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“[...] why different gestures take the
particular physical form they do is
one of the most important yet largely
unaddressed questions in gesture
research.”

Bavelas et al., 2008

CHAPTER 1
Introduction

1.1 Motivation

When we are face to face with others, we use not only speech, but also a multitude of
nonverbal behaviors to communicate with each other. A head nod expresses accor-
dance with what someone else said before. A facial expression like a frown indicates
doubts or misgivings about what one is hearing or seeing. A pointing gesture is used
to refer to something. More complex movements or configurations of the hands depict
the shape or size of an object. Of all these nonverbal behaviors, gestures, the sponta-
neous and meaningful hand motions that accompany speech, stand out as they are very
closely linked to the semantic content of the speech they accompany, in both form and
timing. Speech and gesture together comprise an utterance and externalize thought;
they are believed to emerge from the same underlying cognitive representation and to
be governed, at least in part, by the same cognitive processes (Kendon, 2004; McNeill,
2005).

Gestures are an integral part of human communication, as Goldin-Meadow (2003,
p. 4) so aptly put it: “whenever there is talk, there is gesture”. There is, actually, a
growing body of evidence substantiating the significant role of gestures. The impor-
tance becomes apparent in the fact that gestures already develop early in our linguistic
development: children at the one-word stage already systematically combine a word
and a gesture (Goldin-Meadow and Butcher, 2003). Even congenitally blind people,
who have never seen anybody gesturing, spontaneously produce gestures while talking
(Iverson and Goldin-Meadow, 1998). The important role of gestures in communication
is further supported by the fact that “to date there is no report of a culture that lacks
co-speech gestures” (Kita, 2009, p. 146). The role of gestures of such significance that
speech-accompanying gestures do not disappear when visual contact between speaker
and listener is absent, e.g., on the telephone (Cohen, 1977; Bavelas et al., 2008).

What tempts us to use gestures? What are the circumstances under which speakers
make use of a gesture? And under which circumstances do they not employ gestures?
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What aspects of meaning do speakers select to be expressed gesturally? What perspec-
tive do they adopt when depicting an object? Having a particular object in mind that
aims to be depicted gesturally—with which hand do speakers perform a gesture? The
left? The right? Or both hands? How do speakers shape and orient their palm(s) and
fingers to depict a particular shape? What kind of movement trajectory do the hands
or fingers perform?

This thesis does not take up all of these questions, but focusses on those which
concern the physical appearance of gestures. As shown by the epigraph by Bavelas et al.
(2008) these issues are mostly unanswered. That is, it remains an ambitious objective
to gain some understanding of the mechanisms that underlie gesture production in
human speakers. Along the same lines, de Ruiter (2007, p. 30) recently put the problem
thus: “generating an overt gesture from an abstract [...] representation is one of the
great puzzles of human gesture, and has received little attention in the literature”.

Figure 1.1: Gestures from three different speakers all of which depicting the same round church window.

In Figure 1.1, examples are given from three speakers who are describing the
same stimulus, a round church window. The speaker on the left hand side uses a
two-handed gesture in which the shape of the hands statically depicts the shape of
the window. The gesture of the speaker in the middle is similar such that the hand
is shaped in a way that bears a resemblance with the shape of the window. The
difference is that the one in the middle is performed with only one hand. Finally,
the speaker on the right hand side depicts the window by drawing its shape in the
air. So the same stimulus is depicted in quite different ways, showing that there is
no one-to-one mapping between a gesture and the object it depicts. McNeill and
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Duncan (2000) termed this phenomenon ‘idiosyncrasy’ implying that gestures are
not held to standards of good form, but are rather created locally by speakers while
speaking. McNeill and Duncan (2000, p. 143) conclude that, “by virtue of idiosyncrasy
co-expressive, speech-synchronized gestures open a ‘window’ onto thinking that is
otherwise curtained”.

The fact that people are able to recover and interpret the meaning of iconic
gestures, as shown by Cassell et al. (1999), suggests that there is at least some
systematicity in the way speakers encode meaning in gestures. The examples above
clearly indicate that there is a certain degree of iconicity in the gestures since the
circular shape of the window becomes apparent in all of them. There are, however,
differences in how the physical form of the gestures corresponds to the object they
depict: in the gestures of the first two speakers, the hand(s) adopt the shape of the
window to be depicted, that is, there is a resemblance between the hand configuration
and the object shape. Likewise, in the third speaker’s gesture, the round shape of the
reference object is depicted by the movement of the speaker’s drawing hand. That is,
there obviously exist several ‘techniques’ to represent the same kind of meaning in
gestures: whereas in the lefthand and the middle examples, the hands adopt a static
posture as a model for the circular shape, the same shape is depicted by a circular
movement of the drawing hand in the righthand example. For an adequate account
of how meaning is transformed into gesture form, these representation techniques
certainly have to be taken into account. Concrete mapping rules are more likely to be
found within a set of gestures belonging to the same representation technique than
across all instances of iconic gesture use.

Empirical studies, however, reveal that similarity to the referent cannot fully
account for all occurrences of iconic gesture use (Kopp et al., 2007). Rather, recent
findings actually indicate that a gesture’s form is also influenced by specific contextual
constraints such as the discourse context (Holler and Stevens, 2007; Gerwing and
Bavelas, 2004), the linguistic context (Kita and Özyürek, 2003; Gullberg, 2010;
Bavelas et al., 2002), and gesture history (McNeill, 2005). In addition, human beings
are all unique and inter-individual differences in gesturing are quite obvious (Hostetter
and Alibali, 2007).

Modeling the Production of Iconic Gestures Psycholinguistic approaches aiming
to model the production process of iconic gestures, however, do not account for these
complex influences of referent characteristics, contextual factors, and inter-individual
differences. Rather, they focus on particular aspects of the gesture production process,
emphasizing either the mapping of referent characteristics onto gesture form, or the
relationship between speech and gesture, or inter-individual differences in gesture
production.

The same holds for computational accounts of gesture production, in which
different modeling approaches have been tested in an effort to translate systematic
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characteristics of co-verbal gestures, shared among speakers, into generative models.
Some of these models focus on the influence of contextual factors on gesture use
(Cassell et al., 2000a, 2001) or on how meaning is mapped onto gestural form features
(Kopp et al., 2007). Others have emphasized individual differences in communicative
behavior trying to model individual gesture style (Ruttkay, 2007; Hartmann et al.,
2006; Neff et al., 2008).

The Role of Gesture Use in Human-Computer Interaction Conversational skills
have developed in humans in such a way as “to exploit all of the unique affordances of
the human body” (Cassell, 2000, p. 1). This is obviously true for the case of gestures for
which a speaker employs his hands and arms. Due to the significant role of the human
body for communication, the metaphor of face-to-face conversation has been applied
to human-computer interaction in the form of Embodied Conversational Agents. This
term was introduced by Cassell et al. (2000b) for agents that are represented with a
human or animal body to appear lifelike and believable. These agents may either be
physically embodied, e.g., as mobile robots, or, virtually embodied, being represented
by a graphical body. The latter are called virtual agents, some examples are given in
Figure 1.2.

(a) REA (b) Max (c) Greta (d) Billie

Figure 1.2: Examples of virtual agents from left to right: REA (Cassell et al., 2001), Max (Kopp and
Wachsmuth, 2004), Greta (Poggi et al., 2005), and Billie (Kopp, 2010).

According to Cassell (2000), virtual agents are not just computer interfaces
represented by way of human or animal bodies, but rather exhibit the same properties
as humans in face-to-face conversation, including the ability to generate verbal and
non-verbal output. This definition of virtual agents entails the challenge of endowing
them with human-like and multimodal expressiveness. As gestures play such an
important role in human communication, the automatic generation of flexible gestural
behavior is a major goal towards natural and intuitive human-computer interaction.
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1.2 Research Aim

The major goal of this thesis is to develop a computational simulation model for the
production of speech-accompanying iconic gestures to be realized in virtual agents.
In particular, the circumstances under which gestures are used and how the physical
appearance of gestures is shaped will be investigated. Substantial mechanisms and
contextual factors are to be identified and computationally replicated with regard to
the question of how to transform meaning into gesture form.

The rationale behind this objective is twofold. First, devising and probing a
predictive model of gesture production strives to increase our understanding of the
cognitive mechanisms underlying gesturing as an intuitive form of human communi-
cation. Second, a computational model that allows agent-based interfaces to compose
their gestural behavior adequately should improve human-agent interaction such that it
progresses towards intuitive and human-like communication. Accordingly, the success
of the computational simulation model is to be evaluated in two ways. First, by its
accuracy in predicting gestural behavior as observed in human speakers: To which
extent can the model automatically generate gestures comparable to those of the
human archetype? Second, by exploring if and how automatically generated gestures
can be beneficial for human-agent interaction. In other words, what are the effects of
the gesture generation account on a user’s perception of virtual agents?

The scope of this work is restricted to gestures used in object descriptions. These
gestures typically accompany noun phrases in speech. Other forms of gesture use,
like verb-phrase aligned gestures (e.g., pantomime gestures or typical direction-giving
gestures as in “turn right”), or dialogue regulating gestures (e.g. indicating someone
to take the turn, or to ‘brush away’ what someone else said), remain unconsidered.

1.3 Methodology

To investigate the research objective, this thesis follows the design methodology of
modeling communicative behavior (Cassell and Tartaro, 2007) as illustrated in Figure
1.3. This design process allows the investigation of communicative behavior, the
construction of formal models of interaction, and the evaluation of those models.

The design process starts with an empirical study of natural human communica-
tion, collecting data that reflects the surface level of the behavior to be modeled. This
data is enriched with annotations for the purpose of analyzing how speech, gestures,
and other non-verbal behaviors are used and combined. The additional coverage of the
context in which the communicative behavior occurs is the basis for the next step of
the design process, building a predictive model. This is done either by extracting rules
from the analysis of the human behavior data (Cassell et al., 2001; Kopp et al., 2004)
or by using the data directly as a resource for data-driven techniques, as demonstrated
in, for example, Neff et al. (2008).
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Evaluation

Design 
evaluation

Realize gaps 
in model and 
data

Predictive Model

Build formal 
models

Empirical Study
Computational 

Simulation Model

Implement on the 
basis of model

Acquire 
data

data-based

rule-based

Figure 1.3: Iterative design methodology of modeling communicative behavior, following Cassell and
Tartaro (2007).

Such a model is then translated into an implementation for a virtual agent or a
robot, taking into account the constraints of the particular computational platform. This
realization is evaluated by having people interact with it. An analysis of evaluation
results allows identification of shortcomings and gaps in the model. Implementations
in virtual agents or robots also allow modification the communicative behaviors model,
e.g., one may easily switch particular components of the model on or off to analyze
the effects on human users and their perception of the interaction. At this stage, the
development cycle may become iterative: returning to the data may start a new pass
through the cycle in order to extract improved models of communicative behavior.

1.4 Thesis Structure

Chapter 2, Theoretical and Empirical Background, reviews and discusses rel-
evant research literature. It covers the phenomenological view on communicative
gestures, introduces the relevant terminology, and frames the type of gestures to be
investigated in this thesis. As a first step towards a computational simulation model,
evidence is collected to identify substantial mechanisms and contextual factors of
gesture use. The chapter is closed with a review and discussion of theoretical gesture
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production models with regard to the question of how far they account for those
mechanisms and factors.

Chapter 3, Generating Gestures—The Computational Perspective, puts the fo-
cus on computational approaches and analyzes the strengths and weaknesses of exist-
ing systems that generate gestural behavior and simulate it with virtual agents.The
computational perspective on gesture production will be completed with a survey of
work concerning the representation of visuo-spatial and shape-related knowledge, an
essential prerequisite for the generation of iconic gestures.

Following the design methodology of modeling communicative behavior, Chapter 4,
Empirical Study, describes the empirical basis of the generation model. It introduces
the Bielefeld Speech and Gesture Alignment (SaGA) corpus and presents results
with regard to the question of how meaning gets transformed into gesture form under
consideration of modulating factors.

Having so far covered the empirical basis, Chapter 5, A Model of Iconic Gesture
Generation, deals with the conception of a simulation model. Requirements for a
generation model are defined based on insights from the empirical results and an
adequate formalism will be identified meeting those requirements. In a similar way, in
the second part of the chapter, requirements for a comprehensive speech and gesture
generation model into which the gesture production model is to be integrated are
formulated. This is followed by the conception of an overall generation architecture
for the integrated generation of speech and gestures.

Chapter 6, Realization, is concerned with the implementation of the concepts
developed in the previous chapter. It describes how the gesture production model is
realized and integrated into the overall production architecture. A generation example
of a whole multimodal utterance is given and modeling results are presented and
discussed.

In Chapter 7, Evaluation, the gesture production model developed so far is eval-
uated in two respects, recalling the two-fold rationale followed in this thesis. First,
in terms of a corpus-based evaluation, the model’s prediction accuracy is measured
in comparison with the empirically observed gesturing behavior in the SaGA corpus.
Second, in terms of a perception-based evaluation, the degree to which the automati-
cally generated gesturing behavior is able to improve the interaction of human users
with virtual agents is investigated.

Finally, Chapter 8, Conclusion, summarizes and discusses the results and provides
an outlook on future research perspectives.
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CHAPTER 2
Theoretical and Empirical

Background

The previous chapter introduced the motivation, research aims, and methodology of
this thesis with the primary research objective of developing a computational simu-
lation model of iconic gesture production. In preparation for this task, this chapter
reviews and discusses relevant research literature. Section 2.1 covers the phenomeno-
logical view on communicative gestures, introduces the relevant terminology, and
frames the type of gestures to be investigated in this thesis. Section 2.2 collects ev-
idence for a number of factors modulating gesture use, including their underlying
representation, the mapping of meaning onto gesture form, contextual factors, and
inter-individual differences. Section 2.3 deals with theoretical models of gesture pro-
duction which aim to outline the process of gesture production from a psycholinguistic
point of view and discusses in how far the different models consider for those factors.

2.1 Gestures

What is a gesture? The understanding of the term ‘gesture’ in this thesis follows
Kendon (2004, p. 7), who defines the term as “visible action when it is used as an
utterance or part of an utterance”. To make sense of this definition, it is necessary to
specify what is meant by ‘utterance’ and ‘action’. To start with the former, Kendon
recalls Goffman (1981) who understands an utterance as any ensemble of action that
counts for others as an attempt to provide some kind information to others. This
comprises any unit of activity treated by those co-present as a communicative move,
turn, or contribution. These units of activity “may be constructed from speech or from
visible bodily action or from combinations of these two modalities” (Kendon, 2004,
p. 7). Whereas it is relatively easy to recognize whether or not speech is involved in
an utterance, the notion of ‘visible bodily action’ deserves some elaboration.
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A dictionary1 entry defines the term ‘gesture’ as “A motion of the hands, head, or
body to emphasize an idea or emotion, esp. while speaking.” This description, however,
is very broad since it includes motions of any body part as well as movements such
as clothing adjustments or hair-pattings. To narrow the scope of the above dictionary
entry, a definition given by McNeill and Levy (1982, p. 5) is suitable: “any visible
movement of the hand(s) excluding selfadaptors (scratching the head, fizing the hair)".

On the Semiotic Character of Gestures Psycholinguists focus particularly on
the semiotic character of gestures: “The gesturer is transforming stored information
(internal representation) into patterned movement” (Tuite, 1993, p. 92). That is,
gestures are treated particularly as referential acts to convey meaning, depict events,
and represent ideas. They specify and often clarify verbal references, and they can
denote meanings that may not be in the accompanying words (Bavelas et al., 1992). In
this view, gestures are seen as “manual symbols [...] analyzable as paired signifiers and
signifieds” (McNeill, 1985, pp. 351f.), which is building on the sign model proposed
by de Saussure (1916), who offered a dyadic model of the sign as a composition
of the form which the sign takes (the ‘signifier’) and the concept it represents (the
‘signified’). De Saussure, however, focused on the linguistic sign and the arbitrary
nature of these signs. A different model of the sign was proposed by Peirce (1965)
who offered a triadic model consisting of the form the sign takes (its ‘representamen’),
(2) an ‘object’ to which the sign refers, and (3) the sense made of the sign by an
interpreter (the ‘interpretant’).

Peirce further devides signs into three classes characterized by the relation be-
tween a sign’s components: ‘icon’, ‘index’, and ‘symbol2. Icons are characterized by
the fact that the representamen is perceived as resembling or imitating the object. The
resemblance is typically visual, as in a portrait, or auditory, as in onomatopoeia. The
three gestures in Figure 1.1 have an iconic character because their physical appearance
bears some relationship to the circular shape of the object they represent. An index
is a sign which is is directly connected to the object in some way, e.g., physically
or causally. Examples of indexical signs are signposts, indexical words like ‘this’ or
‘that’, and pointing gestures. Indexical signs are context-dependent; all the aforemen-
tioned examples become meaningless or change their meaning if they are deprived of
context. A symbol is a sign for which the relation between representamen and object
is fundamentally arbitrary or conventional - such that the relationship must be learned.
Words are typical examples of symbolic signs, e.g., there is no reason why a window
is called a ‘window’. There are also some gestures which have a symbolic character,
such as the ‘thumbs up’ sign.

1. Collins English Dictionary, 7th Edition, 2005
2. This trichotomy inspired McNeill’s classification scheme of iconic gestures which will be explained
in Section 2.1.1
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2.1.1 Classifying Gestures

To systematize these semiotic gestures, Kendon (1988) proposed a continuum of five
types of hand and arm movements. This ordering was named Kendon’s continuum
by McNeill (1992), who identified two cross-cutting dimensions of the continuum:
conventionalization and the degree of speech presence. In a later version, McNeill
(2000, 2005) added two further dimensions: the extent of linguistic properties hand
movements possess and their semiotic content. Four types of hand and arm movements
are distinguished and placed along each continuum (see Figure 2.1).

Figure 2.1: Summary of gesture typologies proposed by McNeill (1992, 2005), Bavelas et al. (1992), and
Gullberg (1998). See text for details.

The first continuum controls the co-occurrence of gestures and speech. Speech
becomes less obligatory from left to right. While gesticulations are meaningful only in
conjunction with verbal utterances, the simultaneous production of sign language and
speech is disruptive for both speech and sign. The second continuum, the degree of
linguistic property, refers to how much the hand and arm movements obey any system
constraints with regards to well-formed vs. not-well-formed ways of producing the
movements. The third continuum, the degree of conventionality, is reflected in the
measure of agreement about the manual form among users. The fourth continuum
regards the semiotic differences of hand and arm movements.

11



At one extreme of the continuum are sign languages which are independent
languages which display phonology, morphology, semantics, syntax and pragmatics
just like spoken languages (Stokoe, 1972). Sign languages such as American Sign
Language (ASL) develop spontaneously and independently within communities of
deaf people throughout the world and are subject to regional variation just like spoken
languages. Next on the continuum are emblems as highly conventionalised gestures
whose forms and meanings do not differ from one speaker to another within the
same culture or group and often replace speech. While some emblems have different
meanings across cultures, others are transcultural, or even largely global. Examples
of the latter are the ‘thumbs up’ sign or the ‘OK’ sign made by forming a circle
with the forefinger and the thumb with the other fingers extended outward. The next
type of gesture on the continua away from sign languages are pantomimes. They are
re-enactments of actions which are not as conventionalised as emblems. In contrast to
emblemes, pantomines are characterized by absence of standardized well-formedness
leaving some space for individual variations in expression. Finally, at the other end of
the continuum, opposite sign languages, are gesticulations—unconventionalised hand
and arm movements which are nearly always accompanied by speech. There are no
rules according to which these hand and arm movements are produced. Notably, this
does not exclude the possibility that their production exhibits certain patterns among
speakers. As an example of this gesture type, consider the variations of co-speech
gestures depicting a circular window in Figure 1.1. The emphasis in this thesis is
on these gesticulations and all usages of the term ‘gesture’ to follow are should be
understood as such.

Types of Speech-Accomanying Gestures

Many attempts have been made to categorize and classify speech-accompanying
gestures. Most classification schemes are based on early work by Wundt (1973) and
Efron (1970). The most common classification scheme used in gesture research is a
four-way distinction among ‘beats’, ‘deictics’, ‘iconics’, and ‘metaphorics’ (McNeill
and Levy, 1982; McNeill, 1992, 2005), the main characteristics of which will be
described briefly while keeping in mind McNeill’s claim that none of these categories
is exclusive to members of the others. Asserting that, “most gestures are multifaceted—
iconicity is combined with deixis, deixis is combined with metaphoricity, and so
forth”, McNeill (2005, p. 38) suggests differentiating gesture in terms of dimensions
rather than disjunctive categories.

Beat Gestures Beats are simple, rhythmic, and repetitive flicks of the hands in a
vertical or horizontal direction. There is no obvious relationship between gesture form
and the semantic content of the accompanying speech (Feyereisen et al., 1988). Beats
are coordinated with speech prosody and tend to fall on stressed syllables (McClave,
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1994). McNeill and Levy (1982) called them ‘beats’ as they take the form of the
hand movement marking, or beating, time. Other names adopted in classifications
are ‘batons’ (Efron, 1970; Ekman and Friesen, 1972), ‘speech-focused movements’
(Butterworth and Beattie, 1978), ‘speech-marking’ (Rimé and Schiaratura, 1991), and
‘motor gestures’ (Krauss et al., 2000).

Deictic Gestures Deictic gestures are “pointing movements, which are prototypi-
cally performed with the pointing finger” (McNeill, 1992, p. 80). Other hand shapes,
however, may also be used, such as an open hand with outstretched fingers. Deictic
gestures have no fixed meaning, but rather, their meaning is the act of indicating the
objects (Krauss et al., 2000). They refer not only to objects or persons, but also to
object properties. Deictics are used to indicate concrete or abstract entities, depending
on whether the target is physically present or not. Whereas concrete deictic gestures
are among the first to develop in children, abstract pointing develops late, around the
age of twelve (McNeill, 1992).

Iconic Gestures According to McNeill (1992), iconic gestures bear a close formal
relationship to the semantic content of speech by depicting some property of the
speech referent. For instance, drawing a circular shape in the air when talking about
a window (as in the example in Figure 1.1) iconically depicts the circular shape of
the window. In addition to objects and object properties, iconic gestures may also
depict actions, as in, “he was walking,” accompanied by a gesture in which the index
and middle fingers move back and forth in opposition. Iconic gestures are typically
performed on the fly—as there are no standards of form, individuals create their own
gestural depiction at the moment of speaking. Another term used for this class of
iconic gestures is ‘physiographic gestures’ (Efron, 1970; Rimé and Schiaratura, 1991).

The fact that listeners actually understand the meaning of iconic gesture (Cassell
et al., 1999) is explained by its similarity or resemblance to that which it depicts.
That is, similarity (or resemblance) is the core notion by which iconicity is defined.
Ekman and Friesen (1969, p. 60), accordingly, suggested that an iconic gesture, “looks
in some way like what it means.” This relation between signifier and signified has,
however, been subject to a philosophical discussion on the nature of resemblance.
Typically, if two entities share a number of characterizing properties, this is what
is understood by resemblance. This definition, however, does not meet the notion
of depiction in a satisfactory way since resemblance is defined to be reflexive and
symmetric (Goodman, 1976). That is, a gestural depiction would represent its referent
and symmetrically the referent would, vice versa, represent the gesture. Streeck (2008)
proposed a way to deal with this insufficiency based on Goodman (1976). He assumes
that the gesture that depicts an object or process of any kind offers an analysis of the
signified. That is, the gesture does not mirror, but analyze the object: “the gesture is
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not like its referent, but rather shows what the referent is like” (Streeck, 2008, p. 286,
emphasis in the original). This notion of iconicity is the one used in this thesis.

Metaphoric Gestures Metaphoric gestures “are similar to iconics in that they
present imagery, but present an image of an abstract concept” (McNeill, 1992, p. 80)
that is not physically present. As an example, consider an upward or downward move-
ment of the hands while talking about the economy rising or falling. According to
McNeill (1992), metaphorics are more complex than iconics as they depict two things:
(1) the base, which is the concrete entity or action presented in the gesture, and (2) the
referent, which is the concept that the base stands for. Drawing a distinction between
iconic and metaphoric gestures is not always easy, as Krauss et al. (2000, p. 276) put
it: “it makes more sense to to think of gestures as being more or less iconic rather than
either iconic or metaphoric,” labelling these ‘lexical gestures’. Metaphorics are also
called ‘ideographics’ by Efron (1970) and Ekman and Friesen (1972).

Other researchers proposed modifications to this four-way distinction, either via
additional categories or by merging labels for some of the four types. Based on
research on face-to-face dialogue, Bavelas et al. (1992) proposed a further distinction
between ‘topic gestures’ and ‘interactive gestures’. Topic gestures depict semantic
information directly related to the topic of discourse, whereas interactive gestures
refer to some aspect of the process of conversing with another person. The latter are,
thus, independent of the topic and addressed to the interlocutor. They subsume, but are
not limited to McNeill’s class of beat gestures. Gullberg (1998) proposed a continuum
of iconicity based on McNeill’s typology of gestures. While beats, at one end of the
continuum, have no representational character, fully iconic gestures are placed at
the other end of the continuum. In-between are abstract deictic gestures, metaphoric
gestures, and concrete deictics.

Figure 2.1 summarizes the gesture typologies reviewed so far. The focus of this
thesis will predominantly be on iconic gestures. In addition, abstract deictic gestures
will also be taken into consideration as there is “a relatively transparent form-meaning
relationship” (Kita, 2000, p. 162) for both of these gesture types: for iconic gestures
there is a kind of isomorphism between a gesture’s form and its referent, and abstract
deictic gestures establish a virtual object in gesture space. Kita, therefore, labels iconic
and abstract deictic gestures collectively as ‘representational gestures’, which are
exactly the scope of this work.

2.1.2 Spatio-temporal Structure of Gestures

Temporal Structure Regarding the question of how gesturing behavior unfolds in
time, Kendon (1972, 1980, 2004) analysed the structure of gesticulations. He identified
gesture units as the largest interval starting when the articulators “begin to depart from
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a position of relaxation until the moment when they finally return to one” (Kendon,
2004, p. 111). In other words, a gesture unit is delimited by successive rest positions
of the limbs, i.e., poses where the hands either hang down at the side of the body, lie
in the lap or on an armrest.

Within the course of a gesture unit one or more gesture phrases may be distin-
guished. These prototypically consist of three consecutive gesture phases: preparation,
stroke, and retraction, to borrow terms from McNeill (1992). In the preparation phase,
the hands are brought into a position in gesture space where the stroke can begin.
According to Kita et al. (1998), the preparation phase starts with an optional liberating
movement such as unclasping interlocked fingers. Then, the location preparation
brings the hand to a starting position in gesture space, while hand shape and hand
orientation are set to starting values in the hand-internal preparation phase. Loca-
tion preparation and hand-internal preparation usually overlap in time, whereby the
hand-internal preparation does not precede the location preparation. The stroke is
the meaningful phase of the gesture characterized by a “distinct peaking of effort”
(Kendon, 1980, p. 212). Similarly, McNeill (1992, p. 83) defines the stroke as “the
peak of effort” in which “the meaning of the gesture is expressed”. In the retraction
phase the hands are either brought back into a rest position, or made ready for another
stroke. The latter variant is called a partial retraction (Kita et al., 1998). In addition to
these three basic phases, temporary cessations of motion might occur either before
or after the stroke (Kita, 1993): pre-stroke holds and post-stroke holds. These holds
are used to synchronize the stroke with speech. Post-stroke holds may additionally
extend the meaning conveyed by the stroke for the duration of the hold. (Kendon,
2004) refers to the phase of action that includes the stroke and the post-stroke hold as
the nucleus of the gesture phrase. Notably, all gesture phases are organized around the
stroke being the only obligatory phase of a gesture. It is optionally prepared for, held
and finally retracted from.

An alternative to Kendon’s and McNeill’s view that the stroke is the most effortful
gesture phase proposed by Kita et al. (1998), which argues that a gesture phrase does
not necessarily contain a dynamic stroke. Instead, Kita and colleagues refer to the
obligatory and semiotically active phase of each gesture as the expressive phase.
It contains either a stroke or an independent hold which is a static way to convey
meaning gesturally (stroke hold in terms of McNeill).

Gesture Form The analysis of physical gesture form is an indispensable prerequi-
site of any account of gesture generation. The notion of gesture features (McNeill,
2000) is based on the observation that a gesture can be decomposed into parts, such
as handshape, movement, size, hand orientation, and location in gesture space. At-
tempts at describing the physical features of gestures and suggestions for coding
schemes have been proposed by several researchers from different disciplines (Calbris,
1990; McNeill, 1992; Müller, 1998; Kendon, 2004; Gibbon et al., 2004; Kopp et al.,
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2007; Lausberg and Slöetjes, 2009). For a detailed overview and comparison of form
description attempts see Bressem (2008).

Despite differences between the attempts due to the fact that they were developed
for different purposes and against different theoretical backgrounds, it is nevertheless
widely accepted to describe gesture forms by the following four features: (1) hand-
shape, (2) hand orientation, (3) position, and (4) movement characteristics. Support
for the adequacy of this four-part description also comes from research on virtual
agents: in representation formats which aim to specify multimodal behavior for virtual
agents the same attributes are successfully employed to control the hand and arm
movements of virtual characters (e.g., Kranstedt et al., 2002).

2.2 What Shapes the Use of Gestures?

The previous section dealt with the classification of gestures and their physical appear-
ance. How is gesture use—in terms of both particular gesture types and their physical
appearance—shaped at the moment of speaking to convey a particular meaning? In the
literature, there is a growing body of evidence suggesting that gesture use is subject to
the influence of multiple factors. A review of research regarding this question follows,
arranged by type of modulating factors.

2.2.1 Mental Representation

Gesture production means to transform an abstract representation into an overt gesture
(de Ruiter, 2007). The nature of the underlying representation is, therefore, of major
relevance for the production process of gestures. The kind of representation that has
received most attention in the literature on gesture production is mental imagery, “a
quasi-perceptual experience [...] [that] resembles perceptual experience, but occurs in
the absence of the appropriate external stimuli” (Thomas, 2010, p. 1). Evidence for
this claim comes from frequent co-occurrences of images and gestures. Gestures were
found to occur more often with speech about spatial information than with speech
about nonspatial information (cf. Alibali, 2005). Similarly, gestures often occur when
speakers express information that evokes images. A study by Beattie and Shovelton
(2002) revealed that imageability had a significant effect on the probability of the
core propositional unit being accompanied by a gesture. Participants rated written
clauses originally accompanied by gestures as more evocative of images than those
unaccompanied by gestures.

Hostetter and Alibali (2008) argued that frequent co-occurrence of gestures and
images is due to an isomorphism between images and gestures in terms of being
both global and synthetic. Global means that the meanings of the parts (gesture form
features) depend in a top-down fashion on the meaning of the whole gesture. Synthetic
means that several meanings (e.g., a referent’s shape, position, and orientation) are
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synthesized into one gesture (McNeill, 1992; McNeill and Duncan, 2000). The global
and synthetic properties of gestures are similar to the global and synthetic properties of
images. Images, like gestures, convey meaning globally, such that an image’s meaning
as a whole influences the interpretation of each part. Similarly, images are synthetic
because they can integrate several meanings.

Thus, gestures and (mental) images seem to be closely related; gestures seem to
be a natural and intuitive way to express spatial information. However, the question
remains whether gestures actually originate from spatial and imagistic representations?
Empirical evidence for this claim includes the work of Hostetter and Hopkins (2002),
who found that speakers used more iconic/deictic gestures while retelling a cartoon
story if they had watched the cartoon than if they had read a verbal description of
it. Further evidence comes from studies of inter-individual differences. Individuals
with weak spatial visualization skills were found to gesture less than individuals
with stronger skills (Hostetter and Alibali, 2007). Similarly, stroke patients who have
visuospatial deficits were found to gesture less than do age-matched controls (Hadar
et al., 1998). This evidence converges to suggest that gestures derive, at least in part,
from spatial or imagistic representations.

2.2.2 Form-meaning Relation

Closely related to the issue of representations underlying gesture production is the
question of how meaning is transformed into an overt, observable gesture: how
is a mental representation mapped onto gesture form? Literature addressing the
relationship of form and meaning in iconic gesture is, however, sparse. In the following,
a survey of results from research in different domains is given.

Gesture type, handedness and object complexity Marsh and Watt (1998) investi-
gated the relationship of gesture form and meaning in a study in which 12 participants
were provided with the name of an object or shape and their task was to describe
the items non-verbally. The set of 15 items consisted of primitive shapes such as
circles, triangles, and squares as well as complex shapes like chairs, cars, and houses.
Marsh and Watt analyzed the relationship of object type gesture use with respect to
handedness and gesture type.

It was observed from the study that participants generally preferred drawing
gestures (hands outline or trace a picture of an object or shape) over posturing gestures
(the hands are shaped to match the form of an object as if it was being held or
grasped). With regard to handedness, Marsh and Watt further found that 3D shapes
were always, and 2D shapes predominantly, expressed using two-handed gestures.
Some participants only used a single hand to perform gestures when tasked with
depicting the primitive shape of a circle. Similarly, iconic two-handed gestures were
the preferred means to depict complex shapes.
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Gesture form and visuo-spatial object features Sowa (2006) analyzed the rela-
tionship between gesture form and meaning in a corpus of 383 iconic gestures from
37 speakers. The participants’ task was to describe parts and aggregates from a toy
construction kit (screws, cubes, bars, etc.). Although use of hands was mentioned in
the instructions, gestural explanations were not explicitly enforced. Subjects were told
to explain the objects’ appearance in such a way that others who would watch the
video afterwards would be able to imagine the object.

Sowa identified a small set of pictorial strategies in terms of frequent pairings
of gesture form and visuo-spatial referent features by evaluating the frequency of
semantic features in referents as expressed by certain gestural form features. Due to the
chosen referents in the study, the analysis focused on linear and circular shape features.
To express linear extent in one dimension, Sowa identified three form features of
gestures used with high frequency. The form feature most frequently used to express
linear extent in one dimension was linear movement. The maximum distance between
hands was used as second most frequent feature, while the two-point focus area was
ranked third. Circular profiles were mainly expressed by circular motion, curved
handshape, and distance in two-handed gestures.

Gesture features and object features McNeill and Levy (1982) analyzed cartoon
retellings of six speakers with regard to the relationship of physical gesture features
and mental representations suggested by word meaning. They considered the following
properties of physical gesture features:

– Handedness (left-handed, right-handed, both-handed)

– Handshape (fist, curled fingers, extended fingers, extended index finger)

– Palm orientation (downwards, towards oneself)

– Movement trajectory (up, down, left-right, straight line)

– Movement repetition

– Two-handed configuration (both hands moving the same way)

These gesture features were correlated with meaning features such as ‘downward’,
‘horizontal’, ‘rotation’ expressed in speech. The analysis focused on 74 iconic gestures
accompanying verbs and revealed several positive as well as negative correlations.
Verbs with a ‘downward’ meaning feature tended to co-occur with gestures with
downward motion and with curled fingers. In contrast, ‘downward’ does not go
together with gestures whose meaning is opposite of ‘downward’, i.e., with upward
movements and extended fingers, with both hands going in the same direction, and
with reduplicated gestures. Verbs with a horizontal meaning feature were found to be
correlate positively with left-to-right movements and with two-handed configurations.
On the other hand, ‘horizontal’ does not go together with upward gestures (due to
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meaning incompatibility) as well as handshapes depicting closure and contact (fists
and pointing). Further, the semantic features ‘end state’ and ‘entrance/exit’ tended to
co-occur with two-handed gestures.

Going beyond a direct mapping between gesture features and object features, Kopp
et al. (2004) hypothesize that the relationship between the form of iconic gestures and
visuo-spatial aspects of their referents does not pertain to gestures at a whole-gesture
level, but to their subparts. That is, referent features of shape, spatial properties,
or spatial relationships are associated with more primitive form features of gesture
morphology, such as hand shapes, orientations, locations, movements in space, or
combinations thereof. In particular, Kopp and colleagues proposed a framework to
deconstruct such gestural images into semantic units (so-called image description
features) and to link these units to morphological gesture features such as hand shape
or movement trajectory. Figure 2.2 illustrates the hypothesized relationship between a
building with a vertical plane feature, a vertical plane (surface) definable in terms of
image description features, and a flat, vertically oriented gesture form.

Figure 2.2: Mapping of concrete referent features (left) onto gesture morphology (right) via imagistic
description features (middle) as proposed by Kopp et al. (2007).

Based on data from an empirical study on language and gesture use in direction-
giving (∼1000 gestures), three gesture features were investigated to determine whether
they correlated positively with the correspponding features of their referents.

Actually, it was found that flat hand shapes oriented vertically (with fingers
pointing up), horizontally (with palms facing down), and sideways were positively
correlated with referents that possess salient visual characteristics corresponding to
vertical, horizontal, and sideways planes, respectively. Although the correlation was
significant for all three morphological classes, the vertical flat morphological form
was the best predictor of referent form. However, there was also a sizeable number of
false negatives for each of the three relationships. For instance, despite the frequent
linking of a flat vertical image description feature to a flat vertical handshape, there
were also cases in which a referent exhibiting that feature was not described using a
flat handshape. The conclusion to be drawn from this is that feature-based iconicity is
not the sole driving force behind a representational gesture.
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Although none of the abovementioned studies was able to provide a comprehensive
account of the form-meaning relationship in iconic gestures, at least a few strategies
became apparent, summarized in Table 2.1. Relations with referent features were
found for several aspects of gesture use concerning both the type of gestures and
gesture form features, but there seems to be no way to straightforwardly map referent
characteristics onto gesture form. This suggests that the use of iconic gestures is
determined by factors beyond the features of its referent.

Table 2.1: Overview of empirical findings concerning the form-meaning relationship of iconic gestures.

Gesture Features Meaning Features

Gesture Type virtual depiction primitive shape

virtual depiction and complex shape
pantomimic gestures

Handedness 2-handed horizontal motion

2-handed end state

2-handed entrance/exit

Handshape curled fingers downward motion

Palm-/Finger
Orientation

extended fingers + vertical
orientation

vertical plane

extended fingers + horizontal
orientation

horizontal plane

extended fingers + sideways
orientation

sideways plane

Movement downward downward motion

left-right horizontal motion

2.2.3 Sub-categories of Iconic Gestures

Another issue which is crucial for the generation of gestures is that the class of
iconic gestures contains various gestures for which it is appropriate to make a further
sub-division. This is due to the fact that there are different means of representation
employed in iconic gesture use. Returning to the introductory example given in Figure
1.1, the same referent—a round window—is depicted in entirely different ways, either
by tracing the outline in the air as if using a pen, or by bringing the hands into a
form and position such that they act as a model for the referent itself. Apparently, the
transformation of a referent representation onto overt gesture form is sensitive to such
differences. In the following, different attempts that aim to further systematize and
sub-classify iconic gestures will be described.
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Wundt (1973) offered a classification of gestures based on the examination of sign
languages under the assumption that these provide insight into psychological processes
of language use. Wundt’s classification was mainly focused on the semiotic status
of gestures, but it also distinguishes techniques of representation. In particular, he
assumes a single dichotomy of modes which distinguishes between drawing gestures
whereby “the outline of the object is drawn in the air by the index finger”, and plastic
gestures in which “the image of the object is imitated three-dimensionally with the
hands” (Wundt, 1973, p. 78). Wundt described the former as the more primitive of
the two, as it predominates the natural gesture of deaf-mutes, whereas sign languages
with a longer tradition make use of hand-formed shapes.

Müller (1998, p. 121) compared the production of gestures with the work of
visual artists: “Just like pictures and sculptures in fine art, [gestures] are shaped
by the properties of the pictorial devices”. In her view, thus, methods of gestural
depiction are to be considered analogous to artistic drawing or sculpting. Müller
distinguished gestural modes of representation in considering two major aspects:
what the gesticulating hands stand for, and what the hands are doing. On this basis,
she differentiates the following four modes of gestural representation: (1) the acting
hand, (2) the modeling hand, (3) the drawing hand, and (4) the representing hand. In
acting, the hands simulate an activity pantomimically, often with imaginary objects
involved in the activity. With the modeling hands, an object or the course of an action
is represented by moving the hands as though they were actually touching the referent.
In other words, the hands are used like those of a sculptor when forming figures from
clay. Drawing means that the hands are used like a pen to trace the outline of an object.
Typically the stretched index finger represents the pen. Representing hands slip inside
the represented object and depict the ensuing events from the object’s perspective.

According to Müller (1998), gestures are always a compromise between shape
features (based on a rudimentary shape analysis by the speaker) and representation
means of the hands. Gesture use, therefore, depends on the ability to extract charac-
teristic features from the perceived environment and transform these with different
means of representation into gestures.

Another sub-categorization of iconic gestures was proposed by Kendon (2004).
Based on previous attempts to classify techniques of representation, Kendon argues
for a three-fold division consisting of modeling, enactment, and depiction. In modeling,
a body part is used as if it is a model for some object. The hands may be shaped
so that the form of the hands bears some relationship to the shape of the object.
Enactment means that the gesturing body parts engage in a pattern of movement that
shares common features with the patterns of action to which it refers. In depiction, the
gesturing body parts engage in a pattern that is recognized as ‘creating’ an object in
the air, for example, in outlining the shape of a cake.
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In his analysis of iconic gestures using a toy description corpus, Sowa (2006)
analyzed the relationship between gesture form and meaning based on a set of 84
different gesture prototypes, each of these being a pairing of (1) gesture form and
(2) visuo-spatial referent features. For these prototypes, he identified four general
gesture types or strategies. First, dimensional gestures relate to the overall shape of
the referent by indicating spatial extent. These may be further sub-grouped according
to the number of depicted object dimensions into 1D-, 2D-, and 3D-gestures. These
gestures do not always depict a referent three-dimensionally, but in an abstract version
in only one or two dimensions, i.e., dimensionally underspecified. Second, surface
property gestures depict certain features of an object’s surface without reference
to its shape as a whole, for instance, the use of a flat hand to depict a planar side.
Third, placeholder gestures are characterized by the body part representing the object
itself, characterized by a one-handed gesture with a distinctive handshape. Placeholder
gestures are, thus, comparable to what Müller (1998) called ‘representing hands’ and
what Kendon (2004) and Streeck (2008) labelled ‘modeling gestures’. Finally, spatial
relation gestures indicate the relative position and/or orientation of two object parts
using one hand for each with the handshape depicting the shape of the respective
part. This class of gestures is closely related to placeholder gestures, whereby spatial
relation gestures are a particular case since they require both hands to indicate the
relative position of the objects or object parts. Note that, Sowa studied a limited
domain, restricted to the kinds of objects involved in the task given to the subjects.
His four-part classification should, therefore, be seen in that context.

Streeck (2008) proposed a set of gestural depiction methods that emerged haphaz-
ardly during micro-analytic inquiry into meaning-making by hands in various cultural
settings and communicative contexts. He found that speakers deploy twelve different
practices which further sub-categorize the broader classes proposed by Wundt, Müller,
and Kendon. For instance, Streeck (2008) differentiates between making gestures,
which simulate the making and shaping of things, and scaping gestures, which differ
from making gestures by giving shape to undivided domains and terrains instead of
discrete objects. Another fine-grained distinction in Streeck’s categorization is made
between handling gestures, in which objects are indirectly represented by a schematic
act that ‘goes with’ them, and acting, which is not very different from handling, but
additionally includes actions in which no object is involved.

The fact that several researchers came up with sub-classification schemes shows
that the class of iconic gestures is not homogeneous. Table 2.2 displays the relations
between these classifications. Despite differences between the accounts, e.g., due to the
domain of investigation and the level of granularity, there are also some basic points
of agreement. Although researchers differ in their terminology, there is one category
identified by most of them: posturing gestures characterized by the hands forming a
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static conguration which functions as a model for the object itself. This representation
technique has been referred to as ‘representing’ (Müller, 1998), ‘modeling’ (Kendon,
2004; Streeck, 2008), and ‘placeholder’ (Sowa, 2006). There is, further, at least some
consensus about a class of drawing gestures (in the terminology of Wundt, Müller
and Streeck) in which the hands trace the outline of an object. In addition, there is
a set of gestures remaining—henceforth termed shaping gestures—which fall into
Müller’s category of ‘modeling’ gestures. For these, a varying number of categories
are employed; whereas Wundt and Kendon did not identify any further sub-types,
Sowa and Streeck proposed several different categories of shaping techniques. Finally,
there is agreement among Müller (1998), Kendon (2004), and Streeck (2008) with
respect to a category of pantomime gestures in which the hands simulate an activity
pantomimically. While Müller and Kendon termed this technique generally ‘acting’
or ‘enactment’, Streeck identified three sub-types of pantomime gestures (‘handling’,
‘acting’, and ‘pantomime’).

Table 2.2: Overview of classification schemes for gestural representation techniques from literature.

Wundt (1973) Müller (1998) Kendon (2004) Sowa (2006) Streeck (2008)

Drawing Drawing

Depiction

Dimensional,
Surface Property

Drawing

Plastic
Modeling

Bounding

Scaping

Making

Marking

Representing Modeling Spatial Relation,
Placeholder

Modeling

Acting Enactment

Handling

Acting

Pantomime

Abstract motion

Self-marking

Model-world
making

2.2.4 Linguistic Factors

Coverbal gesture has long been considered a by-product of language production
(Kendon, 2004). Indeed, upon closer inspection, gestures were found to be influenced
by the conceptual, syntactic, and lexical structure of concomitant speech.
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Kita and Özyürek (2003) proposed the Interface Hypothesis according to which
gestures are generated at the interface between spatio-motoric thinking and language
production processes. That is, in this view, gestural depiction is not only shaped by
spatio-motoric properties of the referent, but also by how information is organized
linguistically.

Initial evidence for the Interface Hypothesis came from a cross-linguistic study
by Kita and Özyürek (2003), in which they could show that the packaging of content
for gestures parallels linguistic information packaging. Speakers of Japanese, Turkish
and English had to re-tell cartoon events for which their languages provide differing
means of encoding. English speakers, for example, used the verb ‘swing’ to describe
a cartoon character’s action, encoding an arc-shaped trajectory, whereas Turkish and
Japanese speakers employed a trajectory-neutral, change-of-location predicate such as
‘move’. Participants’ gestures followed their linguistic information packaging in so
far as Japanese and Turkish speakers were more likely to produce straight gestures,
while most English speakers produced arced gestures. In another cartoon-event, the
character rolled down a hill. Again, speakers of English typically described this by
combining manner and path of the movement in a single clause (e.g. ‘he rolled down’),
accompanied by a single gesture encoding both semantic features. In contrast, Turkish
and Japanese speakers encoded manner and path separately in two clauses (e.g. ‘he
descended as he rolled’) and also used two separate gestures for these two features.

Further evidence along the same lines comes from a study comparing the ges-
tures of native Turkish speakers, whose proficiency levels in English as their second
language vary (Özyürek, 2002). Advanced L2 speakers typically encoded manner and
path information in one clause, just as native English speakers do, and the gestures
they used followed this packaging of information. In contrast, L2 speakers at lower
proficiency levels typically used two-clause constructions in speech, accompanied
by separate gestures for manner and path, as they are used to doing in their native
language. Özyürek concluded that syntactic packaging in speech shapes information
packaging in gestures in both L1 and L2.

Another subsequent study showed that this effect also occurred when stimulus
events were manipulated in order to make first language speakers of English produce
one- and two-clause descriptions of manner and path (Kita et al., 2007). In line with
previous evidence, one-clause utterances conveying both manner and path were found
more likely to be accompanied by gestures expressing manner and path simultaneously.
Two-clause utterances, in contrast, were more likely to be accompanied by gestures
conveying manner and path separately. That is, the use of manner and path representing
gestures depended on the syntactic construction used in speech.

Recently, Gullberg (2010) analyzed how the semantics of placement verbs affect
co-speech gestures. French, which typically uses general placement verbs like ‘mettre’
(English: ‘put’), was contrasted with Dutch, which uses a set of fine-grained posture
verbs such as ‘zetten’ (English: ‘set/stand’), or ‘leggen’, (English: ‘lay’). Analysis of
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concomitant gesture production in the two languages revealed a patterning toward two
distinct, language-specific event representations. The object of the placing action is
an essential part of the Dutch representation, and the gestures typically represent the
types of the object to be placed. French speakers instead focus only on the (path of
the) placement movement.

Impact on gesture has also been observed when problems in verbalization occur.
Bavelas et al. (2002) investigated to what degree the verbal encodability of a stimulus
affects gesture use. They compared the descriptions of two different stimuli, both
being highly visual and easily to be described with gestures, but in one condition
(stimulus: familiar geometric patterns), speakers were likely to have a strong verbal
vocabulary available, whereas in another condition (stimulus: an unusual dress), they
would be unlikely to have the necessary vocabulary. Although the poorer verbal
encodability of the dress did not produce a higher gesture frequency, this stimulus
did elicit a higher proportion of nonredundant gestures and more deictic expressions.
Bavelas et al. conclude that speakers seemed to rely on gestures when words were not
readily available.

2.2.5 Discourse Context

Gesture occurrence is not limited to the context of lexical affiliates in concomitant
speech, or as Kendon (1987, p. 90) put it, “a speaker will select a model of formulation,
not only in the light of a comparison between its adequacy of representation and
the image that it is intended to convey, but also in the light of what the current
communication conditions are”. Rather, each single multimodal utterance is integrated
into a greater context. It is carried out within a larger utterance fulfilling a particular
function in order to achieve an overall communicative intention, which itself occurs
within a particular situation including specific people talking to each other in a specific
environmental situation. Gestures are, thus, embedded in cascading levels of discourse
context (Gerwing and Bavelas, 2004). Furthermore, there is indeed evidence that
gesture use is sensitive to the different levels of the overall discourse context.

Initial Common Ground A considerable amount of studies have investigated the
role of common ground, which is the sum of mutual, common or joint knowledge,
beliefs and suppositions that interlocutors share, providing the background for their
interaction (Stalnaker, 1978; Clark, 1996).

With regard to gesture frequency, results are mixed. Holler and Wilkin (2009)
used a between-subjects design with a ‘common ground’ condition, in which some
shared knowledge about the stimulus material was experimentally induced, and the
‘no common ground’ condition, in which participants did not share any experimentally
induced common ground. The findings showed that speakers gesture at higher rates
(gestures per one hundred words) when they shared a common ground. Holler and
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Wilkin conclude that gestures play an important communicative function, even when
speakers convey information that is already known to their addressee. On the other
hand, Jacobs and Garnham (2007) used a cartoon story re-narration setting and found
that gestures were produced at lower rates when speakers believed the listener was
also able to view the content of the stimulus, i.e., when speaker and listener had
common ground.

Other studies went beyond the pure consideration of gesture frequency, and
investigated the qualitative nature of gestures. Gerwing and Bavelas (2004) asked
participants to describe play actions they performed with a certain set of toys, either to
someone who played with the same or a different set of toys. Their findings revealed
that speakers used less precise, less complex, and less informative gestures when
talking to participants with whom they shared mutual knowledge as compared with
those who did not have access to the same knowledge. Similarly, Holler and Stevens
(2007) found that gestures’ spatial extent was sensitive to information structure in
the representation of size information. They used a referential communication task
which involved participants locating a target entity in an array of other entities of
different sizes. Their analysis focused on the representation of the size of particularly
large entities in the array. It was found that entities were represented gesturally as
significantly smaller when their actual size was already known to the addressee, as
compared to when addressees had no pre-existing shared knowledge regarding the
respective entities’ size. Parrill (2010) found an effect of common ground on the
encoding of semantic information in gestures. Participants described a target event
in which a cat ‘melted down some stairs’. Her analysis focused on the number of
times speakers mentioned the stairs, i.e., the ground component, in their descriptions.
When the content of the stimulus cartoon was absent from speaker-addressee common
ground, production of ground information in gestures was increased.

In sum, research results regarding the correlation of gesture use and common ground
yielded mixed results. While some suggest that gestures are produced at a lower rate,
less precisely, and with less information in situations with common ground, others
provided evidence that gesture rate is increased, and that gestures remain similar with
regard to their form and the amount of information they convey.

Information Structure Apart from the knowledge that interlocutors share from the
outset of a conversation, common ground also accumulates over the course of it. New
information is defined as what the listener is not expected to know already. Given
information, in contrast, is defined as what the listener is expected to already know
(Haviland and Clark, 1974)3.

3. This dichotomy has been referred to in the literature with a variety of terms and meanings, e.g.
differentiating between ‘focus’ and ‘presupposition’, between ‘hearer-old’ and ‘hearer-new’, and between
‘discourse-old’ and ‘discourse-new’ (cf. Prince, 1981)

26



Within these lines, Levy and McNeill (1992) as well as McNeill (1992) employed
the notion of ‘communicative dynamism’ as a variable that correlates with gesture
use4, this being defined as the extent to which the message at a given point is “pushing
the communication forward.” The authors argued that sentences which are low in
communicative dynamism, are typically not accompanied by gesture. Gestures, rather,
pick out the sentence elements which are of high communicative dynamism. And,
the more complex a gesture is, the higher are the peaks in communicative dynamism.
As a measure of communicative dynamism, the amount of linguistic material used to
make the reference was chosen. Pronouns have less communicative dynamism than
full nominal phrases, which have less communicative dynamism than modified full
noun phrases. This implies that the communicative dynamism can be estimated by
looking at the syntactic structure of a sentence.

Gerwing and Bavelas (2004) went beyond pure gesture frequency to consider how
the physical form of gestures mark the status of information. Their findings revealed
that speakers marked new information with gestures that were larger in size and more
precisely articulated. Given information, in contrast, was accompanied by gestures
that were smaller and less well articulated.

Previous Gestures Another correlate with gesture use is the set of gestures a speaker
has used previously in a given discourse. Quek and McNeill (2000) introduced the
notion of ‘catchments’ for gesture features which recur in at least two (not necessarily
consecutive) gestures. The authors interpret catchments as clues to cohesive linkages
in the discourse; a common discourse theme is expected to produce gestures with
recurring features. Examples for such catchments are, for instance, a single moving
hand (referring to a single moving entity), a round handshape referring to a ball, or a
particular spatial configuration of the hands referring to the relative position of two
entities (McNeill, 2005).

2.2.6 Inter-Individual Differences

People differ substantially in the way they use gestures while speaking, as Gullberg
(1998, p. 51) put it: “One of the most salient aspects of gesture is that people differ in
their use of it.” This becomes particularly obvious in gesture frequency: while some
speakers rarely move their hands at all, other use gestures all the time. Empirical
evidence for this observation comes from a number of studies. For instance, Jacobs and
Garnham (2007) reported from a narrative task study that large differences in gesture
rate were observed among the participants. Krauss et al. (1996) reported gesture
rates ranging across speakers from 1.0 to 28.1 gestures per minute in a referential
communication experiment involving abstract line drawings as stimuli. Similarly,

4. This notion was originally introduced by Firbas (1971).
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gesture rates were found to range from 0.5 to 30 gestures per minute when participants
were retelling cartoon stimuli (Krauss et al., 1996; Rauscher et al., 1996).

In addition to gesture frequency, other aspects of gesture use are also subject
to individual differences. McNeill claimed that different speakers display the same
meaning in the same context in different ways: “Lacking standards of form, individuals
create their own gesture symbols for the same event, each incorporating a core
meaning but adding details that seem salient, and these are different from speaker
to speaker” (McNeill, 1992, p. 41). Marsh and Watt (1998) found that individuals
vary in their preferences for particular gestural techniques of representation. In their
study on iconic hand gestures as a mode of human-computer interaction for the input
and manipulation of objects and shapes within 3D environments, some participants
preferred virtual depiction over substitutions, while others employed both strategies.
Webb (1996) compared metaphoric gestures across subjects to determine whether
metaphoric gestures are idiosyncratic or shared among speakers. It was found that
although speakers share a single, limited lexicon of metaphoric gestures, individuals
used different subsets of that lexicon. Moreover, regarding handedness in the use of
gestures, a right or left hand preference was reported (Kimura, 1973a,b).

Widely unexplained is the question of how these differences among individuals
arise. Although a number of correlates are possible, such as cultural background, per-
sonality traits, or cognitive skills, only very few studies have addressed this question
so far. Regarding gesture frequency, Hostetter and Alibali (2007) found that individ-
ual differences in gesture rate are associated with the speakers’ verbal and spatial
skills. Individuals with low verbal fluency and high spatial visualization skill were
found to gesture the most. Likewise, Chu and Kita (2009) examined the relationship
between co-speech gestures and gestures produced during a silent mental rotation
task (‘co-thought’ gestures). They found that how often people produce co-speech
gestures in a verbal description task can be predicted by how often they produce
co-thought gestures. Chu and Kita argue that gestures originate from an action-based
representation system, and how often people gesture is partly determined by their
degree of preference for using this representation system. For individual differences in
gestural hand preference, Kimura (1973a,b) found a positive correlation with speakers’
handedness. Right-handed participants’ co-speech gestures occurred primarily with
the right hand, while self-touching movements occurred equally often with either
hand. Lausberg and Kita (2003) narrowed the scope of this finding, however, as they
presented data suggesting that hand choice in iconic gestures with observer viewpoint
is predominantly influenced by the content of the message: participants preferred their
left hand to refer to objects that had been on the left in the stimulus scene. Analogously,
the right hand was preferred for objects that had been on the right in the stimulus
scene.
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2.3 Theoretical Models of Gesture Production

The previous section identified a number of factors to which gesture use is sensitive.
This set of factors should, although not necessarily complete, at least be considered by
a comprehensive simulation account of gesture production. Now, the degree to which
these crucial aspects are considered in psychological and psycholinguistic theories
about the production of gestures will be investigated. For this purpose, the following
five frameworks will be reviewed: (1) a process model for lexical access via lexical
gestures (Krauss et al., 2000), (2) the sketch model (de Ruiter, 1998, 2000, 2007),
(3) the interface model (Kita and Özyürek, 2003), (4) growth point theory (McNeill,
1992, 2005; McNeill and Duncan, 2000), and (5) the gestures-as-simulated-action
framework (Hostetter and Alibali, 2008).

Some of these models investigate the production of speech and gestures in terms
of representations and processes (RP models, henceforth). RP models are information
processing models in which information “is taken to mean ‘representation’ ” (de Ruiter,
1998, p. 6). Building blocks of RP models are usually information processing modules
interfacing with each other via representations. RP models are particularly adequate for
checking the coherence of psycholinguistic theories using computational simulations.
Besides RP-based modeling, there are also non-modular interactive production models
proposing an interactive and dynamic development of gestures. There is no clear
distinction between representations and processes in these models.

A process model for lexical access via lexical gestures Krauss et al. (2000) pro-
posed a model that makes the assumption that an important function of gestures is to
facilitate lexical retrieval. This is based on empirical evidence that the restriction of
gesturing adversely affects speech (see Rauscher et al. (1996) for a review). The scope
of the model includes iconic and metaphorical gestures, labelled as lexical gestures
(cf. Section 2.1.1).

Gesture generation is based on a memorial representation of a so-called source
concept that consists of a set of semantic features, such as size, color, shape etc.
that are encoded in propositional and/or spatial format: some are represented in both
formats, whereas others are represented only spatially or only propositionally (see
Figure 2.3). The central hypothesis in this account is that “lexical gestures derive from
non-propositional representations of the source concept” (Krauss et al., 2000, p. 268).
The question of whether or not at all a gesture is produced is, therefore, answered
implicitly: this depends on the existence of non-propositional semantic features in
the source concept. If any features are available, these are then transformed into a
set of spatial/dynamic specifications. These are abstract properties of movements
which are in turn translated into a motor program, a set of instructions for executing
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Figure 2.3: The feature-based mental representation of a source concept and its reflection in gesture
and speech. Redrawn from Krauss et al. (2000)).

the gestural movement. Krauss et al. (2000, p. 276) were confident that their feature
model provides a “satisfactory way of accounting for a gesture’s form.” How exactly
the mapping of semantic features onto gesture form is realized, however, they did not
exactly elaborate on. The authors also do not consider any sub-classification of lexical
gestures in terms of gestural representation techniques.

Krauss and colleagues’ model is based on Levelt’s speech production model
(Levelt, 1989). The key idea—gestural facilitation of lexical retrieval—is realized
in the following way: the lexical gesture provides input to the phonological encoder.
Because the features conveyed in the gesture may also be features of the sought-after
lexical item, it may facilitate the retrieval of the word form by a process of cross-modal
priming. Krauss and colleagues haven chosen the phonological encoder (and not the
grammatical encoder) as an anchor for the lexical facilitation link as there is empir-
ical evidence from tip-of-the-tongue studies that retrieval failures are phonological
rather than semantic. Interactivity between speech and gesture production processes,
however, is restricted to these two points of interaction. Neither an earlier influence of
speech production processes on gesture production, nor any other contextual factors
to which gesture production is sensitive, is designated.

The Sketch Model Similar to the model proposed by Krauss et al. (2000) is de
Ruiter’s Sketch Model (de Ruiter, 1998, 2000, 2007), displayed in Figure 2.5. Al-
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Figure 2.4: The cognitive architecture for speech and gesture production processes based on Levelt’s
speech production model. Redrawn from Krauss et al. (2000).

though de Ruiter assumes, in contrast to Krauss and colleagues, that gesture is a
communicative device, both models are alike in that they assume that gestures are
generated before the linguistic formulation process takes place, as well as that speech
and gesture production are, to a large extent, independent processes.

According the Sketch Model, gesture generation beginning in Levelt’s conceptual-
izer is responsible for the selection of information to be expressed and the assignment
of a perspective for the expression. As both tasks are structurally similar for gesture
and speech, they are performed in one and the same module for both modalities:
the communicative intention is divided into two parts, a propositional representation
which is transformed into a preverbal message, and an imagistic representation that is
transformed into a so-called sketch. Depending on the type of gesture, the sketch con-
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tains different information: for pointing gestures, it contains a vector in the direction
of the referent position; for pantomimic gestures, it references a motor program en-
coded in the sketch; for iconic gestures, it consists of spatio-temporal representations
(so-called trajectories). As an example, de Ruiter (1998) cites a gesture indicating a
rectangular sign post for which the sketch would contain a large rectangle. Apart from
the conceptualizer, speech and gesture are processed independently. In the gesture
planner, the sketch is transformed into a physical gesture. As in the above-mentioned
example, this is achieved by tracing the rectangular trajectory. De Ruiter, however, is
aware of the question of “whether for all gestures a pre-existing action schema can be
identified, or whether there are gestures (esp. the ones that are not pantomimes) that
rely on newly generated motion patterns created ad-hoc for gestural communication.”
(de Ruiter, 2007, p. 30). For the case that the sketch contains more than one gesture,
e.g., a pointing vector and an iconic trajectory, de Ruiter (2000) touched the problem
of fusing multiple gestures, proposing a mechanism to reduce the motoric degrees of
freedom.

De Ruiter further pointed out three computational problems to be considered
in the gesture planner. First, there is empirical evidence that gesture planning must
be sensitive to effects of recipient design. Second, de Ruiter mentioned the problem
of hand allocation, which is the question of whether the gesture is to be performed
with the left or right hand, or with both. Third, environmental constraints have to be
considered in the process of gesture generation. The speaker has to take restrictions
imposed by objects or other persons in the environment into account.

The Interface Model Kita and Özyürek (2003) proposed a model based on the idea
that language shapes iconic gestures. This hypothesis accounts for empirical findings
from cross-linguistic studies (Kita and Özyürek, 2003), second language acquisition
(Özyürek et al., 2005), and psycholinguistic experiments (Kita et al., 2007), all of
which show that information packaging for gestures parallels linguistic packaging in
concomitant speech. Therefore, Kita and Özyürek (2003, p. 17) suggest that “gestures
originate from an interface representation between speaking and spatial thinking”.

In the proposed model, gestures, “are generated from a general mechanism of
action generation which can be used in both purely communicative and practical
purposes” (Kita and Özyürek, 2003, p. 29). The content of a gesture is determined by
three factors: (1) the speaker’s communicative intention, (2) action schemata selected
on the basis of features of imagined or real space, and (3) bidirectional interaction
between speech and gesture production processes to account for the influence on
gestures by linguistic constraints of the speaker’s language.

The model, as displayed in Figure 2.6, is based on Levelt’s conceptualizer, which
is split into two halves: the Communication Planner to generate communicative inten-
tions, and the Message Generator to formulate a verbal utterance from a propositional
representation. As the first step in the production process, the Communication Planner
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Figure 2.5: The sketch model of speech and gesture production based on Levelt’s speech production
model. Redrawn from de Ruiter (2000).

generates communicative intentions making a first rough decision on the information
to be expressed and deciding which modalities should be involved. These specif-
cations of intent are sent to the Action Generator and the Message Generator. The
Action Generator generates a spatio-motoric plan for the gesture to be performed. It
has access to the part of working memory where relevant spatial imagery—action
schemata based on features of imagined or real space—is now active. The Message
Generator, taking into account the communicative goal and the discourse context,
formulates a propositional preverbal message to be sent to the Formulator. Both gener-
ators constantly exchange information, which also involves transformations between
the two informational formats. Additionally, the Message Generator receives feedback
from the Formulator as to whether a proposition can be readily verbalized or not.
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Figure 2.6: The interface model of speech and gesture production. Redrawn from Kita and Özyürek
(2003).

These interactions among the three components are thought to go on until equilibrium
is reached. Not until this point, verbal formulation starts and the spatio-motoric repre-
sentation generated by the Action Generator is sent to Motor Control for execution.
How exactly the mapping of an action representation onto the spatio-motoric gesture
plan is realized is not further specified, however.

Growth Point Theory According to the growth point theory, “speech and gesture
are two aspects of one process” (McNeill, 1992, p. 245): the process of speech and
gesture production is regarded as a dialectic of gesture imagery and linguistic structure.
Gestures and speech emerge from growth points (GPs) which are minimal units that
combine linguistic and imagistic components as equal parts. That is, in line with the
interface model, gestures are not based solely on visuospatial imagery, and they are
influenced by linguistic factors. Growth points are dynamic units, i.e., they grow and
unfold into speech and gesture over the course of time. This development is due to
contextual influences in terms of background and contrast, as well as the dialectic
between imagistic and linguistic parts. Further, McNeill (2005, p. 131) states that “in
the GP, imagery is categorized linguistically” and “never purely visuospatial”. That is,
gestures are assumed to be influenced by linguistic factors.
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Gestures as Simulated Action Framework Figure 2.7 presents the gesture-as-
simulated-action (GSA) framework proposed by Hostetter and Alibali (2008). The
framework asserts that “gestures emerge from the perceptual and motor simulations
that underlie embodied language and mental imagery” (Hostetter and Alibali, 2008,
p. 502). The central point of the framework, in line with embodied theories of cogni-
tion, is the idea that action and perception influence each other mutually. Language
processing and mental imagery are accomplished via simulations of perception and
action. These simulations involve activating premotor actions. In other words, this
activation has the potential to spread to motor areas and to be realized as overt action
such as gestures. Speech and representational gesture production are based on the
same underlying system of mental imagery, namely on simulated action and simulated
perception.

According to the proposed model, three factors contribute to whether activation
involved in simulation will be realized as an overt movement, such as a gesture. The
first factor is the strength of activation of the underlying representation, which is
assumed to spread from the planning stage to the execution stage. Representational
gestures are assumed to be more likely produced with more activation strength in terms
of a higher degree of active processing. The GSA framework assumes differences in
activation strength for different types of mental imagery. More activation underlies
motor imagery than spatial imagery, and more activation underlies spatial imagery
than visual imagery. The second factor is the individual speaker’s current gesture
threshold. The gesture threshold is “the level of activation beyond which a speaker
cannot inhibit the expression of simulated actions as gestures” (Hostetter and Alibali,
2008, p. 503). This level may vary from speaker to speaker due to neural factors,
cognitive factors, and aspects of the social communicative situation which gives rise
to the influence of contextual factors on gesture use in terms of, for instance, recipient
design. The third factor is the simultaneous engagement of the motor system for
speaking. During speech production, the activation of motor plans spreads quickly
from the planning to the execution stage. Because actions by the mouth and the hands
have a common underlying motor system, the activation of motor plans for hand
gestures is also likely to spread from the planning to the execution stage. Hence,
gestures often accompany speech.

Discussion In Table 2.3, an overview of the models is given with respect those
factors, gesture was shown to be sensitive to (Section 2.2). These factors roughly
devide into three kinds. First, since the meaning of iconic gestures is explained by
similarity or resemblance to their referent, the way how meaning is mapped onto
gesture form is decisive. This implies that iconic gesture use is dependent on (1) the
nature of the representations that underlie gestures, as well as the question (2) how this
representation is transformed into gesture form constrained by (3) the use of different
gestural representation techniques. Second, there is a body of evidence suggesting
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Figure 2.7: The gesture-as-simulated-action framework is based on the assumption that gestures arise
from perceptual and motor simulations. Redrawn from Hostetter and Alibali (2008).

that a gesture’s form is also influenced by (4) specific discourse contextual constraints
as well as its (5) linguistic context. Finally, (6) inter-individual differences in gesturing
are quite obvious. This set of factors should, although definitely not complete, at least
be considered by a comprehensive simulation account of gesture production.

Regarding the nature of the representations underlying gesture production, the
models essentially agree that gestures arise from visuo-spatial representations. The
frameworks, however, make different claims about whether these spatial representa-
tions are stored as non-decomposable units that are retrieved holistically, or as sets of
spatial features. Krauss et al. (2000) assume in their Lexical Access Model that memo-
rial representations reflected in gestures are made up of sets of elementary features
which can, in turn, be mapped onto gesture form features. The other frameworks, in
contrast, are based on the holistic imagery view. That is, these models are concerned
with the problem of how to transform an image into gestural movements. To this end,
the sketch generator in de Ruiter’s Sketch model selects features of an image to be
expressed in gesture. In the other frameworks, however, it remains unclear as to how
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this transformation is realized.
Concerning the influence of linguistic factors on gesture production, the models

differ considerably. Whereas the Lexical Access Model and the Sketch Model do
not assume gesture production to be sensitive these factors, Kita and Özyürek (2003)
propose a bi-directional interaction between speech and gesture production processes.
Along the same lines, in Growth Point Theory, interactions between spoken form and
imagery occur continuously and in both directions. That is, there are mutual effects
between imagistic and linguistic components. Finaly, the GSA framework is closely
aligned with the Interface Model with regard to the influence of linguistic factors.
Although Hostetter and Alibali (2008, p. 508) do not explicitly propose bi-directional
communication between gesture and speech, they assume “that the way in which
speakers simulate visuospatial events is influenced by the constraints of the speakers’
languages.”

Regarding the influence of discourse context, the frameworks agree that gesture
use is sensitive to these factors with exception of Krauss et al. (2000) who do not
explicitly mention any influence of this kind. The other models, despite assuming a
general influence of discourse context, do not make any explicit assumptions about
how exactly gestures are shaped by these factors. Additionally, the models differ
concerning the type of context to be considered.

In the Sketch Model, gesture planning is designed to be sensitive to effects of
recipient design as well as environmental constraints in terms of objects or other
persons in the environment. Kita and Özyürek (2003) designed their communication
planner to have access to a discourse model so as to take into account what has
been communicated so far, and to project how discourse should develop to achieve
the overall communicative goal. This way, the communication planner may give
more prominence to certain information and, therefore, the discourse model exerts an
(indirect) influence on gesturing. In Growth Point Theory, the growth point’s unfolding
in time is shaped by contextual influences in terms of background and contrast. The
contextual background is constrained by external (social and material) conditions. The
speaker shapes the background in such a way as to render the intended significant
contrast with it possible. That is, meaning has a dual character of being simultaneously
a focal point and an implied background. In the GSA framework, the gesture threshold
level is, among other factors, biased by the social communicative situation giving rise
to recipient design.

Inter-individual differences are only considered in the GSA framework. They
come into play through the concept of the gesture threshold, which is speaker-specific.
The model, however, does not deal explicitly with other inter-individual differences
in gesture use, for instance concerning individual preferences for particular gesture
types or gesture form features.

Finally, concerning the varying character of iconic gestures with regard to gestural
representation techniques, none of the models considers adequately the multi-faceted
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class of iconic gestures. Only in de Ruiter’s Sketch Model are gestures of different
kinds treated differently in the sketch generator. The sketch contains different infor-
mation depending on the type of gesture. For pointing gestures, it contains a vector in
the direction of the referent position. For pantomimic gestures, a reference to a motor
program is encoded in the sketch For iconic gestures, it consists of spatio-temporal rep-
resentations. There is, however, no further differentiation of representation techniques
in the iconic gestures category.

In conclusion, none of the theories accounts for all six key aspects of gesture
production This is due to the models’ focus on different aspects of gesture production.
The Lexical Access Model and the Sketch model mainly emphasize the problem of
planning gestures from a given representation, the Interface Model and Growth Point
Theory have their focus on the interaction of speech and gesture production, and the
GSA framework aims to provide an embodied perspective on gesture use which takes
inter-individual differences into account. That is, there is, to date, no comprehensive
theory of gesture production available.
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2.4 Summary

This chapter reviewed the research literature relevant in the scope of this thesis. Section
2.1 introduced the phenomena of gesture and narrowed the scope of this thesis to deal
with one particular kind of hand and arm movement: spontaneous, unconventionalized,
and speech-accompanying gestures which are characterized by a relatively transparent
form-meaning relationship known as iconic and abstract deictic gestures.

Another objective in gesture research of importance for a computational genera-
tion model are the physical aspects of gestures and the question of how to describe
them. This issue was addressed by exploring, firstly, how the hands’ movements
are organized temporally, and, secondly, with regard to gesture form features which
describe the physical appearance of gestures. Concerning the latter, a four-feature
system turned out to be widely accepted to describe gesture forms, namely by (1)
handshape, (2) orientation, (3) position, and (4) movement features.

Concerning the crucial question of how the physical features of a gesture are
determined in the production process of gestures, light was shed on relevant literature
in order to identify factors by which the use of gestures is, at least, modulated:

Mental representation With regard to the question of what kind the underlying rep-
resentation of gestures is, evidence was presented for the claim that gestures
derive, at least in part, from spatial or imagistic representations.

Form-meaning mapping Concerning the question of how meaning is transformed
into an overt, observable gesture, a few pictorial strategies were identified from
research in different domains, e.g., positive correlations between movement
direction in referent motions and movement direction gestures, or, between
salient planes in referent objects and hand orientation in gestures. None of the
reviewed studies, however, was able to provide a comprehensive account of the
form-meaning relationship in iconic gestures.

Representation techniques The class of iconic gestures contains a variety of dif-
ferent techniques of representation. Obviously, for each of these techniques,
the transformation of imagistic meaning into a corresponding gestural form is
different. Attempts were reviewed which aimed to further sub-divide the class
of iconic gestures in particular. Despite the differences, there are some basic
points of agreement among researchers with respect to the following techniques
of gestural representation:

– Posturing: Gestures are characterized by the fact that the hands form a
static configuration standing as a model for the object itself.

– Drawing: The hands trace the outline of an object.

– Shaping: Gestures are characterized by a sculpting or contouring move-
ment of the hands
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– Pantomime: The hands simulate an activity pantomimically.

Linguistic factors Gestures were found to be shaped by their linguistic context in
terms of the conceptual, syntactic, and lexical structure of concomitant speech.
In particular, information packaging for gestures was found to parallel linguistic
packaging. Further evidence also suggests that linguistic choice and verbal
encoding problems are positively correlated with gesture use.

Discourse context Gestures are, in addition, sensitive to the conditions of communi-
cation. There is evidence for an impact of contextual factors such as common
ground, information structure, and the previously preformed gesture(s).

Inter-individual differences Inter-individual differences are another important issue
as people differ substantially in the way they use gestures while speaking. This
concerns the rate of gesturing as well as preferences for particular gesture types
and handedness.

The chapter was completed from a psychological and psycholinguistic theoretical
perspective about the production of gestures. Five models were reviewed with respect
to fundamental design choices concerning the abovementioned factors. None of the
models, however, provides a comprehensive account of how gestures are produced
with consideration for all the factors shown to affect gesture use.
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CHAPTER 3
Generating Gestures—The
Computational Perspective

The previous chapter provided empirical, theoretical, and psycholinguistic perspectives
on how gestures are produced. This chapter will show how computational approaches
investigate the challenge of building systems that generate gestural behavior to be
realized with virtual agents.

An essential prerequisite for the generation of iconic gestures is the represen-
tation of imagistic knowledge. This chapter, thus, will begin with a review of work
concerning the representation of visuo-spatial and shape-related knowledge in Sec-
tion 3.1. Following this, related research in gesture generation will be presented and
broken down into categories of model-driven attempts (Section 3.2.1), customization
of generated behavior (Section 3.2.2), and data-based attempts (Section 3.2.3). The
chapter will be concluded with a discussion in Section 3.3.

3.1 Representation of Imagistic Knowledge

Theoretical models of gesture production basically agree on the fact that gestures de-
rive from some kind of spatial representation (Section 2.3). It is, therefore, reasonable
to assume a visuo-spatial representation on which the production of gestures is based.

A prominent modeling approach for visuo-spatial imagery, which has proven to
be computationally efficient, is to use two- or three-dimensional, matrix-like structures
that are cell-wise occupied by object entities (Glasgow, 1993; Kosslyn, 1987). Such
arrays represent the objects’ visual appearance as well as their spatial relationship to
one another, and can be hierarchically refined to locally allow for a higher level of
detail.

Another prominent account is the 3-D model by Marr and Nishihara (1978) which
employs perceptual object axes as basic elements of shape. Axes were hierarchically
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Itc = ({Id, It}, OStc, no, Mtc)
OStc = ({(2,{sub),8),(1,{max},15)}, ...)
Mtc = [...]

Id = ({Icr}, OSd, yes, Md)
OSd = ({(2,{∅},8),(1,{∅},4)}, ...)
Md = [...] 

It = ({Iw1,Iw2, Iw3}, OSt, yes, Mt)
OSt = ({(2,{sub),8),(1,{max},10)}, ...)
Mt = [...]

Figure 3.1: A sample representation of a church tower as an Imagistic Description Tree (IDT). Each
node contains an imagistic description including a set of childnodes I, an object schema OS, and a
transformation matrix M.

arranged according to different levels of granularity. The disposition of a lower-level
axis (part) with respect to the higher-level axis (whole) is explicitly encoded. The
3D model, however, is not able to represent objects without a dominant axis such as
coins or spheres. Biederman (1987) proposed a competing model which contained a
set of volumetric primitives (geons) as qualitative descriptions of object parts. The
geon model, however, lacked part-whole relations in the sense of different levels of
abstraction. Furthermore, all volumetric approaches inherently define 3D shapes and
do not support underspecification, which is highly relevant for gesture use.

More recent models of computational imagery have utilized a graph structure
that represents an object or multi-object scene as a tree, with geometrical primitives
at the leaf nodes and geometrical transformations (among other properties) at the
intermediate nodes (Croft and Thagard, 2002).

A similar model of visuo-spatial imagery, called Imagistic Description Trees (IDT)
(Sowa, 2006; Sowa and Wachsmuth, 2009), was developed based on empirical data
to represent shape-related information acquired via gesture and speech for use in
a gesture understanding system. It is, thus, designed to cover all meaningful visuo-
spatial features one finds represented in shape-depicting iconic gestures. Important
aspects include (1) a tree structure for shape decomposition, (2) extents in different
dimensions as approximations of shape, and (3) the possibility of underspecified
dimensional information.

The IDT model unifies the abovementioned models from Marr and Nishihara
(1978), Biederman (1987), as well as the semantic theory on dimensional adjectives
Lang (1989). In this theory, so-called ‘object schemas’ were defined to describe basic
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gestalt properties of objects.
Figure 3.1 illustrates an IDT model for a certain building. Each node in an

IDT contains an Imagistic Description (IMD), which includes an object schema
representing the shape of an object or object part, respectively (Lang, 1989). An object
schema contains up to three axes, each representing a spatial extent and assigned a
dimensional attribute like ‘max’ or ‘sub’ to classify its extent relative to the other axes.
Each axis may cover more than one dimension to account for rotation symmetries
(becoming a so-called ‘integrated axis’). An object boundary is defined by a profile
vector that states symmetry, size, and edge properties for each object axis or pair
of axes. The size property reflects change of an extent as one moves along another
axis; the edge property indicates whether an object’s boundary consists of straight
segments that form ‘sharp’ corners, or of smooth, curved edges. The links in the tree
structure represent the spatial relations that hold between the parts and wholes and
are defined quantitatively by transformation matrices. It is thus possible to represent
decomposition and spatial coherence.

3.2 Gesture Generation—State of the Art

The challenge of generating communicative behavior for virtual agents has typically
been met in a series of three stages of processing: (1) content planning, (2) behavior
planning, and (3) realization of the planned behaviors (cf. Kopp et al., 2006; Vilh-
jalmsson et al., 2007). This modularization corresponds to the stages usual in Natural
Language Generation (Reiter and Dale, 2000). As an interface between these stages,
representation formats allow delivery of input to the next stage and feedback of data to
the previous stage where appropriate. See Figure 3.2 for an illustration of the modules
and interfaces.

Figure 3.2: The process of generating communicative behavior in three stages of content planning,
behavior planning, and realization.

Content planning, as the first stage, is concerned with the selection and structuring
of domain-specific information to be conveyed. The resulting content representation
is taken as input by the behavior planning module, which addresses the planning of
coordinated linguistic terms and gestures. Finally, the realization module takes the
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behavior specification and turns it into synthesized speech and gestural movements
for the virtual agent.

Gesture generation models, like the one to be developed in this thesis, fall into
stage of behavior planning—sometimes realized in close interaction with content
planning. With regard to behavior realization, the virtual agent Max (Kopp and
Wachsmuth, 2004) will be employed in this thesis. In the Max system, the interface
between behavior planning and surface realization is determined by the using the
Articulated Communicator Engine (ACE) for behavior realization. ACE processes
input that is specified according to the Multimodal Utterance Representation Markup
Language (MURML, Kranstedt et al., 2002; Kopp, 2003). Therefore, output from the
the behavior planning stage is to be specified accordingly1.

3.2.1 Model-based Gesture Generation

Model-based behavior generation aims to formalize (aspects of) human communica-
tive behavior, thus providing the basis for behavior simulation. In general, models are
typically not built from scratch. Rather, there are two standard methods of building
formal models of communicative behavior, either on the basis of empirical insights,
or as a refinement of existing models from literature. In the former case, insights
from the analysis of natural human-human communication data, in terms of rules and
relationships, are implemented. In the latter case, a theoretical model is realized via
computational means. Combinations of the two methods are also reasonable.

Lexicon-Based Gesture Generation

The first systems investigating the challenge of iconic gesture generation were lexicon-
based approaches. In general, these systems were characterized by a straightforward
mapping of meaning onto gesture form.

The Behavior Expression Animation Toolkit (BEAT) was among the first of a
new generation of toolkits to allow the generation of synthetic speech alongside
synchronized nonverbal behaviors, such as hand gestures and facial displays, to be
realized with an animated human figure (Cassell et al., 2001). This approach of
mapping text onto multimodal behavior was characterized by representing linguistic
and social context and applying behavior generation rules based on empirical results.

The BEAT system was built to be modular, extensible, and to operate in real-time.
The toolkit processes text in three major modules, interfaced with an XML-based
representation of information. The pipeline approach provides support for user-defined
filters and knowledge bases.

1. Other representation languages have been designed as well, e.g. BEAT/Spark (Cassell et al., 2001) or
APML (DeCarolis et al., 2004). Moreover, there are ongoing activities to define the Behavior Markup
Language (BML) as an approach to unify existing formats (Kopp et al., 2006; Vilhjalmsson et al., 2007).
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(a) The pipeline architecture consists of three modules to map typed input texts
onto synthetic multimodal behavior. Reprinted from Cassell et al. (2001).

(b) Output
utterance of the
BEAT system
for the text “Are
you a good or a
bad witch?”.

Figure 3.3: Architecture of the Behavior Expression Animation Toolkit (BEAT) and an example utterance
generated by the system.

In the first module, Language Tagging, input text gets broken down into clauses
representing propositions and tagged with linguistic and contextual information:
information structure (theme and rheme), word newness, contrast, as well as object
and action positions in the text.

The output of language tagging is further processed in the Behavior Generation
module, which consists of two parts. The first, Behavior Suggestion, augments the
tagged text input with suggestions for appropriate nonverbal behaviors, based on a set
of rule-based behavior generators including a ‘beat gesture generator’, a ‘surprising
features iconic gesture generator’, an ‘action iconic gesture generator’, and a ‘contrast
gesture generator’. Each of these is in charge of realizing the mapping from annotated
text onto particular nonverbal behaviors on the basis of empirical findings. For instance,
the ‘action iconic gesture generator’ implements the strong tendency of rhematic
actions to be accompanied by iconic gestures.

In the second step of behavior generation, this over-generated set of suggested
behaviors is filtered down to yield the set actually used later in the animation, taking
conflict resolution and priority into account. The system, thus, regulates how much
nonverbal behavior is finally exhibited by the virtual character. These filters might,
although not implemented in the toolkit, “reflect the personality, affective state and
energy level of characters” (Cassell et al., 2001, p. 6). This kind of individualization,
however, only considers the composition of several nonverbal behaviors and disregards
the matter of individual style on other levels of the generation process. Insofar as
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gesture generation is concerned, the BEAT system is able to produce beat gestures,
discourse gestures marking contrast, and iconic gestures for actions and object features.
The production of iconic gestures in the BEAT system is lexicon-based. That is,
depending on annotated features, predefined gesture specifications are selected from a
knowledge base.

The last module in the pipeline is Behavior Scheduling. It converts its XML input
into a set of instructions to be executed by an animation system. Nonverbal behavior
of any kind is produced in synchrony with the tagged text span they with which they
are affiliated.

The BEAT system was designed to be extensible in several ways. First, new hand
gestures can be added to the knowledge base in order to correspond to domain object
features and actions. Second, the definition of new behavior suggestion generators
allows expansion of the range of nonverbal behaviors as well as the strategies for
generating them. Similarly, behavior suggestion filters can be added or modified,
e.g., tailored to the behavior of a particular character in a particular situation, or to a
particular animator’s style.

Incidentally, a similar approach was taken with the Nonverbal Behavior Genera-
tor (NVBG), proposed by Lee and Marsella (2006). The system analyzes the syntactic
and semantic structure of surface texts and takes the affective state of the virtual agent
into account to generate appropriate nonverbal behaviors. Based on a study from the
literature and a video analysis of emotional dialogues, the authors developed a list of
nonverbal behavior generation rules. Each rule includes associated nonverbal behav-
iors together with a set of words usually spoken when the given nonverbal behavior is
exhibited. The rule set applied to input texts accounts for the linguistic and discourse
contextual use of nonverbal behavior. Linguistic context is, for instance, considered
by the ‘first noun phrase rule’, whereas the ‘response request rule’ is an example
for the consideration of discourse context. Although the focus of the NVBG is on
head movements, the approach also provides the possibility to associate pre-animated
gesture clips with particular verbal expressions. One example of this is the ‘negation
rule’ associating words like ‘no’, ‘not’, and ‘nothing’ with an animation clip in which
the virtual agent puts his hand up and shakes his head.

The Real Estate Agent (REA) is a more elaborate system as it aims to model
the bi-directional process of communication (Cassell et al., 2000a; Cassell, 2000).
That is, in addition to the generation of nonverbal behaviors, the system also seeks to
understand aspects of these same modalities’ use by a human interlocutor.

The REA architecture deals with input and output from multiple devices such
as speech, gestures, and gaze. Of particular interest in the context of this thesis is
the gesture generation process centered around the SPUD (Sentence Planning Using
Descriptions) natural language generator (Stone et al., 2003). SPUD takes three
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types of input: (1) a set of communicative goals, (2) a grammar consisting of LTAG
trees which are associated with a lexical anchor as well as semantic and pragmatic
information, and (3) a knowledge base of logical formulae consisting of facts about
the domain, explicitly labeled with information about their conversational status, i.e.,
whether the fact is private or shared. Provided with this input, SPUD treats sentence
planning as a search problem in the search space spanned by the grammar and the
knowledge base. Starting from an LTAG initial tree consisting of a root node and the
set of communicative goals, the algorithm adds linguistic structures to the tree in each
step, until a complete utterance that meets the given communicative goals is found.

For the REA system, SPUD’s linguistic resources were extended to include a
set of predefined gestures, upon which it draws to express its communicative goals.
That is, multimodal utterances are generated with a single, uniform algorithm. To
this end, Cassell et al. (2000a) introduced the SYNC construction to combine a whole
gesture with the syntactic structure of a spoken constituent to be realized in temporal
synchrony. For an example of a SPUD-generated utterance tree including SYNC-nodes
for the integration of gestures, see Figure 3.2.1: gesture G co-occurs with the words
‘a staircase’, whereby the spiral shape of the staircase is mapped to the trajectory of
gesture G.

The focus of gesture generation in the REA system is the context-dependent
coordination of (lexicalized) gestures with speech, accounting for the fact that gestures
do not always carry the same meaning as speech. Reflecting this, Cassell et al. (2000a)
distinguished between complementary gestures that carry information not present in
the simultaneous speech, and redundant gestures that convey the same information as
speech. In a study of human-human conversation, rules of information distribution
across modalities were extracted. These indicate the appropriateness of expressing
semantic features in the gesture modalities, communicative goals, linguistic features
in terms of theme/rheme, and other pragmatic information such as surprising semantic
features and contrast. Integrating them into the generation framework resulted in the
production of appropriate complementary or redundant gestures.

An extension of the REA system called REA3D was provided by Gao (2002). In
this account, iconic gestures are directly derived from a 3D graphics scene augmented
with information about 3D locations of objects and their basic shapes in terms of boxes,
cylinders, spheres, user-defined polygons, or composites of these. These were directly
mapped onto a set of hand shapes and spatial hand configurations in a rule-based
way. This method allows for the derivation of a range of new gesture forms, but does
not provide a unified way of representing and processing the knowledge underlying
coordinated language and gesture use.

The Virtual Guide (VG) is a multimodal dialogue system represented by an em-
bodied conversational agent that can help users to navigate a virtual environment
while adapting its affective linguistic style to that of a human user in terms of polite-
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(a) Syntactic structure of the multimodal example utterance in
which a lexicalized gestures is integrated via a SYNC node.

(b) The virtual agent REA say-
ing “a staircase in the middle
of it.” accompanied by a gesture
which depicts the spiral shape of
the staircase.

Figure 3.4: An example utterance tree generated with the REA system and its realization. Reprinted
from Yan (2000).

ness (Hofs et al., 2010). The input for the route description consists of the shortest
path from the starting point to the destination, specified as a list of 3D coordinates.
This list gets translated into a sequence of markers associated with turn directions
and landmarks. From this input, a route description is generated using a collection
of sentence templates tagged for politeness. The templates are then organized in a
specialization hierarchy, where specialized templates can augment or override the
more general ones.

To generate appropriate gestures to accompany the verbal route description, the
words in the route description are associated with tags representing different types
of relevant gestures which may potentially be generated. An animation planner is at
this point concerned with generating the required animations in synchronization with
text-to-speech output. To this end, gesture selection follows a ‘suggest-and-reduce’
approach somewhat similar to that of the BEAT system (Cassell et al., 2001). First, the
system creates a collection of all possible gestures that could be used to accompany
the landmark references and direction words in each sentence of the route description.
Subsequently, once the full route description has been generated, a selection from all
possible gestures is made, based on weighted randomization. The weights used by the
Virtual Guide were determined by hand, however the authors stated that more realistic
weights might be determined empirically based on the results of video analysis. The
type of gestures considered by the system are deictic and iconic. Deictics are generated
from an objective viewpoint using the location of the target object as input parameter,
while iconic gestures are generated using canned animations. Currently, the system
always selects pointing gestures. This is the result of drawing from the findings of an

50



evaluation study in which 68% of the participants preferred directions with objective
viewpoint gestures.

Feature-Based Gesture Generation

The NUMACK system tried to overcome the limitations of lexicon-based gesture
generation by formulating the meaning-form mapping at the level of single gesture
features (Kopp et al., 2004). This approach was based upon the notion of Imagistic
Description Features (IDFs) as described in Section 2.2.2. IDFs are used by NU-
MACK as an intermediate level of meaning, which explicates the imagistic content of
iconic gestures, consisting of separable, qualitative features describing the meaningful
geometric and spatial properties of entities.

Figure 3.5: The architecture of the NUMACK system in which the SPUD framework and a seperate
Gesture Planner are employed. Reprinted from Kopp et al. (2004).

NUMACK extended the REA system described above such that a new subsystem
for gesture planning within the microplanning stage was introduced, as illustrated in
Figure 3.5. Gesture planning is based on an input specification of domain knowledge
and a set of form feature entries connecting IDFs to morphological gesture features.
The implementation of form feature entries is based on empirical evidence regarding
the form-meaning mapping as described in Section 2.2.2. The gesture planner takes a
set of IDFs as input and searches for all combinations of form feature entries which
can be potentially realized. To this end, a feature structure unification is employed
to combine morphological features, whereby any two form features may combine
provided that the derived feature structure contains only one of any feature type at
a time. This operation is applied iteratively until the given communicative intention
gets encoded. Figure 3.6 shows the mapping of IDFs onto gesture features via form
feature entries.

The gesture planner returns all possible combinations of gesture features, which
are added to the resources of SPUD. Drawing from a set of dedicated SYNC construc-
tions outlining all possible combinations of speech and gestures, SPUD chooses the
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Figure 3.6: Feature based form-meaning mapping in the NUMACK system: Imagistic description
features are mapped on gesture features via form feature entries. Any two form features may be
combined provided that the derived feature structure contains only one of any gesture feature type at a
time.

gesture feature structure and the construction that, when combined with appropriate
words, allows for the most complete intended interpretation in context. Finally, the
resulting tree of the multimodal utterance is converted into an XML description,
containing the textually defined words along with the feature structures for gestures to
be performed by a virtual agent (Figure 3.7).

(a) A gesture feature structure is filled with form features entries. (b) “You will see Cook Hall on
your right.” accompanied by a
gesture which depicts location
and shape of the referent Cook
Hall.

Figure 3.7: An example gesture generated with the NUMACK system and its realization. Reprinted from
Kopp et al. (2004).
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3.2.2 Customized Gesture Generation

The research reviewed so far was devoted to building general models of gesture use,
i.e., systematic inter-personal patterns of gesture use are incorporated exclusively.
What has not yet been considered in these systems is individual or group-specific
variation, another line of research which has recently been making headway. In the
following, approaches will be reviewed that provide means to customize gesture
behavior.

Modulating Expressivity Parameters Based on the observation that gesture use
is subject to considerable inter-individual differences, Hartmann et al. (2006) focused
on the way individuals differ in the manner and execution of their gestures. Based
on perceptual studies, six expressivity parameters of gesture quality were extracted
as an intermediate level of behavior parametrization between holistic, qualitative
communicative functions such as mood, personality, and emotion on the one hand,
and low-level animation parameters like joint angles on the other hand:

– Overall Activation General amount of activity, e.g., passive vs. static or ani-
mated vs. engaged.

– Spatial Extent Amplitude of movements.

– Temporal Extent Duration of movements.

– Fluidity Smoothness and continuity of overall movement, e.g., smooth versus
jerky.

– Power Dynamic properties of the movement, e.g., weak versus strong.

– Repetition Tendency to rhythmic repeats of specific movements.

These parameters were applied to the Gesture Engine of the virtual agent GRETA,
whose library of known prototype gestures are tagged for communicative function
(Hartmann et al., 2002). The parameterization approach allows for a large range
of pre-defined gesture variants. See Figure 3.8 for an example of variation of the
parameter ‘spatial extent’.

The expressivity parameter approach is driven by a perceptual standpoint, i.e.,
the question of how expressivity is perceived by humans. To investigate how the six
parameters were recognized by human users, Hartmann et al. (2006) employed an
evaluation study. It turned out that the recognition of single parameters was best for the
dimensions ‘spatial extent’ and ‘temporal extent’, whereas the dimensions ‘repetition’
and ‘overall activation‘ were much less recognizeable.

Recently, Mancini and Pelachaud (2010) implemented the concept of expressivity
parameters to create distinctive behavior patterns for ECAs. Their proposed algorithm
generates nonverbal behavior for a given communicative intention and emotional
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Figure 3.8: Variation of the parameter ‘spatial extent’ in the virtual agent GRETA: The neutral key pose in
the middle is contracted in the left and extended in the right gesture execution. Reprinted from Hartmann
et al. (2006).

state, driven by the agent’s general behavior tendency (‘Baseline’) and modulated
by dynamic factors such as emotional states, relation with interlocutor, physical
constraints, social roles. etc. For each modality (face, gesture, torso, head), the Baseline
structure includes a modality preference and specifies values for the six expressivity
parameters. The Baseline of a person can be automatically extracted from a video
analysis, and then modulated by the agent’s ‘Dynamicline’, which influences the
its behavior at two levels: the selection of multimodal signals to display and the
specification of the behavior execution quality. In an evaluation study, human subjects
were able to discern the achieved distinctiveness in the agent’s behavior.

Rehm et al. (2008) presented another variant which made use of the gestural
expressivity parameters to generate culture-specific gestures (CSG for culture-specific
generation). Their approach to CSG in embodied agents relies on a multimodal corpus
analysis of human interactions in two cultures. The analysis of corpus data focuses
on gestural expressivity in terms of the above-mentioned expressivity parameters
depending on a speaker’s cultural background. Differences between the cultures can
be identified and integrated in a probabilistic model for generating agent behaviors.
In a Bayesian network, the culture to be simulated is connected with five dimensions
of culture as a middle layer: hierarchy, identity, gender, uncertainty, and orientation.
These culture-specific dimensions were then connected with gesture parameters.

This model was applied in an application called ‘cultural mirror’. As a user’s
gestural expressivity (measured with a WiiMote) was analyzed and the classification
result was set as evidence for the output nodes of the Bayesian network. By diagnostic
inference, the user’s cultural background was estimated and this information was then
set as evidence to the input nodes of a second network in which an agent’s behavior
was parameterized via causal inferences, resulting in behavior congruent to user input.
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Providing virtual agents with gesture style In another approach, Ruttkay (2007)
aimed at endowing virtual humans with a unique style in order to appear typical
of some social or ethnic group. The focus of this work was a markup language to
define different aspects of style which were handcrafted to model the behaviour
of stereotypic groups rather than individual group members. The markup language
GESTYLE allows the generation of speech and accompanying gestures by tagging a
text for meaning and declaring a style in which an utterance will be performed. To
this end, GESTYLE contained the following set of constructs:

– Character Markup Defines the static characteristics of a character, such as
culture, personality, age, sex, and other individual characteristics like handed-
ness.

– Situation Markup Specifies the situation by setting dynamical aspects of the
speaker (like mood, physical state) and the environment (social relation between
interlocutors, characteristics of the addressee etc.)

– Communicative Markup The text to be uttered by the agent is tagged, e.g.,
for emphasis, get-attention.

– Gesture Markup Specifies the gesturing behavior to be expressed at certain
points in time. Specific parameters are provided to modify the characteristics of
the motions, e.g., amplitude, motion-manner.2

A set of gesture dictionaries was compiled for particular cultures, social, ethnic
groups, and personalities or even for individual subjects. In these dictionaries, one
or more gestures are stored to express a particular meaning to offer the alternatives
of expressing a communicative function. Each gesture entry is augmented by the
probability of using the specific gesture in this role and optional gesture modifying
parameters specifying the motion characteristics of the gesture.

The effect of high-level character and situation parameters on the motion charac-
teristics is given in terms of low-level gesture parameters. That is, a single gesture is
selected from the possible alternatives, prescribed by different gesture dictionaries
according to the given character and situation specification. Provided with an interface
which translates the GESTYLE representation to the control parameters of an ani-
mated player, it is possible to give expression to this specification in the overt behavior
of a virtual agent.

3.2.3 Data-Driven Gesture Generation

Another line of research uses data-driven methods to simulate (individual) speakers’
gesturing behavior.

2. The term ‘gesture’ does not only include hand and arm movements, but also head nods, eyebrow
movements etc.

55



Creating Characters from Human Motion Capture Data Stone et al. (2004)
proposed a method for using a database of recorded speech and captured motion
to create an animated conversational character (RS+CM approach). The framework
tied together offline activities of content authoring and data preparation with online
processes that use the prepared content and data for generation and animation.

In content authoring, a scriptwriter designs what the character will say. Automatic
tools then compute the utterance units implicit in the specification, formulate a concise
script for a performer, compute a database specification that organizes the anticipated
sound and motion recordings, and compile an application-specific generator that will
index the resulting database.

For data preparation, automatic tools for speech and motion data analysis are
combined with manual annotations. In particular, the data is coded for points of
perceived prominence in speech and gesture. In addition, gestures are classified into
two categories: descriptive or expressive. Descriptive gestures elaborate the referential
content of the utterance, which is typical of iconic gestures that represent objects or
events in space. Expressive gestures, in contrast, highlight the attitude of the speaker
towards which she is saying and comment on the relationship of speaker and addressee,
which is typically the case for metaphorical and beat gestures.

To plan a new utterance, the generator automatically determines the content and
communicative function of each of the phrases the character needs to realize. To
animate these phrases, suitable sound recordings must be combined with adequate
gesture performances. As this is the unit selection problem, a cost function is defined
to determine the best combination of a sound s and a motion m that minimizes the
degree to which a unit of performance must be modified in the final realization. The
function takes two measures into account. First, the difference in two successive
motions, temporally averaged across the short overlay window where corresponding
samples are interpolated, and second, the differences in pitch (a ratio) between the
peak of two successive sounds.

The unifed approach makes it possible to capture the data needed for a character
with a limited number of performances, to catalogue performance data with limited
human effort, and to synthesize novel utterances.

Generating Gestures from a Speaker-Specific Model Another data-driven ges-
ture generation approach was developed by Neff et al. (2008): a system for generating
believable gesture animations for novel text which reflect the gesturing style of partic-
ular individuals by building speaker models (SM approach). The approach is mainly
data-driven, using a video corpus of the human performer, but also incorporates gen-
eral, character-independent mechanisms. The approach is divided into two phases:
an offline processing phase to build gesture profiles from speakers, and an online
processing phase to generate speaker-specific gestures for arbitrary input texts. For an
overview see Figure 3.9.
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Figure 3.9: System to generate believable gesture animations for novel text that reflect the gesturing
style of particular individuals (Neff et al., 2008). The approach is divided into two phases: an offline
processing phase to build a gesture lexicon and gesture profiles from speakers, and an online
processing phase to generate speaker-specific gestures for arbitrary input texts.

The offline processing phase, done individually for each speaker, and begins with
the annotation of video data from the particular speaker with respect to speech and
gestures. Spoken words are grouped into clauses and annotated for their information
structure. The gestural part of the annotation follows the hierarchical organization of
gestures in phases, phrases, and units (cf. Section 2.1.2). In addition, four attributes
are coded for each gesture: (1) handedness, (2) lexical affiliate, (3) co-occurrence, and
(4) lexeme. The lexeme denotes the lexicon entry to which the gesture corresponds
in a gesture lexicon built beforehand to capture the semantics of gestures (Kipp,
2004). A total of 39 gesture types, i.e., recurring gesture patterns, are identified
and described with respect to gesture form constraints in terms of handshape, hand
location, hand orientation, hand/arm movement, handedness, shoulder movement, and
facial expression.

From the annotated corpus, a profile of a speaker’s gesturing behavior is built.
This profile consists of a sample database, a statistical model, and average values. For
the database, the annotations for each gesture in the corpus are stored as a reproducible
sample of the specifc speaker. To build the statistical model, the speech transcription is
processed in order to assign semantic tags such as ‘agreement’ (“yes”) or ‘quest_part’
(“why”). The model is then automatically computed from the annotations and used in
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generation to trigger gestures, to predict where they are placed relative to speech, and
to determine parameters such as handedness and frequency.

Once a speaker’s gesture profile is created, the system can process any text that
has been segmented into utterances and (manually) coded for its information structure.
Words are stemmed and mapped to a semantic tag, just as in the offline modeling step.
The generation then proceeds in two steps: gesture creation/selection, and gesture
formation.

In the first step, a large number of underspecified gesture candidates are created
and then reduced by a selection criterion. For each semantic tag in the input text,
the generation system computes the conditional probability that a gesture g occurs
with given semantic tag s. Additionally, a bi-gram model of gesture sequence is
considered, i.e., the conditional probabilities that gesture gi follows a previous gesture
gi1. Similarly, the handedness is determined on the basis of a bi-gram model that
captures handedness sequences. Handshape is determined by consulting a lexicon in
which all suitable handshapes for a particular lexeme are specified. Following the rule
of economy, a handshape is chosen if it is equal to the handshape employed in the
previous gesture. Otherwise the handshape is changed to a suitable one.

In the second online step, timing details for the realization of gestures are planned.
To this end, gesture and speech are arranged by positioning the end of the stroke at
the end of the corresponding word, using a random onset based on the speaker’s mean
value. Neighboring gestures are merged resulting in multiple strokes synchronized to
enforce a minimum time span.

3.3 Summary and Discussion

This chapter aimed to cover the computational perspective on gesture generation.
The first part dealt with the question of content representation underlying gesture
production and addressed the state of the art in computational imagery. The second
part presented related work in terms of gesture generation approaches, structured by
model-based approaches, customization attempts, and data-based methods. Insights
from both issues will be summarized and discussed in the following.

Computational Imagery

The presentation of content representation approaches focused particularly on the
IDT (Imagistic Description Tree) model. This was developed based on empirical data,
to represent shape-related information in a gesture understanding system. It is, thus,
designed to cover all meaningful visuo-spatial features one finds represented in shape-
depicting iconic gestures. IDTs are characterized by (1) providing a tree structure for
object decomposition, (2) defining extents in different dimensions as approximations
of shape, and (3) allowing the possibility of underspecified dimensional information.
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The IDT model is particularly suited for gesture-related representation of imag-
istic knowledge for the following three reasons. First, the IDT model permits the
represention of underspecification and vagueness, both of which are immanent in
gesture. Dimensional underspecification (e.g., when representing a 2D circle or simply
a 1D width) is given when the axes of an object schema cover less than all three
dimensions of space. Vagueness can hold with respect to the extent along a certain
dimension (e.g., when representing something ‘longish’) or the decomposition of a
shape into subparts (e.g., when representing a church without being able to recall all
its individual parts or geometrical details).

Second, complex and structured objects are typically not depicted all at once with
a single, complex gesture. Instead, objects are usually decomposed and the components
are described with simple sequential dimensional gestures. That is, successive gestures
tend to organize cohesively in space and reflect the spatial arrangement of the referents
they depict. A tree-like representation format like that of the IDTs, therefore, is
particularly suited to reflect this.

Third, shape properties which are often depicted by gestures can be defined
semantically in terms of the extent and profile of intrinsic object axes. Dimensional
features as ‘fat’ or ‘longish’ are, for instance, well expressible as relations between
object extents. The IDT model covers these object features adequately.

Gesture Generation

In Table 3.1, an overview of the computational models is given with respect to the
six crucial aspects of gesture production (as identified in Section 2.2), which already
have been considered in the evaluation of theoretical models (Section 2.3). Although
this set of factors is not necessarily complete, a comprehensive computational model
of gesture production should consider this set, at least.

Concerning the nature of the representations underlying gesture production and its
mapping onto gesture form, lexicon-based systems rely on a dictionary of pre-defined
gesture forms associated with a particular meaning (BEAT, NVBG, REA, VG). In
combination with semantically tagged input texts, meaning is straightforwardly tied
to the physical appearance of a gesture. Along the same line, technical approaches
that aim to customize gesture use rely on pre-defined gesture forms to be modified to
account for individual speakers (GRETA) or groups of speakers (GESTYLE, CSG).
Similarly, data-based systems also make use of dictionaries of pre-defined gesture
forms in combination with semantic information; the RS+CM system uses segments
of motion capture data and the SM system employs a set of gesture types.
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The NUMACK system stands out in that it tried to overcome the limitations of
lexicon-based gesture generation by implementing an intermediate level of meaning
which explicates the imagistic content of iconic gestures, consisting of separable, qual-
itative features describing the meaningful geometric and spatial properties of entities.
A similar strategy was applied in REA3d, however, the 3D graphics representation
tagged with referent features was directly mapped onto gesture features.

None of the technical systems—explicitly—made use of the fact that iconic
gestures realize different gestural representation techniques. Since most of the systems
under consideration rely on pre-defined gesture sets (in which different representa-
tional techniques may implicitly be present), there are only two systems in which
this distinction would be reasonable, REA3d and NUMACK. Actually, the limited
prediction accuracy, as shown for the NUMACK system (Kopp et al., 2004), could
be due to the fact that the correspondence between combinations of morphological
features and the visual or geometrical similarity of referents was investigated without
considering different techniques of representation.

Technical systems differ with regard to the consideration of linguistic and/or
discourse context. The BEAT framework considered contextual information such
as information structure (theme, rheme) or novelty in its behavior generators. The
REA/REA3d system relied on discourse functional information, but additionally
focused on the relation between gesture use and speech. In particular, it implemented
rules of information distribution to account for the fact that speech and gestures
are sometimes redundant and other times complementary. The NUMACK account
followed the same strategy as the REA system by using SPUD to compose full,
multimodal utterances. Extended with a flexible gesture planner (instead of using a
static set of predefined gestures), gestures were then dynamically incorporated into
SPUD’s resources and utilized in the same way as described in REA.

The probabilistic SM system made probabilistic generation choices on the basis
of conditional probabilities taking two aspects into account: the previously performed
gesture and the input text tagged with theme, rheme, and focus. RS+CM relied on
aspects of the linguistic context as it searched for the best combination of sound and
motion appropriate for given the content and communicative function to be realized.
A cost function determined which combination minimizes the degree to which a unit
of performance must be modified in the final realization.

In VG, sentence templates were associated with tags representing different types
of gestures to be possibly generated. That is, any kind of contextual influence was
not explicitly modeled, but at most implicitly defined by these templates. In GRETA,
CSG, and GESTYLE no kind of contextual information was considered.
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Some of the systems under consideration tried to achieve generality by abstracting
from individual speakers: BEAT, REA/REA3d, VG, NUMACK, and RS+CM3. Others,
by contrast, focused on inter-individual or group-specific differences in gesture use. In
GRETA, the concept of expressivity parameters was implemented to create distinctive
behavior for virtual agents. The system was able to account for automatically extracted
individual speaker characteristics in terms of expressivity parameters and modality
preference. This kind of individualization of gesture style was evaluated as successful
in that the parameters could be perceived by human subjects. The same concept
of expressivity parameters also came to application in the CSG system to provide
virtual agents with culture-specific gesture style. Similarly, in GESTYLE, different
styles were defined in a dictionary of meaning-to-gesture mappings with optional
modifying parameters to specify the characteristics of a gesture in terms of group
and culture specificity. In both systems, however, the individualization of gesturing
behavior was limited to parameters of gesture style. What was not considered in this
individualization account was the formation of meaningful gesture forms and how
these also reflect inter-individual differences.

In conclusion, previous research in computational gesture generation has either
emphasized common patterns in the formation of iconic gestures or concentrated
on the individualization of gesture use. Common patterns have throughout been
investigated in a rule-based way, whereas individualization was realized either in a
data-based fashion (probabilistically or using a cost function) or by parameterization
of pre-defined gestures. That is, so far, there is no computational system which
combines a substantiated mapping of meaning onto gesture form under contextual
constraints which additionally accounts for inter-individual differences in gesture use.

This can be explained in the following way. On the one hand, a comprehensive
data-based account necessitates a rich database consisting of fine-grained gesture
coding in combination with contextual information about gesture use. To date, no
gesture corpora are not available in a size sufficient to adequately apply data-based
techniques. In the absence of such corpora, rule-based modeling is an alternative.
Inter-individual differences can, however, hardly be investigated in a rule-based way.
As a result, it has not been possible previously, either with data-based or rule-based
methods, to adequately model gesture production comprehensively. This situation is
the starting point for the modeling approach to be developed in this thesis.

3. Although not explicitly designated by the authors, one could imagine to also apply the basic principles
of these systems for customized gesture generation
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CHAPTER 4
Empirical Study

The introductory Section 1.3 laid out the cyclic design methodology of modeling
communicative behavior. The developmental cycle begins with the collection of
natural human communication data that reflects the surface level of the behavior to be
modeled. The physical appearance of a gesture does not depend on iconicity alone,
but also on specific contextual constraints such as discourse context, the linguistic
context, gesture history, and inter-individual differences in gesturing (Section 2.2).
So far, no literature describes in detail how iconic gesture use is correlated with
those variables. As demonstrated in Section 2.2, iconicity is not only decisive for
the physical appearance of a gesture, but also specific contextual constraints such as
discourse context or verbal context in which a gesture is used. In addition, intersubject
differences in gesturing are quite obvious, but exactly how iconic gesture production
is subjectively biased remains poorly understood so far. The sensitivity of gesture use
to these factors is, however, decisive for the design of a generation model.

An adequate empirical basis for a detailed account of gesture use must, therefore,
fulfill several requirements. First, the physical form of gestures has to be annotated in
a fine-grained way. Second, gesture referents and their visuo-spatial properties have
to be clearly defined to provide the basis for mapping meaning into gesture form.
Third, the data must be supplemented with information about the gesture context.
Finally, the corpus should consist of a not too small number of speakers to capture
inter-individual differences in the data. Because there is, to date, no such collection of
data available, an empirical study on spatial communication in a setting resembling
a potential application scenario was conducted in the scope of the CRC 673 project
B1 at Bielefeld University in February 2007. This chapter recounts the study, results,
and conclusions with respect to a computational model of iconic gesture production.
The Bielefeld Speech and Gesture Alignment (SaGA) corpus, including details of the
study setting, annotation of the data, and reliability issues was described in Lücking
et al. (2010). Initial findings were published in Bergmann and Kopp (2009b, 2010b).

The remainder of this chapter is structured as follows. In Section 4.1.1, the study
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setting will be described. In Section 4.1, the SaGA corpus will be introduced in terms
of experimental data as well as the secondary annotation data. Corpus evaluation in
terms of inter-rater reliability will be presented. Finally, results from the statistical
analyses of the data will be described in Section 4.2.

4.1 Building a Corpus of Speech and Gesture Use

4.1.1 Corpus Study

Participants

50 participants (21 female, 29 male) took part in the study. Half of them participated
as direction givers, the other half as direction followers, resulting in 25 dyads. Pairs of
participants did not know each other prior to the study. All were recruited at Bielefeld
University and received four to ten euros for participating.

Procedure

The setting of the corpus study (SaGA study, henceforth) consisted of two phases.
In the first, the stimulus presentation phase, the direction givers were provided with
knowledge to be communicated to the direction follower in the second phase of the
study, the dialogue phase. At the beginning of the stimulus presentation phase, subjects
participating as direction givers were equipped with virtual reality glasses and motion
tracking markers at neck, hands and elbows. They were seated in an immersive virtual
reality environment (‘Cave Automatic Virtual Environment’, CAVE) and experienced
a ‘bus ride’ through a model of a town presented in virtual reality.

Instructions were to memorize the route, as well as to carefully familiarize oneself
with the appearance of five ‘sights’—visually distinctive landmarks—at which the bus
ride temporarily paused (see Figure 4.1). Participants decided on their own when the
tour was to continue, so they could spend time viewing each of the five sights for as
long as they liked.

Figure 4.1: Virtual reality sights from the corpus study (from left to right): sculpture, townhall,
churchsquare, chapel, and fountain.

Upon finishing the bus ride, the direction giver had to explain the route and
describe the five sights to the direction follower, who would be tasked with navigating
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the same path through the virtual town afterwards. In doing so, The giver was asked to
describe the five sights accurately enough for the follower to be able to notice possible
discrepancies in appearance that might have been introduced afterwards.

4.1.2 Primary Data

The primary data of the SaGA corpus consists of 25 dialogs. Audio- and videotapes
were taken of each dialog. For the videotape, three synchronized camera views were
recorded (see Figure 4.2), as well as body movement data and eye-tracking data from
the router. In total, the SaGA corpus consists of 280 minutes of audio- and video
material.

Figure 4.2: Dialogue phase of the corpus study: three camera views. Focus on the direction giver (left),
focus on the direction follower (right), both participants (middle).

4.1.3 Secondary Data

The data was completely and systematically annotated based on an annotation grid
developed according to theoretical considerations and refined in pilot annotation
sessions. In the following, the basic categories and values will be presented. Detailed
annotation guidelines can be found in Bergmann et al. (2007) and Bergmann et al.
(2008).

The grid basically consists of three parts as summarized in Table 4.1. It comprises,
first, a segmentation and classification of gesture including gesture representation
techniques and morphological gesture features. Second, the spoken words are tran-
scribed, tagged with part-of-speech information, parsed for their syntactical structure,
and coded for their dialogue context. Third, a subpart of the corpus (only sight descrip-
tions) has been coded for the gestures’ referent objects and their spatio-geometrical
properties (dimensionality, extents, symmetries, profiles, etc.). All multimodal corpus
data are stored, retrieved and transformed within the Ariadne system (Menke and
Mehler, 2010).
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Table 4.1: Coding scheme for gestures, their referents and their discourse context.

Variable Annotation Primitives

Gesture Gesture Phase preparation, stroke, retraction, pre-stroke hold, post-
stroke hold

Representation Technique indexing, placing, shaping, drawing, posturing, sizing,
counting, hedging

Handedness LH, RH, 2H

Handshape ASL handshapes, see Table 4.2

Palm Orientation PAB, PTB, PTL, PTR, PUP, PDN + combinations and
sequences

BoH Orientation BAB, BTB, BTL, BTR, BUP, BDN + combinations
and sequences

Movement Type linear, curved + sequences

Movement Direction MF, MB, ML, MR, MU, MD

Verbal Context NP types Tags according to the STTS tagset (Table 4.3)

Discourse Context Thematization theme, rheme

Information State private, shared

Communicative Goal lmIntro, lmDescrProp, lmDescrConstr, lmDescrPos

Referent Features Subparts 1 or more, none

Symmetry sym, none

Main Axis x-axis, y-axis, z-axis, none

Position 3D vector (left, middle, right)

Shape Property longish, cubic, squared, arc-shaped, spherical, round,
etc.

Gesture Segmentation

As a first step in gesture annotation, the stream of hand movements was segmented
to identify single gesture occurrences. In general, a gesture is delimited by two
consecutive resting positions (McNeill, 1992; Kita et al., 1998). Although this resting
position might vary from speaker to speaker, it is typically a comfortable posture
of hands and arms so that only a minimum of muscular strength is necessary. For
instance, when the speaker is sitting, the hands often lay in the lap. A gesture’s internal
structure is then identified by segmenting the movement into the following gesture
phases as described in Section 2.1.2:

– Preparation Hands and arms are moved from the resting position into the start
position of the stroke phase.

– Stroke Strokes can be either dynamic or static. In the static case, the hands
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are held in a particular configuration, whereas in the dynamic case they are
moved. For static strokes, the starting point in time is characterized by halting
the movement. For dynamic strokes, the starting point in time is typically
characterized by a change in direction or speed. Physiologically, these strokes
are characterized by a high tonicity.

– Retraction The hands are brought back into a resting position.

– Pre-hold Phase of static position before starting a dynamic stroke.

– Post-hold Phase of static position after starting a dynamic stroke.

Notably, the movements between two resting positions may contain multiple
strokes. In these cases, the optional phase to prepare for the next stroke is coded as a
preparation (not as a retraction).

Representation Techniques

Based on sub-classification approaches of iconic gestures from the literature, a set of
consensus categories was identified (Section 2.2.3) and supplemented with further
representation techniques according to the focus on object descriptions in the present
data. This resulted in a set of eight representation techniques:

– Indexing Pointing gestures referring to positions in gesture space (referents
were not physically present). Indexing gestures convey only information about
the relative position of their referents.

– Placing Holding the hands as though they hold or grasp an object which is then
is placed or set down within gesture space. In contrast to shaping gestures, in
which the hands also virtually ‘touch’ the referent object, the stroke is static in
placing gestures. That is, the referent object is touched, but not sculpted.

– Shaping Sculpting or contouring movement of the hands. The meaning consists
of a shape that is formed by the hands. This shape is typically three-dimensional.

– Drawing Tracing the outline of an object’s shape. Typically, one finger (mostly
the index finger) is used as an imaginary pencil, so that the finger itself does not
stand in for the referent, but the outline which is drawn in the air or on some
kind of surface (e.g. the other hand or a table).

– Posturing Forming a static configuration to stand as a model for the object
shape itself.

– Sizing Using to display sizes, distances or diameters of objects. This is done
with both hands or with one hand and refers to one axis of the very object, i.e.,
the extent in one dimension.

– Counting Displaying with outstretched fingers a number between one and ten.

– Hedging Wiggling or shrugging movements depicting uncertainty.
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Gesture Form

Gesture form coding followed the widely accepted four-part description of a gesture’s
physical appearance, as agreed upon in the majority of gesture coding schemes
(Section 2.1.2).

Handedness For each gesture, whether it was performed with the right hand (RH),
with the left hand (LH), or with both hands (2H) was coded.

Handshape Regarding the annotation of handshapes, there are two prevalent de-
scription methods, both of which originated in sign language description: the notation
of hand configurations with labels of the American Sign Language (ASL), and the
coding symbols from HamNoSys, the ‘Hamburg notation system for sign language’
(Prillwitz et al., 1989). The two description methods differ from each other in the
way that ASL labels provide a comprehensive set of handshapes, whereas HamNoSys
describes the hand configuration compositionally by 12 standard hand shapes (flat,
fist, pointing index finger, etc.), and a set of modifications that can be applied to them,
changing the bending of individual fingers or the thumb.

Concerning the question of which scheme to use, Kimbara (2008) conducted
a study in which handshapes were used as an analytical target for coding. Kimbara
concluded that, “ASL handshapes provided useful coding labels to broadly categorize
the handshapes of speech-accompanying gestures based on their similarity in form.”
(Kimbara, 2008, p. 128f.). Given the fact that “nearly all gestures are deficient from
an ASL point of view”. McNeill (1992, p. 86) suggests to use the “ASL shape that the
gesture mostly resembles”. To systemize variations of the basic ASL handshapes, a
set of modifiers was employed as in Kopp et al. (2007):

– bent: if the fingers are not stretched

– loose: a relatively relaxed realization of the very handshape

– spread: if the fingers are not held close together

– small/large: size modifiers for the handshape ASL-C

For a sample of handshape labels and modifiers used for the present data, see
Table 4.2.

Hand Orientation Coding schemes basically agree on the option to code the hand
orientation with two values: palm and finger (or back of hand) orientation, typically
coded in terms of six speaker-centric, base- or half-axes (McNeill, 1992; Kopp et al.,
2007)1

1. Kendon (2004) proposed to annotate palm orientation more by arm position, rotational position of
the forearm, and orientation of the metacarpal. This system, however, “seems not to allow the same
accurateness in the description and expandability of categories” (Bressem, 2008, p. 15).

68



Table 4.2: ASL categories employed to annotate handshape in the SaGA corpus.

ASL label Description Modifiers

ASL-B Fingers are held together and extended,
forming a flat plane with the palm. The
thumb is tucked in against the palm.

bent, loose,
spread

ASL-C The fingers are together and curved. The
thumb is opposed and curved so the
thumb and index finger resemble the
letter C.

bent, large,
loose, small

ASL-G The index finger is bent at the base joint
but otherwise extended, the thumb is
rotated outward from the palm at the
base and extended so that it is parallel
with the index finger, and the other three
fingers are curled into the palm,

bent, loose

ASL-O The fingers are extended, together, and
curled, and the tip of the thumb is touch-
ing the tip of the index and middle fin-
gers to form a circle.

loose

ASL-5 All four fingers are extended and spread
apart. The thumb is unopposed and ex-
tended.

bent, loose

The orientation of hands in the SaGA corpus was, therefore, defined in terms of
two values: palm orientation and back of hand (BoH) orientation. Palm orientation
was devoted in terms of the direction of an axis orthogonal to the palm, whereby the
following six speaker-centric half-axes were used (Herskovits, 1986): palm up (PUP),
palm down (PDN), palm to the left (PTL), palm to the right (PTR), palm away from
the speaker’s body (PAB), and palm towards the speaker’s body (PTB). Up to three
of these basic values were combined to encode diagonal or mixed directions, e.g.,
‘up/right’ (‘PUP/PTR’) or ‘up/right/forward’ (‘PUP/PTR/PAB’). This reults in a total
of 120 basic palm orientation values. In order to capture dynamic palm orientations,
it was possible to build a temporal sequence of these basic values by means of the
‘>’-operator. The value ‘PUP>PDN’, for instance, denotes an upwards-downwards
movement sequence.
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BoH orientation was coded along the same lines with the following six basic
values: BoH up (BUP), BoH down (BDN), BoH to the left (BTL), BoH to the right
(BTR), BoH away from the speaker’s body (BAB), and BoH towards the speaker’s
body (BTB). The coded BoH orientation represents the direction of the fingers as if
they were extended. Again, combinations of these basic values were used to code
diagonal or mixed directions. Two examples for palm and BoH orientations are given
in Figure 4.3.

Figure 4.3: Hand Orientation defined in terms of palm and back of hand (BoH) orientation (reprinted
from Kopp et al. (2007)). Assuming that left hand would be held straight out in front of the body, it would
be coded as the palm facing left (‘PTL’) and the BoH facing away from the speaker’s body (‘BAB’). In the
case of the right example, the coded palm direction would be ‘PAB’ (away from the body) and the BoH
orientation would be up (‘BUP’).

Wrist Movement In most coding schemes dynamic aspects of gesturing are de-
scribed using several attributes, whereby two values are quite prevalent: direction and
trajectory. The movement direction is typically coded in terms of ‘right’, ‘left’, ‘up’,
and ‘down’. Trajectory coding aims to describe the shape of the motion. 2

Along the same lines, in the SaGA corpus, the movement direction for dynamic
gestures was annotated in terms of the six cardinal directions in space: movement
upwards (MU), movement downwards (MD), movement to the left (ML), movement
to the right (MR), movement forwards (MF), movement backwards (MB). As already
described for palm and BoH orientation, combinations and sequences of the categories
were used to describe directions in between the six basic values as well as temporal
sequences.

To further classify the type of movement trajectory, two categories are distin-
guished: linear movements (movement in a straight line) and curved movements
(movement along an arc or curve). Assume, for instance, the sequence of orientations
‘MU>MR>MD>ML’. If it is performed linearly, the resulting trajectory is a square

2. Some schemes provide further details about gestural movement. Müller (1998), e.g., focuses on the
characterization of gestural motion patterns drawing attention to how gestural movements are modulated
employing annotation values like ‘stressed beginning’ or ‘middle phrase extended’. The CoGesT scheme
(Gibbon et al., 2004) also contains descriptions of direction and trajectory, and additional modifiers for
repetition, size and speed.
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Table 4.3: Tags for noun phrase patterns according to the Stuttgart-Tübingen Tagset (STTS) for German.

(1) ADJA NN Adjective, Noun
(2) ART ADJA Article, Adjective
(3) ART ADJA NN Article, Adjective, Noun
(4) ART Article
(5) ART NN Article, Noun
(6) CARD Cardinal
(7) CARD NN Cardinal, Noun
(8) NE Proper Noun
(9) NN Noun
(10) PDAT NN Attributing Demonstrative Pronoun
(11) PDS Substituting Demonstrative Pronoun
(12) PIAT NN Attributing Indefinite Pronoun without Determiner
(13) PIS Substituting Indefinite Pronoun
(14) PPER Irreflexive Personal Pronoun
(15) PRF Reflexive Personal Pronoun

whereas it would be a circle if the same sequence would be performed in a curved
fashion.

Linguistic and Discourse Context

Transcription The interlocutor’s words were transcribed orthographically, i.e., they
were put into the correct form of German spelling. Spoken language, however, is
characterized by some facts that do not follow the rules of German orthography. First,
there are cases of contractions of two words into one word. Some of these are even
lemmatized, e.g., combinations of article and preposition as in ‘zum’ or ‘am’. Second,
there are interjections occurring in spoken language for which no orthographic rules
exist, e.g., ‘äh’, ‘mhm’, ‘tz’, or ‘boah’. These phenomena occur quite frequently in
the SaGA corpus and, thus, are marked as interjection in the transcripts.

Syntax Tagging In the scope of the work reported here, we concentrate on noun
phrases which were identified in 15 corpus transcripts by automatic Part-of-Speech-
Tagging (POS) using the TreeTagger (Schmidt, 1994). A list of the most common
noun phrase patterns found is given in Table 4.3.

Communicative Goals The transcription of the interlocutor’s words is enriched
with further information about the overall discourse context. For this purpose, the
utterance is broken down into clauses, each of which representing a proposition. For
each clause, we annotate its communicative goal. Denis (1997) developed several
categories of communicative goals that can be distinguished in route directions due to
the focus on object descriptions, which were revised and refined into four categories:

Landmark Introduction A landmark is mentioned without further exploration, e.g.,
‘there is a chapel’.
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Landmark property description The properties of an object, in terms of shape, color,
material etc., are described as in ‘the town hall is U-shaped’.

Landmark construction description An object’s construction is described, e.g., ‘the
church has two towers’.

Landmark Position Description The description localizes the object as in ‘there is a
tree in front of the building’.

Information Structure Clauses are further divided into two smaller units of thema-
tization partitioning of the content of a sentence according to its relation to the
discourse context. The structuring of utterances into a topic part and a comment part
is a pervasive phenomenon in human language and there are numerous theoretical
approaches describing thematization and its semantics (cf. Kruijff-Korbayova and
Steedman (2003)). Following Halliday (1967) it is distinguished between thematiza-
tion and information focus.

Thematization is coded in terms of theme (what the sentence is about) and rheme
(what is being said about the theme), according to the ‘before verb-complex’ and
‘after verb-complex’ heuristics as described in Hiyakumoto et al. (1997). For example,
in the utterance ‘the church has two towers’, the first noun phrase (‘the church’) is the
theme and the second noun phrase is the rheme.

Focusing on noun phrases and their accompanying gestures, to which the annota-
tion of information structure is restricted, information focus was annotated following
Stone et al. (2003) in using the terms ‘information state’ and distinguishing straight-
forwardly between private (a discourse referent which lacks an antecedent in the
previous discourse) and shared (a referent (or referent feature) already mentioned in
the previous discourse) knowledge. For instance, in the utterance ‘the church has a
dome-shaped roof’ the first noun phrase (‘the church’) is shared since the must haven
been introduced into the discourse before (use of definite article). The second noun
phrase (‘a dome-shaped roof’), on the contrary, is private because the object (feature)
is discourse-new.

Notably, as suggested in Ritz et al. (2008), thematization and information focus
are annotated independently as different dimensions of information structure, assum-
ing no prior relation between them. In particular, rhematic information is not always
private, as, for instance, when content is repeated for better comprehension or in reply
to interposed questions.

4.1.4 Referent Annotation

All gestures used in the object descriptions were further coded for their referent and
some of their spatio-geometrical properties. These object features are drawn from an
IDT representation of the VR stimulus of the study (cf. Section 3.1). For each gesture,
a node ID of the IDT representation is coded from which the following properties can
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be inferred: (1) number of subparts (i.e., childnodes), (2) number of symmetrical axes,
(3) main axis, (4) position, and (5) shape properties.

4.1.5 Coding Reliability

Annotation-based data might be problematic as they are based on subjective judge-
ments of the coders. The reliability of the annotation is, therefore, of vital importance
for the significance of results. It has to be shown that different people agree with
respect to the coding judgements on which statistical analyses are based to make
research results replicable (Carletta, 1996). To make a database as sound as possible,
it is necessary to evaluate coding decisions with respect to their reliability. Two kinds
of agreement are distinguished depending on whether one coder re-codes the same
data (intra-rater agreement) or several coders annotate the same data (inter-rater
agreement). The latter captures the stability of the annotation and is the more severe
kind of reliability as it goes beyond intra-coder inconsistencies (Krippendorff, 1980).

Reliability Measures

Depending on the type and scale of the data, different statistical methods are available.
A qualitative distinction has to be made between Type I and Type II ratings (Gwet,
2001). Type I measurements are those where the degree to which a rating is subject
to human interpretation is well-understood and the outcome easily interpretable. As
an example, Stegmann and Lücking (2005) cited the measuring of a patient’s blood
pressure by a doctor. The outcome displayed on the blood pressure gauge reflects the
actual level of the patient’s blood pressure (or at least approximates it in a sufficient
way). Other doctors will come to the same result. Type II data, in contrast, are subject
to interpretation by the coder. Here Stegmann and Lücking (2005) gave the example of
a classification task in which, on the basis of data from a psychological questionnaire,
raters have to determine the satisfaction level of various subjects assigning them to
categories of emotion such as ‘happy’ or ‘sad’. This difference between Type I data
and Type II data has to be considered in evaluations of respective annotations as
Type II ratings must be adjusted for chance-based agreements, whereas this is not
necessary for Type I ratings. The SaGA corpus comprises both types of annotation. The
classification of gestures in terms of representation techniques, reference objects and
dialogue context information is interpretive and therefore of Type II. The respective
annotation labels are categories on a nominal scale. Descriptions of gesture form
make up data of Type I. With one exception (handshape, see below), the labels
for annotating a gesture performance are ordered on an ordinal scale. Accordingly,
different methods are employed to evaluate annotations of representation techniques
and context information on the one hand, and annotations of gesture form on the other
hand.
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As a chance-corrected coefficient determining the level of agreement to be found
in Type II data, the first order agreement coefficient AC1 developed by Gwet (2001)
was chosen since the widely used Kappa coefficient (Cohen, 1960) is often criticized
on grounds of delivering anti-intuitive results under certain configurations (kappa
paradoxes; for a discussion see Stegmann and Lücking (2005)).

Regarding the interpretation of agreement coefficients different quality thresholds
exist. Values above which the agreement of raters is judged as acceptable range from
0.4 to more stringent conventions of 0.8 (cf. Artstein and Poesio, 2008). A frequently
employed agreement level, also applied to the SaGA data, is 0.7 with an α-error of
0.05 and a β-error of 0.85 for Type II annotations.

In addition, to assess the extent of association between annotations of the Type I
gesture morphology, an approach based on angle measures was employed for codings
of directions and orientations. As the disagreement between, e.g., ‘movement to
the right’ and ‘movement to the right and slightly down’, is less than that between
‘movement to the right’ and ‘movement to the left’. Comparing just for sameness of
annotation labels would not capture the degree of spatial difference between them.
This problem was addressed by translating the annotation labels into angular measures
which can be analyzed in terms of numeric differences.

Movement directions, palm and BoH orientation were compared by calculating
the angle between the two orientation vectors. For instance, there is an angle of 90◦

between ‘PTL’ and ‘PUP’, and an angle of 45◦ between ‘PTL’ and ‘PTL/PUP’. A
maximal angle of 180◦ is present if the two vectors are opposing each other (e.g. ‘PTL’
and ‘PTR’) and can be considered as the worst match.

Reliability Results

Inter-rater agreement was calculated based on a sample of 477 gestures (∼10% of the
data) which have been classified independently by four annotators.

Type II data The first-order agreement coefficient AC1 for gestures’ representa-
tion technique rating was 0.784 with a confidence interval of (0.758, 0.81). The sample
of representation technique coding was classified independently by four annotators.
The proportion of agreement on gestures’ representation techniques, given that the
agreement was not due to chance, was significantly greater than 0.7. In particular, this
result complied with the reliability level that was initially demanded.

The degree of reliability of the annotations of reference objects and context
information was rated by two independent annotators. The agreement coefficient AC1

for the classification of reference objects was 0.91, for information structure 0.95, for
information state 0.86, and for communicative goals 0.88. All values are collected in
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Table 7.10. In sum, the highly interpretive Type II data showed a reasonable degree of
inter-rater reliability.

Type I data The annotations that make up Type I data of the SaGA corpus
transcribe orientations and movement directions as they have a clear spatial interpreta-
tion. The reliability of this data was assessed by angle-based measures. The smallest
angular deviation is 2.36◦ for the movement direction of hand shapes, and the largest
is 46.16◦ for BoH orientation. On average, the angular difference as a whole is 27◦

(with average standard deviation SD=45). Given that the annotation categories resolve
gesture space into ‘slices’ of 45◦ each, the average difference comes close to the
theoretically undecidable mean value of 22.5◦.

Evaluating the annotation of handshapes required a special treatment, since the
categories developed to classify the handshape observed comprise both Type I and
Type II shares. On the one hand, there is a set of basic shapes derived from the ASL
lexicon. These Type I labels are then enhanced by Type II modifiers such as ‘loose’ or
‘spread’. Therefore, all modified handshapes were mapped onto their basic type and
treated them as Type I data. As a result, it was found that the four annotators agreed
on 83% (AC1=0.9, to give the Type II statistics for comparison) of the handshapes
within the reliability sample of gestures.

Table 4.4: Reliability results for the annotation of the SaGA corpus.

AC1 Angular Deviation (SD)

Gesture Representation Technique 0.78

Handedness 0.92

Handshape 0.90

Palm Orientation 19.14◦ (1.92)

BoH Orientation 20.66◦ (2.47)

Wrist Movement Direction 37.08◦ (6.5)

Discourse Context Thematization 0.95

Information State 0.86

Communicative Goal 0.88

Referent Object 0.91

In sum, the evaluation of the secondary data of the SaGA corpus revealed a
satisfactory degree of reliability. Chance-corrected agreement on Type II data sur-
passed the threshold of 0.7. Observed inter-rater agreement on Type I data resulted in
angular values which, by and large, denote rather harmless dissent between annotators.
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Hence, the SaGA corpus provides a reproducible data base which can be exploited for
empirically driven research.

4.2 Statistical Analysis

The statistical analyses of the SaGA data were conducted in three steps. First, it
was investigated whether gestures are employed and by which factors is gesture use
modulated. Second, the use of representation techniques was analyzed accordingly.
And finally, the degree to which form features are combined in the representation
techniques was examined, and, again, by which factors this is modulated. Due to the
focus on object description in this thesis, the majority of analyses will be based on a
sub-corpus of object descriptions of four sights (town hall, church square, chapel, and
fountain).

Methodologically, the statistical investigation was based on frequency distribu-
tion analyses and Pearson’s chi-square tests to measure the association between two
categorical variables (cf. Bortz, 2005). The latter compares an observed frequency dis-
tribution with an expected frequency distribution and measures the level of mismatch
between the expected and observed frequencies over levels of categories. Note that, us-
ing the chi-square tests is inappropriate if any value for expected frequencies is below
one or if the expected frequency is less than five in more than 20% of the contingency
table cells. Therefore, the test was only applied where this requirement was given.
With regard to inter-individual differences, only a limited number of speakers was
considered who produced a considerable amount of gestures respectively. For reasons
of clarity, statistical tests which failed to reject the null hypothesis at a significance
level of p<.05 will not be reported. Results are marked with * for p<.05 with ** for
p<.01, and with *** for p<.001.

4.2.1 Gesture Rate—To gesture or not to gesture?

A total of 4382 gestures was used by the 25 speakers (direction givers). Another 579
gestures in the corpus were produced by the addressees (direction followers), resulting
in a total of 4961 gestures in the SaGA corpus. To quantify the rate of gesturing
there are generally two methods to be employed: the number of gestures divided by
speaking time, or alternatively, the rate of gestures per 100 words which adjusts for
differences in speaking rate. Values for both measures are reported for the SaGA
corpus in Table 4.5.

Inter-individual Differences

Concerning the number of gestures divided by speaking time, the analysis revealed a
mean rate of 15.8 gesture strokes per minute. Notably, there was a considerable degree
of inter-individual variation across speakers which became apparent in the standard
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deviation of 7.1. Gesture rates varied between a minimum of 3.0 for participant P2
and a maximum of 33.0 for participant P16.

A similar picture resulted from the analysis of gesture rate per 100 words. Here,
the mean rate was 10.3 with a standard deviation of 4.0 which is approximately half of
the mean. The minimum rate was 2.3 for speaker P2 and the maximum was observed
for speaker P16, who produced 21.24 gestures per 100 words. That is, these two
speakers turned out to gesture least/most as measured by both kinds of quantification.

Table 4.5: Gesture rates for the 25 speakers in the SaGA corpus.

Participant Number of
gestures per
100 words

Number of
gestures per
minute

P1 11.8 18.0
P2 2.3 3.0
P3 10.2 11.6
P4 10.9 19.4
P5 16.7 24.4
P6 11.8 21.1
P7 13.0 25.3
P8 13.4 19.7
P9 14.3 19.9
P10 11.8 19.5
P11 11.2 21.0
P12 6.8 10.2
P13 3.1 3.7
P14 9.5 13.8
P15 9.0 12.5
P16 21.2 33.0
P17 5.5 6.8
P18 5.9 7.8
P19 11.4 20.6
P20 11.6 20.6
P21 8.2 12.3
P22 8.5 10.9
P23 9.6 12.5
P24 9.0 13.5
P25 10.3 15.2

Total M=10.3 M=15.8
SD=4.0 SD=7.1

Modulating Factors

The choice3 to produce a gesture was decisively influenced by variables of four kinds
as displayed in Table 4.6: discourse context, linguistic context, referent features, and
the previous gesturing behavior. To also investigate in how far individual speakers
differ with regard to gesture use, the interrelations were surveyed based on a set of

3. The term ‘choice’ is not meant to imply a conscious process here.

77



Table 4.6: Interrelation of gesture occurrence and influencing variables. Parenthetical values are
expected occurrences. For each interrelation the data of individual speakers was analyzed for
significance (p<.05) and whether there is a similar distribution as in the combined data.

Gesture (y/n) Individuals
no gesture gesture Signif. Sim. Distr.

Thematization rheme 103 (142.8) *** 248 (208.2) ** 4/5 5/5theme 96 (56.2) *** 42 (81.8) ***
InfoState private 83 (102.1) 168 (148.9) 2/5 5/5shared 116 (96.9) 122 (141.1)
CommGoal lmIntro 17 (10.6) * 9 (15.4)

2/5 5/5lmDescrProp 67 (65.1) 93 (94.9)
lmDescrConstr 54 (49.6) 68 (72.4)
lmDescrPos 61 (73.7) 120 (107.3)

MainAxis none 44 (47.2) 72 (68.8)

3/5 4/5width 44 (43.5) 63 (63.5)
height 100 (87.9) 116 (128.1)
depth 11 (20.3) * 39 (29.7)

Subparts none 68 (92.8)** 160 (135.2)* 2/5 5/51 or more 131 (106.2) * 130 (154.8) *
SymAxes none 97 (74.5) ** 86 (108.5) * 2/5 5/5sym 102 (124.5) * 204 (181.5)

PrevGesture gesture 68 (89.1)* 166 (140.9) 3/5 3/5no gesture 118 (92.9)* 137 (147.1)

489 noun phrases was considered, including 290 gestures from five speakers who
gestured at relatively high rates (P1, P5, P7, P8, and P15).

– Discourse Context
For the discourse context, thematization was found to be decisive insofar as
rhematic information is significantly more likely to be accompanied by a gesture
(χ2=66.396, df =1, p<.001). Individuals shared this relationship: although the
relation was not significant for any one speaker, all five speakers agreed on the
distribution, i.e., they tended to use gestures for rhematic information whereas
for thematic information, gestures were less likely to occur. Regarding the
information state, people were more likely to produce gestures for entities whose
information state was private (χ2=12.432, df =1, p<.001). This is in line with the
view that new information is introduced into the discourse by gesture McNeill
(1992). Again, all individuals shared the same distribution, although the relation
was only significant for two of five speakers. So it seems as if this link between
information state and gesture occurrence is not as strong as the link between
thematization and gesture occurrence. Moreover, the communicative goal had
an impact on the question of whether or not to gesture (χ2 =10.970, df =3,
p=.012). When a landmark was just mentioned (lmIntro), this utterance was not
very likely to be accompanied by a gesture. This dependence between variables,
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however, was only significant for two individuals, although all five agreed on
the distribution by trend. That is, they used fewer gestures than expected for
landmarks which had just been mentioned without further elaboration of any
kind.

– Referent Features
As concerns the influence of referent features, three features appeared to be
decisive. First, there was a significant relationship between the choice to gesture
and the referent’s main axis: if from the speaker’s point of view of an object’s
main axis was its depth (e.g., a tunnel into which one is looking) a gesture was
more likely to be produced than in other cases (χ2=10.424, df =3, p=.015). For
three of the five speakers, this relation was significant, and only one speaker did
not share the trend. Moreover, the complexity of the object (part) was influential.
Utterances referring to leaf nodes of the IDT representation were more often
accompanied by gestures than utterances referring to inner nodes of the tree
representation (χ2=20.916, df =1, p<.001). All individuals shared this kind of
distribution, however, it was only significant for two of them. Furthermore, for
objects which have at least one symmetry axis, gestures are more likely to occur
than for completely asymmetrial objects (χ2=18.363, df =1, p<.001). Again,
all speakers shared this kind of distribution, but it was only significant for two
of them.

– Previous Gesture
Another factor found to be influential for gesture use was whether the speaker
performed a gesture beforehand, or whether the hands were in a rest position.
This relationship was highly significant (χ2=19.09, df =1, p<.001) and based
on the fact that speakers were more likely to gesture when they had gestured
immediately before. In contrast, they were less likely to gesture when being
in a rest position prior to that. This relation was observed in three of the five
speakers under consideration.

– Linguistic Context
For the analysis of gesture use and NP patterns, data of 4156 noun phrases was
taken into account. The analysis aimed to correlate NP patterns with gesture
use, whereby 37.8% of the NPs were accompanied by gestures (see Table 4.7).
There was a highly significant correlation between the use of particular syntactic
NPs and the use of gestures (χ2 =248.89, df =14, p<.001). This relationship
was due to the fact that some syntactic constructions, namely ‘ART ADJA NN’,
‘ART NN’ were significantly more likely to be accompanied by a gesture. On
the contrary, other constructions, such as ‘PIS’ or ‘PPER’ were significantly
less likely to occur with a co-speech gesture.
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Table 4.7: Interrelation of gesture occurrence and NP type. Parenthetical values are expected
occurrences.

NP type no gesture gesture

ADJA NN 54 (61.5) 45 (37.5)
ART ADJA NN 88 (130.5)*** 122 (79.5)***
ART ADJA 45 (55.9) 45 (34.1)
ART NN 410 (500.9)*** 396 (305.1)***
PDAT NN 37 (47.2) 39 (28.8)
CARD 19 (25.5) 62 (49.6)
CARD NN 19 (25.5) 40 (34.1)
ART 154 (152.3) 91 (92.7)
NN 137 (137.4) 84 (83.6)
PRF 52 (54.7) 36 (33.3)
PDS 212 (200.7) 111 (122.3)
PIAT NN 36 (30.5) 13 (18.5)
PIS 134 (115.6) 52 (70.4)*
PPER 857 (678.1)*** 234 (412.9)***
Other 298 (336.2)* 243 (204.8)**

In summary, the decision as to whether to gesture was influenced by four variable
kinds: (1) the discourse context, (2) referent features, (3) the previous gesturing
behavior, and (4) the linguistic context. These findings were mostly systematic, i.e.,
uncontroversial among the five speakers we looked at. However, a significance of
the very correlation was not given for all individuals. In other words, speakers varied
particularly in how strong the link between particular variables was.

4.2.2 Gestural Representation Techniques

The use of gestural representation techniques and the influence of modulating factors
on their choice will, as in the previous analysis of gesture use in general, take inter-
individual differences into account. Accordingly the analysis will be based on the
sub-corpus of 290 gestures from five speakers.

Inter-individual Differences

The use of gestural representation techniques was subject to major inter-individual
differences (χ2=85.34, df =16, p<.001). Table 4.8 shows the varying distributions
of representation techniques for five speakers (P1, P5, P7, P8, P15), who gestured a
relatively high rates, in the sub-corpus of object descriptions. For speaker P1, e.g., a
significantly increased number of drawing gestures was observed, whereas the number
of placing gestures was significantly below the expected amount. Speaker P15, by
contrast, produced no posturing gestures at all, but instead used more abstract indexing
gestures than expected. The distribution of representation techniques for speaker P5
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is characterized by a high number of shaping and posturing gestures, whereas the
number of drawing and abstract indexing gestures was lower as expected.

Table 4.8: Comparison of five speakers with regard to inter-individual differences in the use of gestural
representation techniques. Parenthetical values are expected occurrences.

Individuals
P1 P5 P7 P8 P15

Abstract Indexing 7 (4.4) 6 (11.9) 6 (10.1) 4 (6.6) 17 (7.0)***
Placing 1 (7.1)* 17 (19.0) 25 (16.1) * 14 (10.6) 7 (11.3)
Shaping 7 (12.9) 42 (34.7) 28 (29.5) 24 (19.4) 16 (20.6)
Drawing 15 (4.7)*** 6 (12.8)* 6 (10.8) 5 (7.1) 11 (7.6)
Posturing 2 (2.9) 15 (7.7)** 8 (6.5) 1 (4.3) 0 (4.6)**

Modulating Factors

– Referent Features
The first analysis aimed to correlate the use of representation techniques with the
spatio-geometrical properties of the objects described. It turned out that there
was a significant difference between object shapes which can be decomposed
into detailed subparts (part-whole relations) and objects without any subparts
(χ2=32.39, df =4, p<.001). For objects without subparts, the number of shaping,
drawing and posturing gestures was increased, whereas the rate of placing
gestures was significantly decreased. For objects which have at least one subpart,
placing gestures occurred significantly more often than expected, while shaping,
drawing and posturing gestures occurred less often (Table 4.9). Thus, if an object
was minimally complex in the sense that it had no subparts, and therefore seems
more amenable to gestural reconstruction, depicting gestures were preferred.
For more complex objects, with at least one subpart, participants preferred
placing gestures.
Another way to assess shape complexity of an object is in terms of its inherent
symmetry: the more symmetric axes an object has, the less complex one’s
perception of it. Thus, the correlation between representation technique and
existence of symmetry in the reference object was investigated. Again, a sig-
nificant relationship (χ2=26.90, df =4, p<.001) was found: objects which had
no symmetrical axis, i.e., were more complex, indexing and placing gestures
are used relatively often, while drawing, shaping, and posturing gestures were
used less often than expected (see Tab. 4.9). In contrast, if an object had at least
one symmetrical axis, the number of drawing, shaping, and posturing gestures
increased, whereas the number of indexing and placing gestures decreased. This
is in line with the above finding, that complex objects were likely to be posi-
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tioned gesturally, while less complex objects were more likely to be depicted
by gesture.

– Discourse Context
A further analysis investigated the correlation of representation technique and
dialog context, whereby a significant relationship was found between the com-
municative goal and the use of representation techniques (χ2=81.206, df =8,
p<.001). Descriptions came along with significantly more depicting gestures
(shaping, drawing, posturing), while the spatial arrangement of entities was
accompanied by indexing and placing gestures in the majority of cases.

– Linguistic Context
There was a significant relationship found between the use of representation
techniques and NP type (χ2=160.784, df =70, p < .001). For this analysis, data
of 4156 NPs was taken into account (see Table 4.10). On closer inspection, dif-
ferent gestural representation techniques co-occurred with certain NP patterns
in a significant way. For patterns (1)-(4), i.e., those consisting of determin-
ers, adjectives, and nouns, the number of shaping gestures was significantly
increased in comparison with expectation. NPs consisting of determiner and
noun (5), co-occurred with posturing gestures significantly more often than
expected. Moreover, for cardinals (NP patterns (6)/(7)), placing gestures, and
demonstrative pronouns, (11) posturing gestures were used more often than
expected. Further, indexing gestures were frequently used along with personal
pronouns (14), and for reflexive personal pronouns (15) the number of shaping
gestures was significantly increased.

– Previous Gesture
Regarding the influence of the previously performed gesture, there was also
a significant relationship (χ2=67.39, df =16, p < .001). This is due to the fact
that speakers tend to stay in the same technique: Drawing gestures tend to be
followed by drawing gestures, again. The same holds for posturing gestures.
In addition, shaping gestures tend to follow placing gestures. However, these
relations were not significant for single individuals.
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Table 4.10: Noun phrase patterns in relation with gestural representation techniques (part-of-speech
tags according to the Stuttgart-Tübingen Tagset (STTS) for German).

NP patterns Frequency (%) Representation technique

(1) ADJA NN 2.4

shaping **
(2) ART ADJA 2.2
(3) ART ADJA NN 5.1
(4) ART 5.9

(5) ART NN 19.4 posturing **

(6) CARD 1.0
placing ***

(7) CARD NN 2.2

(8) NE 1.2
(9) NN 5.3
(10) PDAT NN 1.8
(11) PDS 7.8 posturing *
(12) PIAT NN 1.2
(13) PIS 4.5
(14) PPER 26.3 indexing *
(15) PRF 2.1 shaping *

4.2.3 Form Feature Analysis of Representation Techniques

In order to further systemize the combination of form features in gestures, the data was
analyzed for the use of gesture form feature values. To this end, it was convenient to
consider the sub-categorization of iconic gestures into representation techniques. So,
in the following, the sub-corpus of 1087 gestures from 25 speakers will be explored
separately for each representation technique. In each case, the characteristics of the
very technique will be broken down in terms of common technique-specific patterns as
well as residual degrees of freedom which might be sensitive to referent characteristics
and inter-individual differences. The total of 1087 object description gestures sub-
divided into 20.1% abstract indexing gestures, 11.7% placing gestures, 28.0% shaping
gestures, 11.2% drawing gestures, and 6.3% posturing gestures. A proportion of
22.7% were of other types (sizing, counting, hedging), or combinations of several
representation techniques.

To prevent from narrowing results to very specific value interrelations, handshape
categories were assigned to five major categories: ‘ASL-B’, ‘ASL-C’, ‘ASL-G’, ‘ASL-
O’ and ‘bent-5’. That is, values like ‘ASL-B-spread’ or ‘ASL-B-loose’ fall into the
general category ‘ASL-B’. Regarding palm and BoH orientations, combined categories
were split into their parts, e.g., ‘PAB/PDN’ into ‘PAB’ and ‘PDN’. Furthermore,
‘PTR’/‘BTR’ and ‘PTL’/‘BTL’ were merged into a common category ‘PTS’/‘BTS’
(for sideways palm/BoH orientation) to abstract from handedness.
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Abstract Indexing Gestures

219 gestures in the sub-corpus of object descriptions were indexing gestures. The
characteristics of these gestures are summarized in Table 4.11 with regard to what
they have in common as opposed to gestures of other representation techniques. In the
following, the degree to which the form features of indexing gestures are technique-
specific and how variant gesture form features are shaped by modulating factors will
be investigated. Inter-individual differences were tested for a subset of four from the
25 speakers who produced a sufficient number (greater or equal than 15) of indexing
gestures (P9, P11, P20, P24).

Table 4.11: Gesture form feature analysis in indexing gestures (N=219).

Variable Value Relative Frequency Number of observed (ex-
pected) occurrences

Handedness LH 42.0% 92 (61.7)***
RH 53.0% 116 (103.0)
2H 5.0% 11 (54.4)***

Handshape ASL-B 32.4% 71 (59.2)
ASL-G 30.1% 66 (40.9)***
ASL-C 7.8% 17 (34.3)**
ASL-O 2.3% 5 (2.6)
ASL-bent-5 1.4% 3 (17.1)***

Palm Orientation PAB 23.3% 41 (35.5)**
PTB 10.0% 22 (12.5)**
PTS 45.7% 100 (80.6)*
PUP 0.9% 2 (10.7)**
PDN 33.3% 73 (58.6)

BoH Orientation BAB 59.8% 131 (99.1)**
BTB – 0 (0.6)
BTS 36.1% 79 (46.7)***
BUP 26.5% 58 (48.0)
BDN 3.2% 7 (4.2)

Wrist Movement no movement 88.1% 193 (127.1)***

– Handedness
A common feature of indexing gestures was that they were performed with
one hand, either the right hand (53.0%) or the left (42.0%). However, although
handedness was restricted to one-handed gestures in this representation tech-
nique, which hand to use, the left or the right, remained open. This choice
was actually found to be constrained by two different factors: the referent’s
position as well as inter-individual differences. With regard to referent position,
the use of right-handed gestures was positively correlated with object position
(χ2=113.70, df =4, p<.001): objects located on the right hand side were signifi-
cantly more often than expected localized with right-handed indexing gestures.
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Along the same lines, there was a also a significant relationship for left-handed
gestures and objects located at the left. In addition, inter-individual differ-
ences of handedness (χ2=74.87, df =6, p<.001) were due to the fact that one
speaker (P24) preferred two-handed gestures, another speaker (P20) preferred
left-handed gestures, and two other speakers (P09, P11) had increased numbers
of right-handed gestures as compared to expectations.

– Handshape
Handshape choice was basically limited into two major categories: for 71
gestures (32.4%) of the gestures ASL-B was used, and for another 66 ges-
tures (30.1%) the typical pointing handshape ASL-G was employed. Which of
these was actually used was subject to significant inter-individual differences
(χ2=10.43, df =4, p=.034). Although in general, the proportions of ASL-B use
and ASL-G use were nearly equal, there was one individual (P9) in the test set
who obviously preferred flat hand indexing while, of the others, three preferred
pointed indexing. When taking all 25 speakers into account (most of them with
quite low data cases, however), there was approximately one third preferring
indexing gestures with ASL-B, one third preferring indexing gestures with
ASL-G, and another third without a preference.

– Palm Orientation
In a relatively large proportion of indexing gestures, sideways palm orienta-
tion occurred as a component (45.7%). Particularly, the number of rightwards
oriented palms was larger than expected. In addition, the palm orientation com-
ponent ‘PDN’ was contained in 33.3% of the indexing gestures, and ‘PAB’ was
still found in 23.3%, which was significantly above expectation.

– BoH Orientation
With regard to BoH orientation, the most frequently occurring orientation was
away from the speaker’s body. In 59.8% of the indexing gestures, the orientation
‘BAB’ was at least a component of diagonal or mixed orientations. Moreover,
sideways BoH orientations (‘BTL’ and ‘BTR’) were observed in 36.1% of
indexing gestures, which was more frequent than expected.

– Movement Features
The majority of indexing gestures had in common that their strokes were
predominantly static, i.e., hands are just brought to a particular position in the
preparation phase of the gesture and they were not moved until the retraction
phase started. At total of 193 indexing gestures (88.1%) had static strokes.

So far, the form features of abstract indexing gestures have been analyzed separately.
Next, it will be investigated if there are any technique-specific patterns of co-occurence.
Actually, handshape use divides the set of indexing gestures into two classes: flat hand
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indexing, realized with the flat handshape ASL-B, and pointed indexing, realized with
the pointing handshape ASL-G.

These two sub-types differed from each other particularly with regard to palm
orientation (χ2=12.21, df =2, p=.002): as visualized in Figure 4.4, pointed indexing
gestures were characterized by a relatively large proportion of gestures with down-
wards palm orientation: in 48.5% of the gestures, the orientation ‘PDN’ was at least
one component of diagonal or mixed orientations (observed: 32, expected: 23.1, *). In
contrast, the downwards-oriented palm was observed less often than expected in flat
hand indexing gestures (observed: 16, expected: 24.9, *).

Figure 4.4: Flat hand indexing and pointed indexing differ with regard to the palm orientation category
‘PDN’.

See Figure 4.5 for examples of flat hand indexing and pointed indexing. Figure
4.5(a) is an example of flat hand indexing: a right-handed indexing gesture with
handshape ASL-B in which palm is oriented leftwards and the BoH away from the
speaker’s body. This gesture is referring to the townhall’s left staircase4. A typical
example of pointed indexing is given in Figure 4.5(b): a right-handed indexing ges-
ture with handshape ASL-G. As in most gestures of this type, the palm is oriented
downwards and the BoH directed away and to the right, indicating the location of the
‘right church’ the speaker is referring to.

Placing Gestures

A total of 127 of the gestures under consideration were placing gestures used to
place or set down objects in gesture space. Regarding the question of how abstract
indexing gestures appear and how their form differs from other gestures in the corpus,
a summary of gesture form features occurring in these gestures is given in Table 4.12.
The first step in the analysis of placing gestures was an examination of form features
with regard to technique-specific characteristics and modulating factors. The analysis

4. Here the speaker mixed up left and right: although verbally referring to the left staircase, he is
pointing to the right.
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(a) Right-handed index-
ing gesture with hand-
shape ASL-B accompa-
nying “fire scape to the
left”.

(b) Right-handed index-
ing gesture with hand-
shape ASL-G for “the
right church”.

Figure 4.5: Examples of gestures from the two classes of indexing gestures: flat hand indexing and
pointed indexing.

of inter-individual differences was based on a comparison of three speakers in whose
data the number of placing gestures was greater or equal to ten (P5, P9, P11, P19).

– Handedness
With regard to handedness, placing gestures did not differ significantly from
other gestures. There were two significantly positive correlations of handedness
with referent features, namely with the referent’s main axis (χ2=23.26, df =6,
p=.001) and its position (χ2=22.39, df =4, p<.001). The former was due to
the fact that objects with the x-axis (width) as their main axis were more
often than expected referred to with two-handed and right-handed placing
gestures, whereas objects with the y-axis (height) and z-axis (depth) as their
main axis were more often than expected referred to with left-handed gestures.
The statistically significant relationship between handedness and position was
based on the fact that two-handed gestures tend to be used pre-dominantly for
objects located in the middle, left-handed for objects at the left hand side, and
right-handed gestures for objects at the right hand side.
In addition, handedness was found to be subject to inter-individual differences
(χ2=35.17, df =6, p<.001) due to the fact that two speakers (P11, P19) preferred
two-handed gestures, another speaker (P5) preferred left-handed gestures, and
speaker P9 had an increased number of right-handed placing gestures.

– Handshape
Concerning handshape use, ASL-B and ASL-C were the most often used
handshapes. Whereas the number of gestures with ASL-B was basically in line
with the expected number, the number of gestures with ASL-C was significantly
increased as compared to the expected number. Similarly, the observed number
of gestures with ASL-bent-5 was significantly greater than expected, although
these gestures make up only 15.0% of all placing gestures.

88



Handshape use was also subject to inter-individual differences (χ2=18.11,
df =6, p<.006). In fact, the three speakers under consideration had different
preferences each: speaker P9 had an increased number of handshape ASL-B,
speakers P9 and P11 produced more gestures with handshape ASL-bent-5 than
expected, and for speaker P19, the number of ASL-C handshapes was greater.

– Palm orientation
Placing gestures showed a relatively high proportion of sideways palm orien-
tations (54.3%). The second most frequent palm orientation component was
‘PAB’ (29.1%). For both categories, the observed number of placing gestures
with this palm orientation component was significantly increased relative to
expectations.

– BoH Orientation
BoH orientations in placing gestures were characterized by a high proportion
of ‘BAB’ (44.3%), whereby the observed frequency was significantly increased
in comparison with the expected frequency. Furthermore, there was a large
proportion of gestures with upwards oriented BoH (‘BUP’, 30.7%) and sideways
oriented palm (‘BTS’, 29.9%). Both proportions were significantly higher than
expected.

– Movement Features
Similar to abstract indexing gestures, almost all placing gestures had in common
that their strokes were not dynamic, i.e., hands were brought to a particular
position in the preparation phase of the gesture and were not moved until the
retraction phase started.

(a) (b)

Figure 4.6: Comparison of flat hand placing, grasped placing, and c-handed placing gestures with
regard to handedness (a) and palm orientation (b).

Were there any technique-specific patterns of how form features co-occur in
placing gestures? Generally, placing gestures sub-divided into gestures in which the
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Table 4.12: Gesture form feature analysis in placing gestures (N=127).

Variable Value Relative Frequency Number of observed (ex-
pected) occurrences

Handedness LH 34.6% 44 (35.8)
RH 43.3% 55 (59.7)
2H 22.0% 28 (31.5)

Handshape ASL-B 26.0% 33 (34.3)
ASL-G 1.6% 2 (23.7)***
ASL-C 33.9% 43 (19.9)***
ASL-O 0.0% 0 (1.5)
ASL-bent-5 17.3% 22 (9.9)***

Palm Orientation PAB 29.1% 37 (20.6)***
PTB 6.3% 8 (7.3)
PTS 54.3% 69 (46.7)***
PUP 6.3% 8 (6.2)
PDN 24.4% 31 (34.0)

BoH Orientation BAB 44.3% 67 (57.5)
BTB 1.6% 2 (0.4)
BTS 29.9% 38 (27.1)*
BUP 30.7% 39 (27.8)*
BDN 1.6% 2 (2.5)

Wrist Movement no movement 62.8% 107 (73.7)***

handshape ASL-B was used (flat hand placing), gestures with handshape ASL-C
(c-handed placing) and gestures with the grasping handshape ASL-bent-5 (grasped
placing). These three types were characterized by differences in the co-occurrence
of handshape use and palm orientation (see Figure 4.6) as well as handedness (see
Figure 4.6(a)).

Flat hand placing gestures with handshape ASL-B were typically realized with
both hands (observed: 10, expected: 7.1). In Figure 4.7(a), a typical example is given
for this type of two-handed placing gesture, with the right palm oriented to the left
and the BoH oriented away from the body.

Grasped placing gestures were also more often than expected realized with both
hands (observed: 8, expected: 4.7) and by a downwards-oriented palm (observed: 9,
expected: 6.1). In Figure 4.7(c), an example of a typical two-handed grasped placing
gesture is given.

C-handed placing gestures were characterized by the use of handshape ASL-C.
These gestures were, in contrast to the other types, often performed with one hand,
i.e., the proportion of two-handed gestures was rather low (observed: 3, expected: 9.2,
*). Additionally, these were characterized by a relatively large proportion of palm ori-
entations away from the speaker’s body (observed: 21, expected: 14, *). Furthermore,
there was a trend, although not significant, showing an increased proportion of the
BoH orientation ‘BUP’ in c-handed placing gestures (observed: 21, expected: 16.2)
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See Figure 4.7(b) for an example of two one-handed placing gestures with handshape
ASL-C in which the palm of both hands is oriented away/sideways and the BoH
upwards.

(a) Typical two-handed
placing gesture with
handshape ASL-B
accompanying “there’s a
church to the left”.

(b) Two one-handed
placing gesture with
handshape ASL-C for for
the two churches.

(c) Two-handed placing
gestures with handshape
ASL-bent-5 for the two
churches.

Figure 4.7: Examples of placing gestures.

Shaping Gestures A total of 304 gestures in the data were shaping gestures. Their
form features will be analyzed in the following with regard to technique-specific
characteristics and modulating factors. The analysis of inter-individual differences
was based on a comparison of six speakers in whose data the number of shaping
gestures was greater or equal to 15 (P5, P6, P8, P9, P11, P15).

– Handedness Shaping gestures were characterized by a high number of two-
handed gestures (42.1%), which was significantly above expectations. The
observed number of one-handed, and in particular left-handed, gestures was
decreased as compared to expectations. Handedness was found to be subject
to significant inter-individual differences (χ2=45.81, df =10, p<.001) due to
the fact that one speaker (P08) preferred two-handed shaping gestures, two
other speakers (P5, P15) preferred left-handed gestures, and another, speaker
P9, had an increased number of right-handed shaping gestures.

– Handshape
According to handshape use, 41.1% of shaping gestures were realized with
the flat handshape ASL-B. This observed frequency of appearance of these
gestures was significantly above their expected number of occurrences. Further,
the handshape ASL-C was employed in 19.1% (more or less in line with the
expected proportion), and ASL-bent-5 was used in 12.8% which was signifi-
cantly above the expected proportion. Examples for shaping gestures with the
two most frequent handshapes are given in Figure 4.8.
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Table 4.13: Gesture form feature analysis in shaping gestures (N=304).

Variable Value Relative Frequency Number of observed (ex-
pected) occurrences

Handedness LH 17.1% 52 (85.6)***
RH 40.8% 124 (142.9)
2H 42.1% 128 (75.5)***

Handshape ASL-B 41.1% 125 (82.2)***
ASL-G 6.3% 19 (56.8)***
ASL-C 19.1% 58 (47.5)
ASL-O 0.7% 2 (3.6)
ASL-bent-5 12.8% 39 (23.8)**

Palm Orientation PAB 17.9% 36 (49.2)
PTB 3.0% 9 (17.3)*
PTS 34.9% 106 (111.9)
PUP 3.9% 12 (14.8)
PDN 23.0% 70 (81.4)
Dynamic 34.2% 104 (50.1)***

Finger Orientation BAB 42.8% 130 (137.6)
BTB 0.3% 1 (0.8)
BTS 14.1% 43 (64.9)*
BUP 18.8% 57 (66.6)
BDN 1.3% 4 (5.9)
Dynamic 32.9% 100 (57.9)***

Wrist Movement curved 29.6% 90 (44.7)***
linear 41.6% 140 (72.2)***
linear+curved 3.9% 12 (8.4)
no movement 19.7% 60 (176.5)***

Handshape choice was found to be positively correlated with the referent’s
main axis (χ2=20.75, df =6, p=.002): objects without a main axis were more
often than expected depicted by gestures with handshape ASL-bent-5, whereas
for referent objects with a main axis (either y-axis or z-axis), the number of
gestures with handshape ASL-C was greater than expectation.
Handshape use in shaping gestures was also subject to inter-individual differ-
ences (χ2=62.23, df =10, p<.001). This was due to the fact that some speakers
had strong preferences for particular handshapes. For instance, P5 preferred
ASL-C (observed: 8, expected: 3.2, **), or P11 preferred ASL-bent-5 (observed:
29, expected: 9.0, ***).

– Palm Orientation
Palm orientation in shaping gestures was characterized by a large proportion of
dynamics. In 34.2% of the gestures, the palm orientation was modified during
the gesture stroke, which was significantly above the expected number of occur-
rences. In gestures with a static palm orientation, sideways palm orientations
were frequently used (34.9%), as well as downwards-oriented palms (23.0%).
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– BoH Orientation
BoH orientations were also characterized by a high degree of dynamism. With
32.9% of shaping gestures, the proportion of strokes with changing BoH orien-
tation was significantly above the expected number. Other frequently occurring
BoH orientation components were ‘BAB’, with 42.8% and ‘BUP’, with 18.8%
of the shaping gestures.

– Wrist Movement
Additonally, shaping gestures were characterized by a relatively high degree
of dynamics in wrist location. Only in 19.7% of the gestures were executed
without wrist movement. Apparently, the referent shape and the movement
trajectory of shaping gestures were related to each other. The relationship of
referent shape and the movement features of shaping gestures became apparent
in significantly positive correlation between the referent’s shape property and
the type of movement (χ2=31.96, df =6, p<.001): roundish objects (shape
properties ‘arc-shaped’, ‘round’, ‘spherical’, ‘cup’) were almost exclusively
depicted by curved movements (observed: 24, expected: 14.2, **) and straight
(‘cubic’, ‘longish’, ‘squared’, ‘flat’) referents by linear movements (observed:
58, expected: 39.6, **). Figure 4.8 gives two examples illustrating how this
representation technique was used to depict particular shapes.

(a) Two-handed shaping
gesture with handshape
ASL-B and curved tra-
jectory accompanying “a
dome-shaped roof”.

(b) Two shaping ges-
tures with handshape
ASL-C and linear tra-
jectory referring to “two
towers”.

Figure 4.8: Examples of shaping gestures.

Drawing Gestures A total 124 gestures in the data were drawing gestures. Drawing
gestures were found to be subject to relatively strong technique-specific patterns as
summarized in Table 4.15 and described in the following. Inter-individual differences
were analyzed on the basis of data from four speakers (P1, P11, P15, P20).

– Handedness
With regard to handedness, drawing gestures were mostly performed with one
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Table 4.14: Gesture form feature analysis in drawing gestures (N=124).

Variable Value Relative Frequency Number of observed (ex-
pected) occurrences

Handedness LH 23.8% 29 (34.3)
RH 63.9% 78 (57.4)**
2H 12.3% 15 (30.3)**

Handshape ASL-B 0.0% 0 (33.0)***
ASL-G 76.2% 93 (22.8)***
ASL-C 3.2% 5 (19.1)**
ASL-O 0.0% 0 (1.5)
ASL-bent-5 0.8% 1 (9.5)**

Palm Orientation PAB 4.8% 6 (19.8)**
PTB 8.2% 10 (7.0)
PTS 12.3% 15 (45.9)***
PUP 0.8% 1 (5.9)*
PDN 50.8% 64 (32.7)***
Dynamic 28.7% 35 (20.1)

Finger Orientation BAB 43.4% 53 (55.2)
BTB 0.0% 0 (0.3)
BTS 18.0% 22 (26.0)
BUP 7.4% 9 (26.7)***
BDN 3.3% 4 (2.4)
Dynamic 40.2% 49 (23.2)***

Wrist Movement curved 33.6% 41 (18.0)***
linear 30.3% 37 (29.0)
linear+curved 13.9% 17 (3.4)
no movement 22.1% 27 (70.8)***

hand only. The number of two-handed drawing gestures was significantly below
the expected proportion. The number of right-handed drawing gestures (63.9%)
was significantly larger than expected.
Handedness in drawing gestures was found to be subject to significant inter-
individual differences (χ2=52.35, df =6, p<.001): while P20 preferred left-
handed, and P1 preferred right-handed drawing gestures, there were more
two-handed drawing gestures observed for P11 and P15 than expected.

– Handshape
Drawing gestures were characterized by the prevalent use of the pointing hand-
shape ASL-G with an outstretched index finger (76.2%).

– Palm Orientation
The most frequently occurring palm orientation in drawing gestures was the
downwards orientation (50.8%). This observed number of ‘PDN’ occurrences
was significantly above the number to be expected. In another 16% of the
drawing gestures, the palm orientation contained the feature ‘away’, i.e., the
palm is oriented either ‘away/left’, ‘away/right’ or ‘away/down’. Other palm
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orientation categories were observed only rarely. 36.3% of the gestures had
dynamic palm orientations.

– BoH Orientation
BoH orientations were dynamic to a relatively large extent, too (40.2%). The
most frequent static category component was ‘BAB’ which occurred in 43.4%
of the drawing gestures.

– Movement Features
To trace the outline of an object, the gesture stroke typically contained a move-
ment of the wrist. Only in 22.1% of the gestures there was no wrist movement
(in these gestures, only the index finger was moved to trace something in the
air). The relationship of referent shape and the movement features of draw-
ing gestures became apparent in a significantly positive correlation between
the referent’s shape property and the type of movement (χ2=36.00, df =66,
p<.001): roundish objects (shape properties ‘arc-shaped’, ‘round’, ‘spherical’,
‘cup’) were almost exclusively depicted by curved movements (observed: 20,
expected: 13.2, *) and straight (‘cubic’, ‘longish’, ‘squared’, ‘flat’) referents
by linear movements (observed: 13, expected: 7.5, *). Figure 4.9 gives three
examples to illustrate how drawing gestures were used to depict particular
shapes.

(a) Curved right-handed
drawing gesture for the
copula roof of a church.

(b) Linear two-handed
gesture for a hedge.

(c) Two-handed gesture
for a church window
that combines curved
and linear movement
segments.

Figure 4.9: Examples of drawing gestures.

Posturing Gestures There was a total of 63 posturing gestures in the data. These
gestures will be analyzed with regard to their form features and modulating factors in
the following. Inter-individual differences were analyzed on the basis of two speakers’
(P5, P24) data.
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Table 4.15: Gesture form feature analysis in posturing gestures (N=63).

Variable Value Relative Frequency Number of observed (ex-
pected) occurrences

Handedness LH 31.9% 22 (19.1)
RH 36.2% 25 (32.4)
2H 31.9% 22 (17.1)

Handshape ASL-B 21.7% 15 (18.7)
ASL-G 13.0% 9 (12.9)
ASL-C 11.1% 8 (10.8)
ASL-O 4.3% 3 (0.8)*
ASL-bent-5 18.8% 13 (5.4)***

Palm Orientation PAB 18.8% 13 (11.2)
PTB 10.1% 7 (3.9)*
PTS 56.5% 39 (25.4)**
PUP 29.0% 20 (3.4)***
PDN 18.8% 13 (18.5)
Dynamic 0.0% 0 (11.4)***

Finger Orientation BAB 59.4% 41 (31.2)
BTB 0.0% 0 (0.2)
BTS 27.5% 19 (14.7)
BUP 36.2% 25 (15.1)*
BDN 2.9% 2 (1.3)
Dynamic 1.4% 1 (13.1)***

Wrist Movement no movement 89.9% 62 (40.1)***

– Handedness
Handedness in posturing gestures does not significantly from other gesture
types: approximately one third were two-handed gestures (36.2%); the others
were one-handed (32.4% right-handed, 19.4% left-handed).

– Handshape
The most frequently used handshape in posturing gestures was ASL-B (21.7%),
although this observed proportion was not significantly different from that in
the other representation techniques. The second most utilized handshape in
posturing gestures was ASL-bent-5 (18.8%).

– Palm Orientation
The most frequently observed palm orientation component was ‘PTS’ (56.5%),
which was significantly above the expected proportion as compared to other
representation techniques. The second most frequently observed category was
‘PUP’ (29.0%). Notably, the number of observed gestures with this palm orien-
tation component was significantly above the expected number (20 observed
cases instead of 3.1 expected cases).

– BoH Orientation
In general, BoH orientation in posturing gestures was static and not dynamic.
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59.4% of the posturing gestures, BoH was oriented away from the speaker’s
body. The second most often observed category was ‘BUP’ (36.2%), and in
36.5% of the posturing gestures the BoH orientation ‘BTS’ was used.

– Movement Features
The majority of posturing gestures was characterized by static strokes (89.9%).
The few dynamic strokes can be explained by the fact that iconic gestures are
sometimes combined with beats (cf. McNeill, 2005).

Figure 4.10 gives two examples to illustrate how posturing gestures were used to
depict particular shapes.

(a) Two-handed postur-
ing gesture with hand-
shape ASL-C depicting a
“round window”.

(b) Two posturing ges-
tures with handshape
ASL-G for “two towers”.

Figure 4.10: Examples of posturing gestures.

4.3 Summary and Discussion

Building a gesture generation model under consideration of iconicity, contextual
constraints, and intersubjective differences following the cyclic design methodology,
requires an adequate empirical basis. The SaGA corpus provides such a data collection
of 25 dyads engaged in a spatial communication task. The annotation comprises a
classification for gesture representation techniques, coding of gesture form features
and gestures’ referent objects, as well as a transcription of the spoken words and
annotation of contextual information.

The corpus consists of 4961 gesture instances. In the context of gesture research
the SaGA corpus is, to the author’s knowledge, by far the largest and most com-
prehensive collection of naturalistic, yet controlled, and systematically annotated
speech-gesture data currently available. This is due to the great effort required by
detailed, form-feature based gesture annotations need. Lacking the existence of sound
automatic annotation tools, most existing gesture corpora are either limited to gesture
segmentation and classification regarding isolated aspects of gesture use, or they are
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only of marginal size. The direction-giving corpus developed and employed by Kopp
et al. (2007), though it consists of ∼1000 gestures, manually annotated for gesture
form features, contains a variety of gestures referring to both actions (‘turn left’) and
landmarks, which reduces the amount of data within single categories of interest (e.g.,
the number of gestures in one particular representation techniques). That is, although
not the whole corpus was analyzed in detail in the scope of this thesis, the employed
subsets (e.g., 1087 gestures for the form feature analysis) provide still a substantial
and unique amount of detailed gesture data.

Nevertherless, the power of statistical methods was limited due to sample size:
when looking at interrelations of modulating factors, e.g., analyzing the relation
of referent shape and gesture form features like palm or BoH orientation given a
particular representation technique (there was, e.g., only a total of 63 posturing
gestures). Statistical analyses could accordingly only be applied when the sample size
requirements of statistical tests were met. That is, although the statistical analysis
revealed novel and detailed insights into gesture production, a (much) larger amount
of data would be necessary for a complete empirical investigation of gesture use,
modulating factors, inter-individual differences and their interrelations. With regard to
computational modeling of gesture production, therefore, the model to be developed
has to account for the sparse data situation.

The first analysis addressed gesture frequency. The mean rate of 15.8 gestures
per minute is in agreement with gesture frequencies as reported in the literature (see
Bavelas et al. (2008) for an overview). That is, the gesture rate in the SaGA study of
direction giving and object descriptions from a VR stimulus was in line with gesture
frequencies reported in studies in which different stimuli were described.

Findings from the analysis of gesture use in general can be summerized in three
points. First, individuals were found to differ obviously in how much they gestured,
ranging from ∼2 gestures per minute up to ∼30 gestures per minute. Second, whether
a gesture is produced or not was found to be subject to a number of variables: referent-
features, variables characterizing the linguistic and discourse context as well as
previous gesturing behavior. And third, some of the correlations were found among
individuals, whereas for others there was considerable variance among individuals.

The second analysis was applied to the use of gestural representation techniques
and revealed similar results. First, speakers differed considerably in their prefer-
ences for particular techniques of representation. Second, the use of gestural repre-
sentation techniques was found to be subject to characteristics of the referent, the
linguistics/discourse-contextual situation, and previous gesture use. And third, the
found correlations were not always present in the data of all speakers under considera-
tion.

Two major implications can be drawn from these results for the design of a
gesture generation model. On the one hand, the model has to be able to deal with

98



multiple infuencing factors. On the other hand, it has to be able to account for inter-
individual differences and that on two levels: at the surface of gestural behavior and
in how strong particular influencing relations are.

In the third analysis, representation techniques were analyzed for their form features.
This investigation revealed novel and corpus-based insights into the structure of
gesture techniques which can be summarized in three points: First, it turned out, that
techniques were characterized by different technique-specific patterns. For instance,
drawing gestures—in contrast to gestures of other representation techniques—were
found to be distinctive as they were performed predominantly with one hand only,
with the pointing handshape ASL-G and with downwards oriented palms. Second,
techniques were further characterized by being sensitive to referent characteristics.
These features, notably, varied from technique to technique. In indexing gestures, for
instance, handedness turned out to be sensitive to the position of the gesture’s referent,
while other form features had technique-specific characteristics. In shaping or drawing
gestures, by contrast, shape features of the referent were found to be decisive for the
trajectory of wrist movement. Third, inter-individual differences were also found with
regard to gesture form features, namely handedness and handshape choice.

That is, each technique was found to be characterized by particular conventional
aspects as well as iconic aspects. In addition, the choice of handedness and handshape
was shaped by the individual preferences of the speaker. The conclusion to be made
regarding computational simulation, therefore, is that the generation model should
be organized in a feature-based way to cover both conventional patterns as well as
sensitivity to referent features and individuality of single gesture form features.
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CHAPTER 5
A Model of Gesture Generation

The previous chapter provided an empirical view on gesture use in the application
scenario of this thesis. This chapter will now sketch a generation model of gestural
behavior that makes use of the empirical insights as well as the reviews of literature
and related work in chapters 2 and 3. Based on results obtained from the corpus
analysis requirements for a gesture generation model will be inferred in Section 5.1
and an adequate method identified (Section 5.3.3). Section 5.4 will describe in detail
how the formalism can be applied to tackle the problem of iconic gesture generation
in the proposed Generation Network for Iconic Gestures (GNetIc).

Details of the generation model have been published in Bergmann and Kopp
(2008, 2009a,b).

5.1 Requirements for a Computational Model

The empirical corpus analysis in Chapter 4 as well as the review of literature and re-
lated work in Chapters 2 and 3 revealed a number of insights which entail requirements
for a gesture generation account:

1. One of the two main motivations to build a model of gesture generation is to
gain insights into the gesture production process in humans. A computational
model should, therefore, not only be able to achieve reasonable simulation
results. It should also do this in an understandable and interpretable way.

2. Inter-individual differences have been found in the data on two levels: first,
on the level of particular gesture features (either form features, representation
techniques or gesture rate), and second, on the level of interrelations between
gesture features and modulating factors. This fact calls for building speaker
profiles in a data-based fashion which do not only cover the surface level of
gestural behavior, but also the underlying contextual dependencies.
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3. The approach has to be able to deal with sparse data. In terms of gesture
research, the SaGA corpus is a rich database, for most machine learning tech-
niques the amount of data is marginal. This is especially true for gesture form
features of the particular representation techniques for which only 100–200 data
cases are available. In combination with the previous point, the inter-individual
differences, the number of data cases further decreases if one aims to account
for speaker-specific patterns. As representation techniques are characterized by
particular conventional aspects, a rule-based method lends itself to model the
found patterns and to evaluate the generalizability of those characteristics.

4. Each representation technique is characterized by particular conventional as-
pects. The set of features affected by conventionality varies from technique
to technique. In indexing, for instance, only the position of the referent is a
variant feature, whereas other gesture form features like handshape or palm
orientation are invariant technique-specific features. Generating all gestures
under consideration adequately, therefore, calls for a feature-based approach
to gesture generation.

5. Literature and corpus analytical results are in line regarding the fact that ges-
ture use is subject to multiple factors such as the discourse context, linguistic
factors, referent features, and previous gesturing behavior. A computational
model, therefore, should be able to take these variables into account which
necessitates to have access to the particular sources of information. In addition
to the communicative goal on whose basis a particular gesture is to be planned,
a discourse record has to be available providing information about what has
been (successfully) communicated so far. The linguistic factor of thematization,
further, demands that (an analysis of) concomitant speech is accessible. Referent
characteristics in terms of complexity, symmetry, main axis or shape properties
have to be available which necessitates either a feature-based representation of
imagistic content or an analysis of imagistic models for these particular features.
Finally, the previous gestures of the speaker and their detailed specifications
have to be available in terms of a ‘gesture history’.
It is likely that the above-mentioned set of factors is incomplete. Research
literature, rather, suggests to consider further parameters, including: the ad-
dressee in terms of recipient design, her/his gesturing behavior, characteristics
of the physical environment etc. A computational account, thus, has to be easily
extensible to be able to take further modulating factors into account at a later
point in time.

Note that, requirements (3) and (4) seem to be conflicting—data-based modeling
to account for inter-individual differences and rule-based modeling to deal with the
fact of sparse data. This discrepancy, by the way, has already become obvious in the
review of related work (Section 3.2), where common patterns of gesture use were
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found to be throughout modeled in a rule-based way, whereas individualization was
realized either in a data-based fashion or by parameterization of pre-defined gestures.
This was explained by the fact that, on the one hand, fine-grained annotated corpora of
gesture use are not available in a size that is sufficient to adequately apply data-based
techniques, while on the other hand, inter-individual differences are hardly investigated
in a rule-based way. As a comprehensive account of gesture production, nevertheless,
has to account for both, inter-individual differences and common patterns, only a
hybrid approach would be able to meet both requirements.

5.2 Identifying an Adequate Formalism

Bayesian Decision Networks (BDNs) are such a hybrid method. They belong to the
class of graphical models and provide a powerful modeling approach which is due to
the fact that both probabilistic inference problems as well as deterministic decision
making problems can be modeled and solved.

An integral part of BDNs are Bayesian networks realizing probabilistic modeling.
They have been employed for modeling knowledge in a large variety of domains
such as medicine, bioinformatics, information retrieval, and also in modeling human
behavior. Ball and Breese (2000) employed a Bayesian network to relate emotion and
personality to a variety of observable verbal and nonverbal behaviors, among others
gestures1. Structure and parameters for the relation of personality and emotion with
gesture use were defined on the basis of general trends reported in the literature. This
way, gesture parameters like speed, size and repetitions were used to reflect a desired
psychological state.

Pelachaud and Poggi (2002) employed Bayesian networks to link communicative
functions with facial signals such as eyebrows, head direction, mouth shape, head
movements, and gaze. Structure and parameters of the network were modeled based
on results from empirical studies. That is, similar to Ball & Breese’s modeling method,
the network was empirically informed, but not directly learned from empirical data.
The belief network was successfully employed to manage possible conflicts between
different modalities.

More recently, in the CSG system (Section 3.2.2), Bayesian networks were
employed to simulate culture-specific non-verbal behavior with virtual agents (Rehm
et al., 2008). Based on the analysis of a cross-cultural corpus, Bayesian networks
were created to account for culture-specific aspects in body posture and gestural
expressivity. Hereby, particular parameters such as gesture speed, gesture size, power
etc. were put in relation to a speaker’s culture. The model was used bi-directionally,
to infer the user’s cultural background from his gestural behavior, and to determine a
virtual agent’s nonverbal behavior.

1. Gestures were defined in a general way as body movements in their work.
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The severalfold usage of Bayesian networks in the context of behavior modeling
emphasizes the appropriateness of this method. Bayesian networks are advantageous
for the following reasons:

– Accounting for requirement (1), learning the structure of Bayesian networks
from a sample of data provides an appropriate method for behavior modeling
in an understandable manner. Modeling results in terms of a Bayesian network
structure are easily interpretable and intuitively meaningful since they directly
represent connections between causes and effects.

– Bayesian networks are able to work with relatively sparse data. It could be
shown that, in principle, Bayesian networks can have good prediction accuracy
even with rather small sample sizes (Kontkanen et al., 1997). In addition, it is
possible to improve prediction accuracy: structure learning algorithms can be
chosen that are particularly suited for a limited amount of training data, e.g.,
the NPC algorithm. In addition, the search space of possible network structures
can be reduced by bringing in a-priori information. It is, therefore, possible to
employ a data-based method (requested by requirement (2)), even given the
limited sample size of the SaGA corpus.

– Within the framework of Bayesian networks it is a simple matter to introduce
new sources of information into the model (requirement (5)). It is likely that
the currently available set of input variables provided by the SaGA corpus
is not complete at all. Rather, further influencing factors like environmental
constraints or addressee design, as discussed in Section 2.2, should also be
integrated to provide a more complete picture of how gesture use is modulated
by diverse factors. A Bayesian network can be easily be extended by introducing
further variables, either annotated in the corpus, or inferred from that data.

– Bayesian networks provide several alternatives to deal with inter-individual
differences. It is possible to learn networks from individual data of one particular
speaker, to learn network structures from the combined data of several speakers,
and also to apply adaptation algorithms which allow to adapt a general network
structure with respect to individual patterns (Wittig, 2002).

In addition, Bayesian networks provide further advantages that do not directly
follow from the set of requirements, but are nevertheless advantages in the context of
gesture generation:

– Bayesian networks are able to deal with uncertainty, which is necessary to model
non-deterministic connections between behavior and modulating factors. For
instance, although a speaker prefers drawing gestures in particular contexts, she
might at some points nevertheless use other techniques. As Bayesian networks
are able to make predictions about the relative likelihood of different outcomes,
they naturally capture uncertainty in human behavior.
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– Bayesian networks are able to deal with uncertainty which is necessary to model
non-deterministic connections between behavior and modulating factors. For
instance, although a speaker prefers drawing gestures in particular contexts, she
might at some points nevertheless use other techniques. As Bayesian networks
are able to make predictions about the relative likelihood of different outcomes,
they naturally capture uncertainty in human behavior. Moreover, Bayesian
networks are able to deal with incomplete data. If not all input variables can be
provided with evidence, the network is still able make predictions based on the
given—incomplete—data. This feature becomes particularly important when
the generation approach is integrated into a bi-directional dialogue system in
which the user’s gesture data would be analyzed on the fly to determine possible
communicative reactions. Given the problems with current gesture recognition
systems, a method which is able to deal with incomplete data is preferable.

– The same network can be used to calculate the likely consequences of causal
node states (causal inference), as well as to diagnose the likely causes of a
collection of dependent node values (diagnostic inference). In other words,
either the gestural behavior of an agent can be generated, e.g., by propagating
evidence about an object’s properties. Or, given a particular gesture, the features
of a referent object might be inferred from a user’s gesture. This is of relevance
for possible application of the model in a dialogue system where understanding
gestures is also important.

Nevertheless, probabilistic approaches are at their limits for their application in the
current gesture generation context. As stated in Section 5.1, particularly gesture form
features such as hand orientation or movement features are constrained by several
factors: representation technique-specific patterns come together with referent char-
acteristics, inter-individual differences and other contextual constraints, respectively.
This is why it is reasonable to apply an extension of Bayesian networks: BDNs are
able to deal with rule-based decision making as requested by requirement (3). The
additional rule-based part of the model also allows to employ the generally feature-
based modeling method—requirement (4)—with representation technique specific
patterns to ensure that variant gesture features are combined in a sensible way.

The formalism has proven itself in the simulation of human behavior; e.g., Yu and
Terzopoulos (2007) used decision networks to simulate social interactions between
pedestrians in urban settings.

Are there alternatives to BDNs? The application of classical machine learning
techniques like artificial neural networks, inductive logical programming, or case-
based reasoning are problematic, in particular, due to the sparse data problem. Other
disadvantages of those approaches, in contrast to BDNs, are due to the lack of inter-
pretability (artificial neural networks), or the possibility to combine the data-driven
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method with a priori knowledge or rule-based models as it is neccessary here (cf.
Wittig, 2002).

There is, however, one method that is closely related to BDNs: decision trees
(Quinlan, 1986) should be considered as an alternative. Decision trees are a clas-
sical way of representing decision problems. They explicitly represent all possible
sequences of decisions and observations in the model. Just as in BDNs there are
three types of nodes: chance nodes, decision nodes and utility nodes. Trees can be
specified by experts or learned from data employing algorithms like CHAID, CHART,
ID3, or C4.5. The main drawback of decision trees is that they grow exponentially
with the number of variables. That is, large trees are required even to represent quite
simple decision problems (cf. Jensen and Nielsen, 2007). BDNs provide a much more
compact way to represent decision problems. Another disadvantage in comparison
to BDNs is related to the problem of missing data: given a complete decision tree,
decision making is impeded when some information is missing.

To conclude, BDNs are advantagous for a number of reasons given the data
situation and further requirements like interpretability or the integration of rule-based
modelling, as defined in Section 5.1. Accordingly, BDNs are chosen as a highly
promising modelling method for the task of gesture generation.

5.3 Bayesian Decision Networks

In the following the concept of Bayesian Networks and their extension in terms of
Bayesian Decision Networks will be introduced.

5.3.1 Bayesian Networks

Bayesian Networks are directed acyclic graphs in which the nodes represent vari-
ables2, the edges signify the existence of direct causal dependencies between the
linked variables, and the strengths of these dependencies are quantified by conditional
probabilities (Pearl, 1985). If the variables are discrete, this can be represented as a
table3. A BN, therefore, is a graphical representation of the probabilistic relationships
among a group of variables. The graphical structure of a Bayesian network model
describes, in an understandable visual manner, which variables have direct influence
on other variables under consideration.

Formally, a Bayesian network consists of the following (Jensen and Nielsen,
2007, p. 33f.):

– A set of variables and a set of directed edges between the variables; each
variable has a finite set of mutually exclusive states.

2. The terms ‘variable’ and ‘node’ are used interchangeably.
3. In this work only discrete variables will be considered.
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– The variables together with the directed edges form an acyclic directed graph.

– To each variable A with parents B1, ...Bn a conditional probability table
P(A|B1, ...Bn) is attached

For an example of a simple Bayesian network with discrete nodes see Figure 5.1
representing the situation that a variable C is depending on variable A, and variable D
being dependent on two variables, namely A and B. Figure 5.1(a) displays the structure
of these interrelations, whereas Figure 5.1(b) displays a full Bayesian network with
marginal probability distributions for the nodes A and B which do not have any
parents, and CPTs for nodes C and D which quantify the dependencies between the
nodes.

(a) The structure of a Bayesian
network: a directed acyclic graphs
in which the nodes represent vari-
ables and the arcs signify the ex-
istence of direct causal dependen-
cies between the linked variables.

(b) A Bayesian network in which the
strengths of dependencies are quanti-
fied by marginal/conditional probabilities.

Figure 5.1: Bayesian network examples.

Inference The basis for the causal and inferential probabilistic modeling in Bayesian
networks is Bayes theorem which provides a mathematical representation of how the
conditional probability of event A given B is related to the converse conditional
probability of B given A. In the case of discrete probability distributions of data,
Bayes’ theorem relates the conditional and marginal probabilities of events A and B,
provided that the probability of B does not equal zero:

P(A|B) =
P(B|A)P(A)

P(B)
(5.1)
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– P(A) is the prior probability of A. It is ‘prior’ in the sense that it does not take
into account any information about B; however, the event B need not occur after
event A.

– P(A|B) is the conditional probability of A given B.

– P(B|A) is the conditional probability of B given A.

– P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

5.3.2 Building Bayesian Networks

Following the two-part design of Bayesian networks, learning Bayesian networks from
a sample of data cases comprises two tasks: first, identifying an adequate structure
of the DAG (structure learning), and second, estimating a set of corresponding
parameters (parameter estimation).

Structure Learning

Specifying the structure of a network means to determine, for every possible edge
in the network, whether to include edge in the final network and which direction
to orient the edge. Even for a relatively small number of variables, however, struc-
ture specification is difficult and computationally non-trivial due to the fact that the
number of possible network structures is super-exponential in the number of nodes.
An exhaustive search is therefore not possible. That is, existing structure learning
algorithms either solve a restricted problem (e.g., finding the best structure given a
partial ordering of the variables) or employ search heuristics with either local or global
search algorithms.

A major problem with which structure learning may be afflicted is the problem of
sparse data. This may be due to the fact that the collection of adequate training data is
expensive and time-consuming as is certainly the case for data of gesture use in context.
This problem is even intensified when Bayesian networks are aimed to be employed
to capture inter-individual differences, which obviously reduces the number of data
cases from which a structure is learned. To deal with this problem, it is reasonable
to support structure learning by bringing in a-priori knowledge. Jameson (2003)
therefore differentiates between data-based and theory-based models. Accordingly,
an integration of a-priori knowledge and machine learning techniques combines
advantages of both alternatives. It is for instance possible that an expert provides
the whole structure, or that an expert defines a partial structure which is used as the
initial stage of the search in the space of all possible structures. Another sort of bias is
providing expert information in order to reduce the search space. This can be done for
the order of variables, stating that a variable can only be the parent of its predecessor,
or, in the order, or, by making constraints on the direction of the edges. Notably, some
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learning algorithms explicitly require bringing in some kind of structural background
information.

There are two very different approaches to learn the structures of Bayesian
networks from given data: score-based learning and constraint-based learning. Both
classes of structure learning algorithms will be introduced in the following with
respect to their basic concepts and prevalently applied methods and algorithms. For a
more profound presentation of algorithms see for instance Fast (2009).

Score-based Structure Learning The idea in score-based approaches is to define a
global measure (score) which evaluates a given Bayesian network model as a function
of the data. The problem is solved by searching in the space of possible Bayesian
network models trying to find the network with optimal score. Concerning the scoring
function, there are two popular choices. The first one, Bayesian score, measures the
quality of a Bayesian network in terms of its posterior probability given the database
(Cooper and Herskovits, 1992). It takes into account a prior probability and the
marginal likelihood. The second one, the Bayesian Information Criterion (BIC), is
a likelihood criterion which takes into account the estimated model parameters and
a number of data cases (Schwarz, 1978). The BIC method has the advantage of not
requiring a prior probability.

Even for a relatively small number of variables, however, the estimation of a
DAG from given data is difficult and computationally non-trivial due to the super-
exponential growth in the number of possible DAGs for each added node. This is why
search heuristics are used with either local or global search algorithms.

The K2 algorithm is a local, greedy search algorithm which is appropriate if the
order of nodes is given (Cooper and Herskovits, 1992). Initially each node has no
parents. The algorithm then adds incrementally that parent whose addition increases
the score of the resulting structure most. When the addition of no single parent can
increase the score, adding parents to the node is stopped. Note that, the algorithm
requires a-priori knowledge in terms of a total order among variables that is used for
reducing the search space of DAGs.

A prominent global search method to find adequate network structures is the
Markov Chain Monte Carlo (MCMC) algorithm called Metropolis-Hastings (Madi-
gan and York, 1995). The basic idea is to construct a Markov Chain whose state space
is a set of DAGs. The idea is to sample from this chain for “long enough” (burn-in
time) to ensure it has converged to its stationary distribution. Notably, the algorithm is
non-deterministic; the chain can be run from multiple starting points with different
values for the burn-in time whereby convergence is an open problem.

Constraint-based Structure Learning Constraint-based algorithms estimate from
the data whether certain conditional independencies between the variables hold. The
conditional independence constraints are propagated through the graph and the net-
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works that are inconsistent with them are eliminated from further consideration. A
sound strategy for performing conditional independence tests ultimately retains only
the statistically equivalent networks consistent with the tests.

Constraint-based algorithms operate in two independent phases. The first phase,
called constraint identification, uses a series of conditional hypothesis tests to identify
an undirected skeleton, indicating the location, but not orientation of edges appearing
in the final model. The second phase, called edge orientation, merges the learned
independence constraints into a fully directed Bayesian network model.

Constraint-based skeleton algorithms employ conditional independence tests
to determine which links to include in the skeleton. Classical hypothesis tests for
categorical data typically utilize either the χ2 or G2 statistics. Both kinds of statistical
independence tests are computed from a contingency table containing counts of
variable values occurring in the data. The null hypothesis assumes the variables
under consideration are independent. The alternative hypothesis is accepted when the
probability of the observed statistic under the null hypothesis is below a specified
significance threshold. Typically three levels of significance are utilized, the p<0.05
level, the p<0.01 level, and the p<0.001 level.

Given a particular independence test, each constraint identification algorithm
applies the tests in a particular order. The predominant type of skeleton heuristics are
local algorithms that consider each test independently of other decisions, whereby Fast
Adjacency Search (FAS) algorithm is the most widely used ordering algorithm (Spirtes
et al., 2000). The FAS algorithm operates in a breadth-first manner considering all
pairwise tests followed by all tests conditioned on a single variable and so on until
no more tests can be run. Alternatively, neighborhood models are another type of
ordering heuristic that considers intermediate path information when determining
whether to add an edge between the two variables under consideration. If a possible
conditioning variable does not lie on a path between the two variables being tested
then it should not be used to prove conditional independence based on the definition
of d-separation in graphical models.

One of the most popular constraint-based algorithms is the PC algorithm (Spirtes
and Glymour, 1991). It starts from a complete, undirected graph and recursively
deletes edges on the basis of conditional independence decisions. Statistical tests for
conditional independence are then performed for all pairs of variables using likelihood
test statistic G2 (Spirtes et al., 2000). An undirected link is added between each pair
of variables for which no conditional independencies were found. Colliders are then
identified, ensuring that no directed cycles occur. Next, directions are enforced for
those links whose direction can be derived from the conditional independencies found
and the colliders identified. One important thing to note about the PC algorithm is that,
in general, it will not be able to derive the direction of all the links from data, and thus
some links will be directed randomly. This means that the learned structure should be
inspected, and if any links seem counterintuitive (e.g., gesture features causing object
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properties, instead of the other way around), one might consider going back and insert
a constraint specifying the direction of the link. Correctness of the PC algorithm has
been proven under the assumption of infinite data sets (Madsen et al., 2005).

Another popular constraint-based method is the NPC algorithm (Steck and Tresp,
1999) which is particularly useful when structure learning is based on a limited data
set. The NPC algorithm is an extension of the PC algorithm which introduces the
notion of a neighborhood model, the Necessary Path Condition: if, at some point, a
conditional dependence is established, there must be a connecting path explaining this
dependency. The NPC condition is necessary for the existence of a perfect map of the
conditional dependence and independence statements derived by statistical tests. Thus,
in order for an independence statement to be valid, a number of links are required
to be present in the graph. Instead of randomly determining the directionality of the
links that cannot be determined automatically from the data, the NPC algorithm relies
on a-priori knowledge to determine the directionality of such links.

Score-based vs. constraint-based structure learning Both classes of algorithms
were designed with a particular purpose in mind. Search-and-score techniques are
generally very flexible and find high-likelihood structures. However, they do not
enforce conditional independence relationships and often do not accurately reproduce
the generating structure (Abellán et al., 2006; Teyssier and Koller, 2005). On the
contrary, by constraining the space with conditional independence relations, constraint-
based techniques are more efficient and more accuratee in recovering the structure
of the generating distribution, but often do not achieve comparable likelihoods to
search-and-score techniques (Tsamardinos et al., 2006).

In general, constraint-based algorithms show some advantages compared to score-
based algorithms. First, score-based approaches consider a global measure for the
entire network. Constraint-based methods, in contrast, remove all those edges from
a network for which a conditional independence statement can be derived from the
data. They do not take into account the structure of the network as a whole and can
therefore be considered as local. That is, since knowledge discovery is a primary
motivation of employing structure learning of Bayesian networks in the context of
this thesis, constraint-based methods are to be preferred (Steck and Tresp, 1999).
Second, constraint-based methods allow to vary the significance level which is used
by the conditional independence tests. This way, it is possible to judge the strength of
dependencies among variables. Third, constraint-based algorithms are better suited for
learning accurate structure of Bayesian networks than search-and-score algorithms,
which typically use a penalized likelihood score to choose model structures. Since
training data are limited, the structure of the true model often contains more parameters
than are supported by the data when optimizing for penalized likelihood. Optimizing
for constraint satisfaction makes it possible to find structures with a large number of
parameters, as the size of the model is not part of the model selection criterion (Fast,
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2009). Finally, algorithms based on constraints have been proven sound in the sample
limit (Spirtes et al., 2000).

Parameter Estimation

Parameter estimation is the second phase in learning Bayesian networks. A very
prominent and prevalent method for learning the parameters of the network structure
is the Expectation Maximization (EM) algorithm (Lauritzen, 1995). The algorithm
searches for a set of maximum likelihood hypothesis (i.e. parameters) by repeatedly
estimating values that are not present in the data. To do so, the EM algorithm is
given initial values for parameters, and then iterates between an Expectation step
and a Maximization step until successive parameter values are stable. During the
Expectation step, the algorithm calculates the unobserved values of the data by using
the current parameters. During the Maximization step, the algorithm re-calculates the
maximum likelihood parameters by using the data set completed with the expected
value.

Within the scope of this thesis, parameter learning is of lower importance in
contrast to structure learning. Also, in the literature it is widely accepted that although
having accurate parameters is important, they are completely useless if the structure is
of bad quality. Druzdzel et al. (2000), for instance, stated that the graphical structure
of a network is its most important part, as it reflects the independence and relevance
relationships between the variables concerned.

5.3.3 Extending Bayesian Networks

The formalism of Bayesian Decision Networks (BDNs)—also termed Influence Dia-
grams—was introduced by Howard and Matheson (2005) as a “new form of descrip-
tion [...] that is at once both a formal description of the problem that can be treated by
computers and a representation easily understood by people in all walks of life and
degrees of technical proficiency.” The power of this representation is further due to
the fact that it covers both deterministic as well as probabilistic cases.

A BDN is a directed acyclic graph which encodes three types of nodes:

– Chance nodes
represent random variables each of which having a conditional probability table
specifying the probability of the variable having a particular value given a
combination of values of its parent nodes.

– Decision nodes
represent decisions to be made. They can have both chance nodes and other
decision nodes as parents indicating that the decision has to be made at a
particular point in time, i.e., when all necessary evidence is available.
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– Utility nodes
represent a utility function. They have associated utility tables giving a value
for each possible instantiation of its parent nodes.

The links between any of the nodes explicitly represent the relations between
causes and effects, i.e., relationships among variables are encoded in the network.
Edges between node pairs indicate influences of different types. Edges leading into a
chance node show those variables on which the probability assignment of the chance
node variable will be conditioned. These edges and the chance nodes constitute the
‘Bayesian network part’ of BDNs. Edges leading into a decision node show which
variables will be known by the decision maker at the time that the decision is made.
And edges leading into a utility node indicate onto which nodes a utility function is
calculated.

See Figure 5.2 for a simple example of a BDN. It is based on the Bayesian
network from Figure 5.1(a) and extended with a decision node and a utility node. The
decision node takes the values of chances nodes C and D into account. The utility
function is defined on the basis of the variable E.

Figure 5.2: Example of a Bayesian Decision Network with chance nodes (drawn as ovals), a decision
node (drawn as a rectangle), and a utility node (drawn as a diamond).

5.4 Using Bayesian Decision Networks for Iconic Gesture
Generation

The process of constructing a BDN can be sub-divided into the following five steps
based on the four step process of Bayesian network construction (cf. Wittig, 2002):
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1. Specification of variables
First of all, the variables in the domain have to be fixed. Input and outcome vari-
ables have to be precisely specified including their values. For the construction
of BDNs outcome variables further have to be divided into chance variables,
decision variables and utility variables.

2. Structure specification
Learning the structure of a networks means to determine for every possible edge
in the network, whether to include that edge in the final network and which
direction to orient the edge.

3. Parameter specification
Parameter estimation is concerned with learning the parameters of the net-
work structure which represent the strengths of dependencies quantified by
conditional probabilities.

4. Rule definition
In this step, the Bayesian network build so far is enriched with decision and
utility nodes. Rules and functions for these node types have to be defined.

5. Application
Subsequent to the previous steps which were concerned with building a BDN,
the model is applied in an application scenario. It has be ensured that the
network is provided with all necessary kinds of evidential information.

5.4.1 Specification of Variables

The first step in building the model is to identify input and outcome variables. Outcome
variables in the model are all those features of a gesture which are to be determined in
the decision-making process. Factors which potentially contribute to these choices
are considered as input variables. Variables and values in the model correspond to
those covered by the coding scheme presented in Section 4.1.3. The set of values
per variable has occasionally been narrowed to combined categories or to frequently
observed values, i.e., values that occurred only rarely were excluded. For instance,
in the case of handshapes ASL-B-spread, ASL-B-loose etc. are consolidated into
one category ASL-B, or, in the case of representation techniques, only the five most
frequent values were considered. Additionally, the previous gesture (features) are also
taken into consideration. See Table 5.1 for an overview of variables and values.

A further sub-division is made for outcome variables into chance variables, decision
variables and utility variables. The latter are disregarded at the moment, since the
current conceptualization focuses on the BDN characteristics of combining determin-
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Table 5.1: Variables in the generation model, specified by their values and their type.

Variable Values Type

Gesture Gesture Occurrence
(G)

true, false Outcome, Chance

Representation Tech-
nique (RT)

indexing, placing, shaping, draw-
ing, posturing

Outcome, Chance

Handedness (H) LH, RH, 2H Outcome, Chance

Handshape (HS) ASL-B, ASL-C, ASL-G, ASL-O,
ASL-5

Outcome, Chance

Palm Orientation
(PO)

PAB, PTB, PTL, PTR, PUP, PDN +
combinations and sequences

Outcome, Decision

BoH Orientation (FO) BAB, BTB, BTL, BTR, BUP, BDN
+ combinations and sequences

Outcome, Decision

Movement Type (MT) linear, curved + sequences Outcome, Decision

Movement Direction
(MD)

MF, MB, ML, MR, MU, MD Outcome, Decision

Discourse and
Verbal Context

Thematization (T) theme, rheme Input

Information State (IS) private, shared Input

Communicative Goal
(CG)

lmIntro, lmDescrProp, lmDescr-
Constr, lmDescrPos

Input

Noun Phrase Type
(NP)

Tags according to the STTS tagset
(Table 4.3)

Input

Referent Fea-
tures

Subparts (CN) 1 or more, none Input

Symmetry (S) sym, none Input

Main Axis (MA) x-axis, y-axis, z-axis, none Input

Position (P) left, middle, right Input

Shape Property (SP) longish, cubic, squared, arc-shaped,
spherical, round, etc.

Input

Previous
Gesture

Gesture Occurrence
(LG)

true, false Input

Representation Tech-
nique (LRT)

indexing, placing, shaping, draw-
ing, posturing

Input

Handedness (LH) LH, RH, 2H Input

Handshape (LHS) ASL-B, ASL-C, ASL-G, ASL-O,
ASL-5

Input
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istic and probabilistic decision making4. Note that, the distinction between chance
variables and decision variables does not prevent detecting common patterns across
individuals. These rather become apparent in identical or similar network structures.

The choice whether an outcome variable in the model is of one or the other kind is
determined in accordance with the requirements of data-based and rule-based decision
making as devised in Section 5.1. On the one hand, to capture inter-individual differ-
ences, it is reasonable to determine the values of outcome variables probabilistically.
On the other hand, it is reasonable to determine outcome values in a deterministic way
due to the sparse data problem: as some outcome variables have a large set of values
(e.g., palm and BoH orientation or movement direction) which are, in addition, biased
by several factors (e.g., representation technique-specific patterns and/or characteristic
features of the referent), there are not enough data cases to learn the network structure
and probability distributions from. This is reasonable, as the empirical analysis in
Section 4.2) revealed representation technique-specific patterns and/or referent feature
dependencies.

So each outcome variable has to be defined as being either a chance variable or a
decision variable. Two decisions in the formation of a gesture which are inherently
not subject to any representation technique-specific patterns, are the choice whether to
gesture (or not) and the choice of representation technique. As these two variables are
subject to significant inter-individual differences (cf. Sections 4.2.1 and 4.2.2, these
two are chosen to be chance variables. The variables ‘handedness’ and ‘handshape’
are also significantly biased by inter-individual differences as shown in Section 4.2.3.
These variables, therefore, are assigned to the set of chance variables in the model as
well.

Gesture features having a relatively large set of values are palm and BoH orienta-
tions as well as movement direction. These variables are accordingly good candidates
for decision variables. This choice receives further support by the fact that these
gesture features are not only subject to representation technique-specific characteris-
tics, but also make up the semantics of shaping, drawing and posturing gestures. In
other words, these variables are strongly correlated with referent features. The second
argument also holds for the variable ‘movement type’ which is therefore also modeled
as a decision variable although it has only relatively few values.

In sum, the result of the first modeling step—identifying variables—is concluded
with a collection of variables representing both gesture features and modulating factors.
The variables are of three different types: input variables, chance outcome variables,
and decision outcome variables. A visualization of the variables in the model is given
in Figure 5.3.

4. Utility variables to state configurations of the network can still be integrated into the network at any
time
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Figure 5.3: Variables to be considered in the generation network: chance variables are drawn as ovals,
decision variables are drawn as rectangles.

5.4.2 Network Structure Specification

In the next step, the structure of the network has to be determined for the probabilistic
part of the network (Bayesian network), i.e., for the outcome chance variables and
their ingoing edges on which the probability assignment of the outcome node variable
will be conditioned.

Choice of learning method To deal with the given problem of sparse data, a com-
bination of data-based and theory-based structure specification is appropriate. That is,
the application of learning algorithms is constrained by the following assumptions.
First, the order of decisions is given so that the choice to produce a gesture or not
is taken first, followed by the decision which representation technique to use. The
choices for handedness and handshape are made thereafter. Second, the direction of
edges is specified in a way that variables of gesturing behavior are influenced by other
variables, i.e., it is assumed for instance that properties of the gesture referent have
an impact on the gesture, and not the other way around. And third, no dependencies
are assumed to exist among input variables characterizing the given situation in terms
of referent features, discourse context, and the previously performed gesture. It is
accepted that these assumptions might decrease the quality of the model in terms of
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prediction accuracy compared to empirical data, as the aim here is to elucidate by
which factors gesture use is influenced and not, e.g., how any modulating factors are
interrelated among each other.

Concerning the choice of structure learning algorithms, constraint-based algo-
rithms have some advantages over score-based algorithms (see Section 5.3.2), pro-
viding support for algorithms like PC or NPC. It should be evaluated, nevertheless, if
constraint-based learning actually outperforms score-based methods in the context of
gesture generation. For this reason, different learning algorithms will be comparatively
evaluated with regard to their prediction accuracy against the original SaGA data
(Section 7).

Choice of database The result of structure specification is not only depending on
the chosen learning algorithm and its (potential) combination with a-priori knowledge.
Rather, the data from which the structure is learned is also decisive. In general,
there are two possibilities of constructing a data set for learning the probabilistic
part of the gesture generation network: either, building a speaker-specific, individual
model from the data of one particular speaker, or learning the structure from the
combined data of several speakers. In general, the problem of overfitting tends to
occur when individualized models are learned from the (sparse) data of one individual
speaker, since sparse data are often not able to represent all relevant relationships. In
addition, it is sometimes the case that learning algorithms detect relations that are, on
closer inspection of a larger data base, not typical for the speaker. Similarly, when
considering models that are learned from the combined data of many speakers, it is
possible that these models over-represent particular speakers or relationships. This is
particularly the case when models are learned from few speakers or when interrelations
are heterogenous in the data. That is, there are problems with both alternatives. And
this is why both variants should be evaluated with regard to their prediction accuracy.
A comparison of individual vs. combined networks further provides the chance to
detect differences and commonalities between both kinds of models and data sets. A
visualization of the model developed so far is given in Figure 5.4.

5.4.3 Parameter Estimation

To learn the parameters of the network structure, the prevalent EM algorithm is
employed. As the focus of this thesis is on structure learning, variation of parameter
learning was not performed. The fact that parameters are always learned in the same
way provides the advantage that accuracy results are more readily comparable with
regard to structure learning.
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Figure 5.4: Schema of the generation network in which outcome chance nodes are potentially
connected with input nodes, depending on the data set from which the network structure is learned.

5.4.4 Rule Definition

To extend the Bayesian networks which were built in the previous steps, decision nodes
need to be specified. In order to make the definition of appropriate rules empirically
sound, it is based on the corpus-based analysis of gestural representation techniques
(see Section 4.2.3). Table 5.2 shows how gestural form features depend on other
gesture features due to technique-specific patterns and/or referent characteristics.

The concrete representation technique-specific form-meaning mappings are out-
lined in the following. They are based on basic patterns found in the SaGA corpus.
Note that, these mappings are not meant to be able to account for every single gesture
occurrence. Speakers deviate from these patterns either due to the natural fuzziness of
human gesturing, or by employing gestural patterns that are not frequent enough in
the empirical data, e.g., due to the application domain or limited stimulus materials.

Indexing Indexing gestures were found to be relatively strongly shaped by repre-
sentation technique-specific patterns.

– Palm Orientation As handshape and palm orientation were shown to be posi-
tively correlated, an adequate orientation of the palm is picked depending on the
chosen handshape: ‘PDN’ for pointed indexing gestures (handshape ‘ASL-G’),
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Table 5.2: Dependence of gestural form features on other gesture features due to technique-specific
patterns and/or referent characteristics.

Indexing Placing Shaping Drawing Posturing

Palm Orientation Handedness,
Handshape

Handedness,
Handshape

Handedness,
ShapeProperty,
MainAxis

– Handshape,
Handedness,
ShapeProperty,
MainAxis

BoH Orientation Position Handshape ShapeProperty,
Main Axis

– Handshape,
Handedness,
ShapeProperty,
MainAxis

Movement Type – – ShapeProperty ShapeProperty –

Movement Direction – – Handedness,
ShapeProperty,
MainAxis

Handedness,
ShapeProperty,
MainAxis

–

and sideways palm orientation (‘PTL’ for right-handed gestures, ‘PTR’ for
left-handed gestures) for flat hand indexing (handshape ‘ASL-B’).

– BoH Orientation The most frequent BoH orientation in indexing gestures
was away from the speaker’s body. This was, however, found to be slightly
influenced by the referent position. Thus, the referent position is taken into
account when choosing the BoH orientation in indexing gestures (‘BAB/BTR’
for referents at the right, ‘BAB/BTL’ for referent at the left)

– Movement Features Movement features in indexing gestures are generally set
to be constant, since indexing gestures were found to be characterized by static
strokes.

Placing Similar to indexing gestures, the form of placing gestures was also found
to be strongly shaped by technique-specific patterns.

– Palm Orientation According to the chosen handshape, palm orientation was
found to be different in the data. Therefore, in placing gestures with handshape
ASL-B, the palm is assigned to be oriented sideways (‘PTL’ for right-handed
gestures, ‘PTR’ for left-handed gestures). In placing gestures with handshape
ASL-C, the palm is set to be oriented away from the speaker’s body, and in
placing gestures with handshape ASL-bent-5, the palm is assigned to be oriented
downwards.

– BoH Orientation ‘BAB’ was empirically found to be the most frequent cate-
gory and is, accordingly, set for all placing gestures with exception of c-handed
placings for which ‘BUP’ was, by trend, found to be preferred.
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– Movement Features Due to the fact that placing gestures were characterized
by static strokes, movement features in placing gestures are generally assigned
to be constant.

Shaping These gesture depict the shape of referents and are, accordingly, highly
sensitive to characteristics of the referent.

– Palm/BoH Orientation For palm and BoH orientation there was neither a
category present which was predominantly used due to technique specificity,
nor was there any statistically significant sensitivity of palm orientation with
regard to referent features. Therefore, rules for the choice of palm orientation
were defined heuristically on the basis of corpus examples and depending on
the referent’s shape properties, main axis and the already chosen handedness.

– Movement Type Shaping gestures were shown to be characterized by a shape
property specific wrist movement type. Accordingly, to depict the shape proper-
ties ‘round’ and ‘arched’ the movement type is set to be curved, whereas for
longish, cubic and squared objects it is assigned to be linear.

– Movement Direction Rules for movement directions could not be based on
statistically significant results due to low sample size and were rather defined
heuristically on the basis of examples in the corpus: the foremost influential
factor affecting the movement trajectory is the referent’s shape, e.g., a circular
trajectory for ‘round’ (‘MR>MD>ML>MU’) or a straight line for ‘longish’.
Concerning the latter, the referents’ main axis has to be further considered
so that high objects (main axis: y) are depicted by an upwards movement
while rather broad objects (main axis: x) are set to be depicted by a sideways
movement. Finally, handedness is considered, as for two-handed gestures the
trajectory has to be different than for one-handed gestures (only half a circle
instead of a full circle, for example).

Drawing Drawing gestures are shaped by both technique-specific patterns as well
as referent characteristics with regard to movement features.

– Palm/BoH Orientation In line with the empirical data, palm and BoH orienta-
tion are assumed to be constant: palm oriented downwards, the BoH oriented
away from the speaker’s body.

– Movement Type Movement type was found to be dependent on the shape
properties of the object to be depicted. Therefore, for round and arc-shaped
objects, the type of movement is assigned to be curved, for longish, cubic and
squared objects it is set to be linear.
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– Movement Direction Similar to shaping gestures, the movement direction in
drawing gestures is defined heuristically taking the referent’s shape properties,
its main axis as well as the chosen handedness into account.

Posturing Posturing gestures depict the shape of objects in a static way. Accordingly,
non-movements have to be selected depending on referent characteristics.

– Palm/BoH Orientation Due to the fact that no statistically significant corre-
lations could be found in the data for the choice of palm orientation and BoH
orientation, these values are defined heuristically based on examples and ten-
dencies in the data taking the previously chosen handedness and handshape into
account, as well as the referent’s shape and main axis.

– Movement Features As the strokes in posturing gestures are generally static,
movement features do not have to be specified for these gestures.

With the definition node rules specified as described above, nodes in the gesture
generation network appear to be connected as displayed in the network schema in
Figure 5.5.

Visuo-spatial
Referent Features

Discourse/Linguistic 
Context

Previous Gesture

PO

G

Gesture Features

HSHRT

FO MT MD

Figure 5.5: Schema of a gesture generation network in which gesture production choices are made
either probabilistically (dotted lines, learned from corpus data) or rule-based (solid lines, defined in a set
of if-then rules).
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5.5 Integration into Overall Generation Architecture

Finally, after completing the previous steps of network construction, the BDN is to
be employed in an application system. To make use of the generation network in
a simulation account for virtual agents, the BDN is to be integrated into an overall
speech and gesture production framework which was developed in the context of the
sub-project B1 of CRC 673 at Bielefeld University (Kopp et al., 2008). Of particular
importance is that the network is embedded in a way such that the input nodes of the
gesture network are supplied with all necessary information. The requirements for an
overall speech and gesture production architecture are summarized in the following:

– One key issue for both speech and gesture production is the representation of
content to be uttered. Existing psycholinguistic production models agree on
the fact that speech and gesture are derived from two kinds of representation
(spatial and propositional). This is in line with Paivio’s—empirically based—
Dual Coding Theory (Paivio, 1986) which is characterized by two functionally
independent systems, verbal memory and image memory, with associative
links within each memory and possible referential links across the two systems.
Imagery code is assumed to primarily represent shape and spatial and spatio-
temporal relationships (rather than purely visual properties such as color or
brightness). Verbal code was originally taken to be some form of inner speech in
a natural language, which gave early rise to criticism and alternative suggestions
to construe the two codes as imagery and conceptual (‘mentalese’) rather than
imagery and English (Kieras, 1978). Along this line, elements of the imagery
code represent what they are images of; elements of the verbal code represent
what words mean.
To realize such a dual coding account, content information has to be repre-
sented in these two formats. Further, an interface between the two kinds of
representations is necessary to enable the coordination of modalities.

– Cross-modal interaction must not be limited to the level of content repre-
sentation and content planning. To account for mutual influences of the two
modalities, as presented in Section 2.2.4, a multimodal production model has to
provide according mechanisms for mutual access and sensitivity of modality-
specific processes. An example for cross-modal influences is realized in the
GNetIc account which relies on information about the linguistic context in terms
of thematization (thema, rhema). Cross-modal interaction is also needed for the
coordination that enables temporal and semantic synchrony of the verbal part of
the utterance and its accompanying gesture(s). At the lower levels of phonation
and motor control interaction may account for compensation of potentially
occuring timing lags during execution (e.g., pre-stroke holds in gesture).
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– The Interface model (Section 2.3) proposed a feedback mechanism: the mes-
sage generator receives information from the formulator whether a proposition
is readily verbalizable or not. This accounts for evidence that gestures compen-
sate for problems of verbal encoding (Bavelas et al., 2002). This idea should be
implemented in a production model and could be extended such that not only
encoding problems are effectual, but also the existence of primed linguistic
constructions. Moreover, the flow of information should take place both in
the speech as well as the gesture pathway to account for alignment of motor
representations.

– To provide the GNetIc model with necessary information about the discourse
context, a discourse record has to be available. In particular it is necessary, for
both speech and gesture production processes, to know whether some infor-
mation has already been uttered before or not. In other words, the information
state has to be available to account for the mechanism of grounding. Speech
generation has to differentiate (at least) between definite and indefinite articles
in this regard, while for gesture generation the information state is one of the
input variables. In addition, the evolving discourse context must comprise infor-
mation not only about which meanings have been communicated, but also the
words and gestures that have been employed for this.

In conclusion, a process model for the generation of multimodal utterances should
be characterized by a high degree of interactivity, both across modalities as well as
between two levels of planning. A speech and gesture production model that fulfills
these requirements is displayed in Figure 5.6.

Computational approaches to producing multimodal behavior with artificial
agents usually conceive of the generation problem in terms of three consecutive
tasks (cf. Reiter and Dale, 2000): (1) figuring out what to convey (content planning),
(2) figuring out how to encode it (micro-planning), and (3) realizing the behaviors
(surface realization). Following this tripartition, the model is also inspired by, but also
extends and substantiates the psycholinguistic models of speech and gesture produc-
tion model in several ways (Kita and Özyürek, 2003; de Ruiter, 2000). Following Kita
and Özyürek (2003), there are four processing modules involved in content planning
and micro-planning of speech and gestures: Image Generator, Preverbal Message
Generator, Speech Formulator, and Gesture Formulator. The idea of two functionally
separable modules, one for activating and selecting features of visuo-spatial imagery
(the Image Generator) and one for turning these features into gestural form (Gesture
Formulator), is adopted (de Ruiter, 2000; Kopp et al., 2004). In addition, two dedi-
cated modules (Motor Control and Phonation) are concerned with the realization of
synchronized speech and gesture movements with the virtual human Max (Kopp and
Wachsmuth, 2004). Further components are a discourse model and distinct long-term
memories for imagery and propositional knowledge.
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Figure 5.6: Overview of the architecture of the speech and gesture production model.

Content Representation Going beyond previous approaches in computational mod-
eling of speech and gesture production, which were solely based on a propositional
representation (Section 3), it is reasonable to adopt a dual coding perspective for
content representation which differentiates between mental imagery and linguistic or
conceptual knowledge. With regard to being either the basis for gesture generation or
for speech generation, imagistic knowledge is assumed to primarily represent shape
and spatial or spatio-temporal relationships (rather than purely visual properties such
as color or brightness), and the verbal code is taken to conceptually represent what
words mean (Kieras, 1978).

To interface between these two distinct representational formats, they are ap-
propriately connected by an additional layer. The level of content representation
underlying the production of multimodal utterances is, therefore, assumed to consist
of three parts, (1) imagistic knowledge, (2) propositional knowledge, and (3) pairings
of imagistic knowledge and propositions (see Figure 5.7). These three structures may
be organized as a multimodal working memory, in terms of a globally accessible, struc-
tured blackboard (Hayes-Roth, 1985) on which all modules involved in the generation
process operate concurrently.

A suitable model for the representation of imagistic knowledge are Imagistic
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Figure 5.7: The content representational layer underlying the production of multimodal behavior consists
of three parts, (1) the imagistic description, (2) propositional knowledge, and (3) pairings of imagistic
knowledge and propositions.

Description Trees (IDTs, Section 3.1) that are required by the input nodes of GNetIc
networks. It is easily possible to extract referent features such as object position,
symmetry, main axis, and number of subparts from an IDT representation.

The second part of working memory is a propositional knowledge base con-
sisting of logical formulae based on a formal ontology of domain knowledge (Witte
and Weisemann, 2008). A representation of knowledge to be drawn upon by the
speech formulation processes needs to be designed to fit the needs and affordances of
natural language. As discussed above, this requires a proper representation of spatial
knowledge as well as conceptual background knowledge about the considered entities.
As is common in computational approaches to language semantics, we employ a
propositional format for this, i.e., knowledge is encoded in terms of propositions over
symbols that represent objects and relations, according to a given ontology. Due to
the focus on object descriptions, the spatial knowledge to be captured pertains to ob-
jects, their geometrical properties, and the relations between them. The representation
system thus consists of logical formulae based on a formal ontology.

To cover all relevant aspects of domain knowledge the ontology was built on the
basis of three sources: (1) visual characteristics of the entities, (2) object descriptions
given by the participants of the SaGA study, and (3) knowledge encoded in the IDT
representation, e.g. in terms of part-whole relationships. World knowledge to be
represented by the ontology consists of entities, attributes and relations:

– Entities are objects of the application domain with independent existence such
as houses, streets, etc.

– Attributes are properties of entities, like proper name, color, quality, size, shape
etc. Attributes can be single- or multi-valued.
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– Entities are connected by different types of relational links, such as taxonomic
(is-a), partonomic (part-of), or spatial relations (on-top-of, left-of).

The third part of the content representation are a number of multimodal concepts
which are bindings of IMDs with corresponding propositional formulations (see
Figure 5.8). The imagistic parts of these multimodal concepts are characterized by
underspecification, i.e. they contain more than one alternative interpretation and thus
represent abstract concepts. It is this underspecification which draws the distinction
between the imagistic part of the multimodal concepts and the imagistic description
of concrete spatial objects. For example, the property of being ‘longish’ can be
represented as an underspecified IMD in which one axis dominates the other one
or two axes, as well as in terms of a logical formula (e.g. ‘longish(X)’). Such an
underspecified IMD can be matched with any other IMD by means of a formal
graph unification algorithm as described in Sowa (2006). Currently, multimodal
concepts for dimensional adjectives (longish, round, tall, etc.), stereotyped object
shapes (box, circle, etc.), and basic spatial relations (right-of, side-by-side, above,
etc.) are predefined as part of long-term memory. Matching of IMD-structures is
realized by the unification procedure which also determines the necessary geometrical
transformations for one IMD.

Figure 5.8: Multimodal concept corresponding to the property ‘longish’.

Image and Preverbal Message Generation Image generation and preverbal mes-
sage generation are content planning processes which perform information selection
and perspective assignment. This first step in translating a thought into speech and
gesture is similar for speech and gesture production.

The production of a chunk of multimodal object description is assumed to start
upon the arrival of a message from the Communication Planner, containing a new
communicative intent. Such a communicative intent comprises a specification of the
intended communicative goal, such as ‘introduce’, ‘describe’, ‘describe-position’, or
‘describe-construction’ (cf. Section 4.1.3) along with the entities to be referred to or
the properties to be predicated.
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The Image Generator has to access the imagistic representations stored in long-
term memory and activates the imagistic descriptions of all objects involved in the
communicative goal. This may appropriately be modeled by activation spreading, a
mechanism from cognitive psychology for the retrieval of information from memory
(Anderson, 1983; Collins and Loftus, 1975). The process of activation spreading is
initiated by labeling a set of source nodes with weights and then iteratively propagating
that activation to other nodes linked to the source nodes, whereby the weights decrease
step by step. It is further possible that weights decay, as the activation propagates
through the network. Activation values above a particular threshold may generally
lead to import an IMD into the respective working memory structure. Likewise,
the Preverbal Message Generator may apply the same mechanism of spreading
activation to select knowledge from propositional long-term memory which are then
asserted into working memory.

For IMDs with a significantly high activation, the Image Generator has to perform
spatial perspective taking. That is, it has to determine which spatial perspective to
adopt towards the object(s). This is based on the fact that direction-givers usually
adopt either a route (1st person) or survey (3rd person) perspective (Levinson, 1996),
with frequent switches between the two (Striegnitz et al., 2007).

The Image Generator tries to map the perspective IMD onto the imagistic parts
of multimodal concepts in long-term memory. If this succeeds, the corresponding
multimodal concept is added to the working memory unit. Likewise, multimodal
concepts are asserted when they unify with propositions selected by the Preverbal
Message Generator. Of particular importance to this process of cross-modal activation
is the fact that neither the original IMD nor the original propositions have to be
identical with the pole of a multimodal concept to match. Instead, a similarity value
between 0 and 1 is calculated by comparison of the two IMDs, and a multimodal
symbol is either selected or not depending on a customizable threshold of similarity.

Speech Formulation The Speech Formulator monitors the unit on the blackboard
and carries out sentence planning for each set of propositions posted by the Preverbal
Message Generator. As in related systems (Cassell et al., 2000a; Kopp et al., 2004), the
SPUD system(Stone et al., 2003) is employed, a grammar-based micro-planner using a
Lexicalized Tree Adjoining Grammar (LTAG) to generate natural language sentences.
SPUD delivers back information on the semantics of each linguistic constituent which
is brought in accordance with the entity or property the gesture aims to depict. The
derived temporal constraints then mark the onset and end of the lexical affiliate on the
word level and are asserted to the blackboard unit, too.

Gesture Formulation The readily constructed GNetIc decision networks, as de-
scribed above, are used directly for gesture formulation. A few pre- and post-processing
steps, however, are additionally necessary to complete the mapping from repre-
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sentations of imagistic semantics and discourse context onto an adequate speech-
accompanying iconic gesture. Figure 5.9 gives a schematic of the formulation process.

– Assessing referent characteristics—Analysis of imagistic knowledge
The initial situation for gesture formulation is an IDT representation of the
object or property to be referred to. In a pre-processing step, this representation
has to be analyzed to extract those referent features that are required as initial
evidence for the network: (1) whether an object can be decomposed into sub-
parts, (2) whether it has any symmetrical axes, (3) its main axis, (4) its position
in the VR stimulus, and (5) its shape properties. Further information drawn
upon by the decision network concerns the discourse context. It is provided by
other modules in the overall generation process and can be accessed directly
from the blackboard.

– Making production choices All evidence available is then propagated through
the network resulting in a posterior probability distribution for the values in each
chance node. To make the decision which value is finally chosen for realization,
there are generally two alternatives, the probability matching strategy and the
maximization strategy. Probability matching is a suboptimal decision strategy
in which decisions are made proportional to the given probability distribution.
Thus, if the posterior probability of a gesture occurrence is found to be 70% (i.e.,
the probability that no gesture occurs is 30%), probability-matching strategy
would predict a gesture occurrence in 70% of the choices, and no gesture
occurrence in 30% of the choices. The optimal maximization strategy maximizes
the number of correct predictions (Duda et al., 2001). Following this strategy
in the example means to always predict a gesture occurrence as it predicts the
majority category in the absence of other information.
The suboptimal probability-matching strategy is frequently employed by hu-
man subjects in decision and classification studies. Additionally, Foster and
White (2007) compared both strategies in an evaluation study of automatically
generated texts. Participants judged those texts as being better written and less
repetitive that were generated while choosing from among the highest-scoring
realization candidates instead of taking the single highest-scoring result. In
other words, human users preferred variation.
In the context of the evaluation studies to be carried out in this thesis it is,
nevertheless, reasonable to employ maximization. With regard to the accuracy
of simulation results compared to the human archetype modeled in the network,
employing probability matching would decrease simulation accuracy. This
would consequently conceal the model’s prediction accuracy in a prediction-
based evaluation, and it would bring an additional factor of uncertainty into
play with regard to a user-based evaluation study. When bringing the genera-
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tion model to application, however, probability-matching should be taken into
consideration again.

– Checking for Similarity Finally, the obtained gesture specification is compared
with the IDT representation it originates from by making use of the fact that the
BDN formalism allows for two different types of inferences: causal inferences
that follow the causal interactions from cause to effect and diagnostic inferences
that allow for introducing evidence for effects and infer the most likely causes of
these effects. The gesture feature matrix derived from the decision network is set
as evidence for the output nodes of the BDN. A diagnostic inference then yields
the most likely causes, i.e., the most likely referent properties and values of
discourse contextual variables. The former are used to build an (underspecified)
IDT representation of what the very gesture depicts which is to be compared
with the initial referent-IDT.
The IDT representation of gesture semantics, notably, allows the agent to
‘know’ what her interlocutor knows. This is pertinent in terms of grounding:
assuming that the interlocutor acknowledges the utterance, this is exactly what
becomes common ground. The measure of similarity is further beneficial for two
issues. First, it allows to avoid gesture specifications with incompatible feature
values. Such an incompatibility might occur especially in posturing gestures in
which the static hand configuration carries the meaning of the gesture. Since
the variable ‘handshape’ is, however, determined probabilistically, it might
happen that its value cannot be adequately used to depict the intended meaning
(e.g., handshape ASL-B for a round window). If a discrepancy is detected, the
decision network is requested again with the additional constraint to either
plan a gesture with a different technique or to return a feature matrix with a
different handshape. Second, the similarity measure can also be employed as a
decision-supporting measure for the case that an over-generation and selection
strategy on the level of complete gestures (not just gesture features) is needed.

5.6 Summary

This chapter conceptually developed a gesture generation network. As a first step,
requirements for such a model were formulated, and Bayesian Decision Networks
(BDNs) have been identified as an an attractive method to model gestural behavior:

– The BDN formalism belongs to the class of graphical models which repre-
sent complex interrelations in an understandable, visual manner. It, therefore,
simulates gesture use in an understandable and interpretable way, accounting
for one of the two main motivations behind the aim to build a model of ges-
ture generation, namely to gain insights into the gesture production process in
humans.
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Figure 5.9: Schematic of the gesture formulation process: the referent IDT is analyzed for characterizing
features required by the GNetIc model. These and other variables (linguistic/discourse context, previous
gesture) are propagated through the network, resulting in a gesture specification which is compared with
the referent IDT representation it originates from.

– BDNs provide a hybrid method covering both probabilistic inference prob-
lems and deterministic decision making problems. The formalism, accordingly,
allows consideration of inter-individual differences in a data-based fashion.
In addition, the BDNs are able to deal with sparse data, utilizing rule-based
modeling.

– Gesture features can be realized as single nodes in the BDN model, providing
a feature-based generation account. This is reasonable, since iconic gestures
fall into different techniques of representation all of which are characterized by
differing sets of variant and invariant features.

– Within the framework of BDNs, it is a simple matter to introduce new sources
of information into the model. It is likely that the currently available set of input
variables provided by the SaGA corpus is not complete at all. A BDN is easily
extensible by introducing further variables, either annotated in the corpus, or
inferred from that data.

In addition, Bayesian networks, making up the probabilistic part of BDNs, are
able to deal with some problems that are likely to occur in the context of gesture
generation. First, Bayesian networks are able to deal with uncertainty by making
predictions about the relative likelihood of different outcomes. Second, they are able
to handle incomplete data, which is of particular importance when the generation
approach is integrated into a bi-directional dialogue system provided with data from
gesture recognition systems. Third, also relevant for possible application in a dialogue
system, the same network can be used to calculate the likely consequences of causal
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node states (causal inference), as well as to diagnose the likely causes of a collection
of dependent node values (diagnostic inference).

The process of network construction, broken down into the following five steps
(for an overview see Figure 5.10), was applied to the gesture generation problem:

Figure 5.10: Concept of the gesture generation process: Bayesian Decision Networks are constructed in
four steps combining probabilistic and data-based modeling. The resulting GNetIc model is integrated
into an overall speech and gesture production architecture which automatically generates multimodal
utterances.

1. Specification of variables
First, the relevant variables were identified as being either input or outcome
variables. The latter were further sub-divided into chance variables, quanti-
fied by conditional probability distributions in dependence on other variables
(‘gesture occurrence’, ‘representation technique’, ‘handedness’, ‘handshape’),
and decision variables that are determined in a rule-based way from the states
of other variables (‘palm orientation’, ‘BoH orientation’, ‘movement type’,
‘movement direction’).

2. Structure learning
Learning network structures requires to choose an adequate learning algorithm
and to decide on which data set the model is to be learned. Regarding the first
issue, it has been argued that constraint-based algorithms are to be preferred
for several reasons. Nevertheless, different learning methods will be evaluated
regarding their prediction accuracy. Similarly, it was left for evaluation whether
models should be learned from speaker-specific data or from the combined
data of several speakers. In addition, some domain-specific constraints were
specified to support structure learning by reducing the search space of potential
networks.

3. Parameter estimation
The prevalent EM algorithm is employed to learn the parameters of the network.
Therefore, accuracy results are comparable with regard to structure learning.
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4. Rule definition
Decision nodes were specified to extend the probabilistic networks built in the
previous steps. The definition of appropriate rules was based on the corpus-
based analysis of gestural representation techniques. That is, depending on the
very representation technique, gesture form features were defined to be subject
to referent characteristics as well as other gesture form features.

5. Application
Finally, after completing the previous steps of network construction, the BDN
is to be applied in an overall speech and gesture production framework. The
generation framework is based on key insights from psycholinguistic research
of the speech and gesture production process in humans. Hallmarks of the
overall speech and gesture production architecture are the following:

– The representation of content is characterized by a dual coding perspective
consisting of imagistic and propositional codes. Multimodal concepts are
utilized to interface between both representational formats.

– The production process for both speech and gestures is broken down
into content planning (Preverbal Message Generator and Image Gener-
ator), microplanning (Speech Formulator and Gesture Formulator), and
surface realization (Phonation and Motor Control). Further components
are a discourse model and distinct long-term memories for imagery and
propositional knowlege and multimodal concepts.

– Interactivity between the modules is enabled through a central multimodal
working memory, realized as a globally accessible blackboard upon which
all modules operate concurrently. The overall production process thus
evolves by each module’s observing entries in the working memory, taking
local action if necessary, and modifying existing entries or their activation
or posting new entries.

Complete GNetIc networks are accessed by the Gesture Formulator to conduct
gesture planning. Input nodes of the network are provided with all necessary
information about the referent, the linguistic/discourse context of the utterance
to be produced, as well as the previous gestures of the speaker.
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CHAPTER 6
Realization

This chapter is concerned with the realization of the previously developed concepts
and methods for a virtual agent. The application scenario is based on the virtual
world employed in the SaGA study (Section 4). The virtual agent Max is to be
enabled to multimodally explain buildings of the virtual environment being equipped
with adequate knowledge sources, i.e., communicative plans, lexicalized grammar,
propositional, and imagistic knowledge about the world.

Section 6.1 explains how GNetIc models are realized, to be followed by Sec-
tion 6.2, in which the implementation of the overall speech and gesture production
architecture that incorporates these models is described. To illustrate the generation
process, Section 6.3 details step by step how a multimodal utterance is generated. The
chapter is concluded with a survey of modeling results (Section 6.4).

Details of the implementation have been published in Bergmann and Kopp
(2009b,a).

6.1 Building GNetIc Models

The construction of Bayesian Decision networks for the purpose of gesture generation
was realized with the HUGIN toolkit (Madsen et al., 2005), one of the oldest and
best-known tools for Bayesian network construction and inference. It comes with a
graphical user interface and the HUGIN Decision Engine for application development.
The user interface contains a graphical editor, a compiler, and a runtime system for
the construction, maintenance and usage of knowledge bases using Bayesian network
technology. The Decision Engine contains all functionality related to handling and
using knowledge bases in a programming environment. It is delivered with application
program interfaces for major programming languages such as C, C++, Java, and .NET.
The framework supports the construction of Bayesian Networks as well as Bayesian
Decision Networks (called Influence Diagram Models in the HUGIN terminology).

With regard to building Bayesian networks, HUGIN supports the constraint-
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based structure learning algorithms PC and NPC (Section 5.3.2) and estimation of
the conditional probability distributions using the EM algorithm (Section 5.3.2). It
further allows the specification of domain expert knowledge in terms of structural
constraints. This feature, notably, allows for the application of other structure learning
algorithms and combining these with the parameter estimation and inference methods
implemented in HUGIN.

Specification of Variables Nodes and values in the model correspond to those
specified in Table 5.1. All are realized as discrete chance or decision nodes with a
fixed set of values.

Structure Learning Data from the SaGA corpus was provided as input for
learning the model structure. As score-based algorithms K2 and MCMC are employed,
as implemented in the BNT toolkit (Murphy, 2001). Both algorithms are parameterized
to use the BIC score. MCMC’s starting position is a graph without edges and the burn-
in time is set to 5n whereby n is the number of nodes. Since MCMC is nondeterministic,
the algorithm had to run five times per data set, which sometimes resulted (sometimes)
in different network structures. For each data set, the network structure found most
often by the algorithm was chosen. As constraint-based methods PC and NPC are
employed, as implemented in HUGIN with different significance levels.

Parameter Estimation Once the structure of the network had been determined,
its maximum likelihood estimates of parameters could be computed employing the
EM algorithm as implemented in the HUGIN toolkit.

Rule Definition for Decision Nodes Decision nodes implement the empirically
based dependence of gestural form features on other gesture features, due to technique-
specific patterns and/or referent characteristics (Section 5.4.4). A set of if-then rules is
specified in each decision node of the network. For our current domain of application,
a set of 50-100 rules is defined in each node. In the following, the character of these
rules is illustrated by way of example.

Consider, for instance, that the circular window from the introductory example
(Section 1.1) is to be depicted and that the probabilistic part of the network has
determined (1) that a gesture is to be used, (2) that the representation technique to
be utilized is ‘drawing’, (3) that the gesture is to be realized with the right hand,
and (4) that the pointing handshape ‘ASL-G’ is to be used. The definition of rules is
based on the empirical corpus analysis in Section 4.2.3. With respect to representation
technique-specificity, the rules account for the fact that drawing gestures are typically
performed with a downwards palm orientation and fingers oriented away from the
speaker’s body. In addition, regarding movement type, the referent-characteristic
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shape property ‘round2d’ is considered in terms of a curved movement with a circle-
shaped trajectory. The following set of rules determines the values for palm and BoH
orientation, movement type, and movement trajectory:

if (and (Technique="drawing"), PO="PDN").

if (and (Technique="drawing"), BoH="BAB").

if (and (Technique="drawing",
ShapeProp="round2d"), MT="curved").

if (and ( Handedness="rh", Technique="drawing",
ShapeProp="round2d"), MD="MR>MD>ML>MU").

A second example illustrates how the (probabilistic) choice of handshape influ-
ences choices made in the decision nodes. Given that the probabilistic part of the
network determined (1) that a gesture is to be used and (2) that the representation
technique to be utilized is ‘indexing’, the rules determine the gesture’s palm orienta-
tion depending on the chosen handshape, reflecting the empirical fact that indexing
gestures divide into ‘flat hand indexing’ and ‘pointed indexing’ (Section 4.2.3). The
flat hand indexing handshape ASL-B is combined with a sideways palm orientation,
which makes the palm orientation further dependent on handedness: for left-handed
gestures, it is oriented to the right, and for right-handed and two-handed gestures it
oriented to the left1. For pointed indexing gestures, no such distinction is necessary—
the palm is oriented downwards independently of handedness. The following set of
rules determines palm orientation in indexing gestures accordingly:

if (and (Handshape="ASL-B", Handedness="lh",
Technique="indexing"), PO="PTR").

if (and (Handshape="ASL-B", Handedness="rh|2h",
Technique="indexing"), PO="PTL").

if (and (Handshape="ASL-G",
Technique="indexing"), PO="PDN").

6.1.1 GNetIc example model

An example of a GNetIc model is given in Figure 6.1. The probabilistic part was
learned from the data of one particular speaker in the SaGA corpus (P15) using

1. Two-handed gestures are principally treated like right-handed gestures. The difference is that in
two-handed gestures, the gesture specification for the right hand is symmetrically mirrored with the left
hand.
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the NPC algorithm with a significance level of .001. From the network structure, it
becomes apparent that the node determining gesture occurrence is connected with
three input nodes: one from the set of referent features (‘shape property’), one from
the set of discourse and linguistic context variables (‘thematization’), and one from
the set of previous gesture features (‘last gesture’). Similarly, the other three gesture
nodes are connected with input nodes of different kinds. Decision are connected to
referent features and previously determined gesture features as described in Section
5.4.4.

Referent Features

Discourse/Linguistic Context

Previous Gesture

Thematization

Technique

InfoState CommGoal

ShapeProp

Position

MainAxis

Childnodes

Symmetry

Handedness

Gesture (y/n)

Handshape

Gesture (y/n) Technique

Handshape

Handedness

Palm Orient. Finger Orient. Movement
Type

Movement 
Direction

NP type

Figure 6.1: Example of a GNetIc model: the probabilistic part of the model is learned from the data of
speaker P15 (black dotted links), the rule-based part is defined generally (gray links).

6.2 Realizing the Speech and Gesture Production
Architecture

The modular production architecture (Section 5.5) is basically implemented in C++.
Three major frameworks are incorporated, namely the IDT formalism (Section 3.1) for
the representation of imagistic knowledge, the SPUDlite system for natural language
generation (Stone et al., 2003), and the ACE engine to realize synchronized multimodal
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behaviors on the basis of MURML specifications for virtual agents (Section 6.2.5).
The production process is treated as a multi-agent problem solving task. All modules
are modeled as software agents that operate concurrently and proactively on a central
working memory, realized as a globally accessible, structured blackboard.

As opposed to message-passing architectures, the overall production process thus
evolves by each module observing entries in the working memory, taking local action
if possible, and modifying or posting entries in response. In this way, interaction
among the modules carries out content planning and micro-planning in an interleaved
and interactive manner, and it enables bottom-up processes in both modalities.

6.2.1 Communication Planner

The Communication Planner is concerned with providing communicative goals which
initiate the production process of multimodal utterances. The planner is equipped with
communicative plans in an XML format to describe a couple of buildings from the
virtual SaGA world. Each of these plans consists of a sequence of communicative
goals built on the basis of descriptions as given in the SaGA study. See Figure 6.2 for
an example plan. Each of the goals to be realized and communicated consecutively
consists of the communicative intent (‘lmIntro’, ‘lmDescrProp’ etc.) along with the
entire content.

This straightforward definition of how objects are described is intended to be
substituted with a salience-based planning method as developed in Baake (2009). The
algorithm computes communicative plans employing a salience ranking in terms of
object size and shape, such that highly salient object parts are described first.

Figure 6.2: A communicative plan consisting of a sequence of communicative goals to describe the
chapel from the virtual SaGA world (Figure 6.4). Each of the goals consist of an intent (‘lmIntro’,
‘lmDescrProp’ etc.) along with the entire content of the communicative intention.

The Communication Planner further acts as an interface between the generation
system and the user. It, therefore, implements user control via a WiiMote which
enables the human addressee to provide feedback regarding the previous utterance
given by the virtual agent. Positive feedback (button ‘1’) gives rise to publish the
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next communicative goal on the blackboard, in the case of negative feedback (button
‘2’), the previous utterance is repeated once again. Raw data from the WiiMote is
accessed via Bluetooth and further processed by a server module implemented in C++.
The Communication Planner incorporates a client that maps incoming data on the
above-mentioned feedback events.

6.2.2 Content Representation and Blackboard

Imagistic knowledge is operationalized with the IDT formalism (Section 3.1). The
application domain—buildings from virtual world in the SaGA study (Section 4)—is
modeled in the XML-based description format.

Speech formulation draws upon propositional knowledge in terms of logical for-
mulae. These are based on an ontology representing entities, attributes, and relations of
the virtual SaGA world realized in Prolog, a declarative logic programming language.
That is, the program logic is expressed in terms of relations, represented as facts and
rules. While initially aimed at natural language processing, Prolog is used in different
areas such as theorem proving, expert systems, ontologies etc. It is, therefore, well
suited to code world knowledge with regard to generating verbal utterances. Prolog
is used in the comprehensive implementation of SWI-Prolog2 which is widely used
in research and education as well as for commercial applications. It has a rich set of
features and libraries for interfacing with Java and other programming languages.

Multimodal concepts are specified in the XML-based IDT description format.
They aim to interface between imagistic and propositional knowledge.In general,
there are two types of multimodal concepts. Unary concepts that take one IDT (node)
specification are employed to specify for shape properties, such as ‘longish’, ‘circular’,
‘spherical’, and ‘pointed’. Binary concepts are utilized for size features (’large’, ‘small’,
etc.) and spatial relations (‘left-of’, ‘right-of’).

An additional source of information is the discourse record, which contains
two kinds of information about what has been communicated so far: (1) the set of
propositional formulae that have already been communicated in the present discourse
and (2) the surface structure of previous utterances in terms of gesture form feature
matrices and natural language sentences.

A globally accessible, structured blackboard is realized as working memory, in
which all representations accumulate as they arise in the development and use of
speech and gesture. The blackboard is a shared repository of representations. All
generation modules are able to access information provided by other modules and to
publish their own contributions.

The blackboard is structured into several parts, each of which associated with a
mutex variable to protect the shared resources:

2. http://www.swi-prolog.org/
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– Active imagistic knowledge

– Active propositional knowledge

– Matrix of previously uttered gesture form features

– Communicative goal(s)

– Matrix of gesture form features

– Tagged natural language sentence

6.2.3 Content Planning Modules

An integral part of Image Generator and Preverbal Message Generator is an acti-
vation function. Applied to the IDT representation, entities involved directly in the
communicative goal receive full activation (1.0), which is propagated down the tree in
a bisecting way such that child nodes receive half of their parent’s activation value.
For IDT nodes with a significantly high activation, the Image Generator performs
spatial perspective-taking to determine how the objects appear from the particular
point of view adopted and along that particular view direction. This operation is
directly implemented as a transformation on object schemas using a standard view
transformation from computer graphics. All occluded IDT nodes which are culled.

Once the operation is completed, the propositional knowledge base is updated
to account for the adopted perspective. The activation function implemented in the
Preverbal Message Generator assigns full activation to all propositions that are directly
involved in the communicative goal, half of the activation to proposition which contain
other predicates from the highly activated ones etc..

If the activation of IDTs and propositions exceeds a particular threshold (0.2)
these objects are imported into the respective working memory structure.

6.2.4 Microplanning Modules

Speech Formulator The Speech Formulator employs SPUDlite3 (Stone, 2002),
which is a lightweight Prolog implementation of the original SPUD system imple-
mented in the functional programming language ‘Standard ML of New Jersey’ (for
a detailed overview on how far SPUDlite simplifies SPUD, see Buschmeier (2008)).
The Prolog framework is interfaced via the bi-directional Java-Prolog interface JPL4.

SPUDlite takes three types of input, (1) a lexicalized tree-adjoining grammar, (2)
a knowledge base in the form of predicate logic formulae, and (3) the specification
of communicative goals to be realized by the natural language sentence. SPUDlite
carries out the different microplanning tasks (lexical and syntactic choice, referring
expression generation, and aggregation) at once by treating microplanning as a search

3. http://www.cs.rutgers.edu/∼mdstone/class/taglet/taglet.pl; retrieved 2011-01-26
4. http://www.swi-prolog.org/packages/jpl/; retrieved 2011-01-26
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problem. It tries to find an utterance which meets the constraints set by its input. This
is done by exploring the search space, spanned by the linguistic grammar rules and the
knowledge base, until a goal state is found. Non-goal states are preliminary utterances
and are extended by one linguistic structure in each search step until a syntactically
complete utterance which conveys the specified communicative goals is found.

Exploiting the capability of SPUDlite to connect sentence parts with the seman-
tic information they convey, the result of speech formulation is a natural language
sentence tagged with semantic information in terms of propositional formulae.

Gesture Formulator The Gesture Formulator brings the GNetIc models to appli-
cation within the overall production framework via the HUGIN C++ interface. The
HUGIN API provides methods to load existing networks, propagate information and
access the posterior probabilities of nodes in the network.

To provide the GNetIc models with all relevant information, a set of analysis
functions is implemented to extract the referent features as required to inform the
networks’ input nodes. The number of child nodes is directly available from the tree
representation. Profile properties encoded in the IDT representation are accessed to
determine the symmetry value. A comparison of axes extent reveals information about
the main axis. The object’s position is calculated from the IDT’s transformation matrix.
And, finally, the IDT is analyzed for shape properties by means of the multimodal
concepts. A comparison method (Sowa, 2006) is employed to compare the IDT
representation of the referent and the underspecified descriptions of multimodal
concepts. For each concept, thus, a similarity value between 0.0 and 1.0 is calculated
and the shape property with the highest score is determined to be the referent’s shape
property. To further inform the GNetIc input nodes, additional details are accessed
from the blackboard, including information about the previously performed gesture,
the information state of the very entity, and whether the noun phrase accompanying
the gesture would fulfill exprssion of the sentence’s theme or rheme.

All information is propagated through the GNetIc model via the HUGIN C++
interface. For the posterior probabilities inferred by the network, values with maximum
score are selected following the maximization strategy.

Each gesture feature matrix derived from the decision network is then analyzed
for its semantics by applying the GNetIc networks for diagnostic inferences. The
resulting gesture-IDT is compared to the initial referent-IDT by means of formal
graph unification. If a discrepancy between the representations is detected, the GNetIc
model is requested again with the additional constraint of using either a different
technique to plan a gesture or a different handshape to return a feature matrix.

Finally, the Gesture Formulator fills the gesture matrix on the blackboard to
specify the form features of the readily formulated gesture.
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6.2.5 Surface Realization

In the virtual human Max, the Articulated Communicator Engine (ACE) is employed
for behavior realization. The ACE model is an incremental production model which
aims to create synchronized multimodal behaviors, e.g., on the basis of MURML
specifications (Kopp, 2003; Kopp and Wachsmuth, 2004).

MURML

The Multimodal Utterance Representation Markup Language (MURML) is an XML-
based representation format that specifies all overt aspects of a communicative utter-
ance (Kranstedt et al., 2002; Kopp, 2003). MURML descriptions assume an incremen-
tal process model that synthesizes continuous speech and gesture in successive chunks.
A MURML specification consists of two major parts, namely (1) a textual definition
of the verbal part of the utterance, i.e., the words to be spoken, and (2) specifications
of para-verbal and non-verbal behaviors such as prosodic foci, gestures, and facial
animations to be realized. MURML provides the possibility to specify behaviors that
overlap temporally, either by an explicit specification of absolute times (start, end,
duration) in relation to the start of the overall chunk, or implicitly by an affiliation
with particular words.

Gesture specification in MURML is characterized by a high degree of flexibility.
Gestures can be represented either as a parametric keyframe animation, or in terms
of spatio-temporal form features (see Figure 6.3 as an example). In the latter case, a
hand-arm configuration is specified in terms of four components: (1) wrist location,
(2) handshape, (3) extended finger orientation, and (4) palm orientation. Values for
each of these components are described either numerically or symbolically, building
upon a notation system for sign languages (Prillwitz et al., 1989). A MURML gesture
representation is a combination of these features. To specify constraints for a particular
feature over a certain period of time, two types of constraints are available: static
constraints to define that a feature is to be held constant for a certain period of time,
and dynamic constraints to specify a significant movement within a feature.

Behavior Realization

The ACE model is a production system that creates multimodal behavior on-the-fly
from a given MURML specification. It enables virtual agents to show synchronized
verbal and non-verbal behaviors in a human-like flow of multimodal behavior.

The ACE model is based on the segmentation hypothesis McNeill (1992), ac-
cording to which the co-production of continuous speech and gesture is organized in
successive chunks, each of these expressing a single idea unit. With regard to gestures,
these units correspond to gesture phrases (cf. Section 2.1.2). Concerning speech, the
units relate to intonation phrases which are separated by significant pauses. Following
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Figure 6.3: Example of a MURML specification and its realization with the virtual agent Max.

rather the semantical structure than the syntactical phrase structure, intonation phrases
are further characterized by a meaningful pitch contour with exactly one primary pitch
accent, the nucleus.

In order to achieve a natural and synchronized flow of speech and gesture across
successive coherent chunks, the model employs a number of cross-modal adaptation
mechanisms. The gesture stroke is planned to start in synchrony with the onset of
its lexical affiliate and to span for the duration of the gesture’s affiliated words. If
necessary, a post-stroke hold is inserted after the stroke phase, or the stroke is repeated.
Likewise, the duration of the silent pause between two intonation phrases may vary
according to the required duration of the preparation for the next gesture.

The animation of co-verbal gesture is realized in a hierarchical way. A motor
planner is provided with timed form features as described in the MURML specification.
In the following, the problem of complex control is broken down into sub-problems
to be solved by independent motor control modules for the arms, wrists, and hands.

6.3 Generation Example

To illustrate the production process of a multimodal utterance with the production
system described so far, the generation of an example utterance to be realized with the
virtual agent Max is described in the following. Let us assume that Max is engaged
in describing the chapel following the communicative plan given in Figure 6.2. As
a prerequisite, let us further assume that Max has chosen a point of view in front of
the building, facing the chapel at a distance of 10m. Accordingly, the imagistic and
propositional content representations have been adopted to that viewpoint.
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(a) (b)

Figure 6.4: Chapel from the virtual SaGA world (a) and a visualization of its IDT representation (b).

Let us assume the communicative goal provided by the Communication Planner to
be

lmDescConstr lm4_tower lm4_roof

The content planning modules continuously poll the blackboard for new com-
municative goals. As soon as the goal is published, they start to respectively select
and activate imagistic propositional knowledge. The IMDs in Max’s imagery labeled
‘lm4_tower’ and ‘lm4_roof’ receive an activation value of 1.0. This activation is
propagated through the tree so that parent and child nodes still receive half of their
parent’s activation The activated part of the IDT is imported into working memory
along with a set of significantly activated propositions which contain ‘lm4_tower’ or
‘lm4_roof’ as an argument (high activation) or are related to one of the referents, e.g.,
by a part-of relation (less highly activated):

shared(entity(lm4_tower, single)).

shared(instance_of(lm4_tower, tower)).

private(entity(lm4_roof, single)).

private(instance_of(lm4_roof, roof)).

private(property(lm4_roof, pointed)).

private(part_of(lm4_tower, lm4_roof)).

Now the formulator modules come into play, bringing production process to the
microplanning stage. The Speech Formulator lets the SPUDlite system search for an
adequate verbalization of the propositions on the blackboard. Figure 6.3 shows the
resulting LTAG tree generated for the example utterance ‘the tower has a tapered roof’.
Each surface element is annotated with information about the propositional meaning
it conveys.
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The Gesture Formulator runs twice, once for each entity mentioned in the ver-
bal utterance whose activation is high enough to place on the blackboard, namely
‘lm4_tower’ and ‘lm4_roof’. In the run for the entity ‘lm4_tower’, all facts available
on the blackboard are entered into and propagated through the GNetIc model used by
the Gesture Formulator. The corresponding noun phrase ‘the tower’ thus fulfills the
role of the sentence’s theme, and no shape property exceeds the necessary threshold.
These facts are entered into the network and yield a gesture production likelihood of
.06. Following the maximization strategy, the Gesture Formulator consequently halts
the generation of the gesture and moves on to the second entity, ‘lm4_roof’. Its refer-
ring expression ‘a tapered roof’ is the sentence’s ‘rheme’, and the shape property with
the highest similarity value is ‘pointed’ (see Figure 6.5 for visualizations of imagistic
representations of ‘lm4_roof’ and the schematic of ‘pointed’ which were compared
here to analyze the imagistic representation of the referent for its shape properties).
Propagated through the network, the resulting gesture production likelihood is 1.0.

(a) (b)

Figure 6.5: Visualization of imagistic representations for ‘lm4_roof’ (a) and the schematic of the shape
feature ‘pointed’ (b).

The Gesture Formulator now enters facts required by the node ‘representation
technique’: thematization (‘rheme’), information state (‘private’) and the shape prop-
erty ‘pointed’. This results in the maximum probability of 1.0 for a drawing gesture.
Accordingly, handedness and handshape are specified. The likelihood for a right-
handed gesture is .83 given that the representation technique is drawing, and the
likelihood for handshape ‘ASL-G’ is 1.0 based on evidence about the referent’s main
axis (‘none’) and the representation technique.

The next step is the determination of values in the decision nodes. Evidence about
the referent features and the previously determined gesture is propagated through the
network revealing value specifications for the features ‘handedness’ (RH), ‘handshape’
(ASL-G), and ‘representation technique’ (drawing). These are provided for making
further decisions in the decision nodes, resulting in a choice for the palm to be
oriented downwards, the BoH oriented away from the speaker’s body, the movement
type being linear and the trajectory being a sequence of an upwards/right movement
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and an downwards/right movement not unlike tracing an upside-down letter ‘V’
(‘MR/MU>MD/MR’).

The gesture matrix is completed by querying the gesture location from the IMD
accounting for the referent’s position. The resultant feature matrix for the gesture is
given in Figure 6.3. Now the gesture specification is planned: the entity ‘lm4_roof’,
is set in synchrony with the verbal utterance segment referring to the same entity:
the noun phrase ‘a tapered roof‘. Finally, both utterance parts are translated into a
MURML description, which is then sent for realtime realization to the virtual agent
Max. Figure 6.3 shows a screenshot of the resulting gesture.

tapered

roofa

hasthe tower

S

NP VP

NP

JJ

entity(lm4_tower,
single)

entity(lm4_roof,
single)

property(lm4_roof,
pointed)

(a) LTAG tree generated for the utterance
‘the tower has a tapered roof’ by the Speech
Formulator.

MOVEMENT TYPE:   linear
MOVEMENT DIR:   MR/MU>MD/MR
PALM ORIENT: PDN
BoH ORIENT:   BAB
HANDSHAPE:   ASL-G
LOC: LocLowerChin 
         LocCenterRight 
         LocNorm 

(b) Gesture form feature matrix
generated by the Gesture For-
mulator.

(c) Utterance real-
ized with the virtual
agent Max.

Figure 6.6: Generation results for an example utterance.

6.4 Modeling Results and Discussion

6.4.1 GNetIc Models

GNetIc models were learned by applying (1) different structure learning algorithms
and (2) different data sets. Concerning the former, four different algorithms—two
score-based (K2 and MCMC) and two constraint-based (PC and NPC)—were ex-
amined (Section 5.3.2). Regarding the second issue, the choice of training data, five
training sets of individual speaker’s data were used, as well as one combined set of
data from several speakers.

Figure 6.7 displays the results of all four algorithms for five training sets of
individual speakers’ data (rows 1-5), and another dataset combining the data of all
five speakers (row 6). The constraint-based algortithms PC and NPC were applied
with a significance level of p=.01.
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Figure 6.7: Network structures obtained with different algorithms (columns) for different data sets (rows).
See Table 5.1 for the reading of the variables and their value sets..
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Differing Network Structures

A comparison of the networks in each row reveals that learned structures are subject
to (1) the different learning algorithms, and (2) the data set.

Comparison regarding Algorithms With regard to the former, network structures
trained with MCMC typically show the lowest number of edges, whereas networks
trained with NPC show various links among variables. As concerns the constraint-
based algorithms PC and NPC, it is conspicuous that dependencies found by the
PC algorithm are always also covered by the network structure found by the NPC
algorithm. In most of the cases, NPC detects more edges than PC which is not
surprising due to the necessary path condition. This result is in line with Steck and
Tresp (1999) who found that the NPC algorithm learns more of theedges present in a
dataset than the PC algorithm.

Further, it turns out that despite the different solutions yielding multiple edges in
common, there are also some inconsistent edges, in which the structures differ. In this
context, it is noteworthy that score-based approaches as K2 and MCMC consider a
global measure for the entire network. Constraint-based methods, in contrast, remove
all those edges from a network for which a conditional independence statement can
be derived from the data. They do not take into account the structure of the network
as a whole and are, therefore, considered local.

Comparison regarding Data Sets With regard to the second source of differences,
data sets, a comparison of the different network structures in each column shows
obvious differences. That is, different networks are resulting from different speakers’
data. In the following, to elaborate on this, networks trained with one and the same
algorithm, namely NPC, will be compared.

Take, for instance, the network of speaker P1: the production choices made are
predominantly dependent on discourse context, i.e., neither referent features nor the
previous gesture have an impact. At first glance, it seems implausible that fundamental
choices in the planning of iconic gestures can be done without considering any
aspects of the object. On closer inspection, however, speaker P1 has a very strong
preference for drawing gestures (46.9% vs. 15.3% in the whole corpus) which goes
along with a high proportion of handshape ASL-G typically used for drawing gestures.
Note, iconicity of drawing gestures is mainly established by the movement trajectory
determined in the decision nodes.

Another remarkable case is that of speaker P5; in this individual’s data, a large
number of dependencies were found. Every single generation choice in this network
has predecessor nodes from all three variable sets. In other words, every inference
process relies on evidence from at least three variables of different types. In fact, the
choice of handshape depends on evidence from six variables (‘Childnodes’, ‘Tech-

149



nique’, ‘Position’, ‘Symmetry’, ‘Main Axis’, and ‘Previous Handshape’). In contrast,
in speaker P8 the same choice is only influenced by one predecessor node (‘Tech-
nique’). Moreover, P5 is unique in the data in that variables linked to the previous
gesture influence ‘Technique’ and ‘Handshape’.

Examining the networks with particular attention to the impact of different
influences types reveals that referent features and discourse context play the most
significant role. The previous gesture has less influence and the linguistic context
variable is entirely negligible at a significance value of .01.

Link Strength

In particular, how far a variation of the significance level impacted modeling results
was tested. Not surprisingly, the greater the count of links present in the network
structures, the lower the significance level.

In this way, the link strength becomes apparent by varying the significance level
used in the conditional independence tests. That is, it is possible to judge the strength
of the dependencies among variables. As an example, consider Figure 6.8, which
displays two network structures. The two networks obviously differ with regard to
the number of dependencies learned. Whereas gesture production choices in the left
network are predominantly influenced by the discourse context (nodes ‘T’, ‘IS’, and
‘CG’), gesture features in the right network are additionally influenced by all referent
features (nodes ‘G’, ‘CN’, ‘MA’, ‘P’, and ‘SP’) as well as by the previously performed
gesture (nodes ‘LG’, ‘LT’, ‘LH’, and ‘LHS’). Moreover, only a part of the learned
dependencies is highly significant. These connections are found at a significance level
of 0.001, whereas other links are less strong, however, still significant (significance
level of 0.01 or 0.05). In the left network, for instance, the decision to use a gesture
(node ‘G’) is strongly influenced by the shape properties of the referent (node ‘SP’),
whereas link strength for the discourse factors thematization (node ‘T’) and number
of subparts (node ‘CN’) are less strong. Depending on the significance level used for
learning the network structure, the resulting network structures are different: all three
connections would, e.g., be present in the resulting network for a significance level
of 0.05, whereas for a significance level of 0.001 only the strongest link would be
learned.

Applying GNetIc models trained with varying significance levels for generation
choices revealed the following: if too many links were connected with outcome nodes,
the HUGIN decision engine was unable to process these adequately. In these cases,
an equal distribution of probabilities was returned, which can be attributed to the
fact that these models learned from sparse data with heterogenous characteristics (cf.
Wittig, 2002). Therefore, to be able to make appropriate inferences with the model
(going beyond prior probabilities in the outcome nodes), the significance level has
to be rigorous enough. Along the same lines, Abellán et al. (2006, p. 4) argue that,
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Figure 6.8: Network structures obtained with NPC algorithm for two different speakers (left, right): link
strength corresponds to significance level.

“depending of the sample size, it can be more convenient to use a simpler graph than
the true one.”

This constraint led to a situation in which the linguistic constraint (NP type) was
no longer influential, the case for only two networks when trained with a rather low
significance level of .05. A fact that intensifies the nevertheless low influence of NP
type on gesture features is that the NP variable has a large set of values. Larger sample
sizes or an aggregation of values would, possibly, change the situation.

6.4.2 Generation with the Overall Production System

The resulting gesturing behavior for a particular referent in a respective discourse
context varies in dependence on the decision network used for gesture formulation. In
Figure 6.9, examples from five different simulations are given, each based an identical
initial situation, i.e., all gestures are referring to the same referent (the round church
window from the introductory example (Section 1.1)), and under identical contextual
constraints. The resulting nonverbal behavior varies significantly depending on the
decision network underlying the simulation: For P7, no gesture is produced at all,
whereas for P5 and P8, posturing gestures are produced which, however, differ in their
low-level morphology. For P5, the handshape ASL-C is employed using both hands,
while in the simulation for P8 ASL-O is used with the right hand only. P1 and P15
both use drawing gestures which differentiate in their handedness.

That is, the different network structures learned from different speaker’s data
result in inter-individually different simulations of gesturing behavior. The conclusion
to be taken is, therefore, that the GNetIc simulation approach is, first, valuable for
an adequate simulation of speaker-specific gestures (as evaluated in the next section).
Second, it reveals that gesture feature choices are influenced in inter-individually
different ways, suggesting that different speakers actually employ different strategies
in behavior production.
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P1 P5 P7 P8 P15

Figure 6.9: Example gestures from the simulation of different speakers accompanying the words ‘the
church has a round window’. Each utterance is produced for the same referent (a round window of a
church) in the same initial situation.

6.5 Summary

This chapter was concerned with the realization of the previously developed concepts
and methods in a virtual agent. It described how GNetIc models were built and how the
speech and gesture production engine into which the gesture networks were integrated
was implemented. Via this method, the virtual agent Max was enabled to explain
buildings of the virtual SaGA environment to a human user—autonomously and in
real time—being equipped with proper knowledge sources, i.e., communicative plans,
lexicalized grammar, propositional, and imagistic knowledge about the world.

To explore GNetIc generation models, networks were trained using different
learning algorithms and from different data sets. A comparison of the resulting
networks revealed that learned structures differ with regard to both. The differences
due to algorithm choice were obvious in the number of links, but also became apparent
in inconsistent links—a result of the fact that score-based algorithms (K2, MCMC)
employ a global measure, while constraint algorithms (PC, NPC) employ a local
measure. Differences due to the data set on which networks were trained revealed
that individual differences are not only present in the overt gestures, but also in
the production process they originate from. Whereas gesture production in some
individual networks was, e.g., predominantly influenced by visuo-spatial referent
features, other networks revealed a stronger influence of discourse context.

The application of constraint-based algorithms provided the advantageous ability
to choose between significance levels. In doing so, it was possible to judge the strength
of dependencies among variables. However, applying constraint-based structure learn-
ing with rather low significance levels did not lead to appropriate inference results due
to the heterogeneous character of limited data. Therefore, a higher level of significance
is preferred.
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CHAPTER 7
Evaluation

The previous chapter described the implementation of the GNetIc model and its
application in a production framework for multimodal utterances. The final step which
is still due now is an evaluation of the generation results. According to the two-fold
research objective pursued in this thesis, results will be evaluated in two ways.

First, in a prediction-based evaluation, it will be investigated, to what extent
the derived model enables a prediction of empirically observed gestural behavior. In
general, this evaluation method aims to measure the model’s prediction accuracy by
computing how often the model’s assessment is in agreement with the actual gesturing
behavior of human speakers in the SaGA corpus. In particular, this corpus-based
evaluation will be used to compare how different structure learning algorithms (score-
based vs. constraint-based) and training sets (individual vs. combined) affect the
prediction accuracy of the model.

Second, in a perception-based evaluation, it will be assessed if and how automati-
cally generated gestures, realized with a virtual agent, are beneficial for human-agent
interaction. This investigation comprises two major aspects, namely the communica-
tive role of gesture use and the role of gestures in the subjective impression a human
has of the interaction. With regard to the first point, the user’s uptake of gestural
information is explored, while the second issue is concerned with (1) the quality of the
produced gestures as rated by human users; (2) whether an agent’s gesturing behavior
could systematically alter a user’s perception of the agent’s likeability, competence,
and human-likeness; and (3) whether producing gestures like a particular individual
or like the average speaker (i.e., a GNetIc model learned from the combined data of
several speakers) is preferable.

Results of the prediction-based evaluation have been published in Bergmann and
Kopp (2010a), results of the perception-based study in Bergmann et al. (2010).
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7.1 Prediction-based Evaluation

To get the most complete picture possible of GNetIc’s prediction accuracy, the net-
works will be evaluated with regard to each single decision which is made in the
generation process. As part of the gesture features are determined probabilistically
(with chance nodes) while others are determined in a rule-based way. These two issues
will be distinguished in the evaluation as well.

7.1.1 Evaluation of Probabilistic Generation

The evaluation of generation choices made probabilistically with chance nodes in
the GNetIc models compares (1) how different structure learning algorithms (K2,
MCMC, PC, NPC) and (2) training sets (individual vs. combined) affect the prediction
accuracy of the model.

Results

To investigate the quality of the different network structures, each model’s prediction
was compared with the empirically observed gesturing behavior from the SaGA corpus.
For each network structure found, its maximum likelihood estimates of parameters
were computed with the standard EM algorithm (Lauritzen, 1995).

In a leave-one-out cross-validation each model has been learned from n − 1
selected data cases (n is the number of cases in the data set), leaving out the data
case i. Then the model was tested on that data case. For each model the procedure is
repeated n times so that each data case was used for testing once. The reported results,
as summarized in Table 7.1, are an average over all n runs.
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It turned out that for all generation choices the prediction accuracy values clearly
outperform the chance level baseline. In total, the prediction accuracy achieved with
individual networks is, by trend, better than the accuracy achieved with networks
learned from non-speaker specific data. This holds for the results of all four learning
methods.

A comparison of the different learning techniques shows that networks learned
with the score-based MCMC algorithm result in the lowest accuracy values, whereas
best results are achieved with the constraint-based PC algorithm. In general, higher
accuracy values were achieved with constraint-based algorithms in comparison to
score-based algorithms. That is, the general advantages of constrained-based algo-
rithms (Section 5.3.2) receive further support for their application in the current
context of gesture generation due to their higher prediction accuracy.

7.1.2 Evaluation of Rule-based Generation

In a second step, the performance of the four local generation choices made in decision
nodes of GNetIc is evaluated. Note that decisions are made in a particular order, which
has an impact on the validation results. If one of the earlier choices does not match the
observed value in the test data, the following decisions typically cannot match the data
either. Assume for instance that the predicted representation technique is ‘indexing’
although the representation technique in the test data is ‘shaping’. The subsequent
choices concerning morphological gesture features would accordingly be made under
false premises. Results for the rule-based decisions are, therefore, validated locally,
i.e., taking the test case data for previous decisions as a basis and evaluating the quality
of our decision making rules directly.

Results

Detailed results are given in Table 7.2. Note that, the same measure is not applied
for all four variables. Palm and finger orientation are compared by calculating the
angle between the two orientation vectors (cf. Section 4.1.5). For instance, there
is an angle of 90◦ between ‘left’ and ‘up’, and an angle of 45◦ between ‘left’ and
‘left/up’ . A maximum angle of 180◦ is present if the two vectors are opposing (e.g.
‘left’ and ‘right’), and can be considered the worst match. Considering this, the mean
deviation for palm orientation of 54.6◦ (SD = 16.1◦) and the mean deviation for finger
orientation of 37.4◦ (SD = 8.4◦) are quite satisfactory with deviations which lie well
within the fuzziness of natural gestures in humans.

Movement direction is distinguished between motions along the following three
planes: (1) sagittal plane (forward, backward), (2) transversal plane (left, right), and
(3) vertical plane (up, down). Each segment in the generated movement description is
tested for co-occurrence with the annotated value, resulting in an accuracy measure
between 0 (no agreement) and 1 (total agreement). For multi-segmented movements
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the mean accuracy is calculated, i.e., if a generated movement consists of two segments
from which only one matches the annotation, its similarity is estimated with a value
of 0.5. Evaluating GNetIc with this measure gives a mean similarity of .75 (SD =
.09). For the movement type (linear or curved), the standard measure of accuracy
is employed, i.e., it is determined whether the generated value exactly matches the
annotated value. The mean accuracy for the movement type is 76.4% (SD=13.6).

Table 7.2: Evaluation results of generation choices assessed in GNetIc’s decision nodes.

Generation Choices P1 P5 P7 P8 P15

Palm Orientation 37.1◦ 61.9◦ 76.4◦ 57.1◦ 40.5◦

BoH Orientation 29.0◦ 41.7◦ 41.9◦ 27.9◦ 46.6◦

Movement .69 .84 .84 .56 .89
Movement Direction .82 .76 .82 .61 .76

7.2 Perception-based Evaluation

Until now, it was evaluated in how far the GNetIc model is able to simulate gesture
use as observed in human speakers. Altogether, given the large range of potential
values (or value combinations) for each of the variables, the results are satisfactory.
Moreover, generated gestures whose features do not fully coincide with the original
data may still be beneficial for human-agent interaction, either by communicating
relevant information, or by improving the subjective impression of the interaction as
well as the impression of the virtual agent itself. Both issues will be investigated in
the following.

Information Uptake The question whether and how speech-accompanying ges-
tures contribute to communication cannot be answered unambiguously. While some
research has shown that listeners’ comprehension of speech was not influenced or sup-
plemented by gesture use, other studies showed that listeners do incorporate gesturally
expressed information into their broader understanding of communicative behavior.

Evidence against the communicative function of gestures for addressees was
reported by Krauss et al. (1991). In four experiments it was investigated whether
conversational gestures actually communicate. The authors found that performance
was better than chance but markedly inferior to performance when words were used
as stimuli. Further evidence along the same lines comes from a set of experiments
with stimulus descriptions of different kinds (abstract graphic designs, synthesized
sounds, samples of tea). Addressees had to select the described object from a set of
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objects. In none of the experiments accuracy was enhanced when participants were
allowed to see the speaker’s gestures (Krauss et al., 1995).

In contrast to this, evidence for the communicative function of gestures from
the listener’s point of view comes from studies in which speech was ambiguous
or presented in a noisy environment. In these cases listeners were found to rely
on gestural cues (Thompson and Massaro, 1986; Rogers, 1978). Moreover, Cassell
et al. (1999) reported that listeners do attend to information conveyed in gesture,
when that information supplements or even contradicts the information conveyed by
speech. In a more detailed analysis, Beattie and Shovelton (1999a,b) discovered that
gesture use was particularly beneficial for addressees with respect to certain semantic
categories, namely the relative position and size of objects. Holler et al. (2009)
replicated this finding for face-to-face interaction. They found that in some cases
gestures were even more effective at communicating position and size information
in a face-to-face condition compared to the presentation of video stimuli. Further
support for the communicative function of gestures as judged by recipients comes
from neuropsychology. Kelly et al. (2004) and Habets et al. (2010) found N400 effects,
a marker of semantic integration, providing evidence that the iconic content of gestures
is picked up and processed by listeners.

For the case of human-agent communication there are hardly any findings re-
garding the question whether humans take up information from an agent’s gestures.
Krämer et al. (2003) compared a gesturing virtual agent to text and audio conditions:
no supporting effect of gesture use on comprehension and recall was observed. For
the special cases of names and technical terms it was even found that the text and
audio conditions were found to be more advantageous. Buisine and Martin (2007)
investigated whether speech-gesture cooperation, in terms of redundancy and com-
plementarity, influences participants’ recall from a multimedia presentation given by
animated agents. 2D cartoon-like agents were employed to give technical presentations
associated with an image displayed on a whiteboard wherein speech was combined
with deictic and iconic gestures. Results showed the advantage of a redundant strategy
in this context: multimodal redundancy improved recall of the verbal content. Overall,
redundancy yielded a recall proportion of 49%, while 41% of the complementary
information was recalled correctly. Notably, redundancy influenced verbal but not
graphical recall.

Presentation Quality and Agent Perception The second major issue to be ad-
dressed concerns user acceptance of generated gestures. There is increasing evidence
that endowing virtual agents with human-like, non-verbal behavior may lead to en-
hancements of the likeability of the agent, trust in the agent, satisfaction with the
interaction, naturalness of interaction, ease of use, and efficiency of task completion
(Bickmore and Cassell, 2005; Heylen et al., 2002).

With regards to the particular effects of co-speech gestures, Krämer and col-
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leagues found no effect on agent perception when comparing a gesturing agent with
a non-gesturing one. The agent displaying gestures was perceived just as likeable,
competent, and relaxed as the agent that did not produce gestures. In contrast, Cassell
and Thórisson (1999) reported that non-verbal behavior (including beat gestures)
resulted in an increase of perceived language ability and life-likeness of the agent, as
well as smoothness of interaction. A study by Rehm and André (2007) investigated
whether a gesturing agent would change the perceived politeness tone compared to
that of the textual utterances and whether the subjective rating is influenced by the
type of gestures (abstract vs. concrete). Their studies revealed that the perception
of politeness depends on the graphical quality of the employed gestures. In cases
where the iconic gesture was rated as being of higher quality than the metaphoric
gesture, they observed a positive effect on the perception of the agent’s willingness
to co-operate. In cases where the iconic gesture was rated as being of lower quality
than the metaphoric gesture, they observed a negative effect on the perception of the
agent’s willingness to co-operate. Moreover, in the aforementioned study by Buisine
and Martin (2007), effects of different types of speech-gesture cooperation in an
agent’s behavior were found: redundant gestures increased ratings of explanation
quality, expressiveness of the agent, likeability and positive perception of the agent’s
personality.

7.2.1 Study Design

A second evaluation was designed to evaluate the GNetIc model with regard to the
following three questions: First, how much information do participants take up from a
speech-gestural presentation? Second, is it possible to achieve a reasonable quality
in the iconic gestures automatically derived with GNetIc, as perceived by users?
Third, is the user’s perception of an agent in terms of likeability, competence, and
human-likeness altered by the agent’s gesturing behavior?

The prediction-based part of the evaluation revealed an advantage of training
gesture generation networks from speaker-specific data with regard to prediction
accuracy—does this advantage also hold for the subjective perception of users? All
three issues mentioned above will be investigated under consideration of the overall
question whether it is preferable to produce gestures like a particular individual or
like the average speaker. A user study was set up with a between-subject design in
order to compare how individual vs. combined GNetIc networks are perceived.

Independent Variables

In a between-subject design, participants were presented with a description of a
church building given by the virtual human Max. All descriptions were produced fully
autonomously at runtime using the speech and gesture production architecture into
which GNetIc is integrated (Section 5.5). The gesturing behavior of the agent was
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manipulated, resulting in five different conditions in which Max, notably, received the
identical communicative goals and produced identical verbal utterances throughout
(see Table 7.3). Furthermore, all gestures were generated from the same knowledge
base.

In two individual conditions, ind-1 and ind-2, the GNetIc networks were learned
from data of individual speakers from the SaGA corpus (subject P5 in ind-1, subject
P7 in ind-2). These two speakers were chosen because both speakers gestured quite
frequently and approximately at the same rate. In a combined condition, the GNetIc
network was generated from data of five different speakers (P1, P5, P7, P8 and
P15). These speakers’ gesture styles were thus amalgamated in one network. As
a consequence, Max’ gesturing behavior was not as consistent as with individual
networks with regard to the probabilistic choices in the model. Finally, two control
conditions were added. In the first one, no gestures were produced at all, whereas
in the second one, values in the four probabilistic nodes were determined by chance
(random). The latter condition can result, for instance, in gestures occurring at atypical
(e.g., thematic) positions in a sentence since the network was applied for every noun
phrase in the verbal description.

Overall, the virtual agent’s verbal utterances were held constant and all gestures
were created fully autonomously by the system. There was no within-condition
variation, because choices in the Bayesian networks were not made via sampling,
but by choosing the values with maximum a-posteriori probability. Furthermore, the
values for the decision nodes were determined in the same rule-based way in all
conditions, to ensure that no ‘nonsense’ gestures were produced throughout.

Table 7.3 shows the stimuli which resulted from the five different conditions.
There is no wide difference across conditions in gesture frequency (either five, six or
seven gestures in six sentences). However, the two individual GNetIc conditions are
characterized by less variation in the production choices. In condition ind-1 gestures
are predominantly static ones while there are more dynamic shaping gestures in
condition ind-2. Moreover, the gestures in condition ind-1 are mostly performed with
c-shaped hands, whereas in ind-2 some gestures are performed with a flat handshape.
In the combined GNetIc condition, a combination of different techniques is present. A
similar mixture of techniques is observable in the random condition which is further
characterized by inconsistency in handedness and handshapes. Moreover, gestures in
this condition can occur at atypical positions in a sentence.

Dependent Variables

Following the three-part objective of the user-centered evaluation, dependent variables
were assessed with a questionnaire grouped into three parts, (1) information recall, (2)
presentation quality, and (3) agent perception.
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Table 7.3: Stimuli presented in the five different conditions: verbal description given in each condition
(left column; translated to English; gesture positions labelled with squared brackets); GNetIc networks
from which the gesturing behavior were produced (top row); gestures produced (right columns).

no gesture random combined ind-1 ind-2

(1) [The church is
squared]...

(2) ...and in the middle
there is [a small spire.]

(3) [The spire]...

...has [a tapered roof].

(4) And [the spire]...

has [a clock].

(5) There is [a door] in
front.

(6)
And in front of the
church there is [a low,
green hedge].

(7)
There is [a large
deciduous tree] to the
right of the church.
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Information Recall First, information uptake was judged in terms of the semantic
information participants were able to recall. As in Buisine and Martin (2007), two
types of recall were employed, written recall and graphical recall. An established
micro-analytic coding method was employed using a set of semantic features (cf.
Beattie and Shovelton, 1999a,b, 2001; Bergmann and Kopp, 2006; Holler and Beattie,
2002, 2003, 2004). The following set of semantic features was considered to capture
the proportion of semantic information recalled from the object descriptions given by
the virtual agent Max:

– Entity: This semantic category reflects whether or not the participant correctly
specified a particular entity. The recalls were analyzed with respect to the
following entities: ‘church’, ‘tower’, ‘roof’, ‘clock’, ‘door’, ‘hedge’, and ‘tree’.

– Shape: This category reflects whether or not the participant correctly specified
the shape of the particular entity.

– Size: This category reflects whether or not the participant correctly specified the
size of the particular entity.

– Relative Position: This category reflects whether or not the participant correctly
specified the relative position of the particular entity.

Presentation Quality To investigate how users perceive the quality of the overall
presentation, and the agent’s use of speech-accompanying gestures in particular, the
following items were chosen to be judged on seven-point Likert scales:

– Gesture Quantity
The amount of gestures was... [too few—too many]

– Gesture Quality, following (Hartmann et al., 2006):

· Spatial Extent
The spatial extent of gestures was ... [too small—too large]

· Temporal Extent
The temporal extent of gestures was ... [too slow—too fast]

· fluidity
Gesture execution was fluid. [not fluid—very fluid]

· Power
The execution of hand and arm movements was ... [weak—powerful]

– Eloquence
[Max is not eloquent—Max is eloquent]

– Overall Comprehension
The description given by Max was ... [not comprehensible—easily comprehen-
sible]
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Figure 7.1: Set-up of the stimulus
presentation phase.

– Gesture’s Helpfulness for Comprehension
for the overall understanding gestures were ... [not helpful—very helpful]

– Vividness of the agent’s mental image
Max had a vivid mental image from the things he described ... [not vivid—vivid]

Agent Perception Finally, participants had to report their perception of the virtual
agent’s personality. To this end, 18 items were chosen (Fiske et al., 2006; Hoffmann
et al., 2009): active, affable, approachable, dedicated, expert, friendly, fun-loving,
helpful, humanlike, intelligent, likeable, lively, organized, pleasant, sensitive, sociable,
thorough, trustworthy (translated from German) to assess the degree to which they
attributed them to Max using a 7-point Likert scale.

Participants

A total of 110 participants (22 in each condition), aged from 16 to 60 years (M = 23.85,
SD = 6.62), took part in the study. 44 participants were female and 66 were male. All
of them were recruited at Bielefeld University and received 3 Euro for participating.

Procedure

Participants were instructed to carefully watch the presentation given by the virtual
agent Max in order to be able to answer questions regarding content and subjective
evaluation of the presentation afterwards. Figure 7.1 shows the setup used for stimulus
presentation: Max was displayed on a 80 x 143 cm screen and thus appeared in
life-size of 1.25 m. Life-sized projections have been shown to yield visual attention
and fixation behavior towards gestures that is similar to behavior in face-to-face
interactions (Gullberg and Holmqvist, 2006). Participants were seated 170 cm away
from the screen and their heads were approximately leveled with Max’ head.

They were randomly assigned to one of the five conditions. The object description
given by Max was preceded by a short introduction: Max introduced himself and
repeated the instruction already given by the experimenter to allow participants to
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get used to the speech synthesis. The subsequent object description was always six
sentences long and took 45 seconds. Each sentence was followed by a pause of three
seconds. Participants were left alone for the stimulus presentation, and after receiving
the questionnaire to complete it (neither experimenter nor Max were present during
completion). The questionnaire consisted of the following parts:

1. Information Uptake

– Written recall

· General summary of the description

· Detailed recall of objects and their properties

– Graphical recall

2. Presentation quality

3. Agent perception

7.2.2 Analysis

Scoring of semantic features in stimuli To investigate the amount of information
participants take up from a given presentation, it is necessary to estimate the amount
of information actually present in the stimuli. For this purpose two independent coders
judged all five stimulus presentations with respect to the semantic features (SFs)
communicated. The agreement was measured using the chance-based coefficients
AC1 (Gwet, 2001) and Cohen’s Kappa (Cohen, 1960). Results, given in Table 7.4
show a high degree of inter-rater agreement (cf. Artstein and Poesio, 2008). The few
discrepancies that did emerge were resolved through discussion.

Table 7.4: Agreement coefficients for scoring semantic features in the stimulus presentations.

AC1 Kappa

Experimental
Conditions

GNetIc ind-1 0.96 0.94
GNetIc ind-2 0.95 0.95
GNetIc combined 0.86 0.84
no gesture 1.00 1.00
random gestures 0.95 0.95

Gestural SFs 0.90 0.84
Verbal SFs 1.00 1.00

Scoring of Written and Graphical Recall Subject of the analysis to be carried out
is the accuracy of the participants’ recall with respect to semantic features. Critical
to this analysis is what is judged as a correct answer. This was accomplished by
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scoring all questionnaires independently by two raters who applied the following
rules for written recall: the participant’s answers relating to the semantic feature entity
were scored as correct when the entity was either named with the label that was
used in the stimulus presentation or with an apparent synonym (e.g., ‘door’ (German:
‘Tür’) and ‘gate’ (German: ‘Tor’)). Answers about shape, size, and relative position
were judged as correct when it was explicitly stated that a particular entity was, e.g.,
‘tapered’ (German: ‘spitz’) or ‘round’ (German: ‘rund’). Again, apparent synonyms
and paraphrases were also evaluated as correct (e.g. ‘low’ (German: ‘niedrig’) and
‘small’ (German: ‘klein’)). Answers, however, that contained only a general judgement,
such as ‘the tree is standing next to the church’ (German: ‘der Baum steht neben der
Kirche’) instead of ‘right of the church’ were not considered as correct answers due
to a lack of precision in the participant’s recall.

The same measures were employed when evaluating graphical recall. The seman-
tic feature entity was only scored as correct when the entity was obviously present
in the drawing. Semantic features shape and relative position were judged as correct
when the particular property was apparently identifiable. Take Figure 7.2 as an exam-
ple: the drawing in Figure 7.2 (a) the semantic feature ‘squared’ was judged as being
present, whereas the drawing in Figure 7.2 (b) was evaluated as not containing the
feature ‘squared’. In figure 7.2 (c) it is not identifiable if the participant actually got
that the church has a squared ground, and it is, therefore, not scored as being correct
regarding the semantic feature shape.

(a) (b) (c)

Figure 7.2: Three examples of graphical recall in the evaluation of information uptake.

Both written and graphical recalls were scored independently by two judges. The
overall reliability between the two judgers was found to be AC1=0.94 and Kappa=0.94,
showing a high degree of interrater agreement (cf. Landis and Koch, 1977), thus
providing a solid basis for further analyses of the data. There are no obvious differences
between (1) the different experimental conditions, (2) the types of recall, and (3) the
types of semantic features as summarized in Table 7.5. Further, there is no obvious
difference between AC1 and Kappa coefficient for any of the features.
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Table 7.5: Agreement coefficients for scoring semantic features from written and graphical recall.

AC1 Kappa

Experimental
Conditions

GNetIc ind-1 0.93 0.93
GNetIc ind-2 0.96 0.96
GNetIc combined 0.93 0.93
no gesture 0.94 0.94
random gestures 0.95 0.94

Type of recall Overall summary 0.94 0.94
Verbal recall 0.95 0.95
Salient objects/properties 0.97 0.91
Graphical recall 0.94 0.90

Overall 0.94 0.94

7.2.3 Results—Information Uptake

To test the effect of experimental conditions on the dependent variables, analyses
of univariate variance (ANOVA) and paired-sample t-tests for pairwise comparisons
between condition means were conducted. In the following, results are reported with
respect to the effect of experimental conditions on the accuracy proportion participants
achieved in verbal and graphical recall.

General Recall Table 7.6 summarizes the mean scores and standard deviations. The
mean of the accuracy proportion for verbal recall was 53.6%. There was no significant
main effect for experimental conditions, however, there was a trend indicating that
accuracy proportions are highest in the no gesture condition (60.84%), whereas lowest
accuracy values were observed in the random (48.83%) and combined (49.06%)
conditions. For graphical recall the mean of the overall recall proportion was 77.15%.
Experimental conditions had no significant main effect on graphical recall, but recall
accuracy in the individual GNetIc conditions and the no gesture condition were by
trend higher than in the combined GNetIc condition and in the random condition.

Semantic Categories The different semantic categories employed in the analysis
were then considered separately. In general, it turned out that—for verbal recall—the
mean accuracy proportions differed obviously for the different semantic categories.
Accuracy proportions ranged from 21.82% for the semantic feature color, up to
81.43% for the semantic feature entity. Analyses of univariate variance revealed
that for only one of the semantic categories, namely shape, there was a main ef-
fect of experimental conditions (f (4,105)=25.07, p<.001). This was due to the fact
that the mean accuracy proportions for both control conditions significantly outper-
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formed the accuracy in the three GNetIc conditions: no gesture/ind-1: t(42)=8.29,
p<.001; no gesture/ind-2: t(42)=9.64, p<.001; no gesture/combined: t(42)=8.05,
p<.001; random/ind-1: t(38)=4.63, p<.001; random/ind-2: t(36)=5.19, p<.001; ran-
dom/combined: t(42)=5.27, p<.001. For the other semantic categories entity, relative
position, size, and color no significant main effect was found for experimental condi-
tions in verbal recall.

In addition there was a tendency, although not significant, for the SF categories
entity and color to be better recalled in the three GNetIc conditions as compared to
the control conditions (means of 84% vs. 77.5% for entity; 27.3% vs. 13.5% for size).
In both SF cases, the two individual GNetIc conditions received slightly higher recall
accuracy than the combined GnetIc condition.

A separate analysis of the semantic categories for graphical recall revealed that
entities were recalled with highest accuracy (M=83.3%) while the mean recall accuracy
for shape information was 71.5% and for relative position 72.3%. There was no
significant main effect for experimental conditions.
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Table 7.7: Mean proportions of semantic features that were correctly recalled in percent (standard
deviations in parentheses).

Redundant SFs Complementary SFs

Verbal recall

ind-1 .57 (.22) .27 (.34)
ind-2 .82 (.22) .20 (.30)
combined .52 (.19) .25 (.37)
random gestures .68 (.24) —

Overall .65 (.24) .24 (.33)

Graphical
recall

ind-1 .77 (.23) .77 (.30)
ind-2 .74 (.26) .67 (.40)
combined .65 (.24) .61 (.41)
random gestures .48 (.27) —

Overall .66 (.27) .68 (.37)

Relation of Speech and Gestures Next, the role of information distribution across
modalities was considered. That is, semantic features communicated by both speech
and gesture (redundant SFs) were contrasted with semantic features communicated
only gesturally (complementary SFs). For verbal recall, participants’ information up-
take differed considerably between redundantly and complementarily communicated
SFs. The mean accuracy proportion for complementary SFs was 24.24%, whereas it
was 64.58% for redundant SFs. For the latter there was a main effect for experimental
conditions (f (3,84)=8.35, p<.001). Results of t-tests showed significant mean differ-
ences between one of the individual GNetIc conditions, namely ind-2, and the other
conditions: ind-2/ind-1: t(42)=3.80, p<.001; ind-2/combined: t(42)=3.80, p<.001;
ind-2/random: t(42)=1.96, p=.057. In addition, the recall of redundant SFs in the ran-
dom condition significantly outperformed the recall in the combined GNetIc condition:
random/combined: t(40)=-2.54, p=.015.

For graphical recall—notably—there was no such difference between redundant
and complementary SFs. Here, the proportion of correctly recalled complementary
SFs was 68.0% and therefore almost identical to the graphical recall proportion of
redundant SFs.

Serial Position Since it was notable that redundant features were communicated
particularly successfully in the random condition, the position of semantic features
in the sequential presentations was further taken into consideration. Actually, the
redundant features in the random gestures presentation were predominantly present
in the first half of the description. In contrast, in the three GNetIc conditions, redun-
dant features were distributed over the complete presentation. The same holds for
verbal recall results from the SF-based analysis: here the SF shape was recalled most
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Table 7.8: Mean proportions of semantic features that were correctly recalled in percent (standard
deviations in parentheses).

First SFs Middle SFs Last SFs

Verbal recall

ind-1 .73 (.15) .66 (.16) .52 (.27)
ind-2 .75 (.15) .58 (.19) .55 (.28)
combined .65 (.17) .58 (.19) .47 (.26)
no gestures .74 (.14) .72 (.26) .54 (.26)
random gestures .69 (.12) .68 (.27) .32 (.23)

Overall .71 (.15) .65 (.22) .48 (.27)

Graphical
recall

ind-1 .82 (.21) .88 (.15) .69 (.34)
ind-2 .83 (.18) .82 (.23) .76 (.34)
combined .84 (.15) .73 (.29) .60 (.38)
no gestures .86 (.15) .87 (.22) .67 (.30)
random gestures .78 (.21) .83 (.23) .49 (.31)

Overall .83 (.18) .83 (.23) .64 (.34)

successfully in the two control conditions in which shape features were presented
at the beginning of the description, while shape features were distributed over the
complete description in the GNetIc conditions. This is why the position of gesturally
communicated semantic features in the sequence of speech-gesture utterances was
further considered comparing semantic features presented (1) in early (sentences
1—2), (2) in the middle (sentences 3—5), and (3) at the end (sentences 6—7) of the
description.

The analysis revealed that there was a considerable difference between the three
classes of SF position with regard to verbal recall accuracy: SFs presented at the
beginning of the description were recalled with the highest accuracy rate of 73.3%.
SFs communicated in the middle part of the description were recalled at a rate of
64.5%, whereas SFs from the end of the presentation only had a mean recall proportion
of 48.1%. Analyses of univariate variance revealed that only for the latter there was a
main effect for experimental conditions (f (2,326)=2.87, p=.03). Results of pairwise
t-tests showed that this effect was due to the fact that recall accuracy in the random
condition was significantly lower in comparison with the no gesture and the two
individual GNetIc conditions: random/no gesture: t(41)=-2.94, p=.01; random/ind-2:
t(40)=-2.99, p=.01; random/ind-1: t(39)=-2.63, p=.01.

Graphical recall was also decreased for SFs occuring at later positions in the
presentations. In contrast to verbal recall, there was no difference between SFs in the
first and the middle part of the description. A main effect of experimental conditions
was not found for SF positions with regard to graphical recall accuracy.
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Table 7.9: Mean values for the dependent variables of presentation quality in the five conditions
(standard deviations in parentheses).

ind-1 ind-2 combined no gestures random

Gesture Quantity 3.91 (1.15) 3.95 (0.95) 3.59 (0.91) 2.48 (1.21) 3.55 (1.22)
Spatial Extent 3.77 (0.87) 4.14 (0.83) 3.59 (1.05) – 3.55 (1.05)
Temporal Extent 3.68 (0.83) 3.64 (0.66) 3.50 (1.01) – 3.30 (0.87)
Fluidity 4.09 (1.48) 4.00 (1.57) 3.05 (1.32) – 3.65 (1.53)
Power 3.59 (1.10) 4.09 (1.27) 3.91 (1.38) – 3.90 (1.48)
Eloquence 3.50 (1.74) 4.91 (1.14) 3.05 (1.46) 3.69 (1.11) 3.25 (1.61)
Comprehension 5.18 (1.33) 5.27 (1.16) 4.68 (1.49) 4.95 (1.32) 4.18 (1.37)
Gestures helpful 5.68 (1.56) 5.82 (0.85) 4.70 (1.62) 1.82 (1.14) 4.10 (2.05)
Vividness 5.32 (1.62) 5.45 (1.13) 4.18 (1.81) 4.08 (1.32) 3.81 (1.80)

7.2.4 Results—Quality of Presentation

The perceived quality of presentation was investigated with regard to gestures, speech,
and content. Participants were asked to evaluate each variable on a seven-point Likert
scale. To test the effect of experimental conditions on the dependent variables, analyses
of univariate variance (ANOVA) were conducted and paired-sample t-tests with 95%
confidence intervals (CI) for these pairwise comparisons between condition means.
Mean values and standard deviations are summarized in Table 7.9 and visualized in
figure 7.3 for dependent variables with significant main effects.

Gesture Quantity With regard to gesture quantity, the overall mean value for the
four gesture conditions was M=3.75 (SD=1.06) on a seven-point Likert scale (too
few—too many). There was no significant main effect for experimental conditions.
That is, participants were quite satisfied with the gesture rate. For the no gesture
condition, participants rated gesture quantity as rather too low (M=2.48, SD=1.21).

Gesture Quality No main effect for experimental conditions was obtained for the
four attributes characterizing gesture quality: spatial extent (too small—too large,
M=3.77, SD=0.97), temporal extent (too slow—too fast, M=3.53, SD=0.85), fluidity
(not fluid—very fluid, M=3.70, SD=1.51), and power (weak—powerful, M=3.87,
SD=1.30). In all four gesture conditions the four quality attributes were rated with
mean values between 3.0 and 4.0 on a seven-point Likert scale.

Eloquence With regard to perceived eloquence of the virtual agent (Max is not
eloquent—Max is eloquent), there was a significant main effect (f (4,79)=3.12, p=.02).
This is due to the fact that the mean of condition ind-2 differed from all other condi-
tions (ind-2/no gesture: t(21)=2.64, p=.02, CI=[0.26;2.17]; ind-2/random: t(25)=2.94,
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p=.01, CI=[0.50;2.82]; ind-2/combined: t(25)=4.02, p=.001, CI=[0.91;2.82]; ind-
2/ind-1: t(31)=2.43, p=.02, CI=[0.23;2.59]). That is, gestures produced with a suitable
individual gesture network have the potential to increase the perceived eloquence
(recall that the verbal explanations were identical in all conditions).

Overall Comprehension Another variable of interest was the comprehensibility of
the overall description (not comprehensible—easily comprehensible). Although the
ANOVA marginally failed to reach significance (f (4,105)=2.37, p=.057), simple effects
for experimental conditions were analyzed. The means for both individual GNetIc
conditions significantly outperformed the mean of the random gesture condition (ind-
1/random: t(42)=2.46, p=.018, CI=[0.18; 1.82]; ind-2/random: t(41)=2.85, p=.007,
CI= [0.32;1.86]). By trend, the no gesture mean differed from the random mean. That
is, participants reported greater comprehension of the presentation when the agent
produced no, rather than random gestures.

Gesture’s Helpfulness for Comprehension With regard to perceived helpfulness
of gesturing (not helpful—very helpful) a significant main effect (f (4,104)= 25.86,
p<.001) was obtained. Not surprisingly, participants in the no gesture condition rated
gesturing as less helpful than participants in the other conditions (t-test, p<.001 in
each case). In addition, gestures in both individual conditions (ind-1, ind-2) were rated
more helpful than in the random condition (ind-1: t(41)=2.87, p=.006, CI=[0.47;2.70];
ind-2: t(41)=3.63, p=.001, CI=[0.77;2.68]).

Vividness Furthermore, participants were asked to rate the vividness of the agent’s
conception of the presented content (not vivid—vivid). Random gesturing tended to
hamper this impression even more than no gesturing and combined gesturing. Further-
more, the ANOVA revealed a significant main effect (f (4,79)=3.50, p=.01). Results of
t-tests showed significant mean differences between both individual GNetIc conditions
and the other three conditions (ind-1/no gesture: t(29)=2.47, p=.02, CI=[0.16;2.32];
ind-1/random gestures: t(30)=2.66; p=.01, CI=[0.38;2.63]; ind-1/combined: t(41)=2.19,
p=.03, CI=[0.09;2.18]; ind-2/no gesture: t(22)=2.76, p=.01, CI=[0.33;2.43]; ind-
2/random gestures: t(25)=2.91, p=.01, CI=[0.38;2.90]; ind-2/combined: t(31)=2.12,
p=.04, CI=[0.05; 2.50]). That is, producing gestures with an individualized network
helps a virtual agent to create the impression in human recipients of having a better
idea of what is being described.

7.2.5 Results—Perception of the Virtual Agent

How Max was perceived was assessed using several items, such as ‘pleasant’, ‘friendly’,
‘helpful’ on seven-point Likert scales (not appropriate—very appropriate). To measure
the reliability of these items, they were grouped into three scales ‘likeability’, ‘compe-
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Figure 7.3: Mean values of the dependent variables in the five conditions (see Tables 7.9 and 7.11 for
exact values and SDs).

tence’, and ‘human-likeness’ (see Table 7.10), and Cronbach’s alpha for the indeces
was calculated. Alpha values for all three scales were above 0.7, which justifies com-
bining these items into one mean value as a single index for this scale. The main effect
for experimental conditions was analyzed by applying ANOVAs and the pattern of
means further investigated by computing paired-samples t-tests with 95% confidence
intervals (CI) for pairwise comparisons between condition means. Mean values and
standard deviations are summarized in Table 7.11 and visualized in figure 7.3.

Table 7.10: Reliability analysis for the three scales ‘likeability’, ‘competence’, and ‘human-likeness’.

Scale Items Cronbach’s Alpha

Likeability pleasant, sensitive, friendly, likeable, affable,
approachable, sociable

.86

Competence dedicated, trustworthy, thorough, helpful,
intelligent, organized, expert

.84

Human-likeness active, humanlike, fun-loving, lively .79

Likeability Regarding likeability, a significant main effect for experimental condi-
tions (f (4,104)=3.88, p=.01) was found. Mean ratings for the two individual GNetIc
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Table 7.11: Mean values for the agent perception scales in the five different conditions (standard
deviations in parentheses).

ind-1 ind-2 combined no gestures random

Likeability 4.12 (1.18) 4.47 (0.81) 3.95 (0.87) 3.62 (1.24) 3.39 (1.14)
Competence 4.07 (1.11) 4.34 (0.55) 3.89 (0.84) 4.01 (1.09) 3.44 (1.07)
Humanlikeness 3.11 (1.29) 3.38 (1.07) 2.64 (1.01) 2.62 (1.00) 2.73 (0.98)

conditions were higher than in the other conditions. In particular, this relationship was
significant when comparing the ind-2 condition with no gesture (t(36)=2.68, p=.01,
CI=[0.21;1.48]) and random conditions (t(38)=3.58, p=.001, CI=[0.47;1.67]). The
mean difference between ind-2 and the combined condition marginally failed to reach
significance (t(40)=1.99, p=.054; CI=[-0.01;1.02]). For individual condition ind-1, the
difference of mean evaluation of likeability in comparison with random gestures was
significant (t(42)=2.08, p=.05, CI=[0.02;1.43]). In addition, means for the combined
GNetIc condition were higher than in both control conditions. In other words, all three
GNetIc conditions outperformed the control conditions, whereby best evaluations for
likeability were obtained by participants in the individual GNetIc conditions.

Competence With regard to the evaluation of the agent’s competence, a signifi-
cant main effect (f (4,101)=2.65, p=.04) was also found. The GNetIc condition ind-2
received higher mean evaluations than the random condition (t(42)=3.51, p=.001,
CI=[0.38;1.42]). The combined GNetIc condition also received a higher mean evalua-
tion than the random condition which is, however, not significant. Notably, there were
no significant differences between the GNetIc conditions and the no gesture condition.

Human-likeness Finally, the analysis of ratings for human-likeness revealed a main
effect (f (4,104)=2.08, p=.09). Both individual GNetIc conditions outperformed the
other conditions. Again, this relationship is stronger for the condition ind-2 (ind-2/no
gesture: t(42)=2.40, p=.02, CI=[0.12;1.38]; ind-2/random gestures: t(42)= 2.09, p=.04,
CI=[0.02;1.27]; ind-2/combined: t(41)=2.30, p=.03, CI=[0.09;1.38]). For the other
individual GNetIc condition ind-1, the mean rating of human-likeness is also higher
than in the combined GNetIc condition and the two control conditions, but these
differences are not significant. No difference was found between the combined GNetIc
condition and the two control conditions (random and no gesturing).
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7.3 Summary and Discussion

This chapter evaluated the GNetIc generation results in two ways, according to the
two-fold research objective pursued in this thesis.

7.3.1 Prediction-based Evaluation

Results of the prediction-based evaluation study can be summarized in four points.
First and foremost, the analysis of the prediction accuracy of the GNetIc model as
compared to the corpus data yielded very promising results. Both chance node and
decision node evaluations provided substantial accuracy values, clearly above the
chance level baseline for all production choices in all conditions under investigation.
Given that natural gesture use in humans is often sloppy and the fact that in a particular
situation a large number of gestures may be appropriate, as can be seen from the
obvious inter-individual differences in gesturing behavior, one cannot expect the
model to precisely predict every single gesture feature accurately. The achieved
prediction values are, however, a positive indication for the appropriateness of the
selected modeling methodology. Nevertheless, there is still a potential for improvement
making use of the iterative character of the cyclic design methodology applied in
this thesis. Ideas for advancing the GNetIc model will be sketched in Section 8. Any
extension of the model can easily be evaluated in comparison relative to the results
achieved so far.

Second, the comparison of different learning techniques showed that prediction
accuracy of constraint-based algorithms was higher than the prediction accuracy of
score-based algorithms. Therefore, the application of constraint-based methods is to
be preferred since they provide several advantages (Section 5.3.2). In particular, as a
local measure and by providing the possibility to vary significance levels, they are of
higher value to discover mechanisms and principles of the underlying data, and allow
for elucidating iconic gesture production in humans.

Third, the comparison of networks learned from either individual or combined
data sets revealed an advantage for individual data. This holds for the results of all
four learning methods. That is, the effect of data heterogeneity seems to be stronger
than overfitting tendencies (cf. Section 5.4.2). Accordingly, individual data sets are to
be preferred when aiming to reproduce gestural behavior.

Finally, accuracy results for both probabilistic and rule-based decision making
yielded similar values. That is, neither of the two modeling methods provided by
BDNs was found to be superior with regard to prediction accuracy. The application of
the hybrid method, therefore, is shown to be reasonable also from the perspective of
predication-based accuracy.
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7.3.2 Perception-based Evaluation

The perception-based evaluation comprised two major aspects, namely the commu-
nicative role of gesture use in terms of information uptake and the role of gestures
in the subjective impression of the interaction in terms of presentation quality and
perception of the virtual agent.

Information Uptake

The purpose of the analysis of information uptake was to test whether human ad-
dressees pick up semantic information from a virtual agent’s communicative behavior,
and whether there are any characteristics of speech and gesture use modulating the
uptake of gesture information. With regard to information uptake from gestural be-
havior of virtual agents the present analysis goes beyond the study carried out by
Krämer et al. (2003) and Buisine and Martin (2007) in that it employs a micro-analytic
feature-based methodology. Results can be summarized in four major points.

First, it is remarkable that the difference across experimental conditions with
regard to information uptake in general was only marginal. The no gesture condition,
actually, received the highest proportion of correctly recalled semantic features. That
is, gesture use, in whatever condition, did not increase participants’ recall accuracy.
For the random gesture condition this is not surprising at all, as one could argue
that the ununsual way of gesture use, becoming apparent for instance in gesture
occurrence with the sentence’s theme (see Figure 7.3), led to confusion and, therefore,
reduced recall accuracy. The lower recall accuracy in the GNetIc conditions, however,
is more difficult to explain, in particular, since most of the gestures were redundant
with speech (exceptions are only the window and the door gestures in the GNetIc
conditions) and redundant gestures are prevalently seen as supplementing the verbal
communication channel. A reason for these findings might be that the gesturing agent
or the integration of speech and gestures during perception and understanding needs
cognitive resources, resulting in impaired capacity for memorization. Further research
addressing this issue is definitelt required.

Second, there was a discrepancy between verbal and graphical recall. As also
reported in Buisine and Martin (2007), accuracy scores were higher in graphical recall
as compared to written recall. A likely explanation for this finding is that prototypical
information about particular objects is implied when drawing the object which was
described. For instance, a majority of church doors might be arc-shaped or most
church clocks round. So it seems as if participants combined information recalled
from the description with their previous knowledge of similar objects which became
apparent in the graphical recall situation where participants were ‘forced’ to give those
objects a shape. That is, verbal recall seems to be a more direct or explicit measure
with regard to question how much information users really pick up from the agent’s
communicative behavior.
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Third, and related to the previous point, there was a crucial difference between
redundant and complementary gestural information in verbal recal, but not in graphical
recall: redundancy yielded a slight increase of verbal recall accuracy in contrast to the
no gesture control condition (65% vs. 61%). By contrast, complementarity information
yielded a significant decrease of verbal recall in contrast to the control condition (24%
vs. 61%). It is therefore concludable that information encoded redundantly in speech
and gestures tended to help the users to memorize and encode the information verbally
(i.e., explicitly), while information that was only present in gestures was not recalled
very well. With regard to the slightly beneficial role of redundant gestures, it is
remarkable that there was relatively much variation across conditions. For instance, in
the GNetIc ind-2 condition, redundancy led to a recall proportion of even 82%. That
is, a reasonable hypothesis is that the kind of gesture use is decisive for the degree of
recall ability.

Another reason for the low recall accuracy of complementary gestures is that
complementary gestures were used towards the end of presentations and, in gen-
eral, recall accuracy was decreased for semantic information given at the end of the
presentations—contrary to the ‘recency effect’ (when asked to recall a list of items in
any order, people tend to begin recall with the end of the list, recalling those items
best (Murdock, 1962)). An explanation for the missing recency effect would be that
the presentation of content was not independent of order. Rather, utterances built
upon each other: the first sentence, for example, introduced the church, while the
second sentence elaborated on the appearance of the church by introducing the church
tower. The third sentence again elaborated on this by giving information about the
tower’s roof etc. This order of information was also reflected in participant’s verbal
recalls, providing evidence for the fact that order was important in recall. Further
research is definitely needed at this point to identify the factors that make up successful
communicative gestures.

Finally, addressees’ information uptake accuracy was further found to be con-
siderably different for the different semantic categories. This is not surprising, since
similar differences between SF categories were also reported for information uptake
from human gesturing (Beattie and Shovelton, 1999b, 2001). What is remarkable from
the present study, however, is that there was a tendency for the SF categories entity and
color to be better recalled in the three GNetIc conditions as compared to the control
conditions. Both SF categories are not explicitly conveyed in gestures: for color it
is not possible at all, and object identity was always depicted gesturally by specific
properties such as shape, position, or size. That is, information uptake accuracy in the
GNetIc conditions was improved for information that was not conveyed gesturally.
An explanation could be that gestures, in general, helped to visualize and memorize
information—not only restricted to the particular SFs explicitly depicted by those
gestures.
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Quality of Presentation and Perception of the Virtual Agent

Going beyond the purely communicative functions of gesture use, another goal of the
perception-based evaluation study was to explore the user acceptance of the GNetIc-
generated gestures, as well as to investigate how the virtual agent itself is judged by
human users. Results can be summarized in five major points.

First, Max’ gesturing behavior was rated positively regarding gesture quantity and
quality, and no difference across gesture conditions was found concerning these issues.
That is, building generative models of co-verbal gesture use can yield good results
with actual users. The fact that gesture quality was rated more or less equally across
conditions rules out the possibility that other effects of the experimental conditions
were due to varying quality of gesture use and realization in the virtual agent.

Second, both individual GNetIc conditions outperformed the other conditions in
that gestures were perceived as more helpful, overall comprehension of the presenta-
tion was rated higher, and the agent’s mental image was judged as being more vivid.
Similarly, the two individual GNetIc conditions outperformed the control conditions
regarding agent perception in terms of likeability, competence, and human-likeness.

Third, the combined GNetIc condition, notably, was rated worse than the in-
dividual GNetIc conditions throughout. This finding underlines the important role
of inter-individual differences in communicative behavior and implies that the com-
mon approach to inform behavior models from empirical data by averaging over a
population of subjects is not the best choice.

Finally, the no gesture condition was rated more positively than the random
condition, in particular for the subjective measures of overall comprehension, the
gesture’s role for comprehension, and vividness of the agent’s mental image. That is,
with regard to these aspects it seems even better to make no gestures than to generate
random, though still considerably iconic gestural behavior.

Overall, individualized gesturing was strikingly beneficial with regard to how
virtual agents and their communicative skills are judged by human users, suggesting
that modeling individual speakers with proper abilities for the target behavior results
in even better be behavior judged from the perspective of human interaction partners.
This may be due to the fact that individual networks ensure a greater coherence of
the produced behavior. As a consequence, the agent may appear more coherent and
self-consistent which, in turn, may make its behavior more predictable and easier to
interpret for the user. This is in line with Nass et al. (2000), who found that people
like virtual agents better when they show consistent personality characteristics across
modalities. On the contrary, however, Foster and Oberlander (2007) recently argued
for more variation in the generation of non-verbal behavior based on evidence from
the evaluation of automatically produced head and eyebrow motion. Since the two
individual GNetIc conditions were not judged equally well (ind-2 outperformed ind-1),
it seems reasonable, in any case, to detect particularly appropriate speakers and to
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individualize agents according to them. Further research is needed to identify the
characteristics of ‘successful’ gesture use in detail. Given the close relation of gestures
and speech it is, for instance, supposable that the relation of gestures and speech also
plays a role. To make the experimental conditions comparable, the verbal part of the
communicative behavior was identical across all conditions. It might be, however, that
combination with automatically generated verbal constructions would have been more
appropriate, e.g., in the ind-2-condition.

179





CHAPTER 8
Conclusion

The goal of this thesis was to develop a computational simulation model for the
production of speech-accompanying iconic gestures to be realized in virtual agents.
The rationale behind this objective was to devise and probe a predictive model of
gesture use in order to gain insight into human gesture production, and thereby to
improve human-agent interaction such that it progresses towards intuitive and human-
like communication.

8.1 Summary of Results

As a starting point, evidence that iconic gestures are shaped not only by iconicity, but
also by contextual constraints as well as inter-individual differences was collected. Ex-
isting models of gesture production—theoretical and computational—were reviewed
and discussed with respect to fundamental design choices concerning these factors.
The conclusion was that none of those models provides a comprehensive account of
how gestures are produced.

Empirical Results As empirical basis for the generation model, the SaGA corpus
provided an extensive data collection of communicative behavior for a spatial task.
The statistical data analysis revealed the following results:

– Gesture use was found to be influenced by multiple factors: characteristics of
the referent, the linguistic and discourse-contextual situation, as well as the
speakers’ previous gestural behavior.

– The corpus analysis revealed novel insights with respect to the sub-classification
of iconic gestures into gestural representation techniques: gestures of these
techniques were shown to differ significantly from each other with regard to
the employed form features. They were, further, found to be structured by
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representation technique-specific constraints, while at the same time also being
sensitive to characteristics of the referent as well as inter-individual differences.

– There were obvious inter-individual differences found, both at the surface of
gestural behavior and also in how strong particular influencing relations were.

Modeling Results Based on the empirical insights, the Generation Network for
Iconic Gestures (GNetIc) was developed—a computational simulation model for the
production of speech-accompanying iconic gestures:

– The model combines data-driven and rule-based decision making to account for
both inter-individual differences in gesture use, as well as patterns of represen-
tation technique-specific form-meaning mappings.

– The physical appearance of generated gestures is influenced by multiple factors:
characteristic features of the referent accounting for iconicity, as well as contex-
tual factors like the given communicative goal, information state, or previous
gesture use.

– Learning gesture networks from individual speaker’s data gives an easily in-
terpretable visual image of preferences and strategies in composing gestures
and makes them available to generate novel gesture forms in the style of the
respective speaker.

GNetIc models were brought to application in an overall architecture for inte-
grated speech and gesture generation. Being equipped with proper knowledge sources,
i.e., communicative plans, lexicon, grammar, propositional, and imagistic knowledge,
a virtual agent was enabled to autonomously explain buildings of a virtual environment
using speech and gestures. By switching between the respective decision networks,
the system has the ability to simulate speaker-specific gesture use.

Evaluation Results Accounting for the two-fold rationale followed in this thesis,
the GNetIc model was evaluated in two ways:

– In comparison with empirically observed gestural behavior, the model was
shown to be able to successfully approximate human use of iconic gestures. In-
dividualized models yielded a slightly better prediction accuracy than ‘average’
models learned from the combined data of several speakers.

– When brought to application in a virtual agent, individualized GNetIc-generated
gestures were found to increase the perceived quality of object descriptions as
judged by human recipients. Moreover, the agent was rated more positively in
terms of likeability, competence, and human-likeness. Individualized gesture use
was, further, shown to be slightly helpful for human users’ ability to generally
memorize the objects which were described.
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8.2 Implications

Looking back at the point from where this thesis started— with its widely open
question of why different gestures take the particular physical form they actually
do—the results of this work provide first steps towards a more thorough understanding
of iconic gesture production in humans and also on how gesture use may improve
human-agent interaction. Implications for both research areas will be sketched in the
following.

Implications for Research on Communicative Behavior From the point of view
of gesture research, the results show that computational modeling with virtual agents
is a highly valuable tool to discover mechanisms and principles of gestural behavior.
The analysis of modelling results actually revealed novel insights into the production
process of iconic gestures: inter-individual differences in gesture use were shown
to be present not only in the overt gestures, but also in the production process they
originate from. That is, a set of different gesture generation strategies seems to exist
from which individuals typically apply a particular subset. The major conclusion to
be taken from this is that inter-subjective differences are a key factor with regard to
understanding the mechanisms underlying gesture production in humans. This is a
fact that has neither been considered in most existing theoretical/psycholinguistic
nor in computational models of gesture production. As a result, although existing
production models do not provide a comprehensive account of gesture production in
human speakers, they may provide increments towards the set of factors and processes
involved.

The observation that individual speakers apply a subset of available generation
patterns has also been made in research on the generation of referring expressions
(Dale and Viethen, 2009; Viethen and Dale, 2010).The insight might, thus, have the
potential of having even wider consequences for research on communicative behavior
in humans. This view actually offers a new perspective for research on production
processes of communicative behavior and implies further, exciting research questions
and challenges: what is the range of possible production strategies? How are they
combined in individual speakers? Are these combinations idiosyncratic or are there
general ‘clusters’ of speakers sharing similar strategy sets? Are there any factors
influencing this combination, e.g., personality traits or cognitive skills? Although not
providing an answer to these questions, the GNetIc approach nonetheless provides a
valuable instrument for their exploration.

Implications for Research on Virtual Agents From the point of view of virtual
agent research, the results showed that automatically generated gestural behavior is
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actually beneficial with regard to the impact of virtual agents on human addressees.
Notably, different models were found to result in noticable different behavior, with con-
sistently differing perception and evaluation by human recipients. As a consequence,
it seems reasonable to detect particularly appropriate speakers and to individualize a
virtual agent’s communicative behavior accordingly. This does, of course, raise the
question concerning the characteristics of ‘successful’ gesture style. At this point, the
potential of virtual agents comes to the fore as they provide the flexibility to turn on
and off aspects of the behavior model to observe how human addressees respond.

Individualization of communicative behavior, however, bears the danger of nar-
rowing acceptance down to a certain population of users, since gesture perception,
like production, may be subject to inter-individual differences. For instance, Martin
et al. (2007) found the rating of gestural expressivity parameters to be influenced by a
human addressee’s personality traits. Accordingly, an important lesson to be learned,
therefore, concerns the role of evaluation studies as an integral part of the commu-
nicative behavior modelling process. While prediction accuracy is highly prized in
many evaluations of behavior simulation, the impact of how humans perceive a virtual
agent’s expressive behavior should always be a major citerion to help producing
adequate behavior and increase the acceptance of the agent. Do people, e.g., prefer an
agent that simulates their own gesture style?

8.3 Outlook

The GNetIc approach presented in this thesis goes well beyond related work in
computational gesture generation, which has either emphasized common patterns in
the formation of iconic gestures or concentrated on the individualization of gesture
use. Nevertheless, there is of course potential for improvements:

– The model is, so far, restricted to gestures used in object descriptions for sim-
plified VR objects. The description of more realistic entities or other forms
of gesture use, like verb-phrase aligned gestures, e.g., pantomime gestures
or typical direction-giving gestures as in ‘turn right’, pose further challenges.
With regard to the former, it is likely that further shape properties as well as
other referent characteristics, e.g., orientation, have to be considered. The exten-
sion regarding verb- and action/motion-related gestures requires an extension
of the represenation formalism on which generation is based, as well as the
consideration of further gestural representation techniques.

– The GNetIc account, as presented here, focused on decision making with regard
to important form aspects of gesture use. Further characteristics of gesture qual-
ity, not yet considered, include what Hartmann et al. (2006) called expressivity
parameters: modulations in spatial or temporal extent, repetitions etc. These
parameters were identified as also being subject to inter-individual differences.

184



Hence, there is still potential to improve the degree of how speaker-specific
automatically GNetIc-generated gestures are. Instead of simply applying these
parameters to readily planned gestures, the GNetIc account allows integrating
them into the overall generation process. This would provide the advantage
that those parameters can be placed in relation to other modulating factors.
For instance, the spatial extent of a gesture may vary depending on, say, the
information state.

– Gesture production was viewed from a speaker-internal perspective in this
thesis. One crucial aspect that has not been considered accordingly is the fact
that gestures are typically produced in face-to-face dialogue situations. There
is, however, evidence that gesture use is additionally constrained by dialogue-
related factors. One such factor is the visibility of the addressee. There is much
evidence that speakers gesture at a higher rate when they can see the person
they are talking to (e.g., Cohen and Harrison, 1973; Cohen, 1977; Krauss et al.,
1995). Bavelas et al. (2008) additionally found that visibility significantly affects
how speakers gesture: in face-to-face interaction, participants were more likely
to make life-size gestures than in monologue or telephone situations. Kimbara
(2006, p. 41) described the phenomenon of gestural mimicry in terms of a
given speaker’s gesture being contingent upon the gesture of an interlocutor that
occurred in the previous discourse: “the form-meaning relationship of a given
speaker’s gesture appears to influence how an interlocutor’s gesture is formed
when the interlocutor refers to the same topic in subsequent discourse”. The
gesture generation model, therefore, awaits integration of these interactional
and dialogue-related sensitivities of gesture use. The model developed so far
lends itself to this purpose, as it is extensible with regard to both further factors
as well as the possibility to incorporate functions judging the utility of single
decisions or collections of decisions.

To conclude, the fundamental principles of the GNetIc model seem to be suited
to deal with these potential enhancements. Accordingly, the work presented here can
also serve as a valuable basis to investigate future research questions.
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