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Abstract. We investigate the question of how co-speech iconic gestures
are used to convey visuo-spatial information in an interdisciplinary way,
starting with a corpus-based empirical and theoretical perspective on
how a typology of gesture form and a partial ontology of gesture mean-
ing are related. Results provide the basis for a computational modeling
approach that allows us to simulate the production of speaker-specific
gesture forms to be realized with virtual agents. An evaluation of our
simulation results and our methodology shows that the model is able
to successfully approximate human gestural behavior use of iconic ges-
tures, and moreover, that gestural behavior can improve how humans
rate a virtual agent in terms of eloquence, competence, human-likeness,
or likeability.

1 Introduction

The question how co-speech iconic gestures are used to convey visuo-spatial in-
formation is still relatively unexplored [1]. In this paper we will mainly focus
on two topics, first, how gesture simulation is grounded in an empirical gesture
typology and a partial ontology and second, how gesture simulation can be used
methodologically, looping back to the empirical data on which both, simulation
and theoretical modelling are based. See Fig. 1 for an overview of our interdisci-
plinary methodology. We meet this challenge with an interdisciplinary methodol-
ogy combining the empirical study of speech and gesture use, the elaboration of
theoretical reconstructions and the formulation of generation models that enable
the simulation of such communicative behaviour with virtual agents. Recently,
new options for gesture typology have arisen due to systematically collected and
annotated data such as the Bielefeld Speech And Gesture Alignment (SAGA)
corpus which contains approximately 5000 iconic/deictic gestures used in nat-
ural dialogues in a spatial communication task combining direction-giving and
sight description (for details see [9]). Corpus-based empirical methods proceed
from rated annotations to classification of recurrent structures and ultimately
to an investigation of its generalizability supported by statistical investigations
[6]. Computational simulation opens up new possibilities enriching this set of



methods in many ways. Obviously, gesture simulation has its independent goals
in endowing virtual agents with human-like expressiveness. In addition, we use
it as a methodological device, more specifically for the post-hoc evaluation of de-
cisions made at various levels of the theory construction process, in other words,
as a method of Popperian falsification. As an illustration of every aspect of our
methodology, we will discuss a church-window-example from the SAGA corpus
shown in Figure 1a (church window datum) and 1b (gesture datum) throughout
the paper (restricted to the top of the window).

Empirical Study Simulation
Theoretical 

Reconstruction
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Evaluation
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Fig. 1. Our methodology to study iconic gesture combines empirical study, theoretical
modeling and computational simulation. The model is evaluated in different ways: (1)
by comparing simulated gesture forms with empirically observed gestural behavior,
(2) by comparing the gesture’s semantics with theoretical semantic reconstructions,
and (3) by investigating how the simulation with a virtual agent is judged by human
recipients in a user study. At this stage, one might return to the empirical data to start
a new pass in order to extract improved models of communicative behavior.

In the following, we will start with an empirical and theoretical perspective
on how gesture form and meaning can be described and mapped onto each
other under consideration of gestural representation techniques (Sect. 2 and 2).
These concepts provide the basis for a computational simulation approach with
virtual agents (Sect. 3). Finally we will show how we evaluated the model with
respect to empirical data (Sect. 4 and 4) and regarding the degree to which
the automatically generated gesturing behavior is able to improve how a virtual
agent is rated by human observers (Sect. 4).

2 Empirical and Theoretical Perspective

How can we Describe a Gesture’s Form? The analysis of physical gesture
form is an indispensable prerequisite of any account of gesture generation. We
have developed a typological grid for gestures accompanying noun phrases based
on the SAGA corpus to specify and characterize the physical form of co-speech
iconic gestures [10].This typology specifies a hierarchy of so-called annotation
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Dialogue Part 1, MM Version
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Router-Speech: Beide Kirchen haben diese typischen eh Kirchenfenster, halt unten
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Router-Gesture:
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R-OH-SharpBentDown-RH
PathOfWrist-RH                           ARC>ARC
WristMovementDirection-RH       MU/MR > MD/MR

R-OH-SharpBentDown-RH
PathOfWrist-RH-ARC>ARC
WristMovementDirection-RH-MU/MR > MD/MR

R-OH-SharpBentDown-RH
PathOfWrist-RH-ARC>ARC                                    edge (e1, object) ∧ edge (e2, object)
WristMovementDirection-RH-MU/MR > MD/MR     angle (e1, a, e2) ∧ acute(a)

(i) (ii)

(iii)

(c)

Fig. 2. (a) Church window datum (b) Empirical gesture datum (c) Mapping of gesture
form description onto semantic representation: (i) gesture type and attribute-value
pairs relevant for semantics; compare this to Table 1. (ii) gesture type and attribute
value pairs of (a) mapped onto composite functions indicating the composing elements
ARC>ARC and MU/MR>MD/MR as affixes. These composite functions are used for
the next step: (iii) composite functions and their values in terms of logical form. ‘→’
denotes an onto-mapping.

predicates including the four major gestural form features (handshape, hand ori-
entation, position, and movement characteristics) which are widely accepted in
gesture research. Our typology, however, goes beyond these features in that re-
current gesture events are classified according to dimensions which have semantic
impact. We consider indexings to objects as 0-dimensional, the idea being that
in these cases no particular feature is depicted, it is no more than a mere indica-
tion of objects. Next come one-dimensional entities, lines, which can be straight
or bent. We have composites of lines enclosing an angle. This is exactly what we
need for our example: two bent lines meeting in an apex. There are all sorts of
two-dimensional shapes, some like geometrical forms, some like fuzzy locations
or regions. Two-dimensional entities can also form composites and be embedded
in three-dimensional space. A similar story can be told for three-dimensional
entities and arbitrary composites for entities of all dimensions. The full church
window datum, for instance, combines a three-dimensional corner and a base
with bends in the manner described.

The mapping from an annotation predicate to its value is laid down in an
attribute value matrix (AVM). The number of predicates used in the respective
AVM is determined by the need to capture the most characteristic features of
the gestural representation as produced by the motor behaviour of the hand in
a time interval fixed by the gesture phases, especially the gesture stroke. Hence,
gesture typology looks for recurrent manifestations of motor behaviours and
collects them into sets. Assembling into sets is of course done with an eye on
semantics, as will become clear soon. Nevertheless, there is no air of circularity
in this as the grouping together could be carried out in a completely arbitrary
way leaving the well formedness decision to semantic constraints.

The AVM for the church window example is shown in Table 1: the handshape
of the Router’s right hand (‘RH’) is ASL-G, intuitively the handshape used for
pointing, delineating or drawing. The palm orientation is downwards (‘PDN’;



facing the floor), the orientation of the back of the hand is away from the body
(‘BAB’). The position of the wrist is in the very centre of the Routers gesture
space describing two arcs (‘CenterCenter’). The wrist movement goes up, does
the bend and comes down again (‘MU’>MR>MD’). The gesture is large and
the wrist position is between the centre of the torso and the elbow (‘D-CE’).
Furthermore, both hands are involved, the left hand being in a stable position
(‘LHH’). What we already see here is that we have a set of form features (the
attributes) taken from the motor characteristics of the hand movement, the torso
position and the relation of hand to torso. 0-values in the AVMs show that, in
observational terms, the values of the respective annotation predicates do not
reach a critical limit. Hence, they are neglected.

Table 1. Annotation of the empirical gesture datum (Fig. 1) and the simulated gesture
datum (Fig. 3).

Annotation predicate Empirical gesture datum Simulated gesture datum
Handshape ASL-G ASL-G
– Path 0 0
– Direction 0 0
– Repetition 0 0
Palm Orientation PDN PDN
– Path 0 0
– Direction 0 0
– Repetition 0 0
BoH Orientation BAB BAB
– Path 0 0
– Direction 0 0
– Repetition 0 0
Wrist Position CenterCenter CenterCenter
– Distance D-CE D-CE
– Path ARC>ARC ARC>ARC
– Direction MU>MR>MD MR/MU>MR/MD
– Repetition 0 0
– Extent Large Large
Agency Router MAX
Handedness RH RH
– TwoHandedConfiguration RFTH>BHA 0
– MovementRelativeToOtherHand LHH 0

How can we Capture a Gesture’s Meaning? Intuitively the meaning of a
gesture can be captured in the following way: We assume that meaning is a prop-
erty of signs. To acquire the status of signs, objects must be conventionalised to
some extent, conventionalisation admitting a considerable amount of variation,
similar to the pronunciation of words. Hence we have to investigate whether
particular hand postures are conventionalised to some extent, and, if provided
with some meaning, can align with verbal meaning in a compositional way. To
shed some light on this matter is the task of gesture typology extracting types
of form features like wrist movement. Clusters as well as types of whole ges-
tures are defined in turn using types of form features. How do we get from these
classes, lines, locations and so on to meanings? Instead of applying a feature



classification approach as in [2, 7], our idea is that elements of these classes such
as bends or lines can be given a fairly non-specific meaning which allows them
to combine with verbal meaning. This non-specific meaning is called a Partial
Ontology. It is partial because it does not fully specify meanings like a lexical
definition, remaining hence underspecified, and it yields an ontology because it
circumscribes sets of fairly abstract objects.

We explain this reconsidering Table 1 and asking which attribute value pairs
might be relevant for determining the semantics of the gesture. Clearly, all 0-
values of attributes are non-relevant. The others could all receive different values,
consistency presumed, in order to yield the same semantics. Which of them are
semantically relevant? Here we rely on the fact that iconic gestures can be sub-
classified according to different means of representation that are employed.

Several classifications of such representation techniques have been proposed
[8]. By and large, they can be unified to the following categories for the descrip-
tion of objects: (1) (abstract) indexing : pointing to a position within the gesture
space3; (2) placing : an object is placed or set down within gesture space; (3)
shaping : an object’s shape is contoured or sculpted in the air; (4) drawing : the
hands trace the outline of an object’s shape; (5) posturing : the hands form a
static configuration to stand as a model for the object itself.

To investigate how the relation of gesture form and meaning is constrained by
these techniques of representation we analyzed the SAGA data for characteristics
of the very technique broken down in terms of common technique-specific pat-
terns as well as residual degrees of freedom. This analysis revealed that each tech-
nique is characterized by particular technique-specific patterns as well as iconic
aspects. Regarding our example—a drawing gesture—this means that some fea-
tures, namely handedness (typically one-handed), handshape (typically ‘ASL-
G’), and palm orientation (typically downwards) have technique-characteristic
values. The gesture’s iconicity is realized only by the type (’ARC>ARC’) and
trajectory (‘MU>MR>MD’) of the wrist movement as the gesture’s semantically
relevant feature values.

This is fine, but where to encode the semantics? Gesture meaning and word
meaning must be integrated in the end and we will need the resulting repre-
sentations for derivations, soundness proofs, inferences and entailments (see [11]
for work in this direction). This deliberation leads to the strategy of associat-
ing some type of logical form to the relevant form features. Methodologically
speaking, this is an annotation problem and should ideally be solved for the
whole corpus. In more detail (see Fig. 1): We have a type “Router’s one handed
sharp bend down with right hand” (R-OH-SharpBendDown-RH) which tags the
AVM. The relevant attributes are PathofWrist-RH with value ‘ARC>ARC’, i.e.
two bends, and WristMovementDirection-RH with value ‘MU/MR’ (continu-
ously moving right while moving up) turning consecutively into (’>’) ‘MD/MR’
(continuously moving down while moving right). The information extracted from
the rated annotation is shown in Fig. 1a. This information, representing an in-

3 By considering abstract indexing gestures we extend the scope from iconic gestures
towards representational, i.e. iconic and deictic, gestures.



termediate state, is mapped onto a complex function made up of the attribute
value pair as exhibited in Fig.1b. Finally, Fig. 1c shows the stipulated underspec-
ified semantic representation, strictly speaking in logical syntax terms, to which
a model-theoretic interpretation must be given. The wrist movement provides
two edges of an object, the up-and-down-movement an angle existing between
the two edges. Underspecification exists with respect to the orthogonal axis
and the typological dimension. So it could be used for a two-dimensional or a
three-dimensional object arbitrarily oriented, upright, slanted, inverted etc. in
an embedding three-dimensional space.

3 The Generation Perspective

Based on the empirical and theoretical issues discussed above, we will now ad-
dress the question how iconic gestures convey visuo-spatial information from a
generation perspective. In particular, we will show how a computational content
representation implements the partial ontology, and how the simulation of ges-
ture use relies on the representation technique-based based mapping of meaning
onto gesture form.

A Computational representation of content. As a prerequisite to generate
gesture forms, the nature of the underlying meaning representation is of major
importance. In other words, an implementation of the partial ontology of ab-
stract gesture description is required as a semantic representation from which
overt gesture forms are to be generated. Here we employ a representation called
Imagistic Description Trees (IDT) [12]. Each node in an IDT contains an imagis-
tic description which holds an object schema representing the shape of an object
or object part. Object schemas contain up to three axes representing spatial
extents in terms of a numerical measure and an assignment value like ‘max’ or
‘sub’, classifying this axis’ extent relative to the other axes as an approximation
of shape. Accordingly, the IDT model is able to approximate exactly those 0- to
3-dimensional shapes that are covered by the partial ontology. The boundary of
an object is defined by a profile vector that states symmetry, size, and edge prop-
erties for each object axis or pair of axes. The size property reflects change of
an extent as one moves along another axis; the edge property indicates whether
an object’s boundary consists of straight segments that form sharp corners, or
of curvy, smooth edges. The links in the tree structure represent the spatial re-
lations that hold between the parts and wholes and are quantitatively defined
by transformation matrices. It is thus possible to represent decomposition and
spatial coherence. In addition, the IDT model provides the possibility of leaving
information underspecified which is an important characterizing feature of the
partial ontology. The model is, thus, able to represent both concrete and ab-
stract objects. Fig. 3a illustrates how the church window from our example can
be operationalized with the IDT model.

A Computational Model of Gesture Production. To generate gesture
forms from the IDT representation we have proposed GNetIc, a gesture net



Iw = ({Ic}, OSw, yes, Mw)
OSw = ({(2,{∅},8),(1,{∅},4)}, ...)
Mw = [...] 

Church-window

Instance for integration (simplified didactic version): lexicon-definition for
church-window containing

lower-part, middle-part, upper-part

upper-part := ((prism, pointed) ∨ (cylindric-section, round) ∨ . . . ).

The church-window as depicted by the
first term of the disjunction
(prism ∧ pointed)

The church-window as depicted by the
second term of the disjunction
(cylindric-section ∧ round)
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MAX-OH-SharpBentDown-RH
PathOfWrist-RH-ARC>ARC                                    edge (e1MAX, objectMAX) ∧ edge (e2MAX, objectMAX)
WristMovementDirection-RH-MU/MR > MD/MR     angle (e1MAX, aMAX, e2MAX) ∧ acute(aMAX)

(c)

Fig. 3. (a) IDT representation of the church window (b) Generated gesture datum
realized by the virtual agent MAX (c) Partial ontology of MAX’ gesture.

specialized for iconic gestures [3]. These networks implement the representation
technique-based form-meaning relationship as described in Sect. 2, and even go
beyond it in that they account for empirical findings which indicate that a ges-
ture’s form is also influenced by specific contextual constraints like linguistic or
discourse contextual factors (e.g., information structure, communicative goals,
or previous gesture use of the same speaker) as well as obvious inter-individual
differences. The latter become evident in gesture frequency, but also in prefer-
ences for particular representation techniques or the low-level choices of gesture
form features such as handshape or handedness. We employ a formalism called
Bayesian decision networks (BDNs)—also termed Influence Diagrams that sup-
plement standard Bayesian networks by decision nodes. This formalism provides
a representation of a finite sequential decision problem, combining probabilistic
and rule-based decision-making. We are, therefore, able to specify rules for the
mapping of meaning onto gesture forms and at the same time we can account
for individual patterns in gesture use.

Visuo-spatial
Referent Features

Discourse/Linguistic 
Context

Previous Gesture

PO

G

Gesture Features

HSHRT

FO MT MD

(a)

if (RepresTechn = "drawing") 
then PalmOrient = "PDN" 

if (RepresTechn = "drawing") 
then BoHOrient = "BAB" 

if (RepresTechn = "drawing" 
    & ShapeProp = "gothic") 
then MvmtType = "curved"

if (RepresTechn = "drawing" 
    & ShapeProp = "gothic" 
    & Handedness = "RH") 
then MvmtDir = "MU/MR > MD/MR"  

(b)

Fig. 4. (a) Schema of a GNetIc network and (b) a set of rules realized in the deci-
sion nodes of these networks determining the values for palm and BoH orientation,
movement type, and movement trajectory of a drawing gesture.



GNetIc provides a feature-based account of gesture generation, i.e., gestures
are represented in terms of characterizing features as their representation tech-
nique and form features which correspond to those ones covered by the gesture
typology (cf. Table 1). These make up the outcome variables in the model which
divide into chance variables quantified by conditional probability distributions
in dependence on other variables, (‘gesture occurrence’, ‘representation tech-
nique’, ‘handedness’, ‘handshape’), and decision variables that are determined
in a rule-based way from the states of other variables (‘palm orientation’, ‘BoH
orientation’, ‘movement type’, ‘movement direction’). Factors which potentially
contribute to these choices are considered as input variables. So far, three differ-
ent factors have been incorporated into this model: linguistic/discourse context
(communicative goals, information structure, thematization, noun phrase type),
features characterizing the previously performed gesture, and features of the ref-
erent (shape properties, symmetry, number of subparts, main axis, position).
The latter are extracted from the IDT representation.

The probabilistic part of the network is learned from the SAGA corpus data
by applying machine learning techniques. The definition of appropriate rules in
the decision nodes is based on our theoretical considerations of the meaning-form
relation via gestural representation techniques and our corpus-based analysis
of these techniques. That is, depending on the very representation technique,
gesture form features are defined to be subject to referent characteristics as well
as other gesture form features. See Fig. 3a for the generation network schema and
Fig. 3b for a set of rules to determine the values for palm and BoH orientation,
movement type, and movement trajectory of a drawing gesture. With respect to
representation technique-specificity, the rules account for the fact that drawing
gestures are typically performed with a downwards palm orientation and fingers
oriented away from the speaker’s body. In addition, regarding movement type,
the referent-characteristic shape property ‘gothic’ is considered in terms of a
curved movement with a circle-shaped trajectory.

Generation Example. To illustrate gesture generation on the basis of GNetIc
models, the generation of an example gesture for the church window to be re-
alized with the virtual agent Max is described in the following (see Fig. 3b).
Generation starts upon the arrival of a message which specifies the commu-
nicative intent to describe the window with respect to its characteristic prop-
erties: ‘lmDescrProperty (churchwindow-1)’. Based on this communicative in-
tention, the imagistic description of the involved object gets activated and the
agent adopts a spatial perspective towards it from which the object is to be
described. The representation is analyzed for referent features required by the
GNetIc model: position, main axis, symmetry, number of subparts, and shape
properties. Regarding the latter, a unification of the imagistic churchwindow-1
representation and a set of underspecified shape property representations (e.g.
for ‘longish’, ‘round’ etc.) reveals ‘gothic’ as the most salient property to be
depicted. All evidence available (referent features, discourse context, previous
gesture and linguistic context) is then propagated through the GNetIc network
(learned from the corpus data of one particular speaker before) resulting in a



posterior distribution of probabilities for the values in each chance node. This
way, it is first decided to generate a gesture in the current discourse situation at
all, the representation technique is decided to be ‘drawing’, to be realized with
the right hand and the pointing handshape ASL-G. Next, the model’s decision
nodes are employed to decide on the palm and back of hand (BoH) orientation
as well as movement type and direction: as typical in drawing gestures, the palm
is oriented downwards and the BoH away from the speaker’s body. These gesture
features are combined with a curved movement consisting of two segments (to
the right and upwards and to the right and downwards) to depict the shape of
the window. All values are used to fill the slots of a gesture feature matrix which
is transformed into an XML representation to be realized with the virtual agent
MAX (see Fig. 3b).

4 Different Styles of Evaluation

The final step is an evaluation of the generation results. This is done in two
ways. First, looping back to empirical data and theoretical reconstructions, we
take the simulated gesture as a datum. Its annotation is provided with a partial
ontology and compared with the originally annotated and interpreted real-world
datum. That is, we compare, first, the annotations of both gestures regarding
gesture form, and second, the partial ontology of both gestures with regard to
semantics. And second, we evaluate the simulation by accessing to what extent
the derived model enables a prediction of empirically observed gestural behavior,
as well as the degree to which automatically generated gestures, realized with a
virtual agent, are beneficial for human-agent interaction.

Data-based Evaluation of Gesture Forms. Concerning the comparison of
gesture forms we computed (for a sub-corpus of 473 noun phrases and 288 ges-
tures) how often the model’s assessment was in agreement with the actual ges-
turing behavior in the SAGA corpus for five networks learned form the data of
individual speakers and one ‘average’ network which was learned from the com-
bined data of those five speakers. In a leave-one-out cross-validation it turned out
that for each generation choice the prediction accuracy values clearly outperform
the chance level baseline. In total, networks learned from the data of individual
speakers achieved an accuracy of 71.3% while the accuracy for the combined net-
work was 69.1% (learning with contraint-based PC algorithm). Mean accuracy
for rule-based choices made in all networks’ decision nodes is 57.8% (SD=15.5).
Altogether, given the large potential variability for each of the variables, results
are quite satisfying. E.g., the mean deviation of the predicted finger orientation
(direction of the vector running along the back of hand) is 37.4 degrees, with
the worst case, opposite rating corresponding to a deviation of 180 degrees.

Theory-based Evaluation of Gesture Semantics. Even gestures whose
form features are partly classified as mismatches, may very well communicate
adequate semantic features. Therefore, we employ another comparison consisting



of the model-theoretic interpretation of the annotations. We explain this with
regard to our example. Comparing Figs. 1c (iii) and 3c we see that the semantics
MAX gesturally represents is, if considered in terms of intended models, equiv-
alent to the one the Router represented. Using conjunction in the standard way
and double brackets ‘[[, ]]’ for semantic values we get:

[[edge(e1, object) ∧ edge(e2, object) ∧ angle(e1, a, e2) ∧ acute(a)]]M,g ⇔ (1)

[[edge(e1MAX , objectMAX) ∧ edge(e2MAX , objectMAX)∧
angle(e1MAX , aMAX , e2MAX) ∧ acute(aMAX)]]M,g

(2)

Quantifying over Models M and assignments g we get that any model satis-
fying (1) will also satisfy (2) and vice versa. In other words, the simulation yields
the same semantics as the one deduced from the corpus and is hence adequate.
Note, in order to assess the result you have to keep in mind that MAX’ gesture
was generated using a different methodology, namely Bayesian decision networks
(see Sect. 3). In our ongoing work we apply this method to a larger data sample
of simulated and empirically observed gestures.

User-based Evaluation. Finally, going beyond the purely communicative func-
tions of gestures, another goal is to explore the user acceptance of the GNetIc-
generated gestures, as well as to investigate how the virtual agent itself is judged
by human users [4]. Five different conditions were designed differing solely with
respect to which GNetIc network was used in the architecture: two individual
conditions (ind-1 and ind-2 ) with GNetIc networks learned from the data of in-
dividual speakers, a combined condition with a network generated from the data
of five different speakers, and two control conditions (no gestures and random
choices at the chance nodes in the network). Note that in all conditions, gestures
were produced from identical input and accompanied identical verbal output.

In a between-subject design, a total of 110 participants (22 in each con-
dition), aged from 16 to 60 years (M = 23.85, SD = 6.62), took part in the
study (44 female/66 male). Participants received a description of a church by
the virtual human MAX, produced fully autonomously with a speech and ges-
ture production architecture containing GNetIc. Immediately after receiving the
descriptions, participants filled out a questionnaire to rate quantity and quality
of MAX’ gestures, quality of the overall presentation and their person perception
of the virtual agent in terms of items like ‘polite’, ‘authentic’, or ‘cooperative’.

Results can be summarized in four major points (for details see [4]). First,
MAX’ gesturing behavior was rated positively regarding gesture quantity and
quality, and no difference across gesture conditions was found concerning these
issues. That is, building generative models of co-verbal gesture use can yield
good results with actual users. The fact that gesture quality was rated more or
less equal across conditions rules out the possibility that other effects of the ex-
perimental conditions were due to varying quality of gesture use and realization
in the virtual agent. Second, both individual GNetIc conditions outperformed



the other conditions in that gestures were perceived as more helpful, overall com-
prehension of the presentation was rated higher, and the agent’s mental image
was judged as being more vivid. Similarly, the two individual GNetIc conditions
outperformed the control conditions regarding agent perception in terms of like-
ability, competence, and human-likeness. Third, the combined GNetIc condition,
notably, was rated worse than the individual GNetIc conditions throughout. This
finding underlines the important role of inter-individual differences in commu-
nicative behavior and implies that the common approach to inform behavior
models from empirical data by averaging over a population of subjects is not
necessarily the best choice. Finally, the no gesture condition was rated more
positively than the random condition, in particular for the subjective measures
of overall comprehension, the gesture’s role for comprehension, and vividness of
the agent’s mental image. That is, with regard to these aspects it seems even
better to make no gestures than to randomly generate gestural behavior even
though it is still considerably iconic.

5 Conclusion

In this paper we provided an interdisciplinary view on the question how co-speech
iconic gestures convey visuo-spatial information combining empirical study, the-
oretical modeling and computational simulation (see Fig. 1). Empirical data is
used for establishing a gesture typology which rests on gesture form features like
handshape, palm-direction or wrist-movement extracted from systematic corpus
annotations. Clusters of features then provide entities of different dimensions
such as lines, regions, partial objects and composites of these which are provided
by a partial ontology. Founding the simulation on empirical study and theoretical
reconstructions is then accomplished with a computational content representa-
tion that implements the partial ontology, and with a simulation model of gesture
use that realizes the mapping of meaning onto gesture form. The computational
generation approach with GNetIc is, however, not only driven by features of the
referent object, but also takes into account the current discourse context and the
use of different gestural representation techniques. Finally, in terms of an eval-
uation two mappings are established between the gesture in the original datum
and the generated gesture. Its annotation is provided with a partial ontology
and compared with the originally annotated and interpreted real-world datum.
The model was shown to be able to successfully approximate human gesture use
of iconic gestures, and gestural behavior can increase the perceived quality of
object descriptions as well as the perception of the virtual agent itself in terms
of likeability, competence and human-likeness as judged by human recipients.

We are aware that our results also reveal deficiencies, which mark starting
points for further refinements. For instance, we restricted our work to gestures
used in object descriptions for simplified VR objects, so far. The description
of more realistic entities or other forms of gesture use, like verb-phrase aligned
gestures, e.g., pantomime gestures or typical direction-giving gestures as in ‘turn
right’, pose further challenges. Another focus of our future work is an extension



towards gesture use in dialogues. This includes the consideration of dialogue
phenomena like gestural mimicry, but also the use of gestures to regulate the or-
ganization of the interaction, e.g., in terms of gestural acknowledgements or turn
allocation gestures [5]. We are confident that the interdisciplinary methodology
we have demonstrated in this paper, with several points of interaction between
the involved disciplines, has the potential to also deal with these issues.
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