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1 Introduction

1.1 What is Sociophysics

Sociophysics is the branch of physics concerned with human behavior and so-
ciety. This definition might seem a bit contradictory and strange to social
scientists and physicists who never came in touch with this emerging field in
nature science. The Oxford Dictionary defines physics as ”the branch of science
concerned with the nature and properties of matter and energy”1, sociology as
”the study of the development, structure, and functioning of human society”2,
while there is no entry for sociophysics, yet. This thesis and the sociophysical
papers included may be seen as a step forward to change this and to elucidate
how physical methods and techniques can help to understand human behavior.

As in every scientific theory it is almost impossible to date its birth. The
oldest papers in sociophysics the author of this thesis is aware of are those of
Weidlich, [41], and Callen and Shapiro, [8], from the early seventies, both found
cited in [20]. Then it took almost ten years when Galam, joined by Gefen and
Shapir, [21], came up with a paper where they modeled the process of strike
in big companies using an Ising ferromagnetic model in an external reversing
uniform field, and included a call to the creation of sociophysics.

All of the above examples show that physics is capable of even more than
explaining the behavior of inanimate matter. Note that the aim of sociophysics
is not to understand and explain the laws of individual behavior. Although in-
dividuals may be seen as particles driven by external forces, explaining typical
behavior may fail due to lusts and instinct that drives individuals into irrational
decisions. Nevertheless, these kinds of effect are belonging to the field of psy-
chology rather than sociology, and sociophysics may not be the right approach
to deal with such problems. But whenever a certain number of individuals con-
gregate to achieve a mutual goal, unexpected and deviant behavior may get
averaged out, and one of social sciences task is it to find models to explain
collective behavior of individuals.

So, the situation is similar to the origin of statistical mechanics where physi-
cists began to use methods of probability theory and statistics to explain the
”collective behavior” of systems consisting of billions of single particles, e.g.
gases, interacting with each other and resulting in a ”global” behavior, all par-
ticles acting as a single entity, with single motions states becoming irrelevant to
the outcome of measurements of global variables like temperature, velocity, or
energy.

In this context, social science can be viewed as an addition to the experimen-
tal side of physics, providing measurements and falsification experiments. For
instance, social scientists observed critical mass phenomena when using thresh-
old models (see chapter 1.5), for most of these it can be shown that assuming
a threshold in decision making implies a critical mass, i.e. if the number of
decision takers succeeds a certain critical value almost every other individual
will follow and also take that decision.

Of great importance in sociophysics are the underlying networks on which
social dynamics are investigated. Usually, the social network of a society is
identified with a graph G(V,E), with vertex set V representing the individuals

1http://english.oxforddictionaries.com/definition/physics
2http://english.oxforddictionaries.com/definition/sociology
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of the society, and an edge set E whose elements represent social connections
between the individuals. The graph G defined that way is not unique and
depends sensitively on the definition of the individuals of a society and the
definition of when they are connected. Both sets, V and E, may be introduced
in various ways and may have a completely different topology depending on
what definitions were chosen.

For instance, the vertex set of a society can be defined as the set of all people
who can verify their identity as a civilian in a certain country, similarly it can
be defined as the set of all people who are staying in that country at the time
of the definition, or, more restrictive, it can be defined as the set of all people
who are in hired labor.

While the elements of the vertex set are despite the manifold of possibilities
precisely definable, for a real world society it is more complicated to define which
vertices are linked to each other. The social network is designed to represent
one or more special features of this society. According to choice and desired
precision topologically very different networks may arise. For instance, the
network of blood relation and the network of sexual contacts yield disjoint edge
sets, in general. And none of these represents society and its inherent social
interactions meaningfully.

Other examples for social networks are the movie actor database where any
two actors are linked if they played together in a movie, and co-authorship
networks where authors are linked of they have a joint publication. Nevertheless,
there are many real-world networks where the vertex set does not consist of
human beings, like the World Wide Web where the vertices are web documents
connected with direct hyperlinks, and the Internet where the nodes are routers
and computers which are connected if they are physically connected by wires
and cables. All of these have common properties which get surveyed in the next
section.

1.2 Real-World Networks

When finding similar behavior or characteristics in different systems physicists
tend to ask ”Is there a general principle which all these systems have in common
and how can it be formalized?” With the development of faster and more power-
ful computers, and of new methods and algorithms in network theory, leading to
new possibilities of evaluating large sets of data of real world networks, striking
similarities between most of the investigated networks were uncovered. There
are three main observables3 which most real networks seem to share: small av-
erage path length, power law tail of the degree distribution, and high cluster
coefficient.

The cluster coefficient is a measure for how many neighbors of a node are
neighbors as well, on average. Social networks tend to form cliques, as it is highly
probable that two friends of an individual are also friends. Thus, the class of
social networks within the real networks usually has a high cluster coefficient,
magnitudes higher than random networks.

The small average path length is also known as the ’six degrees of separa-
tion’, a popular hypothesis which states that everyone on earth is connected
to everybody else by on average six steps along paths in the social network of

3See chapter 1.4 for definitions and vocabulary.
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Figure 1: Real world networks, 〈k〉 is the average degree, γin,out is the exponent
of the in-/out degree distribution. For networks which are undirected holds
γin = γout. Figure is taken from [2].

earth’s society. In 1969, Stanley Milgram conducted an experiment to test this
hypothesis, [29]. He instructed 296 individuals of the United States to send a
letter to a stockbroker in Boston, but with the additional rule that the letter
must be sent only to persons which they know personally. Some information
was given to the test persons, like full name, address, hometown, profession, so
the subjects could guess which of their friends may be most appropriate to send
the letter further on. Of the 296 only 64 reached their target in Boston, within
this group the mean number of steps taken is 5.2, indicating a six degrees of
separation effect on at least the United States.

Nevertheless, much criticism followed the publication of the results, for the
test persons were not chosen completely random and the large fraction of letters
which never reached their target leads to an underestimate of the actual average
path length.

In 1998, Watts and Strogatz presented a theoretical model for random graphs
with small average path length and high cluster coefficient which became very
popular, [40]. They start with a regular ring lattice where each node is connected
to a fixed number of nearest neighbors, then rewire each bond with a probability
p. This procedure ensures the creation of shortcuts between originally distant
vertices, yielding small path lengths, while the originally large cluster coefficient
does not get significantly smaller.

What the Watts-Strogatz model can not provide is the power law tail of
the degree distribution, as mentioned before, a remarkable property most real
world networks seem to share, see fig. 1. The table depicted there shows a
variety of networks which were investigated. All show the power law tail in the
degree distribution which is separated into in-degree distribution and out-degree
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distribution for directed networks. Note that independently of nature and of
size, all exponents range between 1 and 3.4, indicating that there may be an
underlying principle for the growth of such networks which not only explains the
power law, but even why the exponents are distributed in such a small range.

Albert and Barabási used (and coined) preferential attachment to explain
the structure of the World Wide Web and found a striking principle which leads
to an inverse power law distribution. Unlike in the random graph models used
by Erdös and Renyi, see chapter 1.4, or Watts and Strogatz, they used a graph
growing procedure instead of working with a fixed number of vertices and rules
for linking and rewiring. They considered a starting graph G0 on n vertices and
added one vertex per time step with a fixed number of edges which get linked
to vertices in the existing graph with probability proportional to the degree of
these vertices. They go on showing that this procedure leads to a power law
degree distribution with exponent γ = 3.

Several refinements (like the Chung-Lu model, see chapter 1.4.2) and other
mechanisms yielding power laws have been found since then, e.g. the cameo
principle, [4]. For more information on real-world networks and phenomena see
the detailed survey of Costa et al. [12].

1.3 Structure of the Thesis

This thesis proceeds with an introduction to random graphs and network theory
to provide the vocabulary necessary to follow the presentation of all results
later on. Since many of these are concerning threshold models, section 1 closes
with an overview of threshold models which have already been proposed and
investigated in social sciences and economics.

In section 2, two particular network structures of great importance in socio-
physics are analyzed, network structures where links between nodes are formed
in different ways, but may yield the same degree distribution. The following
discussion makes use of a formalism developed by Bollobás, Janson, and Rior-
dan to treat inhomogeneous random graphs in great generality. This formalism
gets introduced in the first subsection, and then used to derive a comparison of
the phase transition of these two network structures.

Section 3 is devoted to the development of the theory of the communica-
tion index of graphs. The communication index is a measure for effectiveness
of communication in graphs. Basic properties get proved, and an application
to peer-to-peer networks is discussed, where under some simplifying assump-
tions the communication index provides the optimal network structure for such
networks in terms of download latency. A joint paper has been published, the
work contributed to this paper by the author of this thesis is summarized. The
section closes with a calculation of the communication index for Galton-Watson
trees, and with the presentation of some numerical results obtained due to the
work of Andreas Krueger.

The second half of this thesis then provides summaries of the authors con-
tribution to some publications, all of them attached to the dissertation. Section
4 introduces the concept of time-ordered information processing on networks,
with calculations on the binary tree. In section 5 we turn our view to thresh-
old models, using a generalized epidemic process to model the dissemination of
knowledge in complex networks. Finally, section 6 presents a variation of this
generalized epidemic process to apply the model to the spread of terrorism.
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Figure 2: Left: The complete graph K7. Since each vertex v ∈ V has the
same, maximal degree deg(v) = 6, the degree distribution is the Kronecker-
Delta pk = δk6. Right: The binary tree on 15 vertices. The degree distribution
is given by p2 = 1/15, p3 = 14/15, pk = 0, k 6= 2, 3.

1.4 Random Graphs and Network Theory

This section is devoted to briefly introduce the vocabulary of random graph and
network theory. For a more detailed overview see Durrett’s book, [17], or the
review paper of Albert and Barabási, [1]. With the Erdös-Renyi random graphs,
small-world networks, and scale-free networks, the most important classes of
random graphs and their properties are presented.

First of all, a graph G = (V,E) (synonymously called network) is a pair,
consisting of the so called vertex set V and the edge set E. In general, V is any
finite set with n elements (also called order of G), the edge set E is a subset
of
(

V
2

)

, the set of all unordered pairs (v, w) (sometimes denoted by v ∼ w) of
elements v, w of V . If (v, w) ∈ E then v and w are called neighbors. For each
vertex v ∈ V the number deg(v) := |{w ∈ V : v ∼ w}| of neighbors of v is
called the degree of v. An important quantity to study in graphs and networks
is the degree distribution {pk}, where pk is defined as the probability that a
randomly drawn vertex has degree k. For non-random graphs the pk are given
by the fraction of nodes with degree k. For random graphs the definition of the
pk says that the degree is a random variable distributed with pk. Note that the
degree distribution of any realization of a random graph yields just a sample of
the probability distribution, rather than the exact distribution itself.

Figure 2 shows two special cases of graphs, the complete graph on 7 vertices,
where the edge set consists of every possible edge, and the binary tree. Trees
are graphs with n vertices, n−1 edges, and without cycles, i.e. it is not possible
to find any closed path between two vertices.

Other important quantities are distance and diameter. The distance between
two vertices v, w ∈ V is defined as the length of the shortest path between v, w.
The diameter of a graph is then defined as the maximum distance between two
vertices. There is an issue with graphs which are not connected. A graph is
connected if there is a path along edges between any two vertices. For each
x ∈ V the subset Cx ⊂ V of all vertices which are connected to x is called the
component of x. In case of non-connected graphs the distance of vertices of
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disjoint components may be defined as infinity or as the maximum diameter of
all components of G (which are, by definition, connected).

1.4.1 Erdös-Renyi Random Graphs

The first to study random graphs were Hungarian mathematicians Erdös and
Renyi. In their famous articles [18], [19], they construct random graphs in
two different ways. At first they consider the set of all graphs with n nodes
and m edges, denoted by G(n,m), and study properties of any graph G drawn
uniformly at random from G(n,m). The other, nowadays more common variant
is to define the probability space formed by all graphs with n vertices, and
where every edge is present with a given probability p. The set of such graphs
is denoted by G(n, p). Note that for many graph properties, e.g. connectedness,
the G(n, p) and G(n,

(

n
2

)

p) asymptotically (n→ ∞) yield the same results.
The degree distribution of graphs from G(n, p) follows a binomial distri-

bution. Since the probability that a vertex has exactly k edges is given by
pk(1 − p)n−1−k, and there are

(

n−1
k

)

ways to arrange these edges, the degree
distribution is given by

pk =

(

n− 1

k

)

pk(1 − p)n−1−k.

Hence, the average degree of all vertices is given by 〈k〉 = np. Note that for
n → ∞, with np → c for some constant c > 0, the binomial distribution
approaches a Poisson distribution with mean c.

Also Erdös-Reyni random graphs show a critical phenomenon. Choosing
p = p(n) to be dependent of the graph size, one can consider the limit behavior
of G(n, p(n)) for n → ∞. A certain property Q is said to hold almost surely
if the probability of having Q tends to 1 as n tends to infinity. An important
property of random graphs to be studied is the appearance of certain subgraphs.
Consider a random graph G(n, p) and a graph F consisting of k vertices and
l edges. Since the k vertices can be chosen in

(

n
k

)

ways and arranged in k!
ways (up to isomorphism), the expected number E(k, l) of such subgraphs F is
proportional to

E(k, l) ∝
(

n

k

)

k!pl ∝ (pnk/l)l, (1)

indicating that it is sufficient to choose p(n) ∝ n−k/l to obtain a nonzero number
E of such subgraphs.

Two important special cases should be mentioned. In case of l = k − 1,
E(k, k − 1) is the expected number of trees on k vertices. From (1) it can be
seen that when k = l, corresponding to graphs which are cycles, the probability
of having cycles and trees of all orders jumps discontinuously from 0 to 1.

Another classic question is that of the emergence of a giant connected com-
ponent which also exhibits a phase transition. For any G(n, p) denote by c = np
the average degree and consider p = p(n) = c/n, and large n. If one thinks of the
random graph as grown from branching processes with each vertex as a branch-
ing root, then for c < 1 each of these branching processes dies out quickly and
the resulting graph consists of rather small components. On the other hand, if
c > 1, there is a non-zero probability that the branching process survives for
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infinity, and combine each other to yield a giant connected component. It can
be shown that for c < 1 none of the single components of G(n, c/n) is larger
than O(log n) vertices, while for c > 1 there is almost surely a giant component
of size O(n), and the second largest component is of size O(log n). Rigorous
proofs can be found in the book of Bollobás on random graphs, see [6].

1.4.2 Scale-Free Networks

As mentioned earlier, many real world networks have the property of being
scale-free, i.e. rather than the Binomial distribution of Erdös-Renyi random
graphs their degree distribution {pk} follows a power law pk = ck−γ , at least
for large degrees k. Thus, alternative concepts are needed to model real world
networks.

A popular construction of a random graph model which leads to a power
law degree distribution was done by Barabási and Albert in [2]. They used
an approach different from the existing paradigm that used a fixed number of
vertices and a couple of rules to randomly connect them. In their model the
random graph grows by adding new vertices at a fixed rate to the network.
These new vertices are assumed to have initially a number of m edges which
connect to the other vertices already in the network. Also different from existing
models they assumed that the probability that a new vertex connects to another
vertex is not independent of the degree of the ”older” vertex. They observed
that most real networks exhibit preferential attachment, a connection rule which
states that the probability of connection is directly proportional to the degree
of the older vertex. Formally, the probability P (dv) that a new vertex connects
one of its m edges to a node v with degree dv is given by

P (dv) =
dv

∑

v∈Vt
dv
. (2)

The sum ranges over all vertices which are at the moment t in the vertex set
Vt, the newly introduced vertex is excluded. In several different ways, using
continuum theory, master equation, and rate equation, they derive the degree
distribution from equation (2) to be (asymptotically, t→ ∞)

pk ∝ 2m2k−3.

The obvious drawback of this result, the only value for the exponent which
can be derived is 3, can be adjusted by changing the model in the following way,
as done by Chung and Lu, [11]. Choose a probability p and an initial graph
G0 - usually consisting of one vertex with a self loop to yield degree 1 - and
consider the following two operations: The vertex-step, which gets performed
with probability p, where one vertex gets added to the graph and connected with
exactly one another vertex proportional to its degree. Otherwise perform the
edge-step, where a new edge is formed between independently drawn vertices
with probability proportional to their degree.

Chung and Lu show that this procedure yields a power law degree distribu-
tion pk = k−β , with

β = 2 +
p

2 − p
∈ [2, 3].

For more information on this topic see [7].
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1.5 Threshold Models in Social Sciences and Economics

This section is devoted to give a brief overview of how threshold models emerged
and were used in social sciences and economics. For the sake of linguistic preci-
sion the descriptions given here follow in part the statements made in the cited
publications. All figures are of the own work of the authors thesis.

All these models have in common that individuals are given an attribute,
the so called threshold, which measures the (un-)willingness of that individual to
take a certain binary decision. Threshold models of collective behavior postulate
that an individual engages in a behavior based on the number of other individu-
als already engaged in that behavior. In the early 1970s, scientists tried to find
an approach to explain crowd behavior, superior to existing models which were
based on arguments of institutionalized norms and values. These were lacking
aspects of how individual preferences in norms and values are interacting and
aggregating to finally produce the collective behavior observed.

Notice that although all models presented here have an individual threshold
condition in common, some use absolute values for the threshold and some use
fractions (of a well-defined neighborhood). The main difference is that models
using absolute values only take account of how many neighbors have already
taken the decision regardless of how many did not.

1.5.1 The Schelling Model of Segregation

Schelling, [34] [35] [36], came up with a model of residential segregation using the
idea of behavioral thresholds which are thresholds of individuals for moving out
of the neighborhood as a function of the number of neighbors of their own color,
which also do so. He discusses a spatial linear model to describe how segregation
is generated by individuals living next to next in a street with preferences in
how a satisfying neighborhood should look like. He assumes that there is a
dichotomy dividing households in two classes, namely black and white4.

Thus, a street populated with black or white households can be described
by a string x of 0’s and 1’s of length n, where n is the number of houses,
x = x1 · · ·xn ∈ {0, 1}n. The neighborhood of xi is defined as the four next
nearest neighbors on each side, making a total of 8 neighbors for each number
not to close to the end of the string. For such numbers, the neighborhood is
just defined as the four neighbors toward the center plus the one, two or three
outboard neighbors. A number xi is said to be satisfied if at least half of the
neighbors have the same value as xi. Note that this is exactly what we call a
(fractional) threshold. Clearly, the fractional nature of the thresholds here make
no difference, since each individual has the same number of neighbors and in
this case each fractional threshold can be translated into an absolute threshold.

The moving algorithm works as follows. Each unsatisfied xi will move to
the next place, where the satisfaction condition is met. Next here means taking
the least number of steps. Schelling does not clarify what should happen if
there are two satisfactory new positions in the string, one left of xi and one
right, at the same distance. We assume that numbers then prefer the boundary,
thus moving away from the center. Movement of the xi happens in order from
left to right, whenever another xj turns from unsatisfied to satisfied it will not

4One could also label these two classes with ”0” and ”1” or green and blue, the labeling
black and white has historical reasons for Schelling’s analysis of mixed racial neighborhoods.
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Figure 3: Illustration of the Schelling model on a chain (”Linear Distribution”)
of n = 50 binary numbers xi ∈ {0, 1}, i = 1, . . . , n. Each number represents
an individual of one out of two colors, with densities here P (xi = 0) = 0.6 and
P (xi = 1) = 0.4. The first row shows a random sample of a Bernoulli process
with p = 0.5, dotted numbers are dissatisfied with their neighborhood. The
second row shows the first iteration of the moving algorithm. All but the most
left numbers are satisfied now, thus a second iteration is necessary, depicted in
the third row, where all numbers are satisfied, which constitutes an equilibrium
state of the system.

move. Any xj that turns from satisfied to unsatisfied waits until all initially
unsatisfied numbers have moved. Then a second iteration starts with the same
rules as before.

Figure 3 shows an example of the algorithm for a binary string of length 50.
The string is a random sample taken from a Bernoulli process with p = 0.5. It
can be observed that already after one single step, all but one xi are satisfied and
the structure of x has changed from random to clustered. Thus, the algorithm
produces local segregation. By varying the size of the neighborhood he finds
that cluster size correlates with neighborhood size, i.e. the larger neighborhood
is defined (with threshold kept fixed at 50 percent) the larger the resulting non
mixed clusters are.

Furthermore, Schelling mentions the phenomenon of the tipping point, which
describes the behavior of some neighborhoods to ’tip’ from being mainly white
to mainly black. Among sociologists and economists, see [24], [28], it is widely
believed that there is a critical value in the number of residents of different color
which move into a monochromatic neighborhood and causing original residents
to move out. Mayer, [28] observed tipping in a neighborhood of about 700 single
family homes. A few houses were sold to black people in 1955. ’The selling of
the third house convinced people that the neighborhood was destined to become
mixed.’ A year later 40 houses had been sold to black people and everyone de-
fined the neighborhood as mixed. Still it was unclear whether the neighborhood
would become completely black. But two years later the percentage had gone
above 50% and the end result was no longer questioned, Schelling writes.

In physical terms, a phase transition (from pure white to pure black) oc-
curred and a critical mass was needed. Critical mass phenomenons are striking
features of threshold models and can be derived from the individual thresholds
and network dependent quantities.
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1.5.2 The Granovetter Threshold Model of Collective Behavior

Granovetter [22] generalized Schelling’s ansatz to describe collective behavior
using a binary decision model. Individuals choose between two alternatives,
with the final decision depending on how many others made which choice. He
mentions rioting as an example, where individuals tend to join in more likely
when there are already many other rioters, since the probability of being appre-
hended is smaller the larger the number of involved is.

He defines the threshold as the proportion of the group an individual would
have to see join an action before it would do so. It is formed by some combination
of costs and benefits which (at least rational) individuals are assumed always to
estimate. The point where the perceived benefits of taking the decision exceed
the perceived costs then equals the threshold. In terms of rioting a ”radical”
would have a low threshold, a ”conservative” would have a higher threshold.
He mentions that the threshold model may be used not only to model collective
behavior in riots, but to describe diffusion of innovations, spread of rumors and
diseases, striking, voting and many more.

Formally, Granovetter assumes that all individuals may have perception of
each other5 and everyone has a threshold x, distributed by a function f(x) with
cumulative distribution function F (x). The proportion of the population who
have joined the riot at time t is denoted by r(t). Thus, the process is described
by a difference equation

r(t+ 1) = F (r(t)), (3)

with all zero-threshold individuals initially infected as initial condition.
To find equilibrium states of the process one has to solve equation (3) and

set r(t+ 1) = r(t), or equivalently finding the fixed points of F .
Thereafter the case where f is a normal distribution is discussed, since nor-

mal distributions are characteristic of populations where no strong tendencies of
any kind to distort a distribution of preferences away from its regular variation
about some central tendency. The results, obtained due to the work of Bob
Phillips, have a surprising property. Considering the equilibrium fixed point
re of F as a function of the standard deviation s of the normal distribution,
re = re(s) increases gradually up to a small number, then suddenly jumps to a
value near 1, see figure 4.

There is a critical value sc for the standard deviation at which the equilib-
rium density of rioters jumps discontinuously from almost zero to almost one.
That the density reaches neither zero nor one is due to finite size effects. Since
thresholds are normally distributed but can not be negative, any individual who
would get a negative threshold assigned gets a zero threshold instead. Threshold
zero individuals count as initially rioting. With a too small standard deviation
there are not enough initially rioting individuals and not enough low threshold
individuals to join the riot. Thus, the critical standard deviation constitutes
some sort of optimal distribution of thresholds for the system, given the shape
(here: normal) of the distribution curve. If the standard deviation is too large,
then the same pathology as before with negative threshold individuals happens.
Any individual with threshold higher than 100 is considered to be a threshold
100 individual and therefore immune to rioting. Too many initially immune in-
dividuals are the reason for the curve in figure 4 to be monotonically decreasing.

5In physical terms, the underlying network is a complete graph.
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Figure 4: Equilibrium number re of rioters plotted against standard deviation
s of normal distributions of thresholds with mean 25, N = 100. If the standard
deviation is too small there will not be enough low threshold individuals needed
to obtain a high number of rioters. If s is too wide there will be too much of
high threshold individuals which most likely never riot.

He also discusses some issues of the threshold model access to explain collec-
tive behavior. One crucial assumption of the sociological setup is that individu-
als act rational and try to maximize the benefits from their decision. He points
out, that with game theoretic arguments one could obtain a final state of the
system, which maximizes the benefits of all actors but which is different from
the equilibrium found using the threshold model. A more detailed discussion of
this can be found in [3].

1.5.3 Complex Contagion

Unlike Schelling and Granovetter who discussed threshold models on rather
simple network structures, Centola and Macy used developments about the
structure of real world networks, i.e. the small world principle, [9]. The classic
formulation of this principle comes from Watts and Strogatz, [40], where they
demonstrate that the rate of propagation of simple contagion processes on a
clustered network can be significantly increased by randomly rewiring a few ties
within a cluster to establish bridges between clusters.

Simple contagion describes diffusion processes on networks where one single
contact with a contagious node may be sufficient to get also contagious. Ex-
amples are diseases or the spread of information. In contrast to that, there is
complex contagion where contact with multiple contagious sources is needed to
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Figure 5: The bridge between two clusters constitutes a long tie which is (struc-
turally) weak. None of the vertices in cluster C2 but w can help v succeed the
threshold. Thus, the spread of complex contagion from C2 to C1 is very unlikely
to happen, in contrast to simple contagion.

become contagious. Each vertex in the network has a threshold which describes
how many of its neighbors at least have to be contagious.

Centola and Macy identify at least four mechanisms that might explain the
origin of complex contagion and thresholds: strategic complementarity, credi-
bility, legitimacy, and emotional exchange. Strategic complementarity means
that individuals take costs and benefits into account before they make their de-
cision. This is exactly what Granovetter used to motivate his threshold model
of collective behavior. Credibility is an important attribute of innovations, the
higher the credibility of a new product the higher will be the chances of adopting
it. Credibility rises as friends of individuals adopt. Spread of rumors or urban
legends also relies on credibility, since hearing the same story from different
people makes it seem more likely to be true. Closely related is legitimacy, indi-
viduals tend to adopt an innovation not before legitimacy is high enough, with
legitimacy rising the more neighbors adopt. Emotional contagion describes the
amplification of expressive and symbolic impulses in human behavior in spatially
and socially concentrated gatherings.

In their work they were putting Granovetter’s hypothesis of the strength
of weak ties to the test in case of complex contagion. In [23], Granovetter
demonstrated that the so called weak ties in a network accelerate the spread
of disease, i.e. simple contagion. Weak ties are edges between vertices which
had a large distance to each other if this edge would be removed. This is why
they are called long ties as well. Considering complex contagion on small world
networks, Centola and Macy found that long ties do not have the same effect
on the spread of contagion, in some cases they may even be slowing down the
process of dissemination. Figure 5 illustrates this effect. A bridge between two
clusters connects vertices which do not have any neighbor in common. Say one
cluster is contagious with every vertex infected, and the other one is not. Then
there is only one link to the uninfected cluster which is contagious, which is
insufficient to attain the threshold.

Also, Centola and Macy mention critical mass as a special feature of complex
contagion processes but do not cover this topic.
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1.5.4 Information Cascades in Complex Networks

In [39], Watts discusses information cascades on a sparse random network of
interacting agents whose decisions are determined by the actions of their neigh-
borhood according to a threshold rule. A cascade appears whenever a set of
initially infected agents helps the so called vulnerable agents to attain their
threshold who then activate other agents with higher threshold and so on. In
Watts model there is given a degree distribution {pk} and fractional thresholds
φ drawn from a given distribution f(φ), on a network of infinitely many agents.
An Agent is called vulnerable if their threshold φ is smaller than the inverse of
their degree k, i.e. k ≤ 1/φ, such that one infected neighbor suffices to attain
the threshold. Hence, an agent with k neighbors is vulnerable with probability

ρk =
∫ 1/k

0
f(φ)dφ. With that, Watts derives the cascade condition

∑

k

k(k − 1)ρkpk = z, (4)

where z denotes the average degree of the network. This condition is a criticality
condition in the sense that it marks the transition between two regimes or
phases. Whenever the left side of equation (4) is smaller than z all clusters of
vulnerable agents are small in size and no cascades can occur. Whenever it is
greater than z the typical size of clusters of vulnerable agents is infinite, so there
is a positive probability that one of these percolates.

For sparse graphs Watts finds that the propagation of cascades is limited by
the global connectivity, while in the case of a dense graph cascade propagation
is limited by the high threshold agents. Further simulation results indicate
that a heterogeneous threshold distribution increases the probability of global
cascades.

1.5.5 Adoption of Innovation

An interesting application of threshold models with regard to knowledge diffu-
sion is presented in [38], namely the diffusion of innovations. There, diffusion of
innovation is the process by which members of a society adopt an innovation and
thresholds describe the reluctance to adopt a new idea or try a new product. In
contrast to former ideas as defined by Granovetter, Valente assigns a non-trivial
topology to the society in which innovations disseminate. He defines the social
network as the pattern of friendship, advice, communication or support which
exists among the members of a social system.

Since behavior of individuals is based on how many others took a certain
decision, one has to distinguish between global and local thresholds. Valente
calls global thresholds collective behavior thresholds and mentions the problem
of the inability of individuals to monitor the behavior of all the other individuals
in the system to determine whether the threshold is succeeded or not. Thus,
he suggests adoption thresholds, which only take neighbors into account. The
proportion of adopters in the neighborhood is called exposure and the threshold
is defined as the exposure at the time of adoption.

An important feature of this model is the categorization of adopters based on
innovativeness as measured by time-of-adoption, following Rogers, [33]. Adopters
are classified as early adopters, early majority, late majority, and laggards. Early
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adopters are individuals whose time-of-adoption is greater than one standard de-
viation earlier than the average time-of-adoption. The early and late majorities
are individuals whose time-of-adoption is bounded by one standard deviation
earlier and later than the average. Laggards are those individuals who adopted
later than one standard deviation from the mean.

In the same manner Valente classifies the personal network threshold adopters.
Very low threshold individuals have a threshold one standard deviation lower
than the average threshold. Low and high threshold individuals have thresholds
bounded by one standard deviation less than and greater than the average. Very
high threshold individuals have thresholds one standard deviation greater than
the average.

With these classifications three datasets (physicians in Illinois, Brazilian
farmers, Korean women) are analyzed which meet the requirements of providing
data on time-of-adoption and social network ties. As defined above, thresholds
of individuals are determined by the exposure at the time-of-adoption. An un-
surprising but nevertheless significant finding then is that in all three datasets
early adopters tend to have very low thresholds, while laggards are those indi-
viduals with very high thresholds.
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2 Inhomogeneous Sparse Random Graphs

In [5], Bollobás, Janson and Riordan developed a formalism to treat inhomoge-
neous sparse random graphs in great generality. The class G(n, pxy) of random
graphs they discuss is defined by edge probabilities pxy = min{κ(x, y), 1}, where
κ is some symmetric nonnegative integrable function on S × S, and S is a sep-
arable metric space equipped with a probability measure µ, forming the the so
called ground space (S, µ). They derive a wide variety of results which can be
seen as a unification and generalization of various known results from random
graph theory. The main result is a theorem about the existence, uniqueness,
and size of the giant component in inhomogeneous sparse random graphs. Inho-
mogeneous means that the probability of the presence of edges is not the same
for each edge, as for instance in Erdös-Renyi random graphs where each edge is
present with the same probability p. Sparse means that the average number of
edges scales linearly with the number of vertices.

2.1 Definitions and Properties

In order to define the edge probabilities well it has to be made clear what the
set of vertices consists of.

Definition 2.1 A vertex space V is a triple (S, µ, {xn}n≥1), where (S, µ) is a
ground space and, for each n ≥ 1, xn is a random sequence (x1, . . . , xn), such
that for each µ-continuity set6 A

#{i : xi ∈ A}/n→ µ(A), (5)

in probability.

Note that, writing δx for the measure consisting of a point mass of weight 1

at x, equation (5) can be written as νn(A)
p→ µ(A), where νn := 1

n

∑n
i=1 δxi

is
the empirical distribution of xn.

Given a kernel κ on a vertex space V = (S, µ, {xn}n≥1), define the random
graph GV(n, κ) as the random graph GV(n, pij), where

pij = min{κ(xi, xj)/n, 1},

yielding a random graph on n vertices and edges i ∼ j present with probability
pij . One may interpret the members xj of the sequence xn as the strength of a
certain property of the vertex j. Edges between vertices i and j are then formed
according to the values of the kernel κ on xi and xj .

The degree distribution Pk for a random graph GV(n, κ) converges to a
superposition of Poisson distributions.

Pk →
∫

λ(x)k

k!
e−λ(x)dµ(x), (6)

where the convergence is in probability and λ(x) =
∫

κ(x, y)dµ(y). Note that,
depending on the choices of vertex space and kernel, various distributions may
arise, even power laws, as Bollobás, Janson, Riordan showed.

6A set A ⊂ S is a µ-continuity set if A is measurable and its boundary is a measure zero
set.
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Further on, given a kernel κ on a ground space (S, µ), an integral operator
Tκ on (S, µ) is defined by

(Tκf)(x) =

∫

S

κ(x, y)dµ(y),

for any measurable function f such that the integral is defined for a.e. x ∈ S.
Also, an operator norm is defined

‖Tκ‖ = sup{‖Tκf‖2 : f ≥ 0, ‖f‖2 ≤ 1}, (7)

coinciding with the usual L2 operator norm of T when being finite.
To study the component structure of G(n, κ), they used the multi-type

Galton-Watson branching process with type space S, where a vertex of type
x ∈ S gives birth to a set of children distributed as a Poisson process on S with
intensity κ(x, y)dµ(y). Let ρ(κ, x) be the probability that the branching process
starting in a vertex of type x survives for infinity. Thus,

ρ(κ) :=

∫

S

ρ(κ, x)dµ(x)

is the overall survival probability of the branching process.
To state the main result of [5], the conclusion about the existence, size, and

uniqueness of the giant component of the random graphs G(n, κ), we need to
introduce the notion of graphical kernels. These are designed to avoid that the
graph is determined by the behavior of κ on a measure zero set.

Definition 2.2 A kernel κ is graphical on a vertex space V = (S, µ, {xn}n≥1)
if the following conditions hold:

• κ is continuous a.e. on S × S;

• κ ∈ L1(S × S, µ× µ);

•
1

n
Ee(GV(n, κ)) → 1

2

∫ ∫

S2

κ(x, y)dµ(x)dµ(y) =
‖κ‖1

2
.

Also it is convenient to allow the kernel to be dependent on n, to include
models such as Erdös-Renyi random graphs G(n, p) where the particular case
p = p(n) = c/n is of great importance. This leads to the following definition.

Definition 2.3 Let κ be a graphical kernel on a vertex space V = (S, µ, {xn}n≥1).
A sequence {κn} of kernels on (S, µ) is graphical on V with limit κ if, for a.e.
(y, z) ∈ S2, yn → y and zn → z imply that κn(yn, zn) → κ(y, z) and

1

n
Ee(GV(n, κn)) → 1

2

∫ ∫

S2

κ(x, y)dµ(x)dµ(y).

We are now ready to state the main result. Denote by C1(G
V(n, κn)) the

largest component of GV(n, κn), and by Op and op the usual Landau symbols,
with the subscript p indicating convergence in probability. Also, denote by
f = Θ(g) if f = O(g) and g = O(f). Then the following holds:
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Theorem 2.4 ([5]) Let κn be a graphical sequence of kernels on a vertex space
V with limit κ.

• if ‖Tκ‖ ≤ 1, then C1(G
V(n, κn)) = op(n), while if ‖Tκ‖ > 1, then C1(G

V(n, κn)) =
Θ(n) almost surely.

• For any ǫ > 0,
1

n
C1(G

V(n, κn)) ≤ ρ(κ) + ǫ,

almost surely.

• If κ is irreducible7, then

1

n
C1(G

V(n, κn)) → ρ(κ),

in probability.

In all cases ρ(κ) < µ(S); furthermore, ρ(κ) > 0 if and only if ‖Tκ‖ > 1.

This theorem can be seen as a generalization of classical finite-type branching
processes where the largest eigenvalue determines the criticality condition.

2.2 Additive and Multiplicative Coupling

Of particular importance in sociophysics are the two kernels κ∗ and κ+, de-
fined by κ∗(x, y) = ψ(x)ψ(y), for some nonnegative integrable function ψ, and
κ+(x, y) = φ(x) + φ(y), for some nonnegative integrable function φ. Most com-
monly used is ψ(x) = φ(x) = x, for all x, with S being a finite interval in the
real numbers and µ being any probability distribution on S, yielding that the
probability that a vertex vx with degree x and a vertex vy with degree y form
a link with probability proportional to the product xy, or the sum x + y, re-
spectively. The interest in these two kernels arises not only from their algebraic
simplicity, but from their interpretation in terms of social systems. To see this,
we outline in short how networks with kernels κ∗,+ can be grown from a simple
algorithm which admits such an interpretation.

So, chose n vertices with given degree x1, . . . , xn. To construct the edge set
for either case, we assume that the degree of each vertex vx is the sum of an
in-degree and an out-degree, similar to the situation in directed graphs. Since
vertices vx and vy can form an edge only if one of the half-edges contributes to
the in-degree and the other half-edge to the out-degree, the probability P (vx ∼
vy) = pxy of finding randomly drawn vertices vx and vx linked is given by
P (vx ∼ vy) = P (xout)P (yin) + P (xin)P (yout), where the subscripts out/in
represent out- and in-degree of the vertices.

To obtain multiplicative coupling, for each vertex with degree x choose
xout = xin = x/2. The fractional ansatz with factor 1/2 ensures that the
graph constructed in this way will not end up with ’open’ half-edges, at least
asymptotically in the case of n→ ∞. It follows that

7A kernel κ is irreducible if A ⊂ S and κ = 0 a.e. on A × (A\S) implies µ(A) = 0 or
µ(A\S) = 0.

20



P (vx ∼ vy) ∝ x

2

y

2
+
x

2

y

2
∝ xy.

To obtain additive coupling assume that the out-degree of each vertex is bounded
by a constant d. This yields

P (vx ∼ vy) ∝ d(y − d) + (x− d)d

= d(x+ y) − 2d2

∝ x+ y.

Hence, individuals in a network with multiplicative coupling tend to create new
links on their own, since half of their degree are outgoing links which can be
interpreted as requests for new neighbors. Such behavior can be observed, for
instance, in economies of scarcity like the former GDR, or Cuba, where indi-
viduals need private connections to professionals to carry out specific problems,
e.g. mechanics, tradespeople or people with access to a certain rare supply.

On the other hand, individuals in networks with additive coupling have a
bound for outgoing links, whenever they reached a certain number of neighbors
they are not requesting any new ones, though still are accepting requests.

Also, mixtures are possible, there are interpolating kernels, for instance

κα(x, y) = αxy + (1 − α)(x+ y), or

κβ(x, y) = (xy)β(x+ y)1−β .

For both holds

κ0 = κ+,

κ1 = κ∗.

In what follows we will see that it is possible to choose κ∗ and κ+ such that
the resulting asymptotic degree distributions of G(n, κ∗) and G(n, κ+) are the
same. Nevertheless, any two (random) graphs with the same degree distribution
may be topologically very different. We focus on the emergence of the giant
component, showing that the phase transition in additively coupled networks
always happens ’later’ than in multiplicatively coupled systems.

2.3 The Phase Transition of Additive and Multiplicative

Coupling

Recall, that the norm of the operator ‖Tκ‖ is defined as in (7). For differentiable
kernels, this is equivalent to the constrained variational problem

∫

(G(x, f(x)) − λN(x, f(x)))dx = extr! (8)

with G(x, f(x)) = (Tκf)2(x) and constraint N(x, f(x)) = f2(x) − 1. Since
G−λN does not depend on any derivatives of f , the Euler-Lagrange equations of
variational calculus yield G(x, f(x))−λN(x, f(x)) = const. A simple calculation
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shows, that the constant on the right hand side can always be chosen to be zero.
Therefore we get

(Tκf)2(x) − λf2(x) = 0

what is equivalent to

f(x) =
1√
λ

(Tκf)(x). (9)

Now Let g be the function that attains the maximum, i.e. a solution of (8).
Since

0 =

∫

(Tκg)
2(x)dx−

∫

λg2(x)dx = ‖Tκ‖2 − λ,

we calculate that

‖Tκ‖ =
√
λ.

Thus, it is possible to determine the operator norm of Tκ by computing the La-
grangian multiplier λ. This way of calculating may not be the most general way,
but yields a convenient way to calculate the phase transition of multiplicative
and additive kernels.

Let κ∗(x, y) = ψ(x)ψ(y) for some nonnegative function ψ ∈ L1(S). We
use equation (9) to compute ‖Tκ∗

‖ for the multiplicative kernel κ∗. Defining
I(f) =

∫

f(t)ψ(t)dµ(t) gives Tκ∗
f(x) = I(f)ψ(x) and inserting (9) in I(f) gives

I(f) =
I(f)√
λ
‖ψ‖2

2,

from where we calculate ‖Tκ∗
‖ to be

‖Tκ∗
‖ =

√
λ = ‖ψ‖2

2.

Now let κ+(x, y) = φ(x) + φ(y) for some nonnegative function φ ∈ L1(S).
Define I1(f) =

∫

f(t)dµ(t) and I2(f) =
∫

φ(t)f(t)dµ(t). Then Tκ+
f(x) =

I1(f)φ(x) + I2(f), inserting (9) in I1(f) and I2(f) yields the following linear
system of equations.

√
λI1(f) = ‖φ‖1I1 + I2√
λI2(f) = ‖φ‖2

2I1 + ‖φ‖1I2,

with solution
‖Tκ+

‖ =
√
λ = ‖φ‖2 + ‖φ‖1.

To compare multiplicative and additive kernels and their phase transitions,
we want to choose the functions ψ and φ, such that κ∗ and κ+ yield the same
degree distribution. The next lemma shows, that this is always possible.
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Lemma 2.5 Let κ∗(x, y) = ψ(x)ψ(y) be a multiplicative kernel and κ+(x, y) =
φ(x) + φ(y) an additive kernel. If

φ(x) = ‖ψ‖1ψ(x) − 1

2
‖ψ‖2

1, (10)

then the random graphs G(n, κ∗) and G(n, κ+) have the same degree distribution.

Proof. From (6), we see, that we need to calculate λ∗(x) =
∫

κ∗(x, y)dµ(y),
which is λ∗(x) = ‖ψ‖1ψ(x). Choosing φ(x) as in (10) yields

λ+(x) =

∫

κ+(x, y)dµ(y)

=

∫

(‖ψ‖1(ψ(x) + ψ(y)) − ‖ψ‖2
1)dµ(y)

= ‖ψ‖1ψ(x) + ‖ψ‖1

∫

ψ(y)dµ(y) − ‖ψ‖2
1

= λ∗(x)

Since the degree distribution is determined by a superposition of Poisson dis-
tributions with means λ(x), the resulting asymptotic degree distributions must
be the same.

�

Notice, that due to the desired positivity of φ equation (10) imposes the condi-
tion ψ(x) ≥ ‖ψ‖1/2, almost surely, on ψ.

To compare the phase transitions of G(n, κ∗) and G(n, κ+), we need to
compute ‖Tκ∗

‖ and ‖Tκ+
‖. We have shown that ‖Tκ∗

‖ = ‖ψ‖2
2 and ‖Tκ+

‖ =
‖φ‖1 + ‖φ‖2. Choosing φ according to equation (10) yields

‖φ‖1 =
1

2
‖ψ‖2

1,

‖φ‖2 = ‖ψ‖1

√

‖ψ‖2
2 −

3

4
‖ψ‖2

1,

and the norm ‖Tκ+
‖ is given by

‖Tκ+
‖ = ‖ψ‖1

√

‖ψ‖2
2 −

3

4
‖ψ‖2

1 +
1

2
‖ψ‖2

1.

Figure 6 shows the behavior of ‖Tκ+
‖, depending on ‖ψ‖1, where ‖ψ‖2 is set to

the critical value 1. The plotted function is defined by y = x
√

1 − (3/4)x2 +
1/2x2, where x = ‖ψ‖1 and y = ‖Tκ+

‖. It can be seen, that y is increasing from
y = 0 to a maximum value ymax = 1. All values of ‖Tκ+

‖ are below the line
y = 1 and belong to a phase transition of G(n, κ+) which is smaller that the
phase transition of G(n, κ∗), thus, describing the subcritical case of G(n, κ+).
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Figure 6: The behavior of ‖Tκ+
‖, when ‖Tκ∗

‖ is set to the critical value of

the phase transition ‖Tκ∗
‖ = 1 (red line). ‖Tκ+

‖ = x
√

1 − (3/4)x2 + 1/2x2,
depending on x = ‖ψ‖1 (blue line)

3 The Communication Index of Graphs

3.1 Basics

A simple way of characterizing structural properties of a graph or a network is
to use only its degree distribution, the ordered sequence of relative frequencies
of degrees. One could use any kind of entropy, information or complexity mea-
sure to describe and distinguish certain families of graphs only by their degree
distribution. A survey about graph entropy can be found in [37], complexity of
graphs in [32].

Unsurprisingly, these measures turn out to be not sensitive enough to dis-
tinguish all kinds of graphs. In any case, there exist graphs, which we would
consider to be very similar, for which these distance measures yield large values.

A promising approach is done by Dehmer in [13] and Dehmer and Emmert-
Streib in [14], where probability distributions corresponding to networks are
constructed in a non trivial manner. These distributions allow the investigation
of the entropy functional and therefore an analytical treatment of notions like
information or similarity for graphs.

While their focus is on finding probability measures on graphs, our aim is
to associate weights with the edges, which reflect structural properties of the
graph. It turns out, that the edge weights constructed in this paper result in a
uniform distribution for both, regular graphs and star graphs, thus maximizing
the entropy in the set of connected graphs.

Besides such entropic considerations, we use these edge weights to derive
a measure for the effectiveness of communication on complex networks. The
first chapter is devoted to the introduction of the communication index for
graphs and its relevance as an effectiveness measure for communication. We
then turn our view to an application of the communication index in the field of
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peer-to-peer networks. With the help of the communication index an optimal
network structure can be obtained for networks with a given distribution of
bandwidths of the peers. Further on, we calculate the distribution of edge
weights for the Galton-Watson tree and its communication index. This result
translates to Erdös-Renyi random graphs. Finally we made some simulations
to calculate the communication index, its edge weight distribution and its node
weight distribution, on Galton-Watson trees and Erdös-Renyi random graphs
to illustrate the behavior the quantity on simple random graphs.

3.1.1 Definitions and Simple Properties

We start by introducing the concept of the communication index of a graph. To
do so, we set Bv = {e ∈ E : e = (v, w), w ∈ V } for each vertex v ∈ V . Thus,
Bv is the set of outgoing links from v.

Definition 3.1 Let G = (V,E) be a graph on n vertices, i.e. #V = n. For
each edge e ∈ E, define

γ(e) = min{ 1

deg(v)
: v ∈ e} (11)

We call γ(e) the communication weight of the edge e. For each vertex v ∈ V ,
define the communication strength γv by

γv =
∑

e∈Bv

γ(e).

The number

γ(G) =
1

n

∑

v∈V

γv

is called communication index of G.

Figure 7 shows an example of a graph equipped with communication weights.
Each edge is equipped with its communication weight and each node is equipped
with its communication strength (numbers in circles), which is the sum of all
communication weights on the edges adjacent to the node.

The intuitive meaning of the communication weights becomes clear as fol-
lows: Suppose any vertex v ∈ V communicates in some way with its neighbors
and none of them is being favored. So, v spends an equal amount of time t for
communication with each of them, namely tv = 1/deg(v). Since any neighbor
w of v has neighbors to communicate itself, two nodes can only communicate
an amount of time, which equals min{tv, tw} = γ((v, w)). The communication
index γ(G) may then be seen as a measure of efficiency of the communication
on G.

Since the degree of every communicating node is always greater or equal 1,
deg(v) ≥ 1 for all v ∈ V , one may as well interpret the γ(e) as the probability
that a communication between the vertices v and w, which constitute the link
e = (v, w), will be realized8. Then γ(G) is a measure for the ability of the graph
G to originate communication.

8Here we assume, that vertices with zero degree do not communicate at all.
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Figure 7: Visualization of the communication index scheme. This network
with two components has N=8 nodes and M=8 edges, so an average degree
of 2. The communication weight (blue numbers) on each edge is calculated by
min( 1

deg(x) ,
1

deg(y) ) of the end-degrees deg(x) and deg(y). Here the average com-

munication edge-weight is 0.375. Then all communication edges adjacent to a
node are summed up, for each node (”communication strength” - black numbers,
and proportional sizes of the nodes). The node-average communication-node-
sum is 0.75, which we call communication index of this network.

We now prove some elementary properties of the communication index. No-
tice that there is an additivity property for γ, namely if G consists of k compo-
nents Gk, then nγ(G) =

∑

j γ(Gj). Hence, there is no loss in generality if we
assume graphs to be connected.

Lemma 3.2 Let G be a connected graph on n > 1 vertices. Then

(i) 1/(n− 1) ≤ γv ≤ 1 for all v ∈ V .

(ii) Vertices v with maximal degree fulfill γv = 1.

(iii) γ(G) ≥ 2
n , with equality iff G is a star graph.

(iv) γ(G) ≤ 1, with equality iff G is a regular graph with positive degree.

Proof.

(i) The lower bound is trivial, since γ(e) ≥ 1/(n − 1)
for all e ∈ E. The upper bound is a consequence of the standard esti-
mate

γv =
∑

e∈Bv

γ(e) ≤ deg(v) max
e∈Bv

γ(e) =
deg(v)

deg(w)
≤ 1,

since maxe γ(e) = 1/deg(w) for some w ∈ V implies deg(v) ≤ deg(w).
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(ii) Consider a vertex v ∈ V with deg(v) ≥ deg(w) for all w ∈ V . Then
γ(e) = 1/deg(v) for all e ∈ Bv and

γv =
∑

e∈Bv

1

deg(v)
= deg(v)

1

deg(v)
= 1.

(iii) This follows directly from the definition of γ(G), from the lower bound for
the γv and from the fact that there is at least one vertex v′ with γi = 1:

nγ(G) =
∑

v∈V

γv = 1 +
∑

v 6=v′

γv

≥ 1 +
1

n− 1
(n− 1),

where equality in the last line holds if and only if the value of γv of each of
the remaining (n− 1) vertices equals 1/(n− 1). But this is possible only
if those vertices are connected to the vertex v′ of maximal degree and not
connected to any other vertex. Thus, equality holds if and only if G is a
star.

(iv) This follows directly from the definition of γ(G) and from the upper bound
for γv. To avoid the case of the empty graph, we assume deg(v) > 0 for
all v ∈ V .

γ(G) =
1

n

∑

v∈V

γv ≤ 1

n

∑

v∈V

1 = 1,

with, since G is connected, equality if γv = 1 for all v ∈ V . This is the
case if and only if all vertices have maximal degree, therefore G must be
a regular graph.

�

This lemma justifies the description of γ as a measure for the effectiveness
of a communication process on a graph. Intuitively, one would classify the star
graph not as an adequate network for communication. Identifying the vertices
with people and edges with some relationship between them (for instance they
may know each other by name), the lemma can be illustrated as follows. The
central person of the star knows all other people and will divide its time up in
equal parts. Thus, they will have not much time to communicate to a single
person. The only person with a saturated communication is the central one.

The other extremal case is the one, where every node has the same number
of neighbors. Anyone on the network has the same amount of time for each
neighbor, therefore none of them will end up with dispensable time.

3.1.2 The CI and Computational Complexity

Let G be a star graph, G′ be a regular graph, denote the communication edge
weights of G with γG(e), of G′ with γG′(e). One key observation is that in
both cases the communication edge weights are uniformly distributed and the
distributions P (γG(e) = 1/k) and P (γG′(e) = 1/k) yield zero entropy. In that
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sense, these graphs can be considered as maximally non-random, in agreement
with intuition. Note that, in contrast, entropy of the degree distribution yields
minimum entropy only for regular graphs, not star graphs, although their com-
putational complexity is the same, namely O(log n).

3.1.3 Inhomogeneous Sparse Random Graphs revisited

To analyze the Communication Index of such graphs, we adapt the definition
of the communication weights in the following way. For each edge (v, w) that is
present in a realization of a G(n, pxy), we set

γ(v, w) = min{ 1

E deg v
,

1

E degw
},

where E denotes the (ensemble) mean. In terms of the B-J-R formalism, given
a kernel κ on a ground space (S, µ) and a vertex v of type x, this mean is given
by E deg v = λ(x) =

∫

S
κ(x, y)dµ(y).

With λ(x) ≥ 1 for all x it is reasonable to interpret γ(x, y) as the probability
that communication between the types x and y comes about. This gives rise to
a new random graph G(n, p̃ij), with p̃xy = min{κ(x, y)γ(x, y), 1}. For instance,
if we choose a multiplicative coupling of the vertices, i.e. κ(x, y) = cψ(x)ψ(y),
for some integrable function ψ and c > 0, then λ(x) = c‖ψ‖1ψ(x). Thus, the
communication kernel κ̃(x, y) = κ(x, y)γ(x, y) is given by

κ̃(x, y) = cψ(x)ψ(y) min{ 1

c‖ψ‖1ψ(x)
,

1

c‖ψ‖1ψ(y)
}

=
cψ(x)ψ(y)

c‖ψ‖1 max{ψ(x), ψ(y)}

=
1

‖ψ‖1
min{ψ(x), ψ(y)}.

Note that the tunable constant c cancels out and the structural behavior of
the communication graph G(n, p̃xy) depends only on the choice of ψ and of the
ground space. Also, for S = (0, 1] equipped with the Lebesgue measure, and
ψ(x) = x, this is Dubin’s model, see [5, 16.1.] for more details. It was shown in
[] (see also [] and []) that in this case, the phase transition ’is of infinite order’,
i.e. has infinite exponent.

3.2 The Communication Index and Peer-to-Peer Networks

There has been an increasing interest in the field of peer-to-peer computer net-
works recently. In a peer-to-peer computer network, every node has the same
capabilities and responsibilities, there are no distinguished nodes. This is in
contrast to client/server architectures, where the roles of the client and server
nodes differ.

Our focus is on peer-to-peer networks of unstructured type, such as Bit
Torrent, meaning there is no specific network topology to be formed by the
participating peers. Peer-to-peer networks such as Bit Torrent are increasingly
used for disseminating potentially large files from a server to many end users
via the Internet. The key idea is to divide the file into many equally-sized
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parts and then let users download each part from another user who has already
downloaded it.

A traditional Bit Torrent system has elements called Trackers whose main
purpose is to enable peers to find each other. The Bit Torrent Tracker randomly
assigns a new (entering) user a set of peers that are already in the system to
communicate with.

3.2.1 The CI as an a-priori Measure for Effectiveness

The CI introduced and discussed in section 3.1.1 uses the degree of vertices in
a network to measure time utilization and effectiveness of communication. In
peer-to-peer networks, vertices are communicating with each other, but con-
strained by upload and download capacities. If we modify the definition of the
communication to take into account that there are natural limits on how much
data can flow along a connection between to links in the network, we can view
the CI as an a-priori measure for effectiveness in peer-to-peer networks.

Assume that a vertex v with capacity Cv > 0 enters the network with dv > 0
links and distributes its capacity among its neighbors equally, i.e. assigning an
amount of Cv/dv of its capacity to each neighbor to use it for exchange of pieces
of a file. Then v acquires γt(v) pieces per time step t (or at least a number
proportional to that quantity), with

γt(v) =
∑

w:v∼tw

min{Cv

dv
,
Cw

dw
},

where the sum ranges over all neighbors of v at time t (denoted by v ∼t w here).
Neglecting the last piece problem9, v is acquiring pieces until it has L pieces,

formally

T (v)
∑

t=1

γt(v) = L,

with T (v) being the download latency. Assuming that v acquires the same
amount of pieces at each time step, i.e. γt(v) = γ(v), for the download latency
of a peer v we get

L =

T (v)
∑

t=1

γ(v) = T (v)γ(v) ⇒ T (v) =
L

γ(v)
,

showing the inverse proportionality of the CI γ(v) of a peer and its download
latency T (v).

Even without the strong assumption that a peer acquires the same amount
of pieces all over the time, one can obtain the CI as an upper bound via the

standard estimation
∑T (v)

t=1 γ(v) ≥ mint{γt(v)}T (v), since γt(v) cannot be zero
for non-zero capacities, showing that peers want to maximize the smallest of
their values γt.

9Using common unchoking algorithms the last piece(s) of a file may be harder to get than
other pieces, elongating the download process. This is the so called last piece problem.
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3.2.2 Paper 1: Optimizing Topology in Bit Torrent Based Networks

In [10] we have shown how the communication index can help optimizing topol-
ogy in bit torrent networks. The static network of a Bit Torrent system is
modeled as a connected regular graph G(V,E), where the set of vertices V rep-
resents the peers in the network and the set edges E the connections established
among the peers.

Assume that a vertex can be one of n types 0 < x1 < · · · < xn (which we
want to interpret as bandwidths), which are distributed with density ρi, i.e.
there is a fraction of ρi vertices of each type i in V. The fraction qij of edges of
type (xi, xj) fulfills the constraint

ρi = qii +
1

2

i−1
∑

k=1

qik +
1

2

n
∑

k=i+1

qik, (12)

just stating that the probability of finding a peer with bandwidth xi equals the
probability of finding one attached to an edge of type (xi, xi) plus half of the
probability that it is attached to an edge of type (xi, xj), j 6= i. This is true for
any regular graph, since the total number of edges scales linearly with the total
number of vertices.

Whenever two peers, one with bandwidth xi, the other one with bandwidth
xj , want to exchange files, the quantity min{xi, xj} is decisive for the speed
of exchange, since the peer with the lower bandwidth is not able to upload or
download faster than its bandwidth allows. To adopt the communication index
here, we need to customize the concept a bit. Due to optimistic unchoking in
Bit Torrent networks, it may happen that with a certain probability pij the
larger of both bandwidths gets realized, see [10] for details on this.

Thus, we define the communication edge weights to be random variables γ
with the following distributions

P (γ(xi, xi) = xi) = 1

P (γ(xi, xj) = max{xi, xj}) = pij

P (γ(xi, xj) = min{xi, xj}) = 1 − pij .

Then, the mean edge weight is given by

E(γ) =
n
∑

i=1

xiqii +
∑

i,j:i<j

(max{xi, xj}pijqij + min{xi, xj}(1 − pij)qij)

Eliminating qii using equation (12) and using that ∆ji := xj − xi > 0 for i < j
yields

E(γ) = x̄+
∑

i,j:i<j

∆ji(pij −
1

2
)qij , (13)

with x̄ being the mean value of the types.
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(a) p > 1

2
(b) p < 1

2

Figure 8: The connectivities of high and low bandwidth nodes, that maximizes
the edge weight in a regular graphs, for two cases p > 1

2 (figure 8(a)) and p < 1
2

(figure 8(b)). For p > 1
2 , the graph forms a bipartite graph, where no peers of

high or low bandwidth are directly connected to each other, on the other hand
when p < 1

2 , the high and low bandwidth peers gets isolated from each other to
maximize the edge weight.

Now assume n = 2, i.e. consider two types x1 =: xL < xH := x2 of different
bandwidth, say high (H) and low (L). Then the mean value E of γ becomes a
one dimensional linear function, with the fraction x of mixed edges (xH , xL) as
variable,

E(x) = const. + (xH − xL)(p− 1/2)x.

Since E is a linear function, the maximum value gets attained on the bound-
ary of the domain of E, which is defined by the constraints ρH = xH + x

2 , ρL =
xL + x

2 . Thus, there are two cases we need to investigate, namely p < 1/2 and
p > 1/2. In case of p = 1/2 any topology is equivalently effective.

If p < 1/2, the slope of E is negative, therefore we want to minimize the value
of x. This already indicates the optimal strategy in distributing the bandwidths
among peers in the network: Avoid edges with different types of peers attached,
cluster peers of the same bandwidth together.

Nevertheless, in any connected graph the solution x = 0 (and therefore
xH = ρH , ρL = xL) is not possible. Since one wants to maximize the number of
bonds of the same type and minimize mixed bonds, one needs to find a partition
(V1, V2) of the vertex set V , with ρL = |V1|/|V |, ρH = |V2|/|V |, and such that
the number of edges from V1 to V2 is minimal. This is exactly the problem of
finding a minimum cut in a graph, given the size of the partition.

If p > 1/2, the slope of E is positive, therefore we want to choose x maximal,
i.e. avoiding edges with peers of different type. Note that due to the constraints,
the solution x = 1 is only possible if ρH = ρL = 1/2. Similar to the problem
with p < 1/2 one needs to find a cut in the graph, but here a maximum cut.
Figure 8 illustrates the two cases.
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Optimizing Topology in Bit Torrent Based Networks
J. Chandra, S. Delitzscher, N. Ganguly, A. Jhunjhunwala, T. Krueger, N.

Sharma,
Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE

Conference on, Issue Date: 10-15 April 2011, 888 - 893

Abstract: In this paper, we discuss the importance of the network connectivities
of the peers in Bit Torrent based systems in determining the download perfor-
mance of the peers. In this context, assuming that the fraction of the peers of
each bandwidth are known, we derive optimal connectivities of the peers that
help to improve the average latency of the peers. We represent the topology of
a Bit Torrent based system as a weighted graph, where the average edge weight
of the graph directly relates to the download latency of the peers. We formu-
late the average edge weight of the whole system as a linear function of the
fraction of the edges that connect peers of different bandwidth and derive the
topology that maximizes the average edge weight of the network. Simulation
results based on the Bit Torrent protocol validates the fact that in the optimal
topology, peers have 13% better download latency as compared to topologies
formed in the normal Bit Torrent based systems. Further the obtained topol-
ogy also improves the fairness of the system as compared to normal Bit Torrent
significantly.

Find Paper 1 attached to the framework text.

3.3 The Communication Index of Random Graphs

When considering random graphs, the communication index becomes a random
variable. One natural way to investigate the behavior of the communication
index of random graphs is to consider random trees as realizations of certain
branching processes first, and then generalizing it to the class of Erdös-Renyi
random graphs.

To obtain analytical results, we calculate the distribution of the communica-
tion index edge weights for the supercritical Galton-Watson branching process,
conditioned on not dying out. We go on calculating the

3.3.1 The Galton-Watson Process

Let ξt
i , i, t ≥ 0, be i.i.d. nonnegative integer-valued random variables. Define a

sequence Zt, t ≥ 0 by Z0 = 1 and

Zt+1 =

{

ξt+1
1 + · · · + ξt+1

Zt
if Zt > 0

0 if Zt = 0

The sequence {Zt} is called a Galton-Watson process. The idea behind the
definition is that Zt is the number of people in the t-th generation of a branching
process, and each member of the tth generation gives birth independently to an
identically distributed number of children. The family ψk = P (ξt

i = k) is called
the offspring distribution. It is a well known fact, that the process dies out
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with probability 1 if µ = Eξt
i < 1, in this case the process is called subcritical.

There is a positive survival probability if µ > 1, in this case the process is called
supercritical. For more details, see for example Chapter 4 of [16].

As usual, we associate for each t = 0, 1, 2, . . . , a random graph Gt with the
process, in the following way. The graph G0 is the graph consisting only of the
root vertex associated with Z0 = 1. The graph G1 consists of the root and ξ01 =
Z1

vertices adjacent to the root. The graph Gt = (Vt, Et) is the tree consisting
of the vertex set Vt, which fulfills #Vt = n(t) =

∑t
τ=0 Zτ , and of the edge set

Et, where e = (v, w) ∈ Et whenever v is a child of w or w is a child of v. Every
edge e ∈ Et of Gt may be equipped with the communication weights γ(e) as the
minimum value of the inverse degrees of two adjacent vertices belonging to e.

Note that vertices of the last generation all have degree 1. So, to avoid a
bias in the calculations we assign to each vertex on the t-th generation virtually
its degree at time t + 1, but do not count any of these virtual edges. The
communication index of Gt is then given by

γ(Gt) =
2

n(t)

∑

e∈Et

γ(e).

We are now interested in the distribution P (γ(e) = 1/k) of the communi-
cation weights γ(e). If we want to relate the offspring distribution ψk of the
Galton-Watson process to the degree distribution of the graphs Gt, we need to
ensure that the process can not die out. To do so, we treat the supercritical
case first, where µ > 1. Nevertheless, there is a positive probability of extinc-
tion q, thus we need to condition the probabilities on Zn > 0. In that case,
pk = P (deg(v) = k|Zn > 0) → ψk−1 as n goes to infinity. The probability of
extinction q is strictly less than 1 and positive if and only if ψ0 > 0. Thus, we
impose ψ0 = 0 and derive a result on the distribution of the communication
weights and may then use a transformation of Harris, see [25], to reduce the
case q > 0 to q = 0.

Furthermore, notice that in this context choosing randomly an edge e =
(v, w), connecting a vertex w with its unique parent v, is equivalent to choosing
randomly one vertex w and then considering the link between w and its parent
v. The probability that this link is attached to a vertex v of degree k is then, as t
goes to infinity, given by µ−1(k−1)ψk−1. Thus, the asymptotic joint probability
pkk′ that an edge is attached to a vertex v of degree k′ and a parental vertex w
of degree k is given by

pkk′ =
(k − 1)pkpk′

µ
.

From this joint probability we can find the distribution of the communication
weights.

Lemma 3.3 Let {Zt} be a supercritical Galton-Watson process with offspring
distribution ψk and ψ0 = 0. Set P (deg(v) = k) = pk, then, as t goes to infinity,

P

(

γ(e) =
1

k

)

=
pk

µ



(k − 1)
k
∑

j=1

pj +

k−1
∑

j=1

(j − 1)pj



 .
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Proof. The probability, that a communication weight γ(e) of an edge e takes
the value 1/k for some k can be evaluated by using elementary probability
calculus.

P

(

γ(e) =
1

k

)

=
∑

j<k

pkj +
∑

j<k

pjk + pkk

=

k−1
∑

j=1

(k − 1)pkpj

µ
+

k−1
∑

j=1

(j − 1)pjpk

µ

+
(k − 1)p2

k

µ

=
pk

µ



(k − 1)
k
∑

j=1

pj +

k−1
∑

j=1

(j − 1)pj





�

3.3.2 The Erdös-Renyi Random Graph

To derive the distribution of edge weights, note that the joint degree distribution
pkk′ of finding a vertex of degree k and a vertex of degree k′ attached to a
randomly drawn edge of a G(n, c/n) is given by

pkk′ =
kk′

c2
pkpk′ = pk′k,

where {pk}, is the usual (Poisson-) degree distribution given by pk = exp(−c)ck/k!.

Lemma 3.4 Let G(n, p) be an Erdös-Renyi random graph with p = c/n. Then
the distribution P (γ(e) = 1/k) of communication edge weights is given by

P

(

γ(e) =
1

k

)

= exp(−2c)
c2k−2

(k − 1)!





1

(k − 1)!
+ 2

k−1
∑

j=1

cj−k

(j − 1)!



 .

Proof.

P

(

γ(e) =
1

k

)

= pkk +
∑

j<k

pkj +
∑

j<k

pjk

= pkk + 2
k−1
∑

j=1

pkj

=
k2

c2
p2

k + 2

k−1
∑

j=1

kj

c2
pkpj

=
k

c2
pk



kpk + 2

k−1
∑

j=1

jpj



 .

Inserting pk = exp(−c)ck/k! gives
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P

(

γ(e) =
1

k

)

=
k

c2
ck

k!
exp(−c)



k
ck

k!
exp(−c) + 2

k−1
∑

j=1

j
cj

j!
exp(−c)





= exp(−2c)
c2k−2

(k − 1)!





1

(k − 1)!
+ 2

k−1
∑

j=1

cj−k

(j − 1)!



 .

�

With that we calculate the expected value Eγ(e) of a randomly drawn edge
e.

Eγ(e) =

∞
∑

k=1

1

k
P

(

γ(e) =
1

k

)

= exp(−2c)

∞
∑

k=1

c2k−2

k!





1

(k − 1)!
+ 2

k−1
∑

j=1

cj−k

(j − 1)!



 . (14)

In the definition of the communication index vertices with zero degree have
been assumed to be not communicating at all and have therefore been ex-
cluded. However, for the Erdös-Renyi random graph each vertex v has a certain
probability of having degree zero, namely P (deg(v) = 0) = (1 − c/n)n−1 ≈
exp(−c). Thus, on average there are n exp(−c) vertices with zero degree and
n∗ = (1 − exp(−c))n vertices with non-zero degree. The exclusion of vertices
with zero degree leads to a refined definition of the communication index where
the normalization uses n∗ rather than n,

γ(G(n, p)) =
2

n∗

∑

e∈E

γ(e).

We now derive a formula to calculate the communication index of Erdös-Renyi
random graphs. This shows that, for large n, the communication index is given
by average degree times average edge weight (times the zero-degree correction
term).

Theorem 3.5 For the Erdös-Renyi random graph G(n, p), with p = c/n, holds

γ(G(n, p)) → cEγ(e)

1 − exp(−c) , (15)

where convergence is in probability and E(γ(e)) denotes the expected value of the
communication edge weight of a randomly drawn edge.

Proof. For the G(n, p), p = c/n, the expected number E#E of edges is given
by E#E =

(

n
2

)

p = c(n− 1)/2. From the theory of Erdös-Renyi random graphs
it is well known that, for any ǫ > 0, the probability of finding the actual number
#E of edges in the interval [c(n − 1)/2 − n

1
2
+ǫ, c(n − 1)/2 + n

1
2
+ǫ] tends to 1

as n tends to infinity. Furthermore, the probability of finding #E outside this
interval decreases exponentially with nǫ.
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Hence, for the expected value of the communication index holds

Eγ(G(n, p)) = E

(

2

n∗

∑

e∈E

γ(e)

)

=
2

n∗
E

∑

e∈E

γ(e)

≤ 2

n∗

c(n−1)/2+n
1
2
+ǫ

∑

i=1

Eγ(e)

=
2

n∗

(

(n− 1)

2
c+ n

1
2
+ǫ

)

Eγ(e)

=
2

n(1 − exp(−c)

(

(n− 1)

2
c+ n

1
2
+ǫ

)

Eγ(e)

→ cEγ(e)

1 − exp(−c)

The lower bound works analogously with c(n− 1)/2− n
1
2
+ǫ for the number

of edges instead of c(n− 1)/2 + n
1
2
+ǫ.

Finally, using the Markov inequality and γ(e) ≤ 1, for all edges e, yields, for
any δ > 0,

P (|γ(G(n, p)) − Eγ(G(n, p))| ≥ δ) ≤ V ar(γ(G(n, p)))

δ2

=
4 V ar

(
∑

e∈E γ(e)
)

n2δ2

≤
4
(

c(n− 1)/2 + n
1
2
+ǫ
)

n2δ2
→ 0,

where we used the bound #E ≤ c(n− 1)/2 + n
1
2
+ǫ in the last line.

This shows that

γ(G(n, p)) → Eγ(G(n, p)) =
cEγ(e)

1 − exp(−c) .

�

3.4 Numerical Results

All figures presented in this section are due to the work of Andreas Krueger.
He used an application written in Python to implement the communication
index on the Galton-Watson process and on Erdös-Renyi random graphs. The
main observation for the Galton-Watson trees is that the communication index,
defined as the average node sum, is the average degree times the average edge
weight.

36



(a) Galton-Watson sample (b) Inner nodes of the sample

Figure 9: Figure 9(a) shows a realization of a Galton-Watson tree with a
Poisson(1.5)-offspring-distribution from generation 1 (yellow) to generation 6
(white nodes). Figure 9(b) shows a visualization of the counting scheme to
avoid finite size effects. The white nodes are an artificially last generation in
this finite-size realization (they all have a degree 1), so their edges and their
neighboring nodes (pink) have finite-size effects in their communication weights
and sums. We thus do the statistics of the communication weights and sums
on Galton-Watson trees only up to the third last generation, and call these
remaining nodes inner nodes (yellow, green, red and blue).

3.4.1 The Galton-Watson Process

Since our result is only valid in the supercritical case and simulations can not
include an infinity of generations, we used the following procedure. Given a
probability distribution with mean greater one there will be a finite probability
that the process survives for infinity. To be precise, we chose a Poisson dis-
tribution Po(λ) with mean λ = 4. The computer calculated the first T = 10
generations of the process, then interrupted, ending up on a random tree with
∑T

t=0 Zt vertices. To simulate a sample subgraph of the infinite tree, the leafs
on the 10th generation are ignored, since they all have degree 1 and would adul-
terate the resulting communication weights of the edges they belong to. The
leafs are used as dummies to produce edges from generation 9 to 10, so the
degree of the vertices of generation 9 is correct. For the same reason, we ignore
the values of the communication strength of all vertices of the 10th generation.

37



Figure 10: Histogram of communication strengths (node sums) of the inner
nodes (see figure 9(b)) on a Galton-Watson tree with offspring distribution
Poisson(4). The communication index is 0.813.

Figure 11: Histogram of the communication edge weights that lead to the figure
10.
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Figure 12: Erdös-Renyi graphs: Communication node-sums histogram on a
Gnp realization with n=10000, p=1/1000. The communication index for
this network is 0.8218. Formula (15) predicts γ(G(n, 10/n) = 0.8228.

3.4.2 The Erdös-Renyi Random Graph

Here a G(n, p) network generator was used to compute some realizations of
Erdös-Renyi random graphs. Then, the distribution of the edge weights was
calculated and the communication index for these sample graphs. Figure 13
shows the statistics for the communication weights of the Erdös-Renyi random
graph. Plotted on a log-lin scale, as done in figure 14, shows a linear behavior of
the communication weights for small values of k. While the edge weight statistics
of the Erdös-Renyi random graph differs from the edge weight statistics of the
Galton-Watson process, the node statistics do not. We find the same behavior
for the node statistics in figure 10 and 12.
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Figure 13: Communication edge-weights histogram of the communication edges
that lead to figure 12.

Figure 14: Same as figure 13, but plotted on a log-lin scale.
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4 Paper 2: Time-Ordered Information Process-

ing on the Binary Tree

The analysis of communication and its effectiveness on graphs so far was consid-
ered as static static and taking place simultaneously. Each vertex was assumed
to communicate to each of its neighbors at the same time step. In this section
we want to outline the work done in paper [15] which sheds a new light on com-
munication modeling by refining the time resolution of communication. Doing
so reveals certain effects on the dissemination of information on networks and
on the de facto network structure, which can be seen in the following simple
example.

Consider three individuals, a supervisor and two subordinates, the supervisor
giving orders to both employees, the employees coordinating themselves among
each other. Hence, in terms of communication networks they form a triangle.
The supervisor gives orders to the first employee in the first half of the day, to the
second one in the second half. This leads to the situation that both subordinates
can not communicate to each other, since whenever one has free time the other
one is occupied in the chiefs bureau. The resulting communication network is a
tree of order three rather than a triangle.

This indicates that it is of importance to investigate carefully which networks
are capable of communication at all, and which properties they have - or not
have.

4.1 Overview

The example above already carries the ideas leading to a formalization of the
problem. The most important node in the network (here: the one with most
neighbors) defines the time resolution in which communication per classical
time step takes place, i.e. how many sub-steps one step has. Then, every vertex
enumerates its edges with numbers from 1 to the max-degree, interpreted as
the order in which a vertex communicates to its neighbors. This is what we
call a schedule for a vertex. If this can be done in a compatible way, i.e. there
is a schedule for each vertex such that there is no edge in the graph with two
different numbers, we speak of a graph schedule.

When interpreting the numbers as the order at which communication within
one time step takes place, it becomes clear that information can only process
along paths of increasing numbers, the admissible paths. With this handful of
definitions some natural questions can be raised: What are the graphs which
have a graph schedule and what graphs have none? Given one vertex as a
seeder of information, what is the range of communication per time step, i.e.
what is the maximal length of an admissible path? How many vertices gain the
information per time step, and how long does it take until each vertex in the
graph is informed?

Not all of these questions are getting addressed in the paper. We only treat
the problem on the binary tree, where there not only a graph schedule exists,
the process is also independent of the particular choice of schedule.

4.2 Results

The number n(g, t) of vertices can be calculated as follows.
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Figure 15: The binary tree with the root as the sender of information. The
admissible paths going from all vertices which were infected by the root at
t = 1. Admissible paths which infect new vertices at t = 2 are rendered red.
Of the possible 62 vertices on the first 5 generations of the tree, only 31 get the
information spread by the root.

Theorem 4.1 The number n(g, t) of vertices on generation g, that get infected
at time t, is given by n(g, t) = 1

g!
dg

dxg Φ(x, t) |x=0, where Φ(x, t) is the solution of

Φ(x, t) = (3 + x)x2Φ(x, t− 1) + x3Φ(x, t− 2) (16)

Φ(x, 1) = 2x+ 3x2 + x3

Φ(x, 2) = x2 + 7x3 + 11x4 + 6x5 + x6.

Such a recurrence relation with initial conditions may be derived for any
kind of graph which admits a schedule. Notice that the right side of (16) car-
ries structural information of the graph while the initial conditions reflect the
influence of the particular schedule.

From the above we calculate the total number n(t) of vertices which gain
information at time t and the overall number ρ(t) of vertices with information.

Lemma 4.2

n(t) =

(

1 − 1√
5

)

(

2 −
√

5
)t

+

(

1 +
1√
5

)

(

2 +
√

5
)t

ρ(t) = −2 +

(

1 − 2√
5

)

(

2 −
√

5
)t

+

(

1 +
2√
5

)

(

2 +
√

5
)t

.

Time-Ordered Information-Processing on the Binary Tree
S. Delitzscher
to be published

Abstract: In this paper we study the effects on information processing on a
graph that come in to play, when a certain time ordering is introduced on that
graph. If the communication between vertices does not take place simultane-
ously but consecutively, the set of possible paths on which information may
proceed becomes an interesting entity to investigate.

Find Paper 2 attached to the framework text.
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5 Paper 3: Generalized Epidemic Processes and

Threshold Percolation with Application to Knowl-

edge Diffusion

With the growing importance of the Internet and its virtual social networks like
Facebook or Twitter, personal contact with people and their opinions became
much more frequent and therefore more contagious. Individuals do not need to
meet friends anymore to take influence or to get influenced, they only need an
Internet connection, which nowadays is possible even without computers.

Hence, individuals can easily gain access to large databases of information
and entertainment (e.g. Wikipedia, Youtube) and share it online with other
individuals who are connected via any social network platform. The entities
spread in such a way are examples of what we want to call knowledge diffusion.
The main issue in modeling knowledge and the spread of knowledge is that
presently there is no single agreed academic definition of knowledge itself. The
Oxford English Dictionary [30] defines knowledge the following way:

Knowledge:

• facts, information, and skills acquired by a person through experience or
education; the theoretical or practical understanding of a subject

• awareness or familiarity gained by experience of a fact or situation

Since we are not interested in modeling the origination of knowledge, but rather
in dissemination of knowledge, we lay our focus on the interactions of bearers
of knowledge to characterize knowledge and knowledge spread.

5.1 Active and Passive Knowledge

No matter what knowledge may be or where how it originates, from the defi-
nition of knowledge given above it follows that individuals may have different
levels of knowledge. Both items include the notion of experience, and different
levels of experience imply different levels of understanding and different capa-
bilities of using the knowledge learned or acquired. In addition, this is not only
a simple classification, it is a hierarchy with correlation between distinct levels.
Highly experienced individuals teach knowledge to lower experienced individu-
als, e.g. by writing books, teaching classes or giving talks, all of it optionally
shared on the Internet to grant public access. Lower experienced individuals
consume, gain experience, adopt knowledge, and level up, see figure 16.

To include this circumstance, we divide the state of having knowledge into
two sub-states, namely having passive knowledge and having active knowledge.
Having passive knowledge here means low level experience, having the ability
(and the will10) to talk about it in a more or less serious way. In contrast,
an individual with active knowledge has good expertise and the capability of
applying this knowledge or even of developing it further.

10Individuals who have a certain knowledge, but for personal, occupational or whatever
reasons do not want to communicate this, are not contagious and can not be infected. They
are immune.
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Figure 16: The circuit of experience: High level experienced individuals teach
knowledge to mid-level and low-level experienced individuals. Successful adop-
tion helps individuals gain experience: they level up.

Hence, similar to standard epidemiology classifications, in our model we as-
sume that there are four levels or states of having knowledge. These states are:
immune, susceptible, having passive knowledge, and having active knowledge.
For instance, say this knowledge is the twelve-tone technique in musical com-
position. Having passive knowledge about it may be joyful listening to music
composed with this technique. Nevertheless, it may not enable an individual
to compose a successful twelve-tone piece of music itself. For such a project
individuals would need active knowledge.

5.2 Generalized Epidemic Processes

When the infection states are introduced, we go on specifying the diffusion pro-
cess we chose to model knowledge diffusion on a network. Since we defined
passive knowledge as the ability and will to communicate, any vertex with pas-
sive or active knowledge is assumed to have a certain probability to infect its
neighbors with passive (not active!) knowledge. For each vertex v this simple
contagion process yields a probability P ǫ(v) = 1 − (1 − ǫp)

Np(v)(1 − ǫa)Na(v),
where ǫp (ǫa)is the probability that a contagious vertex infects another vertex
with passive knowledge and Np(v) (Na(v)) is the number of neighbors of v with
passive (active) knowledge.

However, it is not sufficient to describe knowledge diffusion as a simple con-
tagion. It has the property that repetition increases the probability of adoption.
Getting in contact with a certain kind of knowledge sufficiently often may change
an individuals mind, making it curious to find out more, ending up infected with
that knowledge. That individual attained a threshold. Hence, we assume that
every vertex v has a threshold ∆(v), and the probability of adopting passive
knowledge jumps from (generally very small) P ǫ(v) to some high probability
α. This combination of simple contagion and complex contagion is what we
call generalized epidemic processes. Notice that both kinds of contagion are
included as special cases, simple contagion is obtained by choosing ∆(v) = n
for all v, where n denotes the overall number of vertices in the network and
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the threshold can never be attained. Complex contagion can be obtained by
choosing ǫa = ǫp = 0.

Further on, we include the possibility of getting infected with knowledge
by network independent processes, for instance via Television, Internet or any
kind of mass media. Since the supply of certain knowledge in mass media
depends on how widespread this knowledge is, we assume that the probability of
getting infected by mass media is a function of the densities of already infected
vertices, again distinguishing the influence of vertices with active knowledge
which mainly provide the content for reports about this knowledge, and vertices
with passive knowledge which by their demands provide the market for such
reports. Formally, P β(v) = min{βpf(x) + βaf(y)}, where βa,p are tunable
parameters, f is a function on the unit interval, and x (y) is the density of
vertices with passive (active) knowledge.

Finally, we included the possibility of forgetting knowledge. At each time
step for each vertex with knowledge there is a probability γ that the vertex
forgets and transitions to the susceptible state again. Notice that the particular
choice of γ is related to the kind of knowledge rather than to individuals. The
parameter reflects the relevance of the knowledge, its complexity and difficulty
to learn and keep. For instance the parameter would be small or even zero for
the knowledge about the date of the terrorist attack on the World Trade Center,
due to the catchy internationally well known phrase ”9/11”.

5.3 Results

Various special cases of the model are discussed analytically. First of all we
considered the pure complex contagion process, i.e. the simple contagion pa-
rameters ǫp,a and mean field parameters βp,a were chosen to be zero. Notice
that independently of our work, Janson et al. discussed the same process in
[26].

To evaluate the equilibrium states of the complex contagion process we as-
sumed that each vertex v has the same threshold ∆ = ∆(v). On an Erdös-Reyni
random graph G(n, p), p = c/n, for the mean density st of infected vertices at
time t holds

st+1 = 1 − (1 − s0)e
−cst

∆−1
∑

k=0

(cst)
k

k!
,

as n→ ∞. From the resulting fixed point equation we found that there are either
three fixed points or just one in the domain [0, 1]. In case of three fixed points
the one closest to a0 is thy dynamical stable one. The phase transition occurs in
the case when the two smallest fixed points coincide to form an indifferent fixed
point with slope 1. From that condition, f ′(x) = 1, we calculate the critical
density ac

0 which is given by

ac
0 = 1 − e−

1
2
(1−c+

√
c2−3−2c)

c(c− 1 −
√
c2 − 3 − 2c)

. (17)

Near that value a long transient behavior of the system can be observed, until
the system reaches the final high prevalence fixed point.

We also discussed the pure mean field process including forgetting, i.e. the
parameters α and ǫ of the local process are set to zero. We discuss two special
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(a) pure α (b) sub-critical α with mean field

Figure 17: The α-process on G(n, c/n) with n = 100′000, c = 3.5 and ∆ = 2
for all vertices. 17(a) shows the pure α-process for an initial infection s0 = 0.06
(ac

0 ≈ 0.058). The turquoise colored line is the total density of infected vertices,
yellow shows the density of semi-infected vertices. 17(b) shows a sub-critical
α-process, s0 = 0.05, with an activated mean-field process for active vertices,
β2 = 0.2. The rate ρ of production of vertices with active knowledge is ρ = 0.001.
The turquoise line is the total density of infected vertices, blue the density
of vertices with passive knowledge, green the density of vertices with active
knowledge.

cases of the mean field process function f , namely quadratic proportionality
f(x) = x2, and linear proportionality f(x) = x. In both cases we again observe
critical values for the initial density a0. Also we discussed the influence of a
set of vertices which is almost ’immune’ to forgetting. Such subsets can exist
due to the local threshold process when the infection probability α above the
threshold is set to 1. Then every vertex with at least ∆ (we chose ∆ = 2)
infected neighbors will immediately get reinfected after forgetting. We show
that the existence of such an immune set lowers the value of the critical initial
density. In combination with the α-process which may create such subsets, this
means that starting with a value below the critical initial density for both may
yield a phase transition.

Figure 17 illustrates this effect. While fig. 17(a) shows a pure overcritical
α-process on a G(n, p) with critical initial density ac

0 ≈ 0.058, fig. 17(b) shows
a sub-critical α-process with an activated mean field process. Notice that in
the beginning the number of infected vertices even decreases. Then the system
remains in a transient state, some vertices learn, some forget, until there is a
configuration of infected vertices which is almost immune, helping the system
to succeed the in that way lowered critical density.

Finally, the idea of subsets which are immune to forgetting can be used
to determine the size of the k-cores11 of any network. For each vertex choose
the threshold ∆ = k, then initially infect all vertices and run the simulation

11The k-core of a network is a maximal connected subgraph in which all vertices have degree
at least k.
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Figure 18: Size of the k-cores of the StudiVz network

only with the α-process, with α = 1, and with forgetting turned on. Each
vertex with less than k neighbors will forget sooner or later with possibility of
reinfection. Each vertex with k or more neighbors will be reinfected immediately
after forgetting, so the equilibrium state of the network is the state where all
vertices in the k-core are infected, the remaining vertices uninfected. Figure 18
shows the sizes of all k-cores of the Studi-Vz network, an Internet social network
of students enrolled at universities in Bielefeld, see [27] for more details on the
properties of this network.

Generalized Epidemic Processes and Threshold Percolation with Application
to Knowledge Diffusion

P. Blanchard, S. Delitzscher, G. Hiller, T. Krueger, R. Siegmund-Schultze
to be published

Abstract: In this paper we use a generalized epidemic process to model knowl-
edge diffusion in social networks. We find that, using results from threshold
percolation theory, there can happen a phase transition in the number of ver-
tices with a particular knowledge if the number of initially knowing vertices
is larger than some critical value. In sociological literature this value is often
referred to as critical mass, which now can be explained with the existence of
thresholds for each vertex in the network.

Find Paper 3 attached to the framework text.
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Figure 19: Coalition military casualties in Afghanistan by month.
Oscillations are caused by seasonal effects. Source of diagram:
http://www.icasualties.org/oef/

6 Paper 4: Passive Supporters of Terrorism and

Phase Transitions

As one of the many applications of knowledge diffusion on networks, we consider
radical political or ethical ideas as knowledge, which spread according to our
model. Clearly, the notion of terrorism has to be handled with care, since ones
terrorists are another ones freedom fighters and we do not want to take part
in discussions about who is a terrorist and who is not. We assume terrorism
to be steady acts of violence committed by so called terrorists and having an
opponent side, the counter-terrorists, which tries to stop attacks by removing
the originators from the network.

6.1 The Model

To represent the social network of a country, a district or a village, we chose a
graph G = (V,E) on a finite set of vertices V and a set of edges E. We assume
that vertices can be in one of four states {0, 1, 2, 3}. State 0 represents the sus-
ceptible part of the population, any individual which has a neutral opinion on
terrorists. State 1 represents the passive supporters of terrorism. This includes
any individual that helps terrorists by acts of support, ranging from hiding ter-
rorists, providing them with cash, information or other supplies, up to keeping
still about terrorists activities. Note that individuals are not necessarily follow-
ers of the ideologies the terrorists stand and fight for. They may be suffering
under violent methods like torture or they are blackmailed into passive support
or they just get paid for it. State 2 denotes active terrorists, those individuals
which are planning and sooner or later committing the acts of violence which
we call terrorism. Finally, state 3 encodes all vertices which which are isolated
from the network and do not interact anymore with other vertices.

Since radical political ideologies are a special case of knowledge, we used
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the generalized epidemic process approach we already used to model knowledge
diffusion, but with some minor changes. We assume that every vertex in one of
the contagious states 1 or 2 has a probability ǫ of infecting susceptible vertices,
i.e. of becoming a passive supporter. Also every vertex v has a threshold ∆(v).
In contrast to the knowledge diffusion model, this threshold is not due to the
dramatical infection probability of repetition effects displayed by learning. It
should be viewed as a rioting threshold in the sense of Granovetter (see above),
i.e. whenever there are enough passive supporters and active terrorists in an
individuals environment the probability of joining in increases dramatically to
a given high probability α. And even if individuals would like to withstand this
social pressure, the passive supporters and active terrorists in their environment
are not likely to tolerate neutral behavior.

Hence, for a vertex i with Ni(t) infected neighbors at time t the probability
Ploc of changing state χi from neutral 0 at time to passive supporter 1 by the
local infection process is given by

Ploc {χi(t+ 1) = 1 | χi(t) = 0} =

{

ǫNi(t), Ni(t) < ∆i

α, Ni(t) ≥ ∆i

where we used the standard estimation for 1− (1− ǫ)N ≈ ǫN in case of small ǫ.
Also we included a mean-field process which represents the effects of col-

lateral damage. Collateral damage (from lat. collateralis, on the side) is an
euphemism for civilian casualties caused by a military action. We assume that
due to action of external forces like the state or allied troops active terrorists get
removed from the network at a rate ρ. Since such actions may involve civilian
casualties, and friends, relatives, and otherwise emotionally involved are - in
case of having been neutral up to that event - likely to change their attitude
and start to sympathize with the troops opposing force, ending up as a pas-
sive supporter of terrorism. Even if there are no casualties, reports on tortured
and humiliated prisoners in Television and on the Internet may have the same
effect. Therefore we assume that for each terrorist removed from the network
(which happens at some rate ρ) a fraction κ of the population turns to passive
supporters.

Further on, we assume that active terrorist are recruited at rate k, and that
there is a probability γ that terrorists and passive supporters change their mind
and change back into the susceptible state 0.

6.2 Results and Conclusions

Since the local process is the same generalized epidemic process used in modeling
knowledge, the critical initial density is given by formula (17). The alternative
definition of the mean field process also yields a critical value, namely if

kρκn

(γ + k(1 − γ))(γ + ρ(1 − γ))
> 1,

then the process becomes over-critical.
Simulations with several choices of parameters were done, some of them

are depicted in fig. 20 and fig. 21. In fig. 20 an Erdös-Renyi random graph
G(n, c/n) was chosen as underlying network, with n = 50′000 and c = 4.

The main observation is the existence of a phase transition in the number
of passive supporters. This contradicts the common military strategy of ”throw
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Figure 20: Densities of active terrorists and passive supporters on an Erdös-
Renyi random graph G(n, p), p = c/n with n = 50′000 and c = 4, threshold
∆ = 2, initial density of passive supporters b0 = 0.01, mean field κ = 0.001, in
a time span of t = 500 steps. Choosing ρ = 0.0004 (left) or ρ = 0.00025 (right)
only alters the moment when the phase transition happens.

a bomb - make an enemy; donate a gift - make a friend” which is designed to
keep the civilian population on the side of the counterterrorist forces in case
of collateral damage. The network maintains a transient state in which some
passive supporters change back to the susceptible state, some individuals turn
from susceptible to passive supporter, until this rearranging process yields a
configuration where the α-process creates a huge cascade of infections, changing
the phase state of the network from almost all vertices are susceptible to almost
all vertices are passive supporters.

Figure 21 shows the simulation run on the StudiVz network. There, it can
be observed that already one or two cases of collateral damage are sufficient to
yield the phase transition.

Figure 21: Densities of active terrorists and passive supporters on a sample of
the StudiVz network, two single runs. The threshold is ∆ = 2, initial density
of passive supporters b0 = 0.00005, mean field κ = 0, 0001, in a time span of
t = 500 steps. The phase transition occurs as soon as one or two active terrorists
get captured.
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Passive Supporters of Terrorism and Phase Transitions
F. August, P. Blanchard, S. Delitzscher, G. Hiller, T. Krueger
NATO Science for Peace and Security Series - E: Human and Societal Dy-

namics, Volume 75, 2010, Complex Societal Dynamics - Security Challenges and
Opportunities, Edited by K. Martinás, D. Matika, A. Srbljinovic, pp 190-198,
arXiv:1010.1953v2 [physics.soc-ph]

Abstract: We discuss some social contagion processes to describe the forma-
tion and spread of radical opinions. We use threshold dynamics to describe the
local spread of opinions, and mean field effects. We calculate and observe phase
transitions in the dynamical variables resulting in a rapidly increasing number
of passive supporters. This strongly indicates that military solutions are inap-
propriate.

Find Paper 4 attached to the framework text.
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Abstract

In this paper, we discuss the importance of the network connectivities of the

peers in Bit Torrent based systems in determining the download performance of the

peers. In this context, assuming that the fraction of the peers of each bandwidth

are known, we derive optimal connectivities of the peers that help to improve the

average latency of the peers. We represent the topology of a Bit Torrent based

system as a weighted graph, where the average edge weight of the graph directly

relates to the download latency of the peers. We formulate the average edge weight

of the whole system as a linear function of the fraction of the edges that connect

peers of different bandwidth and derive the topology that maximizes the average

edge weight of the network. Simulation results based on the Bit Torrent protocol

validates the fact that in the optimal topology, peers have 13% better download

latency as compared to topologies formed in the normal Bit Torrent based systems.

Further the obtained topology also improves the fairness of the system as compared

to normal Bit Torrent significantly.

1 Introduction

The popularity of Bit Torrent as a file sharing protocol has grown immensely in the

last few years, thus gaining huge research interest in the scientific community. A ma-

jor research objective in the case of Bit Torrent systems is to improve the download

performance of the peers by addressing several key issues like incentive mechanisms,

piece and peer selection mechanisms, and fairness issues.

Another important aspect that determines the download performance of the peers

is their own bandwidth as well as the bandwidth of their neighbors. The neighbors of

a peer are randomly selected by an entity called tracker, which the peers contact while

joining the network. However at any particular time, links to only a subset of these

neighbors remain active (these links are formed based on a set of rules elaborated in

section 2), as pieces are transfered through these links. We refer to these neighbors, the

links to which are active at a particular time, as the active neighbors and the topology

formed by these set of active neighbors as the active topology. To distinguish from

the active neighbors, we refer to all the neighbors (inclusive of both active as well as

non-active) as the static neighbors and the topology formed by these static neighbors

as the static topology (ref. figure 1). Hence in this context, selecting suitable static

1
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Figure 1: The static and active neighbors of peer A in a Bit Torrent system. The set of

active neighbors (indicated by the solid lines) is a subset of the set of static neighbors.

neighbors based on the peers’ bandwidths can be an effective technique to improve the

download performance of the peers. However, researches have been mainly directed

towards improving peer associations in the active topology through various means like

developing better incentive mechanisms, piece and peer selection strategies etc. Im-

proving the static topology has not been considered previously; the main reason being

that previous experimental results [1] indicated that the download performance of the

peers in a Bit Torrent system is dependent on the active topology which, researchers

concluded, is independent of the underlying static topology that is actually formed.

Our simulation of the assortativity coefficient of the peers, based on peer bandwidth, in

the active and static topology (shown in figure 2(a)) also indicates that while the static

topology is fairly random, the active topology is largely correlated and hence clusters

of similar bandwidth peers will appear. However beyond this apparent independence if

one looks in the entire spectrum of possible static networks, the observations are con-

trary. A major contribution of this paper is to report the observation that the nature of

active topology do correlate with the static topology when its assortativity1 is pushed

(both in negative and positive direction) beyond a point. We experimentally validate

this statement that we discuss next.

1.1 Validation of the Importance of Static Topology

We simulated the assortativity coefficient r [2] of the nodes, based on their bandwidths,

for the static and calculated the coefficient of the active network with time, the results

of which are shown in figure 3. The figures indicate a huge dependence of the active

network on the static network topology. When the static network is assortative, peers

tend to exchange more number of pieces with its similar bandwidth neighbors. This

indicates that the active network is also assortative. Similarly, when the static network

is anti-assortative, peers exchange more number of pieces with dissimilar bandwidth

neighbors. When the active network is assortative, the high bandwidth peers benefit

1Assortativity of the peers is defined as the probability of mixing of peers of similar types, like here peers

of similar bandwidth
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Figure 2: Figure 2(a) shows the assortativity of the active and static topologies in nor-

mal Bit Torrent protocol. Figure 2(b) shows the cumulative distribution of the down-

load completion time of the high, medium and low bandwidth peers in normal Bit

Torrent protocol. Figure in inset shows the ratio of bytes downloaded and uploaded

over the time by the high, medium and low bandwidth peers.

more as compared to the low bandwidth peers in terms of download latency; the re-

verse situation occurs in case of anti-assortative networks, where the download latency

of the low bandwidth peers improves much as compared to the high bandwidth ones.

This dependence gives us the hope that optimizing the static graph will yield improve-

ment in the average download performance of the peers. An optimized static/active

graph essentially means that the flow of information, hence the download of pieces, is

maximized. We next summarize our objectives.

1.2 Objectives

The static network of a Bit Torrent system is represented using a weighted graph, where

the nodes of the graph represent the peers and the edges represent the links of the static

network. The weights of these edges are determined by the bandwidth categories of

the peers that are connected through these edges. Since the edge weights represent the

volume of information flow possible through the links, the edge weight of a link is thus

a representative of the download performance achieved by the corresponding peers of

the link. The edge weight can be determined by the nature of the nodes (peers) joining

it. For example, a high (low) bandwidth peer connected with a high (low) bandwidth

peer results in a high (low) edge weight, while a high connected to a low bandwidth

peer will yield an edge weight somewhere between high and low. Hence the first step of

constructing optimum topology is to choose the categories of edges in such a fashion so

that the average edge weight, hence information flow within the network is maximized.

The next step would be actually to build up the static topology satisfying or largely
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Figure 3: The correlation of the assortativity of the active network and static network

for assortative [figure 3(a)] and anti-assortative [figure 3(b)] static topology.

conforming to the above constraints.

Rest of the paper is organized as follows. We next provide a brief overview of the

Bit Torrent protocol performance. In section 3 we attempt to derive optimal topologies

for a given set of bandwidth categories and fraction of nodes in each category. The

simulation results are presented in section 4. Finally, we draw conclusions in section

5.

2 Bit Torrent Overview

We provide here a brief description of the Bit Torrent protocol [3].

Peers willing to obtain a file (say F ) initially download a torrent file containing the

meta-info of file F . The torrent file contains the address of the tracker as well as the

information about the file pieces. The torrent file is opened using a Bit Torrent client

software, which connects to the tracker that sends a list of around 50 remote peers,

selected randomly from the existing peer set. The peers connect to these remote peers

thus forming the static topology, which is largely regular. However, peers can generally

download simultaneously from a subset of around 40 peers but can simultaneously

upload to a more smaller subset of peers (∼ 5) in its neighborhood. This subset of

active links forms the active topology and changes after every time slot of 10 seconds

(ref. figure 1). In contrast to the static topology, the active topology changes much

frequently over time [4].

The file F is broken into smaller pieces which peers exchange among themselves.

Peer selection for uploading pieces is done using a CHOKING/UNCHOKING mech-

anism [5]. Every peer sends an INTERESTED message to its neighbors if it has some

missing piece to offer. After an interval of every 10 seconds, every peer selects four

neighbor peers preferentially from whom it has recently obtained pieces with the high-



5

est bandwidth rate (the tit-for-tat principle). The selected neighbors are then said to be

unchoked by the peer, which means that the peer will upload requested pieces to them

if they are interested. Rest of the neighbors are said to be choked. After every 30 sec-

onds the peer selects a random neighbor (which is not already unchoked) that has sent

an INTERESTED message and unchoke it. This process, called optimistic unchoking

is primarily aimed towards helping newly arriving peers that does not have any piece

to exchange.

Bit Torrent Simulator To simulate the Bit Torrent protocol and to test the proposed

optimizations, we have developed a discrete event simulator that follows the actual Bit

Torrent official protocol [3], including the newly introduced modified seeder choking

algorithm [1]. The bandwidth categories of the peers in the simulator can be tuned to

any values; however in this paper we use 2 (high and low) or 3 (high, medium and

low) bandwidth categories for the simulations. Further the arrival and departure of the

peers, that generates the churn in the network has been modeled according to the recent

empirical studies made in [4].

Simulation results of the normal Bit Torrent protocol with equal proportions of

high, medium and low bandwidth peers indicate that the download performance is

heavily biased towards the high bandwidth peers. The cumulative distribution of the

total download time of the peers for low and high bandwidth in a normal Bit Torrent

system (figure 2(b)), indicates a huge difference in the download latency of the high and

low bandwidth peers (nearly 6 times), although the bandwidth of the high bandwidth

peers is nearly 3 times higher than the low bandwidth ones and the ratio of the number

of bytes downloaded and uploaded is comparable for the high and low bandwidth peers

(inset figure 2(b)). Thus the Bit Torrent system is not fair with respect to the low

bandwidth peers. This observation also adds to an extra motivation, whereby one of

the objectives which can be set is to ensure fairness. Although we are driving for better

performance, fairness of the performance also needs to be tested.

We next formalize the topology optimization problem and discuss solutions for the

same.

3 Topology Optimization

We next formalize the topology optimization problem and derive optimal topologies

for certain special cases.

3.1 Formalizing the Problem

We model the static network of a Bit Torrent system as a regular graph G(V,E), where

the set of vertices V represent the peers in the network and E, the set of edges connect

them. We assume that the bandwidth of each peer belongs to any one of the categories

x1, x2, . . . , xn, where x1 < x2 < . . . < xn. Further we assume that the fraction

of peers of each bandwidth category is known and is given as ρ1, ρ2, . . . , ρn. Let qij

denote the fraction of edges that connects nodes of bandwidth category xi with that of

xj .
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We assume that for an edge, when the two peers corresponding to the edge belong

to the same bandwidth category, say xi, the weight of the edge is assumed to be xi.

However, if one of the nodes is of bandwidth xi and the other xj , where xi < xj , then

the weight of the edge is assumed to be xj with probability p
(xj)
ij and xi with probability

p
(xi)
ij = 1 − p

(xj)
ij respectively, depending upon whether the peer with bandwidth xj

transfers piece to peer with bandwidth xi or vice versa. We later derive expressions for

p
(xj)
ij .

If E(γ) represents the mean edge weight of the edges of the graph, then E(γ),
which is our objective function, can be represented as

E(γ) =
∑

xiqii +
∑

i

∑

j:j>i

[

xjp
(xj)
ij qij + xi(1 − p

(xj)
ij )qij

]

(1)

We can eliminate the term
∑

xiqii from the above expression of E(γ) by establishing

a relation between the fraction of the nodes in a category and its corresponding link

fraction, which we state next using a theorem, the proof of which is avoided due to

want of space.

Theorem 1 Suppose in a network of peers of equal degrees (say d), where each peer

has bandwidth xi ∈ {x1, x2, . . . , xn} and the fraction of edges connecting peers with

bandwidth xi and xj denoted as qij (1 ≤ i, j ≤ n) is known, then the fraction of peers

of bandwidth i can be represented as,

ρi = qii +
1

2

∑

j<i

qij +
1

2

∑

j>i

qij . (2)

From equation 2 we find that

n
∑

i=1

xiρi =

n
∑

i=1

xiqii +
1

2

n
∑

i=1

xi

i−1
∑

j=1

qij +
1

2

n
∑

i=1

xi

n
∑

j=i+1

qij

⇒

n
∑

i=1

xiqii = E(x) −
1

2

∑

i

∑

j:j>i

xjqij −
1

2

∑

i

∑

j:j>i

xiqij , (3)

where E(x) =
∑n

i=1 xiρi is the average bandwidth of the peers in the network. From

equations 1 and 3, we derive the objective function as

E(γ) = E(x) +
∑

i

∑

j:j>i

[

∆ji

(

p
(xj)
ij −

1

2

)

qij

]

, (4)

where ∆ji = xj −xi for i < j. Thus our objective is to find optimum values of qij that

maximizes E(γ) and follows the constraint in equation 2. We next attempt to derive

expressions for pij .

3.2 Deriving p
(xj)
ij and p

(xi)
ij

To determine the value of p
(xj)
ij , we assume that the link connecting peers with band-

width xi and xj respectively is active under exactly one of the following conditions
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1. A piece is being transferred in the direction xj → xi via regular unchoke mech-

anism, the probability of which is assumed to be φji.

2. A piece is being transferred in the direction xi → xj via regular unchoke mech-

anism. Since the peers follow a tit-for-tat mechanism, then according to the

previous case, if the probability that a piece is transferred in direction xj → xi

is φji, the probability that a piece will be transferred in the opposite direction,

i.e. xi → xj is φij =
xj

xi
φji.

3. A piece is being transferred in the direction xi → xj via optimistic unchoke

mechanism, the probability of which is suppose ξij .

4. A piece is being transferred in the direction xj → xi via optimistic unchoke

mechanism, the probability of which is ξji. Since the peers for optimistic un-

choking are selected randomly, we can assume that ξij = ξji = ξ.

Thus assuming that exactly one of the above four events must occur when the link is

active, we have

φji + ξ +
xj

xi

φji + ξ = 1

⇒ φji =
(1 − 2ξ)xi

xi + xj

(5)

Thus p
(xj)
ij = φji + ξ = (1−2ξ)xi

xi+xj
+ ξ.

Finding the values of qij from the expression in equation 4, for any values of n, is

difficult. However for most practical cases, the bandwidth categories of the peers are

restricted to 2 or 3; we next attempt to find solutions for networks with two bandwidth

categories, high and low.

3.3 The Case of 2 Bandwidth Levels

For the case n = 2, we consider two bandwidths, high and low, denoted as xh and

xl respectively and let ρh and ρl denote the fraction of high and low bandwidth peers.

Similar to p
(xj)
ij in the n bandwidth category case, for n = 2, we denote the probability

of a transfer from high to low bandwidth peer as p(xh), i.e. a link connecting high and

low bandwidth peer has weight xh with probability p and xl with probability 1−p(xh).

Further, let qhh, qll and qhl denote the fraction of edges connecting high-high, low-low

and high-low bandwidth peers respectively. Then the average edge weight (similar to

equation 4) can be derived as

E(γ) = E(x) + (xh − xl)

(

p(xh) −
1

2

)

qhl (6)

subject to conditions

ρh = qhh +
qhl

2
and ρl = qll +

qhl

2
(7)
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Figure 4: The connectivities of high and low bandwidth nodes, that maximizes the edge

weight in a regular graphs, for two cases p(xh) > 1
2 (figure 4(a)) and p(xh) < 1

2 (figure

4(b)). For p(xh) > 1
2 , the graph forms a bipartite graph, where no peers of high or low

bandwidth are directly connected to each other, on the other hand when p(xh) < 1
2 ,

the high and low bandwidth peers gets isolated from each other to maximize the edge

weight.

Our objective is to maximize E(γ). We find from equation 6 that since the term E(x)
is a constant and xh −xl > 0, hence for p(xh) > 1

2 , the term (xh −xl)
(

p(xh) − 1
2

)

qhl

becomes greater than zero and thus needs to be maximized for maximizing E(γ). Simi-

larly, when p(xh) < 1
2 , the corresponding term becomes negative and hence needs to be

minimized. As can be observed, when p(xh) > 1
2 , E(γ) is maximum when qhl = 1 and

when p(xh) < 1
2 , the corresponding value of qhl = 0. These values imply that when

p(xh) < 1
2 , to maximize the edge weight the high and low bandwidth peers should have

no connections among themselves, thus indicating a total clustering of the peers based

on their bandwidth. Correspondingly, for p(xh) > 1
2 , the edge weight is maximized

when qhl = 1, i.e. there is a maximum mixing between the peers of different band-

width. Thus we find that there exists a critical value of p(xh) for which the nature of

the topology changes completely when we intend to maximize the average edge weight

(ref. figure 4). However, for practical purpose, to maintain the scalability of the net-

work the network needs to be connected. Hence to maintain a given connectivity of the

network and yet maximize the edge weight, we need to do the following.

When p(xh) < 1
2 , we need to minimize the connections between the different band-

width nodes. Thus the solution is to partition the graph following a min-cut algorithm,

where the partition sizes are known apriori. However the graph partitioning prob-

lem where the fraction of nodes in each partition is given is a known NP-Complete

problem[6], and efficient heuristics for the solution of the same exists [7].

Similarly when p(xh) > 1
2 , the problem of partitioning the graph to maximize

the average edge weight requires to partition the graph into high and low bandwidth

peer sets such that the total edge weight between the two sets is maximum. Thus this

problem evolves as a max-cut problem which is also a known NP-complete problem

[6] and similar heuristics for approximating the partition exists. For our simulations,
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we use the Kernighan-Lin heuristic [7] to generate the min-cut partition of the network.

3.4 The Case of n Bandwidth Levels

On attempting to derive optimal values of qij for any generic value of n, we find from

equation 4 that the average edge weight, E(γ) depends on all the values of p
(xj)
ij for all

possible values of i, j.

From the expression of p
(xj)
ij obtained from equation 5, we find that for all xi < xj ,

we have p
(xj)
ij > 1

2 if

(1 − 2ξ)xi

xi + xj

+ ξ >
1

2

⇒ ξ >
1

2
. (8)

This essentially means that optimistic unchoking is performed always. This is an im-

possible situation, hence p
(xj)
ij is less than 1

2 for any practical situation. Thus in this

case, we always need to minimize E(γ) (refer equation 4, where
(

p
xj

ij − 1
2

)

becomes

negative for all values of i, j) and hence the optimal topology can be obtained by iter-

atively applying the min-cut algorithm for every pair of bandwidth categories.

In the next section, we show with the help of simulations that using our model

and partitioning the network accordingly yields substantial improvement in the link

utilization and download latency as compared to the random network generated using

the tracker.

4 Simulation Results

We discuss the simulation results obtained to validate the proposed models. The Bit

Torrent simulator developed by us was briefly described in section 2. In the simulator

the static graph gets evolved over time. But the min-cut algorithm is essentially pro-

ducing a complete static graph. Developing an evolving algorithm which encompasses

all the dynamics of node churn is a non-trivial problem and not discussed here. How-

ever, for simulation purpose, we assume that this static graph is a representation of the

stable underlay arising out of evolution and churn.

We simulated various network parameters like the average edge weight of the net-

work and the average download latency of the peers in the system for various values

of qij , where i 6= j, and also for various values of ρi, for both 2 and 3 bandwidth

categories. The downloading file was broken into 300 pieces; we measured the average

edge weight and the average download latency of a peer after it has downloaded 30

pieces. This artificially ensures the stability of the underlay which is required to fully

understand the impact of static network. We initially show the correlation between the

average download latency of the system and average edge weight of the peers and then

show the variation of the average edge weight for various parameters stated above.
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Figure 5: Figure 5(a) shows the relation of the average edge weight and the average

download latency of the peers for ρ = 0.3 and the figure in inset shows the same for

ρ = 0.5. Figure 5(b) shows the correlation between average edge weight and link

utilization of the peers.

4.1 Download Performance vs. Average Edge Weight

We simulated the average download latency of the system and the average edge weight

to establish the correlation between the two. The results, shown in figure 5(a), indicate

that the average download latency of the peers decreases with increasing average edge

weight. Hence improving the average edge weight will improve the download latency

of the peers. Further, we consider another parameter, the link utilization, U , which

we define as the average number of links of a peer that are active for download per

time slot. A higher value of U indicates more number of parallel download occurring

per time slot. We also establish a correlation of U and the average edge weight of the

system. Simulation results, shown in figure 5(b) indicate a strong positive correlation

between these parameters. The results validate our principal proposition that improving

the edge weights in static topologies directly affects the performance of the system.

4.2 Performance of Min-cut Topology

In this section we compare the download performance of the peers in topologies ob-

tained using the min-cut algorithm and the ones formed in normal Bit Torrent systems.

We calculated the average download latency of the peers for the min-cut topologies

and normal Bit Torrent systems for various values of ρh, for 2 and 3-bandwidth levels.

Simulation results for the 2-level case with nearly 2000 peers (shown in figure 6(a))

show that with increasing values of ρh, the average download latency of the peers for

the min-cut topology steadily improves as compared to the normal Bit Torrent topology.

However, for very low values of ρh, the average download latency is slightly better in

case of normal Bit Torrent topology. This is because of the extreme high proportion of
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(b) Average Download Latency Compar-

ison with ρh (3 Bandwidth Levels)

Figure 6: Figure 6(a) shows the variation of average download time for the optimal

topology and the normal Bit Torrent protocol with ρh and the inset figure shows the

corresponding average weight of the peers. Figure 6(b) shows the same for 3 bandwidth

levels.

low bandwidth peers that have a slightly better download latency than in the min-cut

topology. Figure 6(b) shows very similar results for 3 bandwidth levels, high, medium

and low. In the 3 bandwidth level case, for ease of representation, we fixed the fraction

of medium bandwidth peers to ρm = 0.3 and the high and low bandwidth peers have

been varied accordingly. The average download latency of the peers in the min-cut

topology is nearly 13% lower as compared to the normal Bit Torrent topology for the

2-bandwidth level case, when ρh = 0.5 and nearly 18% lower in case of 3-bandwidth

levels, when ρh = 0.4, thus indicating a huge improvement in download latency of the

peers.

The min-cut algorithm forms a topology with the minimum possible value of cut-

point qhl for given values of ρh; in the next section, we observe the average download

latency and the average edge weight of the peers for the entire spectrum of the cut-

points.

4.3 Effect of Cut-points

We observe the average download latency of the peers and the average edge weight

for various value of qhl. Simulation results for the 2-bandwidth level case, shown

in figure 7(a), for ρh = 0.3, 0.5 and 0.7, reveal that for all the three values of ρh,

the average download latency of the system increases with increasing values of qhl.

For each of these three cases we observed the value of p(xh) to be lesser than 1
2 , and

hence as discussed in section 3.3 that when p(xh) < 1
2 , the edge weight decreases with

increasing qhl (ref. inset figure 7(a)).

The figure shows that the average download latency of the system increases very
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slowly with qhl, when the value of qhl is small (qhl < 0.3, not shown in figure) and

then increases at a faster rate with further increase in qhl. The average edge weight

of the system also decreases accordingly with increasing qhl. Thus our observation

reveals that topologies similar to the min-cut topology have very similar download

performance.

4.4 Effect on Fairness

In this section we discuss the fairness of the system in case of min-cut topology and

compare it with the normal Bit Torrent topology. We also observe the change in fairness

of the system with qhl. To measure the fairness of a system, we introduce a term called

fairness index, which we define as follows:

Definition 1 If dl and dh represents the average download latency of the low and high

bandwidth peers respectively, the fairness index f of the system in a 2-bandwidth level

case is defined as the ratio, f = dl

dh
. The system is considered to be fair if f is nearer

to an optimal fairness value fo = bh

bl
, where bh and bl are the download bandwidth of

the high and low bandwidth peers respectively.

Figure 7(b) shows the variation of the fairness, f , of the system in a 2-bandwidth

level case with qhl, when the download latency of the high and low bandwidth peers

are 3000 Kbps and 800 Kbps respectively, for 3 values of ρh (0.3, 0.5, 0.7). Thus

the system will be considered as fair if the value of f is nearer to the optimal fairness

value of 3000
800 = 3.75. As can be seen, f is far from the optimal value for very low

values of qhl as the download latency of the high bandwidth peers are much lower as

compared to the low bandwidth ones. The value of f is also very low at higher values of

qhl indicating that low bandwidth peers gaining undue advantage over high bandwidth

peers.

If we traverse the curve up from low values of qhl, with slight increase the fairness

improves very fast and reaches the optimal point. Hence, although the min-cut topology

(qhl = 0.1) obtained using the min-cut partitioning algorithm is not optimal in terms of

fairness; however the fairness is maximum at qhl = 0.3, the configuration of which is

very similar to the min-cut value of qhl = 0.1. Moreover, as seen from figure 7(a), the

average download latency of the peers at qhl = 0.3 is only slightly greater than in case

of qhl = 0.1, thus indicating that the topology, which is nearly optimal in terms of the

average download latency of the peers as well as the fairness index is very similar to

the min-cut topology that we have derived. We state such a topology as a near-optimal

topology.

Hence in an effort to measure the effectiveness of a topology we introduce a mea-

sure called the performance index p, combining fairness and download performance.

The performance index of a system is defined as follows:

Definition 2 If f represents the fairness index of a system with the optimal fairness

represented as fo, and da represents the average download latency, then the perfor-

mance index, p is represented as 1
(|f−fo|)·da

, when f 6= fo, and is represented as 1
da

when f = fo. Note, |f − fo| indicates how far one is away from the optimal point.
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dex

Figure 7: Figure 7(a) shows the variation of average download time of the peers with

qij(i 6= j) in a 2-level case for ρh = 0.3, 0.5 and 0.7. The figure in inset shows the

corresponding average weight of the peers. Figure 7(b) shows the variation of fairness

index f with qhl for the same values of ρ. The figure in inset compares the performance

index p for the near-optimum topology at qhl=0.3 and the normal Bit Torrent topology

for ρh = 0.3, 0.5 and 0.7

Thus a higher value of p indicates better performance of the system. Figure 7(b)

(inset) compares the performance index of the normal Bit Torrent topology and the

near-optimum topology with qhl = 0.3; as the figure indicates the near-optimum topol-

ogy has much better fairness (nearly 12 times better for ρh = 0.3) as compared to the

Bit Torrent system.

5 Conclusion

The principal contribution of this work is realizing that static network can affect the

performance of active networks. However, we did not stop at this realization, using an-

alytical and algorithmic techniques we show that there are optimum topologies which

can minimize download latency. But beyond performance maximization, there are fair-

ness issues and we show that there are zones where high fairness is achieved without

undermining the performance too much. The next work remains in developing a more

realistic model so that the properties of the static graph get imbibed dynamically.
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Abstract

In this paper we study the effects on information processing on a graph

that come in to play, when a certain time ordering is introduced on that

graph. If the communication between vertices does not take place simulta-

neously but consecutively, the set of possible paths on which information

may proceed becomes an interesting entity to investigate.

1 Introduction

In the theory of diffusion processes the most interesting questions are that of
the existence and configuration of equilibrium states and how these depend
on process parameters and network topology. A widely used approach is to
model the object which diffuses through a medium (the network) as a contagious
infection, i.e. there are some initially infected vertices which have a probability
to carry the object over to their environment, following certain rules which
depend on the process under consideration.

Usually there is a static network with some vertices (sometimes also called
agents) infected at some discrete time t. Then, all infection probabilities get
evaluated to determine which vertices are infected at time t + 1, and so on.
Here, we want to discuss an aspect of such diffusion processes on networks
which has not gathered much attention so far. We assume that dissemination
does not affect all vertices at the same time. There is a rule that forces vertices
to query its neighbors sequentially. The time resolution of these query processes
is determined by the maximum degree in the graph. Then, already simple graph
structures can lead to a different behavior of diffusion processes.

To illustrate this issue, suppose there are three people, say Alice, Bob, and
Christine, who all know each other and want to meet in a face-to-face conver-
sation, but not all three simultaneously. Since each knows exactly two people,
they agree that two occasions to meet are sufficient, say in the morning and in
the evening. Now one vertex, say Alice, wants to meet Bob in the morning who
agrees to do so. Then Christine will meet none in the morning and one of Alice
and Bob in the evening. The remaining one will meet none in the evening. If
Bob meets Christine, then Alice will have no contact to Christine on this time
step at all, although they are neighbors in the network.

The schedule which follows from resolving one time step t into two phases
leads to a different infection behavior than the classical setup without time
ordering. Assume Alice is contagious with probability pA of infecting on contact.
Then, the probability that Christine gets infected is pA times the probability
that Bob infects her. On the other hand, assume Christine to be contagious with
probability pC , then the probability that Alice gets infected at time t is zero.
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As we will work out below, this phenomenon is due to the fact that there is no
strict (degree bounded) schedule for the triangle at all.

The example shows that the process topology can change dramatically if
scheduling is introduced and whether there is a reasonable schedule or not. In
this paper we want to make a first step toward attacking this problem, focusing
on graphs which have a degree bound schedule. In detail, we consider a single
contagion process on the binary tree, with the root being initially infected and
all infection probabilities are chosen to be 1. Thus, we will speak of information
processing rather than contagion or infection. In this way only scheduling will
influence the process, there are no interference effects that would come from a
non trivial diffusion process or a more complex network than the binary tree.

The paper is organized as follows. At first we introduce some notation and
the notions of schedules and admissible paths in general graphs. We then turn
our view to the scheduled binary tree, deriving a recurrence relation that carries
the structural information of the graph and the schedule. Solving this equation
leads to formulas for the number of vertices that get infected at time t and other
quantities deduced from that.

2 Definitions and Notation

In this section we introduce the notion of a schedule for graph and its effects on
the process topology of information flowing through a graph.

Definition 2.1 (schedule) Let G = (V,E) be a graph, denote by ∆(G) =
maxv∈V deg(v) the maximum degree of G. A vertex schedule for a vertex v ∈ V
is an enumeration of all edges e ∈ E incident to v, i.e. an injective mapping

ιv : {e ∈ E : e incident to v} → {1, 2, . . . ,∆(G)} ⊂ N.

Schedules ιv, ιw of adjacent vertices v, w ∈ V are said to be compatible if

ιv((v, w)) = ιw((v, w)).
A graph schedule for a graph G is a family {ιv}v∈V of schedules, such that

any pair of schedules of adjacent vertices is compatible.

Notice that a graph schedule does not need to exist, figure 1 shows an example.
It may happen, that regardless of which schedule for a vertex is chosen, there
are no compatible schedules on the other vertices.

The name schedule rises from the idea, that communication between adjacent
vertices may follow a time ordering, i.e. the communication does not take place
simultaneously but consecutively. A vertex v communicates first with the vertex
adjacent to ι−1

v (1), second with the vertex adjacent to ι−1
v (2) and so on, Here

we suppose that ∆(G) is the time unit in which communication on the graph
takes place, and that each single communication between two vertices requires
a fraction 1/∆(G) of the time unit.

We now want to investigate the processing of information on a graph
equipped with a graph schedule. A vertex v communicates an information con-
secutively to its neighbors and according to its schedule. Notice that the other
vertices are only able to spread the information after they communicated to
v or to a vertex, which already has the information. Thus, the time ordering
induced by the schedules prohibits some paths to participate in spreading the
information. The admissible paths are the following:
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Figure 1: Example of a graph, which admits no graph schedule. If one chooses
a schedule for vertex ”1”, the vertices ”2” and ”3” can not find a compatible
schedule.

Definition 2.2 Let G be a graph equipped with a graph schedule. An admissible
path p = (v1, v2, . . . , vk) is a tuple of vertices vi ∈ V, i = 1, . . . , k such that

ιvj−1
((vj−1, vj)) < ιvj

((vj , vj+1)), for all j = 2, . . . , k − 1.

One may interpret the edge weights defined by the values of the scheduling
functions as a communication potential U(e) of the corresponding edge, and
information can only proceed along paths (e1, . . . , ek) with positive potential
difference at every step, i.e. ∆U = U(ei+1) − U(ei) > 0. In that case, this
difference describes a force affecting the possible paths of information processing.

We now introduce a simple schedule for all rooted regular trees and discuss,
how much the choice of a particular schedule affects the process topology on such
trees. The enumeration schedule is defined inductively by choosing the root to
be the first vertex with a schedule and then choosing all other schedules in a way
such that they are compatible with the other ones. To do so, let T = (V,E) be a
rooted d-regular tree and choose an enumeration for the vertices of T . Then the
schedule for the root vertex v0 is defined by ιv0

((v0, vk)) = k, k = 1, . . . , d − 1,
since the root has d − 1 children and no parent. Schedules for all other vertices
v ∈ V must fulfill the compatibility constraint ιv((v, w)) = ιw((w, v)) = l, for
some l, where w denotes the unique parental vertex of v. To all other edges we
assign the lowest number in {1, . . . , d} \ {l} to the edge connecting v with the
child with the lowest number in the enumeration scheme of the tree, assign the
second lowest number to the edge connecting v with the child with the second
lowest number in the enumeration scheme, and so on.

The admissible paths are of the form (vi1 , vi2 , . . . , vik
), where k ≤ d + 1,

since no admissible path in T can consist of more than d edges. Figure 2 shows
all admissible paths on the rooted binary tree, equipped with the enumeration
schedule, the root is interpreted as the source of the information. To point
out the influence of the scheduling on the information processing, admissible
paths with the root as starting point are drawn red. This can be seen as the
paths, through which information can flow in exactly one time step. Figure 3
shows the admissible paths on the second time step, where each vertex that got

3



Figure 2: First Step, t = 1: The left tree (with the values of the schedules as
edge weights) shows how scheduling of communication influences the processing
of the communicated information. Only paths with ascending edge weights are
admissible, here (1, 2, 3), (1, 3), (2, 3). Of the possible 6 vertices on the first and
the second generation of the tree, only 5 get the information spread by the root.

’infected’ by the information at the preceding time step is considered as a source
of information.

Figure 3: Second Step, t = 2: All vertices, which were infected by the root at
t = 1 are now sources. Admissible paths, which infect new vertices at t = 2 are
rendered red. Of the possible 62 vertices on the first 5 generations of the tree,
only 31 get the information spread by the root at t = 1.

Since T is a regular tree, the particular choice of the schedule does not affect
the process topology. Every other choice for a schedule leads to the same number
of infected vertices on a certain generation g at a time t.

3 Results

In this section we investigate the topology of the information transfer process
on a binary tree.

Theorem 3.1 The number n(g, t) of vertices on generation g that get infected

4



at time t is given by n(g, t) = 1
g!

dg

dxg Φ(x, t) |x=0, where Φ(x, t) is the solution of

Φ(x, t) = (3 + x)x2Φ(x, t − 1) + x3Φ(x, t − 2) (1)

Φ(x, 1) = 2x + 3x2 + x3

Φ(x, 2) = x2 + 7x3 + 11x4 + 6x5 + x6.

Proof. The number of vertices which get infected at time t on generation g
can be derived with the following consideration: Each vertex can be infected
only by another infected vertex on the parental generation over an edge with
weight ”1”, ”2” or ”3”. Counting the frequencies of these edge weights will give
us the number of newly infected vertices on generation. Denote by ni(g, t) the
number of active edges at time t with weight ”i”, i = 1, 2, 3, connecting vertices
on generation g−1 and g. Thus n(g, t) = n1(g, t)+n2(g, t)+n3(g, t), where the
ni(g, t) fulfill the following recurrence relations

n1(g, t) = n2(g − 1, t − 1) + n3(g − 1, t − 1)

n2(g, t) = n1(g − 1, t) + n3(g − 1, t − 1)

n3(g, t) = n1(g − 1, t) + n2(g − 1, t),

with initial conditions

n1(1, 1) = 1

n1(g > 1, 1) = 0

n2(1, 1) = n2(2, 1) = 1

n2(g > 2, 1) = 0

n3(1, 1) = n3(g > 3, 1) = 0

n3(2, 1) = 2

n3(3, 1) = 1.

Multiplying with xg, summing up from 1 to ∞ and setting Φi(x, t) =
∑

∞

g=1 ni(g, t)xg yields the system of coupled difference equations

Φ1(x, t) = xΦ2(x, t − 1) + xΦ3(x, t − 1)

Φ2(x, t) = xΦ1(x, t) + xΦ3(x, t − 1)

Φ3(x, t) = xΦ1(x, t) + xΦ2(x, t),

with initial conditions

Φ1(x, 1) = x

Φ1(x, 2) = x2 + 3x3 + x4

Φ2(x, 1) = x + x2

Φ2(x, 2) = 3x3 + 4x4 + x5

Φ3(x, 1) = 2x2 + x3

Φ3(x, 2) = x3 + 6x4 + 5x5 + x6.

Uncoupling the difference equations for Φ1, Φ2 and Φ3 yields

Φi(x, t) = (3 + x)x2Φi(x, t − 1) + x3Φi(x, t − 2),

thus the Φi all fulfill the same difference equation. So does Φ = Φ1 + Φ2 + Φ3,
with initial conditions Φ(x, t0) = Φ1(x, t0) + Φ2(x, t0) + Φ3(x, t0).
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The particular form of the right hand side of the recurrence equation (1) carries
the information about the structure of the underlying graph, while the initial
conditions characterize the influence of the graph schedule.

Figure 4 shows the behavior of the normalized solution ρ(g, t) = (1/2g)n(g, t)
of equation (1) for different times t, with variable g.

Figure 4: Densities ρ(g, t) of newly infected vertices at time t, depending on
generation, in time-ascending order from left (t = 1) to right (t = 15).

Observe, that with increasing time, the curves become wider but their max-
imum decreases, indicating that vertices on a growing number of generations
are infected at the cost of a smaller efficiency of infecting vertices on a certain
generation.
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Figure 5: Densities ρ(g, t) of newly infected vertices on generation g, depending
on time, in generation-ascending order from left (g = 1) to right (g = 22).

Figure 5 shows the same function ρ(g, t) = (1/2g)n(g, t) as figure 4, but
now with variable t and one curve for each generation. Observe that the curves
behave similar to a dissolving wave packet. Fix, for instance, a generation g

and consider the function p
(g)
t = 1

2g n(g, t). There is a time t∗(g) at which each

vertex on g is infected, so n(g, t > t∗(g)) = 0. Thus,
∑

∞

t=1 p
(g)
t =

∑t∗(g)
t=1 p

(g)
t = 1.

The p
(g)
t can be interpreted as the probability that a randomly chosen vertex

on generation g gets infected at time t. Computing the entropies H({p(g)
t }t) of

the p
(g)
t shows a monotonically increasing behavior of the entropy function as g

increases from g = 5 to infinity (fig.6).
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Figure 6: Entropies of the infection-probability distributions of generation g.

We now wish to compute the time t∗(g) at which the whole generation g
is infected, i.e. the minimal value for t at which

∑t

τ=1 n(g, τ) = 2g. Setting

ϕ(x, t) =
∑t

τ=1 Φ(x, τ) yields the following lemma

Lemma 3.2 The minimal time t∗(g) at which the whole generation g is infected

is given by the minimal solution of

dg

dxg
ϕ(x, t) |x=0= g!2g.

Proof. The number of vertices on generation g, which get infected at time τ is
given by 1

g!
dg

dxg Φ(x, τ) |x=0. Thus, there must be a minimal time t∗(g) at which

the whole generation is infected, i.e.
∑t∗(g)

τ=1
1
g!

dg

dxg Φ(x, τ) |x=0= 2g. It follows

that dg

dxg ϕ(x, t∗(g)) |x=0= g!2g, proving the lemma.

�

Figure 7 shows the behavior of ρ(g, t) = (1/2g)n(g, t) for some sample curves.
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Figure 7: Densities ρ(g, t) of infected vertices on generation g = 24 (blue), g = 25
(red) and g = 26, depending on time.

Lemma 3.3 The total number n(t) of vertices getting infected at time t is given

by

n(t) =

(

1 − 1√
5

)

(

2 −
√

5
)t

+

(

1 +
1√
5

)

(

2 +
√

5
)t

. (2)

Proof. The number n(g, t) of newly infected vertices on generation g at time t
is given by n(g, t) = n1(g, t) + n2(g, t) + n3(g, t). Thus, the total number n(t) of
vertices infected at time t is n(t) =

∑

∞

g=1 n(g, t) = Φ(1, t). Using the difference
equation (1) yields a recurrence relation for Φ(1, t) = n(t):

n(t) = 4n(t − 1) + n(t − 2),

with initial conditions
n(1) = 6, n(2) = 26,

and with solution given by equation (2).

�

Summing n(τ) over all times τ from 1 to a particular time t yields the overall
number of infected vertices at time t:

Lemma 3.4 The overall number ρ(t) of infected vertices at time t, is indepen-

dent of the scheduling and is given by

ρ(t) = −2 +

(

1 − 2√
5

)

(

2 −
√

5
)t

+

(

1 +
2√
5

)

(

2 +
√

5
)t

.
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Proof.

ρ(t) =

t
∑

n=1

((

1 − 1√
5

)

(

2 −
√

5
)n

+

(

1 +
1√
5

)

(

2 +
√

5
)n

)

.

Using the geometric sum expression
∑t

n=0 xn = 1−xn+1

1−x
and simplifying yields

the desired result.

�

Figure 8: Densities of infected vertices, in time-ascending order from left (t = 1)
to right (t = 15), depending on generation.
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Figure 9: Densities of vertices getting infected between t = 10 and t = 15,
depending on generation.

4 Summary and Perspectives

We have introduced scheduling on graphs and discussed some properties of a
scheduled diffusion process on the binary tree. We found a recurrence relation
carrying the structural information of the underlying graph, with initial con-
ditions which represent the particular choice of the schedule. These equations
translate to general d-ary trees, as well as the qualitative behavior of all graphs
shown.

Also, an analysis of arbitrary trees should yield similar results, since trees
always allow scheduling, but numerical treatment may be necessary to solve
the resulting recursion relations. Nevertheless, on more complex networks in-
cluding circles or clusters the behavior of scheduled diffusion processes is not
clear. The resulting redundancies in communication may lead to an even slower
dissemination or no at all.

Finally, it would be interesting to see if graphs which do not allow a degree
bound schedule can be embedded in some manner in a more general graph which
allows scheduling and so can be treated with the methods presented here.
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1 Introduction

In this paper we model knowledge diffusion within a group of individuals or a
society. To describe and understand such dynamics is a difficult and challenging
task. It is a specific example of a complex system and therefore mathematical
models are an appropriate tool to uncover some of the hidden dynamical prop-
erties. The society is represented by a graph, where each vertex is an individual
and edges between vertices stand for some specific social relationship, such as
friendship, consanguinity, sexual intercourse, etc. The choice of the underlying
network depends on the choice of the problem under consideration.

By knowledge we mean the class of all facts, information and certanties, one
can have a trusted belief in. We assume that representatives of this class, e.g.
knowledge about a scientific theory, a childrens book or a TV-Show, spread
over the network similar to a disease. There are some initially infected vertices
(the ones that already have a certain knowledge), which at every time step
have a small chance to infect their neighbors with the knowledge. A remarkable
property of knowledge is, that, given a particular knowledge, once an individual
has heard of it sufficiently often, the probability of getting infected jumps to a
much higher value due to curiosity or persuasion. Each vertex has a so called
threshold in the number of infected neighbors, which, as soon as it gets reached,
assures that the vertex gets almost surely infected, too.

In mathematics, special cases of such processes like threshold percolation
have gained much attention lately, for instance Janson et al. discussed threshold
percolation on the Erdös-Renyi random graph, [17]. They found out that there
is a phase transition in the density of initially infected vertices and described
this effect in great detail. In this paper, besides modeling knowledge diffusion,
we use another, more intuitive but less elaborate approach to obtain the same
result.

Other work on bootstrap percolation has been done on the grid [n]d, see [1],
[2] (for d = 3), [18] (d = 2), [20], and on Z

2, see [9], [10], and on trees, see [3],
[5], [6], [13], [14]. Bootstrap percolation on complex networks with given degree
sequence has been analyzed in [4], with arbitrary degree distributions in [15],
and clique percolation on G(n, p) in [7].

Since we want to apply the model to knowledge diffusion on complex net-
works, we add the possibility of forgetting knowledge, i.e. there is a probability
of a transition from an infected state to the susceptible ground state. Bootstrap
percolation with the possibility of vacating sites has been treated on Z

2 in [11]
and on Z

d in [12].
The notion of a threshold is well known in social sciences. Granovetter, [16],

used thresholds to discuss decision making on the complete graph, where he
adopted ideas from Schelling’s model of residential segregation, [22].

In addition to face-to-face transmission we include the transmission of knowl-
edge via public sources like mass media, books or journals. Since the likeliness
of something to appear in such public sources is often proportional to the preva-
lence of the knowing individuals in the society we model this type of infection
path using an infection probability mean field term depending on the infection
density but not on the network structure.

It turns out that for both types of stochastic processes there are phase tran-
sitions of mainly two types. The first relates to parameters describing the trans-
mission probabilities as well as to parameters describing the network structure
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(primarily the edge density). Below some critical values any initial infection
will not be able to spread over the network at all. This phase transition re-
sembles the ones known from percolation theory. The second type of phase
transition is of a more dynamical nature and unknown from classical epidemic
processes. In this case even in the supercritical parameter domain where epi-
demic growth is possible, one still needs to start above a critical initial density
of infected individuals (depending of course on the parameters chosen) to reach
high prevalence.

Since knowledge transfer and exchange has so many faces and each of these
different aspects would perhaps require a specific model of its own, we want
to focus in this paper mainly on the local threshold dynamics, the mean field
dynamics and the interplay of distinct levels of depth or understanding of a
certain type of knowledge, which we classify as passive and active knowledge
here.

Unfortunately, good data about knowledge transmission are notoriously dif-
ficult to obtain and even for simple ”fact - knowledge” essentially not available,
we will concentrate primarily on questions of qualitative nature. The various
simulation results discussed in section 5 should also be interpreted in this spirit.
The main purpose of the simulations is the illustration of the possible qualitative
scenarios, with reasonably chosen simulation parameters.

Similar to thresholds, the existence of a critical value for the initial infection
density is a well known phenomenon in social sciences, where it is often referred
to as critical mass. In [21], the author defines critical mass as ”the point at which
enough individuals have adopted an innovation so that the innovations further
rate of adoption becomes self-sustaining [. . . ] Until a critical mass occurs at a
relatively early stage in the diffusion process, the rate of adoption is slow. After
a critical mass is achieved, the rate of adoption accelerates.” In conclusion, if
we interpret this acceleration as the phase transition, this strongly indicates the
existence of thresholds, yielding critical values for the initial infection density.

The paper is organized as follows. We begin by introducing the dynamical
processes via their transition probabilities, the following chapter 3 is devoted
to threshold percolation, where we calculate the phase transitions of the pure
threshold process, discuss percolation for the mean field process with forgetting,
and find a criticality condition for the classical infection process with forgetting.
Then we turn our view to knowledge diffusion in chapter 4 and discuss in chapter
5 some simulations to illustrate how the model works. With the help of the
simulation, we are able to find all k-cores of any network, exemplarily done for
a real world network, the social network of all students of Bielefeld.

2 Generalized Epidemic Processes

In the following we introduce a certain type of generalized epidemic process
on complex networks, where each node can be either susceptible or in one of
two distinct infection states. The probabilities of infection are determined by
a local threshold process, describing the correlations of linked vertices, and a
mean field process, describing the influence of infected vertices on the network
independently of the underlying network structure.

Let G = (V,E) be a network with |V | = n vertices. Each v ∈ V has a
number st(v) ∈ {0, 1, 2}, which is called the state of v at time t. These may
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be different levels of evolutionary states of one entity, e.g. knowledge, where
a higher level indicates higher knowledge or capabilities of using knowledge.
Since we use epidemic processes and its terminology, vertices in the zero state
are called susceptible, while vertices in non-zero states are called infected.

First we discuss the probabilities P0→1(v) of a vertex v to switch from state
0 to 1. Since there are three distinct states, there are six transitions possible,
but not all of them must be considered to be physically meaningful. To keep the
interpretation of the states to be subsequent evolutionary states, the transition
”0 → 2” for instance makes no sense as one can not simply skip one state. Thus
we set P0→2 = 0. Further on we assume that the transition ”1 → 2” takes place
at a fixed rate ρ.

2.1 The Local Process

The local process is designed as a classical epidemic process with a threshold.
Each vertex v has a threshold ∆v ≥ 0. One reasonable choice for the distribution
of ∆v is a Poisson distribution with mean λ, which will differ from network to
network. Of course, in some cases it may be useful to choose a completely
different distribution for ∆v, but we will not consider such distributions here.

Denote the number of neighbors of v in state i at time t by Ni,t(v), and
let Nt(v) = N1,t(v) + N2,t(v) be the number of infected neighbors. We need
to consider two cases, infection below the threshold and infection above. To
discuss the first case, let Nt(v) < ∆v. Assuming that for each vertex in state
”i”, i = 1, 2, the probability of infecting a neighbor is ǫi and that both infection
processes are independent of each other yields a probability of switching state
from ”0” to ”1” of

P ǫ
0→1(v) = 1 − (1 − ǫ1)

N1,t(v)(1 − ǫ2)
N2,t(v).

If Nt(v) ≥ ∆(v), i.e. if the number of infected neighbors exceeds the thresh-
old, the contribution of single probabilities gets replaced by a probability α > ǫ,

Pα
0→1(v) = α.

The idea behind that is, that a vertex above the threshold is willing to switch
its state, due to curiosity or persuasion but still has some issues, for instance
switching costs too much money, too much time, something depending on the
specific knowledge diffusion under investigation, and any more contact with
knowing vertices will not change its probability to switch anymore. The value
of α is then just a measure for these issues. Notice that for most applications it
will be sufficient simply to choose α = 1, since smaller values for α only result
in rescaling of time.

2.2 The Mean Field Process

In addition to local infection processes, we add the possibility of knowledge to be
transmitted via processes independent of the network structure. The infection
probabilities defined by such a process will depend on the density of infected
vertices, since these vertices are the ones, which draw attention. The influence
of mass media and other global effects is modeled by a mean-field process with
parameters βi and a function f : [0, 1] → [0, 1], which takes the prevalence
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densities of vertices in state ”i” at time t as arguments. Denote by xt the
density of vertices in state ”1”, yt the density of vertices in state ”2”. We set

P β1

0→1(v) = β1f(xt)

P β2

0→1(v) = β2f(yt).

Again we assume both processes to be independent, thus

P β
0→1(v) = min {β1f(xt) + β2f(yt), 1} .

Denote by Θ(x) the Heaviside function. From the considerations above it
follows that the total probability P (v) (we drop subscripts for the ease of read-
ing) of a vertex v with threshold ∆ and number N of infected neighbors to
advance from ”0” to ”1” is

P (v) = 1 − (1 − P ǫ(v)Θ(∆ − N))(1 − Pα(v)Θ(N − ∆))(1 − P β(v))

≈ P∆(v) + P β(v),

where we set P∆(v) = P ǫ(v)Θ(∆ − N) + Pα(v)Θ(N − ∆) and neglected all
products of probabilities.

2.3 Other Transitions

Any infected vertex has a certain probability to switch back to the zero level,
being susceptible again. We assume that this happens with a constant rate,
thus

Pi→0(v) = γi, i = 1, 2,

for all v.
One could choose a more complex process here, for instance add an explicit

dependence on the number of infected neighbors, but since the local infection
process is depending on the prevalence, there is an implicit dependence via the
reinfection process.

The transition ”1 → 2” corresponding to the higher infection level is assumed
to take place at a fixed rate ρ, so

P1→2(v) = ρ,

for all v.

3 Phase Transitions and Threshold Percolation

In this section we develop a new approach to investigate threshold percolation
of the processes involved in our model. At first we study percolation of the pure
α-process on the Erdös-Renyi random graph G(n, p), p = c/n, finding a critical
density for the phase transition in the density of the initially infected vertices
a0 as a function of the Erdös-Renyi parameter c.
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Afterwards we discuss two cases of the pure mean-field process with forget-
ting. One where the mean-field term couples quadratically to the total preva-
lence, the other where the coupling is linear, finding a phase transition in a0

only in the first case.
Finally we calculate the branching number of the pure ǫ-process with for-

getting on a supercritical branching tree.

3.1 The α− Process on G(n, p)

In the following we want to give some analytic estimations for the spread of
the pure α− process on random graphs of Erdös-Renyi type and the involved
phase transitions. We deal with uniform constant local threshold ∆. Below the
threshold we assume the transmission probability ǫ to be zero. Furthermore we
look for a limiting case of SI-epidemics namely that the transmission probability
above the critical threshold ∆ equals 1.

We will deal here only with the recursion for conditioned expected values.
Except for the behavior near the phase transitions the iterated expectation value
is for large n in good agreement with the numerical simulations (due to the small
variance of the involved stochastic variables in that case). The graph model we
use is G(n, p) with p = c

n
being the probability of an edge between any two

vertices. Furthermore all edges are independent.
As usual E(X) denotes the expectation of the random variable X.

Theorem 1 ([17]) Let G = G(n, p) be an Erdös-Renyi random graph on n
vertices with p = c/n. Then, for the expected density si = Si/n of infected
vertices of G at time i holds

si+1 = 1 − (1 − a0)e
−csi

∆−1
∑

k=0

(csi)
k

k!

= a0 + (1 − a0)e
−csi

∞
∑

k=∆

(csi)
k

k!
,

for n → ∞.

We do the explicit computations here only in the case ∆ = 3 since this
represents already the general case.

If M is a subset of the vertex set with cardinality |M |, denote by N(x, M)
the number of edges a vertex x has into M . In the Poisson limit n → ∞ we
have Pr(N(x, M) = k) = e−p|M |pk|M |k/k!.

Let At be the set of newly infected vertices at time t, define At := E(|At|)
and at := At/n. Further, define Σt :=

⋃t
τ=0 Aτ , the set of infected vertices at

time t, with St := E(|Σt|) and st = St/n.
Let Ξt,l be the set of susceptible vertices at time t which have exactly l edges

into Σt−1, and the set of susceptible vertices at time t be Ξt := Ξt,0 +Ξt,1 +Ξt,2,
since ∆ = 3.

Then, for the expected number Xt of vertices in Ξt, conditioned on At−1, we
can find and solve a recursion relation in the following way. At first, we consider
the Xt,l, l = 0, 1, 2. The expected number Xt+1,0 of susceptible vertices at time
t + 1 with no edges into the set Σt of infected vertices at time t is equal to Xt
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minus the average number of vertices in Xt,0, which have had edges into the set
of newly infected vertices at time t:

Xt+1,0 = Xt,0 − Xt,0 Pr(N(x,At) ≥ 1)

= Xt,0 Pr(N(x,At) = 0)

= Xt,0e
−cat

In the same manner, recursion relations for Xt,1 and Xt,2 can be obtained:

Xt+1,1 = Xt,1 − Xt,1 Pr(N(x,At) ≥ 1) + Xt,0 Pr(N(x,At) = 1)

= Xt,1e
−cat + Xt,0cate

−cat ,

Xt+1,2 = Xt,2 − Xt,2 Pr(N(x,At) ≥ 1)

+Xt,1 Pr(N(x,At) = 1)

+Xt,0 Pr(N(x,At) = 2)

= Xt,2e
−cat + Xt,1cate

−cat + Xt,0c
2a2

t e
−cat

Using the definition of Xt, inserting the recursions and writing X∗
t = Xt,0+Xt,1,

yields

Xt+1 = Xt+1,0 + Xt+1,1 + Xt+1,2

= Xte
−cat + X∗

t cate
−cat +

1

2
Xt,0c

2a2
t e

−cat (1)

Inserting the recursion for Xt again yields

Xt+1 = Xt−1e
−c(at+at−1) + X∗

t−1c(at + at−1)e
−c(at+at−1)

+
1

2
Xt−1,0c

2(at + at−1)
2e−c(at+at−1) (2)

From (1) and (2) we conclude

Xt+1 = X0e
−c

∑

t
τ=0

aτ + X∗
0 c

(

t
∑

τ=0

aτ

)

e−c
∑

t
τ=0

aτ

+X0,0c
2

(

t
∑

τ=0

aτ

)2

e−c
∑

t
τ=0

aτ .

Using st =
∑t

τ=0 aτ and initial conditions X∗
0 = X0,0 = X0 = n − A0 gives

Xt+1 = (n − A0)(1 + cst + c2s2
t )e

−cst ,

which implies
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1 − st+1 = (1 − a0)(1 + cst + c2s2
t )e

−cst .

The formula has an intuitive interpretation (although it is not so clear how
to make this intuition into a short rigorous proof). Namely n − Si+1 (the non
infected) are the vertices from n−A0 (the initially non infected set) which have
less than ∆ edges into si.

Finally we give the formula for the half infected at time i (that is the vertices
which have at least 1 but less than ∆ edges into si−i).

In general we have for the different types of half-infected

1

n
Xi+1,k = (1 − a0)e

−csi
(csi)

k

k!
,

which can be derived in the following way. Let Xi = Xi,0+Xi,1+...+Xi,∆−1.
The set of half infected is Hi := X∗

i −Xi,0. From the above derivation it follows
that

1

n
Hi+1 :=

1

n
(Xi+1 − Xi+1,0)

= (1 − a0)e
−csi

∆−1
∑

l=0

(csi)
l

l!
− (1 − a0)e

−csi

= (1 − a0)e
−csi

∆−1
∑

l=1

(csi)
l

l!
.

Note that the above formulas remain valid also in the case ∆ = 1 where the
fixed point equation for A0 = o(n) just provides the classical result for the size
of the giant component in the Erdös-Renyi model.

We turn now to the discussion of the case ∆ = 2, the simplest nontrivial
case. From the above formulas we have the following fixed point equation

s = f(s) = 1 − (1 − a0)e
−cs(1 + cs). (3)

Note that there can be several solutions. One has to take the dynamically
stable one (closest to a0). A closer examination shows that, depending on the
value of a0 and c, there are either 3 fixed points or just one in the domain [0, 1],
see fig. 1

Since the iteration mapping has no critical points in this interval the smallest
of those fixed point is also the attractor for the orbit starting with s0. An
example for the values: a0 = 0.08, c = 3.2 is shown in figure 2.

The phase transition happens when the first two fixed points (in case there
are three) join together and form an indifferent (slope one) fixed point. Near
that value one would observe a long transient behavior till the orbit reaches its
final destination the high prevalence fixed point.

Next we compute the critical density ac
0 for the phase transition in a0 as a

function of c.

Theorem 2 Let G = G(n, p) be an Erdös-Renyi random graph on n vertices
with p = c/n. Then, the critical density is given by

ac
0 = 1 − 2e(− 1

2
+ 1

2
c− 1

2

√
c2−3−2c)

c(−1 + c −
√

c2 − 3 − 2c)
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Figure 1: Plot of the solutions of equation 3, depending onx = a0, for c = 3.3.

0.2 0.4 0.6 0.8 1.0
s

0.2

0.4

0.6

0.8

1.0

f HsL

Figure 2: Example of fixed point equation with a0 = 0.08, c = 3.2

Proof.
Define a := a0. The condition for criticality is that f ′(x) = 1 at the fixed

point x, where

f(x) = 1 − (1 − a)(1 + cx)e−cx.

We have

d(1 − (1 − a)(1 + cx)e−cx)

dx
= c2xe−cx − ac2xe−cx

and
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hence c2xe−cx − ac2xe−cx = 1. The solution is

a = − 1

c2xe−cx
(−c2xe−cx + 1)

= 1 − 1

c2x
ecx.

Inserting into the fixed point equation gives

x = 1 −
(

1 −
(

− 1

c2xe−cx
(−c2xe−cx + 1)

))

(1 + cx)e−cx,

which simplifies to

x = 1 −
(

1 −
(

− 1

c2xe−cx
(−c2xe−cx + 1)

))

(1 + cx)e−cx =
1

c2x
(c2x − cx − 1)

and solving

x =
1

c2x
(c2x − cx − 1)

for x gives

x =
1

c2

(

−1

2
c +

1

2
c2 − 1

2

√

−3c2 − 2c3 + c4

)

for the fixed point. Inserting this back into the formula for a gives:

a = 1 − 1

c2x
ecx

= 1 − ec 1

c2
(− 1

2
c+ 1

2
c2− 1

2

√
−3c2−2c3+c4)

c2 1
c2 (− 1

2c + 1
2c2 − 1

2

√
−3c2 − 2c3 + c4)

= 1 − e
1

c
(− 1

2
c+ 1

2
c2− 1

2

√
−3c2−2c3+c4)

(− 1
2c + 1

2c2 − 1
2

√
−3c2 − 2c3 + c4)

= 1 − 2e(− 1

2
+ 1

2
c− 1

2

√
c2−3−2c)

c(−1 + c −
√

c2 − 3 − 2c)

Since there is no real solution for the fixed point x for c < 3 one needs c ≥ 3
to get a phase transition in a0. Figure 3 shows a plot of the critical value ac

0 as
a function of c.

A few notes are in order. The phenomenon of a phase transition in the initial
density is not specific for G(n, p). It holds in all random graph spaces where
the typical graphs have an almost-tree structure in the local neighborhood of
a vertex. Usually this is the case even up to neighbors at distance h dim(G),
where h < 1

2 is a graph dependent constant. The same is still true for graphs
which arise as projections of bipartite networks, for which again the local tree
property holds (see also the next section).
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Figure 3: ac
0 as a function of c

3.2 The pure mean field infection process and forgetting

In the following we study the pure mean field process. Again we will observe
that there are phase transitions with respect to the initial density a0. Let f(x)
be in the following either a linear or a quadratic function. The involved recursion
for the mean field process including forgetting is very simple. Note that in each
time step we first do the infection process and than the forgetting.

3.2.1 The Quadratic Case

We start the discussion of the recursion relations with the case f(x) = x2.

si+1 = (1 − γ)(si + (1 − si)βf(si))

= (1 − γ)(si + (1 − si)βs2
i )

= (1 − γ)(si + βs2
i − βs3

i ).

This gives the fixed point equation

s = (1 − γ)(s + βs2 − βs3)

=⇒ 1 = (1 − γ)(1 + βs − βs2), for s 6= 0

Define a := 1
1−γ

and b := a−1
β

=
1

1−γ
−1

β
= γ

(1−γ)β we have as fixed point

equation s2 − s + b = 0 with the solutions

s(1) =
1

2
− 1

2

√
1 − 4b

and

s(2) =
1

2
+

1

2

√
1 − 4b.
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Note that for b > 1
4 there is no solution except the value s = 0. Since the

derivative at zero equals 1−γ < 1 we have zero as a local attractive fixed point.
For b < 1

4 the fixed point at s(1) is a repeller and is also the boundary for the

two basins of attraction, with zero as the one attractor and s(2) as the other
attractor. In the case of b = 1

4 one has again that zero is a global attractor and
s = 1/2 is an unstable fixed point.

We consider now the situation where the local α-process induces a set of
infected individuals, which do not become extinct even in the presence of a
small forgetting rate γ. They are immune to forgetting. Let therefore a0 be the
density of an immune infected set of vertices. The above equations change in
the following way:

si+1 = a0 + (1 − γ)((si − a0) + (1 − si)βf(si))

= a0 + (1 − γ)((si − a0) + (1 − si)βs2
i )

= (1 − γ)(si + βs2
i − βs3

i ) + γa0,

and for the fixed point equation one gets (with d = ba0)

s = (1 − γ)(s + βs2 − βs3) + γa0

⇒ γs = β(1 − γ)(s2 − s3) + γa0

⇒ bs = s2 − s3 + ba0 ⇒
s3 − s2 + bs − d = 0, d < b.

Since si ≥ a0 for β > 0 we have si+1 < si and for si ≥ 1 we have si+1 =
(1−γ)si+γa0−ǫ for some ǫ > 0 (and consequently si+1 = si−γ(si−a0)−ǫ < si)
it follows that either 1) there is one stable fixed point in the interval [a0, 1] or 2)
there are three fixed points, where the middle one is unstable and the boundary
of the basins of attraction for the two other ones or 3) there are two fixed points
where the smaller one is indifferent (derivative =1) and the larger one is stable.
The critical case (one indifferent fixed point is given by the condition ”fixed
point + derivative =1”) which gives

2sβ − γ − 2sβγ − 3s2β + 3s2βγ + 1 = 1

⇒ 2sβ − γ − 2sβγ − 3s2β + 3s2βγ = 0

⇒ 2sβ(1 − γ) − 3s2β(1 − γ) = γ

⇒ 2s − 3s2 = b

⇒ s3 +
b

3
s − 2

3
s2 = 0

and the fixed point equation

s3 − s2 + bs − d = 0

subtraction gives (the derivative is given by 2sβ(1−γ)−3s2β(1−γ)+1−γ,
which implies β(1 − γ)(2s − 3s2 + 1

β
) > 0 for s ∈ [0, 1])

1

3
s2 − 2sb

3
+ d = 0

⇒ s2 − 2bs + d = 0,
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s2 − 2bs + d = 0, Solution is: b −
√

b2 − d, b +
√

b2 − d . It follows that
there is no solution for d > b2 ⇒ a0 > b = γ

(1−γ)β (there is only one, large

attractor). Furthermore we have by the first equation 2s − 3s2 = b, with the
solutions 1

3 − 1
3

√
1 − 3b, 1

3

√
1 − 3b+ 1

3 and hence for b > 1
3 there is no derivative,

and hence only one fixed point. By topological reasons the criterion that the
upper one of the fixed points becomes the attractor is given by the following
equation:

b −
√

b2 − d = −1

3

√
1 − 3b +

1

3

⇒ 1

3

√
1 − 3b + b =

√

b2 − d +
1

3

⇒
√

1 − 3b = 3
√

b2 − d + 1 − 3b

⇒ b + 3d − 6b2 = 2(1 − 3b)
√

b2 − d

⇒ (b(1 − 6b) + 3d)2 = 4(1 − 3b)2(b2 − d).

Solutions are b− 2
9

√
27b2 − 9b − 27b3 + 1− 2

9 , b+ 2
9

√
27b2 − 9b − 27b3 + 1− 2

9
and by topological reasons the second one is the relevant solution. Figure 4
shows a plot of the critical density ac

0 as a function of b = γ
(1−γ)β

0.05 0.10 0.15 0.20 0.25 0.30
b

0.02

0.04

0.06

0.08

a0
c

Figure 4: The critical density ac
0 as a function of b = γ

(1−γ)β

Figure 5 shows a plot of the critical density ac
0 as a function of β (the lower

curve) and a plot of the critical density to be in the upper basin of attraction
in case there is no immune (to forgetting) set. In both plots the value γ = 0.01
was used

Figure (5) illustrates how the presence of an immune set lowers the threshold
value. In combination with the α-process this means that starting with an a0

below the critical values for both (the pure α-process and the pure mean field
process) may yield an over-critical process.
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0.05 0.10 0.15 0.20 0.25 0.30
beta0.0

0.1

0.2

0.3

0.4

a0
c

Figure 5: Critical density in case of an immune-to-forgetting set (lower curve)
and without an immune set (upper curve) as a function of β for γ = 0.01

3.2.2 The Linear Case

We now discuss the linear case f(x) = x:

si+1 = (1 − γ)(si + (1 − si)βsi)

= (1 − γ)(si(1 + β) − βs2
i )

which gives for the fixed point equation

s = (1 − γ)(s(1 + β) − βs2)

and the solutions s = 0 and s = 1 − b. Evaluating the derivate

d((1 − γ)(s(1 + β) − βs2))

ds
= β − γ − 2sβ − βγ + 2sβγ + 1

at zero yields 1 + β(1− γ)− γ = 1− γ(1 + β) + β. The critical case is therefore
β(1− γ)− γ = 0 ⇒ 1 = γ

β(1−γ) = b and for β(1− γ)− γ > 0 ⇔ 1 > b, the fixed

point at 1−b becomes a global attractor and for b ≥ 1 the zero solution becomes
globally attractive. Note that in contrast to the quadratic case for f there is
only one attractor and therefore no phase transition in the initial density.

We discuss now the case when there is a repeller of density a0. The corre-
sponding formulas are

si+1 = a0 + (1 − γ)((si − a0) + (1 − si)βf(si))

= a0 + (1 − γ)((si − a0) + (1 − si)βsi)

= (1 − γ)(si + βsi − βs2
i − a0) + a0

= (1 − γ)(si + βsi − βs2
i ) + γa0,

and for the fixed points (with d = ba0 and b = γ
β(1−γ) )

14



s = (1 − γ)(s + βs − βs2) + γa0 ⇒
γs = β(1 − γ)(s − s2) + γa0 ⇒
bs = s − s2 + ba0 ⇒

s2 − s + bs − d = 0, d < b,

which has as solutions:
1−b
2 ± 1

2

√

4d + (1 − b)2. Only the positive solution 1−b
2 + 1

2

√

4d + (1 − b)2

is relevant.
Figure 6 shows a plot for the fixed point in case γ = 0.01 and a0 = 0.05 in

comparison with the upper fixed point in the case without an immune infected
set

0.01 0.02 0.03 0.04 0.05
beta0.0

0.2

0.4

0.6

0.8

1.0

s

Figure 6: Comparison of fixed point in case of an immune set (upper curve) and
without immune set (lower curve).

Note that in the case without an immune set, for β < γ
1−γ

the zero solution
is a global attractor. In summary one sees that the effect of an immune set in
the linear case of f is less dramatic then in the quadratic case, except for very
small β− values.

3.3 The Pure ǫ-process and Forgetting

We now want to discuss 2-type threshold percolation of the pure ǫ -process, i.e.
each vertex v can be in three states s(v) ∈ {0, 1, 2} and we set ∆v ≥ n for each
v ∈ V , so no vertex can succeed the threshold. We assume that vertices in state
”i”, i = 1, 2 have a probability of ǫi of infecting susceptible neighbors, i.e. to
force a neighbor switch its state from ”0” to ”1”.

Infected vertices have a probability of γi, i = 1, 2, to switch back to the
susceptible state ”0”. Also we assume that vertices in state ”1” switch to state
”2” at a fixed rate ρ.

In the following we consider the limit supercritical branching tree model with
branching number c, conditioned to the branching process not dying out. We
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consider a given infection dynamics starting with one infected particle as root
of the tree.

Theorem 3 The expected number of vertices E, which an initially infected ver-
tex v ∈ V infects, is given by

E = c

(

1 − γ1

q + (1 − q)ǫ1
− γ2

γ2 + (1 − γ2)ǫ2

)

,

where q = γ1 + (1 − γ1)ρ is the probability of leaving state ”1”.

Proof. Denote with t1 and t2 the time an infected vertex spends in state
”1” or ”2”, respectively. The probability P (k, l1, t1) that a vertex in state ”1”
for a time of t1 steps infects l1 descendants out of k is a binomial distribution
P (k, l1, p(t1)) =

(

k
l1

)

p(t1)
l1(1−p(t1))

k−l1 with p(t1) = 1−(1−ǫ1)
t1 and therefore

given by

P (k, t1, l1) =

(

k

l1

)

(

1 − (1 − ǫ1)
t1
)l1

(1 − ǫ1)
t1(k−l1).

The probability that an infected vertex stays in state ”1” for exactly t1 time
steps is given by

[(1 − γ1)(1 − ρ)]t1q,

where we set q = γ1 + (1 − γ1)ρ. In a G(n, p) with p = c/n, for large n the
number of possible descendants is Poisson distributed with mean c. Thus, the
expected number E1 of infected descendants a vertex generates while in state
”1” is given by

E1 =

∞
∑

k=0

ck

k!
e−c

∞
∑

t1=0

[(1−γ1)(1−ρ)]t1q
k
∑

l1=0

l1

(

k

l1

)

(

1 − (1 − ǫ1)
t1
)l1

(1−ǫ1)
t1(k−l1).

(4)
Using that 〈l〉 =

∑

l lP (k, l, p(t1)) = kp(t1) for binomial distributions, and the
geometric series expression

∑

t xt = 1
1−x

yields

E1 =

∞
∑

k=0

ck

k!
e−ck

(

1 − q

q + (1 − q)ǫ1

)

= c

(

1 − q

q + (1 − q)ǫ1

)

.

If ρ = 0 then E2 = 0, otherwise we get for E2 the following

E2 =

∞
∑

k=0

ck

k!
e−c

∞
∑

t1=0

[(1 − γ1)(1 − ρ)]t1(ρ − γ1ρ)

k
∑

l1

(

k

l1

)

(

1 − (1 − ǫ1)
t1
)l1

(1 − ǫ1)
t1(k−l1) ×

×
∑

t2

(1 − γ2)
t2γ2

k−l1
∑

l2

l2

(

k − l1
l2

)

(

1 − (1 − ǫ2)
t2
)l2

(1 − ǫ2)
t2(k−l1−l2)

=
(q − γ1)c

q + (1 − q)ǫ1

(

1 − γ2

γ2 + (1 − γ2)ǫ2

)
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Thus,

E = c

(

1 − γ1

q + (1 − q)ǫ1
− γ2

γ2 + (1 − γ2)ǫ2

)

.

Since we did not consider reinfection processes in this calculation, the actual
expected number of infected vertices in our model is larger than E. Thus, the
condition E > 1 ensures over-criticality of the infection process.

4 Application to Knowledge Diffusion in Com-

plex Networks

In this section we want to apply the generalized epidemic process to knowledge
diffusion in complex networks. Since we are only interested in how knowledge
disseminates through a network, we do not need to specify what knowledge
exactly is or how it emerges. Here we rely on the fact, that there is a common
sense about what knowledge is and stick to this.

To discuss knowledge diffusion, we interpret the three states ”0”, ”1”, ”2”
as distinct levels of the capability of a vertex to use knowledge. We say that a
vertex in state ”0” has no knowledge, it is not aware of the knowledge but as a
susceptible vertex there is a probability of switching to state ”1”. We then say
that this vertex has passive knowledge, what may be for instance being aware
of the knowledge and having a rather crude understanding. Vertices in state
”2” are said to have active knowledge, what may be a deep understanding of
the knowledge and the capability to develop it further and take part in further
production of new knowledge.

To illustrate the meaning of passive and active knowledge we give some
examples first.

4.1 Examples of Knowledge Diffusion

For each example we want to specify, what is meant by passive knowledge and
by active knowledge.

• The spread of popular media titles
An example of knowledge diffusion on complex networks is the spread of
popular media titles, like books, movies or music. The underlying network
is the social network of people using the media. A person has passive
knowledge, if it is aware of the existence of the media, i.e. it knows that
a certain book or movie exists (e.g. Harry Potter) and is curious about
it, but did not read or watch it for several reasons, yet. Active knowledge
then is the consumption of that media and talking about it in public.

• Trends: Nordic walking
Nordic Walking is a popular example for a trend on a social network, what
can be described by the knowledge diffusion model as well. Having active
knowledge means performing Nordic Walking in public, having passive
knowledge means that one has recognized Nordic Walking and has a pos-
itive attitude about it. The positive attitude is important, since this is a
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necessary condition to switch to active knowledge. So, a person with pas-
sive knowledge is willing to perform Nordic Walking but has some issues,
like a lack of time or equipment.

• The usage of certain hardware
The knowledge diffusion model can describe the spread of certain hardware
like MacBooks or iPhones on a network. Active knowledge means using
that hardware and showing and telling it to friends. Passive knowledge is,
similar to the Nordic Walking trend, the recognition and positive attitude
about the hardware.

• The usage of certain software
As in the case of hardware, one can describe the spreading of certain soft-
ware products, like Internet browsers or different media players, in a net-
work. Having passive knowledge means having the software installed and
used at least once and keeping it on the computer, having active knowl-
edge means using that certain software as standard (browser or player),
using other competing software only occasionally.

• The usage of scientific products
With scientific products we mean special science related products like a
new alternative model for an observed effect or scientific software such
as SKIN, which is an agent based simulation software. Having passive
knowledge means knowing the product and using it occasionally, active
knowledge means using the product and perhaps developing it further.

Many more examples may be found, and with slight changes in the infection
rules one may also describe the spread of corruption, terroristic attitudes or
trust.

4.2 Learning, Understanding and Forgetting Knowledge

Acquiring passive knowledge is what we call learning here. Assuming ǫ1 = ǫ2
yields an infection probability of the local process of

P ǫ
0→1(v) = 1 − (1 − ǫ)Nt(v),

with Nt(v) = N1,t + N2,t, the number of knowing neighbors. Each knowing
neighbor of v contributes an amount of ǫ to the probability of infection, by
talking about it.

The mean-field process, as defined in chapter 2, is given by

P β1

0→1(v) = β1f(b1,t),

where b1,t is the density of vertices with passive knowledge, and by

P β2

0→1(v) = β2f(b2,t),

where b2,t is the density of vertices with active knowledge.
The differentiation between active and passive knowledge and their influence

on the mass media reflects the different abilities of knowing vertices to spread
knowledge via mass media. For instance, if the knowledge under consideration
is a physical theory, actively knowing vertices, namely scientists, publish papers
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much more and with a higher impact than passively knowing vertices (students
or other non-professionals).

Acquiring active knowledge is what we call understanding here. The transi-
tion takes place at a fixed rate, P1→2(v) = r, so at every time step a fraction of
r vertices with passive knowledge will gain active knowledge.

Also forgetting, i.e. the transition ”1,2→0” back to zero, happens at a fixed
rate, P1,2→0(v) = γ, so at each time step a fraction of γ vertices with either
active or passive knowledge will return back in the state of unawareness.

5 Simulation Results

All simulations were done on a G(n, p), with p = c/n. After specifying the
average initial infection s0, initially infected vertices were chosen at random,
with a probability of s0 each. The rate γ of forgetting was γ = 0.01 in all
simulations.

We simulated the pure α-process, as an example for knowledge diffusion,
where knowledge gets transmitted mainly by local processes (examples are jokes
or Tupperware), and without active knowledge. We compare the results with a
setup where vertices may gain active knowledge and turn the mean-field on for
these.

Also we used the model to find the k-cores of a real world network with k
as threshold, then infecting all vertices and performing threshold percolation on
the network with forgetting turned on.

To investigate the interplay of the various infection processes, we simulated
an supercritical pure α-process (with α = 1), i.e. setting ǫ = 0, β = 0, and with
no active knowledge. Figure 7 shows that including vertices with active knowl-
edge and activating the mean-field process for vertices with active knowledge
(i.e. β1 = 0, β2 > 0) may lift a sub-critical α-process to an overcritical process
in total.

Figure 7(a) shows the behavior of the number of vertices with (passive)
knowledge for the pure α-process on a G(n, c/n) with n = 100′000 and c = 3.5.
One sees that the initial infection of s0 = 0.06 suffices to infect many new vertices
until a saturation is reached. Choosing s0 = 0.05 yields a sub-critical pure α-
process, the density of infected vertices does not change at all, but including
active knowledge and a mean-field process for vertices with active knowledge
helps the process to become overcritical.

Further on, we used the simulation program to find the size of the k-core of
the StudiVz network of students of Bielefeld, see [19] on more details about this
real world network. To find the k-cores, we chose an initial infection s0 = 1, i.e.
all vertices are infected, and ran the simulation only with the α-process (α = 1)
and forgetting turned on. Setting the threshold ∆ = k for all vertices results in
a final state of the network, in which all vertices in the k-core remain infected
due to reinfection via the α-process, while all other vertices forget.

Other simulation results include the observation that Poisson distributed
thresholds, i.e. P (∆(v) = k) = e−λλk/k!, accelerate the infection process in
contrast to uniformly distributed thresholds with ∆(v) = λ for all v. This is
due to the fact that on average a fraction nP (∆(v) < λ) of all n vertices has a
threshold below λ, which get infected very soon, helping to raise the number of
infected vertices above the critical density.
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(a) pure α (b) sub-critical α with mean field

Figure 7: The α-process on G(n, c/n) with n = 100′000, c = 3.5 and ∆ = 2
for all vertices. 7(a) shows the pure α-process for an initial infection s0 = 0.06
(ac

0 ≈ 0.058). The turquoise colored line is the total density of infected vertices,
yellow shows the density of semi-infected vertices. 7(b) shows a sub-critical
α-process, s0 = 0.05, with an activated mean-field process for active vertices,
β2 = 0.2. The rate ρ of production of vertices with active knowledge is ρ = 0.001.
The turquoise line is the total density of infected vertices, blue the density
of vertices with passive knowledge, green the density of vertices with active
knowledge.

5 10 15 20 25 30
k

50 000

100 000

150 000

size of k-core

Figure 8: Size of the k-cores of the StudiVz network

6 Summary

We used threshold percolation to investigate a generalized epidemic process.
This process, defined as the independent sum of a local threshold infection
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process, a mean field process, and forgetting, shows two types of phase transi-
tion. One related to parameters describing the transmission probabilities and
to parameters describing the network structure, the other one (unknown from
classical epidemics) related to the initial infection density. The results about
threshold percolation may be generalized to hold for inhomogeneous random
graphs, discussed in depth in [8].

We applied the model to knowledge diffusion on complex networks, using two
distinct levels of infection to distinguish capabilities of using knowledge, namely
active and passive knowledge. We ran simulations to investigate the interplay
between vertices with active and passive knowledge. After the phase transition
in the number of vertices with passive knowledge, the number of vertices with
active knowledge increases rapidly as well (showing no phase transition but a
non differentiability in one point.)

Finally we used the simulation program to find the k-cores of a real world
network, the StudiVz network (see [19]) by giving all vertices a threshold ∆ = k,
setting the infection probability above the threshold to one, i.e. α = 1, and
infecting the whole network initially. Forgetting then yields that all vertices but
the ones in the k-core forget.
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Passive Supporters of Terrorism and

Phase Transitions

Friedrich August, Philippe Blanchard, Sascha Delitzscher, Gerald Hiller, Tyll Krüger

Universität Bielefeld, D-33615 Bielefeld, Germany

Abstract. We discuss some social contagion processes to describe the formation

and spread of radical opinions. We use threshold dynamics to describe the local

spread of opinions, and mean field effects. We calculate and observe phase transi-

tions in the dynamical variables resulting in a rapidly increasing number of passive

supporters. This strongly indicates that military solutions are inappropriate.

Keywords. Terrorism, Passive Supporters, Phase Transitions

1. Introduction

In this article we discuss some social contagion processes which may play an important

role in the dynamics of radical opinion formation. The prime applications in mind are

conflict situations as they are met at the time of writing in Afghanistan, Iraq or Pales-

tine where a highly armed alliance of foreign troops fights against a part of the local

population which has been radicalized in a way such that western social classification

dubs them terrorists. In the following we will use the word ”terrorist” solely to refer to a

certain subpopulation (whose interaction features will be described below) in our model

environment and do not intend to enter the difficult debate of what constitutes the social

essence of terrorism. In terms of our model interaction and shortly speaking one could

say that terrorists are those individuals on which counter terrorist throw bombs on.

Besides the radical terrorist groups there is a much larger grey-area of supporters of these

terrorists. Support has many faces, ranging from just keeping still about what one knows

about terrorists locations or movements up to supporting terrorists by providing various

forms of logistic infrastructure. Again, we will avoid specifying exactly what is meant

with this notion but use it to describe the potential, predecessor states of an opinion state

from which radical groups may (by whatever means and tools) recruit new members.

In this paper we discuss some aspects of the dynamics of passive supporters of terrorist

activities in virtual social networks. Our main interest lies in the study of phase tran-

sitions in the number of passive supporters induced by what is euphemistically called

collateral damage as is common as a consequence of counter terrorist attacks on terror-

ists moving around in populated places. Phase transitions in the opinion of large parts

of a population are particularly important since they violate the classical ”linear” action-

reaction view common among military leaders and politicians.

We are not concerned with real terrorist networks and their dynamics, for further in-

formation on this topic see [1]. Our model is based on one paradigm. Counter terrorist



Figure 1. Coalition military casualties in Afghanistan by month: Neglecting seasonal effects, the sudden in-

crease in the number of casualties is very similar to the density of active terrorists in figures 3, 4 and 5, caused

by the phase transition in the density of passive supporters. Source of diagram: http://www.icasualties.org/oef/

strikes lead to collateral damage. In many cases terrorists use civilians as human shields,

and civilian casualties in turn are likely to cause an increase in the number of passive sup-

porters 1 and increase the willingness of civilians to become members of radical groups.

As discussed by Galam in [2], the number of passive supporters is correlated to the phys-

ical mobility of active terrorists.

Cause and effect are not linearly coupled, there is a phase transition instead. It was widely

believed among western observers that in Afghanistan a large part of the population

was supporting the Allied forces at the beginning of the operation, in spite of many

casualties caused by bombings and other military strikes. Then a sudden change in the

public opinion occurred, the atmosphere inclined to the disadvantage of the allied forces

in a short period of time, a phase transition from Allied-friendly to Taliban-friendly took

place, causing a boost in the number of passive supporters.

Passive supporters usually do not reveal their nature towards outsiders and this phase

transition happens hidden from Allied forces. The number of passive supporters can

only be measured indirectly via the degree of cooperation of the civil population. After

the phase transition the counter terrorists gain virtually no help from civilians and the

recruiting pool for radical organizations becomes nearly inexhaustible, as it has been

popularized in News reports about the Gaza Strip. Such a situation may result in an

absurd and tragic solution to secure public safety and to avoid a downward spiral of

violence like the segregation of people from each other with a fence.

2. Description of the Model

In the following we will specify the structure of our model which is inspired by gener-

alized epidemic processes, (for more general information about this class of processes

1at least in the local family and friendship network of a civilian victim this is highly plausible



and some other applications see [3]). Let G = (V,E) be a graph on a finite set of ver-

tices V and a set of edges E between vertices. We start with the description of the state

space. To keep things simple we distinguish only four states {0, 1, 2, 3}. State 0 encodes

the susceptible population which is more or less neutral in their opinion about terrorists.

State 1 individuals correspond to the passive supporters of terrorism and state 2 encodes

active terrorists. State 3 vertices correspond to vertices, which are isolated from the net-

work and do not interact anymore with other vertices. Although it would be natural, to

consider more refined states we can restrict the discussion of phase transitions to this

rather simple setting by arguing that the type of phase transition described here is robust

to many refinements of the model.

There is usually an immune subpopulation which is resistant to any radical opinion in-

fluence. Including this group will reduce the size of the susceptible population but does

not influence the existence of phase transitions. Also there usually exist dynamics within

the terrorist groups in complex hierarchical networks which in turn may have a strong

influence on terrorists activities (see [1] for a recent model concerning this question).

These intrinsic network dynamics within the relatively small subpopulation of terrorists

have only marginal influence on the 0 − 1 transition process (the process of becoming a

passive supporter via a social contagion process).

The dynamics will be defined via transition probabilities Ploc and Pmean which mainly

depend on the state distribution in the neighborhood of the network and a mean field

term depending only on the overall prevalence of the state variables at a given time

t. Although mesoscopic dependencies are in principle possible, we think they are of

secondary importance and do not change the dynamical picture in general.

With χi(t) denoting the state variable of individual i at time t, for the probability of

switching the state from a to b we formally have:

P{χi(t + 1) = b | χi(t) = a} = Ploc

(

χB1(i)(t)
)

⊕ Pmean (s(t)) ; a, b ∈ {0, 1, 2} ,

where the sum sign stands for independent superposition2 of the local and global infec-

tion events. The subscript B1(i) denotes the neighborhood of i and s(t) the total number

(or density) of vertices not in a susceptible or immune state at time t.
The local dynamics we use here is inspired by generalized epidemic processes [3]. In

contrast to classical epidemics, where the probability of infection is an independent su-

perposition of the single infection events caused by each infected neighbor (for small in-

fection probabilities this means that the probability to get infected is proportional to the

number of infected neighbors), every vertex i admits a threshold ∆i of infected neigh-

bors, at which the probability of infection suddenly jumps to a high probability. More

precisely, let Ni(t) denote the number of neighbors of a susceptible individual i at time

t which support or accomplish terrorists. Hence Ni(t) is the sum of state 1 and state 2
neighbors of i at time t. Then, the probability that individual i will become a passive

supporter at time t + 1 is given by:

Ploc {χi(t + 1) = 1 | χi(t) = 0} =

{

ǫNi(t), Ni(t) < ∆i

α, Ni(t) ≥ ∆i

2Independent superposition of two probabilities A and B is just A + B − AB



Examples of this type of local dynamics are the spread of rumors, prejudices, knowledge

or beliefs. So, whenever one vertex has contact with too many (here ∆ or more) passive

supporters or terrorists, they will sooner or later become passive supporters of the ter-

rorists, either because they get convinced by the ideology or because they get exploited,

unintentionally or even unnoted by themselves. Passive supporters of terrorism do not

necessarily support terrorist ideologies, they may have been forced to support or may

have been paid for. They may become uncooperative or useless to the terrorists, so they

discontinue support. We assume that for every vertex there is a chance of switching back

from 1 or 2 to 0 with a given probability γ.

Also there is a fixed rate k at which terrorists recruit from passive supporters. Due to the

action of external forces like the state or allied troops, or by death or by migration, ter-

rorists can be neutralized and removed from the network with probability ρ. Emotionally

involved relatives and friends of victims, who where in state 0 until then, will potentially

decide to join the terrorists side to take revenge. Civilians watching the News may be

upset and enraged when they observe counter terrorists taking out their fellow citizens

and destroying their buildings to capture or to eliminate terrorists.

We assume a fixed rate κ at which a neutralized terrorist generates new passive support-

ers. Thus, for a susceptible vertex in the network, the probability of becoming a passive

supporter depends (besides the above describe local infection way) on the number of

neutralized terrorist per time step and therefore on the number of active terrorists in the

network. In this way, κ constitutes the mean field dynamics of the infection process. If

C (t) denotes the number of captured terrorists at time t we have formally:

Pmean {χi(t + 1) = 1 | χi(t) = 0} = 1 − (1 − κ)
C(t)

(1)

∼ κC (t) ; for small κ. (2)

Note that if one ignores mass media effects the total number of new mean field induced

passive supporters should stay bounded irrespective of the size of the population. We

therefore scale the κ value with the population size appropriately.

Table 1 summarizes all parameters and their interpretations.

Table 1. Summary of all parameters

parameter transition affiliation

ǫ 0 → 1 local process below the threshold

α 0 → 1 local process above the threshold

κ 0 → 1 mean field

γ 1, 2 → 0 changing mind

k 1 → 2 procreation rate of new terrorists

ρ / neutralization rate of terrorists

3. Phase Transitions in the Local Infection Process

The usage of local threshold dynamics yields additional phase transitions that are dif-

ferent from those in classical epidemics, which are phase transitions in the parameters.



Here, in addition to these phase transitions in the parameters there are such in the dynam-

ical variables like the number of passive supporters. In the following we state some ana-

lytic results for these phase transitions for the case of the classical Erdös&Renyi random

graph G(n, p), the graph with n vertices and independent edge probability p between

each pair of vertices.

To investigate the average infection density bt on a G(n, p) with p = c/n we assume

for simplicity ǫ = 0, α = 1 and that the thresholds ∆i are distributed uniformly, i.e.

∆i = ∆ for all vertices i. It is easy to see that the case of very small ǫ and rather large

α gives similar results although the formulas become more complicated. For a detailed

mathematical treatment see [3]. There is a recursion for bt, namely

bt+1 = 1 − (1 − b0)e
−cbt

∆−1
∑

k=0

(cbt)
k

k!
.

Thus, for ∆ = 2 we get for the fixed point equation

b∗ = 1 − (1 − b0) e−cb
∗

(1 + cb∗) . (3)

Note that there can be several solutions one has to take the dynamically stable one (clos-

est to b0 ). A closer examination shows that, depending on the value of b0 and c, there

are either 3 fixed points or just one in the domain [0, 1]. Since the iteration mapping has

no critical points in this interval the smallest of these fixed point is also the attractor for

the orbit starting with b0. Three examples are shown below. The phase transition hap-

pens when the first two fixed points (in case there are three) join together and form an

indifferent (slope one) fixed point, see fig. 3. That means that for b0 < bc
0, i.e. if the

initial prevalence is smaller than the critical value, the final infection density b∗ will be

not much larger than b0. If b0 > bc
0 then b∗ will be close to the number of vertices in

the k-core3 of the graph. The phase transitions are closely connected with the k-cores

of a network. If k ≥ ∆ then every vertex in the k-core succeeds the threshold and gets

infected sooner or later.

The critical density bc
0, depending on the edge density c of the graph, is given by

bc

0 = 1 − 2 exp(− 1
2 (1 − c +

√
c2 − 2c − 3))

c(−1 + c −
√

c2 − 2c − 3)

Figure 2 shows the function of the right hand side of eq. 3.

3A subgraph G′ of a graph G is called k-core of G if every vertex in G′ has at least k neighbors.



Figure 2. Right hand side of eq 3 (top left, top right, lower left). The black lines point to the stable fixed point.

The graph in the lower right shows bc

0
as a function of b0.

The mean field dynamics described in section 2 induces now an effective slow increase

of the initial density for the local spreading process until the critical density for the local

dynamics is reached. Above the phase transition there remains then a nearly inexhaustible

pool for recruiting new terrorists and any attempt to resolve the situation by military

means has to fail. We close this section with a short calculation for the pure mean field

dynamics. Let k be the probability that a passive supporter becomes a terrorist (for the

simulations this is taken to be 0.1 percent). Assume that n is large and κn =: κ. Then

the branching process approximation to the pure mean field process (which is valid for

small numbers of initially infected) becomes overcritical if

kρκ

(γ + k(1 − γ)) (γ + ρ(1 − γ))
> 1. (4)

Note that in case the critical threshold for the local infection process is very small even

in the subcritical case the mean field dynamics can due to stochastic fluctuations trigger

the dynamics above to the phase transition.

4. Simulation Results

The simulations are run on an Erdös&Renyi random graph G(n, p). Throughout all sim-

ulations the parameters of the local infection process are chosen to be α = 1, ǫ = 0.

On average, one percent of the passive supporters change back to being susceptible, γ =
0.01. The probability of becoming an active terrorist is zero for all susceptible vertices



and 0.1 percent for all passive supporters. Thus, on average 1000 passive supporters

generate one single active terrorist.

On each picture the abscissa is time, where we interpret one time step ∆t = 1 to be

one week. There are other associations possible of course, but in the context of social

networks in regions, which are struck by terror, associating one time step with one week,

giving people the opportunity to act and communicate, seems to be a natural choice.

The y-axis is the density of vertices in state 1 or 2, thus having values running from 0 to

1. There are three graphs shown, the dark blue one being the number of active terrorists,

the dark green one being the number of passive supporters and the turquoise one being

the sum of these two.

Figure 3 shows the case of an Erdös-Renyi random graph G(n, p), p = c/n with n =
200′000 and and average degree of c = 4. The threshold for the local dynamics is set

to ∆ = 2, i.e. as soon as one vertex has two passive supporters in its neighborhood it

turns to a passive supporter as well. The initial density of passive supporters is set to

b0 = 0.04, i.e. there are 8000 passive supporters from the start. The mean field parameter

κ, which is the rate at which one captured active terrorist generates passive supporters,

is set to κ = 0, 00001, i.e. one captured active terrorist generates on average 2 passive

supporters.

The process is run for a span of t = 500 steps, corresponding to about 10 years of time.

Choosing ρ = 0.01 (left) yields a phase transition in the number of passive supporters

and a sudden growth of the number of active terrorists, while choosing ρ = 0.001 (right)

yields no phase transition. While in both cases the number of passive supporters increases

directly from the start to a level, which is slightly decreasing for one third of the time,

the higher value of the capturing rate triggers the mean field process to produce enough

passive supporters to lift the local process to an overcritical level, where the calamitous

phase transition occurs, resulting in an irreversible increase of active terrorists.

Figure 3. Densities of active terrorists and passive supporters on an Erdös-Renyi random graph

G(n, p), p = c/n with n = 200′000 and c = 4, threshold ∆ = 2, initial density of passive supporters

b0 = 0.04, mean field κ = 0.00001, in a time span of t = 500 steps. Choosing ρ = 0.01 (left) yields a phase

transition in the number of passive supporters and a sudden growth of the number of active terrorists, while

choosing ρ = 0.001 (right) yields no phase transition or a phase transition outside of the time scale under

consideration.

The impact of changing the capturing parameter ρ is shown in Figure 4, on an

Erdös&Renyi random graph G(n, p), p = c/n with n = 50′000 vertices and average

degree c = 4, threshold ∆ = 2, initial density of passive supporters b0 = 0.01, i.e.



500 passive supporters from the start. The mean field parameter is κ = 0, 001, i.e. one

captured active terrorist generates 50 passive supporters here. Choosing ρ = 0.004 (left)

or ρ = 0.0025 (right) only alters the moment when the phase transition happens.

Figure 4. Densities of active terrorists and passive supporters on an Erdös&Renyi random graph

G(n, p), p = c/n with n = 50′000 and c = 4, threshold ∆ = 2, initial density of passive support-

ers b0 = 0.01, mean field κ = 0.001, in a time span of t = 500 steps. Choosing ρ = 0.0004 (left) or

ρ = 0.00025 (right) only alters the moment when the phase transition happens.

Fig 5 shows the simulation run on a sample of the anonymized StudiVz network, includ-

ing members associated with scholars of Bielefeld and their friends. The network has a

size of approximately 400′000 vertices with an average degree of about 7.2, for more de-

tails see [4]. With an initial density of passive supporters of b0 = 0.00005, corresponding

to an average of 20 passive supporters from the start, and with capturing rate κ = 0.0001,

corresponding to an average of 40 citizens getting converted to passive supporters, we

observe the phase transition occurring as soon as one or two active terrorists get caught.

Figure 5. Densities of active terrorists and passive supporters on a sample of the StudiVz network, two single

runs. The threshold is ∆ = 2, initial density of passive supporters b0 = 0.00005, mean field κ = 0, 0001, in

a time span of t = 500 steps. The phase transition occurs as soon as one or two active terrorists get captured.

5. Conclusions and Perspectives

The main observation is the existence of a phase transition in the number of passive

supporters of terroristic activities. Whenever counter terrorist activities lead to collateral



damages, the likelihood of outraging civilians rises. A high number of passive supporters

provides a steady pool to recruit active terrorists, so the number of active terrorists and

their attacks increases, as fig. 1 suggests and as resembled by the graph for the number

of active terrorists in figures 3, 4 and 5.

Lowering the rate ρ of removal of active terrorists to avoid the phase transition is not

what our results suggest. The interplay of the mean field term κ, which is the rate at

which removed active terrorists generate passive supporters, and ρ has to be taken into

account. Avoidable failures resulting in casualties, high collateral damage, pictures and

videos of humiliated inmates in Allied prisons, are factors which increase the probability

that the civil population will join the terrorist side instead of fighting against it.

If the Allied forces want to avoid the phase transition in the number of passive support-

ers to not gain a stable number of active terrorist, capturing or removing active terrorists

from the network would make sense therefore only if this happened practically with-

out casualties, fatalities, applying torture or committing terroristic acts against the local

population.

If this is not possible - and evidence is pointing towards this - our results strongly in-

dicate that there is no military solution to fight terrorism, so only political solutions are

available.

A refinement of the model may use weighted graphs, where the vertices have properties

like credibility or importance, to include intra-organization dynamics, e.g. to model the

emergence of terror cells. In the same fashion the influence of local warlords and tribal

conflicts may be described.
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