−2−τ
K−2

�
�

T+K−1
K−1

� . (4)

Note that for OMMs the state duration probabilities
depend on T , the length of the analyzed time series
examples and, therefore, varies for times series of dif-
ferent length. This is also the reason why there exists
no equivalent realization of such an modeling in terms
of transition probabilities in HMMs.

3.4 Parameter Estimation

In order to estimate particular model parameters
[µ1, . . . ,µK ] by a set of observations O = {O1, ..,ON}

http://www.techfak.uni-bielefeld.de/ags/ami/publications/GSLMHK2012-LLR/
http://www.techfak.uni-bielefeld.de/ags/ami/publications/GSLMHK2012-LLR/


Figure 2: This figure shows screenshots from the gesture videos. The first row shows video screenshots of a human demon-
strator during data acquisition. In the second row Vince, a virtual agent, performs the corresponding OMM prototype. The
gesture in these videos is from class ”waving head 2.5 swings”.

we maximize the log-likelihood

L =
N

∑
i=1

ln p(Oi|Ω) (5)

with respect to the mean vectors µk.
To solve this optimization problem, we use an it-

erative expectation maximization algorithm (Demp-
ster et al., 1977), similar to the well-known Baum-
Welch algorithm from HMMs (Rabiner, 1989). First,
we compute the so-called responsibilities

ri,k,t =
p(Oi,qt = k|Ω)

p(Oi|Ω)
(E-step) (6)

and then re-estimates the model parameters according
to

µk =

N

∑
i=1

T

∑
t=1

ri,k,t ·oi,t

N

∑
i=1

T

∑
t=1

ri,k,t

(M-step). (7)

These steps are repeated until convergence.

3.5 Efficient computation of Production

Likelihoods and Responsibilities

To compute the production likelihoods p(Oi|Ω) and
the responsibilities (Eq. 6) in a computationally ef-
ficient way, we use a dynamic programming solution
that is similar to the forward-backward algorithm (Ra-
biner, 1989) known from HMMs, but only omit tran-
sition probabilities.

We define the forward variable according to
αi,k,t ∝ p(oi,1 . . .oi,t |qt ≤ k,Ω). (8)

Since αi,k,t depends only on the variable of the previ-
ous state k−1 and of the previous point in time t −1,
this yields a fast dynamic programming solution:

αi,k,t = αi,k,t−1 ·bk(oi,t)+αi,k−1,t (9)
that is initialized with αi,k,0 = 1, and αi,0,t = 0. Simi-
larly, we compute the backward variable

βi,k,t = βi,k,t+1 ·bk(oi,t)+βi,k+1,t (10)
∝ p(oi,t ..oi,t |qt ≥ k,Ω). (11)

by means of recursion, initialized with βi,k,T+1 = 1
and βi,K+1,t = 0.

The production likelihood then is
p(Oi|Ω) = αi,K,T = βi,1,1 (12)

and the responsibilities can be computed by

ri,k,t =
αi,k,t−1 ·bk(oi,t) ·βi,k,t+1

αi,K,T
. (13)

3.6 Classification

To use OMMs for classification, i.e. to assign an
unseen gesture trajectory to one of J classes, J

class-specific models Ω are first estimated from the
data. Assuming equal prior probabilities, an un-
known gesture O then is assigned to the class associ-
ated with the model that yields the highest production
likelihood p(O|Ω j) of all models.

To extend the proposed system to classification in
a continuous gesture trajectories stream, some exten-
sions would be necessary, e.g. detection of beginning
of gestures, a rejection scheme in case a user does not
perform a gesture, etc. A common approach is to par-
tition the data stream via a sliding window and reject
gestures by thresholds on the posteriori probabilities.

3.7 Prototype Property

An OMM Ω is completely represented by an ordered
sequence of reference vectors Ω = [µ1, . . . ,µK ], which
correspond to the expectation values of the emission
distributions bk(·). Since the expectation values are
elements of the same data space as the observed data
examples, the series of reference vectors is fully in-
terpretable as a time series prototype in data space.

4 EXPERIMENTS

In order to evaluate OMMs for learning of speed-
invariant gesture prototypes from few data, we de-
signed an experimental setup to investigate the fol-
lowing research questions:
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Figure 3: This figure shows plots of a gesture trajectory together with corresponding OMM prototypes trained with different
values for the number of model states K, as 3-dimensional plots (first row) and as x-, y-, z-location coordinates varying in
time (second row). In column one, a randomly selected gesture from class “circle, big, front, clockwise, vertical, one time” is
plotted, columns two to four show the corresponding OMM prototypes with 10, 30, and 210 model states.

1. Do the learned OMM parameters provide an in-
terpretable prototype for a set of gestures?

2. How do these prototypes perform in terms of gen-
eralization accuracy, even if only few training data
are available?

3. What influence does the number of model states
in OMMs have on the classification accuracy and
the computational demands?

To address the first question, we trained an OMM for
each gesture class and examined the resulting model
parameters. Subsequently, we let the virtual agent
Vince execute the trained prototypes and captured
these executions on video (cf. supplementary mate-
rial).

In order to address the second question, we com-
pared OMM classifiers to a standard classification
technique in terms of classification accuracy and run-
ning times on artificially reduced training data sets.
For comparison, we chose nearest neighbor classi-
fiers based on a dynamic time warping (Chiba and
Sakoe, 1978) distance function (NNDTW). We eval-
uated both classifiers with subsets from the training
data set, whereby the amount of training data per class
ranged from one to seven examples. Additionally, we
conducted classification experiments with all avail-
able training data. To obtain the final error rate, we

applied the resulting classifiers to the dedicated test
data set.

We evaluated the influence of the number of
model states K in a similar way. We trained classi-
fiers with a reduced number of model states K and
number of training examples and tested their general-
ization capabilities with the complete test data set.

For all experiments, we partitioned the data set
into a training set (369 example gestures) and a test
set (the remaining 151 examples). All data was nor-

Figure 4: Dependency between the number of OMM states
K, the emission distribution parameter σ and the area-
under-curve rate in leave-one-out evaluation on the training
data set.



(a) Classification accuracy of test data set. (b) Average running time for classification of one un-
seen gesture.

Figure 5: This figure shows the accuracy (Fig. (a)) and average running times (Fig. (b)) for single trial classification of unseen
gestures for NNDTW and OMM classifier depending on the number of training examples per class. For OMM classifier,
different values for the number of model states K ∈ {10,50,210} are plotted.

malized to zero mean and unit variance according to
the training data. We identified optimal OMM hy-
perparameters K and σ by means of leave-one-out
cross validation on the training data set. As the cri-
terion for hyperparameter optimization, we chose the
area under the receiver operating curve (AUC). We
trained a model with the training data of one class
(except the one left out). We then used the left out
gesture as a positive and the gesture data from the re-
maining classes as negative examples for AUC analy-
sis. We chose eleven equidistant values for the num-
ber of OMM states K ∈ {10,30, . . . ,230}, the set
of values for the standard deviation parameter was
σ ∈ {2 · 0.75y|y = 1, . . . ,10}. We initialized the iter-
ative model estimation scheme of OMMs with ran-
domized deterministic assignments, i.e. a randomly
selected combination of model states for each train-
ing example, of all training data to the model states.
The resulting random paths are forced to follow the
restrictions induced by the left-to-right model topol-
ogy.

We measured the running time in terms of the sin-
gle core CPU time on an Intel Xeon CPU with 2.5
GHz. The OMM and NNDTW algorithms used in
this study were implemented in the Python program-
ming language. Time-critical parts such as the dy-
namic programming code were realized using the C
programming language. We provide an OMM Python
package as well as the complete OMM source code
for download as supplementary material.

5 RESULTS AND DISCUSSION

Figure 3 shows graphical representations of a ran-
domly selected gesture from class “circle, big, front,
clockwise, vertical, one time” together with plots of
corresponding OMM prototypes with different val-

ues for the number of model states K. The first
row shows the data as 3-dimensional plots and the
second row shows the same data as location coordi-
nates developing over time. For the prototypes, we
chose three different values for the number of states
K ∈ {10,30,210}. As standard deviation parameter,
we chose σ = 0.84375, the value that reached the
highest AUC value of ≈ 0.95 in leave-one-out vali-
dation.

The plots indicate a clear correspondence between
an underlying gesture class and the learned OMM pa-
rameters, and it is obvious that OMMs are able to ex-
tract prototype representations of the gestures. Even
a prototype with K = 10 model states reveals a tra-
jectory that is similar to the genuine circle gesture.
For K = 30 the plot of the prototype fully represents
a circle gesture that, in comparison to a model with
K = 210 states, only differs in length.

To underline the abstraction capacity, we executed
all gesture prototypes with our virtual agent Vince. In
the supplementary material, we attached a video that
contains example gestures from all 48 gesture classes,
and recordings of the virtual agent performing the re-
lated gesture prototypes. Additionally, figure 2 shows
screenshots of these video recordings. The first row
shows video screenshots from a human demonstra-
tor performing a gestures during data acquisition, the
screenshots in the second row show how the virtual
agent Vince is executing the learned OMM parame-
ters from the matching class. In this video the demon-
strator and Vince are performing the gesture “waving
head 2.5 swings”.

In general, both results—the examination of the
learned prototype as well as the videos of Vince who
executes these prototype gestures—indicate that the
speed-invariant architecture of OMMs is able to de-
duce essential gesture features from a set of example
trajectories. However, some videos (e.g. all “come”



and “surface” prototypes) suggest that using only a
limited body model, i.e. the right hand wrist, might
not be adequate to fully reproduce a gesture. E.g.,
Vince’s performance of the “come” prototype lacks
the orientation of his hand palm. Even though the
plain hand wrist trajectory matches the subject’s hand
wrist trajectory, the incorrectly oriented palm might
make it difficult for a human user to identify the in-
tended gesture. Presumably, a more detailed body
model, as e.g. in (Bergmann and Kopp, 2009), would
improve the prototype representation. In contrast,
other gesture classes are sufficiently represented only
by hand wrist trajectories, e.g., Vinces performances
of all waving related classes are easy to comprehend.

Figure 4 illustrates the dependency between the
hyperparameters (K, σ) and the leave-one-out ac-
curacy in terms of AUC rates. This figure clearly
demonstrate that the accuracy remains stable and is
almost independent of the number of states K and the
value of emission distribution parameter σ. Only for
values of σ < 0.2 or K = 10 the AUC accuracy sub-
stantially decreases.

Figure 5(a) shows the performance results of our
evaluation in terms of classification accuracy on the
test set depending on the number of training exam-
ples per class for different classifiers. These in-
clude OMMs with a high number of states according
to maximum classification accuracy (K = 210) and
OMMs with a reduced number of states (K = 10,50).
In general, all classifiers are able to recognize un-
seen gesture trajectories with high accuracy, although
OMM classifier with 10 model states reach substan-
tially lower accuracy. Using all training examples,
NNDTW as well OMMs classify gestures with high ac-
curacy of ≈ 0.94, although the performance for OMM
classifiers with only K = 10 is noticeably lower. The
plot also shows that a reduction of the number of
training examples does not substantially reduce the
classification accuracy. Only for OMMs with a low
number of states, a degradation can be observed be-
low three examples.

The slightly higher recognition performance of
NNDTW classifiers comes at the cost of substantially
increased computational demands. In the scenario
with all available training data, OMMs classifiers pro-
vide an average speed-up factor of at least ≈ 3. For
decreasing number of models states the speed-up fac-
tor increases once more. OMM classifier with K = 50
respond in ≈ 0.14 seconds, with K = 10 OMM clas-
sify an unseen gesture in 0.04 seconds. In comparison
to the average classification times of NNDTW this is an
acceleration between 3 and 44 times. This allows low-
latency recognition of gesture performances which is
a requirement for interaction with humans.

6 CONCLUSION

We applied ordered means models (OMMs) to
recognize and reproduce natural gesture trajectories.
The results from our classification experiment show
that OMMs are able to learn gestures from multi-
variate times series even if only few observations
are available. Furthermore, our run time measure-
ments indicate, that OMMs are well suited for low
latency gesture recognition. Even though more com-
plex models and methods might further increase the
recognition performance, in particular in human com-
puter interaction scenarios the response time is cru-
cial. Here, OMMs are able to provide a suitable trade-
off between accuracy and computational demands.
We showed that OMMs with few model states can
still reach competitive accuracy indices while consid-
erably decreasing computational demands to ensure
low latency capability. The combination of abstract-
ing and reproducing prototypical gesture trajectories,
the achievable response times, and the high recogni-
tion accuracy even for small training data sets makes
OMMs an ideal method for human computer interac-
tion.

In our ongoing research we focus on the auto-
matic optimization of classification in online use on
continuous interaction streams. Additionally, we are
working on a porting the gesture tracking system
to Microsofts KinectTM. To further improve dis-
crimination performance in supervised setups, future
work in this context will include the use of Fisher
kernels (Jaakkola et al., 1999), which are straight-
forward to derive from OMMs.
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Human activity recognition using sequences of pos-
tures. In Proceedings of the IAPR Conference on Ma-

chine Vision Applications (MVA 2005), Tsukuba Sci-

ence City, Japan, pages 570–573. Citeseer.
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