
Exzellenzcluster
Cognitive Interaction Technology

Kognitronik und Sensorik
Prof. Dr.-Ing. U. Rückert

Dynamically Reconfigurable
Hardware for Embedded Control

Systems

zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEUR (Dr.-Ing.)

der Technischen Fakultät
der Universität Bielefeld

genehmigte Dissertation

von

M.Sc. Carlos Vladimir Paiz Gatica
Referent: Prof. Dr.-Ing. Ulrich Rückert
Korreferent: Prof. Dr.-Ing. Joachim Böcker

Tag der mündlichen Prüfung: 21. Dezember 2011

Paderborn / Januar 2012
DISS KS / 02

Para Araceli, mi compañera de vida, y Ernesto, nuestro fruto y esperanza.

iii

Abstract

This thesis explores the use of dynamically reconfigurable hardware for the realisation
of embedded control systems, using the most well-known example of this kind of
technology: Field Programmable Gate Array (FPGA). The focus of the first part
of the thesis is on assessing the resource utilisation of FPGA- and CPU-based re-
alisations, relating the results to the algorithmic characteristics of the implemented
controller, and the properties of both hardware and software architectures. Using
a selected set of benchmarks, it is shown that an FPGA-based design achieves a
higher computational density (Cdensity=throughput/area) and a higher energy efficiency
(Ee f f iciency=throughput/power) than a CPU-based implementation. Furthermore, it
is shown that when the average parallelism of the algorithm to be implemented in-
creases when increasing the problem size (i.e., the amount of computations required
for that algorithm), the gap between FPGA- and CPU-based realisations in terms of
computational density increases, too.

The use of run-time hardware reconfiguration to achieve a more efficient resource
utilisation than a static approach is investigated in the second part of this work. It is
shown that control systems requiring structural and parametric adjustments during
execution can benefit from run-time hardware reconfiguration. Application examples
are presented showing that the proposed concepts are successfully realisable using
current technologies, also for control applications having demanding time-constraints.

New design methodologies are required for embedded control systems using dy-
namically reconfigurable hardware, specially for those targeting run-time hardware
reconfiguration. A Hardware-in-the-Loop design framework is presented in the third
part of this work, which allows an early cycle-accurate verification of a design under
test (DUT), using a simulated environment. In a second stage, the DUT can be moni-
tored in real-time, and design parameters can be adjusted during operation, while using
the target environment of the DUT. Several realisation examples show the efficacy of
the proposed framework.

This thesis shows that dynamically reconfigurable hardware, particularly FPGA
technology, is a suitable platform for demanding embedded control applications.
Methods and tools presented in this thesis disclose the advantages of dynamically
reconfigurable hardware, and represent a step towards taking full advantage of the
possibilities offered by this technology, in the context of embedded control systems.

Contents

Abstract iii

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Outline . 4

2 Realisation of Digital Control 7
2.1 Digital Control . 7

2.1.1 Software-Based Design . 9
2.1.2 ASIC-Based Design . 11

2.2 Reconfigurable Hardware . 13
2.2.1 Field Programmable Gate Array 14
2.2.2 General FPGA-Based Design Flow 18

2.3 Utilisation of Reconfigurable Hardware for Digital Control 19
2.3.1 Application Spectrum . 20
2.3.2 Factors of the Technology Migration 22
2.3.3 Coupling of Reconfigurable Hardware and Software Architec-

tures . 30
2.3.4 Run-Time Hardware Reconfiguration 34

2.4 Summary . 35

3 Technology Comparison of Reconfigurable Hardware and Software
Architectures 37
3.1 Algorithmic Characterisation . 38

3.1.1 Controller Representation: Cyclic Data Flow Graph 38
3.1.2 Scheduling of a CDFG . 39
3.1.3 Basic Operations Set: Selection and Weighting 41
3.1.4 Normalised Operations and Steps 42
3.1.5 Average Parallelism . 48

3.2 Resource Utilisation Assessment 50
3.2.1 Computational Density . 52
3.2.2 Energy Efficiency . 55

3.3 Computing Architectures . 56
3.3.1 PowerPC 750-G Processor 56

vi Contents

3.3.2 FPGA Device . 58
3.4 Realisation Flow . 60

3.4.1 Hardware Implementation-Flow 60
3.4.2 Software Implementation-Flow 62

3.5 Benchmarks . 63
3.5.1 PID Controller . 64
3.5.2 State-Feedback Controller 75
3.5.3 State Observer . 84

3.6 Summary . 93

4 Run-Time Hardware Reconfiguration 97
4.1 Controller Adjustment . 98
4.2 Run-Time Hardware Reconfiguration 100

4.2.1 Configuration Granularity 102
4.2.2 Configuration Interface . 104
4.2.3 Partial Reconfiguration Process 105
4.2.4 Partition and Placement Approaches 108
4.2.5 Communication Infrastructure 110

4.3 Control Adjustment Through Run-Time Reconfiguration 111
4.3.1 Structure Adaptation . 111
4.3.2 Parameter Adaptation . 114

4.4 Implementation Examples . 116
4.4.1 The RAPTOR System . 117
4.4.2 System Architecture . 118
4.4.3 Inverted Pendulum System 121
4.4.4 Self-Optimising Motion Controller 128

4.5 Summary . 138

5 Design Verification through Hardware-in-the-Loop Simulations 141
5.1 Classification of Test-Systems . 142

5.1.1 Model- and Software-in-the-Loop 142
5.1.2 Rapid Prototyping . 143
5.1.3 Hardware-in-the-Loop Simulation 143
5.1.4 On-Line Test . 143
5.1.5 FPGA-in-the-Loop . 144

5.2 HiLDE: HiL Design Environment 146
5.2.1 Hardware Components . 147
5.2.2 Software Components . 149
5.2.3 Communication and Performance 151
5.2.4 HilDE Tool Flow . 155
5.2.5 Implementation Examples 159

Contents vii

5.3 HiLDEGART: HiL Design Environment for Guided Active Real-Time
Test . 166
5.3.1 Hardware Components . 167
5.3.2 Software Components . 168
5.3.3 HiLDEGART Tool Flow 170
5.3.4 HiLDEGART Implementation Examples 171

5.4 Summary . 176

6 Summary and Outlook 177
6.1 Summary . 177
6.2 Outlook . 180

Author’s Publications 183

Bibliography 187

List of Figures 205

List of Tables 211

Glossary 213

1 Introduction

Digital technology is constantly evolving in response to the ever-increasing compu-
tational requirements of modern society. A good example of this evolution is the
so-called Moore’s law, which says that the amount of transistors contained in a pro-
cessor doubles every two years [Moo98]. This trend has been observed since the
publication of the original paper in 1965, and will provably continue for some more
decades. However, there are physical limitations (e.g., thermal noise [Kis02], transis-
tor scaling limitations [Tho06], or power dissipation issues [Kis04]), which force us
to look for other possibilities to increase performance. Furthermore, this exponential
growth of the number of transistors in a processor does not necessarily results in
exponential growth of CPU performance. One way to increase performance while
keeping resource efficiency is to adapt the computer architecture to the application.

Digital Signal Processors (DSP) are a good example: the most common operation of
applications in the domain of filtering or video processing is multiplication. Therefore,
most of the current DSP architectures have at least one specialised multiply and
accumulate (MAC) unit. Architectures for digital control have evolved similarly. Let
us consider microcontrollers as an example. They have been used traditionally for
motion control applications in both low-performance AC inverter drives and high-
performance servo drives. This platform has evolved from very simple architectures to
one-chip solutions, incorporating specialised DSP functions (e.g., MACs), Digital to
Analog Converters, Analog to Digital Converters, Pulse Width Modulators, along with
dedicated hardware for networked communication. This means that not only the level
of specialisation, but also the level of architectural parallelism has been increased, by
adding specialised processing units in response to application requirements.

In the last decade, the rise of more complex and more computation-intensive control
schemes has motivated engineers and researchers to explore new architectures, or even
new computing paradigms to reach the required performance. Reconfigurable Hard-
ware (RH), specifically the most well-known architecture of this kind of technology,
Field Programmable Gate Array (FPGA), has emerged as an alternative for demanding

2 Chapter 1 Introduction

applications, because of its high architectural parallelism, and the possibility to change
the configuration of the device according to the application.

FPGAs are heterogeneous devices, constituted by programmable functional blocks
and embedded application-specific hardware, such as embedded processors, memory,
or multipliers, interconnected by a reconfigurable network. This allows for new ways
to implement digital controllers, leaving the traditional CPU-based approach for a
highly parallel realisation. However, can all kinds of control algorithms benefit from
this technology for their realisation? Is an FPGA-based realisation faster, or less
energy consuming than a CPU-based realisation? These questions motivate the first
part of the present work.

It is well-known, that the feature of reconfigurability of SRAM-based FPGAs comes
at the prices of a great amount of silicon resource dedicated to enable reconfiguration
of logic elements (more than 80% of silicon resources [Fen06]). Are there ways to take
advantage of resources dedicated for configuration when the device is in operation?
For which kinds of control applications would such an approach be beneficial? The
second part of the present work is inspired by these questions.

Furthermore, aspects of the design flow of digital controllers such as design verifi-
cation and real-time monitoring, which are already standard for CPU-based design
flows, are addressed in the last part of the present work. The main contributions of
this thesis are summarised in the following section.

1.1 Contributions

FPGAs offer a different approach to realise computations when compared to cen-
tralised architectures, such as general purpose processors. The architectural paral-
lelism offered by FPGAs allows for spatial computation in contrast to the classical
approach, in which a problem is first decomposed in single steps that are executed
sequentially. The first contribution of this thesis is a quantitative comparison of
software- and FPGA-based realisations, from a technological point of view. The main
contributions are:

• A set of metrics is proposed to evaluate algorithmic characteristics of con-
trollers. Particularly, the number of average operations per execution step
(AOS) is used to measure average parallelism, which together with the size
of the algorithm (SizeAlg) are used to characterise selected benchmarks. Fur-
thermore, computational density (Cdensity = throughput/area), and energy ef-
ficiency (Ee f f iciency = throughput/power) are used to assess the resource util-
isation of a hardware- and software-base realisation. Computational density
and energy efficiency are metrics taken from literature and are adapted to the
application field of control systems.

1.1 Contributions 3

• Three representative control algorithm are chosen as benchmarks for this com-
parison: a PID controller, a state-feedback controller, and a full state observer.
Based on the implementation results of these benchmarks, and on their algorithm
characteristics, the advantage of realising controllers using FPGA technology
are quantitatively demonstrated. It is shown that an FPGA implementation
leads to a higher Cdensity and Ee f f iciency, which implies a more efficient use of
resources. Presented implementation results show that an algorithm having an
increasing problem size (i.e., SizeAlg) with constant average parallelism (i.e.,
AOS) derives in a reduction of the gap between FPGA- and CPU-based reali-
sations, regarding achievable values of Cdensity and Ee f f iciency. On the contrary,
when an algorithm has an increasing AOS when increasing SizeAlg the gap
between FPGA- and CPU-based realisations increases, too.

Achievable performance decreases for controllers requiring more resources than
those available in an FPGA device, because configurable logic has to be time-shared.
This situation can be caused by having more resources occupied on an FPGA than
those required at a given time. This is the case of control approaches requiring some
kind of adjustment at run-time, because all possible configurations have to be loaded
into the FPGA when the configuration of the device stays constant through the whole
operation cycle (i.e., a static approach). To tackle this problem, the utilisation of
run-time reconfiguration of FPGAs for control application is presented. The main
contributions are summarised in the following paragraphs:

• It is shown that FPGA-based control systems requiring adjustments during
operation can benefit from RTR. Two cases of adjustments are distinguished:
structural and parametric changes.
• It is shown that the resource utilisation of a dynamic approach depends on the

worst-case configuration of the system, whereas for a static implementation
the resource utilisation depends on all required configurations. This can lead
to a better resource utilisation for systems using run-time-reconfiguration, in
contrast to a static approach (i.e., the configuration of the device does not change
during operation).
• The problem of having a reaction time (i.e., reconfiguration times plus initialisa-

tion time) longer than the required control cycle is analysed and solutions are
proposed.
• Implementation examples show that the proposed approach can be realised with

current technology, also for demanding control applications.

An important part of the design of digital systems is verification. This thesis
contributes in this field, by proposing a Hardware-in-the-Loop framework for FPGA-
based designs. The main contributions are:

• A cycle-accurate FPGA-in-the-Loop simulation framework using well-known
simulation tools such as Matlab/Simulink or CaMEL-View is presented. Hardware-

4 Chapter 1 Introduction

in-the-Loop Design Environment (HiLDE) allows the early verification of the
design under test (DUT) using a simulated environment. Furthermore, it is
shown that simulations are accelerated, shortening required design times. Sev-
eral examples show the efficacy of HiLDE.
• A real-time test framework using the target environment of the DUT is intro-

duced. The focus of this framework called HiLDEGART (HiLDE for Guided
Active Real-Time Test) is on monitoring internal states and I/Os of a DUT while
it is in operation, on adjusting design parameters, as well as on verifying timing
issues. The advantages of using HiLDEGART are disclosed, using several
prototypical implementations.
• A tool-flow is presented, which enables the automatic integration of a DUT to a

HiL simulation (HiLDE or HiLDEGART), thus making the verification process
easier and less error prone.
• Several realisation examples prove the efficacy of the proposed frameworks,

also for applications requiring run-time reconfiguration.

These topics are addressed in the following chapters, as explained in the next
section.

1.2 Thesis Outline

Chapter 2 presents relevant background on digital control, showing the main dif-
ferences between a software-, an ASIC-, and an FPGA-based design flow. The
chapter offers a review of the state-of-the-art regarding the utilisation of reconfigurable
hardware for control applications. It is shown that FPGAs are leaving their role as
prototyping platforms to become the target architecture for demanding control appli-
cations. The reasons are examined and the research problems investigated in this work
are motivated.

Chapter 3 explores the benefits and challenges of using FPGA-technology in contrast
to a CPU-based realisation for embedded control applications. This chapter begins by
introducing used metrics for algorithm characterisation and for resource utilisation
assessment. Furthermore, the used computing architectures are presented in detail. The
chapter continues by showing the design- and tool-flow used for the implementation
of benchmarks. Implementation results and the corresponding analysis and discussion
follows, and finally the main contributions are summarised.

The use of run-time reconfiguration (RTR) for control applications is presented
in chapter 4. The concept of RTR is explained, analysing different aspects of the
design of systems using RTR. It is shown that FPGA-based control systems requiring
some kind of adjustments during operation can benefit from RTR. Two cases of
adjustments are distinguished: structural and parametric changes. For both cases

1.2 Thesis Outline 5

RTR can be used to achieve a better resource utilisation, depending on the amount
of structural variations, or the size of the algorithm requiring parametric changes.
Two implementation examples are examined: a two-controller system for an inverted
pendulum, and a self-optimizing motion controller. Prototypical realisations of the
presented concepts show the advantage of this approach.

Chapter 5 introduces a Hardware-in-the-Loop design environment for FPGA-based
controllers, which includes an off-line simulation framework (HiLDE) and an on-
line monitoring tool (HiLDEGART). These frameworks support the design flow of
FPGA-based controllers targeting run-time reconfiguration. Hardware and software
components of both frameworks are presented, as well as a tool-flow which allows
the automatic integration of the design under test. Several application examples are
presented, showing the benefit of using HiLDE and HiLDEGART.

Finally, chapter 6 summarises the main results presented in previous chapters and
offers conclusions, giving also an outlook based on analysis of collected experiences
during this thesis work.

2 Realisation of Digital Control

This chapter introduces background concepts on digital control and reconfigurable
hardware. The main contribution of the chapter is a literature review of the use of
Field Programmable Gate Array (FPGA) technology for control applications. Based
on this review, relevant research problems undertaken in the thesis are motivated. The
chapter ends with a brief summary.

2.1 Digital Control

The aim of a controller is to influence the behaviour of a system, usually referred to
as plant, by applying control signals in order to achieve a particular control objective.
Control signals can be computed with or without direct information of the plant,
which is known as open- and close-loop control, respectively. If direct information is
gathered from the plant, control signals are usually a function of an error signal (e(k));
the difference between a desired value or set point, (s(k)) and a measured value (y(k)),
cf. equation 2.1.

e(k) = s(k)− y(k) (2.1)

Digital control refers to the utilisation of signals discrete in value and time to control
a plant. This process involves the utilisation of digital hardware (e.g., a processor) to
compute the control effort. Figure 2.1 depicts a typical digital close-loop controller.

Feedback signals (ỹ(t), cf. figure 2.1) are typically measured by sensors, which
convert a given form of energy, such as mechanical movement, heat, or light, into
electrical signals. Sensor signals are ideally directly proportional to the measured
property. These signals are usually conditioned (y′(t)), e.g., filtered and amplified,
before they are digitalised (y(k)). The digitalisation implies three steps:

8 Chapter 2 Realisation of Digital Control

PlantController

+ -Signal
Processing

u(k) u'(t)

y'(t) ỹ'(t)s'(k)

e(k)

s(k)

Digital Processing Unit

Signal
Conditioning

Measurement
System

u'(k)

y'(k)

Signal
Processing

A/D
Converter

Signal
Processing

D/A
Converter

ũ'(t)

y(k)

Figure 2.1: Block diagram of a typical digital control system

1. Sampling: involves the conversion of a signal continuous in time and amplitude
into a signal discrete in time and continuous in amplitude. This process is done
at regular intervals of time known as sampling period, which are considered to
be constant.

2. Quantisation: is the conversion of the sampled signal into a discrete-time
discrete-valued signal. A given signal sample is then represented by a finite
binary string, whose length determines the quantization level, given by equation
2.2

QL =
FSR
2n (2.2)

where FSR is the Full Signal Range (e.g., the maximum voltage level supported
by the ADC), and n is the number of bits used for the quantization.

3. Coding: is the process, in which quantized samples are represented by a specific
numbering format (e.g., fixed point, floating point).

Although these steps are presented as separated processes, they are generally done
in a single chip, known as analog to digital converter (ADC). After data has been
digitalised, it typically needs some kind of adjustment (y(k)), e.g., rescaling and
filtering, which is a process done by the digital processing unit. Control signals (u(k))
might require some processing (y′(k)) before they are converted to analog signals
(y(t)). Correspondingly, analog outputs generally need some kind of conditioning,
such as filtering or amplification, (ũ(t)) before they can be applied to the plant.

Embedded digital controllers have quantifiable requirements, such as energy con-
sumption, performance (hard real-time computation), and implementation costs. There-
fore, the implementation of a controller based on an embedded device differs from a
controller based on a general purpose computing platform, where those factors are not
implicit.

2.1 Digital Control 9

Microprocessors
 (programable)

Application Specific
Integrated Circuits
 (fixed functionality)

Digital Hardware for
Embedded Control

Reconfigurable Logic
Devices

 (configurable)

General Purpose
Processors (GPP)

Application Specific
Processor (ASP)

Fine-Grained
Configurable (FGC)

Coarse-Grained
Configurable (CGC)

Structured or
Platform ASIC

Semi-Custom
ASIC

Full-Custom
ASIC

general specificspecialisation

Figure 2.2: Digital hardware platforms to implement digital controllers classified
according to the level of specialisation [Des06]

Traditionally, the target technologies for embedded digital controllers have been, on
the one hand, software architectures varying in the level of specialisation, and on the
other hand, application specific integrated circuit (ASIC). Recently, reconfigurable
logic devices, particularly FPGA technology, have gained popularity as target platform.
All these architectures differ in the level of specialisation to the application, as depicted
in figure 2.2.

Microprocessors are based on a computation scheme, where a central processing
element, e.g., an arithmetic logic unit (ALU), is used to sequentially process a set of
instructions, which represent a temporally sequenced algorithm. These devices can
compute any computable function, by changing their functionality every clock-cycle.
On the contrary, when implementing a design in reconfigurable hardware, several
processing elements can be used concurrently to compose the desired function, cf.
figure 2.3. Reconfigurable hardware devices can compute any computation that fits the
available resources (e.g., configurable elements), and are typically configured every
operational epoch.

If the controller is implemented as an ASIC, several processing units can also
be used concurrently (spatial implementation), but the device does not change its
functionality after fabrication. The design flow of an embedded controller differs
significantly depending on the target technology. These differences are pointed out in
the following sections, where only the implementation using the target technology is
considered.

2.1.1 Software-Based Design

Software architectures have a common characteristic: little architectural parallelism
(e.g., typically a single Arithmetic Logic Unit - ALU). Therefore, an algorithm to be
computed has to be described as a list of instructions, which are executed sequentially.
There are several approaches to implement controllers using embedded software

10 Chapter 2 Realisation of Digital Control

i

∆k/2

+

Z-1

Z-1

x

+

f

(a)

t1 ← f+t2
t2 ← f
t3 ← t1 × ∆k/2
t1 ← t3 + i
i ← t1

t3
t2
t1

ALU

i

f

(b)

Figure 2.3: Spatial and temporal implementation of a proportional-integral controller
(PI), using trapezoidal integration (sketch based on [DeH00])

architectures. However, typically the design starts by specifying the requirements (e.g.,
required sampling rate). In this stage a mathematical model of the plant is derived,
together with a mathematical description of the controller. The use of high-abstraction
level tools, such as Matlab/Simulink, or CaMEL-View is very common at this stage of
the design flow. The controller is then simulated using either continuous-time floating-
or fixed-point (or a mixture of them) based models. In a second stage, high-level code
is derived, either automatically from a model or manually. A second verification stage
can be carried on, by using the generated fixed-point code in combination with discrete
models. Afterwards, processor specific code (machine code) is derived through a
compilation/linking process. At this stage processor-in-the-loop or hardware-in-the-
loop simulations are used for verification. Figure 2.4 presents an overview of the
design flow.

Because of the nature of software architectures, the designer does not have a direct
influence on the underlying platform, but rather, the architecture and the algorithmic
characteristics of the controller define the achievable performance.

2.1 Digital Control 11

Controller Specification

System-Level Description
(Floating-/Fixed-Point Model)

High-Level Programming
(e.g. C code)

Machine Code
(assembler)

Hardware-in-the-Loop
Simulations

Code Generation

Compilation/Linking

Behavioural Simulation
(Floating Point Model)

Behavioural Simulation
(Discrete Fixed-Point Model)

Figure 2.4: Embedded software design flow

2.1.2 ASIC-Based Design

An ASIC is an integrated circuit, which has been designed for a specific application.
ASICs can be classified into three main categories: full-custom, semi-custom, and
structured, as depicted in figure 2.2.

Full-custom ASICs are entirely fitted to an application, which implies that the
designer can freely optimise the device in terms of area, time, and energy, thus
reducing recurring component costs. Photo masks for all layers of the device, which
are required for the photolithographic process of an ASIC production, have to be
specified. This implies a increased production- and design-time. Thus, an increased
price per device.

Semi-custom ASICs are designed based on predefined elements. Two kinds can
be distinguished: standard-cell design, and gate-array design. Standard-cell ASICs
are based on a pre-characterised collection of gates, which are typically provided by
the manufacturer. The designer performs a very similar flow to that of full-custom
ASICs, defining the placement and interconnection of the design, but instead of
defining every gate, a standard library is used. Gate-array ASICs are constituted by
pre-placed transistor-arrays. The device is customised by defining the local and global
interconnect.

Structured ASICs (also known as Platform ASICs) are built from a sea of tiles,
otherwise called modules, and a combination of embedded cores (such as memory

12 Chapter 2 Realisation of Digital Control

or I/O blocks). Tiles are logical elements, whose granularity varies from transistors
to lookup-tables (LUTs). The internal interconnection of tiles is predefined, the
designer has to define the interconnection of the tiles and the configuration of the
existing embedded block (although much of the local and global interconnect is also
predefined). This results in a shorter design- and production-time, in comparison with
semi- and full-custom ASICs.

The design flow of ASICs varies depending on the target technology. However, the
design can be split up into behavioural design, logic design, and physical design, as
depicted in figure 2.5. The flow can be roughly described as follows:

Design Entry
Pre-Layout
Simulation

Logic Synthesis

System
Partitioning

Floorplanning

Placement

Routing

Design Rule
Check

Post-Layout
Simulation

Circuit Extraction

Design Fabrication

L
ogical D

esign
P

h
ysical D

e
sig

n

Design
Specification

Floating/Fixed
point Modeling

Behavioural
FunctionTest Vectors

System
Requirements

B
e

havio
ral D

esign

Figure 2.5: Typical ASIC design flow [Nek03]

2.2 Reconfigurable Hardware 13

• System requirements: in this stage, the requirements of the design are sketched.
• Design Specification: formal specifications for the design are derived from the

first stage.
• Floating/Fixed Point Modeling: a mathematical model is derived, focusing

on the behavioural (mathematical) description of the algorithm, using either
floating-point or fixed-point simulations.
• Test Vectors Generation: at this stage test vectors are generated, which are then

used in the following verification steps.
• Behavioural Simulation: the mathematical description of the algorithm is veri-

fied, using behavioural simulations.
• Design Entry: the design is described by using either hardware description

languages (e.g., VHDL, Verilog), or by using an schematic entry.
• Logic Synthesis: form the hardware description, a netlist is extracted, which is

a structural model of the design containing references to logic cells.
• System Partitioning: the design, if required, is partitioned into many ASICs.
• Floorplanning: arranges the cells of the circuit and sets space for interconnect.
• Placement: sets the cell location in a block.
• Routing: creates the connections between cells and blocks
• Extraction (Back Annotation): determines the parasitic capacitance and resis-

tance of the interconnect, vias, and contacts.
• Postlayout (Physical) Simulation: verifies the design with the information gained

in the previous step.
• Design Rule Check: verifying that the circuit layout complies with the specifi-

cation of the design rules.

2.2 Reconfigurable Hardware

Reconfigurable hardware, as opposed to CPU-based architectures, is constituted by
several processing elements, whose function and interconnection are configurable.
These hardware architectures can be categorised by using three main criteria: by the
granularity of their building blocks, by the kind of reconfiguration, and by the diversity
of their building blocks.

• Granularity: this classification refers to the size and complexity of the most basic
computing element of an architecture. Fine-granular architectures allow bit
level operations, medium-granular architectures allow operations with different
number of bits, and coarse-grade architectures operate at the word level.

14 Chapter 2 Realisation of Digital Control

• Reconfiguration: two kinds of reconfiguration are distinguished, static reconfig-
uration, and dynamic reconfiguration, also known as run-time reconfiguration.
The later allows a part of the device to be reconfigured while the rest operates,
whereas the former requires execution to be stopped. Static configuration can
be further classified in SRAM-based configuration, and Flash memory-based
configuration. The former losses its configuration after power-off, while the
later retains it.
• Block diversity: reconfigurable architectures can be constituted by a variety

of computing blocks (e.g., lookup tables, embedded multipliers, etc.), or by a
replication of the same basic computing element. The former kind is known as
homogenous architecture, while the later is called heterogeneous.

This work focuses on Field Programmable Gate Array (FPGA) technology, which
is a fine-granular, dynamically reconfigurable, and heterogeneous architecture. The
main components of FPGA technology are introduced in the next section.

2.2.1 Field Programmable Gate Array

Nowadays there are several academic and commercially-available FPGA architectures.
Most of them share the same set of basic elements, such as configurable logic blocks,
I/O blocks, interconnect memory, embedded cores, clock management blocks, and
configuration memory (see figure 2.6). In this section, these basic blocks are briefly
introduced.

Configurable Logic Blocks: Configurable logic blocks (CLB) are the basic logic
units of FPGAs. Typically, CLBs are composed of lookup tables (LUT), storage
elements, multiplexers, and logic gates. The LUTs can be configured to realise any
logical function, limited to the number of inputs and outputs of the LUT. Interconnect
resources are used if more complex functions are required.

In the Virtex II architecture from Xilinx [Xil07b], a CLB is composed of four slices,
which are the basic processing unit of FPGAs from Xilinx, plus interconnect resources.
Each slice, shown in figure 2.7 is composed of two four-input one-output LUT, two
flip-flops (FF), logic gates, multiplexers, carry chain logic for arithmetic functions,
and a horizontal cascaded OR chain for implementing sum of products.

LUTs can be used as functions generators, as shift registers or as a RAM (Random
Access Memory). CLBs are attached to interconnect resources, to build more complex
functions.

Configuration Memory: FPGA resources are uncommitted, and must be con-
figured to realise a digital design. There are mainly three basic types of configura-

2.2 Reconfigurable Hardware 15

IO

IO

CLK

IO

IO

IO

IO

CLK

IO

IO

IO

IOIO IOIOIOCLKIO

IOIO IOIOCLKIO IO IOIO

PEPE

EB

PEPEPE

EB

PE

PEPE PEPEPE PE

PEPE

EB

PEPEPE

EB

PE

PEPE PEPEPE PE

PEPE

EB

PEPEPE

EB

PE

PEPE PEPEPE PE

PEPE

EB

PEPEPE

EB

PE

IO

IO

IOIO SMSM SMSMSM SM

SMSM SMSMSM SM

SMSM SMSMSM SM

GC

SMSM SMSMSM SM

SMSM SMSMSM SM

IO

SMSM SMSMSM SM

PEPE PEPEPE PE

Input/Output
Blocks
Processing
Elements

Programmable
Interconnect

Embedded
Blocks

Configuration
Memory

Clock Input /
Output

Figure 2.6: Sketch of a typical FPGA architecture

tion approaches: SRAM based configuration, Nonvolatile-based configuration, and
antifuse-based configuration.

Antifuse uses one-time programmable connections, whose impedance change on
the application of a high voltage signal (the programming voltage). When the device
is not configured, connections between blocks have very high impedance values (in
order of Giga Ohms), so than the connection is virtually open. When the programming
voltage is applied, connections fuse, reducing drastically their impedance to few ohms,
thus establishing connections. The functionality of the device can not be changed after
configuration.

Non-volatile configuration uses the same principle that EPROM (Erasable Program-
mable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read
Only Memory), or Flash memory use. Floating gate transistors are used to store
configuration bits. Thus, configuration remains after power-off. These devices can be
reconfigured to support a different functionality.

SRAM configuration uses volatile memory cells to store the configuration of the
device. Pass-transistors or lookup tables can be used to configure the device. Since
the configuration is volatile, an external memory is required to load the configuration
file at power-up.

16 Chapter 2 Realisation of Digital Control

16x1 RAM

16-bit SR

16x1 RAM

16-bit SR

4:1 LUT

4:1 LUT Register

Resgister

MUX F5

MUX Fx

C
a

rr
y

C
ar

ry

Arithmetic Logic

Arithmetic Logic

ORCY

Figure 2.7: Simplified view of a Virtex II slice [Xil07b]

The Virtex FPGA family from Xilinx has an SRAM based configuration, allowing
also partial configuration, which is one of the topics being investigated in this thesis.
The configuration of Xilinx devices is further examined in chapter 4.

Configurable I/O Blocks: Input/Output blocks provide a bidirectional program-
mable interface between the FPGA and its peripheral environment. Basically, the I/O
blocks can provide three states: input, output, and high-impedance. I/O blocks usually
provide registers, in order to reduce the critical path between outside devices and the
FPGA.

Programmable Interconnect: Programmable interconnection has a strong influ-
ence on the characteristics of the FPGA architecture. Programmable switches are
used to realise connection between the different blocks of the FPGA and the routing
resources. Typically, FPGAs have their routing resources organised as an island style,
where the logic blocks are surrounded by a sea of routing resources, providing a high
degree of flexibility (c.f. figure 2.6).

2.2 Reconfigurable Hardware 17

LUT

LUT

LUT

LUT

S
w

itc
h

M
at

rix

Long
Lines

Hex
Lines

Double
Lines

Direct
Connection

Fast
Connects

Figure 2.8: Hierarchical routing resources [Xil07b]

Let us consider the Virtex II FPGA as an example, whose hierarchical routing
resources are depicted in figure 2.8. It has fast connects for internal CLB I/Os, direct
connection to neighbouring blocks, vertical and horizontal double, hex and long lines.

Clock Management: FPGAs have dedicated clock resources, such as clock lines,
buffers, multiplexers, and clock managers. Dedicated clock lines provide low-
capacitance paths for clock signals. Clock buffers and multiplexers allow to halt
or redirect clock signals. Digital Clock Managers (DCMs) provide a flexible control
over clock frequency, phase shift and skew. The three most important functions of
DCMs are to mitigate clock skew due to different arrival times of the clock signal, to
generate a large range of clock frequencies derived from the system clock signal and,
to shift the signal of all its output clock signals with respect to the input clock signal.

Embedded ASIC Cores: Modern FPGAs have, besides reconfigurable logic,
embedded cores, such as multipliers, memory blocks, and processors. For example,
some of the Virtex-II Pro devices have embedded PowerPC 405 RISC processors, high
speed transceivers, dual port block-RAMs, Digital Clock Managers, and Multipliers,
as depicted in figure 2.9.

18 Chapter 2 Realisation of Digital Control

CLB

CLB

P
ro

ce
ss

or
 B

lo
ck

SelectIO-Ultra

DCM

M
ul

tip
lie

rs
 a

nd
B

lo
ck

 S
el

e
ct

R
A

M

RocketIO or RocketIO X
Multi-Gigabit Transceiver

CLB

CLB

Configurable
Logic

Figure 2.9: Virtex-II Pro Generic Architecture Overview [Xil07c]

2.2.2 General FPGA-Based Design Flow

The design flow begins typically with the specifications of requirements and the
definition of the functionality. Typically, a mathematical model of the design and its
environment is derived from the previous steps and simulations are done using floating
point precision (e.g., using Matlab/Simulink). From this high-level descriptions,
hardware description is derived, as shown in figure 2.10. This step can be done
using different hardware descriptions, ranging from traditional hardware description
languages, such as VHDL or Verilog to C-like languages or schematic entries.

The choice of a hardware description has a great influence on the design development-
time and resource-efficiency. A schematic hardware description such as System Gen-
erator from Xilinx [Sysb], or Synplify DSP from Synplicity [Synb] can lead to reduce
the development time, without compromising resource-efficiency for digital control
applications.

At this stage of the design flow, functional simulations are carried out to verify
correct logic functionality. The next step is synthesis, where the design entry is
translated from a functional description (e.g., VHDL) to a structural description (i.e.,

2.3 Utilisation of Reconfigurable Hardware for Digital Control 19

T
ec

hn
ol

og
y

In
de

pe
nd

en
t

Design
Specification

Hardware
Description

Synthesis

Im
pl

em
en

ta
tio

n

Configuration

Partition

Place

Route

Back
Annotation

Functional
Simulation

Post-synthesis
simulation

Timing
Simulation

HiL

Design
Verification

Te
ch

no
lo

gy

D
ep

en
de

nt

Figure 2.10: Typical FPGA-based design flow [Des06, Sim10]

netlist). Post synthesis simulations are done, to further verify the design. At this
stage, technology-dependent steps take place, where the design is further synthesised,
partitioned, placed, and routed, taking into account user-defined design constraints.
This step is automatically done by vendor-specific synthesis tools. After these steps,
post-place-and-route simulations are executed, which include more accurate timing
information from the design. Typically, the design is at this stage ready to be loaded
on the FPGA. A final verification step includes Hardware-in-the-Loop simulations,
analysed in chapter 5.

2.3 Utilisation of Reconfigurable Hardware for
Digital Control

The use of reconfigurable hardware for digital control applications, not only as proto-
typing platform but as final target architecture, has been reported in literature since the
early 90’s. However, it is only until recently that researchers have started to show a
greater interest in this technology, because of higher computational demands of digital
control systems, and the fast evolution undergone by FPGAs in the last decades.

20 Chapter 2 Realisation of Digital Control

Figures 2.11 and 2.12 present two aspects of the evolution of FPGAs; the reduction
of the minimum feature size, also known as λ (cf. figure 2.11). Figure 2.12 shows a
logical consequence of the reduction of λ , namely the increase of equivalent logic cell
per device, which enables the realisation of complex control schemes.

There are also other aspects of FPGA technology that have drastically evolved
during the last decades, such as the basic logic cells themselves, the integration of
embedded ASICs (e.g., processor cores) into the reconfigurable logic, or improvement
of software tools to map digital designs onto this technology, as presented in section
2.2. How this evolution has impact the view on this technology, producing a technology
migration, which has taken FPGA from rapid prototyping platforms to target devices
[5], is analysed in the following sections, pointing out specific examples from literature
and classifying the factors that contributed to adopt FPGA technology for control
applications.

2.3.1 Application Spectrum

In literature, the reported application spectrum is very wide. However, three main
areas can be distinguished: direct motor control, power electronics and motion control,
as depicted in figure 2.13. Motor control refers to the direct manipulation of a DC
or AC motor inputs (e.g., voltage or current) to obtain a specific torque, position or
speed (for a review on this application domain see [Mon02a]). Power electronics
deals with the implementation of control strategies for DC-AC, AC-DC, or DC-DC

 1985 1986 1988 1995 1998 1999 1999 2000 2001 2001 2002 2003 2004 2006 2009 2011
0

150
300
450
600
750
900

1050
1200
1350
1500
1650
1800
1950
2100
2250
2400

X
C

20
64

X

ili
nx

−2
K

X
ili

nx
−3

K

X
ili

nx
−5

K

S
pa

rta
nX

L
V

irt
ex

V
irt

ex
−E

S

pa
rta

n−
II

S
pa

rta
n−

IIE

V
irt

ex
−I

I
V

ite
x−

IIP
ro

S

pa
rta

n−
3

V
irt

ex
−4

V

irt
ex

−5

V
irt

ex
−6

V

irt
ex

−7

20
00

 1
00

0

 7
00

 5
00

 3
50

 2
20

 1
80

 1
80

 1
50

 1
20

 9
0

 9
0

90

 6
5

 4
0

 2
8

λ
(n

m
)

Year of Introduccion

λ Development of Xilinx FPGAs

Figure 2.11: Overview of the development of the feature size of FPGAs from Xilinx

2.3 Utilisation of Reconfigurable Hardware for Digital Control 21

 1985 1986 1995 1998 2000 2001 2003 2009 2011
0

1

2

3

x 10
5

X
C

20
00

X
C

30
00

X
C

50
00

S
pa

rta
nX

L

S
pa

rta
n−

II

S
pa

rta
n−

IIE

S
pa

rta
n−

3

S
pa

rta
n−

6

A
rti

x−
7

E
qu

iv
al

en
t L

og
ic

 C
el

ls

Year

 1985 1986 1995 1998 2000 2001 2003 2009 2011
0

500

1000

1500

2000

λ
(n

m
)

ELC λ

Figure 2.12: Overview of the development of Low-cost FPGAs from Xilinx

converters. Motion control refers to the implementation of algorithms for obstacle
avoidance, acceleration profile generation, or route planning, usually related to robotics
or Computerised Numerically Control (CNC) machines.

Motion Control
30%

Power Electronics
25%

Sensor
Monitoring

7%

Motor Control
22%

Industrial Control
9% Others

7%

Motion Control
(30%)

Power Electronics
(25%)

Sensor
Monitoring

(7%)

Motor Control
(22%)

Industrial Control
(9%) Others

(7%)

Figure 2.13: Application distribution of the reviewed papers

The utilisation of Reconfigurable Hardware (RH) to implement industrial controllers
for production lines as replacement of Programmable Logic Controllers (PLC) is also
presented in literature. Furthermore, publications reporting sensor monitoring appli-
cations were reviewed, where the main focus is the hardware-based implementation
of algorithms to process data from sensors. Other applications include the realisation
of fuzzy controllers for temperature control [Jua05], PID-based control of an electro-

22 Chapter 2 Realisation of Digital Control

static levitation system [Nak02], or embedded controllers for automotive applications
[Chu02].

In the reviewed articles (more than 100 papers from many scientific journals and
conference proceedings), many authors report the use of FPGAs instead of traditional
platforms. The reasons are analysed in the following section.

2.3.2 Factors of the Technology Migration

The utilisation of FPGAs instead of other architectures is mainly based on four factors:
the acceleration of the design or parts of it, the flexibility of reconfigurable hardware,
the reduction of development costs, and energy consumption. These factors have a
different effect on each application area, as depicted in figure 2.14.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Motion
Control

Power
Electronics

Motor
Control

Industrial
Control

Sensor
Monitoring

Others

Algorithm Acceleration
Flexibility
Implementation Cost
Dynamic Reconfiguration
Energy Consumption

Figure 2.14: Distribution of the contributing factors of FPGAs in the application
spectrum

In the review process, a score was given to each factor per publication. Therefore,
one publication might report more than one contributing factor. The use of run-time
hardware reconfiguration is also included in figure 2.14, and is analysed in section
2.3.4. The reported effect of each factor on the implementation of digital controllers is
analysed in the following section, giving specific examples.

2.3 Utilisation of Reconfigurable Hardware for Digital Control 23

Controller Acceleration

Using reconfigurable hardware to accelerate algorithms has been extensively reported
(e.g., for digital signal processing [Tes01]). In 58% of the reviewed papers, algorithm
acceleration is described as one of the main contributions of RH to the implementation
of digital controllers. The term acceleration implies a faster hardware or hardware/-
software (Hw/Sw) realisation of a given design in contrast to a software equivalent.
This was achieved through different means, such as parallel processing, reduction
of the computation overhead or heavily pipelined realisations. For realisations using
Hw/Sw partitioning on-chip co-processing was exploited.

Parallel Processing. In contrast to software architectures (e.g., processors), a
hardware realisation with various processing elements operating in parallel can achieve
a better performance. However, the extent in which this feature can be exploited is
highly dependent on the intrinsic parallelism of the algorithm to be realised. Therefore,
it is meaningful to detect the amount of concurrency in early stages of the design flow
[Nao04, Cha04].

Parallel processing was used in applications such as stepper motor control [Car03].
The utilisation of a Xilinx XC4006 FPGA resulted in an increment of the reachable
motor speed due to a faster processing. The required sampling period was 800 ns and
the clock frequency was set to 40 MHz. In [Zum03] parallel processing was used to
accelerate a digital controller of an AC-DC Converter using a Xilinx XC4010 FPGA
with a clock frequency of 20 MHz. To realise the same design using DSP technology,
a much higher clock frequency would have been required. A similar approach was
presented in [Her04] to process information from an ultrasonic ranging sensor. A
Xilinx XCV1000E FPGA was used to implement the algorithm, achieving a sampling
period of 235 µs at a clock frequency of 50 MHz. The availability of independent
processing elements in combination with embedded processors, embedded multipliers
units and block RAM made possible the realisation of distributed computation, leading
to the reported algorithm acceleration. A similar approach was presented in [Yao10]
for speed control of turbines. A PID-Fuzzy controller was implemented, reaching
execution times well beyond CPU-based realisations. A direct hardware realisation of
a Fuzzy controller was reported in [Che11], for a DC-DC controller of a photovoltaic
system.

Reduced Computation Overhead. The utilisation of dedicated hardware re-
duces the required computation overhead of general purpose architectures. Moreover,
many operations, such as bit shifting or multiplication and division by a power of two,
are done implicitly when realising them in hardware.

Design specialization was used in [Ada00] to implement industrial controllers as
a replacement of Programmable Logic Controllers. In [He04], application specific

24 Chapter 2 Realisation of Digital Control

hardware accelerated a controller for a robotic hand with multiple motors. By using a
combination of dedicated hardware and software it was possible to achieve a sampling
period of 200 µs having a clock frequency of 150 MHz. The FPGA implementation
of an iterative algorithm for time optimal control (TOC) of AC drives was presented
in [Bol04]. The utilisation of an Altera EP20K200EFC484-2X with a sampling rate of
16 µs at a clock frequency of 2.2 MHz allowed the realisation of time-critical parts
(e.g., equations including trigonometric operations) of the TOC algorithm in hardware
to accelerate the design.

Implementation of specialised processors for control algorithms was presented in
[CP01]. A specialised architecture to realise state-space based controllers was reported.
This architecture outperformed various commercially available DSPs and required a
low gate count for its implementation. A similar approach was presented in [MV10b]
for motion controllers of CNC machines. A specialised processor architecture allow a
better performance than DSP- and PC-based realisations.

For designs requiring Hw/Sw partitioning the utilisation of soft-core processors
(e.g., MicroBlaze from Xilinx) reduced the communication overhead, in comparison
to systems with external chip couplings. Although the reported designs used only
soft-core processors, modern FPGAs integrate embedded hard-wired processors and
DSP units (e.g., the Virtex-II Pro FPGA from Xilinx, with two PPC processors and
192 18x18 hard-wired MAC units), which can achieve higher clock frequencies than
their soft-core counterparts. In addition to block RAM, configurable logic can be used
as memory. Thus reducing overhead, in comparison to a scheme in which data has to
be stored off-chip.

On-chip co-processing was used for motion control of autonomous mini-robots
[Rog03] where the soft-core RISC processor NIOS was used to perform various
control-flow oriented operations, such as network monitoring and interfacing. In
[Pou04] an adaptable thermal compensation system for strain gage sensors was pre-
sented. A NIOS processor was used to perform floating point arithmetic operations.
Robotic arm manipulation [Kun05] was performed using an Altera Stratix EP1S10
FPGA. A NIOS processor was used to realise those parts of the position control
algorithm that required a low sampling frequency. Similarly, in [BO10] the realisation
of a PID-controller as hardware accelerator of a multi-processor on chip (MPoC)
architecture for motor control was presented. A similar approach was presented in
[Kun10] for motion control of a three-axis wafer-handling robot.

Heavily Pipelined Realisations. This factor can augment the throughput of a
design at the cost of introducing some time-delay and using more hardware resources.
This technique was used in applications such as current vector control of AC machines
[Taz99], where a sampling period of 50 µs was obtained. A pipelined realisation was
also used for image processing for robotic motion control [Bol01]. 285 images per
second, of 9728 pixels each, could be processed during 60 ns as part of a motion

2.3 Utilisation of Reconfigurable Hardware for Digital Control 25

detection algorithm. According to the authors, the achieved performance could be
easily improved by adding more stages to the pipeline.

Flexibility

An architecture is said to be flexible if it can be modified to meet new requirements.
This feature is usually related to software architectures, where such an adaptation
is done by replacing the instructions controlling the central processing unit (e.g., an
ALU). This feature is called programmability. Flexibility is then mostly related to
the binding time of a given architecture, that is, the time when the functionality of a
device is specified. Describing the architecture spectrum as a function of its binding
time, one extreme would be occupied by pre-fabrication operation binding devices
(e.g., ASICs) and the other extreme by cycle-to-cycle operation binding devices (e.g.,
processors)[DeH99]. SRAM-based FPGA technology is considered to be flexible
because it has a late binding time. (cf. figure 2.15).

“Hardware“ “Software“

Media

Binding Time:

Custom
VLSI

Gate
Array

One Time
Program_
mable

FPGA Processors

First
Mask

Metal
Mask

Fuse
Program

Load
Configuration

Every
Cycle

Figure 2.15: Binding time continuum [DeH99]

Flexibility was one of the most reported features of RH; 54% of the publications
reported flexibility as a deciding factor to have chosen RH as implementation platform.
However, not all authors defined flexibility in the same way. Two factors were
considered in this review as contributing to make RH a flexible platform: hardware
reconfiguration and the possibility to realise Hw/Sw partitioning on the same platform.

Hardware Reconfiguration. The more specialised an architecture is, the more
efficient it performs. However, changes in the application can strongly lower the
reachable performance, even for general purpose architectures with a certain level of
specialization. DSPs are a good example. They were originally designed to couple
with operations in which the same operands are applied to a certain number of values
(vector operations). When required to execute operations such as look-up tables, tree
searches, or sum of absolute differences, these specialised units (e.g., MAC units)
can not be optimally exploited, resulting in a loss of performance. In this sense, the
algorithm has to be adapted to meet specific processor architectural characteristics.

26 Chapter 2 Realisation of Digital Control

Like general purpose processors, RH architectures have a late binding time. This
allows the adaptation of reconfigurable devices to the application [Ada00, Sag04,
Rue03a, Che02, Li03, Cho01, Che00], usually reaching a better performance than
a software equivalent. If the application should change, the new requirements can
be handled by accordingly reconfiguring the design [Tho99, Her04, Kou05, Kel97],
optimizing it to different possible situations [Bol01, Cho01, Yin04, Ric03]. The
precision (e.g., the bit-width) of the design can be changed [Fan05] accordingly to the
requirements, making the design scalable [Dep04]. There are spatial limitations (e.g.,
chip area) that constraint the complexity (e.g., the necessary resources) of a design
that can be implemented on a RH platform. However, there are also methods that
help to overcome this limitation. Namely, run-time reconfiguration [2, 3, 6, 7, Nas04,
He04, Chu02, Dan03a, Dan03b], analysed in section 2.3.4, and in detail in chapter 4.
This feature gives a new degree of freedom to the design space of embedded systems,
since it is possible to trade speed and area in run-time.

On-Chip Hw/Sw Realisation. FPGAs allow a Hw/Sw realisation on a single
chip. This is possible by using configurable logic to realise dedicated hardware in
combination to embedded soft- or hard-wired processors. This feature opens new
possibilities in the design-space, offering a higher level of flexibility than pure hard-
ware or pure software platforms. Parts of a control algorithm having high diversity of
operations and requiring a low sampling frequency are better implemented in software,
while other computational intensive parts of the algorithm are better implemented as
a dedicated hardware. In [Kun05] Hw/Sw partitioning was used to realise an archi-
tecture for robot arm control, or in [Cab04] to implement fuzzy controllers. Similar
approaches were presented in [Pou04, Rog03, Pat10b, Pat10a, Kun10]. Furthermore,
by using run-time reconfiguration (see section 2.3.4), the Hw/Sw partitioning can
be adjusted dynamically (software tasks can be realised as hardware tasks and vice
versa), in order to adapt the resource-availability to the requirements of the system, as
suggested in [3] for robotic applications (this topic is analysed in chapter 4).

Costs

Having specific requirements for a given application, such as a minimum sampling
rate or a desired functionality, the choice of an implementation platform is a matter
of finding a suitable compromise of the factors involved in the design process, e.g.,
total price, performance, or safety. The cost was reported in 31% of the reviewed
papers as an important reason to use RH instead of other technologies. In 46% of
those papers the comparison was against DSPs, 9% against PLCs, 7% against general
purpose processors, and 38% did not report the replaced technology. The key factors
for preferring RH are the cost/performance ratio, hardware description, time-to-market
and development cost. These factors are analyzed in the following sections.

2.3 Utilisation of Reconfigurable Hardware for Digital Control 27

Cost/Performance Ratio. Considering not only the price of a single device when
choosing the implementation platform, but the cost/performance ratio [Nas04, CP01].
It was shown that although a single FPGA chip might be more expensive than a single
DSP, the performance that the former can reach is potentially grater [Tom04, Rey04]
leading to an overall lower price when considering how many DSP units would be
needed to reach the same performance.

Berkeley Design Technology Inc (BDTI) made an analysis based on an orthogonal
frequency division multiplexing (OFDM) benchmark [Alt05], in which two Altera
FPGAs, the Stratix 1S20-6 and the IS80-6, and a Motorola MSC8101 DSP were
compared. The report showed a better cost/performance of the FPGAs, despite the
fact that the DSP had a lower cost than both FPGAs.

Cost/performance ratio was reduced by the use of specialised design techniques,
which allowed the utilisation of cheaper devices for the implementation. In [MI04]
a control algorithm for a switching DC converter was realised using FPGA tech-
nology. Because of the specialisation of the design, it was possible to replace a
high-resolution ADC converter, required for most DSP calculations, with comparators,
leading to an overall price reduction. A similar approach was presented in [Ben99] for
high-performance thyristor gate control for line-commutated converters. The design
specialization leaded to a low-cost FPGA implementation, avoiding the use of several
DSPs. Similar implementations were presented in [Don03]; the use of specialised
hardware designs (e.g., a parallel FPGA implementation) allows the utilisation of
simpler RH architectures, which are often cheaper than a corresponding software-
based solution. Furthermore, the specialisation of a soft-core processor presented in
[MV10b], allowed the realisation of a system identification algorithm for a motion
controller of a CNC machine.

Hardware Description. The design of controllers for general purpose processors
or DSPs usually starts with an abstract, high-level design entry (e.g., C code), which
is then translated automatically into an executable format. This tool flow enables
the design engineer to focus on the control algorithms without having to deal with
the underlying architecture. Expert programmers can optimized critical parts of the
design by manually inserting lower level code (e.g., assembly code). Hardware de-
scription can also be realised at different abstraction levels; from a register transfer
level (RTL) to a behavioural description by using languages such as VHDL or Verilog
[Zum03, Aco02, Rei03], providing technology independence [Mat05, Bol04]. Hard-
ware Description Languages (HDL) might not be suited for engineers already used to
the design flow of software architectures. For such engineers there are various C-like
HDLs [Tom04, Aco02], such as System-C [Sysa], or Handel-C from Celoxica [Han],
which integrate the necessary features to describe hardware (e.g., parallel constructs).
These HDLs are supported by compilers and synthesis tools, providing a way to
generate either VHDL code or netlists from the original script.

28 Chapter 2 Realisation of Digital Control

In the last decade, several manufacturers of configurable hardware introduced very-
high-level hardware descriptions, such as System Generator from Xilinx [Xil08c],
DSP Builder from Altera [DSP] or Synplify DSP from Synopsys [Synb], which can be
used within Matlab/Simulink. Outcome of these design flows is a structural description
of the design, which can be mapped (synthesized) onto an FPGA. Such hardware
descriptions provide a higher abstraction level than traditional HDLs and C-like HDLs,
thus reducing the design effort [2, Nao04, Cha05b].

The utilisation of Intellectual Property (IP) cores, visual programming languages,
and designs reusability methods facilitate the implementation of complex system
on chip (SoC)[Don03, Old05, Rey04]. Hardware description has a direct impact on
the design effort required to complete a design. This in turn influences the required
time-to-market (TTM), which is discussed in the next section.

Time to Market. Introducing a product late into the market could lead to a
potentially lower revenue. A simplified model presented in figure 2.16 suggests that
the lost can be estimated by the equation 2.3 [Des06].

2W

D MAR

MRD

R
ev

en
ue

Time

Figure 2.16: Cost of delayed entry into a market [Des06]

MRD =
D(3W −D)

2W 2 MAR (2.3)

Where: D is the delay, W is half of the production life-span, MAR is the maximum
available revenue, MRD is the maximum revenue from a delayed entry. As an example,
if a product A has a lifespan of 3 years (36 months) with an estimated MAR = 50MD
and has a delay of 3 months, the cost of that delay is a loss of 23.61% of the original
revenues estimate, that is a MRD∼= 38.2MD. In literature it was claimed that the use
of RH can potentially avoid a late product delivery.

2.3 Utilisation of Reconfigurable Hardware for Digital Control 29

It was said that when using RH, TTM can be drastically reduced in comparison to an
ASIC lead-time. The exclusion of some design steps inherent to the ASIC fabrication
(e.g., mask generation, silicon fab, silicon verify) and the parallelisation of software
and hardware development due to early system prototyping enables the reduction of
TTM. This allows a quick implementation of complex algorithms [Ho00] resulting in
a shorter TTM [Aco02, Kim00]. TTM has been further reduced by the introduction
of intellectual property (IP) blocks [Bol04], and high abstraction level HDLs (see
discussion in section 2.3.2), which allows the integration of optimized ready-to-use
blocks into the design. A modular design strategy [Cha04] also contributes to shorten
the design time, and thus reach a shorter TTM.

Design verification is time- and resources-consuming. The total cost of verifying
the functionality of a design might by shortened by the introduction of Hardware-in-
the-Loop (HIL) simulations [Ise99]. For software based designs, this technique has
reduced the gap between controller design and implementation in the final platform.
For FPGA-based controllers, the principles of HIL can also be exploited, resulting in
a speedup of the simulation process and providing a cycle accurate verification of the
design [4]. This topic is further analysed in chapter 5.

For high-performance applications, for which using many CPUs concurrently to
reach a desired throughput is required, two situations can arise: the overall develop-
ment cost increases due to the utilised extra processing units and the software routines
that allow multi-tasking and parallel processing become difficult to handle [Mon99].
Depending on the engineer expertise, this situation could lead to a longer design cycle
than expected.

Development Costs. When using RH, it is possible to realise most of the required
functional blocks on the same chip, which avoids to use many discrete elements
[RT04, Car03, OR09, OR08], and reduces the required board size and the energy
consumption [Kel97]. The availability of low-cost and large-capacity FPGAs, an
increasing number of intellectual property (IP) modules, and powerful CAD tools
enables the development of a whole system on programmable chip (SoPC) [Cab04,
Pat10b, Pat10a].

This technique was used in [Rue03a] to implement an FPGA-based emulator for
series of multi-cell converters. The integration of observers in the design permitted
a sensorless implementation, reducing the overall cost. Similarly, in [Kun05] the
utilisation of FPGA technology allowed the implementation of all necessary computing
elements to control a vertical articulated robot arm. In [Li03] this approach was used
to implement an FPGA-based fuzzy behavior control for an autonomous mobile robot.

The development costs of RH-based realisations was also compared to that of ASIC
realisations [Aco02, Chu02], which were avoided because of the implicated high costs
for low-quantity productions. In [Old05, Old01] an FPGA-based servo control was

30 Chapter 2 Realisation of Digital Control

presented. The advantage of FPGAs was said to be that custom parallel processing
architectures can be embedded on a single device, without incurring the high NRE
costs and re-spins associated with ASIC development, for low-quantity productions.

Energy Consumption

The energy consumption of a system may be a critical factor when choosing an
implementation architecture, specially for systems running on limited energy supplies
(e.g., batteries) or with heat dissipation constraints. When using CMOS technology
the total account of energy consumption depends on the static and dynamic power
dissipation. The main cause of static power dissipation is leakage, which is largely
determined by the device type, operating temperature and process variations. The
dynamic power consumption is completely design-dependent, and is determined by
factors including resource utilisation, logic partition, mapping, placement and routing.
The designer has influence mainly on the dynamic power dissipation. Due to the
energy overhead required for routing resources and configuration memory FPGA-
based designs have a higher power dissipation than ASICs.

In [Kel97], a methodology was presented to implement state-space based controllers
using FPGA technology. The use of this technology was said to reduce the energy
consumption by 50% when compared to designs built out of many integrated circuits,
because the capacitive loads were lowered. In [Scr02] a comparative study of the
energy efficiency of FPGAs and programmable processors for n×n matrix multipli-
cation was presented. The measurements showed that a Virtex-II Pro FPGA (from
Xilinx) achieved the shortest latency and used less energy than a TMS320C6415 (from
Texas Instruments) and a PXA250 (from Intel) for this specific task. However, the
Virtex-II Pro performed the worst under a different configuration. Energy consumption
of FPGA-based designs is further analysed in chapter 3.

2.3.3 Coupling of Reconfigurable Hardware and Software
Architectures

For applications with Hw/Sw partitioning, RH can be classified according to its levels
of communication as: co-processor, attached processing unit, standalone processing
unit, or RH with embedded processor [Tod05] [Com02] as depicted in figure 2.17.

Although the majority of the reported works were implemented as application spe-
cific designs (42 %, see figure 2.18), the use of Hw/Sw partitioning was a widespread
design approach. Each kind of coupling is described in the following sections.

2.3 Utilisation of Reconfigurable Hardware for Digital Control 31

Standalone Processing Unit

I/O
Interface

Memory
Caches

RH

RHRH

CPU

RH RH

RH RH

RH RHRH

RH

RH

Coprocessor Attached Processing Unit

RH

Workstation

Standalone Processing Unit

I/O
Interface

Memory
Caches

RH

RHRH

CPU

RH RH

RH RH

RH RHRH

RH

RH

Coprocessor Attached Processing Unit

RH

I/O
Interface

Memory
Caches

RH

RHRH

CPUCPU

RH RH

RH RH

RH RHRH

RH

RH

Coprocessor Attached Processing Unit

RH

Workstation

Figure 2.17: Different levels of coupling in a reconfigurable system[Com02]

RH as a Coprocessor

In this kind of coupling, RH is able to perform operations without the constant
supervision of a host processor. Usually RH is used to realise computational intensive
operation and sends the resulting information to the host processor. This generally
allows the processor and RH to run parallelly. Examples of this approach are a position
measurement algorithm, reported in [Lyg98], in which an Altera FLEX was coupled
with a Texas Instruments (TI) DSP TMS 320C31. In [Jun99], a PWM controller for
DC/AC converter was realised in a Xilinx XC4005 and coupled to a TI DSP TMS
320C14. Moreover, an algorithm for adaptive motion control, described in [Gwa02]

Standalone
Processong Unit

13%

Attached
Processing Unit

3%

Design
42%

Co-Processor
(36%)

Standalone
Processong Unit

(13%)

Attached
Processing Unit

(3%)

Application Specific
Design (42%)

Embedded
Processor

(6%)

Figure 2.18: Classification of reconfigurable hardware according to the reported
coupling

32 Chapter 2 Realisation of Digital Control

was realised in a Xilinx XCV300 coupled to a DSP. In the aforementioned publications
the DSP unit realised control flow oriented task (e.g., monitoring).

b)

FPGA
or

Processor

Processor
or

FPGA
ADCDAC

FPGA
or

Processor

Processor
or

FPGA

ADC

DAC
a)

c)

FPGA

ProcessorDAC

ADC

Figure 2.19: Reconfigurable hardware and processor couplings in reference to the
I/Os. a) Processor and FPGA have access to the ADC and DAC. b) Either
an FPGA or a Processor is directly connected to the ADC and DAC
with a tight communication with the other processing element. c) Either
a Processor or an FPGA receive information form ADC and the other
processing element is connected to the DAC.

There were different co-processor configurations in which RH and software archi-
tectures were coupled as depicted in figure 2.19. In configuration (a) both processor
and RH have the same level of connectivity to the I/Os. This makes the partitioning
of hardware and software tasks more flexible. In configuration (b) the architecture
connected to the I/Os (either RH or a software platform) performs most of the control
tasks, assigning the other device to supervisory tasks. In most of the reviewed papers,
an FPGA was directly connected to the I/Os. In configuration (c) the device connected
to the inputs realises data conditioning tasks (e.g., units transformations, data scaling,
digital filtering). The device connected to the outputs realises most of the control tasks.
In the majority of the reviewed papers a processor was connected to the inputs and an
FPGA to the outputs.

2.3 Utilisation of Reconfigurable Hardware for Digital Control 33

Attached Processing Unit

In this kind of coupling the communication between RH and the host processor is
less frequent than in the previous kind. Usually RH was used to execute parts of the
controller, an then either to send information back or to send a command directly to
the plant. FPGAs were used in [Din05] to generate high-frequency PWM signals for a
voltage-source-converter-based distribution static compensator. A DSP (TMS320C40
from TI) was coupled with an FPGA (FLEX8000 from Altera) via a bus system. The
control system was implemented using the DSP and the multiple-PWM generator
was implemented in the FPGA together with a dead-time insertion module. The data
exchange was limited to the required duty-cycle. A similar approach was reported in
[Faa04]. The utilisation of radial functions neural networks (RFNN) to implement a
sensorless motion control algorithm for spindle motors was presented. A synchronous
PWM with dead-time compensator was done in a Xilinx FPGA, which was coupled to
a Pentium-based PC. Another example was reported in [Jia02]. The implementation of
a servo drive for an ultrasonic motor was presented. The controller was implemented
in an Altera 10K100 FPGA, which was coupled to a Pentium II-based PC. The
communication between PC and the FPGA board was limited to supervisory tasks.

Stand Alone Processing Unit

This is the loosest coupling. The communication between the host processor and
RH happens infrequently. It can be compared to the kind of communication among
workstations in a network. An example was presented in [Han02], in which the
implementation of a genetic algorithm to set up a neural-controller was realised on
several Altera FLEX EPF8452 FPGAs, coordinated by a PC. Another multi-FPGAs
design was presented in [Bol01]. Several FPGAs were used simultaneously to realize
an image processing algorithm for movement detection, used in a mobile robot. A
Pentium-based PC coordinated the computations realized on the FPGAs. The use
of RH allowed the acceleration of the computational intensive image processing
algorithm.

RH with Embedded Processors

Another approach to Hw/Sw design was to include an embedded soft-core processor
instead of an external unit. The integration of the processor inside the FPGA reduced
communication overhead, costs and board size, as discussed in section 2.3.2.

Hw/Sw partitioning of the implemented design was often reported in literature. The
method to realise the partitioning was rarely mentioned. However, it was observed
that in general control flow operations, such as variable-length loops or branch control
were realised using a software platform, for instance operations whose hardware

34 Chapter 2 Realisation of Digital Control

Implementation Complexity

Run-Time Reconfiguration

Partial
Reconfiguration

Full
Reconfiguration

Event-
Driven

Time-
Driven

Event-
Driven

Time-
Driven

low high

Figure 2.20: Reported reconfiguration types for digital control applications

implementation were too expensive (e.g., floating point arithmetic). Parts of the
algorithm, which could be benefited from a hardware implementation, such as fixed
path operations or parallel operations, were implemented in reconfigurable logic.

2.3.4 Run-Time Hardware Reconfiguration

Run-time reconfiguration (RTR) is a scheme in which an FPGA is partially or fully
reconfigured during the execution of a task, where a task consists of one or more
sub-modules. When the FPGA is only partially reconfigured the process is called
partial run-time reconfiguration or dynamic reconfiguration (DR). Both full RTR
and DR can be used to enhance the resource-utilisation of an FPGA by time-sharing
logical resources among non-periodic designs (event-driven reconfiguration) or by
periodically time-multiplexing sub-modules of a design (fixed schedule) [3].

A classification of RTR schemes used to implement digital controllers is depicted in
figure 2.20. The realisation of a RTR architecture becomes more complex depending
on the reconfiguration kind (full or partial), and the reconfiguration scheme (fixed
schedule or event-driven)

Fixed Schedule RTR

In this scheme a design is partitioned in sub-modules, which are loaded on the FPGA
periodically in a pre-defined sequence. This scheme was used in [Kim00] to implement
fuzzy controllers. The authors divided the design into many temporally independent
functional modules and performed full RTR sequentially with the bitstreams corre-
sponding to each module, saving intermediate results in an on-board SRAM. Each
module contained an SRAM interface and a bus interface. The reconfiguration was

2.4 Summary 35

controlled by a host computer. In [Nas04] DR was used to implement a controller for
an elevator using the fixed schedule scheme. The FPGA was divided into a static and
a dynamically reconfigurable area. Intermediate results were stored in a register bank
of the static area.

Event-Driven RTR

In this scheme the reconfiguration time is not known during the design phase, requiring
the implementation of a more complex configuration manager. In [Vas04] event-
driven full RTR was suggested to implement a fault tolerant control system for AC
Drives fed by tandem converters. Full RTR was chosen because of the technological
complications of realizing partial RTR. Event-driven partial RTR was used in [Dan03b]
to implement a multi-controller approach for linear time-invariant systems. The
configuration of the FPGA was realised via a host computer. In [Tos05] the use of this
scheme to implement the controller of systems having different functions (e.g., normal
operation, test, etc.) was suggested. Another approach was presented in [Chu02],
where event-driven partial RTR was used to implement a fault tolerant controller
for automotive applications. An architecture including a reconfiguration controller,
memory to store partial bitstreams, and a module to switch between controllers was
presented.

Although the potential benefits of using DR are known, this scheme is still largely
unexplored for control applications, and constitutes one of the research points of the
present work. In chapter 4, this topic is analysed in detail, addressing topics such as
resource utilisation, control disturbances, and showing case-studies.

2.4 Summary

This chapter offers relevant background on digital control implementation, pointing out
the key differences between a software-, an ASIC-, and an FPGA-based design flows.
Of central interest is to review the state-of-the-art on the utilisation of reconfigurable
hardware for embedded control applications. In this chapter it is shown that FPGAs,
the most well known architecture of reconfigurable devices, is leaving its role as
prototyping platform to become a target computing architecture. This technology
migration is mainly based on the increasing complexity of embedded controllers, and
the fast evolution undergone by FPGAs in the last decade. This evolution brought
mainly four factors: the possibility to accelerate a controller (i.e., achieve a higher
throughput than a software based design), a flexible platform (e.g., the architecture
can be adapted to the application), reduction of implementation costs, and reduction
of energy consumption, all of them analysed in section 2.3.2.

36 Chapter 2 Realisation of Digital Control

Although many papers report implementation results, the great majority lack of a
quantitative comparison to support claimed advantages of FPGA-based realisations.
Furthermore, many authors do not clearly define the advantage of using FPGAs (e.g.,
the feature flexibility was related to the hardware description language in many publi-
cations (e.g., [Han03, Zum03]). Furthermore, the reasons that make control algorithms
to benefit from a realisation using FPGA technology were not fully analysed. This lack
of insight motivates the first research problem undertaken in this thesis: a quantitative
technology comparison focused on control applications, discussed in chapter 3.

As exposed in this chapter, FPGA technology offers new possibilities to the imple-
mentation of digital controllers. However, there is a special feature of modern FPGAs
that has not been fully explored for control applications: the possibility to partially
or fully reconfigure an FPGA in run-time, known as run-time reconfiguration (RTR)
or dynamic reconfiguration (DR). The use of run-time reconfiguration was presented,
showing the growing interest on this scheme but also the lack of methodologies to
apply it to the field of embedded control systems. Chapter 4 addresses this topic,
showing the advantages of using a run-time reconfiguration in contrast to a static
approach.

Design verification is an important part of the design flow of electronic systems.
This approach has been largely used in software-based design flows. Chapter 5
explores this aspect of the design flow of FPGA-based controllers, and presents two
frameworks to verify a FPGA-based design: HiLDE (Hardware-in-the-Loop Design
Environment) and HiLDEGART (HiLDE for Generic Active Real-Time Test).

3 Technology Comparison of
Reconfigurable Hardware and
Software Architectures

The choice of a computer architecture to realise a given application depends, on the
one hand, on the algorithmic properties and requirements of that application. On the
other hand, the choice depends on the characteristics of the considered architectures
and how they fit to the application. In the previous chapter a literature review was
presented, showing not only the increasing use of reconfigurable hardware to realise
control applications, but also the reasons that moved researchers and engineers to
use this technologie. It is claimed in literature that reconfigurable hardware offers a
better choice than general purpose processor or digital signal processors. However, the
factors that make the difference for control applications are not quantitatively shown
(see section 2.3). Furthermore, the benefits of using RH, are not analysed in relation
to the properties of the application area.

This chapter presents a quantitative comparison between software and hardware
platforms, taking also algorithmic properties of representative control applications
into account. As a first step, two kinds of metrics are defined: metrics to assess
the algorithmic characteristics of controllers, and metrics to evaluate how efficiently
resources (e.g., time, area, energy) of that architecture are used (see sections 3.1,
and 3.2). Furthermore, computing architectures used for the comparison are selected
(section 3.3). Then, a set of representative control algorithms are selected to be used
as benchmarks (see section 3.5). The algorithmic properties of the set of benchmarks
are then evaluated, as well as the implementation results, using the previously defined
set of metrics. Finally, results are analysed and conclusions are drawn at the end of
the chapter.

38 Chapter 3 Technology Comparison

3.1 Algorithmic Characterisation

Understanding the algorithmic properties of a controller is of relevance, because it
allows to relate those properties to the choice of the target computing architecture.
One important property is the amount of parallelism of a given control algorithm.
We can intuitively say that an algorithm with a high degree of parallelism can take
advantage of a realisation, which uses many processing units. On the contrary, if the
algorithm consist mostly of operations, which have to be executed sequentially, using
many processing units for its realisation does not bring any advantage.

The properties of an algorithm have to be analysed based on a mathematical descrip-
tion, without any architecture-specific constraint. Furthermore, an abstract representa-
tion is required, which enables us to evaluate algorithmic properties of a controller.
One such abstract representation are Cyclic Data Flow Graphs (CDFG), explained in
the next section.

3.1.1 Controller Representation: Cyclic Data Flow Graph

Cyclic Data Flow Graphs (CDFG) are directed graphs (i.e., the information flow has a
defined direction) where nodes represent operations and edges represent precedence
relations among operations. A simple example of a CDFG is shown in figure 3.1.
There are five operations in this graph, represented by nodes o1,o2,o3, o4 and o5. Data
dependencies are well established through edges.

o4o1 o5

o3

o2

Figure 3.1: Example of Cyclic Data Flow Graph

A CDFG G can thus be described by G(O,E), where O = {o1,o2, ...,on} represents
the n nodes of the graph, and E is a set of ordered pairs of nodes, representing the
connection between nodes and its direction. For instance, the graph shown in figure
3.1 has O = {o1,o2,o3,o4,o5}, and E = {(o1,o2),(o2,o3),(o3,o1),(o2,o4),(o4,o5)}.
The same graph can be described by an Adjacency Matrix, which for a graph G with n
nodes is an n×n matrix where the non-diagonal entry ei j is the number of edges from

3.1 Algorithmic Characterisation 39

node i to node j, and the diagonal entry eii is the number of loops. The adjacency
matrix of the graph shown in figure 3.1 is:

Adjacency Matrix =

0 1 0 0 0
0 0 1 1 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0

where the rows and columns represent the nodes of the graph shown in figure 3.1,

starting from the top left position.
A CDFG naturally exhibits the parallelism of an algorithm, because it does not

impose any constraint other than the data precedence among operations, and therefore
maximum concurrency can theoretically be exposed. An important aspect is that
the granularity of the operations is independent from this representation enabling a
flexible abstraction of the algorithm.

The reason to use this abstract representation is to enable the characterisation of
an algorithm. To accomplish this, we need a way to calculate the execution time of a
CDFG, and a way to weight node according to the operations they represent. In the
next section, a method to calculate the execution time by using a cyclic scheduling is
presented.

3.1.2 Scheduling of a CDFG

From a CDFG representation the latency required to complete one execution of the
graph can be computed using a cyclic schedule [Šůc09]. A cyclic schedule for the
execution of nodes O = {o1,o2, ...,on} assumes that the operations set O is executed
a large number of times. One execution of O is labeled with the integer index k ≥ 1
and is called an iteration and is equivalent to the total latency of the CDFG, which
is designated as latalg. The graph shown in figure 3.1 has to be further extended
by assigning processing units and processing times to each node, and by adding
communication delays and precedence indexes to the edges [Šůc08]. Edge ei j from
the node i to j is labeled by a couple of integer constants li j and hi j. Length li j
represents the minimal time (i.e., steps) from the start time of the operation oi to the
start time of o j and it is always greater than zero. Height hi j specifies the dependence
distance, i.e. the variation of the iteration index related to the data produced by oi and
read (consumed) by o j [Šůc09]. The transformation of the graph presented in figure
3.1 is shown in figure 3.2.

In the CDFG shown in figure 3.2 all operations have their own processing element,
which is shown together with the processing time in the numbers inside the nodes.
For instance, node o2 has a latency of 1 and is assigned to processor 2. Furthermore,

40 Chapter 3 Technology Comparison

o4o1 o5

o3

o2
(0,1)

height length

(0,1)(0,1)

(1,1)

(2,1)

(1,1) (1,2)

(1,3)

(1,4) (1,5)

processor

processing
time

c

e3,1

e1,2 e2,4

e2,3

e4,5

edge

Figure 3.2: Example LH Graph

all edges have a latency of 1 (i.e., ∀ei j ∈ G : li j = 1), and all edges, except for e2,3
and e3,1, have an iteration index hi j = 0. An iteration index hi j = n means that the
dependence distance between node j and node i is equal to n iterations.

Having such a graph, where each node represents an operation and to each operation
a processing element is assigned, a cyclic scheduling can be found based on the Basic
Cyclic Scheduling (BCS) problem [Han95]. The aim of the BCS is to find a periodic
schedule with minimal period w which is also called critical circuit. This is a circuit
in G, which maximises the ratio

w = max
c∈C(G)

∑
ei j∈c

li j

∑
ei j∈c

hi j
(3.1)

where C(G) denotes the set of cycles in G [Šůc08]. In the graph presented in figure
3.2 the critical circuit c is marked with an arrow, and is composed by three nodes
c = o1,o2,o3, which results in w = (l1,2 + l2,3 + l3,1)/(h1,2 +h2,3 +h3,1) = 3/3. The
schedule for this graph is shown in figure 3.3, three iterations are presented. It can
be seen that the period of the critical circuit is w = 1, whereas the latency of the
graph is latalg = 4. The nodes responsible for the latency of the graph (clat) can be
deduced from the schedule presented in figure 3.3, in the example shown in figure
3.2 the latency is the summation of the execution time of the nodes in the critical
path, i.e. clat = o1,max(o2,o3),o4,o5, where max(i, j) represent the greatest value
between nodes i and j. In this examples all nodes have a execution time of 1, therefore
max(o2,o3) = 1.

The scheduling is computed using TORSCHE (Time Optimisation, Resources,
SCHEduling), a toolbox of scheduling algorithms for Matlab. The scheduling is
based on an integer-linear programming algorithm, with the goal of finding a cyclic

3.1 Algorithmic Characterisation 41

periodic schedule with precedence delays on limited number of dedicated processors
(cf. [Šůc06]).

−1 0 1 2 3 4 5 6 7

PU5

PU4

PU3

PU2

PU1

t

O
2

O
3

O
4

O
5

O
1

O
2

O
3

O
4

O
5

O
1

O
2

O
3

O
4

O
5

O
1

Figure 3.3: Scheduling for the LH graph depicted in figure 3.2. Three execution
periods are shown, indicated by the different colors (gray scale)

The cyclic schedule presented in figure 3.3 assumes an equal execution time of
all operations in the graph. However, not all operations require the same amount
of computational effort for their implementation. In the next section a set of basic
operations is presented, and a method to weight them according to their implementation
effort is proposed.

3.1.3 Basic Operations Set: Selection and Weighting

The CDFG representation allows a flexible abstraction of an algorithm. An important
aspect of this abstraction is the selection of the granularity of the operations used
as nodes in a graph. On the one hand, a fine-granular selection (e.g., logic gates)
would make the representation of a controller too complex and thus impractical. On
the other hand, a coarse-granular selection (e.g., control blocks such as integration
or matrix multiplication) would not help exposing parallelism. Therefore, middle-
granular operations are used, because it allows to have a small set, it makes the
representation of a controller simple, and allows exposing parallelism. A suitable set
of basic operations BO is presented in table 3.1.

This set of basic operations is still not-homogeneous regarding the computational
effort, which is required for their realisation. Therefore, a way to account for these
differences has to be found. Using circuit complexity theory [Cor01, Weg87], opera-
tions of table 3.1 can be weighted by their time and space complexity value. However,

42 Chapter 3 Technology Comparison

complexity values tells us only the growth rate of size (e.g., circuit size) and depth (e.g.,
critical path delay) for a given operation with respect to the used number of bits. This
measure is of relevance when dealing with large numbers. However, for embedded
control applications, using large numbers is not typical, an therefore, another method
to weight operations has to be found.

An empirical method is proposed, where all operations presented in table 3.1 are
implemented as an ASIC, varying the number of input bits from 4 to 64 bits. Synthesis
results (e.g., circuit area, and critical path delay) are then used to weight nodes of a
CDFG according to the operation they represent.

All operations are first described in VHDL, and synthesised using Synopsys Design
Compiler (C-2009.06-SP4) [Syna], with a low-power standard-cell 65nm library from
ST Microelectronics. All operations are synthesised to achieve the fastest parallel
realisation possible, using the design flow for design space explorations described
in [Jun10], based on the DesignWare library from Synopsys [Syna]. For arithmetic
operations a set of IP cores, listed in table 3.2, are selected, based on the critical path
of the resulting realisation, where the fastest IP cores are selected.

Figure 3.4 shows area utilisation of the selected operations. Because the goal is to
achieve the fastest realisation possible, area was not constrained during synthesis. As
expected, division and multiplication have the greatest area requirements.

Figure 3.5 shows the critical path delay for selected operations in ns. The Restoring
Carry-Look-Ahead divider has the longest critical path delay as function of the input
bits.

3.1.4 Normalised Operations and Steps

Area requirements and critical path delay shown in figure 3.4 and 3.5 can be used to
weight operations according to their computational effort. However, these synthesis
results have to be normalised to obtain a relative measure of computational effort.
The equivalent operation (NormOph,i) measure is defined as the chip area of a given
operation h ∈ BO, when using i number of input bits (SizeOph,i), divided by the chip
area of a normalising operation n ∈ BO using the same number of bits (SizeOpi,n), cf.
equation 3.2.

Kind of Operation Operations

Arithmetic Addition, Subtraction, Multiplication, Division
Control Flow Relational, Switch, Select
Memory Operations Storage

Table 3.1: Set of basic operations

3.1 Algorithmic Characterisation 43

Operation Synthesis Model

Addition Carry-Look-Ahead
Subtraction Carry-Look-Ahead
Multiplication Carry-Save Array
Division Restoring Carry-Look-Ahead

Table 3.2: Used synthesis models from DesignWare library (Synopsys, [SYN11])

0 10 20 30 40 50 60 70
10

1

10
2

10
3

10
4

10
5

10
6

Bits

A
re

a
(µ

 m
2)

Circuit Area

Addition
Multiplication
Division
Compare
Select
Switch
Register

Figure 3.4: Circuit area of operations listed in table 3.1 for various bit-widths

NormOph,i =
SizeOph,i

SizeOPn,i
(3.2)

The equivalent step (Stepsh,i) measure is defined as the critical path delay of an
operation h ∈ BO using i number of input bits (DepthOph,i) divided by the critical
path delay of a normalising operation n ∈ BO using the same number of input bits
(DepthOpn,i), cf. equation 3.3.

Stepsh,i =
DepthOph,i

DepthOpn,i
(3.3)

44 Chapter 3 Technology Comparison

0 10 20 30 40 50 60 70
10

−2

10
−1

10
0

10
1

10
2

10
3

Bits

D
el

ay
(n

s)

Critical Path Delay

Addition
Multiplication
Division
Compare
Select
Switch
Register

Figure 3.5: Critical path delay operations listed in table 3.1 for various bit-widths

As normalising operation a Carry Look-Ahead adder (see figure 3.4) is used, because
it is a common operation to all investigated benchmarks. Furthermore, it scales linearly
when increasing the number of input bits.

Using equations 3.2 and 3.3, relative computational effort values can be derived
from the critical path delay and circuit area values presented in figures 3.5 and 3.4
respectively, as shown in figure 3.6 and 3.7. These values are used for all investigated
algorithm (cf. section 3.5).

Because addition is used as normalising operation, its NormOp values is always 1.
Similarly, equivalent steps are shown in figure 3.7, where addition has also a constant
value of 1 step.

The total number of normalised operations of an algorithm is calculated by adding
all individual normalised operations h ∈ O, using i number of bits, cf. equation 3.4.
This equation give us a way to compare the size of different algorithm.

NormOpAlgi = ∑
h∈O,i=bits

NormOph,i (3.4)

Furthermore, the total number of steps required to execute a CDFG representing a
specific algorithm is computed by adding the steps of the individual operations in the
critical path of the equivalent graph, cf. equation 3.5.

3.1 Algorithmic Characterisation 45

0 10 20 30 40 50 60 70
10

−1

10
0

10
1

10
2

Bits

O
pe

ra
tio

ns

Normalised Area: Operations

Addition
Multiplication
Division
Compare
Select
Switch
Register

Figure 3.6: Normalised operations (NormOph,i), calculated using equation 3.2

0 10 20 30 40 50 60 70
10

−2

10
−1

10
0

10
1

10
2

10
3

Bits

S
te

ps

Normalised Critical Path Delay: Steps

Addition
Multiplication
Division
Compare
Select
Switch
Register

Figure 3.7: Normalised steps (Stepsh,i), calculated using equation 3.3

StepsAlgi = ∑
h∈clat ,i=bits

Stepsh,i (3.5)

46 Chapter 3 Technology Comparison

Another measure of interest is the equivalent circuit size of an algorithm, which is
estimated by adding the size of all individual operations h ∈ O, where O represents
the set of nodes of the equivalent graph of the algorithm (see figure 3.4) when using a
specific number of bits i, as defined in equation 3.6. This metric provides a very rough
estimate of how the circuit area scales, without taking elements into account, which
are necessary for an actual ASIC implementation, such as communication resources.

SizeAlgi = ∑
h∈O,i=bits

SizeOph,i (3.6)

SizeAlgi is used in this chapter only to validate the proposed metrics with actual
implementation values (see section 3.5).

A trapezoidal numerical integration is used as an example to illustrate how the
normalised synthesis results (NormOpi and Stepsi) are used to weight operations (i.e.,
nodes) of a CDFG. The trapezoidal integration algorithm is mathematically expressed
by equation 3.7.

∫ b

a
f (t)dt ≈ a−b

2
(f (t)+ f (t +1)) (3.7)

The time-discrete approximation of the integral is given by:

i(k) = i(k−1)+
∆k
2

(f (k−1)+ f (k)) (3.8)

A CDFG of the trapezoidal integration (equation 3.8) is shown in figure 3.8. This
CDFG is derived manually from equation 3.8, and shows a suitable representation of
that equation. The numbers above the edges represent communication latency and
execution index (cf. section 3.1.1), respectively. All operations have a communication
latency of 1. The execution index of the operations R3 and R1, which represent a
discrete time delay (i.e., Z−1), is 1. This execution index is indicated in equation 3.8
by the terms i(k−1), and f (k−1).

This algorithm has 8 operations: 5 storage operations (F , R1,R2, R3, I), 2 additions
(A1, A2), and one multiplication (M1). Using a cyclic scheduling algorithm (TORSCHE
Toolbox in Matlab [Šůc06]) the resulting latency is latalg =5 steps, and the execution
period w = 2 steps. The scheduling is presented in figure 3.9, where only one execution
period is shown.

In the scheduling shown in figure 3.9, all operations require the same execution
time (1 Step). When using the normalised critical path delay with 32 bits to set
the processing time of all operations, the value of the minimal period is W = 4.17,
and the latency is latalg = 6.39. In this case differences in the execution time of all
operations-types can be noticed, cf. figure 3.10. Furthermore, the weight of each

3.1 Algorithmic Characterisation 47

×Z-1

Z-1

2
k∆

∑
+

+ ∑
+

+)(kf)(ki1,1 1,0 1,0

1,0

1,0 1,0 1,1

1,01,0

R1 A1

R2 R3

M1 A2

F I

Figure 3.8: Proposed Cyclic Data Flow Graph of a trapezoidal integration algorithm
(cf. equation 3.8)

−1 0 1 2 3 4 5 6

PU8

PU7

PU6

PU5

PU4

PU3

PU2

PU1

t

Non−Weighted Operations

F

R
1

A
1

M
1

A
2

R
3

I

R
2

Figure 3.9: Cyclic scheduling for the trapezoidal integration depicted in figure 3.8
without weighting operations

operation according to their realisation effort (NormOp, cf. equation 3.2) is also
reflected in the total amount of normalised operations (NormOpAlg cf. table 3.3).

The scheduling shown in figure 3.10 differs from the one shown in figure 3.9
regarding the execution order of some operations. For instance the storage operation
R3 in figure 3.9 starts at the same time that M1, and in figure 3.10 the same operation
is executed at the very beginning of the schedule. However, in both schedules the data

48 Chapter 3 Technology Comparison

0 1 2 3 4 5 6 7

PU8

PU7

PU6

PU5

PU4

PU3

PU2

PU1

Steps

Combinational Circuit (32 Bits)

F

R
1

A
1

M
1

A
2

R
3

R
2

I

Figure 3.10: Scheduling for the trapezoidal integration depicted in figure 3.8 using
normalised synthesis results as time weight

precedence of A2 are fulfilled (e.g., R3 has to be executed before A2), and therefore
both schedules are correct.

Using the values presented in figures 3.6 and 3.7, various implementations can
be explored using different bit-widths, as presented in table 3.3. As expected, the
total number of normalised operations (NormOpAlgi), as well as the total number of
normalised steps (StepsAlgi) growth as the number of input bits (i) increases. These
two measures are used to approximate the average parallelism of an algorithm, as
explained in the next section.

3.1.5 Average Parallelism

Parallelism relates to the amount of operations, which have no data dependency at
certain point of time of the execution flow and therefore can be realised concurrently.
This measure is of relevance, because it gives us a hint on the amount of architectural
parallelism that can be used when implementing an algorithm using a particular
device. If the operations conforming the algorithm can be realised concurrently, using
many processing units can yield a speedup in contrast to a single-processor approach.
There are limits to the amount of speedup gained from a parallel implementation (cf.
Amdahl’s law [Amd67] and Gustafson’s law [Gus88]). However, to know how much

3.1 Algorithmic Characterisation 49

Bit-Width (i) SizeAlgi[µm2] NormOpAlgi StepsAlgi

8 2711.80 20.86 3.48
16 8448.44 25.15 4.37
24 17141.28 33.36 5.35
32 28281.24 40.05 6.39
40 43080.96 47.72 7.31
48 61544.60 54.32 8.31
56 81758.04 61.20 9.26
64 107280.68 67.71 10.18

Table 3.3: Algorithm characterisation of a numeric trapezoidal integration

architectural parallelism can be reasonably used to speedup an implementation, we
need a way to estimate parallelism in a very early stage of the design flow.

Most of the existing methods to measure parallelism are proposed in the context of
multi-processor systems, where tasks of a program have to be scheduled for execution
[Sev89] or to compile C programs into hardware [Ven04]. Furthermore, these methods
are based on the assumption that all processing elements are identical [Eag89, Ove00],
which in the case of a hardware implementation is not necessarily true (i.e., a multi-
plier differs from an adder in terms of the computational resources required for its
implementation).

For the evaluation presented in this chapter, algorithms will be characterise by esti-
mating their average parallelism, which represents an upper bound to the asymptotic
speedup (i.e., the speedup of the application with infinite resources and no synchro-
nization costs) [Eag89, Ove00]. Average parallelism is estimated in this work by
the amount of normalised operations done per normalised execution step, (AOS), cf.
equation 3.9.

AOSi =
NormOpAlgi

StepsAlgi
(3.9)

Figure 3.11 shows two LH graphs, where all nodes represent the same operation,
a carry look-ahead adder, having the same bit-widths. Furthermore, all nodes are
associated with a processing element. For the graph shown in figure 3.11(a), 5 steps
are required to execute the graph, i.e., StepsAlgi=5, and the total number of normalised
operations is NormOpAlgi=6, therefore AOSi = 6/5. For the graph shown in figure
3.11(b), 3 steps are required to execute the graph, i.e., StepsAlgi=3, and the total
number of normalised operations is NormOpAlgi=6, therefore AOSi = 6/3. As can be
seen, the graph in figure 3.11(b) benefits more from using many processing elements
than the graph in figure 3.11(a).

50 Chapter 3 Technology Comparison

1 2 3

o7o1

(0,1)
(1,2)

(0,1)

(1,3)

(0,1)

(0,1)

(0,1)

o4

o5

o3

o6

(0,1)

(0,1) (0,1)

(1,3)

(1,1)

(1,4)

(1,6)

(1,2)

(1,5)

(0,1)

(0,1)

(0,1)

(0,1)

o1
(1,1)

o6
(1,6)

o5
(1,5)

(1,2)

(1,3)

o3

o4

(1,3)

(1,4)

o2
(1,2)

(0,1) (0,1)

1 2 3 4 5

Execution Steps Execution Steps

(b)(a)

Figure 3.11: Two simple LH Graphs to exemplify the concept of average operations
per step (AOS). (a) has an AOS of 6/5, whereas (b) has an AOS of 6/3

Notice that for previous examples, the number of utilised bits does not affect the
value of AOSi, because the same operation, a carry look-ahead adder, is used in every
node, which results in every node having the same value regarding the number of
normalised operations and steps, i.e., NormOi=1 and Stepsi=1, cf. equations 3.2 and
3.3.

To exemplify the effect of having different operation and using different bit-widths,
consider the trapezoidal numerical integration shown in figure 3.8. Table 3.4 shows
the amount of operations and steps for different input bits, and the corresponding
values of AOSi. With an increasing bit-width increases also the number of normalised
operations, and the number of normalised steps, which is reflected in the value of
AOSi.

The content of table 3.4 is also presented in figure 3.12. NormOpAlgi and StepsAlgi
increase as the bit-width of each operation increases, which results in very small
increment of AOSi. This small increment was expected, because the trapezoidal
integration consist mainly on registers and additions.

3.2 Resource Utilisation Assessment

Given the realisation of any algorithm on a specific computing architecture, the
question arises as to how efficiently the resources of this computing architecture are
being used to realise that algorithm? In this work two kinds of computing architectures

3.2 Resource Utilisation Assessment 51

Bit-Width (i) AOSi

8 5.99
16 5.76
24 6.23
32 6.26
40 6.53
48 6.53
56 6.61
64 6.65

Table 3.4: Average operations per step (AOSi) of a numeric trapezoidal integration for
various bit-widths

0 10 20 30 40 50 60 70
10

0

10
1

10
2

Bits

Trapezoidal Integration

StepsAlg
i

NormOpAlg
i

AOS
i

Figure 3.12: Algorithmic characterisation of a trapezoidal numeric integration (see
figure 3.8) using normalised synthesis results

are considered: general purpose processors (GPP) and field programmable gate arrays
(FPGA).

In contrast to general purpose computing, embedded control systems have well
defined requirements and limitations [Hen07]. A control system must work in real-
time, which for digital controllers implies a fixed throughput. Less throughput leads
to a malfunctioning of the control loop, having more throughput does not necessarily
improve the performance of the system. Furthermore, embedded control systems have
typically limited spatial resources (e.g., because of implementation costs), and energy
limitations (e.g., because the system is battery-driven, or because of heat dissipation).

52 Chapter 3 Technology Comparison

In this section metrics are defined to measure how efficiently silicon area is being used
in terms of computational density (a metric introduced by A. DeHon in [DeH95]), and
to assess the energy consumption of those architectures. These metrics are introduced
in the next sections.

3.2.1 Computational Density

Computational density is a measure of how much computation is done per area unit for
a given computing architecture. This metric was proposed by A. Dehon in [DeH95]
(cf. equation 3.10), and has been used by many other researchers in literature (e.g.,
[Jon10, Gal10, Pak10, Do10]).

Cdensity,DeHon =
T hroughput

Area
(3.10)

Throughput is generally defined as:

T hroughputgeneral =
Set o f Operations

Execution Time
(3.11)

Throughput is typically measured in millions of operations per second (MOPS).
For software-based architectures, Set o f Operations can be based on the instructions
that can be executed by an ALU in one clock cycle. Furthermore, in [DeH95] it
was proposed to use one-bit operations as base to compare hardware and software
architectures. Thus, operations were defined as the required number of ALU operations
multiplied by the bit-width of the processing element (cf. equation 3.12).

Set o f Operations = ALU Operations ·WL (3.12)

where WL is the word length of the ALU. The equivalent of a basic operation
in terms of reconfigurable resources is not easily defined. It has been proposed in
literature that one basic operation is equivalent to 4 LUTs [DeH95]. However, as
presented in section 3.3.2, although processing elements of FPGAs are mostly LUT
based, modern FPGA are not homogenous, i.e. they include a variety of embedded
specialised processing units such as multipliers and memory, and their basic blocks are
constituted by more than LUTs. Furthermore, the size of the LUTs varies depending
on the device; e.g., Virtex-6 devices have LUTs with 6 inputs and one output, whereas
slices of the Virtex II devices have 4 inputs and one output, cf. figure 3.13(a).

How this resources are used depends on the kind of operations to be implemented,
and how they are mapped to the target architecture. In table 3.5, an example of the
resource utilisation of some basic operations using four and eight bits is presented.
All designs were realised using synthesis tools from Xilinx.

3.2 Resource Utilisation Assessment 53

G4

SOPIN

A4
G3 A3
G2 A2
G1 A1

WG4 WG4
WG3 WG3
WG2 WG2
WG1

BY

WG1

Dual-Port

LUT

FF
LATCH

RAM
ROM

Shift-Reg

D

0

MC15

WS

SR

SR

REV

DI

G

Y

G2

G1
BY1

0

PROD
D Q

CECE
CKCLK

MUXCY
YB

DIG

DY

Y

0 1

MUXCY
0 1

1

SOPOUT

DYMUX

GYMUX

YBMUX

ORCY

WSG
WE[2:0]

SHIFTOUT

CYOG

XORG

WE
CLK

WSF

ALTDIG

CE

SR

CLK

SLICEWE[2:0]

MULTAND

Shared between
x & y Registers

SHIFTIN COUT

CIN

Q

(a)

A6:A1

D

COUT

D

DX

C

CX

O6

DI2

O5

DI1

MC 31WEN

CK

DI1

MC 31WEN

CK

DX
DMUX

D

DQ

C

CQ

CMUX

Reset Type

D

FF/LAT
INIT1
INIT0
S RHI
S RLO

S R

CE
CK

FF/LAT
INIT1
INIT0
S RHI
S RLO

D

S R

CE
CK

S ync/Async

FF/LAT

A6:A1

O6
O5

C6:1

CX

D6:1

DI

W6:W1

W6:W1

CE
Q

CK S R

Q

Q

S RHI
S RLO
INIT1
INIT0

D

CE
Q

CK S R

S RHI
S RLO
INIT1
INIT0

DI2

CI

CE
SR

CK
DI1-MUX
DI1-MUX

MC 31

(b)

Figure 3.13: (a) Virtex-II Slice (Top Half) [Xil07c], and (b)Virtex-6 SliceM (Top Half)
[Xil09c]

The definition of a basic computation unit for reconfigurable hardware architectures
has to be based on the amount of logic resources used for an operation. However, as
can be seen in table 3.5, resource utilisation is different depending on the operation.

54 Chapter 3 Technology Comparison

Operation Description LUTs MUX ORCY FF

Multiplier 4 bits, one constant 8 7 9 7
Multiplier 4 bits, two inputs 23 23 23 8
Full Adder 4 bits 5 4 4 6
Half Adder 4 bits 6 1 0 4

Accumulator 4 bits 6 1 0 8
Logic Function 4 bits XOR 4 0 0 4

Multiplier 8 bits, one constant 22 23 25 15
Multiplier 8 bits, two inputs 83 83 82 16
Full Adder 8 bits 9 8 8 10
Half Adder 8 bits 8 7 7 8

Accumulator 8 bits 8 7 7 8
Logic Function 8 bits XOR 8 0 0 8

Table 3.5: Resource utilisation of various basic operations, synthesised for a Virtex II
device (XC2V4000), using synthesis tools from Xilinx

Therefore, using only LUTs and FlipFlops (FF) as indicator would be oversimplifying.
In table 3.5 other resources available in each slice are listed: multiplexers (MUX), and
OR gates for carry logic (ORCY).

The deterministic nature of digital controllers and the associated hard real-time
constraints make it possible to define a block of operations, which are executed
repetitively. Therefore, the definition of throughput can be based only on the execution
time of a specific implementation of an algorithm:

T hroughput =
1

Tcon
(3.13)

Where Tcon is the execution time of a controller implementation. Therefore, equation
3.13 measures throughput as the amount of generated outputs per time period. Because
the chosen architectures are implemented using different technologies normalisation
of area, delay, and energy is required. Area is normalised using scaling rules presented
in [Bol09, Cha10, Fra01], cf. equation 3.14.

Sarea =
(

λre f

λ

)2

(3.14)

Were λ is half the minimum drawn feature size of a process, and λre f is that value
of a selected architecture, in this case λ from the reconfigurable hardware device will
be used. Thus equation 3.10 becomes:

3.2 Resource Utilisation Assessment 55

Anorm = Area ·Sarea (3.15)

Delay is normalised by the following factor [Bol09, Cha10, Fra01]:

Sdelay =
λre f

λ
(3.16)

This normalisation does not hold as λ goes into sub-micrometer dimensions (i.e.,
λ � 100nm) [Bol09]. However, for the devices used in this comparison (cf. sections
3.3.1 and 3.3.2), these normalisation gives a valid estimate. Throughput is then
normalised as follows:

T hroughputnorm =
1

Tcon
·
(

1
Sdelay

)
(3.17)

Finally the equation for computational density is:

Cdensity =
T hroughputnorm

Anorm
(3.18)

High values of Cdensity indicate more throughput per silicon area. This metric
penalises the silicon area of the device, using it as a cost indicator. Other cost factors
such as design costs (e.g., cost of the design tools), NRE, or packaging also influence
the production cost. However, using these factor reflects more the current economic
situation rather than the actual required resources.

3.2.2 Energy Efficiency

A metric to measure energy efficiency depends on the type of computation to be
performed. In [Bur96, Lan05] three different kinds of applications are defined: fixed
throughput, maximal throughput, and burst throughput mode. Digital controllers have
typically fixed sampling rates, therefore, energy efficiency can be measured by the
amount of power required for a fixed throughput mode, as presented in equation 3.19
[Cla99, Fan07, Gal10].

Ee f f iciency =
T hroughput

Power
(3.19)

Power can be normalised as follows [Bol09, Cha10, Fra01]:

Powernorm = Power ·Spower (3.20)

where the normalising factor Spower is defined as:

56 Chapter 3 Technology Comparison

Spower =
(

Vdd,re f

Vdd

)2

·
(

λre f

λ

)2

(3.21)

Where Vdd is the voltage input of the architectures core, and Vdd,re f is that of the
reference architecture.

As technologies shrink and supply voltage decreases (e.g., Vdd < 1V), this normal-
isation step is no longer applicable [Cha10]. However, for the selected devices this
simple normalisation suffices.

Ee f f iciency =
T hroughputnorm

Powernorm
=

T hroughput
Power

·
(

1
Spower ·Sdelay

)
(3.22)

The higher Ee f f iciency is, the more computations per power unit are realised. There-
fore, the devices with higher values of Ee f f iciency is better suited for the investigated
algorithm, with respect to the energy consumption.

3.3 Computing Architectures

Two computing architectures were used for this comparison. A PowerPC 750 and a
Spartan 3A FPGA from Xilinx. These devices are introduced in the following section.

3.3.1 PowerPC 750-G Processor

The PowerPC 750 is a reduced instruction set computer (RISC) microprocessors
implemented in a 20 µm CMOS technology, it has a silicon area of 40 mm2. The
PowerPC 750 implements the 32-bit portion of the PowerPC architecture, which
provides 32-bit effective addresses, integer data types of 8, 16, and 32 bits, and
floating-point data types of 32 and 64 bits. Figure 3.14 shows the parallel organization
of the execution units (marked in gray). The instruction unit fetches, dispatches, and
predicts branch instructions.

The 750 is a superscalar processor that can complete two instructions simultaneously.
It incorporates the following six execution units [IBM02]:
• Floating-point unit (FPU)
• Branch Processing Unit (BPU)
• System Register Unit (SRU)
• Load/Store Unit (LSU)
• Two Integer Units (IUs): IU1 executes all integer instructions (multiply, divide,

shift, rotate, arithmetic, logical). IU2 executes all integer instructions except
multiply and divide instructions.

3.3 Computing Architectures 57

Completion
Instruction

Fetch

System Unit Dispatch
Branch

Processing
BHT/BTIC

Load/
Store
Unit

Floating
Point
Unint

Instruction
MMU (32 KB)

FixPoint
Unit 1

FixPoint
Unit 2

GP
Registers

Renames

FP
Registers

Renames

Data
MMU (32 KB)

60X
Bus

System Bus

Level-2
Interface

SRAM

Level-2
Tags with

Parity

+ X + + X

Control Unit

Figure 3.14: Simplified block diagram of the PowerPC 750 RISC Microprocessor

Most integer instructions execute in one clock cycle. However, multiplication and
Division are multi-cycle instructions. The FPU is pipelined, three single-precision
floating-point instructions can be in the FPU execute stage at a time. Double-precision
add instructions have a three-cycle latency; double-precision multiply and multiply-
add instructions have a four-cycle latency.

The 750 has four software-controllable power-saving modes. Three static modes,
doze, nap, and sleep, progressively reduce power dissipation. When functional units
are idle, a dynamic power management mode causes those units to enter a low-power
mode automatically without affecting operational performance, software execution, or
external hardware. The 750 also provides a thermal assist unit (TAU) and a way to
reduce the instruction fetch rate for limiting power dissipation.

The PowerPC is evaluated using a dSPACE card DS1005, depicted in figure 3.15.
The DS1005 provides 1 MByte, level 2 external cache memory, 16 MByte Flash
memory (1 MB reserved for booting), 128 MByte SDRAM global memory (64 MB
for the PowerPC separately arbitrated). A clock frequency of 480 MHz is provided to
the PowerPC [dSP05].

58 Chapter 3 Technology Comparison

1 MB Level 2
Cache

64 MB Global
RAM

64 MB Global
RAM

PowerPC
750-G

GS910
Gigalink
Module

PHS Bus

Global Bus

Global Bus

Lo
ca

l B
us

Host Interface

ISA Bus

Peripheral Bus

16 MB Boot
Flash

PHS Bus
Interface

Supervisor

Interrupt
Controller

External
Timers

Serial Interface

I/O BoardsI/O Boards

DS1005

Figure 3.15: Simplified block diagram of the dSPACE DS1005 board

The DS1005 allows communication with a host-PC via the ISA port, or via the
PCI through an adapter. The board provides also the PowerPC with three timers, and
interrupt handling, among others. Data access and parametrisation of the board is done
through software from dSPACE (i.e., ControlDesk). Furthermore, the implementation
of controllers using Matlab/Simulink is also supported (cf. [dSP11]).

3.3.2 FPGA Device

The variety of FPGAs devices in the now-a-days market is very wide. In order to chose
an FPGA for the comparison, the chip area has to be taken into account. However,
the chip area of Xilinx devices has not been published (except for a few devices, e.g.,
[Yui02]). Therefore, the area has to be measured. To achieve this, a radiography of
several available FPGAs from Xilinx was first obtained, as shown in figure 3.16.

From these images the chip area was measured, as presented in figure 3.16(a). A
suitable FPGA from the available set is the Spartan-3 XC3S1500 (package FG456),
the area of this device is about ∼ 67mm2.

The Spartan-3 FPGA from Xilinx was introduced in April of 2003 in a 90 nm
technology, it has 3328 CLBs, 576 Kbits embedded Block-RAM, 32 18×18 embedded
multipliers, 4 DCMs, and 333 I/Os.

3.3 Computing Architectures 59

(a)

(b)

Figure 3.16: Radiagraphy of (a) an Spartan-3 XC3S1500, and (b) a Spartan-3
XC3S200 devices from Xilinx

60 Chapter 3 Technology Comparison

3.4 Realisation Flow

Each of the benchmarks presented in the next section was realised in hardware and
software using the procedure described in the following sections.

3.4.1 Hardware Implementation-Flow

The tools used for hardware implementation of benchmarks are listed in table 3.6.
To implement a benchmark in hardware the following steps were done:

• Hardware Description: A hardware description of the controllers was derived
from their CDFG. The Synplify DSP blockset [Synb] was used to generate the
hardware description under Simulink. As in the case of the software realisations,
the parameters of the design were set to constant values that allow functional
testing, without a specific control goal.
• Setting Bit-Width: The bit-width was constrained for each operation of the

controller. To make a fair comparison with the processor, 8, 16, 32, and 64-bit

 120 120 150 180 90 120 120 150 120 120 120 90 90 150 90
0

50

100

150

200

250

300

350

400

450

500

550

600

650

X
C

2V
80

00

X
C

2V
60

00

X
C

V
20

00
E

X

C
V

80
0

X
C

4V
P

FX
10

0
 X

C
2V

40
00

X

C
2V

30
00

X

C
V

60
0E

 X

C
2V

P
30

X

C
2V

P
20

X

C
2V

10
00

X

C
S

3D
34

00
A

X

C
3S

15
00

X

C
2S

50
E

X

C
3S

20
0

52
1.

57

 3
91

.9
2

 3
30

.6
2

 2
96

.0
1

 2
92

.1
8

 2
91

.0
7

 2
56

.0
0

 1
77

.5
0

 1
68

.9
6

 1
21

.7
8

 1
03

.3
6

 8
6.

25

 6
7.

06

 2
5.

77

 2
2.

94

A
re

a
(m

m
2)

λ (nm)

Chip Area of various Xilinx FPGAs

Figure 3.17: Area measurement of various Xilinx FPGA

3.4 Realisation Flow 61

Software Tool Version Company

Matlab 7.3.0.267 Matworks
Simulink 6.5 Matworks
Synplify DSP 3.6 Synopsys
Synplify Premier 3.6 Synopsys
ISE 10.1.03 Xilinx
XPower 10.1.03 Xilinx

Table 3.6: Tools used for the software implementation of the benchmarks

versions of each controller were realised. Controller parameters were set by
using equation 3.23.
• Optimization: Synplify DSP allows three optimisation options: retiming, fold-

ing, and multichannelisation. Retiming allows automatic rearrangement of
registers or placement of new register to reduce the critical path of a design,
while sacrificing throughput; for each extra latency inserted the clock speed has
to be correspondingly increased to get the desired throughput. Folding is an
area optimisation that folds the algorithm by reusing resources over multiple
physical clock cycles (e.g., multipliers). This allows the reduction of required
resources by increasing the required clock frequency, too. Multichannelisa-
tion is an optimisation that minimise hardware by sharing the hardware over
multiple channels. Folding and retiming were only used for selected cases (it
is indicated), where the resources requirement were too high for the selected
FPGA. Multichannelisation was not used for the experiments presented in the
next section.
• Synthesis: RTL-level VHDL code was generated using the Synplify DSP tool-

flow. This code was then synthesised using Synplify Premier with Design
Planner [Synb], which generated a netlist and the corresponding user constraint
file. In this step IO pads where assigned to the ports of the design. After netlist
generation, the design was placed and routed using synthesis tools from Xilinx
(part of the ISE foundation ver. 10.1), where optimization goals where set to
increase speed.
• Measurements: For each benchmark, a post-place and route advanced timing

report was generated, from where the maximum allowable clock-rate was ob-
tained. To estimate power, the XPower Analyzer from xilinx was used, after the
design was placed and routed, setting up the estimation parameters to values,
which according to [Xil11], represent a worst-case scenario: flipflop toggle
rate = 20%, I/Os toggle rate= 20%, I/Os enable rate=100%, Output load=5 pf,
BRAM write rate=50%, BRAM enable rate=100%.

62 Chapter 3 Technology Comparison

3.4.2 Software Implementation-Flow

For the software implementation, a Matlab-Simulink based flow with tools from the
company dSPACE was used, cf. table 3.7.

Software Tool Version Company

Matlab 7.3.0.267 Matworks
Simulink 6.5 Matworks
RealTime Workshop 6.5 Matworks
ControlDesk 3.3 dSPACE
dSPACE Profiler 1.1.1 dSPACE

Table 3.7: Tools used for the software implementation of the benchmarks

• Generate Simulink Model: The first step was to create a simulink model of the
discretised controller equations. The simulink model was based on the CDFG
of each benchmark. A first version of each controller was done using floating
point format, with the purpose of testing the function of the controller. Because
no particular design goal was set, the parameters of the simulink model were
first set to a constant that allows testing its function.
• Definition of Data Types: A data type was assigned to each block of the model:

int8, int16, int32, or float64. Float64 was used to force the compiler to use the
floating point unit of the PPC750. However, for calculations only integers where
used. Furthermore, results using 64 bits are only used to discuss software-based
realisations, because hardware-based designs used only fix-point arithmetic.
• Definition of Constants: Each parameter was assigned to a random number high

enough to avoid an early operation exit when computing a multiplication. The
parameters where set using equation 3.23.

Data = 2Bits−1 + rand(2Bits−1) (3.23)

where Bits is the number of bits corresponding to the selected data type. This
step was required to avoid that the compiler optimised data type operations.
Furthermore, the integer units of the PPC support early operation scape (cf.
section 3.3.1) for multi-cycle operations such as multiplication and division.
Therefore, all constant values were initialised with a value, which ensures no
early-scape optimisations. The PowerPC can process 8, 16, 32, and 64 Bits
operations (cf. section 3.3.1). Therefore, all benchmarks were implemented
using the corresponding data types.
• Definition of compiler optimization parameters: The dSPACE software uses the

Microtec PowerPC C Compiler Version 2.0m for the PowerPC 750. Full inline

3.5 Benchmarks 63

expansion was set, which saves the overhead usually associated with function
calls, parameter passing, register saving, stack adjustment, and value return.
The highest recommended level of optimization was used (i.e., -05), which
provides cross-module inter-procedural optimisations. This mode supports
whole-program analysis.
• Generation of C code: C code was generated using Real-Time Workshop from

Simulink, selecting the dSPACE card as the target platform, and the compiler-
optimisation options previously described.
• Insertion of profiling functions: Because the use of a profiler is not automatically

supported by the tool-flow, code has to be inserted manually to access this
function. Marks are inserted to signalise the beginning and ending of functions
corresponding to the controller, thus neglecting the time-overhead of functions
such as communication with the host computer.
• Configuration of the dSPACE card: For this purpose software from dSPACE,

called ControlDesk was used. This software enables the visualisation of all
variables defined in a simulink model, and if required the parametrisation of a
model in run-time.
• Measurements: Execution time was measured by retrieving profiling informa-

tion from the dSPACE card. Absolute time and the time difference between
the inserted marks can be retrieved, allowing the exact calculation of the execu-
tion time corresponding to a benchmark. Several hundred measurements per
benchmark were performed, from which the mean values were calculated.
To calculate energy consumption, typical power consumption was used. De-
pending on the operating mode, the power consumption of the PPC750 varies,
as shown in the graph presented in figure 3.18. The typical power consumption
of the Full-On mode was used for estimations, except for operations using the
64-bits floating point unit, which according to [Nam01] uses almost two times
more energy than the integer units to perform the same operation.

In the next section the algorithmic characterisation, and hardware and software
realisation of a selected set of benchmarks is presented, and results are discussed.

3.5 Benchmarks

For the following benchmarks, there is neither a specific control goal, nor a particular
plant to be controlled. The goal of the experiments is to achieve the maximum through-
put possible, assess the resource utilisation, and relate the algorithmic characteristics to
the results. Three structures were chosen: a PID controller, a state-feedback controller,
and a state observer. These control algorithm are widely used [As08, Oga87, Dor11],
and are therefore representative of the application area.

64 Chapter 3 Technology Comparison

0

1

2

3

4

5

6

7

8

300 333 350 366 375 400 433 466 480 500

Po
w

er
 (W

)

CPU Clock Frequency (MHz)

Power Consumption of the PowerPC750

Full-On (typ)
Full-On (Max)
Doze (Max)
Nap (Max)

Figure 3.18: Power consumption of the PowerPC 750 CPU for various operation
modes [IBM02] (power for 480 MHz was calculated using polynomial
interpolation)

3.5.1 PID Controller

PID control is still one of the most widely used algorithms in industry, it is estimated
that more than 90 % of the low-level loops of process control are still PID-based
[As01]. The standard PID algorithm is described by:

u(t) = Kp

(
e(t)+

1
Ti

∫ t

0
e(τ)dτ +Td

de(t)
dt

)
(3.24)

where u(t) is the control signal, e(t) is the error signal, defined as e(t) = ysp(t)−
y(t), and the control parameters are Kp (proportional gain), Ti (integral time), and Td
(derivative time). A Laplace transform of equation 3.24 yields:

U(s) = Kp

(
Ysp(s)−Y (s)+

1
sTi

(Ysp(s)−Y (s))+ sTd (Ysp(s)−Y (s))
)

(3.25)

For a real-world implementation of equation 3.25, some modifications are required
[Wit03]. The derivative is modified to avoid large amplifications of measurement
noise, resulting in the following expression:

3.5 Benchmarks 65

sTd ≈
sTd

1+ sTd/N
(3.26)

Thus, high-frequency noise is limited to N at high frequencies. Another modification
to the algorithm is to avoid the action of the derivative term on the command signal (set-
point). Furthermore, a parameter b, which regulates the weight of the command signal
on the proportional term, is introduced [As01]. After this modifications, equation 3.25
becomes:

U(s) = Kp

(
bYsp(s)−Y (s)+

1
Tis

(Ysp(s)−Y (s))+
sTd

1+ sTd/N
Y (s)

)
(3.27)

To avoid the negative effects of integral action in the presence of saturation (e.g.,
caused by actuator limitations), a mechanism has to be implemented, which detects
such non-linear effects and accordingly avoids them. Such a mechanism is known as
anti-windup [As01]. A simple implementation of the anti-windup strategy is:

e′(k) =

emin, if f (k) < Actmin;
emax, if f (k) > Actmax;
e(k), otherwise.

(3.28)

Where e′(k) is the output of the anti-windup operator, f (k) is a feedback signal
from the actuator (if not measurable, this signal can be generated by a mathematical
model), Actmin is the minimum value that the actuator can reach, and Actmax is the
maximum value, emin and emax are suitable values to avoid integrator windup. The
components of the PID controllers are:

P(s) = Kp(bYsp(s)−Y (s)) (3.29)

I(s) =
Kp

Tis
(Ysp(s)−Y (s)) (3.30)

D(s) =
KpsTd

1+ sTd/N
Y (s) (3.31)

The discretisation of these components is discussed in the following paragraphs.

Proportional Component The proportional action depends only on instantaneous
values of the error signal, and is zero only if e(t) = 0. A discretisation of the propor-
tional term is given by:

p(k) = Kp(bysp(k)− y(k)) (3.32)

66 Chapter 3 Technology Comparison

where k represents the sampling instant.

Integral Component The output of the integral term is proportional to the accu-
mulated error. The inclusion of the integral term allows a zero steady state error.

Numerical integration can be implemented in several ways. First order approxima-
tion (e.g., forward and backward Euler approximation), or second order approximation
(e.g., Sympson’s rule), are the most common methods, because of their low complexity
and stability. Here Sympson’s rule is used, which is given by equation 3.33.

is(t +1) = is(t)+
∆t
3

(f (t−1)+4 f (t)+ f (t +1)) (3.33)

where ∆t is the difference between two sampling instants (i.e., the duration of the
control cycle). When substituting 3.33 in 3.30 it yields:

is(k +1) = is(k)+
Kp∆k
3Ti

(e(k−1)+4e(k)+ e(k +1)) (3.34)

where e(k) = ysp(k)− y(k).

Derivative Component The derivative term is proportional to the rate of change
of the feedback signal. When the feedback signal stays constant, the derivative term
contributes zero to the control action.

The most common method for numerical differentiation is backward differences,
given by:

f ′(t) =
f (b)− f (a)

b−a

when including the modifications made in equation 3.26 the derivative term is then
given by:

d(k) =
Td

Td +N∆k
(d(k−1)−KpN (y(k)− y(k−1))) (3.35)

Thus, the PID controller is given by:

u3(k) = p(k)+ is(k)+d(k) (3.36)

3.5 Benchmarks 67

Algorithmic Characterisation

Using the metrics defined in section 3.1, we first look at the algorithmic characteristics
of the controller. A suitable CDFG corresponding to equation 3.36 is presented in
figure 3.19. This CDFG is manually derived from equation 3.36.

+

−

∑

×∑

×

∑ ×− −
+

× ∑ × ∑++ ∑

Z-1

Z-1

Z-1

Z-1

A i

p

T

kK

3

∆×

i

p

T

kK

3

∆

kNT

NTK

d

dp

∆+

4

+

+

+
+

kNT

T

d

d

∆+

b

∑ ∑++
+

+

+

×

Z-1

∑
−

+

−
)(kSP

)(kY

)(ku

C1 M1

A1 AWU

SP

Y

R0

R1

R2

A3

A2 M3

C3

A4 A5

A6M4

M5C2

M6R3

R4C5

C4

C6

A7M2 A8

A9

U

Integral

Derivative

Proportional

Figure 3.19: CDFG of a PID controller, using Simpson numerical integration. Node A
represents an anti-windup algorithm, shown in figure 3.20

A corresponding CDFG for the anti-windup algorithm (cf. equation 3.28) is shown
in figure 3.20. This CDFG corresponds to the block A in figure 3.19. Gray nodes
represent inputs and outputs of the graph.

> <

s

s

maxe

mine

)(ke

minActmaxAct

)(ku

Figure 3.20: Implementation of a simple anti-windup strategy

68 Chapter 3 Technology Comparison

The PID controller, including a simple anti-windup algorithm has a total of 37
operations: 6 multiplications, 9 additions, 18 memory operations, 2 select operators,
2 comparisons. Computing a schedule for the CDFG presented in figure 3.19 using
TORSCHE (cf. [Šůc06]), the latency of the PID is latalg=10 steps, when nodes of the
CDFG are not weighted using the normalised units defined in section 3.1.3), cf. figure
3.21. For the algorithmic characterisation of the PID controller, the only parameter
that is changed is the bit-width of the operations. The next examples deal with the
case where the number of operations is changed, cf. sections 3.5.2 and section 3.5.3.

0 2 4 6 8 10
PU37
PU36
PU35
PU34
PU33
PU32
PU31
PU30
PU29
PU28
PU27
PU26
PU25
PU24
PU23
PU22
PU21
PU20
PU19
PU18
PU17
PU16
PU15
PU14
PU13
PU12
PU11
PU10

PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1

t

Not Weighted

Y
SP
C

1 M
1A
1

R
1R
2 M

2

C
2

A
4 A

5

M
5

C
5

A
7

R
5

A
8 a

9
U

A
2 M

3C
3

R
0

A
3 M

4C
4 A

6R
4 M

6C
6

>
<

e
maxe
min

Act
minAct
max

S
2

S
1

Figure 3.21: Scheduling for the PID controller depicted in figure 3.19 without weight-
ing operations

A summary of the algorithmic characteristics of the PID controller using different
bit-widths, and the normalised weights defined in section 3.1.3, is presented in table 3.8.
It is shown that, as expected, the modelled circuit size (SizeAlgi) and modelled circuit
depth (DepthAlgi) increase when increasing the base bit-width of each operation.
Correspondingly, the number of normalised operations (NormOpAlgi) and normalised
steps (StepsAlgi) increase.

Results presented in table 3.8 are shown in figures 3.22, using a logarithmic
scale for the Y axis. A significant growth of the number of normalised operations
(NormOpAlgi), and the number of normalised steps (StepsAlgi) can be observed.

3.5 Benchmarks 69

Bit-Width SizeAlgi(µm2) DepthAlgi(ns) NormOpAlgi StepsAlgi AOSi

8 15031.12 7.03 76.96 7.39 10.42
16 48048.00 9.32 142.41 7.36 19.34
24 98951.84 11.37 186.62 7.56 24.70
32 164442.72 13.43 217.58 7.75 28.08
40 251869.28 15.40 231.20 8.06 28.68
48 361180.04 17.23 265.84 8.15 32.61
56 481107.64 19.30 273.04 8.28 32.98
64 632708.44 21.14 307.55 8.45 36.38

Table 3.8: Algorithm characterisation of a parallel PID controller

However, the growth rate of average operations per step AOSi is rather low. In other
words, the algorithmic size of the PID controller has only a small influence on the
number of average operations per step. This fact has a direct repercussion on the
resource utilisation of hardware and software implementations, because it is expected
that using a parallel architecture wont result in a significant speedup increment for an
increasing problem-size.

0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

Bits

PID with Sysmpson Integral

StepsAlg
i

NormOpAlg
i

 AOS
i

Figure 3.22: Algorithmic characterisation of a PID controller (see figure 3.19)

70 Chapter 3 Technology Comparison

Reconfigurable Hardware Implementation

The PID controller shown in figure 3.19 was implemented using various bit-widths for
each operation. A hardware description of the controller was done using the Synplify
DSP toolbox in Matlab/Simulink (cf. figure 3.23) following the tool-flow described in
section 3.4.1.

Out1
1

setpoint
z−1

[reset]

[reset]

[reset]

[reset]

[reset]

[reset]

reset
z−1

kp
z−1

ki
z−1

feedback_actuator
z−1

feedback
z−1

c
z−1

b
z−1

a
z−1

SynDSPTool

x

rst yz−1

x

rst yz−1x

rst yz−1

x

rst yz−1

x

rst yz−1

x

rst yz−1

Port Out
z−1

Mux

sel

d0

d1

Mult4

Mult3

Mult2

Mult1

Mult

[reset]

Convert1
est

Convert

<<2
Nearest

−9−9

99

−10.5−10.5

10.510.5

0
0a

b
a<b

a

b
a<b

a

b
a>b

a

b
a>b

Binary Logic

a

b

c

d

out

Add7

+

+
Add6

+

+
Add5

+

−
Add4

+

+

Add3

+

−

Add2

+

−

Add1

+

−

Add

+

−

9

8

7

6

5

4

3

2

1

Figure 3.23: Implementation of a PID controller with Synplify-DSP

Implementation results are shown in table 3.9. As the bit-with of the operations
grows, the number of LUTs required to realise one single operand increases (LUTs
in the Spartan 3 FPGA have 4 inputs and one output), as predicted by the model (cf.
figure 3.22). This causes a single operation to be implemented using several LUTs,
thus increasing the routing delay, which explains the increment of execution time as
the bit-width growths. The percentage change, using the execution time of the 8-bit
version of the PID as reference, goes from 11% to 119% for the 16-bit, and the 64-bit
versions, respectively.

Furthermore, although the achievable clock frequency decreases as the bit-width
increases, power consumption of the different PID controllers raises with the amount
of reconfigurable resources being used, as shown in table 3.9, which results from the
toggle activity of the extra logic resources and I/Os pads used. The percentage change
of power consumption, using the 8-bit realisation as reference, goes from 9% to 54%
for the 16- and 64-bit versions, respectively.

3.5 Benchmarks 71

Software Implementation

Using the flow described in section 3.4.2 a PID controller was implemented using
different data types, corresponding to different bit-widths. The controller was im-
plemented using standard simulink blocks, as shown in figure 3.24. For the 64 bit
realisation, the floating point unit of the PPC is used. However, this values were not
used to compare hardware and software realisations, because hardware-based designs
used exclusively fixed-point arithmetic.

controler_output

1

bb
Kp

Discrete−Time

Integrator

K Ts

z−1

Discrete Differentiation Plus Fitering

A(z)

B(z)

AntiWindUp

error

feedback_curret

feedback_control

Out1

Feedback_current

3

Feedback

2

Setpoint

1

Figure 3.24: Implementation of a PID controller using Matlab/Simulink

Implementation results are shown in table 3.10. Reported execution times represent
mean values over several hundred measurement (cf. section 3.4.2).

In table 3.10, it is shown that the execution time of the 8- and 16-bit version of the
controllers does not differ much from each other (> 4%). In contrast, the 32-bit version
of the PID controller has an execution time more than 42% longer than the 8-bit
version. This increment results from the fact that the multiplier of the IU1 arithmetic
unit of the PowerPC supports early exit for operations that do not require full 32- x
32-bit multiplication, which is the case of the first two versions of the PID controller.
The 64-bit realisation uses the floating point unit, which achieves 4 cycle latency, 2
cycle throughput, for a double-precision multiply-add operation, in contrast to the
multi-cycle operation mode of the integer unit IU1. The use of this specialised unit

Bit-Width Slices Multipliers Time (µs) Power (W)

8 204 (1,5%) 5 (15.6%) 1,6622×10−2 0,17389
16 454 (3,4%) 5 (15.6%) 1,8364×10−2 0,19829
32 905 (6,8%) 20 (62.5%) 2,5893×10−2 0,31071
64 1596 (12%) 32 (100%) 3,6444×10−2 0,65653

Table 3.9: Various FPGA-based implementations of a PID controller

72 Chapter 3 Technology Comparison

translates in shorter execution times. For the PID controller, the percentage change
between the 8- and 64-bit version is a decrease of 24%, cf. table 3.10.

Bit-Width Execution Time (µs)

8 0,9606
16 0,9924
32 1,4166
64 0,7499

Table 3.10: Varios CPU-based implementations of a PID controller

Validation of Empirical Approximation of Average Parallelism

To validate the approximation of average parallelism (AOS), the modelled growth
rate of circuit size (Sizealg), which is the base to calculate the number of normalised
operations (cf. equation 3.4), and the used reconfigurable resources of various PID
implementations are compared in table 3.11.

Bit-Width SizeAlgi(µm2) Slices

8 15031 407
16 48048 1452
32 164442 4511
64 632708 17345

Table 3.11: Comparison of circuit size (SizeAlgi) and utilised slices of various realisa-
tions of a PID controller

The values in table 3.11 for the FPGA-based realisation correspond to implementa-
tions of a PID controller without using any embedded multiplier. To compare these two
data sets values were scaled to the range [0,1], as shown in figure 3.25. Furthermore,
a trend estimation of both modelled an measured data was done, which shows a very
similar trend for modelled and measured circuit size, cf. equation 3.37.

ymodelled = 0,0065e1,244SizeAlg,R2 = 0,99 (3.37)
ymeasured = 0,0068e1,239Slices,R2 = 0,99

Equation 3.37 was generated using an exponential regression, where equation 3.38
was used to calculate the least squares fit of both data sets presented in table 3.11.

3.5 Benchmarks 73

y = cebx (3.38)

Where c and b are constants, and e is the base of the natural logarithm. The quality
of the exponential regression is calculated with a coefficient of determination (i.e., R2),
also shown in equation 3.37. Values of R2 close to 1 indicate that the data regression
is reliable [Raw01].

0

0,2

0,4

0,6

0,8

1

1,2

PID (8-Bit) PID (16-Bit) PID (32-Bit) PID (64-Bit)

Modelled and Measured Growth-Rate (Normalised)

Slices SizeAlg

Figure 3.25: Comparison of modelled and measured circuit growth rate

Figure 3.25 shows a very similar trend of both modelled and measured data. This
comparison is of relevance, because the approximation of average parallelism is based
on modelled values, which are used to compute a relative measure of computational
effort to weight operations of an algorithm (cf. section 3.1.3).

Comparison of Hardware/Software Realisations

When comparing the raw realisations results, it can be noticed that hardware imple-
mentations achieve a throughput up to two orders of magnitude higher than software
realisations, while consuming two order of magnitude less energy. However, these
values have to be normalised to the corresponding technologies, and the price to
achieve the reported throughput (e.g., silicon resources) has to be taken into account.
Therefore, metrics defined in section 3.2 are used to assess resources-utilisation for
both architectures.

Computational density and energy efficiency (cf. section 3.2) are calculated for
hardware and software implementations of the PID controller. Figure 3.26 shows
computational density together with the average operations per step (AOSi) and the

74 Chapter 3 Technology Comparison

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

PID (8-Bit) PID (16-Bit) PID (32-Bit)

Co
m

pu
ta
tio

na
l D

en
si

ty
 [1

/s
.µ

m
2]

PID (Various Bit-Widths)

PPC FPGA AOS SizeAlg

Figure 3.26: Algorithmic characterisation and Computational Density (C.D.) of hard-
ware and software realisations of various versions of a PID controller

modelled circuit size (SizeAlgi) for three versions of the PID controller presented in
tables 3.9 and 3.10 (the 64-bit version is excluded from this comparison). As can be
seen, hardware-based realisations show a better throughput/area ratio than software-
based realisations. The gap between hardware and software realisations does not
significantly changes, it goes from 103% (8-bits version) to 98% (32-bits version). The
percent difference was calculated using equation 3.39. It can be noticed that the used
number of bits for each operation does not strongly affect software implementations as
long as the desired bit-width can be supported from the processor without emulation
(i.e., required bit-width ≤ ALU bit-width). For hardware implementations bit-width
of operations has a direct impact on the required reconfigurable resources, routing
delays, and energy consumption, cf. figure 3.26.

Percent Di f f erence =
|ValueHardware−ValueSo f tware|

1
2 · (ValueHardware +ValueSo f tware)

·100 (3.39)

In this example, average parallelism (AOEi) does not grow at the same ratio as
algorithm size (SizeAlgi) grows. This happens because the number of operations (i.e.,
nodes of the CDFG corresponding to the PID controller) does not increase, but only the
bit-width of each operand, which means that data dependencies among operations stay
constant, and only the problem size grows (i.e., the number of normalised operations

3.5 Benchmarks 75

NormOpAlg). The effects of this can be seen in the reported results (cf. figures 3.26,
and 3.27).

1,0E+00

1,0E+01

1,0E+02

1,0E+03

PID (8-Bit) PID (16-Bit) PID (32-Bit)

En
er

gy
 Effi

ci
en

cy
 [1

/µ
J]

PID (Various Bit-Widths)

PPC FPGA

Figure 3.27: Energy Efficiency of hardware and software realisations of various ver-
sions of a PID controller (logarithmic scale is used for the Y axis)

Energy efficiency for both hardware and software implementations is presented
in figure 3.27. Hardware-based implementations have a better throughput/area ratio
than software-based realisations. The use of many processing elements in parallel
allows for a higher throughput in spite of lower clock frequencies. However, the gap
between hardware- and software-based realisations decreases, as shown in figure 3.27,
because for software-based realisations increasing the bit-width does not greatly affect
power consumption (i.e., execution time does not vary significantly), as long as the
used bit-width is supported by the ALU of the architecture at hand. The gap between
hardware and software realisations decreases from 193% to 186% for the 8-bit and
32-bit versions of the PID controller correspondingly.

In the next section a second benchmark is analysed, a state-feedback controller, for
which the effects of increasing number of average operations per step on the resource
utilisation of both hardware and software architectures is explored.

3.5.2 State-Feedback Controller

State-feedback is a very popular approach to control a linear, time-invariant system.
The system to be controlled is described by a set of first order differential equations,
as presented in equation 3.40, called state-space representation.

76 Chapter 3 Technology Comparison

ẋ = Ax +Bu
y = C x +Du (3.40)

where matrices A ,B ,C ,D are constant coefficient matrices. A block diagram of
equation 3.40 is presented in figure 3.28.

u(t) y(t)x(t)

A

CB

D

+
+

+
+

S
1

Figure 3.28: Block diagram of a state-space representation of a system

A state-feedback controller for a system described by equation 3.40 can only
be designed when the system is controllable and observable. If the system is not
observable other techniques have to be used, such as the use of state observers (see
section 3.5.3).

Controllability is a property of linear systems, which determines whether a system
can or cannot be driven from any initial condition to the origin, via a suitable selected
input. In other words, the system is said to be controllable if the values of all entries
of the state vector can be made zero after some amount of time via a choice of a
suitable input. Observability is a measure for how well internal states of a system can
be deduced by knowledge of its external outputs. A system is observable if, for any
possible sequence of state and control vectors, the current state of the system can be
determined in finite-time using only the outputs of the system [Kal59].

The basic idea of state-feedback is that having a fully observable and controllable
system, a controller can be designed based solely on the internal states of the system
multiplied by a feedback gain, as shown in figure 3.29.

Where K is a r× n matrix, n being the number of states of the system and r the
number of inputs. A realistic implementation of a state-feedback controller includes a
scale factor to the reference signal N̄, as shown in figure 3.29. Thus the equation of
the state-feedback controller is given by equation 3.41.

u(t) =−K · x(t)+ N̄ · r (t) (3.41)

3.5 Benchmarks 77

Controller

Plant

r(t) u(t) y(t)x(t)

K

A

CB

D

+
+

+
+Ñ +

- S
1

Figure 3.29: Block diagram of a state-feedback controller

When substituting continuous-time by difference equation, feedback-controller is
given by:

u(k +1) =−K · x(k)+ N̄ · r (k) (3.42)

where k is the sampling time of the controller. In the next section, the algorithmic
characteristics of equation 3.42 are analysed.

Algorithmic Characterisation

As an example, figure 3.30 shows a suitable CDFG representation of equation 3.42,
having two states (n = 2) and two reference inputs (r = 2), cf. equation 3.43.

[
u1(k +1)
u2(k +1)

]
=−

[
K11K12
K21K22

]
·
[

x1(k)
x2(k)

]
+
[

N̄11N̄12
N̄21N̄22

]
·
[

r1(k)
r2(k)

]
(3.43)

For this specific example the CDFG of a state-feedback controller has a total of 28
operations: 8 multiplications, 6 additions, and 14 storage operations. The number of
operations increase when increasing the number of reference inputs (r) or the number
of states (n).

The schedule presented in figure 3.31 shows that a two-state, two-intput state-
feedback controller has a latency of five steps (i.e., latalg = 5) when the nodes of
graph 3.30 are weighted with a unit delay. The latency of the graph varies when using
Stepsalg to weight the execution time of each node as reflected in figure 3.32.

The number of operations of a state-feedback controller can be expressed as a
function of the number of states St and inputs In of the controller as follows:

78 Chapter 3 Technology Comparison

K11

K12

x1(k)

x

x

x2(k)

x

x

k21

k22

∑
+

+

∑
+

+

u1

(k+1)∑
+

−

∑
+

−

x

Ñ21

∑ ++

x

r2(k) Ñ12

x

r1(k) Ñ11

∑ ++

x

Ñ22

u2

(k+1)

Figure 3.30: Cyclic Data Flow Graph of a feedback controller for a two-state two-input
system, cf. equation 3.43

Multiplications = (St · In)+ In (3.44)
Additions = St · In

Storage = St ·2+ In ·3

Using equation 3.44 enables to easily explore the algorithmic characteristics of a
state-feedback controller, such as the latency of the equivalent CDFG, or the AOSi.
For this purpose, the number of states, the number of inputs, and bit-width, are used as
parameters. The results of this characterisation are shown in figure 3.32. Equation 3.44
has been empirically derived, and used for the examples shown in this comparison.

As can be observed in figure 3.32, average operations per step (AOSi) of the state-
feedback grows rapidly when increasing the number of inputs, outputs, states, and
bit-width of operations.

3.5 Benchmarks 79

−1 0 1 2 3 4 5 6
PU22
PU21
PU20
PU19
PU18
PU17
PU16
PU15
PU14
PU13
PU12
PU11
PU10

PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1

t

Not Weighted

C
1

C
2

C
3

C
4

M
1

M
2

M
3

M
4

M
6

I
1
I
2

A
1

A
2

n
2

A
4

r
2

r
1

M
8

n
1

A
6

O
1

O
2

Figure 3.31: Scheduling for the state feedback controller depicted in figure 3.30 with
operations not being weighted

Hardware Implementation

Different state-feedback controllers were implemented, using various numbers of
inputs, states, and bit-widths. The main limitation was the number of available I/Os of
the Spartan-3 (333 I/Os), because pads were assigned to each input and output port, to
maximise parallelism. For an actual realisation, another methods are preferred to save
IO blocks.

A design was implemented for each combination of number of I/Os and states,
using the Synplify DSP toolbox. Because most of the multiplications in the design
where constant gains, LUT-based multipliers where used. Table 3.12 shows hardware
implementation results of state-feedback controllers using different number of inputs
and states.

As it was the case for the PID controller implementation presented in the previous
section, increasing the bit-width results in lower achievable clock frequencies, because
of the increased routing delay. This can be observed in the 2/1 version (2 inputs and
outputs, and 1 state) of the state feedback controller, where the execution time of
the 64-bits version increased 220% in contrast to the 8-bits version. Increasing the
number of operations results only on small variations of the execution time. This can

80 Chapter 3 Technology Comparison

0
20

40
60

80

0

10

20

30

40
0

500

1000

1500

2000

Bits(i)

State Feedback

States and IOs

A
O

S
i

Figure 3.32: Normalised algorithmic characterisation of a state-feedback controller
(see figure 3.30)

I / S Bit-Width Slices Time (ns) Power (W)

2 / 1 8 116 (0,8%) 7,487 0,1819
2 / 1 64 1222 (9,2%) 23,990 0,2567
4 / 2 8 324 (2,4%) 8,111 0,1796
4 / 2 32 2760 (20,7%) 24,059 0,3092
6 / 8 8 1606 (12,6%) 8,144 0,2592
6 / 8 16 4906 (36,9%) 17,502 0,4140

12 / 16 8 4555 (34.2%) 8,486 0,4855

Table 3.12: Various FPGA-based implementations of a state-feedback controller

be observed when comparing all implementations of the state-feedback controller,
which use 8 bits for each operation, where the difference in execution time between
the fastest and the slowest design is about 13% (from 7,48ns to 8,48ns, cf. table 3.12).
In contrast, the power consumption increases more than 180% (from 0,17W to 0,48W),
as a result of the increment of switching activity in the device, among other factors.

3.5 Benchmarks 81

Software Implementation

Implementation results are shown in table 3.13. These execution times represent mean
values over several hundred measurement. Furthermore, the state-feedback controller
was implemented using the flow described in section 3.4.2.

I / S Bit-Width Execution Time (µs)

2 / 1 8 0,6227
2 / 1 64 0,4696
4 / 2 8 0,7439
4 / 2 32 0,7985
4 / 2 64 0,5848
6 / 8 8 2,3378
6 / 8 16 2,6473
6 / 8 64 1,5499

12 / 16 8 12,7166
12 / 16 64 4,7303

Table 3.13: Varios CPU-based implementations of a state-feedback controller

As it was the case for the PID controller presented previously, varying bit-width
does not affect greatly the execution time of an algorithm. This can be noticed when
comparing 8-bit realisations with 16- and 32-bit realisations. For instance, the 4/2
version of the state-feedback controller increases its execution time on 6,8% when
using 32-bit instead of 8-bit operations (from 0,74 to 0,79 µs). The same example,
when implemented in hardware has an increment of more than 196% of the execution
time (from 8,11 to 24,05 ns). When using a specialised hardware unit, as in the case
of 64-bits realisations, execution times decreased significantly. The FPU of the PPC
achieves 4 cycle latency, 2 cycle throughput, for a double-precision multiply-add
operation, in contrast to the multi-cycle operation mode of the integer unit IU1 (cf.
section 3.3.1). 64-bits realisations are not used for the comparison presented in this
chapter, because FPGA-based realisations use only fixed-point arithmetic units.

Validation of Empirical Approximation of Average Parallelism

As in the case of the PID controller, first the modelled and measured circuit growth-rate
are compared in table 3.14. A trend estimation is also shown in equation 3.45.

ymodelled = 0,0050e1,3172SizeAlg,R2 = 0,99 (3.45)
ymeasured = 0,0068e1,2612Slices,R2 = 0,99

82 Chapter 3 Technology Comparison

I / S SizeAlgi(µm2) Slices

2 / 1 9050 116
4 / 2 26732 324
6 / 8 118633 1606

12 / 16 444435 4555

Table 3.14: Comparison of circuit size (SizeAlgi) and utilised slices of various 8-bit
state-feedback implementations

This trend estimation shows the similarities of both data sets, and the accuracy of
the regression results. Scaled data is shown in figure 3.33. Both data series show a
similar trend, which also validate modelled results.

0

0,2

0,4

0,6

0,8

1

1,2

1 State/2 IOs 2 States/4 IOs 8 States/6 IOs 16 States/12 IOs

Modelled and Measured Growth-Rate (Normalised)

Slices SizeAlg

Figure 3.33: Comparison of modelled and measured circuit grow rate

Comparison of Hardware/Software Realisations

To compare hardware and software realisations, only designs using 8 bits as base
word-length are used. As in the case of the PID controller, when comparing raw imple-
mentation results, it is shown that an FPGA-based realisation results in a speedup of up
to three orders of magnitude when compared to a software-based state-feedback, while
using up to three orders of magnitude less power consumption (for the 12/16 version).
Using the proposed metrics, it is shown that hardware-based implementations of the
state observer algorithm result in a better throughput/area ratio than software-based re-
alisations, cf. figure 3.34. For the state-feedback controller the gap between hardware-

3.5 Benchmarks 83

and software-based realisations realisations increases as the average operation per step
(AOS) and circuit size (SizeAlg) of the algorithm increase. Cf. figure 3.34, where the
left axe has a logarithmic scale.

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

0,00

0,50

1,00

1,50

2,00

2,50

1 State/2 IOs 2 States/4 IOs 8 States/6 IOs 16 States/12 IOs

Co
m

pu
ta
tio

na
l D

en
si

ty
 [1

/s
.µ

m
2]

State-feedback (8-bits)

PPC FPGA AOS SizeAlg

Figure 3.34: Computational Density of hardware and software realisations of a state-
feedback controller

In figure 3.34, it is shown that the gap between hardware- and software-based
realisations increases as the problem size grows, provided that the AOS (i.e., average
parallelism) increases, too. This is not the case of the PID controller, presented in the
previous section, where an increasing bit-width shortened the gap between hardware-
and software-based realisations. For the state-feedback controller the gap between
hardware- and software-based implementation changes from a 127% for the 2/1
version to a 195% for the 12/16 version. Percentage difference was calculated using
equation 3.39.

Energy efficiency of hardware and software realisations show a similar trend as
the computational density comparison: the throughput/power ratio decreases, as the
number of inputs and output (e.g., the size of the algorithm) increases, cf. figure
3.35. However, the gap between hardware- and software-based realisations does not
vary as much as in the case of computational density. Values of percent difference
fluctuate between 194% and 199% for the 2/1 and 12/16 versions of the state-feedback
controller respectively. This results from the fact that power consumption increases
significantly for hardware-based realisations, when the problem size grows.

84 Chapter 3 Technology Comparison

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1 State/2 IOs 2 States/4 IOs 8 States/6 IOs 16 States/12 IOs

En
er

gy
 Effi

ci
en

cy
 [1

/n
J]

State Feedback (8 Bits)

FPGA PPC

Figure 3.35: Energy Efficiency of hardware and software realisations of a state-
feedback controller

In this example, the gap between hardware- and software-based realisations regard-
ing computational density raises, as the problem size grows. However, this trend is
bounded by the available resources of reconfigurable architectures and the intrinsic
parallelism of the algorithm. As a consequence for hardware-based realisations, if
the problem size (i.e., the size of the controller) grows to a point where its realisa-
tion requires more resources than available in the selected device, the gap between
hardware- and software-based realisations diminishes or it even turns in favour of
software-architectures (i.e., software-based realisations would have better through-
put/area ratios). In the next section this argument is clearly exemplify, using a state
observer algorithm.

3.5.3 State Observer

A state observer, also called state estimator, is a subsystem of a controller, which
infers internal states of a linear time-invariant system, based on the measurement of
the outputs of the controlled system and the controller itself [Oga87].

State observers are typically used in mechatronic systems when states of a plant
can not be directly measured, or the use of sensors to measure states of a system is
avoided to reduce implementation costs. Furthermore observers are used to achieve
redundancy in order to detect measurement errors [Dor11]. In those cases, the states

3.5 Benchmarks 85

of the system have to be estimated based on the available measurable data. A block
diagram of a full state observer is presented in figure 3.36.

Observer

A

CB

D

+
+Z-1+

+
+

+

+
-

)(~ ty)(tu

)(ty

Plant

Controller

L

)(~ tx

Figure 3.36: Block diagram of a control system with a state observer

The observer has as an input u(t) and y(t), giving the estimated state vector x̃(t) as
output. The mathematical equations of a full state observer corresponding to the block
diagram depicted in figure 3.36 are:

˙̃x(t) = Ax̃(t)+L(y(t)− ỹ(t))+Bũ(t) (3.46)
ỹ(t) = C x̃(t)+Du(t)

where matrices A ,B ,C ,D are constant coefficient matrices. When substituting
continuous-time by difference equation, the state observer equation becomes:

˙̃x(k +1) = Ax̃(k)+L(y(k)− ỹ(k))+Bũ(k) (3.47)
ỹ(k) = C x̃(k)+Du(k)

86 Chapter 3 Technology Comparison

Algorithmic Characterisation

As an example, figure 3.37 shows a CDFG of a state observer for a system with two
inputs, one state, and two outputs; corresponding to equation 3.48. As in the previous
sections, the CDFG was manually derived from the mathematical description of the
observer (cf. equation 3.48).

x̃(k +1) = A1 · x̃(k)+
[
L1L2

]
·
[

y1(k)− ỹ1(k)
y2(k)− ỹ2(k)

]
+
[
B1B2

]
·
[

ũ1(k)
ũ2(k)

]
[

ỹ1(k)
ỹ2(k)

]
=
[
C1C2

]
· x̃(k)+

[
D11D12
D21D22

]
·
[

ũ1(k)
ũ2(k)

] (3.48)

The state observer described by equation 3.48 has a total of 39 operations, from
which 11 are multiplications, 18 are memory operations, and 10 are additions. Having
the CDFG from equation 3.48, the next step is to find out the minimum execution
time, corresponding to the critical path of the graph.

x

x

ũ1(k)

B1

ũ2(k)

B2

∑
+

+

x

x

D21

D22

∑
+

+

x

x

D11

D12

∑
+

+

Z-1

∑
+

∑
+

ỹ1(k)

ỹ2(k)

L1

x

x

A1

x

∑ +

L2

C1

C2

x

x

∑+

+

∑+

+

y1(k)

y2(k)

∑ +

−

∑ +

−

+

+

+

Figure 3.37: Cyclic Data Flow Graph of the state observer corresponding to equation
3.48

3.5 Benchmarks 87

0 2 4 6 8 10
PU39
PU38
PU37
PU36
PU35
PU34
PU33
PU32
PU31
PU30
PU29
PU28
PU27
PU26
PU25
PU24
PU23
PU22
PU21
PU20
PU19
PU18
PU17
PU16
PU15
PU14
PU13
PU12
PU11
PU10

PU9
PU8
PU7
PU6
PU5
PU4
PU3
PU2
PU1

t

Not Weighted

I
2

D
22

M
D22

A
D2

B
2

M
B2 A

B1 Add
1a

R

C
2

M
C2

A
C2

O
2

A
1 M

A1

L
1

M
L1

Add
1b

Om
1

Add
3

I
1

M
D21

D
21

D
12

M
D12

D
11

M
D11

A
D1

M
C1

A
C1

C
1

Om
2

Add
3

O
1

M
L2

L
2

B
1

M
B1

A
L1

Figure 3.38: Scheduling for a state observer depicted in figure 3.37 without operation
weighting. Three cycles are shown in the figure

The cyclic scheduling of a full state observer with 2 inputs, 2 outputs and one state
is presented in figure 3.38. The algorithm has a latency of latalg = 10 steps, and a
execution period w = 1.

As in the previous section, the number of operations can be expressed as a function
of the number of inputs In (i.e., ũ(k)), outputs Out (i.e., ỹ(k)) and states St (i.e., x̃(k))
of the system, as follows:

MultA = St ·St (3.49)
AddA = (St−1) ·St
StorA = St ·St

where MultA are the multiplications required for the A matrix multiplier (cf. figure
3.36). AddA are the additions required for the same block, and StorA are the number

88 Chapter 3 Technology Comparison

of storage operations. These equations have been derived empirically based on the
examples used in this section. In the same way, the required operations for the rest of
matrix multiplications can be calculated with the following equations.

MultB = In ·St (3.50)
AddB = (St−1) · In
StorB = In ·St

MultC = St ·Out
AddC = (Out−1) ·St
StorC = St ·Out

MultD = In ·Out
AddD = (Out−1) · In
StorD = In ·Out
MultL = Out ·St
AddL = (St−1) ·Out
StorL = Out ·St

Combining the terms of equations 3.49 and 3.50, the total number of multiplications,
additions, and storage operations can be calculated by equation 3.52.

MultObserver = MultA +MultA +MultA +MultA +MultL (3.51)
AddObserver = AddA +AddB +AddC +AddD +AddL +

addAZ +addCD +addLB +addLO

StorObserver = StorA +StorB +StorC +StorD +StorL +StorIOs +StorDelay

where addCD are the additions required to add the output of the matrix multiplier C
with the output of the matrix multiplier D, which corresponds to the number of outputs
of the state observer, i.e., addCD = Out. Correspondingly, addAZ = St, addLB = St,
addLO = Out. StorIOs is the number of storage elements required for the inputs and
outputs of the system, i.e., StorIOs = 2 ·O + I. Finally, StorDelay corresponds to the
number of storage operations required for the delay block of the state observer, which
is equal to the number of states, i.e., StorDelay = St. Based on equations 3.49 to 3.52
the parallelism of a state observer as function of its inputs, outputs and states can
be derived, as presented in figure 3.39, where the average normalised operations per

3.5 Benchmarks 89

0
20

40
60

80

0

10

20

30

40
0

1000

2000

3000

4000

Bits(i)

State Observer

States and IOs

A
O

S
i

Figure 3.39: Normalised algorithmic characterisation of a state observer

normalised step (AOSi) is shown, as function of the based bit-width (i.e., i), and the
number of inputs, outputs and states.

Although the growth-rate of AOS observed in figure 3.39 follows a similar trend
that the state-feedback controller shown in the previous section, in the case of the state
observer parallelism grows more rapidly.

Hardware Implementation

Table 3.15 shows implementation results of different versions of a state observer,
where the number of input/outputs, states and base bit-width are changed.

For the last two designs listed in table 3.15, folding optimisation (resources sharing
through time-multiplexing) was used, because the resource utilisation of the design
was greater than the available on the selected FPGA. This resulted in a significant
decrease in the achievable execution time, in comparison to the previous versions.
Taking the 6/8 (6 IOs and 8 states) state observer as an example, and comparing the
8-bit version with the 16-bit version, it can be seen that the execution time increases
more than 700%. In contrast to this, when comparing the 3/2 state observer, for which
no folding optimisation was used, the execution time of the 32-bit version increased
about 100% when compared to the 8-bit version. Longer execution times are partially

90 Chapter 3 Technology Comparison

I / S Bit-Width Slices Time (ns) Power (W)

2 / 1 8 256 (1,9%) 11,481 0,1715
2 / 1 64 4685 (35,2%) 28,733 0,3854
3 / 2 8 621 (4,7%) 12,489 0,2012
3 / 2 32 6021 (45,2%) 25,445 0,3435
6 / 8 8 5261 (39,5%) 20,389 0,3789
6 / 8 16 11806 (88,7%) 166,306 0,5523

12 / 16 8 13310 (99%) 959,171 0,6630

Table 3.15: Various FPGA-based implementations of a state observer

caused by longer routing delays (e.g., caused by operations with larger bit-widths),
but it is also caused by having to share reconfigurable resources in time, as it is the
case for the 16-bits implementation of the 6/8 state observer.

When looking at the effect of size of the algorithm on the execution time, it can be
seen that it does not have the same impact as when increasing the bit-width, as long
as there are enough resources available, otherwise resource time-multiplexing must
by used. Taking the 8-bit versions of the 2/1, 3/2, 6/8, and 12/16 state observers
presented in table 3.15 as example, the increase of execution time goes from 8%
(3/2 state observer) to 77% (6/8 state observer), when using the 2/1 version of the
state observer as reference. The execution time increases about 8254% for the 12/16
version, where folding optimisation was used.

Power consumption does not vary as much as the execution time. Taking the 8-bit
versions of the 2/1, 3/2, 6/8, and 12/16 state observers presented in table 3.15 as
example, the increase of power consumption goes from 17% (3/2 state observer)
to 120% (6/8 state observer), to 286% (12/16 state observer), when using the 2/1
version of the state observer as reference. This trend can be explained by the increasing
resource utilisation of the mentioned realisations (cf. table 3.15), and the decrement
of the achievable clock frequency.

Software Implementation

Implementation results of various software-based state observer are shown in table
3.16. Reported execution times represent mean values over several hundred measure-
ment (cf. section 3.4.2).

For software-based realisations, the problem size has a direct impact on the execu-
tion time. This effect can be observed in the implementation results presented in table
3.16. Taking all 8-bit implementations as example, and using the 2/1 version of the
state observer as reference, it can be seen that the execution time increases 41%, 681%,
2470% for the 3/2, 6/8, and 12/16 versions of the state observer, correspondingly. On

3.5 Benchmarks 91

I / S Bit-Width Execution Time (µs)

2 / 1 8 0,7469
2 / 1 64 0,5075
3 / 2 8 1,0560
3 / 2 32 1,6136
3 / 2 64 1,6545
6 / 8 8 5,8348
6 / 8 16 6,2515
6 / 8 64 5,9999

12 / 16 8 19,1969
12 / 16 64 18,5102

Table 3.16: Varios CPU-based implementations of a state observer

the contrary, the effect of increasing the bit-width is not as significant, which can be
observed when comparing the 8-bit with the 32-bit versions of the 3/2 state observer
(cf. table 3.16). The increment of execution time is about 52%. Furthermore, when
comparing the 8-bit with the 16-bit versions of the 6/8 state observer, the execution
time increase only 7%.

To compare hardware and software realisations, only the 8-bit version of all imple-
mented designs is used. First, the approximation of average parallelism is validated,
by comparing measured and modelled circuit size, as explained in the next section.

Validation of Empirical Approximation of Average Parallelism

Table 3.17 and figure 3.40 show a comparison of modelled and measured circuit
growth-rate of various state observer 8-bit implementations. A bigger device (Virtex
II, XCV8000) was selected for this comparison, because neither embedded multipliers,
nor folding optimisation were used.

I / S SizeAlgi(µm2) Slices

2 / 1 14261 232
3 / 2 39764 584
6 / 8 309937 4963

12 / 16 1236765 20775

Table 3.17: Comparison of circuit size (SizeAlgi) and utilised slices of various 8-bit
state observer implementations

92 Chapter 3 Technology Comparison

Equation 3.52 shows the trend for both modelled and measured data. These trend
equations show a great similarity, as in the previous examples.

ymodelled = 0,0021e1,5442SizeAlg,R2 = 0,98 (3.52)
ymeasured = 0,0019e1,5624Slices,R2 = 0,97

Scaled data is shown in figure 3.40, where the similarity of modelled and measured
data can be observed.

0

0,2

0,4

0,6

0,8

1

1,2

1 State/2 IOs 2 States/3 IOs 8 States/6 IOs 16 States/12 IOs

Modelled and Measured Growth-Rate

Slices SizeAlg

Figure 3.40: Comparison of modelled and measured circuit grow rate

Comparison of Hardware/Software Realisations

In the previous examples, having a higher degree of parallelism increases the gap
between hardware- and software-based implementations. However, in the case of
the state observer, the device utilisation grew to a point where resources had to be
time-shared. The effects of this can be seen (in the case of the last two realisations) in
figure 3.41.

The gap between hardware- and software-based realisations goes from a percent
difference of 111% (2/1 version), to 175% (6/8 version). For the last design, the gap
shrinks to only 8%.

As can be seen in figure 3.42, the low execution time achieved by the 16-States/12-
IOs state observer resulted in a low power consumption (although the device utilisation

3.6 Summary 93

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1 State/2 IOs 2 States/3 IOs 8 States/6 IOs 16 States/12 IOs

Co
m

pu
ta
tio

na
l D

en
si

ty
 [1

/s
.µ

m
2]

State Observer (8 Bits)

FPGA PPC AOS SizeAlg

Figure 3.41: Computational Density of hardware and software realisations of an state
observer

was very high), because of the reduced maximum allowable clock frequencies achieved
for that design. On the contrary, for software implementations an increment of the
problem size (i.e., the number of instructions to be executed) implies a longer execution
time, which derived in an increment of the power consumption.

For Energy Efficiency the gap between hardware- and software-based realisations
goes from a percent difference of 193% (1/2 version) to 194% (6/8 version). For the
last design, the gap is reduced to a percent difference of 133%, because of the effects
of resource time-sharing.

3.6 Summary

This chapter presents a quantitative comparison between general purpose processors
and field programmable gate arrays for embedded control applications. Metrics to
characterise algorithmic properties of a controller are defined, and metrics to assess
implementation results in both reconfigurable hardware and software devices are
taken from literature and adjusted to the application field. Average operations per
steps (AOS) is used to measure average parallelism, which together with the size of
the algorithm (SizeAlg) are used to characterise selected benchmarks. Furthermore,

94 Chapter 3 Technology Comparison

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1 State/2 IOs 2 States/3 IOs 8 States/6 IOs 16 States/12 IOs

En
er

gy
 Effi

ci
en

cy
 [1

/n
J]

State Observer (8 Bits)

FPGA PPC

Figure 3.42: Energy Efficiency of hardware and software realisations of an state
observer

the metrics computational density (Cdensity) and energy efficiency (Ee f f iciency) are
used to assess resource utilisation of the selected benchmarks. Three representative
control algorithm were chosen for this comparison: a PID controller, a state-feedback
controller, and a full state observer.

When comparing raw implementation results of presented benchmarks, it is shown
that FPGA-based realisations achieve execution times several orders of magnitude
above those from software-based realisations, while having less power consumption.
Taking the state-feedback controller as an example, it is shown that the speedup grows
from 83 to 1498 times for the smallest and the biggest design, respectively (cf. section
3.5.2).

Moreover, it is shown that an FPGA-based implementation leads to a higher Cdensity
and Ee f f iciency, which implies a more efficient use of resources. Presented implementa-
tion results show that increasing the SizeAlg with constant AOS causes a reduction of
the gap between hardware- and software-based realisations, as shown for the PID con-
troller, where the percentage difference between FPGA- and CPU-based realisations
regarding computational density goes from 103% (8-bits version) to 98% (32-bits
version). A similar trend can be observed for energy efficiency values. Furthermore,
when the algorithm to be implemented has an increasing AOS when increasing SizeAlg
the gap between hardware- and software-based realisations increases, too. This effect
was shown with the state-feedback controller, where the percentage difference in terms
of computational density goes from 127% to 195% for the smallest and the biggest

3.6 Summary 95

designs, respectively. This trend is bounded by the available resources of the FPGA.
When the SizeAlg grows to a point, where more resources than available in the selected
device are required, performance decreases along with the gap between hardware- and
software-based realisations, because resource have to be time-shared. This is the case
of the state observer example; folding optimisation (resources time-sharing) is used
to allow the realisation of the two biggest versions of this design. Thus, the through-
put/area ratio decreases significantly, going from 175% to 8% for the biggest design
implemented without resources time-sharing and the biggest design, respectively.

Nevertheless, there are design improvements, which do not sacrifice parallelism
and improve resource utilisation. One of them is bit-width optimisation. The effect
of having long bit-widths was also shown in the realisation results presented in this
chapter, where increasing bit-width comes along with increasing execution times.
Customisation of the bit-width of arithmetic operands is possible when using an
FPGA, which can lead to a significant reduction of the utilisation of reconfigurable
resources.

The shortcoming of resources can also be caused by having more resources occupied
than those required for the current situation. This is the case of control algorithms
requiring adjustments at run-time. In the next chapter this problem is analysed and the
utilisation of dynamic hardware reconfiguration is explored to improve the resource
utilisation of this kind of control systems.

4 Run-Time Hardware
Reconfiguration

In the previous chapter it was shown that FPGA-based realisations lead to a higher
computational density (throughput/area) and a higher energy efficiency (through-
put/power) than software-based implementations for control algorithms having a high
degree of parallelism. The advantage of an FPGA-implementation derives from the
possibility of configuring all uncommitted logic resources, in a way that as many
processing elements as required can be instantiated concurrently in the device. Given
the fine granular nature of the reconfigurable resources of an FPGA, reconfigurability
comes at the cost of a high amount of silicon resources for the reconfiguration structure
(more than 80% [DeH99], [Fen06]), which is a significant overhead, if configuration
resources are not used during the operation cycle of the device. However, some
FPGA devices allow the use of configuration resources during operation to change the
function of parts of the device. This approach is known as run-time reconfiguration
(RTR) or dynamic reconfiguration (DR), and can be used to increase the resource
utilisation of FPGAs.

A brief literature survey was presented in section 2.3.4, reviewing applications for
RTR, and classifying them according to the configuration scheduling. It was shown
that there is a growing interest on using RTR. However, although the potential benefits
of RTR are known, the use of this technique has not been fully explored in the domain
of mechatronic applications [5].

This chapter explores the use of run-time hardware reconfiguration to improve
the resource-utilisation of FPGAs for control applications. First, the kind of control
algorithms that can benefit from this approach are analysed in section 4.1. Then,
hardware reconfiguration of current FPGAs is presented in section 4.2, focusing on
FPGAs from Xilinx, explaining how RTR of controllers is implemented using this
technology. The resource utilisation when using run-time reconfiguration is then

98 Chapter 4 Run-Time Reconfiguration

analysed in the next section, comparing this to a static approach. Section 4.4 presents
two implementation examples. The chapter finishes with a brief summary.

4.1 Controller Adjustment

The increasing complexity of modern mechatronic systems makes necessary that
controllers can detect internal and external (to the mechatronic system) variations
and react accordingly, initiating some kind of control adjustment, e.g., parameter or
structure variations. When control adjustments are motivated by large changes in
the nominal model of the system, or faults at sensors or actuators, then adjustments
are related to the problem of keeping stability or performance. Control adjustment
methods under this condition are part of the field of fault tolerant control. A fault
can cause a system to malfunction or to operate below the normal performance level.
A reduced quality service is the result of a fault. In contrast, a failure prevent the
functioning of the system. Both faults and failures can occur at the component
level and at the system level. The task of a fault tolerant controller is to prevent a
component fault to become a system failure [Bla03]. Two tasks are required to achieve
fault tolerance: fault detection and isolation (FDI) and controller adjustments.

There are in literature a number of methodologies concerned with the problem of
fault tolerance. These methodologies can be roughly divided in passive and active
methods, as depicted in figure 4.1.

Methods for Fault
Tolerant Control

Passive Robust ControlSimultaneous StabilizationActiveAccommodationAdaptiveModel Reference Adaptive ControlAdaptive Feedback Linearisation Using ANNGain SchedulingSwitched Control
ReconfigurationProjection MethodsObservers BankControllers Bank Controller SynthesisModel Predictive ControlEigenstructure AssignmentPerfect Model Following Fault HidingVirtual ActuatorVirtual SensorLearning Control

Figure 4.1: Classification of control adjustment methods in presence of faults [Lun06]

Passive methods use robust control theory and related techniques to ensure robust
stability of the closed loop in face of changes of the behavior of the plant or faults. A

4.1 Controller Adjustment 99

single controller carries out the control task, limiting the stability region to cases when
changes have an incipient effect on the controlled system. Such changes are usually
modelled as uncertainty regions around the nominal model [Gev02].

Active methods use direct fault information to perform adjustments and do not
assume a static nominal model. Active methods can be further classified in accommo-
dation methods and reconfiguration methods (cf. figure 4.1).

Adaptive methods perform parametric changes in case of faults, they do not change
the original input and output (related to the controller) configuration. Control recon-
figuration methods explicitly adjust the structure of the control loop, including I/O
configuration, in order to compensate a fault. Figure 4.2 shows a block diagram of a
multi-controller system [Mor95]. The measured output y of a process to be controlled
drives a bank of controllers, each controller generating a candidate feedback signal
u. The control signal applied to the process at each instant of time is then u , uη ,
where η : [0,∞)→ ψ is a piecewise-constant switching signal taking values in the
family’s index set ψ [Lib99]. The switching signal is computed by supervising entity,
as presented in figure 4.2.

Switch

Controller 1

Controller 2

Controller n

Process
-

+
r

Supervisor

y

u1

u2

un

u

η

e

Figure 4.2: Diagram of a supervised multi-control system [Mor95]

If the multi-controller system of figure 4.2 does not require any structural change,
then the same system can be achieved by a single controller with adjustable parameters
[Mor95], as the one presented in figure 4.3, where the parameters σ are assigned to
the controllers structure by a supervising entity.

Controller adjustment can also be motivated by internal and external optimization
processes. This scheme is known as self-optimization. Under such varying internal and
external optimization goals, a self-optimizing controller is able to optimise its behavior
by adapting the structure of used mechanical components, controllers, actuators and/or
sensors [Böc06]. The definition of a self-optimising controller is:

"Self-optimization describes the ability of a technical system to endogenously adapt
its objective regarding changing influences and thus an autonomous adaption of the

100 Chapter 4 Run-Time Reconfiguration

-
+

r
Process

Supervisor

Controller(σ)
u(σ)

σ

ye

Figure 4.3: Diagram of a supervised adaptive-control system [Mor95]

system behavior in accordance with the objective. The behavior adaption may be
implemented by changing the parameters or the structure of the system. Thus self-
optimization goes considerably beyond the familiar rule-based and adaptive control
strategies; Self-optimization facilitates systems with inherent intelligence that are able
to take action and react autonomously and flexibly to changing operating conditions."
[SFB11].

Figure 4.4 presents the general structure of Self-Optimizing systems called Oper-
ator Controller Module (OCM) [Hes04]. Three well-defined levels can be defined:
cognitive operator, reflective operator, and controller. The last level is where control
adjustment takes place.

In a static hardware implementation of any of the previously described control
schemes, if a structural change is required all possible controllers for a given appli-
cation have to be mapped into the FPGA concurrently. Accordingly, if parameter
adjustments are required, resources have to be allocated to allow new parameters to
be loaded and processed. However, FPGAs have a finite amount of reconfigurable
resources, which constraints the size and the number of algorithms that can be imple-
mented on a single chip. This implies that the size of the required device does not
depend on the amount of configurable logic required for the worst case configuration,
but it rather depends on the amount of necessary resources for all possible configura-
tions. A more efficient use of configurable resources can be achieve by using run time
reconfiguration. In the next section, run-time reconfiguration and different aspects of
it are introduced.

4.2 Run-Time Hardware Reconfiguration

The configuration of the internal logic blocks of an FPGA and their interconnection
is defined by a configuration memory. As presented in section 2.2.2, the final phase
of the design flow of an FPGA-based system is the definition of a bitstream, which
contains the configuration of all uncommitted resources of the device. However, some

4.2 Run-Time Hardware Reconfiguration 101

Operator Controller Module (OCM)

Cognitive Loop

Reflective Loop

Control Loop

Controlled
System

S
of

t R
ea

l-T
im

e
H

ar
d

R
ea

l-T
im

e

P
la

nn
in

g
E

xe
cu

tio
n

Controller

Reflective Operator

Cognitive Operator

Supervision

Emergency

Sequencer

Behaviour -Based Self-
Optimization

Model -Based Self-
Optimization

M1 M2

M3

Switch

C1

C2

C3

Figure 4.4: Structure of the Operator Controller Module (OCM) [14]

FPGAs allow the configuration of just parts of the device without interrupting the
operation of the rest of the device. This approach can become beneficial for some
applications, as exemplified in figure 4.5.

A system composed by many sub-tasks (e.g., a multi-controller system) is consid-
ered. Figure 4.5 shows different implementation approaches, regarding the temporal
use of reconfigurable resources. The system is composed of several tasks, and has
different configurations (a), which must be concurrently implemented when using
a static implementation approach (b). When using run-time full reconfiguration (c),
several full bistreams are produced, with all possible configurations of the design.
This leads to the utilisation of a smaller device than in the previous case, but implies a
long configuration-time, i.e., full reconfiguration is required each time a new set of
modules is to be loaded. When using run-time partial reconfiguration (d) also known
as dynamic reconfiguration, the device is divided into Base Region (BR) and Partially
Reconfigurable Regions (PRR); the BR (i.e., static area) holds parts of the design that
do not change during the operation-time of the system, whereas the reconfigurable

102 Chapter 4 Run-Time Reconfiguration

area holds those parts of the design, which are exchanged during the operation of the
system. Partial bitstreams are then generated, which are loaded into the reconfigurable
area as required. This can lead to the utilisation of a smaller device, in comparison
to a static implementation, and to a smaller reconfiguration overhead (i.e., shorter
reconfiguration time, and smaller bitstreams to be stored) in comparison to a run-time
full reconfiguration.

(d) Run-time Partial
Reconfiguration

(c) Run-Time Full
Reconfiguration

(a) System
Configuration

C D

BASE

A B

BASE

(b) Static
Implementation

DBASE

A B C
IO

IO

IO

IO

IO

IO

IO

IO

IO

IO

IO

IOIO IOIOIOIOIO

IOIO IOIOIOIO IO IOIO

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

IO

IO

IOIO S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

IO

S
M

S
M

S
M

S
M

S
M

S
M

S
M

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

BASE

BA

BASE

DC

IO

IO

IO

IO

IO

IO

IO

IO

IO

IO

IO

IOIO IOIOIOIOIO

IOIO IOIOIOIO IO IOIO

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

IO

IO

IOIO S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

S
M

IO

S
M

S
M

S
M

S
M

S
M

S
M

S
M

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

A B

BASE
DC

Figure 4.5: Static vs. Run-time full vs. run-time partial hardware reconfiguration

In this chapter we consider only FPGAs from Xilinx, although there are currently
other vendors offering run-time partially reconfigurable FPGAs (e.g., the AT40K and
AT40KAL series from ATMEL [ATM11], or the ADAPT2000 series from QuickSilver
[Qui11]). In the next sections different aspects of the reconfiguration of Xilinx FPGAs
are presented.

4.2.1 Configuration Granularity

As presented in section 3.3.2, the function and interconnection of processing elements
of an FPGA is determined by the content of its configuration memory. When using
partial and dynamic reconfiguration, an important factor is the minimum reconfigurable
area of an FPGA, which differs depending on the device. Xilinx supports partial
and dynamic reconfiguration for Virtex-II, Virtex-II Pro (only with ISE 1 versions
older than 12), Virtex-4, Virtex-5, and Virtex-6 FPGAs. Because these devices have
different architectural characteristics, the minimum configuration region changes.
In the Virtex-II and Virtex-II Pro the minimum configuration region (configuration
frame) corresponds to a full FPGA column. There are different kinds of columns in

1Integrated Synthesis Environment [Xil11]

4.2 Run-Time Hardware Reconfiguration 103

an FPGA, and correspondingly different kinds of configuration frames. For example,
the Virtex-II family has the following 6 kinds of configuration frames [Xil07a]:

• IOB Columns: IOB columns configure the voltage standard for the I/Os on the
left and right edges of the device.
• IOI Columns: IOI columns configure the IOB registers, multiplexers, and 3-state

buffers in the IOBs on the left and right edges of the device
• CLB Columns: The CLB columns program the configurable logic blocks,

routine, and most interconnect. IOBs on the top and bottom edges of the device
are also programmed by CLB configuration columns.
• BlockRAM Columns: BlockRAM configuration columns program only the

BlockRAM user memory space.
• BlockRAM Interconnect Columns: BlockRAM Interconnect columns program

all other BlockRAM and multiplier features, including aspect ratios.
• GCLK Column: The global clock column configures most global clock re-

sources, including clock buffers and DCMs.

Each configuration column in an FPGA requires a number of configuration frames
to be fully reconfigured, for instance a CLB column of the Virtex-II family requires
22 frames, whereas a BlockRAM column requires 64 frames. Each configuration
frame has a fixed width of 32 bits, and a variable length depending on the size of the
device, e.g., the length of a configuration frame of a XC2V8000 device is 286, while
the corresponding length of a XC2V40 device is 26. This has a direct influence on the
achievable reconfiguration time, as explained in the next section.

Virtex-II Virtex-4 Virtex-5

CLB Frame = 1 CLB Column CLB Frame = 16 CLBs CLB Frame = 20 CLBs

Figure 4.6: Configuration granularity of Xilinx FPGAs

Virtex-4, Virtex-5, and Virtex-6 configuration frames are tiled instead of being
arranged vertically in columns as in Virtex-II and Virtex-II Pro FPGAs. The configura-
tion frame of a Virtex-4 is 16 CLBs high and 1 CLB wide, whereas the configuration
frame of a Virtex-5 is 20 CLBs high and 1 CLB wide, as shown in figure 4.6. The

104 Chapter 4 Run-Time Reconfiguration

width and length of the configuration frames for the Virtex-4, Virtex-5, and Virtex-6
are fixed to 32×41, 32×41, and 32×81 bits correspondingly, which translates for
instance to 16, 20, and 40 CLBs correspondingly. Defining the reconfigurable area
so that it fits on configuration frame boundaries reduces the number of configuration
frames that must be reconfigured, resulting in smaller partial bitstreams and faster
reconfiguration times.

4.2.2 Configuration Interface

Arrangement of all configurable components of an FPGA is done by loading a bit-
stream on to a configuration memory. To access this configuration memory, most of
the Xilinx devices offer parallel and serial configuration interfaces (cf. figure 4.7).
Two serial interfaces are available; a JTAG (Joint Test Action Group) interface, and a
Master/Slave serial interface. Furthermore, Master/Slave selectMAP and ICAP (Inter-
nal Configuration Access Port) offer a 8 to 32 bit-width interface to the configuration
memory. ICAP interface (available in most of FPGA devices), is only used for partial
reconfiguration. Through these interfaces, external- and self-reconfiguration can be
realised.

Master/Slave
SelectMap

ICAP

JTAG

Master/Slave
Serial

Frame Buffer

F
ra

m
e

D
at

a
 O

u
tp

ut
 R

eg
is

te
r

C
on

fig
ur

at
io

n
M

em
or

y
F

ra
m

e

F
ra

m
e

D
at

a
In

pu
t

R
e

gi
st

er

FPGA’s Configuration
Memory

n

n

Configuration Packet
Processor

D
at

a
B

uf
fe

r

Figure 4.7: Configuration Interface of the Virtex-II family [Xil07a],[Ket08]

All configuration interfaces are connected to the packet processor (cf. figure 4.7),
which controls data flow from the configuration interface (i.e., SelectMAP, JTAG, or
Serial) to the configuration memory cells.

The speed of the reconfiguration depends on the size of the device, i.e., the amount
of required configuration bits (Bsize), the used configuration interface (parallel or

4.2 Run-Time Hardware Reconfiguration 105

serial), which determines the number of transferred bit per cycle (BPC), and the
configuration clock frequency of the packet processor (Tf req). The reconfiguration
time tcon f is given by equation 4.1.

tcon f =
Bsize

BPC ·Tf req
(4.1)

For the Virtex-II and Virtex-II Pro families the maximum transfer frequency is
50 MHz (for continuous transfer), and W = 8 (for ICAP and selectMAP interfaces).
Newer FPGAs such as Virtex-4, Virtex-5, and Virtex-6 support transfer frequencies
up to 100 MHz, and W = 32 bits/cycle. Table 4.1 shows the configuration bandwidth
for all configuration ports of Virtex devices.

Conf. Mode Max. Tf req BPC Max. Bandwidth

ICAP 100 MHz1/50 MHz2 32 bits1/8 bits2 3.2 Gbps1 /1.6 Gbps2

SelectMAP 100 MHz1/50 MHz2 32 bits1/8 bits2 3.2 Gbps1 /1.6 Gbps2

Serial Mode 100 MHz1/50 MHz2 1 bit 100 Mbps1 / 50 Mbps2

JTAG 66 MHz1/33 MHz2 1 bit 66 Mbps1 / 33 Mbps2

Table 4.1: Configuration bandwidth for configuration ports in Virtex architectures
[Xil10](1 Virtex-4, Virtex-5 and Virtex-6. 2 Virtex-II and Virtex-II PRO)

4.2.3 Partial Reconfiguration Process

To realise partial reconfiguration, a full configuration of the device is first required.
When partial reconfiguration is controlled internally (i.e., self-reconfiguration), a
configuration controller has to be instantiated on the static area of the initial full
configuration. Later on, partial bitstreams can be loaded from an external memory onto
the FPGA, through the configuration controller. The main tasks of the configuration
controller, the initial reconfiguration process, and process of loading partial bitstreams
are presented in the following sections.

Configuration Controller

Xilinx FPGAs offer different configuration ports (cf. figure 4.7), as well as different
configuration modes (i.e., master/slave serial or SelectMAP, and JTAG). In order to
perform partial reconfiguration, a configuration controller is required. There are two
basic approaches: the configuration controller is instantiated inside the FPGA, or the
configuration process is controlled by an external device (cf. figure 4.8). In both cases,
external memory is required to store partial and initial full-configuration bitstreams.

106 Chapter 4 Run-Time Reconfiguration

(a) Self-Reconfiguraton

P
ar

ita
l 1

P
a

rit
al

2

P
ar

ita
l 3

P
a

rit
al

4

ICAP
Configuration

Controller

Task1 Task2 Task3

Memory

P
ar

ita
l 1

P
ar

ita
l 2

P
ar

ita
l 3

P
ar

ita
l 4

F
U

L
L

B
its

tr
ea

m

P
a

rit
a

l 1

P
ar

ita
l 2

Base Region

(b) External Reconfiguration

Task1 Task2 Task3

Base Region

P
a

rit
al

1

P
ar

ita
l 2

P
a

rit
al

3

P
ar

ita
l 4

Memory

P
a

rit
al

1

P
ar

ita
l 2

P
a

rit
al

3

P
ar

ita
l 4

F
U

LL
B

its
tr

ea
m

P
ar

ita
l 1

P
ar

ita
l 2 Configuration

Controller

ICAP
Configuration

Port (e.g.,
SelectMAP)

PRR1 PRR2 PRR3 PRR1 PRR2 PRR3

Figure 4.8: Self- and external reconfiguration schemes

Self-reconfiguration is done by directly controlling the ICAP port of the FPGA.
After initial full configuration, the configuration controller fetches partial bitstreams
from an external memory and feeds them to the ICAP port. The configuration con-
troller has to be placed on a static area, and can be realised as state-machine or an
embedded soft-core processor.

External reconfiguration is controlled by an off-chip device. Configuration data is
fetched from an external memory and sent to a configuration port (e.g., SelectMAP
or JTAG). The advantage of this method is that the same device which performs full
configuration can be used to control partial reconfiguration, without using internal
FPGA resources.

The realisation examples presented in this work, use a self reconfiguration scheme,
enabled by the configuration controller presented in [Hag07b] and [Hag05], which is
based on the RAPTOR system (cf. section 4.4.1).

Initial Full Configuration

The steps for the initial configuration of the FPGA are listed in figure 4.9. After
the device has been powered up (1), the next step is to serially clear the configura-
tion memory (2), to bring it to a defined state. In order to determine the selected

4.2 Run-Time Hardware Reconfiguration 107

configuration mode, the device samples configuration mode pins (3), and starts the
selected configuration sequence. The bitstream loading process (4-7) is similar for all
configuration modes; the primary difference between modes is the selected interface.
The next step (until CRC Check) involves the content of a bitstream, which is typically
generated using a synthesis software as explained in section 2.2.2.

Before the configuration data frames can be loaded, a special 32-bit synchronization
word must be sent to the configuration logic (4). The synchronisation word alerts
the FPGA to upcoming configuration data and aligns the configuration data with
the internal configuration logic. Any data on the configuration input pins prior to
synchronisation is ignored. The synchronisation word is automatically included in the
bitstream by synthesis tools.

Once the FPGA is synchronised, a device ID check must pass before the configura-
tion data frames can be loaded (5). This prevents an attempted configuration with a
bitstream that is formatted for a different device. Thereafter, configuration data frames
are loaded (6). As the configuration data frames are loaded, the device calculates a
Cyclic Redundancy Check (CRC) value from the configuration data packets (7), which
can be used upon request to compare the CRC of the loaded configuration frames with
an expected CRC value. If a CRC error occurs during configuration, the device must
be resynchronised and reconfigured. Upon successful CRC verification, the device
can go on with a start-up sequence (8), where the device is setup for operation (e.g.,
enabling I/Os, or Asserting Global Write Enable, which allows RAMs and flip-flops
to change state). This steps are the same as for an static implementation.

1

Device
Power-Up

2
Clear

Configuration
Memory

3

Sample
Mode Pins

4

Synchronisation

5

Device ID
Check

6
Load

Configuration
Data

7

CRC Check

8

Startup
Sequence

Start FinishBitstream Loading

Figure 4.9: Virtex-4 Configuration Process [Xil09b]

Loading Partial Bitstreams

After initial device configuration with a full bitstream, partial bitstreams can be loaded
into the FPGA at run-time. Any of the configuration ports can be used to load the
partial bitstream: SelectMap, Serial, JTAG, or ICAP. For partial reconfiguration only
steps 4 to 7 from the initial configuration (cf. figure 4.7) are executed (except for some
commands, such as asserting global reset). Because the partial bit file contains mainly
frame address and configuration data, plus a final checksum value, the configuration
controller has to monitor the data being sent to detect when configuration has finished.
This can be detected by synchronisation word written at the end of each partial
bitstream.

108 Chapter 4 Run-Time Reconfiguration

4.2.4 Partition and Placement Approaches

As mentioned in section 4.2.1, the configuration granularity of Xilinx FPGAs varies
according to the device, e.g., from a whole column to some CLBs of a column (cf.
figure 4.6). When designing a dynamically reconfigurable system, the configuration
granularity of Xilinx devices allows for different partition and placement strategies.
To better explain the concept of partition and placement some definitions are first
required [Hag07b].

Base Region (BR): The base region is the area of the FPGA, which is config-
ured at the initialization of the system and does not changed at run-time. All static
components of the system are located in the base region.

Partially Reconfigurable Region (PRR): This is the FPGA region used for
run-time reconfiguration. All components, which shall be changed during operation
are located in a PR Region. Depending on the application requirements, one or several
PR Regions can compose a partially reconfigurable system.

Reconfigurable Tile (RT): A reconfigurable tile is the smallest partially recon-
figurable unit, which can be larger than a single reconfiguration frame (cf. section
4.2.1). A PR Region can be composed of one or more individually reconfigurable
tiles.

Partial Reconfiguration Module (PRM): A PR Module represents the imple-
mentation of a dynamic system component (e.g., one controller of a multi-controller
system). It can be placed and removed at run-time according to the needs of the
application.

A PR Module can be constituted by a single tile that covers the whole area of the
PR Region. Consequently, PRMs can only consist of a single tile, which constraints
the maximum number of modules that can be placed and executed at the same time
to the total number of PR Regions. The disadvantage of this approach is that even
small modules occupy a complete PR Region (cf. figure 4.10 (a)). This approach is
known as fixed-size slots placement [Hag06]. To avoid the limitations of fixed-slots
placement, the PR Region can be partitioned into multiple tiles as shown in figure
4.10 (b). A PR module does not have to composed of a single tile, but of a set of
contiguous tiles. This approach can lead to a efficient use of reconfigurable resources,
because the size of the area occupied by a module corresponds more to the actual size
of the module than when using a fixed-size slot approach. This flexibility comes to
the price of a higher communication complexity, and thus resources overhead. This
topic is presented in section 4.2.5.

4.2 Run-Time Hardware Reconfiguration 109

Ba
se

 R
eg

io
n

Ba
se

 R
eg

io
n

C
on

tro
lle

r 1

C
on

tro
lle

r 2

C
on

tro
lle

r 3

PRR 1 PRR2 PRR3 PRR

(b) Free-Placement(a) Fixed-Slots

C
on

tro
lle

r 3

C
on

tro
lle

r 1

C
on

tro
lle

r 2

Figure 4.10: Placement methods for 1D approach

Fixed-size slots and free-placement can be realised either using a 1D or a 2D
partition approaches, which deal with the size, number and arrangement of tiles within
a PR Region, as described in the following paragraphs [Hag07b].

1D-Partitioning: In a 1D-approach the height of the tiles is equal to the height of
the PR Region, as shown in figure 4.11(a), using a fixed-size slot approach.

Multi-1D-Partitioning: In a 1D placement, the PR Region can be subdivided in
a way that a tile does not have the same height as the PR Region, as shown in figure
4.11(b). This can be beneficial to avoid internal routing problems when implementing
a PR Module. The multi-1D-partitioning is especially suitable for FPGAs with column-
based partial reconfigurability, such as the Virtex-4 , Virtex-5 and Virtex-6 devices,
where the smallest partially reconfigurable unit is a configuration frame, which is just
a fraction of a column (cf. section 4.2.1).

2D-Partitioning: In the 2D-partitioning the PR Region is partitioned into horizon-
tally and vertically arranged tiles, as shown in figure 4.11(c). A module is represented
by a group of tiles arranged in a rectangular shape. In this partition approach, the
height of a module is no longer restricted to the height of the PR Region. When
generating a module the area and the aspect ratio can be optimized according to the
internal routing of the module.

110 Chapter 4 Run-Time Reconfiguration

(c) 2D-Approach

Ba
se

 R
eg

io
n

PRR

(b) Multi-1D-Approach

Ba
se

 R
eg

io
n

(a) 1D-Approach

Ba
se

 R
eg

io
n

C
on

tro
lle

r 1

C
on

tro
lle

r 3

PRR1 PRR2 PRR3 PRR1 PRR2 PRR3

C
on

tro
lle

r 2 C
on

tro
lle

r 1

C
on

tro
lle

r 2

C
on

tro
lle

r 3

C
on

tro
lle

r 1
C

on
tro

lle
r 2

C
on

tro
lle

r 3

Figure 4.11: 1D vs. 2D placement methods

4.2.5 Communication Infrastructure

An important aspect of designing dynamically reconfigurable systems is the commu-
nication between the Base and PR Regions. When partial reconfiguration is done,
communication channels have to remain configured to guarantee data flow among
modules.

To solve this problem, Xilinx offers Bus Macros, which are a set of locked con-
nection links placed at the border between PR and Base regions, and provide a
pseudo-static communication channel between this two regions [Xil10], cf. figure
4.12 (a). Bus macros are well suited for simple communication schemes, where direct
point-to-point connections are required for dedicated signals.

For more sophisticated communication schemes, where communication lines are
shared among many modules, embedded macros are a better option [Hag07b]. Em-
bedded macros reserve routing resources for inter-modular communication, providing
an homogeneous communication infrastructure, cf. figure 4.12(b). Embedded macros
can be implemented based on tristate-buffers, or based on slices [Hag07a]. The choice
between one of these options depends on the width of the tiles within a PR Region,
the required communication bandwidth, and the available resources. A slice-based
embedded macro offers a higher bandwidths for tiles expanding less that 20 CLBs
[Hag07b].

Figure 4.12 shows a Bus Macro (a) and a Embedded Macro realisations of commu-
nication channels for a reconfigurable system with three PR Regions using Fixed-Size
Slot placement. In the next section, the resource utilisation of a static implementation
approach in comparison to that of a RTR-based system is analysed.

4.3 Control Adjustment Through Run-Time Reconfiguration 111

(a) Point-to-Point
B

a
se

 R
eg

io
n

C
on

tr
ol

le
r

1

C
o

nt
ro

lle
r

2

C
on

tr
ol

le
r

3

PRR 1 PRR2 PRR3

(b) Shared Lines

B
a

se
 R

eg
io

n

C
on

tr
ol

le
r

1

C
on

tr
ol

le
r

2

C
on

tr
ol

le
r

3

PRR 1 PRR2 PRR3

Figure 4.12: Point-to-Point (Bus Macros) vs Shared Lines (Embedded Macros)
communication

4.3 Control Adjustment Through Run-Time
Reconfiguration

As presented in section 4.1, there are different approaches to control adjustment. The
benefit of using run-time reconfiguration to realise structural or parametric control
adjustments can be analysed depending on the kind of adjustment. We distinguish two
cases:

1. A system is controlled by a set of algorithms with different structures, where
only one structure is active at any given time.

2. A system is controlled by a set of algorithms with a single structure, whose
parameters are to be changed in run-time

To the first case belong active adjustment approaches such as projection methods,
switched control, or fault hiding (cf. section 4.1). To the second case belong adaptive
control approaches such as gain scheduling (cf. figure 4.1). When implementing
these control-adjustments using reconfigurable hardware, run-time reconfiguration
can be used to improve resource utilisation. The resulting resource allocation when
using RTR depends on the control period, the reconfiguration time, and the placement
approach, as presented in the next section.

4.3.1 Structure Adaptation

Let C = {c1,c2, ...,cn} be a set of n controllers with different structures, used to
control a given plant. A controller ci ∈C occupies a set of si ∈ S FPGA resources

112 Chapter 4 Run-Time Reconfiguration

(e.g., slices, BRAMs, embedded multipliers). Thus the set of resource requirements
for all n controllers ∈C is given by S = {s1,s2, ...,sn}. Furthermore, each controller
ci ∈ C requires initialization resources ui when it is activated, which is given by
U = {u1,u2, ...,un}. Besides the controllers, additional hardware resources Aconst
might be required, e.g., for transmitting and processing data from and to the I/Os.
Furthermore, each controller ci ∈C has a reaction time tri, which is the time required
by a controller to become operative. For controllers that are reconfigured in run-time,
reaction time is given by equation 4.2.

tri = tcon fi + initi (4.2)

where tcon fi is the reconfiguration time required for the ith controller, and initi
is its initialization time. For a static implementation tri is neglected, because all
required controllers are instantiated concurrently. The resource requirements of a
static implementation is thus given by equation 4.3.

Astatic = Aconst +
n

∑
i=1

(si +ui) (4.3)

If run-time reconfiguration is used, there are four possible resource-utilisation
scenarios, depending on the reaction time of the controller and the placement approach
(cf. section 4.2.4). If tri is longer than the control period of the ith controller (pi), the
to-be-replaced controller has to stay configured until the new one has been loaded
and initialised. However, if tri < pi, then the reconfigurable area of the old controller
can be used for the new one, or for its initialization routine (ui). If the reconfigurable
system architecture is build using a fixed-size slot approach, the size of all PR Regions
(an thus the size of the partial bitstreams of all controllers) is defined by the amount
of resources used by the largest controller. In fact, the required area depends on the
amount of configuration frames that suffice to realise the largest controller. This area
can be larger than the area requirements of the controller itself. Therefore, the worse
case resource utilisation is given by equation 4.4.

Adynamic_FS =

{
2 · smax1 +Aconst +Arec, if trmax1 < pmax1;
3 · smax1 +Aconst +Arec, if trmax1 > pmax1;

(4.4)

Where smax1 is the area requirements of the largest controller cmax1 ∈ C. Corre-
spondingly, trmax1 is the reaction time of that controller, and pmax1 is the control
period. Furthermore, Arec represents the resources required to realise partial recon-
figuration, e.g., for the communication infrastructure, and for the reconfiguration
controller. Equation 4.4 is exemplified in figure 4.13.

If a free placement approach is used, then the required reconfigurable area depends
on the size of each controller. Here again, the minimal amount of configuration frames

4.3 Control Adjustment Through Run-Time Reconfiguration 113

is what defines the size of each controller . Thus, the worse case resource utilisation is
given by equation 4.5.

Adynamic_FP =

{
smax1 +umax1 +Aconst +Arec, if trmax1 < pmax1;
smax1 + smax2 +umax1 +Aconst +Arec, if trmax1 > pmax1;

(4.5)

Where smax2 is the area requirements of the second largest controller cmax2 ∈ C.
Correspondingly, trmax2 is the reaction time of that controller, and pmax2 is the control
period.

C C

c2

C C

tconf2

u2

c1

init2

p1 p2 p2

tr2

a

PRR1

PRR2

t

t

Area

c2

c1PRR1

PRR2

t

Area

tconf2

u2

init2

tr2

PRR3

(a)

(b)

Active Reconfiguration Initialisation

Figure 4.13: Resource utilisation as described in both cases of equation 4.4

Both cases of equation 4.4 are exemplified in figure 4.13. The first axis represents
time, showing time events. The second and third axis represent the area utilisation
of the PR Regions through time. In the first axis C represents the time where a
control output is generated, p1 and p2 are the control periods of controllers c1 and
c2, respectively. Finally, a represents a reconfiguration request. In figure 4.13(a)

114 Chapter 4 Run-Time Reconfiguration

the reaction time tr2 of the new controller is shorter than the control period p1 = p2.
Because a fixed-size slot approach is used, the worst-case resource utilisation is given
by Adynamic_FS = PRR1 +PRR2 +Aconst +Arec. In figure 4.13(b) the reaction time tr2
of the new controller is longer than the control period p1 = p2. Therefore, the worse
case resource utilisation is given by Adynamic_FS = PRR1 + PRR2 + PRR3 + Aconst +
Arec. From this example, it can be observed that the reaction time of a controller has
a great influence on the worst case utilisation scenario when using RTR. A dynamic
implementation leads to a better resource utilisation than a static approach (e.g., RTR
enables to use a small FPGA device in contrast to a static approach), if the set C is
large enough, so that Astatic > AdynamicF S, or Astatic > AdynamicF P.

4.3.2 Parameter Adaptation

When one single control structure is required, whose parameters are adapted, two
realisations are possible: a general structure, where parameters can be loaded as
required, and several specific structures, which can be exchanged using dynamic
reconfiguration. A specific implementation requires less resources, because hardware
dedicated to load new parameters are no longer used. Furthermore, the difference
regarding resource-requirements between a specific and a general implementation
increases when considering the case of a structure, whose parameter sets have zero
components (e.g., spare matrixes). In those cases the zero components would not
be realised in a specific implementation. Moreover, in a specific realisation, the
word-length can be optimised to each parameter set.

Let us take a vector multiplication as example. Figure 4.14 shows the implemen-
tation of a vector multiplier as a parameterisable structure (a), and as a constant
multiplier (b).

The resource utilisation of both structures when increasing the number of inputs,
and using 8 bits as a base word-length is presented in figure 4.15. It can be noticed,
that a specific implementation requires much less resources than a general structure.
Using dynamic reconfiguration, a specific implementations can be exchange in run
time according to the requirements, avoiding the use of a general structure.

This approach is suited for control structures such as state-feedback regulators, or
state-observers (cf. section 3.5.2 and 3.5.3 respectively), which have typically a large
number of parameters to be changed in case of a control adaptation.

To analyse the resource utilisation, let us first define PAR = {par1, par2, ..., parn}
as the set of n parameter-groups for a control structure. When implementing a
general structure, i.e., allowing parameter changes (cf. figure 4.14(a)), the resource
requirements, Bstatic, are given by equation 4.6.

Bstatic = Bgeneral +Bconst (4.6)

4.3 Control Adjustment Through Run-Time Reconfiguration 115

(a) Parametrisable Vector Multiplier (b) Constant Vector Multiplier

+

+

+

Input 1

Input 2

Input n

X

X x

x

x

+

+

+

Parameter_en

Data_in

Input 1

Input 2

Input n

reg

reg

reg

Control Logic

X

Figure 4.14: Schematic of a vector multiplier: specific implementation vs. general
implementation

5 10 15 20 25 30
200

300

400

500

600

700

800

900

1000

1100

Vector Size

S
lic

es

Resource Utilisation of Vector Multiplication

general
specific

Figure 4.15: Resource utilisation of vector multiplier: specific implementation vs.
general implementation based on a Virtex II FPGA (XCV4000)

where Bgeneral represents hardware resources required for a parameterisable struc-
ture, and Bconst represents additional hardware resources, required for instance to

116 Chapter 4 Run-Time Reconfiguration

process I/O signals. In the case of a constant parameters implementation the resource
requirements is given by A = {α1,α2, ...,αn}, for all pari ∈ PAR. Furthermore, each
specific implementation requires initialization resources γi when it is activated, which
is given by Γ = {γ1,γ2, ...,γn}. To allow dynamic reconfiguration of the specific con-
trollers, dedicated resources are required, symbolised by Brec. The reaction time of
the ith specific realisation αi is given by equation 4.7.

tr_si = tcon f _si + init_si (4.7)

where tcon f _si is the reconfiguration time of the ith specific realisation, and init_si
is its initialization time. In this case there are again four possible cases of resource
utilisation scenarios. If the reconfigurable system architecture is build using a fixed-
size slot approach (cf. section 4.2.4), the size of all fixed slots is defined by the amount
of resources used by the largest specific implementation αmax1. Thus the worse case
resource utilisation is given by equation 4.8.

Bdynamic_FS =

{
2 ·αmax1 +Bconst +Brec, if tr_smax1 < p_smax1;
3 ·αmax1 +Bconst +Brec, if tr_smax1 > p_smax1;

(4.8)

where tr_smax1 is the reaction time of the largest specific realisation (cf. equation
4.7), and p_smax1 is its control period. If a free placement approach is used, the
worst-case resource utilisation is given by equation 4.9.

Bdynamic_FP =

{
αmax1 + γmax1 +Bconst +Brec, if tr_smax1 < p_smax1;
αmax1 +αmax2 + γmax1 +Bconst +Brec, if tr_smax1 > p_smax1;

(4.9)
Where γmax1 is the FPGA area required for the initialization routine of the largest

specific controller, and αmax2 is the area required for the second largest specific
controller.

A dynamic implementation leads to a better resource utilisation than a static realisa-
tion when the number of parameters, which have to be exchange is sufficiently large
(cf. figure 4.15). This means that the resource required to realise a general control
structure have to be such that Bstatic > BdynamicF S or Bstatic > BdynamicF P.

4.4 Implementation Examples

In this section implementation examples are presented. First, the underlying prototyp-
ing hardware platform, the RAPTOR system, is introduced. Next, a system on chip

4.4 Implementation Examples 117

architecture is presented [15], which has been used to realise the application examples.
After this, two case studies are shown, and finally a brief summary and discussion are
given at the end of the chapter.

4.4.1 The RAPTOR System

The RAPTOR System has been developed in the system and circuit technology group
[Por09]. It is a modular PCI-based board, consisting of a base system and a variety
of extension modules. The RAPTOR system allows inter-module communication
through direct connections, or through two bus systems: the Local Bus for control
flow and the Broadcast Bus for data flow (cf. 4.16). The RAPTOR system allows the
communication of any module to the host PC through a PCI bus bridge, as shown in
figure 4.16.

Figure 4.16: Block diagram of the RAPTOR64 system [Por09]

Communication management and configuration control are also provided in the
RAPTOR system. Furthermore, this features can be controlled through a software
library, called RaptorLIB, which offers a direct interface to the hardware. The Raptor-
LIB provides the required functions to manage communication to the modules from
the host computer, FPGA configuration, clock management, and monitoring, among
others. This software library is the base of the HiL frameworks described in chapter 5,
but briefly introduced in the next sections.

118 Chapter 4 Run-Time Reconfiguration

4.4.2 System Architecture

A system-on-chip architecture based on the RAPTOR prototyping system has been
implemented. The architecture is implemented on a daughter board of the RAPTOR
system, which is based on a Virtex-II Pro FPGA from Xilinx (XC2VP30). The archi-
tecture is composed of an embedded PowerPC processor (PPC) connected to dynamic
reconfigurable resources (PR Region 1 to 4), and to further hardware components
described in this section (cf. figure 4.17). The PPC runs at a clock frequency of
300 MHz, whereas the PR Regions have a clock of 30 MHz. A processor local bus
(PLB) allows communication to the local bus (LB) of the RAPTOR system, and from
there to the host PC, through a Peripheral Component Interconnect (PCI) bus, as
depicted in figure 4.17.

PPC

BRAM
Controller

UART 1 UART 0
Interrupt

Controller

Host PC

BRAM

SDRAM
Controller

V
irtex-2P

ro (X
C

2V
P

30)
R

A
P

TO
R

 M
otherboard

GPIO

PLB
CTRL-Intf.

PLB

P
R

R
 1

P
R

R
 2

P
R

R
 3

P
R

R
 4

LE
D

s

PLB
Listener

PLB

Arbiter &
Decoder

LocalBus

PCIConfig
Logic

SDRAM
PLB

LocalBus

ICAP

VCM

static component (not
dynamically reconfigurable)

dynamic reconfigurable
component

hard (not configurable)
component

bus bridge

Legend:

H
W

_O
U

T

Communication Fabric

H
W

_I
N

HiLDE-
GART

PCI

Figure 4.17: Schematic of the system architecture implemented on the RAPTOR
system [15]

There are four PR Regions, which are realised as fixed-size slots of equal size.
These slots are used to implement controllers or signal conditioning blocks, since
these elements are exchanged according to the current state of the plant and the current
objective of the system.

4.4 Implementation Examples 119

The reconfiguration of any of the PR Regions is carried out by the Virtex Configu-
ration Manager (VCM) [Hag07b], which uses a clock frequency of 50 MHz for the
reconfiguration (continuous transfer to the ICAP port). The reconfiguration of any of
the PR Regions lasts about 4,38 ms. A program running on the PPC can initiate the
reconfiguration, indicating the memory space from the external SDRAM where partial
bitstreams can be fetched (cf. figure 4.17). The destination PR Region is embedded in
the partial bitstream. When a reconfiguration is requested, the VCM initiates DMA
(Direct Memory Access) transfers from the SDRAM controller, loads the desired
partial bitstream to the target PR Region by accessing the ICAP, and sends an interrupt
to the PPC when the configuration is done. A supervising program, running in the
PPC, is in charge of monitoring system activity and triggering the reconfiguration of
any of the PR Regions.

The architecture incorporates a flexible communication system, enabling data
transmission between static and dynamic components (e.g., between PR Regions
and the PPC), as well as between internal components and external components
(e.g., between controllers and the plant). All PR Regions are connected through a
multiplexer to the external components, a select signal controlled by the PPC defines
one of the PR Regions as current output, which can be changed as required at run-time.
Furthermore, each PR Region has four 16-bit I/O ports (called Crosspoint ports, cf.
figure 4.18), and up to 64× 16-bit wide I/O ports connected to the Channel Bus.
Crosspoint ports are suited for data-streaming between PR Regions (e.g., initialization
of a new-loaded controller from another PR Region). Channel Bus communication is
slower, and best suited for parameter exchange.

The communication fabric is highly configurable, allowing the PPC, to set the
source for the 16-bit Crosspoint ports, Channel Bus and the outputs (HW_OUT, cf.
figure 4.18). Any of the PR Regions or the PPC can be the source of any of the
Crosspoint ports of the PR Regions; this configuration can be changed at run-time.
For system monitoring, the PPC has access to all values and Channel Bus vectors.
Furthermore, as the PPC has access to all signals of the system, its also possible
to implement a controller completely in software without utilising some of the PR
Regions. This feature is specially important, because based on this flexibility a
controller running in the PPC can be exchanged by an FPGA-based controller, placed
in any of the PR Regions, which can be initialised by a dedicated design placed in any
other PR Region or even from the PPC. This feature is used in the example presented
in section 4.4.4.

Data traffic is synchronised by the shadowing interface. Data from the Crosspoint
ports, from the Channel Bus, and from external I/Os is first copied to the shadowing
logic block, which upon a trigger signal releases it to the other components.

Triggering signals are available also to each PR Region. These signals can be
generated from any of the PR Regions, from an internal trigger generator, or from an

120 Chapter 4 Run-Time Reconfiguration

external signal. The PPC has access to all values in the shadowing interface, after and
before it has been triggered.

Crosspoint Ports

Channel Bus

D
P

-
B

lo
ck

R
A

M

IO
-O

U
T

 M
ux

Trigger

HW_OUT

HW_OUT_4
HW_OUT_3
HW_OUT_2

H
W

_O
U

T
_S

E
L

HW_OUT_1

PLB

C
ha

nn
el

 B
u

s
S

ou
rc

e
S

el
ec

t

C
ro

ss
p

o
in

t
S

o
ur

ce
 S

el
ec

t

HiLDEGART
SDRAM_CTRL

S
h

ad
o

w
in

g
 L

o
g

ic

PRR 1 PRR 2 PRR 3 PRR 4

PRR
Interface

PRR
Interface

Trigger, Enable, and Reset
Manager

Channel Bus

Parameter -Values

Trigger Select
Enable Select
Reset Select

HW_IN

HW_IN

Address Decoder and
Registers

P
re

-S
h

ad
o

w
in

g
 A

cc
es

PRR
Interface

PRR
Interface

PRR
Interface

PRR
Interface

PRR
Interface

PRR
Interface

Figure 4.18: Simplified schematic of the communication fabric [15]

The architecture includes a HiLDEGART component for high-speed monitoring.
HiLDEGART is part of an on-line monitoring framework introduced in section 5.3. It
records all parameter and value ports from the communication fabric (cf. figure 4.18),
and sends a low-frequency sampled signal to the GUI (sampling frequency of about
125 Hz) through the Local Bus of the RAPTOR system. High-frequency sampled data
is send to the SDRAM. The sampling rate of each I/O port can be set individually.
Displaying of I/O values and all configuration tasks are controlled via a GUI from the
host PC.

Dynamic reconfiguration is constantly monitored by a PLB-listener [Gra09]. The
PLB-listener waits for the VCM master request to the SDRAM. When the request
is performed by the VCM, the listener is activated and waits for valid data from
the SDRAM controller. All the data sampled by the PLB-listener is transferred to

4.4 Implementation Examples 121

a external application for parsing and visualisation, allowing visualisation of the
reconfiguration using a dedicated GUI.

A UART interface allows serial communication to the host computer from a running
application on the PPC. This communication interface is well suited for debugging
and low-speed monitoring purposes. Furthermore, an LED matrix can be accessed
from the PPC through a General Purpose Input/Output (GPIO) interface, which is
used to signalise internal states of the architecture (e.g., PPC initialization completed).

This system architecture serves as the platform for the case-studies presented in the
following sections. It is not meant to be an application-specific architecture, but it
is rather designed to allow a wide variety of experiments. The utilisation of RTR to
implement the control system of an inverted pendulum is presented in the next section.

4.4.3 Inverted Pendulum System

This section presents the implementation of the control system for an inverted pendu-
lum. It is a proof-of-concept example, which shows the principles of using run-time-
reconfiguration for control applications [1, 2].

The inverted pendulum is a classical problem in control theory; it has been used
in literature as an example of a well-understood yet non-trivial system to test control
algorithms [Oga87]. There are many variations of the problem, however we focus
on the basic approach, in which the cart can only move in the x coordinate, and the
pendulum has only one degree of freedom.

Test Bed Description

A diagram of the inverted pendulum is shown in figure 4.19. There is one actuator
and two sensors; one for position detection and another for angle detection. The
actuator is an AC servo motor (MSM030C-0300-NN-M0-CG0 from Rexroth), with
a maximum torque of 3.8 Nm, a maximum speed of 5000 RPM, and 400 W of peak
power [Rex04]. The motor has an attached absolute encoder (e1) with a resolution of
131072 increments/revolution. The encoder is connected to the power drive trough a
serial interface. The other encoder (e2) is attached to the pendulum, it is an incremental
rotary encoder (Heidenhain ROD 420), with a resolution of 5000 inc/rev, and is used
to detect the angle of the pendulum. Both sensor signals are sent to the RAPTOR
system for further processing (cf. figure 4.20).

The cart of the pendulum is moved by a spindle with a resolution of 5mm/rev. the
spindle is part of a Compact Module from Rexroth (CKK 12-90), and is 750 mm long.
The spindle is in turn moved by the motor through a timing belt (see tb in figure 4.19)
with a gear ratio of 1:1 (i.e., one revolution of the motor produces one revolution of

122 Chapter 4 Run-Time Reconfiguration

AC Motor

 Rexroth CKK 12-90

Motor Driver
(Rexroth EcoDrive)

e1
e2

tb

bob

rod

cart

Figure 4.19: Schematic of the inverted pendulum system

the spindle). The pendulum itself is composed by the cart (weighting 0,514 Kg), the
rod (measuring 241,5 mm and weighting 254,6 g), and the bob (weighting 326,4 g).

The inverted pendulum test-bed is shown in figure 4.20. The data processing system
architecture is mapped onto two daughterboards of the RAPTOR system. The DB-
MC module is based on a Xilinx Spartan-II E FPGA (XC2S50E), which controls
the interaction with five eight-channel analog to digital converters (ADC), one four-

DB-V2P

HiLDEGARTLocal Bus/
PLB Bridge

PPC

SDRAM
Controller

Bus Listener

VCM

Comm. Fabric

P
R

R
 4

P
R

R
 3

P
R

R
 2

P
R

R
 1

P
ro

ce
ss

or
 L

oc
al

 B
us

ICAP

DB-MC

I/O Controller

D
igital/ A

nalog

A
nalog/ D

igital

RAPTOR LOCAL BUS

RAPTOR BROADCAST BUS

D
ig

ita
l I

/O

RAPTOR System

Inverted Pendulum

Motor DriverEncoder Signals

AC Motor

Rexroth CKK 12-90

Figure 4.20: Schematic of the test-bed of the inverted pendulum system

4.4 Implementation Examples 123

channel digital to analog converters (DAC), and one four-channel serial synchronous
interface (SSI). Incoming and outgoing data is stored in Block-RAMs located in the
FPGA, and can be accessed through the broadcast bus of the RAPTOR system. The
rest of the architecture is implemented on a second daughterboard equipped with a
Xilinx Virtex II-Pro FPGA (XC2VP20), as described in the previous section.

For the inverted pendulum example, only one DAC is used, to send the control
values in a range of 0 to 10 volts (14 bits resolution) to the Motor Drive. Position
sensors (encoders) are directly connected to digital I/Os of the Virtex II-Pro module.

Control Structures

A controller for the inverted pendulum has two basic tasks: bring the pendulum from
its rest position to a vertical position, (swing up the pendulum), and once the pendulum
is at the up-right position the second task is to keep it balanced.

The swing-up controller follows a simple strategy. The controller starts by moving
the pendulum to the right, then it waits until the pendulum reaches an angle θ ≈ 0, and
moves the cart in the opposite direction. In this way, it is assure that the movements of
the cart contribute to gradually add energy to the movements of the pendulum until it
reaches the upright position, as depicted in figure 4.21.

AC Motor

 Rexroth CKK 12-90

θ=0
+θ-θ

+x-x

Figure 4.21: A simple strategy to swing-up the inverted pendulum

To implement the swing-up control strategy, a position controller combined with
a state machine is used. A simplified block diagram is presented in figure 4.22. The
set-point computation block (a) generates two possible maximum positions, whose
values depend on the current angle of the pendulum (e.g., for small angles high values,
and vice versa). The finite state machine block (b) decides which set-point values to
use, also depending on the current angle of the pendulum (e.g., when dθ/dt > 0 and

124 Chapter 4 Run-Time Reconfiguration

θ ≈ 0, then xset_point = xmax_negative). Finally, a cascade-position controller computes
control signal based on the set-point and the current position of the cart.

Position Control
(c)

Set-Point
Computation

(a)

FSM
(b)

θ

x

xmax_positive

xmax_negative

Xset_point

Uout

Figure 4.22: Block diagram of the swing-up controller

The balance controller is based on a state-feedback scheme, as depicted in figure
4.23. A linear model of the plant was derived, from which the state-feedback gains are
computed using a Linear Quadratic Controller (LQR) approach. The system described
in figure 4.23 is then discretised (sampling rate = 1 ms) and converted to a state-space
representation.

F

d/dt

Ks

d/dt

Kẋ

Kθ

Kθ

Kx

Inverted
Pendulum

xSet-Point

x θ

ẋ

y

θ

Figure 4.23: Block diagram of the balance controller

Both controllers are implemented using System Generator from Xilinx. Further-
more, a signal processing module is implemented to generate position, angle, speed
and angular position from the pulsing signal sent from the incremental encoders to
measure horizontal position and angle of the pendulum. Table 4.2 summarises the
resource utilisation of both controllers and the signal processing module.

The static implementation corresponds to the synthesis of all modules together,
whereas the rest of the values are results of individual synthesis.

4.4 Implementation Examples 125

Supervisor

Ab As

Ab

As

Controller

Pendulum

Y

XX

As

AB AS

ATL ATRAbAts Ats

Atb Atb

Figure 4.24: Schematic diagram of a two-controllers system for the inverted-pendulum

Control Reconfiguration Scheme

Controller switching is decided upon the current angle of the pendulum, its angular
speed, and the position of the cart relative to the spindle. The idea is to activate
the balance controller when the pendulum is near the upright position, and when
its angular speed is in a suitable range (i.e., Angular_Speedmax ≥ Angular_Speed ≥
Angular_Speedmin). Following this idea, the area where the pendulum moves can
be divided in operative and transition regions, as shown in figure 4.24. Atb are the
transition areas from the swinging-up controller to the balancing controller. It should
be noticed that a controller exchange from swing-up to balance can also occur in
between these two areas (i.e., in areas Ats and area Ab), as long as the angular speed is
in the previously-mentioned suitable range. Ats are the transition areas from balancing
controller to swinging-up controller. Furthermore, Ab is the operative region for the
balancing controller, As is the operative region for the swinging-up controller.

The values of Angular_Speedmax, Angular_Speedmin, Atb, Ats are determined ex-
perimentally. The selection of transition regions determines not only the achievement
of control goals, but also the worst case resource utilisation. Control switching re-

Design Slices LUTs FlipFlops Mults BRAMs

Swinging-Up 470 615 371 0 0
Balancing 779 1038 1090 2 6
Signal Processing 414 481 660 0 8
Static 1625 2509 1394 2 10

Table 4.2: Resource utilisation of swinging-up and balancing controllers, synthesised
for Virtex II-Pro FPGA

126 Chapter 4 Run-Time Reconfiguration

garding the used PR Region and reconfiguration time for the inverted pendulum is
exemplified in figure 4.25.

It can be noticed that the reconfiguration lasts several control cycles. However, the
early switching between swinging-up controller and balance controller allows that the
new controller is loaded and ready for operation before the pendulum leaves region
Ab. This in turn allows the utilisation of one single slot (in case of using fixed slot
placement, cf. section 4.2.4), because the new-loaded controller does not require any
initialization.

The reconfiguration time, and the required resources of the control system depend
on the selected FPGA device (cf. table 4.1), the partition approach, and the placement
method. A static version of the controller requires Astatic = 1625 Slices + 2 Multipliers
+ 10 BRAMs cf. table 4.2. Supposing a device, which allows a tile size of smax1 = 779
Slices + 2 Multipliers + 6 BRAMs, the resource requirements of a fixed-slot size
approach would be Apartial_RT R_FS = 1558+4 Multipliers + 12 BRAMs + Arec. Ne-
glecting the reconfigurable resources overhead require to realise dynamic reconfigu-
ration (e.g., external reconfiguration is used, c.f. figure 4.8), Apartial_RT R_FS < Astatic.
However, if a self-reconfiguration approach is used, Arec is not small enough to be
neglected, which would lead in this case to Apartial_RT R_FS > Astatic. For a situation
where more control structures are involve, Astatic > Apartial_RT R_FS even when using a
self-reconfiguration scheme.

C C

Balance

C C

tconfbalance

Swing Up

trbalance

a

PRR1

PRR2

t

t

Area

CC CC C C

Active Reconfiguration

Figure 4.25: Use of PR Regions for the inverted pendulum controller

4.4 Implementation Examples 127

Control Reconfiguration Validation

Using the test-bed described in figure 4.20 both controllers and the switching strategy
were tested. The switching strategy is implemented as software in the embedded PPC.
Measurements of the output of swinging-up and balancing controllers, as well as the
position of the cart, the angle of the pendulum, and the active controller are shown in
figure 4.26.

0 2 4 6 8 10 12 14 16 18
0

5

10

time (s)

C
on

tr
ol

O
ut

pu
t (

V
)

Inverted Pendulum

0 2 4 6 8 10 12 14 16 18
−5

0

5

time (s)

P
en

du
lu

m
A

ng
le

 (
ra

d)

0 2 4 6 8 10 12 14 16 18
−0.05

0

0.05

time (s)

C
ar

t
P

os
iti

on
 (

m
)

Figure 4.26: Controller exchange for the inverted pendulum system

The Output of the controller has a range of 0 to 10 Volts, where 5 Volts sets the
cart to stand still. The angle of the pendulum is presented in radians, where either ±π

indicates that the pendulum is at the upright position. The cart position, presented in
meters, shows the cart starting in the middle of the Compact Module (cf. figure 4.21).

The system starts in the swinging-up state and stays there until the pendulum
enters in any of Atb areas. Then the output of the controller is set to no motion. For
this, the supervising program switch the source of the output HW_OUT (cf. figure
4.17) to the PPC, and sends a value to the DAC corresponding to 5 Volts. After
this, partial reconfiguration is initiated and the supervisor enters a wait state until
the reconfiguration is done. The VCM initiates a bitstream fetching, and transfers

128 Chapter 4 Run-Time Reconfiguration

the partial bitstream to the ICAP port. When configuration is done VCM sends an
interrupt to the PPC. The reconfiguration process for the balance controller takes about
8,76 ms (two PR Regions are required to map this controller), whereas the Swing-Up
controller reconfiguration takes 4,38 ms. Upon leaving the wait-state the output of
the controller is enabled again, entering the balancing state. These measurements
show that the controllers, the switching strategy, and reconfiguration scheme work
satisfactory.

4.4.4 Self-Optimising Motion Controller

This implementation example outlines the implementation of a self-optimizing system
composed of several possible hardware and software realisations of controllers for a
permanent magnet servo motor. How well a specific controller realisation is suited to
the current situation is evaluated based on control quality and realisation effort (i.e.,
CPU time, reconfigurable area). This example is the result of a collaboration with the
Power Electronics and Electrical Drives Group of University of Paderborn. The goal
of the example is to show the use of dynamically reconfigurable hardware to realise
self-optimizing controllers. The main aspects of this section have been published in
[7], [14], and [15].

Self-Optimization Scenario

For this example, a complex mechatronic system composed by many sub-tasks is
considered. The computational hardware is shared among all sub-tasks, and must be
understood as having limited resources, e.g., memory, CPU-time, or FPGA area. The
drive-control sub-task is composed of various controllers, and different realisations
of those controllers (e.g., CPU- or FPGA-based), which consequently have different
computational requirements, and control characteristics. In a self-optimizing system,
a control algorithm may be understood as an optimal solution for the current internal
and external objectives of the system. Therefore, to each possible situation of the
system, there is a drive controller, and correspondingly an FPGA- or CPU-based
implementation of that controller, which represents a solution in that situation.

From the drive-control point of view, the following operative conditions are consid-
ered:
• Stationary operation: constant speed and constant load-torque
• Accelerated motion: with constant load-torque
• Load change: constant speed and varying load torque

Furthermore, from the information processing system point of view, the following
states are considered:

4.4 Implementation Examples 129

• Limited CPU-time: the mechatronic system allocates computing time for other
sub-task with higher priority
• Limited FPGA-area: higher priority sub-tasks get access to more FPGA-area

These operating conditions are crucial in determining the objectives of the system.
Thus, to realise controllers that compete with other sub-tasks of the mechatronic system
to access the limited computational resources, the optimal operational condition of
each controller and their possible realisations should be known. With respect to
the drive application, a concurrent FPGA-based realisation of all required control
algorithms would enable control adaptation, as presented in [Mat07, Mat11]. However,
the amount of computational resources that have to be allocated to that sub-task
from the mechatronic system would be too high. By introducing partial run-time
reconfiguration the resource allocation can be improved, and thus the mechatronic
system can assign free resources to other sub-tasks.

According to the definition of self-optimization [14], the decision to switch between
different control algorithms or different implementations of those algorithms has to be
taken in three steps:

1. Analysis of the current situation: By determining the kind and amount of
available resources (Memory, CPU-Time and FPGA-area), and the current
situation of the controlled system.

2. Determination of objectives: By distinguishing the optimal solution for the
total mechatronic system according to the drive application as well as to the
cost-benefit ratio for the control switching. The characteristics of the available
controllers (cf. table 4.3) and their implementation (cf. table 4.4) are considered
in this step.

3. Adaptation of the system behavior: Accomplishing control switching (if re-
quired). This step has a direct influence on the available computational resources
and the control quality.

The cyclic repetition of these three steps satisfies the self-optimizing framework
[Böc06]. This example focuses on the control drive sub-task, without considering a
concrete mechatronic system or other sub-tasks. Different realisations of well-known
control structures are used to explore controller switching between several kinds of
implementations.

Test Bed Description

A simplified schematic of the information processing system and its connection to
the EUT (Equipment Under Test) is shown in figure 4.27. Power electronics and
computation hardware are connected through a fully isolating digital interface board
for sensor and actuator signals. Activation signals for power electronic are created in
the FPGA system, and are transmitted as digital signals to the switches.

130 Chapter 4 Run-Time Reconfiguration

DB-V2P

HiLDEGART
Local Bus/
PLB Bridge

PPC

SDRAM
Controller

Bus Listener

VCM

Comm. Fabric

P
R

R
 4

P
R

R
 3

P
R

R
 2

P
R

R
 1

P
ro

ce
ss

or
 L

oc
al

 B
us

ICAP

RAPTOR LOCAL BUS

RAPTOR BROADCAST BUS

D
ig

ita
l I

/O

Switching
Commands

Current Signals

Position Signal

MS
3~

=
~

RAPTOR System Power Electronics,
Motor

Is
ol

a
tin

g
D

ig
ita

l I
n

te
rf

ac
e

Digital
Interface

A
D

C

Figure 4.27: Schematic of the test-bed of the self-optimizing motion controller

The ADCs to sense current signals use a delta-sigma-modulator, which allows
that the quantization as well as the sampling rate of the current sensor signals are
scaled by an optimized decimation filter [Pet09]. The utilisation of sensor signals for
current and position in the computation hardware is supported by the power electronic
system. This test bed allows emulating many different drive applications, such as
speed, position and torque control. The special capability of this test bed is the on-line
reconfiguration of the drive controllers. This is not restricted to only FPGA-based
controllers; the exchange of CPU- and FPGA-based realisations is also supported.
This feature requires a flexible underlying information processing system, not only
because different realisations of the controllers are supported, but also because the
information flows from sensors and to actuators have to be reconfigurable at run-time
(cf. section 4.4.2).

Drive Control Structures

In this implementation example, torque controllers for a permanent magnet syn-
chronous motor drive are considered. All controller structures are based on a Field
Oriented Control (FOC) scheme [Bla72]. The FOC scheme consists of controlling the
stator currents represented by a vector. This control is based on projections, which
transform a three-phase time and speed dependent system into a two coordinate (d- and
q- coordinates) time invariant system [Nab80]. These projections lead to a structure
similar to that of a DC machine control. Field orientated controlled machines need two
constants as input references: the torque component (aligned with the q coordinate)
and the flux component (aligned with d co-ordinate).

The differences between the controllers investigated in this case-study are the
consideration of the feed-forward parts for the Back-EMF and the decoupling between
the currents in d- and q-axes. In the elementary control structure of an FOC-scheme

4.4 Implementation Examples 131

the output of a PI-controller is directly the output of the controller. The medium scaled
structure (FOC-EMF) contains a feed-forward for Back-EMF compensation. As such,
the dynamics of the control loop is improved for speed changes. The large scaled
control structure (FOC-EMF-DeC) has an additional decoupling of the currents for
improving the behavior in the case of load torque change, cf. table 4.3.

The properties of these controllers are well known and have been presented by sev-
eral authors (e.g.,[Bla72], [Bay72], [Mon02c]). In this case-study the implementation
of the controllers using FPGAs as target-architecture, and their run-time exchange
by means of partial run-time reconfiguration as a way of providing self-optimization
to the system is presented. Moreover, the possibility to switch between software-
and hardware-based realisations as a further degree of flexibility is explored. Special
attention has been paid to the transition between controllers, since this can lead to
undesired effects (e.g., disturbances). The common abilities and some realisation
aspects of the considered controllers are shown in table 4.3.

The considered FOC structures can be separated in two parts. The first part contains
modules for output (reference voltage in stator-fix α-, β -axes), and input (measured
currents in stator-fix α-, β -axes and position) as well as the coordinates transformation.
These computations are placed in a Basis Region of the system architecture, because
they are common for all realised control schemes. The second part contains the current
controllers for d- and q-axis, which is the main part of the controller structure.

EMF-

Decoupling

PI

PI

PMSM

PWM

dq

dq

dq

dtd /

cbai ,.

cbas ,.*

di

*

qi
-

-

-

-

di

qi

du

qu

Figure 4.28: Schematic of a Field Oriented Control structure with back-EMF compen-
sation and decoupling of currents [Nab80]

132 Chapter 4 Run-Time Reconfiguration

No. Control Situation Complexity
Algorithm revolution load computing required

speed torque time sample
behavior per cycle rate

1 FOC low constant low slow
(P-Controllers)

2 FOC low constant low slow
(PI-Controllers)

3 Back EMF medium constant medium medium
compensation

4 current high fluctu- high high
decoupling ating

5 Direct Torque very fluctu- low high
Control high ating

Table 4.3: Abilities and realisation aspects of motor controllers [15]

The presented FPGA-based controllers were realised using the Xilinx System
Generator [Sysb]. FPGA resources for the different control structures and the hardware
interface used for measurements are given in table 4.4. These implementation results
are based on a Xilinx VII-Pro XC2VP30-FPGA.

Structure: Hardware FOC FOC-Back FOC-
Interface EMF EMF-DeC

FPGA
Resources: Ctrl Init Ctrl Init Ctrl Init
Slices 1273 360 194 453 283 671 497
FlipFlops 1052 153 74 172 91 272 187
LUTs 1525 605 340 767 502 1154 889
BRAMs 1 4 0 4 0 4 0
MULTs 1 0 0 0 0 2 2

Table 4.4: Resources of implemented FPGA-based controllers [15]

All controllers presented in table 4.4 are based on a PI-controller. As explained in
the next section, for each controller there is an initialization block, which computes
the initial state of the integrator of the to-be-loaded controller. This block is loaded
concurrently to the controller, and uses input and output signals of the to-be-replaced
controller to compute the initialization value.

The realisation of CPU-based controllers is commonplace in industrial drive appli-
cations. Furthermore, the theoretical and practical aspects of CPU-based drive control

4.4 Implementation Examples 133

reconfiguration can also be found in literature [Ho90], [Kha91], and [Mon02c]. There-
fore, the realisation of such standard CPU-based controllers is not further analysed.
However, the dynamic reconfiguration of FPGA-based controllers, and the switching
from an FPGA- to a CPU-based controller is a new step in drive controllers.

A comparison of the execution-time of FPGA- and CPU-realised controllers on our
SoC architecture is presented in figure 4.29. The PPC works with a clock frequency of
300 MHz, whereas the reconfigurable PR Regions have a clock frequency of 30 MHz.
The PWM-Carrier is depicted to illustrate the timing constraint of the controllers (i.e.,
control cycle). The used Delta-Sigma-ADC is realised using regular sampling.

PWM-Carrier
T=62.5µs

PWM-Output

ADC:
4.7µs

Encoder:
4.7µs

PWM:
41.67ns

abc→dq:
13.8µs

FOC:
4.7µs

dq→abc:
14.7µs

abc→dq:
41.67ns

FOC EMF-
DeC: 50ns

dq→abc:
41.67ns

C
PU

FP
G

A
FP

G
A

(s
ta

tic
)

Time

(a)

(b)

(c)

Figure 4.29: Comparison of the execution-time of (b) CPU- and (c) FPGA-based
motor controller realisations (FOC and FOC-EMF-DeC correspondingly),
including execution times of the (a) static part of the controller [15]

134 Chapter 4 Run-Time Reconfiguration

As can be seen, the timing of the encoder is dominated by the serial data transfer and
synchronised to the ADC. The outlined timing of static part of the PWM supports the
displacement for the zero-voltage vector of the set-voltages (Zero Sequence Signal).
Even though the precise timing depends on the actual clock-rate, it can be noticed that
the execution time of the CPU realisation is longer than a single control cycle, causing
the controller to have a time delay of one sample period. The FPGA realisation is two
orders of magnitude faster than the CPU realisation, and has no significant time-delay.
This speedup comes from the concurrent utilisation of several processing elements (cf.
Table 4.4), in contrast to the serial realisation of the CPU-based controller. The low
execution-time of the FPGA-realisation enables the implementation of more complex
control schemes (e.g., a speed-adaptive PWM-period can be easily implemented).

Controller Reconfiguration Scheme

Figure 4.30 shows the sequence diagram for the run-time reconfiguration of torque
controllers. Controller 1 is the active design at the system start. When the Supervisor
detects that a new controller structure (e.g., Controller 2) is required, it starts loading
the necessary initialization function and Controller 2 on the PR Regions of the system
architecture. This is done by sending a configuration request from the PPC to the
VCM, which then starts loading the corresponding partial bitstream from the external
SDRAM and places it in a free PR Region of the FPGA. After this operation has been
performed, the VCM sends a handshake signal to the PPC. The initialization module
calculates the internal states of the new controller for initialization directly after both
components are loaded. This initialization has to be done with the input and output
signals of the to-be-replaced controller.

The initialization module detects the steady state of the input and output signals to
ensure that the initial values are valid. Switching between the controllers is completed
within one clock-cycle (i.e., the assignment of HW_OUT, cf. figure 4.17), so that the
controller output is continuous (bumpless) from the point of view of the motor. After
the controller has been replaced, the components Initialization and Controller 1 are no
longer required and the corresponding PR Regions can be used by other sub-systems
of the mechatronic system. After the initialization of the new controller, the Supervisor
resumes to analyse incoming and outgoing data. The worse case resource utilisation
when using 1-D partition, with a fixed-size slot placement approach is exemplified in
figure 4.31, where PR region PRR1 holds the to-be-replaced controller (C1), PRR2
holds the to-be-used controller (C2), and PRR3 holds the initialisation routine (u2).
Because the reaction time of any of the to-be-reconfigured controllers is trmax� pmax,
the resource requirements are Apartial_RT R_FS = 3 ·Smax1 +Aconst , as shown in figure
4.31.

4.4 Implementation Examples 135

VCM Controller 1

configuration
request

configuraton
request

initialization
enable

controller
switch

IO Select

co
nt

ro
lle

r 2
co

nt
ro

lle
r 1

Controller 2Initialization

tr
tr

Supervisor

tim
e

Figure 4.30: Flow of the run-time reconfiguration of controllers [15]

CC C C C CC CC Ca

t

Area

c2

c1PRR1

PRR2

t

tconf2

u2

init2

tr2

PRR3

Active Reconfiguration Initialisation

Figure 4.31: Use of PR Regions for the self-optimizing motion control controller

136 Chapter 4 Run-Time Reconfiguration

Control Reconfiguration Validation

For validation of a proper switching between controllers, a HiL-Simulation (cf. chapter
5, sections 5.2 and 5.3) of such control exchange is presented in figure 4.32. The motor
is first controlled with a FOC (No. 2 in table 4.3), and at time-point zero the control is
switched to a FOC-EMF-DeC (No. 4 in table 4.3). As can be seen, switching was done
without disturbing the controlled currents. To enable this bump-less control switching,
a proper initialization of the internal state of the controller (e.g., integral initial state)
is required [7], as discussed in the previous section and presented in figures 4.32 (cf.
also figure 5.25, in chapter 5). Without such an initialization the controlled currents
show a disturbance at the time of the switching, as can be observed in figure 4.33. In
this figure measurements of a control switching with the EUT are shown, using the
same controllers as in figure 4.32, but without initialisation.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.04

−0.02

0

0.02

d
−

cu
rr

e
n

t
in

 A

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

4.998

5

5.002

5.004

q
−

cu
rr

e
n

t
in

 A

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
1

2

3

C
o

n
tr

o
lle

r
se

le
ct

time in ms

Figure 4.32: Controller switching from FOC to FOC-EMF-Dec at 3000 RPM (HiL:
Controller at FPGA, Motor in Simulation) [15]

Figure 4.34 shows measurements of a controller switching between a FOC based
on a PI-controller (table 4.3, No. 2) realised on the PPC with a control period of
pppc = 68,3µs, to an FPGA-based FOC with a P-controller (table 4.3, No. 1) with a
control period of pppc = 34µs . The amount of noise of the current is defined by the
selection of the control algorithm, its realisation and external perturbations. On the
one hand, the P-controller used for the measurements shown in figure 4.34 produces
low noise, but produces also a steady state error. On the other hand, the PI-controller

4.4 Implementation Examples 137

−20 −15 −10 −5 0 5 10 15 20
1

2

3

C
o

n
tr

o
lle

r
se

le
ct

time in ms

−20 −15 −10 −5 0 5 10 15 20

−0.6
−0.4
−0.2

0
0.2

d
−

cu
rr

e
n

t
in

 A

−20 −15 −10 −5 0 5 10 15 20
5

5.5

6

q
−

cu
rr

e
n

t
in

 A

Figure 4.33: Controller switching from FOC to FOC-EMF-Dec at 3000 RPM without
using initialisation (Test bed: Controller at FPGA, Motor as EUT) [15].

0.25 0.3 0.35 0.4 0.450

0.5

1

1.5

2

2.5

3

3.5

0.25 0.3 0.35 0.4 0.45
-0.4

-0.2

0

0.2

0.4

time in stime in s

FOC Back-EMFq-
cu
rr
en

t
in
A

FOC Back-EMF

d-
cu
rr
en

t
in
A

(CPU, PI-Controller)

(CPU, PI-Controller)

(FPGA, P-Controller)
FOC

(FPGA, P-Controller)
FOC

Figure 4.34: Controller switching from a CPU- and an FPGA-based realisations at
3000 RPM (Test bed: Controller at CPU and FPGA, Motor as EUT) [15]

has a better steady state response, but requires more resources for its implementation.
These measurements and simulations results show that the presented concept works
satisfactory.

138 Chapter 4 Run-Time Reconfiguration

4.5 Summary

This chapter presents the use of run-time hardware reconfiguration for control appli-
cations. It is shown that FPGA-based control systems requiring adjustments during
operation can benefit from RTR. Two cases of adjustments are distinguished: struc-
tural and parametric changes. For both cases RTR can be used to achieve a better
resource utilisation, depending on the amount of structural variations, or the size of
the algorithm requiring parametric changes. It is shown that resource utilisation of a
dynamic approach depends on the worst-case configuration of the system, whereas for
a static implementation the resource utilisation depends on all required configurations.

The process of dynamic hardware reconfiguration is presented, showing aspects
such as system partition approaches (1D, Multi-1D, and 2D), placement strategies
(fixed-size slots, and free placement), kinds of communication infrastructures for
reconfigurable systems (point-to-point vs. shared lines), and the configuration control
(internal or external). The realisation of these aspects depends on the application,
and the underlying hardware platform (e.g, the chosen FPGA device). The worst-
case resource utilisation for dynamic systems is analysed for a free placement and a
fixed-size slot approaches.

Two application examples are presented: an inverted pendulum system, and a self-
optimising motion controller. Basis of this realisations is a System-on-Chip (SoC)
architecture that enables the use of dynamic hardware reconfiguration, and the run-
time adaptation of the communication infrastructure. The architecture is based on a
Virtex-II Pro FPGA from Xilinx, which includes two embedded PowerPC processors.

The dynamic reconfiguration of two controllers for the inverted pendulum is shown
in the first application example. This proof-of-concept example shows the potentials
of using RTR compared to a static approach. The early switching between controllers
allows the utilisation of one single slot, despite the fact that the reaction time of both
controllers is longer than the control period.

Having too long configuration times in comparison to the duration of control
cycles poses a challenging problem, because controller initialisation strategies are
required, for which reconfigurable resources have to be allocated . In the case of
the inverted pendulum system, a smart switching strategy allows to work around
this situation. In general reconfiguration latencies have been improved in the newest
Xilinx devices, where the reconfiguration controller works with higher bandwidths
(up to 32 bits at 100 MHz), and the minimal reconfiguration areas are smaller (cf.
section 4.2.2). However, this is still not sufficient to guarantee that the response time
of a controller (i.e., reconfiguration time and initialisation) is always shorter than the
required control period. Therefore, a strategy is shown in the second example, where
the to-be-configured controller is initialised to achieve a bump-less transition between
controllers.

4.5 Summary 139

In the second implementation example the realisation of an FPGA-based self-
optimizing motion controller is presented. This approach allows the adaptation of
parameters and structure of controllers. Furthermore, not only the control algorithm,
but also its realisation and the execution platform (FPGA or embedded CPU) can be
dynamically changed. It was shown that switching between different FPGA-based
realisations and from an FPGA- to a CPU-based realisation (and vice versa) can be
done, without perturbation of the controlled system.

Given the demanding requirements of the controlled electric drive, achieving a
bump-less switching is a special qualitative feature of this implementation. Fur-
thermore, considering the short execution times of FPGA-based controllers, and the
possibility to still use a CPU-based controller, allows the adaptation of the control
system, not only regarding the plant, but also regarding the available resources of the
underlying computing architecture and how they are used by other sub-systems. This
empowers the control system to react to situations far beyond the classic approaches.

Measurement of both realisation examples show that dynamic hardware reconfigu-
ration is a promising approach to realise complex control schemes.

5 Design Verification through
Hardware-in-the-Loop
Simulations

Verification is a crucial part in the design of digital controllers. Simulations are usually
the starting point to verify the design under test (DUT), using mathematical models of
both the plant and the controller. Later on, the integration of the target architecture
(e.g., a microcontroller or DSP) or parts of the plant in the simulation loop, known as
Hardware-in-the-Loop (HiL), makes verification more realistic and thus more effective.
Such verification methods have been intensively reported in literature for CPU-based
digital controllers, being a standard in current design flows.

In this chapter a HiL design environment for FPGA-based controllers is presented,
which includes an off-line simulation framework and an on-line monitoring tool.
These frameworks support the design flow of FPGA-based controllers targeting run-
time reconfiguration. The proposed frameworks where done in collaboration with
Christopher Pohl, and are also described in chapter 4 of [Poh10]. In the present work,
the proposed frameworks are explained in the context of mechatronic systems and the
utilisation of FPGA technology for the design of digital controllers.

In the next section a brief review of HiL verification approaches is presented,
including the state-of-the-art in FPGA-based HiL simulations. Afterwards, the off-
line framework, HiLDE (Hardware-in-the-Loop Design Environment) is introduced,
showing the underlying hardware and software components, and implementation
examples. The on-line framework, HiLDEGART (Hardware-in-the-Loop Design
Environment for Guided Active Real-Time Test) is then introduced, exemplifying the
framework with two realisation examples. The chapter finishes with a brief summary.

142 Chapter 5 Design Verification through Hardware-in-the-Loop

5.1 Classification of Test-Systems

In the design of digital control systems, the design under test (DUT) is tested at
different stages of the design flow, using different levels of abstraction and a variety of
technologies, as depicted in the V-model in figure 5.1.

Developm
ent In

te
gr

at
ion

Component Test

System Test

System Delivery

Application Analysis

Module Test

System Realization

Module Design

Component Design

System Design

System Specification

Requirements Analysis

Model-in-
the-Loop Hardware-

in- the- Loop

Software-in-the-Loop
Static

Analysis

On-board test

FPGA-in-the-Loop

A
b

st
ra

c
ti

o
n

Time

Figure 5.1: Positioning of FPGA-in-the-Loop simulations in the V design model

On the left-side of the V-model, different stages of development of the design are
shown in a top-down oriented approach, and on the right side the correspondent test
and integration steps are shown in a bottom-up oriented approach. The V-model also
represents from top to bottom decreasing abstraction-levels, and from left to right the
time-flow of the design process. As can be seen in this model, early in the design flow
simulations are usually carried out, using mathematical models (model-in-the-loop)
of both the plant and the controller. Later on, at the integration phase, Software-in-
the-Loop (SiL) and FPGA-in-the-Loop (FPGA-iL) are used to test components of the
system (cf. figure 5.1). System test is done through Hardware-in-the-Loop simulations,
and finally on-line tests are done to perform application analysis. The different test
approaches are further explained in the following sections.

5.1.1 Model- and Software-in-the-Loop

In the development phase of the design flow, mathematical models of the controller
and its working environment are developed, which enables an early verification of the
behaviour of the DUT. This approach is known as model-in-the-loop (MiL). Software
tools such as Simulink, or CAMEL-View, are typically used in this stage [Tew02].
Software-in-the-Loop (SiL) is done, when the model of the controller is translated to
some architecture-specific code, and the same simulation environment is used. This

5.1 Classification of Test-Systems 143

step typically includes the conversion of the controller to a different numbering format,
e.g., from floating point to fixed point.

MiL and SiL simulations allow the monitoring of internal signals of the design,
which are not accessible in later phases of the design flow. Therefore, exhaustive tests
are possible, at the cost of larger simulation times.

5.1.2 Rapid Prototyping

To improve the test, the DUT can be tested using its real environment or parts of
it. This approach is known as rapid prototyping, and improves on MiL and SiL by
bringing the design to a more realistic test environment. The goal of rapid prototyping
is to develop a prototype in an early stage of the design flow.

5.1.3 Hardware-in-the-Loop Simulation

A HiL simulation is characterized by the operation of real components in connection
with real-time simulated components [Ise99]. The simulated components are either
the processes being controlled including sensors and actuators, or the controller
itself. Typically, the controller runs in the target architecture, while its environment is
simulated in real-time. The benefits of simulation (e.g. high flexibility when accessing
signals and internal states) often come along with increased simulation time, which
increases with the complexity of the system. In contrast to this, fast execution can
be achieved by utilisation of rapid prototyping, however debugging is often difficult
to perform due to limited access to the internal states. HiL simulations combine the
flexibility of SiL and MiL and the execution speed of rapid prototyping.

5.1.4 On-Line Test

As a final verification step, the DUT can be integrated in its real environment, this
approach is also known as on-board test [Har01] in the automotive industry. At
this stage the monitoring and parametrisation of the DUT is desirable to verify its
behaviour. Thus, some components, such as data loggers or monitoring software
routines, need to be added to the DUT. With an on-line test, the correct functioning of
the DUT can be asserted.

The different combinations of simulated and real elements in the verification process
are shown in figure 5.2. When using FPGA-based systems, a new category can
be distinguished, known as FPGA-in-the-Loop (FPGA-iL). Unlike a MiL or a SiL
approach, an architecture specific description of the DUT is not used, but its actual
implementation using the target technology. Furthermore, this test differs from a rapid
prototyping test in that the execution of the DUT is not done in real-time. The focus

144 Chapter 5 Design Verification through Hardware-in-the-Loop

of an FPGA-iL test is functional verification of the DUT in its real execution platform,
as explained in the next section.

S
im

u
la

te
d

 E
n

vi
ro

n
m

en
t

R
ea

l E
nv

ir
o

nm
en

t

Simulated Design Undert Test Real Design Undert Test

Real plant

Model of the controller

Real plant

FPGA-based controller

A
/
D

D
/
A

Model of the plant

Model of the controller

Model of the plant

FPGA-based controller

A
/
D

D
/
A

Model of the plant

FPGA-based controller

wrapper

FPGA Design Undert Test

Model/Software-in-the-Loop

Hardware-in-the-Loop

Rapid Prototyping

On-Line Test

FPGA-in-the-Loop

Figure 5.2: Combinations of simulated and real elements in the design process

5.1.5 FPGA-in-the-Loop

Typically, simulation software tools are run using standard desktop computers, which
do not support real time execution. However, in order to perform a simulation, where
the DUT is executed using an external FPGA boars, a synchronisation strategy between
simulation and DUT is required. Therefore, in an FPGA-in-the-Loop simulation the
clock of the DUT is controlled in a way that its execution is coordinated with the
simulated environment, thus making possible a clock-cycle accurate verification.

As presented in figure 5.2, FPGA-iL represents a new category, where the simulation
of the environment controls the speed of the simulation, allowing the functional
verification of the DUT in an early step of the design flow. FPGA-in-the-loop can be
seen as a step between SiL and HiL, where the focus is on cycle-accurate verification
and simulation acceleration.

There are commercially available FPGA-based prototyping boards which can per-
form FPGA-iL simulations. In [Can02] an FPGA-iL system, DIME from Nallatech,
was presented. This board is connected to the host PC via PCI bus. Their approach is

5.1 Classification of Test-Systems 145

not universal and requires the user to develop on the DIME board. Another example is
the R Series Intelligent DAQ Devices from National Instruments [Nat11]. The system
can only be used with software and development boards from National Instruments
(LabView FPGA module). The development boards feature Virtex II and Virtex 5
FPGAs from Xilinx. A further example is the Hardware Accelerator und Cosimulator
HAC2 from Gleichmann Electronics Research [Rei05]. In this framework, the DUT
is loaded to an PCI-based FPGA board, while the test-bench runs in a Modelsim
simulation. A speedup of up to 566 % was reported for open-loop simulations. How-
ever, Matlab/Simulink simulations are not supported, an therefore a test-bench has
to be implemented in a hardware description language. An interesting feature of this
framework is the possibility to include other CPU-architectures in the simulation loop
(e.g., ARM processors), for which there is no HDL model available.

HES from ALDEC [ALD11] allows the partitioning of a large designs into several
FPGAs, enabling automatic system partitioning. This tool includes its own simulator
and supports only some commercially available processor cores (e.g., ARM 720T),
which prevent its use for self-designed systems. Another example is the Palladium III
system, which can emulate or co-simulate very complex systems (up to 256M ASIC
gates and 74GB of memory) [CAD11]. The main drawback of this system is its cost
[Ell09].

Academic examples have also been presented. In [Dep04] a framework for the
design of control algorithms for mechatronic systems, including HIL simulations,
is presented. The design and implementation of linear, time-invariant (LTI) control
systems on FPGA technology is described using a self-developed software called
Computer-Aided Mechatronics Laboratory (CAMeL), as design environment. How-
ever, the use of FPGA-iL was only suggested in this paper. An integration of CaMEL
View to the FPGA-iL presented in this thesis is shown in [10]. In [Bra05] an FPGA-
iL framework is presented, which enables the realisation of an FPGA design from
Simulink blocks, and its verification in an FPGA-iL simulation. The software tool
translates simulink blocks into GenericC (a C-like programming language from COS-
SAP, Synopsys [Syna]) and then to VHDL by using a C to VHDL tool (ARTBuilder,
no longer developed). However, it was mentioned in the paper that the resulting
hardware description is not optimal, regarding resource utilisation, in comparison with
a manually-coded design, being this the main drawback of the proposed approach, be-
cause hardware description is completely abstracted from the user. In [Lu05] another
framework for FPGA-iL is presented, which is capable of real-time simulations. One
of the main components of the framework is a modified Linux kernel for real time
applications. A design to be simulated in this framework has to be designed using a
different tool-flow (e.g., Matlab/Simulink).

The approach presented in this thesis is platform independent and can be adapted to
any existing prototyping environment with a reasonably fast communication link. It
allows the integration of multiple FPGAs in the simulation, and support Programmable

146 Chapter 5 Design Verification through Hardware-in-the-Loop

Input Output (PIO) and Direct Memory Access (DMA) communication with the host
computer. In the following sections the proposed FPGA-in-the-loop is presented in
detail.

5.2 HiLDE: HiL Design Environment

HiLDE is an FPGA-in-the-Loop framework, which allows the early verification of a
DUT in the design flow [8, 12] (c.f. figure 5.1). HiLDE consists of an FPGA-based
rapid prototyping system, RAPTOR (see section 4.4.1), and a set of hardware and
software interfaces, which enable the interaction of a DUT running on an FPGA
module of the RAPTOR system and a CAMeL-View simulation (cf. figure 5.3), or
Matlab/Simulink simulation (cf. figure 5.4).

Host PC RAPTOR2000

P
C

I b
rid

ge

(P
LX

90
54

)

C
A

M
eL

-V
ie

w

S
im

ul
at

or

m
od

el
.d

ll

C
C

od
eE

le
m

en
t

ra
pt

or
lib

.d
ll

P
LX

ap
i.d

ll

ra
pt

or
In

te
rf

ac
e.

dl
l

DUT

synchronizer

LB
 in

te
rf

ac
e

us
er

 I/
O

FPGA

Figure 5.3: Information-flow of the Hardware-in-the-Loop simulation framework with
CAMeL-View

The information flow for both simulation tools is shown in the figures 5.3 and 5.4.
Parameterisable hardware and software interfaces allows a transparent communication
and coordination between DUT and simulation. These interfaces are described in the
following sections.

5.2 HiLDE: HiL Design Environment 147

P
C

I b
rid

ge

(P
LX

90
54

)

DUT

synchronizer

LB
 in

te
rf

ac
e

us
er

 I/
O

FPGA

ra
pt

or
lib

.d
ll

P
LX

ap
i.d

ll

M
at

la
b

S
im

ul
in

k

S
-F

un
ct

io
n.

dl
l

Host PC RAPTOR2000

Figure 5.4: Information-flow of the Hardware-in-the-Loop simulation framework with
Matlab/Simulink

5.2.1 Hardware Components

Clock management is a critical part of the FPGA-in-the-Loop simulation. In order
to generate a coordinated simulation, it is necessary to precisely control the clock of
the DUT, because for each simulation step (cf. figure 5.7(b) and figure 5.8) the DUT
should run for a specific number of clock cycles, which correspond to the latency of
the DUT. This is done by stopping the clock of the DUT in between two simulation
steps, an approach known as clock-gating. This is similar to stepping through code
in a debugger. Using this approach, the functionality of the design can be verified.
However, the timing is not correctly reproduced, and therefore other means need to be
employed to verify whether the DUT meets timing requirements or not. The second
framework, presented in section 5.3, addresses this topic.

In order to coordinate a simulation with a DUT, an FSM called Synchronizer, has
been implemented. Synchronizer enables the DUT clock after a request from either
Matlab/Simulink or CaMEWL-View. Furthermore, Synchronizer controls the clock of
a given DUT in two possible modes: periodic and aperiodic, as depicted in figure 5.5.

For control applications only the periodic mode is used, since controllers have
naturally well defined periods. Synchronizer also detects whether there is a discrepancy
between the given sampling period and the time required by the DUT to complete
a cycle. This happens if its latency is greater than the sampled period reported by
the simulation. In this case the DUT is disabled and a warning signal is sent to the
simulation. The simulation can then react to this exception.

Both Synchronizer and the DUT, are embedded in a hardware wrapper, depicted in
figure 5.6. The Wrapper provides specialised hardware for interfacing Synchronizer
and the DUT with a simulation (using either Matlab/Simulink or CAMeL-View)
running on the host computer through the PCI bus (see section 5.2.3). In order to

148 Chapter 5 Design Verification through Hardware-in-the-Loop

Idle

Clock
Cycles=Lateny

DUT Ready=1
Start

Simulation=1

Start
Simulation=1

Periodic Aperiodic

Figure 5.5: Synchronizer state machine

embed the DUT into the Wrapper, the bus interface is adapted to the input and output
ports of the DUT. This process is done automatically as described in section 5.2.4.

Host PC with Simulink Simulation

BUS Interface to Host

in
pu

t m
em

or
ie

s
(r

eg
is

te
rs

/F
IF

O
s)

ou
tp

ut
 m

em
or

ie
s

(r
eg

is
te

rs
/F

IF
O

s)

Synchronizer FSM

System Generator /
VHDL-
DUT

Figure 5.6: Synchronizer embedded in the bus interface

The Wrapper enables reading and writing data from and to the input/output ports
of the DUT from the simulation. There are two methods to realise these operations:
using a registers bank and using a FIFO memory. For control applications where
there is a feedback from the plant, the only suitable read and write method is using
registers, since measured signals from the plant have to be fed back to the inputs
of the controller, and vice verse, without delay (cf. section 5.2.3). For multi-inputs
multi-outputs (MIMO) systems, this process can be accelerated by utilizing DMA
transfers (see section 5.2.3).

5.2 HiLDE: HiL Design Environment 149

5.2.2 Software Components

Depending on the simulation software the integration of the RAPTOR system dif-
fers. In this section the software component of the HiLDE framework for both
Matlab/Simulink and CaMEL-View are described.

Simulink Integration

MATLAB provides a generic interface for integrating user defined software into the
Simulink simulation process, the so-called S-Function. The basic simulation steps and
their pendants for HiL simulation with RAPTOR are displayed in figure 5.7(a) and
5.7(b). The mdlStart() function is used for hardware initialization (i.e., download of
the bitstream, configuration of Synchronizer). If mdlStart() succeeds, the simulation
loop sequentially calls mdlUpdate() and mdlOutputs(). In mdlOutputs() the data in the
hardware output registers is read and propagated to the outputs of the Simulink block.
In mdlUpdate() data from the input ports of the simulink blocks is sent to the hardware
input registers, respectively. mdlUpdate() also starts the synchronizer to activate the
DUT clock for n clock cycles, where n is the latency of the DUT. In addition to these
communication steps, several translation steps from Simulink floating point data types
to fix point data types have to be accomplished inside the S-Function. The parameters
for this translation as well as information of the hardware configuration are given in a
configuration string provided by HiLDE, cf. section 5.2.4.

Initialize Model
mdlCheckParameters

mdlInitializeSizes
mdlInitializeSampleTimes

mdlStart

Calculate outputs
mdlOutputs

Update discrete states
mdlUpdate

End Simulation
mdlTerminate

si
m

ul
at

io
n

lo
op

(a) Simulink Simulation
steps

download bitstream

fetch outputs

write inputs

run n cyclessi
m

ul
at

io
n

lo
op

Initialize Synchronizer

Initialize DUT

(b) HiLDE steps

Figure 5.7: Simplified simulation flow diagram

150 Chapter 5 Design Verification through Hardware-in-the-Loop

CAMeL-View Integration

The integration of CaMEL-View to the HiLDE framework was done in cooperation
with the Control Engineering and Mechatronics group of the university of Paderborn,
and was published in [10].

The integration of the RAPTOR system into CAMeL-View is realised by a CCodeEle-
ment, the RaptorInterfaceClass. This element provides functions for initializing and
communicating with the RAPTOR system. Furthermore it offers the necessary inter-
faces to the CAMeL-View simulation process. The element contains miscellaneous
parameters for configuring the RAPTOR system (e.g., module number), the inputs and
outputs (e.g., scaling, offset, bit-width, and address) as well as parameters for defining
the sample rate.

The CAMeL-View specific library raptorInterface.dll was developed to provide an
easy access to the RAPTOR system (cf. figure 5.4). It communicates to the generic
raptorlib.dll and encapsulates the provided functions for their use with CCodeElement.
Furthermore the conversion of the inputs and outputs from floating point to fixed point
numbers (scaling, offset and bit-width) and vice-versa takes place in this library.

Figure 5.8 shows the simulation loop of CAMeL-View along with the most impor-
tant simulation functions.

The simulation loop is divided into major and minor time steps. During the major
steps the current state of the system is evaluated and all the outputs of the system
are calculated. The results of the minor steps have no physical meaning, they merely
calculate temporary results to transfer the continuous states from one major time step
to another. Discrete states where therefore varied during the major steps. Controllers
implemented on an FPGA are generally designed as discrete components. Therefore
they are only evaluated during the major time steps (cf. figure5.8).

The equations of a CAMeL-model are divided into the categories of evalND for
calculating the non-direct feedthrough equations, evalD for the direct feedthrough
equations and evalS for calculating the new discrete states and the time derivatives of
the continuous states. The same classification is used for the code of the CCodeEle-
ments. Thus two alternatives exists for the integration of the RAPTOR system into the
simulation progress of CAMeL-View:

Variant 1: The calculation takes place with a delay of one sample. In this im-
plementation the inputs are written to the RAPTOR system at the end of the evalS
evaluation. The results of these inputs are read at the beginning of the next time step,
in the evalND evaluation. Thus the calculation of the minor time steps can occur in
parallel to the calculation on the FPGA.

5.2 HiLDE: HiL Design Environment 151

download bitstream

fetch outputs

write inputs

run n cycles

Initialize Synchronizer

Initialize DUT
Calculate outputs

evalND (non-direct feedtrough)

Calculate outputs
evalD (direct feedtrough)

Calculate derivatives
evalS (continuous States)

Calculate outputs
evalND (non-direct feedtrough)

Calculate outputs
evalD (direct feedtrough)

Calculate derivatives
evalS (continuous States)

Set up next step
update

si
m

ul
at

io
n

lo
op

 (
m

aj
or

 s
te

p)

m
in

or
 s

te
p

End Simulation

Initialize Model
reset_u, reset_p,

init_x, init_q, init_s, init_p,
init

Variant 1

Variant 2

si
m

ul
at

io
n

lo
op

Figure 5.8: Simulation flow

Variant 2: The evaluation is integrated in CAMeL-View as a direct feedthrough
function. This means, the inputs and outputs of the RAPTOR system are written/read
at the same simulation time. Thus the calculation is done in zero-time. This variant
was used in this work and it is depicted in figure 5.8.

5.2.3 Communication and Performance

In order to realise FPGA-in-the-Loop simulations the RAPTOR system has to be
connected to a standard PC, as depicted in figure 5.9. The main board of a PC has
typically a processor and a set of buses and bridges (i.e., a chipset) to interconnect
peripheral components, such as memory, video cards, and external devices. The
RAPTOR system uses the PCI-Bus to connect to the PC. In order to exchange data
between RAPTOR and a host processor, PIO and DMA transmission methods can be
used, both methods are described in the next sections.

For the experiments presented in this section, a Pentium 4 processor from Intel,
with 3,0 GHz clock frequency, 1 GByte PC400 Double Data Rate (DDR) RAM are

152 Chapter 5 Design Verification through Hardware-in-the-Loop

used. The Mainboard has a 865G-Chipset, whose connection to the RAPTOR system
is depicted in figure 5.9. Although the results of the experiments are specific to this
setup, they can be generalised to newer computer systems.

System Controller
865G

(North-Bridge)

CPU
(Pentium 4)

Peripheral Bus
865G

(South-Bridge)

Front Side Bus (6,4 GB/s)

PCI Bus(133 MB/s)

HDD

USB

BIOS

PCI BUS Bridge
(PLX PCI9054)

Local Bus

Arbiter

RAPTOR2000

Audio

RAID

LAN

Hub Interface (266 MB/s)

Channel A (6,4 GB/s)

Channel B (6,4 GB/s)

AGP Bus(2GB/s)

266 MB/s

DDRAM

DDRAM

AGP Graphic
Card

Gigabit
Ethernet

Host PC

FPGAFPGAFPGAFPGAFPGAFPGA

P
C

I-
S

lo
t

P
C

I-
S

lo
t

P
C

I-
S

lo
t

Figure 5.9: Coupling of host computer and RAPTOR. In this example a Pentium 4
with a 865G-Chipset is presented

In the following section, the different kinds of FPGA-iL simulations are presented,
relating them to the choice of a transmission method.

Open-Loop vs. Close-Loop Simulations

In an open-loop simulation the DUT does not have an implicit or explicit feedback
loop to the simulated environment. A typical example of an open-loop simulation
is a digital filter. In contrast to this, in a close-loop simulation the DUT has a
close interaction with the simulated environment. Control systems require typically

5.2 HiLDE: HiL Design Environment 153

close-loop simulations, because their outputs are computed based on the state of the
controlled system.

The kind of simulation has a great influence on the kind of communication (e.g.,
PIO or DMA) that is best suited to the FPGA-iL simulation. In a close-loop simulation,
data has to be exchanged between DUT and simulation software at every integration
step. Therefore, the kind of memory used to store input and outputs of the DUT, and
the kind of communication has to be selected accordingly. In an open-loop simulation,
the amount of data that can be sent to the DUT depends mainly on the speed of the
simulation. Therefore, data can be sent to the DUT in a way that the communication
overhead is reduced, e.g., burst of data can be sent at once.

PIO Communication

In PIO transmission mode, the processor loads data to be transferred to one of its
registers, before the data is actually sent through the Front-Side-Bus, the PCI-Bus and
finally the Local-Bus to a DUT running on the FPGA (cf. figure 5.9). correspondingly,
the data generated by the DUT (i.e., control signals) are sent from the registers of the
RAPTOR to registers of the processor by a read command of the host processor. This
transmission mode blocks the processor during the data transfer.

DMA Communication

Direct memory access (DMA) is a transmission mode where a peripheral device
transfers information directly to or from memory, without the processor being required
to perform the transaction. This has the advantage that the processor can execute other
tasks while the transfer is taking place.

The PCI-Bridge of the RAPTOR system is able to operate as a DMA controller
with two independent channels. This Bridge is able to execute DMA-transfers to the
PCI-Bus as well as to the Local-Bus. The initialisation of a DMA transfer plus the
arbitration of the PCI- and Local-Bus makes DMA worth using instead of PIO only
if the amount of data to be transferred is above a certain threshold-value, which is
explored in the following section.

Simulation Performance

To estimate the maximum performance of the presented framework, several pre- and
post-processing steps need to be considered, which have to be conducted in every
simulation cycle. A maximum for the simulation frequency Fsim is given by

Fsim =
1

Tsw2hw +Tsend +Trun +Treceive +Thw2sw
(5.1)

154 Chapter 5 Design Verification through Hardware-in-the-Loop

where Tsw2hw and Thw2sw are the conversion-times from a simulator-internal to a
hardware-specific number representation and vice versa, Tsend and Treceive are the
transfer-times from the main memory of the host to the prototyping system and back,
and Trun is the latency of the design itself. All values except Trun depend on the
interface between the simulation environment and the hardware design, while Trun
depends on the speed of the hardware design only. The delay of the simulator, which
may be running a test-bench, or a data logger, or similar, can not be estimated here,
because it depends on the complexity of the simulation. As the interface latency is
highly dependent on the underlying host architecture, the following measurements are
presented as an example for transfer and conversion times.

0 10 20 30 40 50 60 70 80 90 1000

50

100

150

32Bit−Data Words

Ro
un

d−
Tr

ip
−F

re
qu

en
cy

 [K
H

z]

DMA SGL−Transfer
DMA Blocktransfer
PIO

Figure 5.10: Maximum simulation frequency for a given number of input/output pairs

In figure 5.10 the simulation frequencies for different transfer modes against the
number of I/O-pairs (i.e., combination of one input and one output) are shown. I/O
pairs are used, because the transfer times are different between the write and read
transfer, and assuming the same number for inputs and outputs is a good approximation
to real scenarios. It can easily be seen that the transfer mode should be selected
according to the number of I/Os, since PIO is faster for up to 18 I/O-pairs. As from 22
I/O-pairs, DMA block transfers are faster.

Communication Optimization

In the simulation flow as described above, all I/O data have to be transferred at every
clock cycle, resulting in redundant I/O operations when data has not changed. To
decrease this overhead, two further concepts were integrated in HiLDE: Event based
communication and Transactors:

5.2 HiLDE: HiL Design Environment 155

• Event based communication: to reduce the number of redundant I/O oper-
ations, only data that actually changes has to be transferred. While this is
straightforward to be implemented in software (Simulink provides appropriate
functions), the hardware wrapper has to be extended. The register of every
output port is extended with a mechanism to detect changes at the output. For
no output ports an additional register with no bits stores the results of these de-
tectors, and thus indicates which values must be read by the host computer. The
number of additional read operations to retrieve this information is dependent
on the bit-width of the bus to the host computer, resulting in an overall number
of read accesses ñr:

ñr = ∆(out)+
⌈ no

wordwidth

⌉
(5.2)

where ∆(out) is the number of output ports with a new value. Given that nr
denotes the number of read operations in the standard HiLDE wrapper, the
benefit nrñr is dependent on the relation of I/Os with regularly changing values
to the overall number of I/Os in the DUT. In general DUTs with irregularly
changing I/Os will benefit from this technique.
• Transactors: whenever the sequence of events (value changes) is predefined,

such as in communication protocols, the number of I/O operations can be
reduced even further by implementing adaptors for the simulation and for the
FPGA. The amount of savings here is dependent on the complexity of the
protocol: instead of transferring all control-signals or control-signal changes,
the adaptors detect protocol activity and transfer only the necessary data, such
as address and data, the actual protocol handling is processed in the adaptors
in the simulation environment and in the FPGA. While the functionality of the
HiL simulation is not affected by this method, the amount of I/O operations for
a protocol as described in [Kal02] can be reduced by over 90%.

5.2.4 HilDE Tool Flow

As presented in sections 5.2.1 and 5.2.2, HiLDE is composed by standardised hardware
and software components. Therefore, the integration process of a DUT into the HiLDE
framework can be automated. This has the advantage of accelerating the verification
process, and reduce the possibility of introducing errors. The automatic integration of
a DUT into the HiLDE framework is carried out by vMAGIC, which is presented in
the next section, followed by the complete tool flow required for a HiLDE simulation.

156 Chapter 5 Design Verification through Hardware-in-the-Loop

vMAGIC

vMAGIC (VHDL Manipulation and Generation Interface) has been developed to
provide a basis for all kinds of code generators by implementing three important basic
tasks [16, 11, 17]:
• Reading an existing hardware description of a DUT
• Manipulation of existing hardware description
• Writing of manipulated and/or generated hardware description

Using vMAGIC accelerates design processes whenever uniform tasks can be auto-
mated and reused many times, which is the case of the task of generating a HiLDE
hardware wrapper (cf. section 5.2.1).

The vMAGIC API is a Java library compatible with run-time environments 1.5 and
later. Therefore, it is platform independent and usable in command line tools, graphical
user interfaces and scripts. The basic functionality is described in the following points:

Figure 5.11: vMAGIC Designflow, reading and writing VHDL is optional. As such a
vMAGIC application can be a pure VHDL generator or analyzer

• Parser: vMAGIC implements a VHDL’93 compliant parser to transform VHDL
code into a more convenient internal representation called AST (Abstract Syn-
tax Tree). An AST in general contains all information from the code, while
redundancy (parenthesis, semicolons and so on are implicitly included in the
tree structure) is removed; this AST however is shaped in a way optimally suited
for the manipulations described next.
The vMAGIC parser was generated using ANTLR 3.1 [Par95], a powerful
parser generator; parsers generated with ANTLR support certain error recovery
strategies. This implies that the vMAGIC parser can correct certain syntactical
errors while parsing VHDL source code.
• Modification and generation of code: The AST by itself is a tree structure,

which is not well suited for human interaction. To hide this structure behind
a simple API, a set of so-called meta-classes was defined. Meta-classes com-
bine the functionality to generate or modify specific VHDL constructs and the

5.2 HiLDE: HiL Design Environment 157

knowledge how to interact with the AST, such that the developer is using a
homogenous API with intuitive functions. E.g., Signal.getIdentifier()
returns the identifier of a signal, new Process() creates a new VHDL process.
Objects of meta-classes are created either by the user, defining a VHDL design
from scratch, or using a VHDL template. The template is parsed into an AST,
which is then parsed by a tree parser generating the meta-objects and discarding
the original tree. This approach is, again assuming that the tree grammar is
correct, another means of ensuring that the generated code is correct regardless
of coding style or context. The meta-objects implicitly define a descendible
tree structure, beginning with a VhdlFile object with members for Entity and
Architecture objects and so on. User programs work on this meta-tree rather
than on the AST, allowing for intuitive software development for hardware
generation or analysis purposes.
There are two different levels of abstraction represented by meta-classes: the
so-called low-level classes represent basic VHDL constructs such as signal
declarations or processes; the high-level meta-classes combine several low-level
classes such as to create complex functionality like registers or state machines.
The use of high-level classes implies a higher level of abstraction and therefore
an improved coding speed.
• VHDL Writer: To generate VHDL code from an AST, a VHDL Writer based

on ANTLR’s StringTemplate system was developed. Again, a tree parser is used
to analyse the tree and templates are used to generate VHDL code constructs.
These templates are defined in a single text file in a very simple format, such
that the developers preference in coding style (e.g., the use of lower case or
upper case letters for keywords, or using optional identifiers at the end of a
process or entity) are implementable by changing this text file.

The vMAGIC design flow, as depicted in fig. 5.11, follows the three steps as
described above. The generation of the HiLDE hardware wrapper is a very uniform
procedure, usually varying only in the number and width of I/Os, or in the transfer
mode as described above. The following steps are completed by a Java program
utilizing vMAGIC:

1. Parse the DUT and a special template file
2. Create an instance of the host communication bus and connect the Synchronizer

to the bus
3. Declare and instantiate the DUT in the template
4. Create registers for ever I/O port and connect them to the DUT instance
5. Add all registers to the bus
6. Generate configuration files for different simulators (currently Simulink, and

CaMEL-View)

158 Chapter 5 Design Verification through Hardware-in-the-Loop

While the manual (error prone) implementation of the wrapper can take hours, the
HiLDE Wrapper Generator takes seconds at most. To setup a HiLDE simulation, there
are two possible tool flows, depending on weather the target simulation software is
Matlab/Simulink or CaMEL-View. Both flows are described in the following sections.

Simulink Tool Flow

The design flow presented in this work supports any hardware VHDL-based descrip-
tion. The tool-flow for a Matlab/Simulink based FPGA-iL simulation is presented in
figure 5.12.

VHDL wrapper +
CCodeElement -

parameters

MAP, PAR
Configuration File

wrapper generation
CAMeL-View configuration

HW generation
FPGA-in-the-Loop

simulation

Software
(Host Computer)

Hardware
(RAPTOR2000)

Netlist file
 VHDL file

Matlab/Simulink vMAGIC ISE (Xilinx)
Matlab/Simulink

Hardware
description

Figure 5.12: Toolflow for HiL simulations with Matlab/Simulink

Typically, a SiL simulation is first done using a hardware description of the DUT.
After obtaining a satisfactory simulation, a vMAGIC application is used to integrate
the DUT into the Matlab/Simulink framework, as described in the previous section.
The generated VHDL file can then be synthesised using vendor specific tools (e.g.,
ISE from Xilinx) to generate an FPGA configuration file. Configuration files for the
Matlab/Simulink simulation interfaces are also generated by vMAGIC. Using these
files, an FPGA-iL simulation can be setup in Matlab/Simulink.

The simulations are performed as usual. However, the designer can now realise
whether the controller, which is executed on an FPGA module of the RAPTOR system,
works as expected. In this stage more intensive tests can be conducted. Since the
structure of the controller has already been designed and tested, the next step is an
intensive test of its parameters or its response to different operative regions. This
process is greatly accelerated by HiL simulations, besides the enhanced reliability
provided by this kind of simulations.

CAMeL-View Tool Flow

FPGA-iL simulations with CAMeL-View as described in this thesis includes the use
of several software tools (cf. figure 5.13). Starting with a description of the plant (e.g.,
a multi body system) the control engineering components (e.g., controller, observer)

5.2 HiLDE: HiL Design Environment 159

are developed by the designer using CAMeL-View. After the parametrisation of
these components, they are exported to Matlab/Simulink along with the model of
the plant. In Matlab/Simulink the DUT can be translated to a hardware description
after a digitalisation process. This step is done by using System Generator from
Xilinx, which automatically generates structural hardware descriptions (e.g., netlists
or VHDL) from a very high-level representation. This VHDL or netlist file, containing
the implementation together with the corresponding interface description, serves as
an input to HiLDE: a hardware wrapper is generated along with the appropriate
CCodeElements and parameters for interfacing CAMeL-View. The design is now
ready for hardware synthesis through Xilinx ISE, resulting in an FPGA-configuration
bitstream containing the controller implementation as well as the appropriate interface
for communication with the simulation environment. CAMeL-View can now start an
FPGA-iL Simulation according to the steps in figure 5.8.

VHDL wrapper +
CCodeElement -

parameters

MAP, PAR
Configuration File

wrapper generation
CAMeL-View configuration HW generation

HiL simulation with
MBS-Model

Software
(Host Computer)

Hardware
(RAPTOR2000)

Netlist file
 VHDL file

Matlab/Simulink vMAGIC ISE (Xilinx)
CAMeL-View

MBS-Model

Controller /observer
structure +
parameter

controller design

CAMeL-View

modelling

Hardware
description

Figure 5.13: Toolflow for FPGA-in-the-Loop simulations with CAMeL-View

5.2.5 Implementation Examples

In this section the use of HiLDE is exemplified with various realisation examples,
showing not only a successfully verification process, but also the speedup with respect
to a SiL simulation. For all examples presented, SiL and HiLDE simulations used the
same test-bench (i.e., simulated environment of the DUT).

160 Chapter 5 Design Verification through Hardware-in-the-Loop

PID-based Speed Controller

As a first example, a Proportional-Integral-Derivative (PID) algorithm to control the
speed of brushed-DC motors for robotic applications is presented. The control task is
to regulate the speed of a DC motor through its input voltage. A classical parallel PID
is realised using a Simpson numerical integration rule, as presented in section 3.5.1.

The controller was implemented using System Generator from Xilinx. The design
uses one output and nine input ports. All parameters of the design were defined as
import ports (cf. figure 3.19), allowing complex tests (e.g., parameter adaptation). The
test bed of the controller consists of a model of a DC motor, and some scopes. The
PID controller runs on a module of the RAPTOR system, based on a Virtex II FPGA.
The hardware implementation requires 1063 LUTs, and 1043 FFs, for a total of 693
Slices (≈ 3%).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

M
ot

or
 S

pe
ed

 (R
PM

)

PID Speed Control

SysGen
HiLDE
SetPoint

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

D
UT

 O
ut

 (V
ol

ts
)

time (s)

SysGen
HiLDE

Figure 5.14: Simulation results of a PID-based speed control: System Generator vs.
HiLDE. The time-intervals of the enlarged figure correspond to 50 ms

Simulation results form both HiLDE and System Generator are presented in figure
5.14. The sampling frequency was set to 1KHz. The simulated time was 4 seconds.
SiL simulation lasted in average 3.77 seconds, whereas using HiLDE the simulation
lasted in average 1.49 seconds, resulting in an average speedup of 2.53. This speedup is

5.2 HiLDE: HiL Design Environment 161

relatively low because of the small size of the design and the communication overhead
(PIO communication was used). Verification of the DUT was done, showing only
small differences compared to the SiL simulation, as can be seen in figure 5.14, where
the set point of the controller was changed from 100 to 200 RPMs after two seconds
(upper part of the figure). The small differences between HiLDE and SiL simulations
do not affect the function of the controller, as can be seen in the speed response of the
DC motor.

State-Feedback Controller for an Inverted Pendulum

The controller to balance the inverted pendulum, presented in section 4.4.3 was verified
using HiLDE. The test bench of the controller consisted of a state-space model of the
pendulum-cart system and blocks for the simulation of the power electronics, as well
as scopes. The State-Feedback controller is implemented using a Virtex II module in
the RAPTOR System.

0 1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

C
ar

t P
o

si
tio

n
(m

)

Balance Controller

0 1 2 3 4 5 6 7 8 9 10
-0.04

-0.02

0

0.02

A
ng

le
 (

ra
d)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

D
U

T
 O

ut
p

ut
 (

V
ol

ts
)

time (s)

SysGen
HiLDE

SetPoint
SysGen
HiLDE

SysGen
HiLDE

Figure 5.15: Simulation results of a balance controller for an inverted pendulum:
System Generator vs. HiLDE. The time-intervals of the enlarged figure
correspond to 50 ms

The system has three inputs, the angle of the pendulum, the position of the cart, and
the target position. Furthermore, the controller has one output, the new position of the
cart. The sampling period of the controller is 10µ s. System Generator was used to

162 Chapter 5 Design Verification through Hardware-in-the-Loop

implement the controller, which required 3 BRAMs (≈ 2%), 1892 LUTs, 285 FFs,
for a total of 1033 Slices (≈ 4%).

The model of the pendulum is linearised at the operative point in the upright position.
To test the balance controller, the target position of the cart is set 4 cm to the right. The
task of the controller is to move the pendulum to the target position while keeping the
pendulum balanced. Results of a SiL and HiLDE simulations are shown in figure 5.15.
The first plot shows the position of the cart, the angle of the pendulum is presented in
the second plot, and the output of the controller is shown in the last plot. As can be
seen, the control goal was achieved. The HiLDE controller worked just as well as the
simulated design. However, small differences were found, as presented in figure 5.15.
These differences do not affect greatly the function of the controller. However, this
represents an undesired behaviour, which can be spotted out by performing HiLDE
simulations.

Ten seconds of simulation using the System Generator blocks lasted in average
5.59 seconds, while using HiLDE the simulation time was reduced in average to 0.17
seconds. This represents a speedup of 32.15 times. The improved speedup is because
of the larger complexity of the DUT in comparison with the PID controller, and the
lower communication overhead.

PLL-based Controller for a Piezo-Actuator

This implementation example was presented in [9], and was done in collaboration
with the Mechatronik und Dynamik group of the university of Paderborn.

Piezoelectric transducers are often used as ultrasonic actuators. To gain the highest
possible vibration amplitude, these actuators are driven in their resonant frequency.
For the realisation of this operation mode, if the system is not strongly damped, a
closed loop control is necessary. The most common control approach it the Phase-
Looked-Loop (PLL) control, which holds the phase between current or velocity and
voltage of the piezo actuator on a zero value. A block-diagram of typical PLL-based
control configuration is shown in figure 5.16.

DUT

Phase Detector PI Controller

Piezo Actuator

Signal Generation

rmsu

)(tu
f

)(ti
)(tu

elϕ

)(ti

Figure 5.16: Standard configuration of a PLL-based controller for piezo actuators

5.2 HiLDE: HiL Design Environment 163

The PLL has three major components: the phase detection, the filter and the signal
generation. The filter can be a PI controller, the signal can be generated by a Direct
Digital Synthesis (DDS) algorithm. The most demanding part of this control approach
is the phase detection, because of the need of accuracy and speed. For the operation of
the transducer, only the spectral component with the driving frequency is of interest
for the controller. For the example presented in this section a Fast Fourier Transform
(FFT) approach is used to realise phase detection. Simulation results of the realised
controller are presented in figure 5.17.

0.015 0.0155 0.016 0.0165 0.017
-0.02

-0.01

0

0.01

0.02

Pi
ez

o
A

ct
ua

to
r

SysGen
HiLDE

0.015 0.0155 0.016 0.0165 0.017

-0.4

-0.2

0

0.2

0.4

0.6

D
U

T
O

ut

time (s)

SysGen
HiLDE

Controller for a Piezo-Actuator

Figure 5.17: Simulation results of a phase controller for a piezo-actuator: System Gen-
erator vs. HiLDE. The time-intervals of the enlarged figure correspond
to 10 µs

The DUT was realised using System Generator, using five input ports, and one
output. The design requires 28 embedded multipliers (≈ 23%), 10 BRAMs (≈ 8%),
and 8033 Slices (≈ 34%). A SiL simulation of 1 second requires in average 2.46
seconds, whereas a HiLDE simulation takes in average 0.09 seconds. This represents
a speedup of 27.33 when using a HiLDE simulation.

Observer for an Active Suspension Testbed

This implementation example was presented in [10], and was done in collaboration
with the Control Engineering and Mechatronics group of the university of Paderborn.

An observer for the half-vehicle testbed for a suspension tilt system of a railway
system, the RailCab [NBP], is presented. The active suspension system mainly consists

164 Chapter 5 Design Verification through Hardware-in-the-Loop

of the body mass that represents the coach of the vehicle, two actuator modules and
the carriage frame. Each actuator module mounted under the body consists of three
hydraulic cylinders that are coupled over a lever kinematics to a glass-fiber reinforced
plastic spring (GRP spring), so that the bases of the spring can be displaced actively to
apply the necessary forces between the body and the carriage. The carriage frame can
be excited by three hydraulic cylinders to simulate disturbances in the rail track. The
forces necessary for the damping are computed by the control and transferred to the
body by displacing the spring bases via hydraulic cylinders [Sch06]. Every hydraulic
cylinder includes an integrated position sensor. The relative displacement between
the body and the carriage is measured by two displacement sensors. Furthermore,
acceleration sensors on the body mass are used to measure the absolute motions of the
coach.

A model of the testbed has been developed to test the observer in a virtual environ-
ment. The testbed is modelled as a multi-body-system using CAMeL-View, but also
includes hydraulic and control engineering components [Gei05]. The model contains
7 masses: the coach-body mass, as well as 3 masses for the kinematics of each actuator
module. Each lever kinematic is mounted onto three hydraulic cylinders.

xabs,right,3
..

xabs,left,3

..

xabs,2
..

φabs,1

xabs,3

xabs,2

c c

m, Θ

chassis

∆xleft ∆xright

xactuator,left xactuator,right

xexc,rightxexc,left

1

2

3

coach body

Figure 5.18: Mechanical model of the active suspension testbed [10]

The linear state-space representation was derived by linearisation of the complex
testbed model. A subsequent model reduction reduces the linear model to the signif-
icant system-states. The resulting state-space model is of order 15. In figure 5.18
a mechanical analogous model of the testbed is depicted. This sketch shows the
significant values for the observer-design, which are described in the following.

5.2 HiLDE: HiL Design Environment 165

The absolute position of the coach-body is given by the horizontal and vertical
position xabs2 and xabs3 as well as the rolling angle φabs1 . These values form the desired
observer output vector ŷ obs. The coach-body acceleration ẍabs,right3 , ẍabs,le f t3 , ẍabs2

as well as the relative displacement between the chassis and the coach-body ∆x right ,
∆x le f t are measured by sensors. These measurements build up the output vector of the
plant model y .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x 10
-4

Y
 P

os
iti

on
 (m

)

Observer

SysGen
HiLDE

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.902

0.903

0.904

0.905

0.906

Z
 P

os
iti

on
 (m

)

SysGen
HiLDE

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

x 10
-4

X
P

os
iti

on
 (m

)

time (s)

SysGen
HiLDE

-5

0

5

-5

0

5

1

Figure 5.19: Simulation results of a state observer for an Active Suspension Testbed:
System Generator vs. HiLDE. The time-intervals of the enlarged figure
correspond to 20 ms

After a satisfactory simulation in CAMeL-View, the observer is exported to Mat-
lab/Simulink together with a model of the testbed, where a hardware implementation
of the observer is done using System Generator from Xilinx. Simulation results
of an improved version of the observer presented in [10] are shown in figure 5.19.
For this implementation, matrix multiplications are split into vector multiplications,
which are serialised so that only one embedded multiplier is used for a whole matrix
multiplication. Consequently, the latency of the design (1224 clock cycles) is much

166 Chapter 5 Design Verification through Hardware-in-the-Loop

longer than a fully parallel implementation. This implementation requires only 2
embedded multipliers (< 1%), and 8081 Slices (≈ 35%), in contrast to the 85 embed-
ded BRAMs (≈ 70%), 40 embedded 18x18 multipliers (≈ 40%), and 15,572 Slices
(≈ 67%) of the DUT realisation presented in [10]. A SiL simulation of the DUT takes
in average 1049 seconds, while a HiLDE simulation takes only 0.59 seconds. This
difference comes from the fact, that for each integration step, the HiLDE simulation
only requires to send input values to the DUT and read the output values, whereas in a
SiL simulation, all elements of the DUT have to be simulated at a faster simulation
frequency (PeriodObserver = PeriodSimulation/LatencyObserver). Results presented in
figure 5.19 show a satisfactory validation of the design.

Design Slices I/Os S. Rate
[µs]

Sim.
Time [s]

Duration
(Sim) [s]

Duration
(HIL) [s]

Speedup

PID Con-
troller

693 6/1 100 4 1.49 3.77 2.53

State-
Feedback

1033 3/1 100 10 5.59 0.17 32.15

Torque
Control

2129 6/6 0.03 0.01 74.99 25.87 2.89

Piezo Con-
troller

8033 5/1 1 0.006 2.46 0.09 27.33

Observer 8081 10/18 2500 0.5 1049 0.595 1763

Table 5.1: Implementation Examples

Table 5.1, presents a summary of the examples presented in this section. The torque
controller is presented in section 4.4.4. All measurements were done with a standard
PC equipped with an Intel Core Duo CPU (E6750), running at 2.66 GHz, with 2 GB of
RAM at 2.67 GHz. The operative system is Windows XP Professional Version 2002,
Service Pack 3. Simulations were done using Matlab 2006b (7.3.0.267), Simulink
version 6.5 (R2006b). A Virtex II (2v4000ff1152-4) device from Xilinx served as
hardware platform for all presented examples.

5.3 HiLDEGART: HiL Design Environment for
Guided Active Real-Time Test

After performing a cycle-accurate functional design verification with a simulated
environment, the DUT can be tested as a prototype using the real plant. At this point

5.3 HiLDEGART: HiL Design Environment for Guided Active Real-Time Test 167

of the design flow, timing verification of the DUT can be performed. Furthermore, pa-
rameters of the controller can be tested and adjusted, for which mechanism to load and
synchronously execute parameter changes is required. Moreover, monitoring inputs
and outputs of the DUT is required, to observe the effects of parameter adjustments,
or simply for debugging. Additionally, measurements can be performed without the
need of external measurement devices (e.g., logic analysers) [13]. To realise this, one
approach is to use real-time verification tools such as ChipScope from Xilinx [Xil08b].
However, aside from its limited allowable monitoring time, this kind of tools do not
permit an interaction with a DUT. Another approach are logic analysers, but they
are expensive and it is very time consuming to set up a test environment. For this
purpose, HiLDEGART (HiLDE for Guided Active Real-Time Test) was developed.
Our approach can be implemented with a standard PC, and allows the automatic
integration of a design to the HiLDEGART framework. In the following section, the
concept and realisation of HiLDEGART is presented, focusing on the communication
between the DUT and the host computer.

5.3.1 Hardware Components

Figure 5.20 shows the basic concept of the presented Hardware-in-the-Loop (HiL)
framework. The design under test (DUT), a controller, is implemented on an FPGA.
The testbed consists of a plant to be controlled and an analog/digital interface. There
are three main components surrounding a DUT to be tested with HiLDEGART:

Bus-Interface to Host allows the communication between the host PC and the
DUT. It works very similar to the interface described in section 5.2.1. The
main difference is the use of embedded FIFOs and external SDRAM memory
to assure meeting the required sampling rates, as explained below.

Resampling Control the user has the choice to select a specific sampling rate
for each port of a DUT using this module. There are two kinds of sampling
mechanisms, real-time and off-line sampling. Real-time sampling enables the
visualisation of the selected signals at run-time. The amount of signals that can
be visualised in real-time is limited by external factors (i.e., I/O-bandwidth).
For off-line sampling, an SDRAM memory directly attached to the FPGA is
used for buffering the data, allowing for very high sampling rates. The buffered
data, as opposed to real-time data, is transferred to the host for visualisation
after the simulation has finished.

Event Monitoring allows basic compare operations to generate events. Those
events may be combined by boolean operators to form conditions like (A >
Ã)∧¬(B = B̃), where A and B are the ports and Ã and B̃ are values defined
by the user at run time. With the resulting events, either the changing of the

168 Chapter 5 Design Verification through Hardware-in-the-Loop

we

we

we

we

=

Time FiFo

Parameter FiFo

FiFowe
re

data

FiFowe
re

data

Timer

+1

Parameter 3

Parameter 2

Parameter 1

A
D

A
D

A
ctuators

S
ensors

Plant

Input 1

Input 2

Output 1

Output 2

On-Line
Sampling

Parameterisation

Recording

Off-Line
Sampling
(SDRAM)

Event
Manager

C
ontroller

Graphical User
Interface

RAPTOR2000
Interface to Host PC

DUT

Figure 5.20: Structure of a real-time FPGA-in-the-Loop scenario utilizing
HiLDEGART

sampling rates or the changing of the parameters of the design can be triggered
in real-time. Additionally, the events can be used to start or stop recording.

5.3.2 Software Components

The presentation of I/O values and all configuration tasks are controlled via a GUI,
which has been implemented using Trolltech’s platform-independent programming
environment Qt [Tro] in combination with QWT [Rat]. The project files describe
the hardware interface including addresses and number representations (e.g., fix
point/binary configuration). They are generated by a vMAGIC application based on
user annotations in the VHDL code. The GUI is automatically generated based on
the interface description, including graphs, LCD-like displays for current values, and
input boxes for parameters, as can be seen in figure 5.21.

5.3 HiLDEGART: HiL Design Environment for Guided Active Real-Time Test 169

Figure 5.21: Main-, Log-, and Plot-Window of HiLDEGART. The GUI is generated
from an XML file generated by a vMAGIC application

While visualisation of the DUT (i.e., internal states, input and output ports) in 2D
graphs can be achieved directly within HiLDEGART, more sophisticated visualisations
are created by external programs using a standardised interface. E.g., model related
data can be visualised using an Augmented Reality (AR) tool, embedding, e.g.,
physical properties of the model into a video image of the real system [16]. AR is a
human-computer-interface, which augments the perception of reality with multi-modal
computer-generated information [Azu97]. This information can be, e.g., texts, 3D
models or other annotations. They are shown in the field of view of the user with a
spatial relationship to a real object. In order to use AR, a special viewing device is
necessary. A common viewing device is the so-called head mounted display (HMD).
There are several meaningful ways to use these AR techniques in the HiLDEGART
environment, such as displaying the state of a controller, the state of a reconfigurable
process or visualising torques and forces directly where they apply (cf. section 5.3.4).
A TCP/IP connection is used for communication between HiLDEGART and the AR
software.

A visual impression of an augmented view can be seen in figure 5.22. The AR mark
is recognised by the software, which displays corresponding annotations in form of 3D
animations. In the example shown in figure 5.22, an inverted pendulum is presented
(cf. section 4.4.3 and 5.3.4), showing the state of the SoC used to control the system.

170 Chapter 5 Design Verification through Hardware-in-the-Loop

Figure 5.22: View of a HiLDEGART test using AR annotations

The automatic generation of the HiLDEGART hardware wrapper using vMAGIC is
similar to the automatic generation of the HiLDE hardware wrapper. This process is
described in the next section.

5.3.3 HiLDEGART Tool Flow

Generating the hardware wrappers for HiLDE and HiLDEGART is an application
of vMAGIC, as depicted in figure 5.23. The starting point of the flow is a VHDL
file containing the DUT’s entity definition (if no internal signals should be monitored
the DUT itself can be described in any HDL), which is then analysed by vMAGIC.
The user program generates DUT-specific wrappers according to the specifications
described in section 5.3.1 and generates the configuration files for HiLDEGART. These
configuration files contain information regarding hardware addresses, sampling rates
and number formats (e.g., fix-point position). As the number formats and sampling
rates can not be deduced from the hardware interface, those are supplied via vMAGIC-
tags in the source code or directly in the GUI. This completes the vMAGIC specific
part; after this, the wrapper and design files have to be synthesised using vendor
specific tools. After the FPGA bitstream has been generated, the HiLDEGART project
is configured using the configuration files and the monitoring can be started.

An extended design flow for dynamically and partially reconfigurable devices is
presented in [6], where Xilinx System Generator is used as design entry tool and then

5.3 HiLDEGART: HiL Design Environment for Guided Active Real-Time Test 171

configuration

MATLAB/System
Generator

Netlist File +
 Entity Definition vMAGIC generates

VHDL Wrapper +
Configuration Files

ISE
Bitstream

Design Input Generation of Interfaces Synthesis Hardware-in-the-Loop

VHDL Design
 Entity Definition

Real Plant

 HiLDEGART GUI
Visualisation +

Parameterization

Hardware Design
(FPGA/

RAPTOR2000)

Figure 5.23: Tool flow for a real-time design verification using HiLDEGART

the structural descriptions of the controllers is adapted to our system architecture. A
wrapper, containing the required interfaces, is used to integrate the controllers into
the target architecture. Netlists and partial bitstreams are generated automatically.
The supervisory entities, which are realised in software, are linked to the hardware
modules using the Embedded Development Kit from Xilinx. Finally, the design can
be tested with the real plant.

5.3.4 HiLDEGART Implementation Examples

Two of the implementation examples presented in the previous chapter are used here
to demonstrate the use of the HiLDEGART framework to the design of FPGA-based
controllers, including control-systems where dynamic hardware reconfiguration is
used (cf. [6, 16].

Torque Control of a Synchronous AC Motor

This example was presented in section 4.4.4. In this section further measurements
with HiLDEGART, which allow the verification of controllers, are presented.

When using dynamic reconfiguration to exchange controllers at run time it is
relevant to make sure that all controllers work individually. HiLDEGART can be used
for this purpose, allowing the monitoring and parametrisation of all controllers. An
example of this are the measurement with the real motor presented in figure 5.24. The
figure shows the q-current step response of a permanent magnet servo motor using
three different controllers:

• FOC: The control output is only driven by the PI-Controller and the dynamic of
the control loop is determined by the PI-Controller.

172 Chapter 5 Design Verification through Hardware-in-the-Loop

0 0.5 1 1.5 2 2.5 3 3.5

−0.5

0

0.5

d
−

cu
rr

e
n

t
in

 A

0 0.5 1 1.5 2 2.5 3 3.5

−5

0

5

q
−

cu
rr

e
n

t
in

 A

time in ms

FOC
FOC−EMF
FOC−EMF−DeC

Figure 5.24: q-current step response at 3000 rpm (Test bed: Controller at FPGA,
Motor as EUT)

• FOC with Back-EMF compensation: The main part of the control output is
generated by the Back-EMF compensation. The dynamics of the control loop
improved (compared to FOC).
• FOC with Back-EMF compensation and decoupling: This control structure

gives almost the same results as the prior controller. Only in case of transient
currents and higher electrical frequencies the additional effort has an effect on
the behavior of the control loop.

The results show a proper control behaviour of all three controllers. The plots are
created by using HiLDEGART.

Controllers are typically embedded in an environment (e.g., a SoC), and it is
equally important to verify the design when working in its final platform, specially
when dynamic reconfiguration is used, since a reconfiguration should not affect the
behaviour of the system, and therefore, monitoring is crucial to verify the design.
An example of this is shown in figure 5.25, where the switching between torque
controllers is shown (cf. section 4.4.4).

The time of switching is marked by the signals in the first line. The graph corre-
sponding to the control error shows no effects in the next 8 samples after the switching.

5.3 HiLDEGART: HiL Design Environment for Guided Active Real-Time Test 173

-1 0 1

x 10

-1

0

1

2

time in sec

sw
itc

hi
ng

 s
ig

n
al

-1 0 1

x 10

-0.5

0

0.5

time in sec

d
-c

ur
re

nt
 e

rr
or

 in
 A

-1 0 1

x 10

-0.5

0

0.5

time in sec

q
-c

ur
re

n
t e

rr
o

r
in

 A

-1 0 1

x 10

-0.5

0

0.5

time in sec

lin
e-

cu
rr

en
t

in
 A

-1 0 1

x 10

-1

0

1

2

time in sec

sw
itc

hi
ng

 s
ig

n
al

-1 0 1

x 10

-0.5

0

0.5

time in sec

d-
cu

rr
e

nt
 e

rr
or

 in
 A

-1 0 1

x 10

-0.5

0

0.5

time in sec
q

-c
ur

re
nt

 e
rr

or
 in

 A

-1 0 1

x 10

-0.5

0

0.5

time in sec

lin
e-

cu
rr

en
t

in
 A

Figure 5.25: Switching between Control Schemes. Left: FOC to FOC-Back EMF-
DeC. Right: FOC-Back EMF to FOC [7]

Considering these measurements it is shown that for the considered examples, the
switching does not have a negative influence on the control loop, and has no direct
disadvantage at the time of switching. The later behavior is determined by the dynamic
features of the new control structure.

As explained in section 5.3.2, AR can be used to show more sophisticated an-
notations (e.g., information about the motor) during operation. The use of the AR
extension is presented in the next example.

Inverted pendulum

The inverted pendulum system was presented in section 4.4.3. In this section, the focus
is on the support given by the HiLDEGART framework to the design and verification
process.

The goal of a HiLDEGART test is to verify the function of a DUT in real-time,
using a real environment. In the case of the inverted pendulum system, the controllers
are executed in a complex system-on-chip (SoC) architecture, cf. 4.4.2. Therefore, a

174 Chapter 5 Design Verification through Hardware-in-the-Loop

monitoring system, which allow real-time debugging on-chip was important to fully
test the control system.

0 10 20 30 40 50 60 70
0

5

10

C
on

tr
ol

O
ut

pu
t (

V
)

Inverted Pendulum

0 10 20 30 40 50 60 70
−10

0

10

P
en

du
lu

m
A

ng
le

 (
ra

d)

0 10 20 30 40 50 60 70
−0.1

0

0.1

C
ar

t
P

os
iti

on
 (

m
)

0 10 20 30 40 50 60 70
0

1

2

3

time (s)

A
ct

iv
e

C
on

tr
ol

le
r

Figure 5.26: HiLDEGART measurements of the inverted pendulum system. Several
reconfiguration cycles are shown

The controllers are loaded into the reconfigurable areas (Tiles 1-4) of the SoC
architecture based on a Xilinx Virtex-II Pro FPGA (XC2VP30), cf. figure 4.20. This
SoC is composed of an embedded PowerPC processor (PPC) connected to dynamically
reconfigurable resources (Tile 1 to 4), and to dedicated communication blocks, as
well as a HiLDEGART interface. The Broadcast bus of the RAPTOR system is used
to communicate values to the DB-MC board (cf. fig. 4.20), which in turn converts
these values into voltages for the power electronics part of the pendulum. The angle
and the position of the pendulum are gathered from incremental encoders, such that
the digital I/Os of the FPGA board can be used to decode these values. The process
of dynamic reconfiguration of controllers is supervised by a program on the PPC,
which can access the inputs and outputs of the controllers. Once a suitable switching
condition has been reached, the PPC can start reconfiguration. This process can be
monitored by using HiLDEGART and the AR tool, enabling the validation and further
test of the reconfiguration in the target environment.

5.3 HiLDEGART: HiL Design Environment for Guided Active Real-Time Test 175

Control signals, and the inputs and outputs of the plant are shown in figure 5.26.
The test presented in this section consisted on initializing the swing-up controller and
then switch to the balance controller when the conditions are suitable (cf. section
4.4.3). The balance controller stays enable for some seconds, and then it is deactivated.
Therefore, the swing-up controller has to be activated again, completing the cycle,
which is repeated several times. This iterations are shown in figure 5.26, where the
last plot shows the currently selected controller. This process is also shown in the AR
extension of HiLDEGART, as presented in figure 5.27.

Figure 5.27: HiLDEGART test of the inverted pendulum system using an Augmented
Reality extension. Balance controller is active

The AR extension shows, in addition to the pendulum, context-sensitive information
regarding the control unit, including a logical structure of all components and bus
systems. The visualisation also shows the allocation of a controller to a certain Tile of
the SoC architecture. Furthermore, the current angle of the pendulum and the force
and direction of the movements of the cart are shown, as presented in figure 5.27.
This clarifies the mode of operation of the system, because annotations are shown
in a visual context, which is familiar to the viewer (i.e., the physical context), and
therefore, the interpretation of the annotations is easier. The AR extension can also be
used in combination with a model of the pendulum, which is executed in real time. In

176 Chapter 5 Design Verification through Hardware-in-the-Loop

this case, outputs of the model can be visualised, in a way that the user can intuitively
understand them [16].

5.4 Summary

This chapter presents a Hardware-in-the-Loop (HiL) design environment for FPGA-
based systems. The presented framework supports a two-stage verification process:
A cycle-accurate HiL simulation using well-known simulation tools such as Mat-
lab/Simulink or CaMEL-View, and a real-time test using the target environment of
the DUT. The first stage allows a cycle accurate early verification of the DUT using a
simulated environment, while the focus of the second stage is on monitoring internal
states and I/Os of the DUT in operation, and on adjusting design parameters. All
hardware and software interfaces required for both stages are generated individually
and automatically by the proposed tool-flow.

The results show that HiLDE can be used as a cycle accurate debugger, spotting
out differences between a SiL simulation and the actual realisation in an early stage
of the design flow. Furthermore, HiLDE is capable of speedup simulations within
Matlab/Simulink and CaMEL-View. The acceleration of the simulation depends
largely on the complexity of the simulated design and on the number of input and
outputs ports. When the number of I/O operations stays constant the speedup grows
with the complexity of the design. Presented examples achieved a speedup of up to
three orders of magnitude in comparison with SiL simulations. This speedup results
in a shorter development and testing time, given the advantage of using a simulated
environment to test the system.

The second framework, HiLDEGART, allows the on-line verification and parametri-
sation of a design in real-time. The presented examples disclose the possibilities of
the proposed HiL framework and the use of AR: If the systems become more complex,
a context-sensitive visualisation of annotations facilitates the comprehension of the
entire situation and its evaluation. For applications using dynamic hardware reconfigu-
ration, visualisation of the internal states of the architecture (e.g., currently used FPGA
area) allows for an easier verification process. The presented framework enables
a seamless integration of a DUT to a HiL simulation, thus making the verification
process easier and less error prone.

6 Summary and Outlook

The increasing complexity of embedded control systems calls for new computing
paradigms. In contrast to CPU-based architectures, when using FPGAs the way
computations are realised can be adapted to the application. Furthermore, these
devices offer a new degree of flexibility, because the configuration of the device or
parts of the device can be adjusted at run-time, allowing the adaptation of the design
to varying internal or external conditions. This work has explored the use of FPGA
technology for embedded control systems, focusing on three research points:

• A technological comparison of FPGA- and CPU-based realisations, where
results are analysed and explained taking algorithmic characteristics of imple-
mented controllers into account.
• The use of run-time hardware reconfiguration for FPGA-based controllers to

improve resource-utilisation.
• The use of Hardware-in-the-Loop simulations to improve the design flow of

FPGA-based control systems.

The main contributions are summarised in the next section.

6.1 Summary

In the first research point, the advantages of using FPGA technology in contrast
to classical CPU-based architectures are analysed, using a PID algorithm, a state-
feedback controller, and a state observer as benchmarks. These algorithms are selected
because, given they wide-spread use in research and industry, they are representative of
the application area. Furthermore, a set of metrics is proposed to measure algorithmic
properties of controllers, such as average operation per step (AOS), which is used to
measure average parallelism, or the size of an algorithm (SizeAlg). These algorithmic
characteristics are then related to realisation results. Moreover, two metrics taken

178 Chapter 6 Summary and Outlook

from literature and adapted to the application area of embedded control systems, are
used to assess the resource utilisation of selected benchmarks: computational density
(Cdensity=throughput/area) and energy efficiency (Ee f f iciency=throughput/power). It is
shown that an FPGA-based realisation leads to a higher computational density, and a
higher energy efficiency than a CPU-based realisation, depending on the problem size
(i.e., the amount of operations to be executed, SizeAlg), and the average parallelism
(AOS) of the algorithm to be implemented. Realisation results show that if the average
parallelism (AOS) grows along with the problem size (SizeAlg), the difference of
Cdensity values between FPGA- and CPU-based realisations increases. I.e., FPGA-
based realisations achieve greater values of Cdensity than CPU-based results, and this
difference increases as the size of the design to be implemented increases. On the
contrary, when the AOS decrease or does not grow at the same rate of problem size,
the gap between FPGA and CPU decreases as SizeAlg grows.

FPGAs have limited logical resources, and therefore, the achievable performance
decreases for controllers requiring more configurable logic elements than those avail-
able in the device, because these resources have to be time-shared. Apart from design
optimisations, which help to reduce resource utilisation without sacrificing parallelism
(e.g., bit-width optimisation), shortcoming of resources can be avoided for controllers
that require some kind of adjustment during operation. For this kind of controllers, all
possible configurations (e.g., for a multi-control system, all required control structures)
have to be instantiated on the FPGA to allow adaptation of the controller at run-time,
if the configuration of the device stays constant during the whole operation cycle (i.e.,
a static approach). In the second part of this thesis, the possibility of reconfiguring
parts of an FPGA at run-time (run-time reconfiguration) is proposed, as a way to
improve resource utilisation. Two cases of adjustments are distinguished: structural
and parametric changes. For both cases run-time reconfiguration (RTR) can be used to
achieve a better resource utilisation, depending on the amount of structural variations,
or the size of the algorithm requiring parametric changes. It is shown that the resource
utilisation of a dynamic approach depends on the worst-case configuration of the
system, whereas for a static implementation the resource utilisation depends on all
required configurations. This leads to a better resource utilisation when using RTR
when compared to an static approach, depending on the number of structural variations,
or the amount of parameters to be adjusted.

The relative long configuration periods of current FPGAs pose a challenging situa-
tion, because loading and initialising a controller might take several control cycles,
which can lead to disturbances of the controlled system if the new-loaded controller is
not properly initialised. A strategy is presented, where the to-be-configured controller
is reconfigured and initialised, while the old controller is still in operation to achieve a
bump-less transition between controllers. This kind of initialisation is only required
for control algorithms with internal memory (e.g., the initial value of the integrator in a
PID controller). This allows the use of RTR at the cost of increasing the worst-case of

6.1 Summary 179

resource utilisation, which for control systems requiring a large set of configurations
still leads to a better resource utilisation than a static approach.

To illustrate the advantage of the proposed concepts and strategies, two implemen-
tation examples are presented: a multi-controller system for an inverted pendulum,
and a self-optimising motion controller. The run-time exchange of controllers through
dynamic reconfiguration for the inverted pendulum is presented as proof-of-concept
example, which shows the potentials of using RTR compared to a static approach.
The early switching between controllers allows the utilisation of one single slot (i.e.,
a fixed-slot placement was used), despite the fact that the reaction time (i.e., recon-
figuration time plus initialisation time) of both controllers is longer than the control
period. In the second implementation example, the realisation of an FPGA-based
self-optimizing motion controller is presented. This approach allows the adaptation
of parameters and the structure of controllers. Furthermore, not only the control
algorithm, but also its realisation and the execution platform (FPGA or embedded
CPU) can be dynamically changed. It was shown that switching between different
FPGA-based realisations and from an FPGA- to a CPU-based realisation (and vice
versa) can be done, without perturbation of the plant. This approach empowers control
systems to react to situations far beyond the classic approaches, because not only
the parameters, or the structure of the controller can be adapted, but also its kind of
implementation. This allows also the optimisation of computational resources of a
mechatronic system.

The realisation of such control systems using FPGA technology calls for new design
methodologies, to which suitable verification mechanisms belong. A Hardware-in-the-
Loop (HiL) design environment for FPGA-based systems is presented in the third part
of the presented work. The focus of the framework is, in a first stage (HiLDE), the
cycle accurate verification of a design under test (DUT) using a simulated environment.
In a second stage (HiLDEGART) the design can be monitored and parametrised in real-
time using the target environment. An important aspect of the proposed framework
is that all hardware and software interfaces required for both stages are generated
individually and automatically.

Many implementation examples were presented, disclosing the efficacy of the
proposed frameworks. It is shown that HiLDE can be used as a cycle accurate
debugger, detecting discrepancies between a SiL (e.g., using System Generator) and
a HiLDE simulation. These discrepancies are mainly caused by badly simulated
inter-block quantisation effects, which are not present when a DUT is running in
its target platform. Furthermore, it is shown that HiLDE is capable of speeding up
simulations when using Matlab/Simulink or CaMEL-View. The acceleration depends
largely on the complexity of the simulated design and on the number of input and
outputs ports of the DUT. It is shown that when the number of I/O operations stays
constant the speed up grows with the complexity of the design. This results in a shorter

180 Chapter 6 Summary and Outlook

development and testing time, given the advantage of using a simulated environment
to test the system.

The second framework, HiLDEGART, allows the on-line verification and parametri-
sation of a design in real-time, while using the target environment. This is specially
beneficial for the investigated examples using RTR, because of the complexity of
the target environment of the DUT, which consisted of a complex reconfigurable
system-on-chip architecture. The presented examples show the capabilities of the
proposed HiL framework. Furthermore, the presented framework enables a seamless
integration of a DUT to a HiL simulation, thus making the verification process faster
and avoiding any introduction of errors in the test process.

The results presented in this thesis show that dynamically reconfigurable hardware
is a suitable implementation platform for demanding control applications. It is shown
why control algorithms can benefit from this technology, how the resource utilisation
can be improved through dynamic hardware reconfiguration for controllers requiring
parametric or structural adjustments in run-time, and how this approach gives a new
degree of flexibility to the design of mechatronic systems. Furthermore, this thesis
presents tools and methods, which allows the verification of an FPGA-based design
through different steps, using Hardware-in-the-Loop simulations.

6.2 Outlook

Some issues remain unexplored in this thesis, which can improve the resource utilisa-
tion of FPGA-based controllers. One of them is bit-width optimisation. In chapter 3,
the consequences of increasing the bit-width of an arithmetic operand are shown (i.e.,
higher resource utilisation, longer execution times), regarding resource utilisation, and
achievable execution time. A point that can be explore is the combination of bit-width
optimisation of fix-point arithmetic operands, and run-time hardware reconfiguration.
The required bit-width of a fix-point operand strongly depends on the current situation
of the plant, i.e., on the numerical range of the input signals of the controller. The
required bit-width also depends on the desired control goals, e.g., if the set-point of
the controller is changed, it is likely that the numerical range of input signals will
change, too.

If computational resources of a mechatronic system have to be shared, a set of
realisations of a control structure can be implemented, where the bit-widths of each
operation is optimised for a specific operation range of the system. Using run-time-
reconfiguration, the optimal version of the controller structure can be selected, in order
to optimise used computational resources.

Furthermore, the use of other kind of reconfigurable devices with shorter recon-
figuration times can further improve the utilisation of silicon resources of the device.
An example of this is the Time-Machine device from Tabula [Hal10], which allows

6.2 Outlook 181

to store several configurations (up to eight) of the active logic in an internal memory.
These configurations can then be switched depending on the operational context, to
realise a different function. This approach allows a very rapid reconfiguration of the
entire device (up to 1.6 Billion times per second, according to [Hal10]). The idea is
not new, already in the late 90s Xilinx proposed a similar concept [Tri97]. However,
there has been no relevant practical or commercially available devices until recently.
This approach would result in even higher computational density values, not only for
high-performance control applications, but also for low-performance systems (i.e., a
larger amount of active logic than physically available can be emulated through cyclic
run-time reconfiguration).

Finally, the aspect of power consumption of current reconfigurable architectures can
be further explored. In this work, it was shown that FPGA technology achieves a higher
throughput/power ratio than CPU realisations. Nevertheless, if power consumption
has to be limited (e.g., because the system runs on batteries, or heat-dissipation issues),
then technological changes of reconfigurable architectures are required. Several trends
are currently being follow:

• Improving CAD Tools to achieve optimal power consumption([Bhu10, Has10]).
• Using sub-threshold technologies for FPGA architectures ([Gro11, Rya10,

Cal10]).
• Optimising the FPGA architecture itself to minimise energy consumption

([Sir10, Has10]).

A different approach that can be explored is the design of power-aware control sys-
tems. As in the case of the previously exposed idea of dynamic bit-width optimisation,
run-time hardware reconfiguration can be used to switch among a set of controller im-
plementations, with different throughput/power ratios, in order to react to spare-energy
or energy-saving scenarios. In case of an imminent system shut-down (e.g., because
of a low-energy battery level), the stability of the controlled plant has to be guaranteed
(i.e., a controlled shut-down), while enlarging the operation cycle as much as possible.
Under such scenario, a trade-off between controller performance and power consump-
tion has to be made. Another application scenario are self-optimizing mechatronic
systems, where the mechatronic system can adjust its optimisation goals depending
on internal and external conditions. Run-time optimisation of power consumption for
FPGA-based controllers can be realised using dynamic reconfiguration.

In this work, is has been shown that dynamically reconfigurable hardware, partic-
ularly FPGA technology, is a suitable platform for demanding control applications.
Methods and tools presented in this thesis are an effort to disclose the advantages of
FPGAs, and a step towards taking full advantage of the possibilities offered by this
technology in the context of embedded control systems.

Author’s Publications

[1] B. Kettelhoit, A. Klassen, C. Paiz, M. Porrmann, and U. Rückert, “Rekon-
figurierbare Hardware zur Regelung mechatronischer Systeme,” in 3. Pader-
borner Workshop: Intelligente mechatronische Systeme, (Paderborn, Germany),
pp. 195–205, March 2005.

[2] C. Paiz, B. Kettelhoit, A. Klassen, and M. Porrmann, “Dynamically Reconfigu-
rable Hardware for Digital Controllers in Mechatronic Systems,” in IEEE Inter-
national Conference on Mechatronics (ICM2005), (Taipei, Taiwan), pp. 675–
680, July 2005.

[3] C. Paiz, T. Chinapirom, U. Witkowski, and M. Porrmann, “Dynamically Recon-
figurable Hardware for Autonomous Mini-Robots,” in 32nd Annual Conference
of the IEEE Industrial Electronics Society IECON 06, (Paris, France), pp. 3981–
3986, November 2006.

[4] C. Paiz, C. Pohl, and M. Porrmann, “Reconfigurable Hardware in-the-Loop
Simulations for Digital Control Design,” in 3rd International Conference on
Informatics in Control, Automation and Robotics (ICINCO 2006), (Setubal,
Portugal), pp. 39–46, August 2006.

[5] C. Paiz and M. Porrmann, “The Utilization of Reconfigurable Hardware to Im-
plement Digital Controllers: a Review,” in the IEEE International Symposium
on Industrial Electronics, (Vigo, Spain), pp. 2380–2385, June 2007.

[6] C. Paiz, K. Boris, and M. Porrmann, “A Design Framework for FPGA-based
Dynamically Reconfigurable Digital Controllers,” in The IEEE International
Symposium on Circuits and Systems (ISCAS), (New Orleans, USA), pp. 3708–
3711, May 2007.

[7] B. Schulz, C. Paiz, J. Hagemeyer, S. Mathapati, M. Porrmann, and J. Boecker,
“Run-Time Reconfiguration of FPGA-Based Drive Controllers,” in 12th Eu-
ropean Conference on Power Electronics and Applications (EPE), (Aalborg,
Denmark), September 2007.

[8] C. Pohl, C. Paiz, and M. Porrmann, “Hardware-in-the-Loop Entwicklungsumge-
bung für informationsverarbeitende Komponenten mechatronischer Systeme,”

184 Bibliography

in 5. Paderborner Workshop Entwurf mechatronischer Systeme, (Paderborn,
Germany), pp. 69–79, March 2007.

[9] J. Twiefel, M. Klubal, C. Paiz, S. Mojrzisch, and H. Krüger, “Digital Signal
Processing for an Adaptive Phase-Locked Loop Controller,” in SPIE Smart
Structures and Materials and Nondestructive Evaluation and Health Monitor-
ing, (San Diego, California, USA), SPIE–The International Society for Optical
Engineering, January 2008.

[10] E. Münch, A. Gambuzza, C. Paiz, C. Pohl, and M. Porrmann, “FPGA-in-the-
Loop Simulations with CAMEL-View,” in In Proceedings of the 7th Interna-
tional Heinz Nixdorf Symposium, p. 429–445, February 2008.

[11] C. Pohl, C. Paiz, and M. Porrmann, “vMAGIC – VHDL Manipulation and
Automation for Reliable System Development,” in 3rd International Workshop
on Reconfigurable Computing Education, (Montpellier, France), April 2008.

[12] C. Paiz, C. Pohl, and M. Porrmann, “Hardware-in-the-Loop Simulations for
FPGA-Based Digital Control Design,” Informatics in Control, Automation and
Robotics, vol. 3, pp. 355–372, 2008.

[13] C. Pohl, C. Paiz, and M. Porrmann, “A Hardware-in-the-Loop Design Environ-
ment for FPGAs,” in Design, Automation and Test in Europe DATE, University
Booth, (Munich, Germany), 2008.

[14] P. Adelt, J. Donoth, J. Gausemeier, J. Geisler, S. Henkler, S. Kahl, B. Klöpper,
M. E. Krupp, A., S. Oberthür, C. Paiz, M. Porrmann, R. Radkowski, A. Romaus,
C. Schmidt, B. Schulz, H. Vöcking, U. Witkowski, K. Witting, and A. Znamen-
shchykov, “Selbstoptimierende Systeme des Maschinenbaus – Definitionen,
Anwendungen und Konzepte,” Bd. 234, Heinz-Nixdorf Institut, Universität
Paderborn 2009 (HNI-Verlagsschriftenreihe), Deutschland, 2009.

[15] C. Paiz, J. Hagemeyer, C. Pohl, M. Porrmann, U. Rückert, B. Schulz, W. Pe-
ters, and J. Boecker, “FPGA-Based Realization of Self-Optimizing Drive-
Controllers,” in the IEEE International Symposium on Industrial Electronics
(IECON 2009), pp. 2848 –2853, 2009.

[16] C. Paiz, C. Pohl, R. Radkowski, J. Hagemeyer, M. Porrmann, and U. Rückert,
“FPGA-in-the-Loop-Simulations for Dynamically Reconfigurable Applications,”
in the 2009 International Conference on Field-Programmable Technology
(FPT’09), (The University of New South Wales, Sydney, Australia), pp. 372–
375, 2009.

Author’s Publications 185

[17] C. Pohl, C. Paiz, and M. Porrmann, “vMAGIC - Automatic Code Generation
for VHDL,” International Journal of Reconfigurable Computing, 2009. Article
ID 205149.

Bibliography

[Aco02] Acosta, N. and Tosini, M. “Custom Architectures for Fuzzy and Neural
Networks Controllers.” In R. Jordan, ed., Journal of Computer Science and
Technology, vol. 2. 2002, pp. 9–15.

[Ada00] Adamski, M. “Reprogrammable Application Specific Logic Controllers and
SFC based Design.” In 45th International Scientific Colloquium Ilmenau
Technical University. 2000.

[ALD11] “ALDEC.”, 2011. URL http://www.aldec.com/products/hes.

[Alt05] Altera. “FPGAs for High-Performance DSP Applications.” White paper,
Altera Corporation, San Jose, CA., May 2005.

[Amd67] Amdahl, G. M. “Validity of the single processor approach to achieving
large scale computing capabilities.” In AFIPS ’67 (Spring): Proceedings of
the April 18-20, 1967, spring joint computer conference. ACM, New York,
NY, USA, 1967, pp. 483–485.

[As01] Å ström, K. J. and Hägglund. “The future of PID Control.” In Control
Engineering Practice. 2001, pp. 1163–1175.

[As08] Å ström, K. J. and Murray, R. M. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, illustrated edition ed.,
April 2008. ISBN 0691135762.

[ATM11] “ATMEL Homepage.”, 2011. URL http://www.atmel.com.

[Azu97] Azuma, R. T. “A Survey of Augmented Reality.” In Presence, vol. 6,
1997:pp. 355–385.

[Bay72] Bayer, K.-H., Waldmann, H., and Weibelzahl, M. “Field-Oriented Closed-
Loop Control of A Synchronous Machine With the New Transvektor Control
System.” In Siemens Review, vol. 39. 1972, pp. 220–223.

[Böc06] Böcker, J., Schulz, B., Knoke, T., and Fröhleke, N. “Self-Optimization as a
Framework for Advanced Control Systems.” In Int. Electronics Conference
(IECON), November 2006, Paris, Frankreich, 2006.

http://www.aldec.com/products/hes
http://www.atmel.com

188 Bibliography

[Ben99] Benedetti, G., M.and Uicich. “New High-Performance Thyristor Gate
Control Set for Line-Commutated Converters.” In IEEE Transactions On
Industrial Electronics, vol. 46. October 1999, pp. 972–977.

[Bhu10] Bhunia, S. and Mukhopadhyay, S. Low-Power Variation-Tolerant Design in
Nanometer Silicon. Springer, 2010. ISBN 9781441974174.

[Bla72] Blaschke, F. “The Principle of Field Orientation as Applied to the New
Transvector Closed-Loop Control System for Rotating-Field Machines.” In
Siemens Review, vol. 34. May 1972, pp. 217–220.

[Bla03] Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. Diagnosis and
Fault-Tolerant Control. Springer-Verlag, Berlin, Germany, 2003.

[BO10] Ben Othman, S., Ben Salem, A., and Ben Saoud, S. “Hw acceleration for
FPGA-based drive controllers.” In Industrial Electronics (ISIE), 2010 IEEE
International Symposium on. july 2010, pp. 196–201.

[Bol01] Boluda, J. A. and Domingo, J. “On the advantages of combining differential
algorithms and log polar vision for detection of self motion from a mobile
robot.” In Robotics and Autonomous Systems, vol. 37. Elsevier, 2001, pp.
283–296.

[Bol04] Bolognani, S., Ceschia, M., Tomasini, M., Tubiana, L., and Zigliotto, M.
“FPGA Implementation of an Iterative Algorithm for Time Optimal Control
of AC Drives.” In 11th International Conference on Power Electronics and
Motion Control. 2004.

[Bol09] Bol, D., Ambroise, R., Flandre, D., and Legat, J.-D. “Interests and Lim-
itations of Technology Scaling for Subthreshold Logic.” In Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 17, no. 10, oct.
2009:pp. 1508 –1519.

[Bra05] Brandmayr, G., Humer, G., and Rupp, M. “Automatic Co-Verification Of
FPGA Designs In Simulink.” In Model-Based Design Conference. June
2005.

[Bur96] Burd, T. D. and Brodersen, R. W. “Processor design for portable systems.”
In J. VLSI Signal Process. Syst., vol. 13, no. 2-3, 1996:pp. 203–221. ISSN
0922-5773.

[Cab04] Cabrera, A., Sanchez-Solano, S., Brox, P., Barriga, A., and Senhadj, R.
“Hardware software codesign of configurable fuzzy control systems.” In
Applied Soft Computing, vol. 4. Elsevier Science, 2004, pp. 271–285.

Bibliography 189

[CAD11] “Palladium III.”, 2011. URL http://www.cadence.com.

[Cal10] Calhoun, B., Ryan, J., Khanna, S., Putic, M., and Lach, J. “Flexible Circuits
and Architectures for Ultralow Power.” In Proceedings of the IEEE, vol. 98,
no. 2, February 2010:pp. 267–282. ISSN 0018-9219.

[Can02] Cantle, A., Devlin, M., and Lord, R., E.and Chamberlain. “High Frame
Rate Low Latency Hardware-in-the-Loop Image Generation.” White paper,
Nallatech Ltd, 10-14 Market Street, Kilsyth, Glasgow, Scotland, G65 0BD,
2002.

[Car03] Carrica, D., Funes, M., and Gonzalez, S. “Novel Stepper Motor Controller
Based on FPGA Hardware Implementation.” In IEEE/ASME Transactions
On Mechatronics, vol. 8. IEEE/ASME, March 2003, pp. 120–124.

[Cha04] Chapuis, Y., Blonde, J., and Braun, F. “FPGA Implementation by Modular
Design Reuse Mode to Optimize Hardware Architecture and Performance
of AC Motor Controller Algorithm.” In 11th International Conference on
Power Electronics and Motion Control. 2004.

[Cha05b] Charaabi, L., Monmasson, E., Nassani, M.-A., and Slama-Belkhodja, I.
“FPGA-based implementation of DTSFC and DTRFC algorithms.” In Annual
Conference of the IEEE Industrial Electronics Society. 2005.

[Cha10] Chang, L., Frank, D., Montoye, R., Koester, S., Ji, B., Coteus, P., Dennard,
R., and Haensch, W. “Practical Strategies for Power-Efficient Computing
Technologies.” In Proceedings of the IEEE, vol. 98, no. 2, feb. 2010:pp. 215
–236.

[Che00] Chen, R. X., Chen, L. G., and Chen, L. “System Design Consideration for
Digital Wheelchair Controller.” In Transactions On Industrial Electronics,
vol. 47. IEEE, August 2000, pp. 898–907.

[Che02] Chen, J. and Lin, I. “Toward the implementation of an ultrasonic motor
servo drive using FPGA.” In Mechatronics, vol. 12. Elsevier Science, 2002,
pp. 511–524.

[Che11] Cheng, Z., Yang, H., and Liu, Y. “Self-Adjusting Fuzzy MPPT PV System
Control by FPGA Design.” In Power and Energy Engineering Conference
(APPEEC), 2011 Asia-Pacific. march 2011, pp. 1 –4.

[Cho01] Chohra, A. and Schöll, P. “Neural Networks (NN) Based Learning of
Elementary Behaviors and their Integration in FPGA Architectures for a
Fast Moving Robot Team (RoboCup).” In Proceedings of the Workshop on
Autonomous Artificial Systems Exploring Hostile Environments. 2001, pp.
65–71.

http://www.cadence.com

190 Bibliography

[Chu02] Chujo, N. “Fail-safe ECU System Using Dynamic Reconfiguration of
FPGA.” In R & D Review of Toyota CRDL, vol. 37. April 2002, pp. 54–60.

[Cla99] Claasen, T. “High speed: not the only way to exploit the intrinsic computa-
tional power of silicon.” In Solid-State Circuits Conference, 1999. Digest of
Technical Papers. ISSCC. 1999 IEEE International. 1999, pp. 22 –25.

[Com02] Compton, K. and Hauck, S. “Reconfigurable Computing: A Survey of
Systems and Software.” In ACM Computing Surveys, vol. 34. June 2002, pp.
171–210.

[Cor01] Cormen, T. H., Stein, C., Rivest, R. L., and Leiserson, C. E. Introduction to
Algorithms. McGraw-Hill Higher Education, 2001. ISBN 0070131511.

[CP01] Cumplido-Parra, R., Jones, S. R., Godall, R. M., Mitchell, F., and Bate-
man, S. “High Performance Control System Processor.” In R. Merker
and W. Schwarz, eds., System Design Automation: Fundamentals, Princi-
ples, Methods, Examples. Kluwer Academic Publishers, March 2001, pp.
140–151.

[Dan03a] Danne, K., Bobda, C., and Kalte, H. “Increasing Efficiency by Partial
Hardware Reconfiguration: Case Study of a Multi-Controller System.” In
Proceedings of the International Conference on Engineering of Reconfigura-
ble Systems and Algorithms, Las Vegas, Nevada, USA. June 2003.

[Dan03b] Danne, K., Bobda, C., and Kalte, H. “Run-time Exchange of Mechatronic
Controllers Using Partial Hardware Reconfiguration.” In International
Conference on Field Programmable Logic and Applications. September
2003.

[DeH95] DeHon, A. “Comparing Computing Machines.” In SPIE. Configurable
Computing: Technology and Applications. 1995, pp. 124–133.

[DeH99] DeHon, A. and Wawrzynek, J. “Reconfigurable computing: what, why, and
implications for design automation.” In DAC 99: Proceedings of the 36th
ACM/IEEE conference on Design automation. ACM Press, New York, NY,
USA, 1999, pp. 610–615.

[DeH00] DeHon, A. “The density advantage of configurable computing.” In Com-
puter, vol. 33, no. 4, Apr 2000:pp. 41–49.

[Dep04] Deppe, M., Zanella, M., Robrecht, M., and Hardt, W. “Rapid prototyping of
real-time control laws for complex mechatronic systems a case study.” In
The Journal of Systems and Software, vol. 70. 2004, pp. 263–274.

Bibliography 191

[Des06] Deschamps, J., Bioul, G., and Sutter, G. Synthesis of Arithmetic Circuits.
Wiley-Intersciences, New Jersey,USA, 2006.

[Din05] Dinavahi, V., Iravani, R., and Bonert, R. “Design of a Real-Time Digital
Simulator for a D-STATCOM System.” In IEEE Transactions On Industrial
Electronics, vol. 51. October 2005, pp. 1001–1008.

[Do10] Do, T. and Le, T. “High throughput area-efficient SoC-based forward/in-
verse integer transforms for H.264/AVC.” In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on. 30 2010-june 2
2010, pp. 4113 –4116.

[Don03] Donecker, S., Lasky, T., and Ravani, B. “A Mechatronic Sensing Sys-
tem for Vehicle Guidance and Control.” In IEEE/ASME Transactions On
Mechatronics, vol. 8. December 2003, pp. 500–510.

[Dor11] Dorf, R. and Bishop, R. Modern control systems. Pearson Prentice Hall,
2011.

[DSP] “DSP Builder.” URL http://www.altera.com.

[dSP05] dSPACE GmbH, Paderborn, Germany. DS1005 PPC Board, Features, 5 ed.,
November 2005.

[dSP11] “dSPACE Homepage.”, 2011. URL http://www.dspace.de.

[Eag89] Eager, D., Zahorjan, J., and Lazowska, E. “Speedup versus efficiency in
parallel systems.” In IEEE Transactions on Computers, vol. 38, no. 3,
1989:pp. 408–423.

[Ell09] Ellithorpe, J. D., Tan, Z., and Katz, R. H. “Internet-in-a-Box: emulating
datacenter network architectures using FPGAs.” In DAC ’09: Proceedings
of the 46th Annual Design Automation Conference. ACM, New York, NY,
USA, 2009. ISBN 978-1-60558-497-3, pp. 880–883.

[Faa04] Faa-Jeng, L., Dong-Hai, W., and Po-Kai, H. “RFNN controlled sensorless
induction spindle motor drive.” In Electric Power Systems Research, vol. 70.
Elsevier Science, December 2004, pp. 211–222.

[Fan05] Fang, Z., Carletta, J., and Veillette, R. “A Methodology for FPGA-Based
Control Implementation.” In IEEE Transactions On Control Systems Tech-
nology, vol. 13. November 2005, pp. 977–987.

[Fan07] Fang, W. and Spaanenburg, L. “Power-driven FPGA to ASIC conversion.”
In SPIE 6590. 2007, pp. 22 –25.

http://www.altera.com
http://www.dspace.de

192 Bibliography

[Fen06] Feng, W. and Greene, J. W. “Post-placement interconnect entropy: how
many configuration bits does a programmable logic device need?” In
SLIP ’06: Proceedings of the 2006 international workshop on System-level
interconnect prediction. ACM, New York, NY, USA, 2006, pp. 41–48.

[Fra01] Frank, D., Dennard, R., Nowak, E., Solomon, P., Taur, Y., and Wong, H.-S. P.
“Device scaling limits of Si MOSFETs and their application dependencies.”
In Proceedings of the IEEE, vol. 89, no. 3, Mar 2001:pp. 259–288.

[Gal10] Galal, S. and Horowitz, M. “Energy-Efficient Floating Point Unit Design.”
In Computers, IEEE Transactions on, vol. PP, no. 99, 2010:p. 1.

[Gei05] Geisler, J. Auslegung und Implementierung der verteilten Aktor- und Auf-
bauregelung für ein aktiv gefedertes Schienenfahrzeug. Master’s thesis,
University of Applied Sciences Osnabrück, 2005.

[Gev02] Gevers, M. “A decade of progress in iterative process control design: from
theory to practice.” In Journal of Process Control, vol. 12, no. 4, 2002:pp.
519 – 531. ISSN 0959-1524.

[Gra09] Grassi, P. R., Santambrogio, M. D., Hagemeyer, J., Pohl, C., and Porrmann,
M. “SiLLis: A Simplified Language for Monitoring and Debugging of
Reconfigurable Systems.” In Engineering of Reconfigurable Systems and
Algorithms. 2009, pp. 174–180.

[Gro11] Grossmann, P. and Leeser, M. “A prototype FPGA for subthreshold-
optimized CMOS.” In Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, FPGA ’11. ACM, New
York, NY, USA, 2011. ISBN 978-1-4503-0554-9, pp. 279–279. URL
http://doi.acm.org/10.1145/1950413.1950470.

[Gus88] Gustafson, J. L. “Reevaluating Amdahl’s law.” In Commun. ACM, vol. 31,
no. 5, 1988:pp. 532–533. ISSN 0001-0782.

[Gwa02] Gwaltney, D., King, K., and Smith, K. “Implementation of Adaptive Digital
Controllers on Programmable Logic Devices.” In 5th Military and Aerospace
Programmable Logic Devices (MAPLD) International Conference. NASA
Marshall Space Flight Center, September 2002.

[Hag05] Hagemeyer, J. Partielle dynamische Selbst-Rekonfiguration mit Virtex-II FP-
GAs. Master’s thesis, Studienarbeit, System and Circuit Group, Universität
Paderborn, Paderborn, Germany, 2005.

[Hag06] Hagemeyer, J., Kettelhoit, B., and Porrmann, M. “Dedicated module ac-
cess in dynamically reconfigurable systems.” In Parallel and Distributed
Processing Symposium, International, vol. 0, 2006:p. 189.

http://doi.acm.org/10.1145/1950413.1950470

Bibliography 193

[Hag07a] Hagemeyer, J., Keltelhoit, B., Koester, M., and Pomnann, M. “A Design
Methodology for Communication Infrastructures on Partially Reconfigurable
FPGAs.” In Field Programmable Logic and Applications, 2007. FPL 2007.
International Conference on. 27-29 2007, pp. 331 –338.

[Hag07b] Hagemeyer, J., Kettelhoit, B., Koester, M., and Porrmann, M. “Design of
Homogeneous Communication Infrastructures for Partially Reconfigurable
FPGAs.” In Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA ’07). Las Vegas, USA, 2007.

[Hal10] Hallfhill, T. R. “Tabula’s Time Machine, Rapidly Reconfigurable Chips Will
Challenge Conventional FPGAs.” In Microprocessor, vol. 24, no. 3, March
2010:pp. 17–30.

[Han] “Handel-C.” URL http://www.celoxica.com.

[Han95] Hanen, C. and Munier, A. “A study of the cyclic scheduling problem on
parallel processors.” In Discrete Applied Mathematics, vol. 57, no. 2-3,
1995:pp. 167–192.

[Han02] Hannan Bin Azhar, M. A. and Dimond, K. R. “Design of an FPGA Based
Adaptive Neural Controller for Intelligent Robot Navigation.” In Euromicro
Symposium on Digital System Design, vol. 00. 2002, pp. 283–295.

[Han03] Hannan Bin Azhar, M. A. and Dimond, K. R. “Hardware Implementation of
a Genetic Controller and Effects of Training on Evolution.” In ICES. 2003,
pp. 344—-354.

[Har01] Hartmann, N. Automation des Tests eingebetteter Systeme am Beispiel der
Kraftfahrzeugelektronik. Ph.D. thesis, Universi
"at Karlsruhe, January 2001.

[Has10] Hassan, H. and Anis, M. Low-Power Design of Nanometer FPGAs: Archi-
tecture and EDA. Morgan Kaufmann series in systems on silicon. Elsevier
Science, 2010. ISBN 9780123744388.

[He04] He, P., Jin, M., Yang, L., Wei, R., Liu, Y., Cai, H., Liu, H., Seitz, N., But-
terfass, J., and Hirzinger, G. “High Performance DSP/FPGA Controller for
Implementation of HIT/DLR Dexterous Robot Hand.” In IEEE International
Conference on Robotics and Automation. New Orleans, LA, April 2004, pp.
3397–3402.

[Hen07] Hennessy, J. and Patterson, D. Computer Architecture - A Quantitative
Approach. Morgan Kaufmann, 2007.

http://www.celoxica.com

194 Bibliography

[Her04] Hernandez, A., Urena, J., Garcia, J., Mazo, M., Hernanz, D., Derutin, J., and
Serot, J. “Ultrasonic Ranging Sensor using Simultaneous Emissions from
Different Transducers.” In IEEE Transactions On Ultrasonics, Ferroelectrics,
And Frequency Control, vol. 51. December 2004, pp. 1660–1670.

[Hes04] Hestermeyer, T., Oberschelp, O., and Giese, H. “Structured information
processing for self-optimizing mechatronic systems.” In Proc. of 1st Inter-
national Conference on Informatics in Control, Automation and Robotics
(ICINCO 2004). Setubal, Portugal, 2004.

[Ho90] Ho, E. and Sen, P. “A microcontroller-based induction motor drive system
using variable structure strategy with decoupling.” In Industrial Electronics,
IEEE Transactions on, vol. 37, no. 3, Jun 1990:pp. 227–235.

[Ho00] Ho, Y. C., Man, K. F., Tang, K. S., and Kwong, S. “A Codesign Approach
to Real-time High Precision Control.” In Real-Time Systems, vol. 19, no. 1,
2000:pp. 41–60. ISSN 0922-6443.

[IBM02] IBM Microelectronics Division, New York, USA. PowerPC 740 and Pow-
erPC 750 Microprocessor Datasheet, 2 ed., June 2002.

[Ise99] Isermann, R., Schaffnit, J., and Sinsel, J. “Hardware-in-the-loop simulation
for the design and testing of engine-control systems.” In Control Engineering
Practice, vol. 7. Elsevier, May 1999, pp. 643–653.

[Jia02] Jian-Shiang, C. and In-Dar, L. “Toward the implementation of an ultrasonic
motor servo drive using FPGA.” In Mechatronics, vol. 12. Elsevier Science,
2002, pp. 511–524.

[Jon10] Jones, K. “Algorithm Design for Hardware-Based Computing Technologies.”
In The Regularized Fast Hartley Transform, Signals and Communication
Technology. Springer Netherlands, 2010, pp. 65–75.

[Jua05] Juang, C. and Hsu, C. “Temperature Control by Chip-Implemented Adaptive
Recurrent Fuzzy Controller Designed by Evolutionary Algorithm.” In IEEE
Transactions On Circuits And Systems, vol. 52. November 2005, pp. 2376–
2384.

[Jun99] Jung, S. L., Chang, M. Y., Jyang, J., Yeh, L. C., and Tzou, Y. “Design and
Implementation of an FPGA-Based Control IC for AC-Voltage Regulation.”
In Transactions On Power Electronics, vol. 14. IEEE, IEEE Press, May
1999, pp. 522–532.

[Jun10] Jungeblut, T., Luetkemeier, S., Sievers, G., Porrmann, M., Rückert, U., and
Kastens, U. “A modular design flow for very large design space explorations.”

Bibliography 195

In Proceedings of the CDNLive! EMEA 2010, Munich, Germany, 2010. May
2010.

[Kal59] Kalman, R. “On the general theory of control systems.” In Automatic
Control, IRE Transactions on, vol. 4, no. 3, December 1959:pp. 110–110.
ISSN 0096-199X.

[Kal02] Kalte, H., Porrmann, M., and Rückert, U. “A Prototyping Platform for
Dynamically Reconfigurable System on Chip Designs.” In Proceedings of
the IEEE Workshop Heterogeneous reconfigurable Systems on Chip (SoC).
Hamburg, Germany, 2002.

[Kel97] Kelly, J. S., Rao, V. S., Pottinger, H. J., and Bowman, H. C. “Design
and implementation of digital controllers for smart structures using field
programmable gate arrays.” In Smart Materials and Structures, vol. 6.
October 1997, pp. 559–572.

[Ket08] Kettelhoit, B. Architektur und Entwurf dynamisch rekonfigurierbarer FPGA-
Systeme. Dissertation, Fakultät für Elektrotechnik, Informatik und Mathe-
matik, Universität Paderborn, 2008. HNI-Verlagsschriftenreihe, Paderborn.

[Kha91] Khambadkone, A. and Holtz, J. “Vector-controlled induction motor drive
with a self-commissioning Scheme.” In Industrial Electronics, IEEE Trans-
actions on, vol. 38, no. 5, Oct 1991:pp. 322–327.

[Kim00] Kim, D. “An Implementation of Fuzzy Logic Controller on the Reconfigura-
ble FPGA System.” In IEEE Transactions On Industrial Electronics, vol. 47.
IEEE, June 2000, pp. 703–715.

[Kis02] Kish, L. B. “End of Moore’s law: thermal (noise) death of integration in
micro and nano electronics.” In Physics Letters A, vol. 305, no. 3-4, 2002:pp.
144 – 149. ISSN 0375-9601. URL http://www.sciencedirect.com/
science/article/pii/S0375960102013658.

[Kis04] Kish, L. “Moore’s law and the energy requirement of computing versus
performance.” In Circuits, Devices and Systems, IEE Proceedings -, vol.
151, no. 2, april 2004:pp. 190 – 194. ISSN 1350-2409.

[Kou05] Koutroulis, E., Dollas, A., and Kalaitzakis, K. “High-frequency pulse width
modulation implementation using FPGA and CPLD ICs.” In Journal of
Systems Architecture. 2005.

[Kun05] Kung, Y. and Shu, G. “Design and Implementation of a Control IC for
Vertical Articulated Robot Arm using SOPC Technology.” In Proceedings
of the IEEE International Conference on Mechatronics. Taipei, Taiwan, July
2005, pp. 532–536.

http://www.sciencedirect.com/science/article/pii/S0375960102013658
http://www.sciencedirect.com/science/article/pii/S0375960102013658

196 Bibliography

[Kun10] Kung, Y.-S., Hsu, C.-T., Chou, H.-H., and Tsui, T.-W. “FPGA-realization
of a motion control IC for wafer-handling robot.” In Industrial Informatics
(INDIN), 2010 8th IEEE International Conference on. july 2010, pp. 493
–498.

[Lan05] Langen, D. Abschätzung des Ressourcenbedarfs von hochintegrierten
mikroelektronischen Systemen. Ph.D. thesis, Schaltungstechnik, Heinz
Nixdorf Institut, Universität Paderborn, Fürstenallee 11, 33102 Paderborn,
Germany, December 2005.

[Li03] Li, T. S., Chang, S., and Chen, Y. “Implementation of Human-Like Driving
Skills by Autonomous Fuzzy Behavior Control on an FPGA-Based Car-Like
Mobile Robot.” In IEEE Transactions On Industrial Electronics, vol. 50.
October 2003, pp. 867–880.

[Lib99] Liberzon, D. and Morse, A. “Basic problems in stability and design of
switched systems.” In Control Systems, IEEE, vol. 19, no. 5, oct 1999:pp.
59 –70.

[Lu05] Lu, B., Wu, X., and Monti, A. “Implementation of a low-cost real-time
virtue test bed for Hardware-in-the-Loop testing.” In Industrial Electronics
Society, 2005. IECON 2005. 31st Annual Conference of IEEE. November
2005, pp. 239–244.

[Lun06] Lunze, J. and Richter, J. H. “Control Reconfiguration: Survey of Methods
and Open Problems.” Research Report 4-FB-2006.08, Institute of Au-
tomation and Computer Control,Ruhr-Universität Bochum, 44780 Bochum,
Germany, February 2006. URL http://www.atp.ruhr-uni-bochum.de.

[Lyg98] Lygouras, J. N., Lalakos, K., and Tsalides, P. G. “High-Performance Position
Detection and Velocity Adaptive Measurement for Closed-Loop Position
Control.” In Transactions On Instrumentation And Measurement, vol. 47.
IEEE, IEEE Press, August 1998, pp. 978–985.

[Mat05] Mattavelli, P., Spiazzi, G., and Tenti, P. “Predictive Digital Control of Power
Factor Preregulators With Input Voltage Estimation Using Disturbance Ob-
servers.” In IEEE Transactions On Power Electronics, vol. 20. January 2005,
pp. 140–147.

[Mat07] Mathapati, S. and Böcker, J. “Implementation of Dynamically Reconfigura-
ble Control Structures on a Single FPGA Platform.” In 12th European Power
Electronics and Adjustable Speed Drives Conference, Aalborg, Denmark,
2007.

http://www.atp.ruhr-uni-bochum.de

Bibliography 197

[Mat11] Mathapati, S. FPGA-Based High Performance AC Drive. Dissertation,
Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Pader-
born, 2011.

[MI04] Murshidul-Islam, M., Allee, D. R., Konasani, S., and Rodriguez, A. A. “A
Low-Cost Digital Controller for a Switching DC Converter With Improved
Voltage Regulation.” In POWER ELECTRONICS LETTERS, vol. 2. IEEE,
December 2004, pp. 121–124.

[Mon99] Monmasson, E. and Echelard, J., H. Louis. “Dynamically Reconfigurable
Architecture Dedicated To The Test Of PWM Algorithms.” In International
Conference on Power Electronics. 1999.

[Mon02a] Monmasson, E. and Chapuis, Y. “Contributions of FPGAs to the Control
of Electrical Systems, a Review.” In IEEE Industrial Electronics Society
Newsletter, vol. 49, no. 4, December 2002:pp. 8–15.

[Mon02c] Monmasson, E., Robyns, B., Mendes, E., and De Fornel, B. “Dynamic
reconfiguration of control and estimation algorithms for induction motor
drives.” In Symposium on Industrial Electronics, 2002. ISIE 2002. Proceed-
ings of the 2002 IEEE International, vol. 3. 2002, pp. 828–833.

[Moo98] Moore, G. “Cramming More Components Onto Integrated Circuits.” In
Proceedings of the IEEE, vol. 86, no. 1, jan 1998:pp. 82 –85.

[Mor95] Morse, A. S. “Control Using Logic-Based Switching.” In Trends in Control:
A European Perspective. Springer-Verlag, 1995, pp. 69–113.

[MV10b] Morales-Velazquez, L., de Jesus Romero-Troncoso, R., Osornio-Rios, R. A.,
Herrera-Ruiz, G., and de Santiago-Perez, J. J. “Special purpose processor for
parameter identification of CNC second order servo systems on a low-cost
FPGA platform.” In Mechatronics, vol. 20, no. 2, 2010:pp. 265 – 272.

[Nab80] Nabae, A., Otsuka, K., Uchino, H., and Kurosawa, R. “An Approach to
Flux Control of Induction Motors Operated with Variable-Frequency Power
Supply.” In Industry Applications, IEEE Transactions on, vol. IA-16, no. 3,
May 1980:pp. 342–350. ISSN 0093-9994.

[Nak02] Nakamura, T., Awa, Y., Shimoji, H., and Karasawa, H. “Control System Of
Electrostatic Levitation Furnace.” In Acta Astronautica, vol. 50. 2002, pp.
609–614.

[Nam01] Namkung, J. An Event-level Power Measurement and Analysis Methodology.
Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois,
2001.

198 Bibliography

[Nao04] Naouar, M., Charaabi, L., Monmasson, E., and Belkhodja, I. “Realization
of a Library of FPGA Reconfigurable IP-Core Functions for the Control of
Electrical Systems.” In 11th International Conference on Power Electronics
and Motion Control. 2004.

[Nas04] Nascimento, P. S. B., Pand Maciel, P. R. M., Lima, M. E., Sant’ana, R. E.,
and Filho, A. G. S. “A partial reconfigurable architecture for controllers
based on Petri nets.” In SBCCI ’04: Proceedings of the 17th symposium on
Integrated circuits and system design. ACM Press, New York, NY, USA,
2004, pp. 16–21.

[Nat11] “R Series Intelligent DAQ Devices.”, 2011. URL http://www.ni.com.

[NBP] “Neue Bahntechnik Paderborn.” URL http://www-nbp.upb.de.

[Nek03] Nekoogar, F. From ASICs to SOCs: a practical approach. Prentice Hall mod-
ular series for engineering. Prentice Hall/Professional Technical Reference,
2003. ISBN 9780130338570.

[Oga87] Ogata, K. Discrete-Time Control Systems. Prentice-Hall, Englewood Cliffs,
New Jersey 07632, USA, first ed., 1987.

[Old01] Oldknow, K. and Yellowley, I. “Design implementation and validation of a
system for the dynamic reconfiguration of open architecture machine tool
controls.” In International Journal of Machine Tools and Manufacture,
vol. 41. 2001, pp. 795–808.

[Old05] Oldknow, K. D. and Yellowley, I. “FPGA-Based Servo Control and Three-
Dimensional Dynamic Interpolation.” In IEEE/ASME Transactions On
Mechatronics, vol. 10. February 2005, pp. 98–110.

[OR08] Osornio-Rios, R. A., de Jesus Romero-Troncoso, R., Herrera-Ruiz, G.,
and Castañeda-Miranda, R. “The application of reconfigurable logic to
high speed CNC milling machines controllers.” In Control Engineering
Practice, vol. 16, no. 6, 2008:pp. 674 – 684. Special Section on Large
Scale Systems, 10th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale
Systems: Theory and Applications.

[OR09] Osornio-Rios, R., de Jesús Romero-Troncoso, R., Herrera-Ruiz, G., and
Castaņeda-Miranda, R. “FPGA implementation of higher degree polynomial
acceleration profiles for peak jerk reduction in servomotors.” In Robotics
and Computer-Integrated Manufacturing, vol. 25, no. 2, 2009:pp. 379–392.

[Ove00] Overeinder, B. J. Distributed Event-driven Simulation - Scheduling Strate-
gies and Resource Management. Ph.D. thesis, Department of Computer

http://www.ni.com
http://www-nbp.upb.de

Bibliography 199

Science, University of Amsterdam, Amsterdam, The Netherlands, November
2000. Promotor: Prof. Dr. P.M.A. Sloot, Co-promotor: Prof. Dr. M. Livny.

[Pak10] Paker, O., Eckert, S., and Bury, A. “A low cost multi-standard near-optimal
soft-output sphere decoder: algorithm and architecture.” In Proceedings
of the Conference on Design, Automation and Test in Europe, DATE ’10.
European Design and Automation Association, 3001 Leuven, Belgium,
Belgium, 2010, pp. 1402–1407.

[Par95] Parr, T. and Quong, R. “ANTLR: A Predicated- LL(k) Parser Generator.” In
Software - Practice and Experience, vol. 25, no. 7, 1995:pp. 789–810.

[Pat10a] Patel, P. and Moallem, M. “Reconfigurable system for real-time embedded
control applications.” In Control Theory Applications, IET, vol. 4, no. 11,
november 2010:pp. 2506 –2515.

[Pat10b] Patel, P. and Moallem, M. “Using FPGA-based platforms for embedded
control applications in Mechatronics.” In Advanced Intelligent Mechatronics
(AIM), 2010 IEEE/ASME International Conference on. july 2010, pp. 1356–
1361.

[Pet09] Peters, W., Schulz, B., Mathapati, S., and Bocker, J. “Regular-Sampled Cur-
rent Measurement in AC Drives Using Delta-Sigma-Modulators.” In Power
Electronics and Applications, 2009. EPE ’09. 13th European Conference on.
8-10 2009, pp. 1 –9.

[Poh10] Pohl, C. Konfigurierbare Hardwarebeschleuniger für selbst-organisierende
Karten. Dissertation, Fakultät für Elektrotechnik, Informatik und Mathe-
matik, Universität Paderborn, 2010. HNI-Verlagsschriftenreihe, Paderborn.

[Por09] Porrmann, M., Hagemeyer, J., Romoth, J., and Strugholtz, M. “Rapid
Prototyping of Next-Generation Multiprocessor SoCs.” In In Proceedings of
Semiconductor Conference Dresden, SCD 2009. Dresden, Germany„ 2009.

[Pou04] Poussier, S., H., R., and Weber, S. “Adaptable thermal compensation system
for strain gage sensors based on programmable chip.” In Sensors And
Actuators A: Physical, vol. 199. Elsevier, April 2004, pp. 412–417.

[Qui11] “QuickSilver technologies Homepage.”, 2011. URL http://www.qstech.
com.

[Rat] Rathmann, U. Qwt - Qt Widgets for Technical Applications.
Http://qwt.sourceforge.net/.

http://www.qstech.com
http://www.qstech.com

200 Bibliography

[Raw01] Rawlings, J. O., Pantula, S. G., and Dickey, D. A. Applied Regression
Analysis: A Research Tool (Springer Texts in Statistics). Springer, April
2001.

[Rei03] Reinemann, T. and Kasper, R. “High Speed Implementation of Controllers
and Filters for Mechatronic Systems.” In TechOnline. 2003.

[Rei05] Reichör, S., Zeinzinger, M., and Pfaff, M. “Connecting reality and simu-
lation: Couple high speed FPGAs with your HDL simulation.” In IP-SOC
2005: IP Based SoC Design Conference and Exhibition. December 2005,
pp. 271–275.

[Rex04] Rexroth Bosch Group, D-97816 Lohr a. Main. Rexroth EcoDrive Cs Drives,
2nd ed., November 2004. Document Number 120-1000-B344-02.

[Rey04] Reyneri, L. and Renga, F. “Speeding-up the design of HW/SW implemen-
tations of neuro-fuzzy systems using the CodeSimulink environment.” In
Applied Soft Computing, vol. 4. 2004, pp. 227–240.

[Ric03] Ricci, F. and Le-Huy, H. “Modeling and simulation of FPGA-based variable-
speed drives using Simulink.” In Mathematics and Computers in Simulation,
vol. 63. 2003, pp. 183–195.

[Rog03] Roggen, D., Hofmann, S., Y., T., and Floreano, D. “Hardware spiking neural
network with run-time reconfigurable connectivity in an autonomous robot.”
In ACM portal. 2003.

[RT04] Romero-Troncoso, R., Herrera-Ruiz, G., Terol-Villalobos, I., and C., J.-
C. J. “FPGA based on-line tool breakage detection system for CNC milling
machines.” In Mechatronics, vol. 14. 2004, pp. 439–454.

[Rue03a] Ruelland, R., Gateau, G., Meynard, T., and Hapiot, J. “Design of FPGA-
Based Emulator for Series Multicell Converters Using Co-Simulation Tools.”
In IEEE Transactions On Power Electronics, vol. 18. January 2003, pp.
244–252.

[Rya10] Ryan, J. and Calhoun, B. “A sub-threshold FPGA with low-swing dual-VDD
interconnect in 90nm CMOS.” In Custom Integrated Circuits Conference
(CICC), 2010 IEEE. sept. 2010, pp. 1 –4.

[Sag04] Saggini, S., Ghioni, M., and Geraci, A. “An Innovative Digital Control
Architecture for Low-Voltage, High-Current DC-DC Converters With Tight
Voltage Regulation.” In IEEE Transactions On Power Electronics, vol. 19.
January 2004, pp. 210–218.

Bibliography 201

[Sch06] Schlautmann, P. Entwicklung eines neuartigen dreidimensionalen aktiven
Federungssystems für ein Schienenfahrzeug. Dissertation, University of
Paderborn, 2006.

[Scr02] Scrofano, R., Choi, S., and Prasanna, V. “Energy Efficiency of FPGAs
and Programmable Processors for Matrix Multiplication.” In The First
IEEE International Conference on Field Programmable Technology (FPT).
December 2002.

[Sev89] Sevcik, K. “Characterizations of parallelism in applications and their use in
scheduling.” In Proceedings of the 1989 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems. ACM, 1989,
p. 180.

[SFB11] “Homepage of the Collaborative Research Center 614.”, 2011. URL http:
//www.sfb614.de/en.

[Sim10] Simpson, P. FPGA Design: Best Practices for Team-Based Design. Springer,
2010. ISBN 9781441963383.

[Sir10] Sirigir, V., Alzoubi, K., Saab, D., Kocan, F., and Tabib-Azar, M. “Ultra-low-
Power Ultra-fast Hybrid CNEMS-CMOS FPGA.” In Field Programmable
Logic and Applications (FPL), 2010 International Conference on. September
2010, pp. 368–373.

[Šůc06] Šůcha, P., Kutil, M., Sojka, M., and Hanzálek, Z. “TORSCHE Scheduling
Toolbox for Matlab.” In IEEE Computer Aided Control Systems Design
Symposium (CACSD’06). Munich, Germany, October 2006, pp. 1181–1186.

[Šůc08] Šůcha, P. and Hanzálek, Z. “Deadline constrained cyclic scheduling
on pipelined dedicated processors considering multiprocessor tasks and
changeover times.” In Mathematical and Computer Modelling, vol. 47, no.
9-10, 2008:pp. 925 – 942.

[Šůc09] Šůcha, P. and Hanzálek, Z. “A cyclic scheduling problem with an unde-
termined number of parallel identical processors.” In Computational Op-
timization and Applications, 2009. URL http://dx.doi.org/10.1007/
s10589-009-9239-4.

[Syna] “Synopsys Design Compiler.” URL http://www.synopsys.com.

[Synb] “Synplify DSP.” URL http://www.synplicity.com.

[SYN11] SYNOPSYS. “DesignWare Intellectual Property.”, March 2011. URL
http://www.synopsys.com.

http://www.sfb614.de/en
http://www.sfb614.de/en
http://dx.doi.org/10.1007/s10589-009-9239-4
http://dx.doi.org/10.1007/s10589-009-9239-4
http://www.synopsys.com
http://www.synplicity.com
http://www.synopsys.com

202 Bibliography

[Sysa] “System-C.” URL http://www.systemc.org/.

[Sysb] “System Generator.” URL http://www.xilinx.com.

[Taz99] Tazi, K., Monmasson, E., and Louis, J. P. “Description Of An Entirely
Reconfigurable Architecture Dedicated To The Current Vector Control Of
A Set Of Ac Machines.” In IEEE International Conference on Industrial
Electronics, Control, and Instrumentation, vol. 3. Novembre 1999, pp. 1415–
1420.

[Tes01] Tessier, R. and Burleson, W. “Reconfigurable Computing for Digital Signal
Processing: A Survey.” In Journal of VLSI Signal Processing, vol. 28.
Elsevier, 2001, pp. 7–27.

[Tew02] Tewari, A. Modern control design with MATLAB and SIMULINK. John
Wiley, 2002.

[Tho99] Thomas, F., Kishore, J. K., Bharadwaj, K. M., Nayak, M. M., and Agrawal,
V. K. “Design and implementation of a wheel speed measurement circuit
using field programmable gate arrays in a spacecraft.” In Microprocessors
and Microsystems, vol. 22. Elsevier Science, 1999, pp. 553–560.

[Tho06] Thompson, S. E. and Parthasarathy, S. “Moore’s law: the future of Si
microelectronics.” In Materials Today, vol. 9, no. 6, 2006:pp. 20 – 25. ISSN
1369-7021. URL http://www.sciencedirect.com/science/article/
pii/S1369702106715395.

[Tod05] Todman, T. J., Constantinides, G. A., Wilton, S. J. E., Mencer, O., Luk, W.,
and Cheung, P. Y. K. “Reconfigurable Computing: Architectures and Design
Methods.” In IEE Proceedings - Computers and Digital Techniques, vol.
152, no. 2, Mar. 2005:pp. 193–207.

[Tom04] Tombs, M., Henry, M., and Peter, C. “From research to product using a
common development platform.” In Control Engineering Practice, vol. 12.
Elsevier, 2004, pp. 503–510.

[Tos05] Toscher, S., Kasper, R., and Reinemann, T. “Dynamic Reconfiguration of
Mechatronic Real-Time Systems Based on Configuration State Machines.”
In 19th International Parallel and Distributed Processing Symposium. 2005.

[Tri97] Trimberger, S., Carberry, D., Johnson, A., and Wong, J. “A time-multiplexed
FPGA.” In FPGAs for Custom Computing Machines, 1997. Proceedings.,
The 5th Annual IEEE Symposium on. April 1997, pp. 22 –28.

[Tro] Trolltech. Qt - cross-platform application framework. Http://trolltech.com/.

http://www.systemc.org/
http://www.xilinx.com
http://www.sciencedirect.com/science/article/pii/S1369702106715395
http://www.sciencedirect.com/science/article/pii/S1369702106715395

Bibliography 203

[Vas04] Vasarhelyi, J., M., I., Szabo, C., Incze, I., and Adam, T. “FPGA Implemen-
tations of the Reconfigurable System for AC Drives.” In 11th International
Conference on Power Electronics and Motion Control. 2004.

[Ven04] Venkataramani, G., Budiu, M., Chelcea, T., and Goldstein, S. “C to asyn-
chronous dataflow circuits: An end-to-end toolflow.” In International Work-
shop on Logic Syntheiss. 2004.

[Weg87] Wegener, I. The Complexity of Boolean Functions. B. G. Teubner, and John
Wiley & Sons, 1987. URL citeseer.ist.psu.edu/700371.html.

[Wit03] Wittenmark, B., Å ström, K. J., and Å rzén, K.-E. “Computer Control: An
Overview.” Professional Brief 1, International Federation Of Automatic
Control, 2003. Http://www.ifac-control.org.

[Xil07a] Xilinx. “Virtex-II Platform FPGA User Guide.”, November 2007. URL
http://www.xilinx.com/.

[Xil07b] Xilinx. “Virtex-II Platform FPGAs: Complete Data Sheet.”, November
2007. URL http://www.xilinx.com/.

[Xil07c] Xilinx. “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data
Sheet.”, November 2007. URL http://www.xilinx.com/.

[Xil08b] Xilinx, Inc., San Jose, USA. ChipScope Users Guide, 10.1 ed., 2008.

[Xil08c] Xilinx, Inc., San Jose, USA. System Generator Users Guide, 10.1 ed., 2008.

[Xil09b] Xilinx. “Virtex-4 FPGA Configuration User Guide.”, June 2009. URL
http://www.xilinx.com/.

[Xil09c] Xilinx. “Virtex-6 FPGA Configurable Logic Block.”, September 2009. URL
http://www.xilinx.com/.

[Xil10] Xilinx. “ug702 Partial Reconfiguration User Guide.”, May 2010. URL
http://www.xilinx.com/.

[Xil11] “Xilinx Homepage.”, 2011. URL http://www.xilinx.com.

[Yao10] Yao, M. “Realization of Fuzzy PID controller used in turbine speed control
system with FPGA.” In Future Information Technology and Management
Engineering (FITME), 2010 International Conference on, vol. 1. October
2010, pp. 261 –264.

[Yin04] Yin, Y. and Zane, R. “Digital Phase Control for Resonant Inverters.” In
IEEE Power Electronics Letters, vol. 2. June 2004, pp. 51–54.

citeseer.ist.psu.edu/700371.html
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com

204 Bibliography

[Yui02] Yui, C., Swift, G., and Carmichael, C. “Single event upset susceptibility
testing of the Xilinx Virtex-II FPGA.” In Military and Aerospace Applica-
tions of Programmable Devices and Technologies Conference (MAPLD).
Maryland, USA, September 2002.

[Zum03] Zumel, P., de Castro, A., García, O., Riesgo, T., and Uceda, J. “Concurrent
and Simple Digital Controller of an AC/DC Converter with Power Factor
Correction.” In IEEE Transactions on Power Electronics. 2003, pp. 334–343.

List of Figures

2.1 Block diagram of a typical digital control system 8
2.2 Digital hardware platforms to implement digital controllers classified

according to the level of specialisation [Des06] 9
2.3 Spatial and temporal implementation of a proportional-integral con-

troller (PI), using trapezoidal integration (sketch based on [DeH00]) 10
2.4 Embedded software design flow . 11
2.5 Typical ASIC design flow [Nek03] 12
2.6 Sketch of a typical FPGA architecture 15
2.7 Simplified view of a Virtex II slice [Xil07b] 16
2.8 Hierarchical routing resources [Xil07b] 17
2.9 Virtex-II Pro Generic Architecture Overview [Xil07c] 18
2.10 Typical FPGA-based design flow [Des06, Sim10] 19
2.11 Overview of the development of the feature size of FPGAs from Xilinx 20
2.12 Overview of the development of Low-cost FPGAs from Xilinx 21
2.13 Application distribution of the reviewed papers 21
2.14 Distribution of the contributing factors of FPGAs in the application

spectrum . 22
2.15 Binding time continuum [DeH99] 25
2.16 Cost of delayed entry into a market [Des06] 28
2.17 Different levels of coupling in a reconfigurable system[Com02] 31
2.18 Classification of reconfigurable hardware according to the reported

coupling . 31
2.19 Reconfigurable hardware and processor couplings in reference to the

I/Os. a) Processor and FPGA have access to the ADC and DAC. b)
Either an FPGA or a Processor is directly connected to the ADC and
DAC with a tight communication with the other processing element.
c) Either a Processor or an FPGA receive information form ADC and
the other processing element is connected to the DAC. 32

2.20 Reported reconfiguration types for digital control applications . . . 34

3.1 Example of Cyclic Data Flow Graph 38
3.2 Example LH Graph . 40
3.3 Scheduling for the LH graph depicted in figure 3.2. Three execution

periods are shown, indicated by the different colors (gray scale) 41

206 List of Figures

3.4 Circuit area of operations listed in table 3.1 for various bit-widths . 43
3.5 Critical path delay operations listed in table 3.1 for various bit-widths 44
3.6 Normalised operations (NormOph,i), calculated using equation 3.2 . 45
3.7 Normalised steps (Stepsh,i), calculated using equation 3.3 45
3.8 Proposed Cyclic Data Flow Graph of a trapezoidal integration algo-

rithm (cf. equation 3.8) . 47
3.9 Cyclic scheduling for the trapezoidal integration depicted in figure 3.8

without weighting operations . 47
3.10 Scheduling for the trapezoidal integration depicted in figure 3.8 using

normalised synthesis results as time weight 48
3.11 Two simple LH Graphs to exemplify the concept of average operations

per step (AOS). (a) has an AOS of 6/5, whereas (b) has an AOS of 6/3 50
3.12 Algorithmic characterisation of a trapezoidal numeric integration (see

figure 3.8) using normalised synthesis results 51
3.13 (a) Virtex-II Slice (Top Half) [Xil07c], and (b)Virtex-6 SliceM (Top

Half) [Xil09c] . 53
3.14 Simplified block diagram of the PowerPC 750 RISC Microprocessor . 57
3.15 Simplified block diagram of the dSPACE DS1005 board 58
3.16 Radiagraphy of (a) an Spartan-3 XC3S1500, and (b) a Spartan-3

XC3S200 devices from Xilinx . 59
3.17 Area measurement of various Xilinx FPGA 60
3.18 Power consumption of the PowerPC 750 CPU for various operation

modes [IBM02] (power for 480 MHz was calculated using polynomial
interpolation) . 64

3.19 CDFG of a PID controller, using Simpson numerical integration. Node
A represents an anti-windup algorithm, shown in figure 3.20 67

3.20 Implementation of a simple anti-windup strategy 67
3.21 Scheduling for the PID controller depicted in figure 3.19 without

weighting operations . 68
3.22 Algorithmic characterisation of a PID controller (see figure 3.19) . . 69
3.23 Implementation of a PID controller with Synplify-DSP 70
3.24 Implementation of a PID controller using Matlab/Simulink 71
3.25 Comparison of modelled and measured circuit growth rate 73
3.26 Algorithmic characterisation and Computational Density (C.D.) of

hardware and software realisations of various versions of a PID controller 74
3.27 Energy Efficiency of hardware and software realisations of various

versions of a PID controller (logarithmic scale is used for the Y axis) 75
3.28 Block diagram of a state-space representation of a system 76
3.29 Block diagram of a state-feedback controller 77
3.30 Cyclic Data Flow Graph of a feedback controller for a two-state two-

input system, cf. equation 3.43 . 78

List of Figures 207

3.31 Scheduling for the state feedback controller depicted in figure 3.30
with operations not being weighted 79

3.32 Normalised algorithmic characterisation of a state-feedback controller
(see figure 3.30) . 80

3.33 Comparison of modelled and measured circuit grow rate 82
3.34 Computational Density of hardware and software realisations of a

state-feedback controller . 83
3.35 Energy Efficiency of hardware and software realisations of a state-

feedback controller . 84
3.36 Block diagram of a control system with a state observer 85
3.37 Cyclic Data Flow Graph of the state observer corresponding to equa-

tion 3.48 . 86
3.38 Scheduling for a state observer depicted in figure 3.37 without opera-

tion weighting. Three cycles are shown in the figure 87
3.39 Normalised algorithmic characterisation of a state observer 89
3.40 Comparison of modelled and measured circuit grow rate 92
3.41 Computational Density of hardware and software realisations of an

state observer . 93
3.42 Energy Efficiency of hardware and software realisations of an state

observer . 94

4.1 Classification of control adjustment methods in presence of faults
[Lun06] . 98

4.2 Diagram of a supervised multi-control system [Mor95] 99
4.3 Diagram of a supervised adaptive-control system [Mor95] 100
4.4 Structure of the Operator Controller Module (OCM) [14] 101
4.5 Static vs. Run-time full vs. run-time partial hardware reconfiguration 102
4.6 Configuration granularity of Xilinx FPGAs 103
4.7 Configuration Interface of the Virtex-II family [Xil07a],[Ket08] . . 104
4.8 Self- and external reconfiguration schemes 106
4.9 Virtex-4 Configuration Process [Xil09b] 107
4.10 Placement methods for 1D approach 109
4.11 1D vs. 2D placement methods . 110
4.12 Point-to-Point (Bus Macros) vs Shared Lines (Embedded Macros)

communication . 111
4.13 Resource utilisation as described in both cases of equation 4.4 . . . 113
4.14 Schematic of a vector multiplier: specific implementation vs. general

implementation . 115
4.15 Resource utilisation of vector multiplier: specific implementation vs.

general implementation based on a Virtex II FPGA (XCV4000) . . . 115
4.16 Block diagram of the RAPTOR64 system [Por09] 117

208 List of Figures

4.17 Schematic of the system architecture implemented on the RAPTOR
system [15] . 118

4.18 Simplified schematic of the communication fabric [15] 120
4.19 Schematic of the inverted pendulum system 122
4.20 Schematic of the test-bed of the inverted pendulum system 122
4.21 A simple strategy to swing-up the inverted pendulum 123
4.22 Block diagram of the swing-up controller 124
4.23 Block diagram of the balance controller 124
4.24 Schematic diagram of a two-controllers system for the inverted-pendulum125
4.25 Use of PR Regions for the inverted pendulum controller 126
4.26 Controller exchange for the inverted pendulum system 127
4.27 Schematic of the test-bed of the self-optimizing motion controller . 130
4.28 Schematic of a Field Oriented Control structure with back-EMF com-

pensation and decoupling of currents [Nab80] 131
4.29 Comparison of the execution-time of (b) CPU- and (c) FPGA-based

motor controller realisations (FOC and FOC-EMF-DeC correspond-
ingly), including execution times of the (a) static part of the controller
[15] . 133

4.30 Flow of the run-time reconfiguration of controllers [15] 135
4.31 Use of PR Regions for the self-optimizing motion control controller 135
4.32 Controller switching from FOC to FOC-EMF-Dec at 3000 RPM (HiL:

Controller at FPGA, Motor in Simulation) [15] 136
4.33 Controller switching from FOC to FOC-EMF-Dec at 3000 RPM

without using initialisation (Test bed: Controller at FPGA, Motor as
EUT) [15]. 137

4.34 Controller switching from a CPU- and an FPGA-based realisations at
3000 RPM (Test bed: Controller at CPU and FPGA, Motor as EUT)
[15] . 137

5.1 Positioning of FPGA-in-the-Loop simulations in the V design model 142
5.2 Combinations of simulated and real elements in the design process . 144
5.3 Information-flow of the Hardware-in-the-Loop simulation framework

with CAMeL-View . 146
5.4 Information-flow of the Hardware-in-the-Loop simulation framework

with Matlab/Simulink . 147
5.5 Synchronizer state machine . 148
5.6 Synchronizer embedded in the bus interface 148
5.7 Simplified simulation flow diagram 149
5.8 Simulation flow . 151
5.9 Coupling of host computer and RAPTOR. In this example a Pentium

4 with a 865G-Chipset is presented 152
5.10 Maximum simulation frequency for a given number of input/output pairs154

List of Figures 209

5.11 vMAGIC Designflow, reading and writing VHDL is optional. As such
a vMAGIC application can be a pure VHDL generator or analyzer . 156

5.12 Toolflow for HiL simulations with Matlab/Simulink 158
5.13 Toolflow for FPGA-in-the-Loop simulations with CAMeL-View . . 159
5.14 Simulation results of a PID-based speed control: System Generator vs.

HiLDE. The time-intervals of the enlarged figure correspond to 50 ms 160
5.15 Simulation results of a balance controller for an inverted pendulum:

System Generator vs. HiLDE. The time-intervals of the enlarged
figure correspond to 50 ms . 161

5.16 Standard configuration of a PLL-based controller for piezo actuators 162
5.17 Simulation results of a phase controller for a piezo-actuator: Sys-

tem Generator vs. HiLDE. The time-intervals of the enlarged figure
correspond to 10 µs . 163

5.18 Mechanical model of the active suspension testbed [10] 164
5.19 Simulation results of a state observer for an Active Suspension Testbed:

System Generator vs. HiLDE. The time-intervals of the enlarged fig-
ure correspond to 20 ms . 165

5.20 Structure of a real-time FPGA-in-the-Loop scenario utilizing HiLDE-
GART . 168

5.21 Main-, Log-, and Plot-Window of HiLDEGART. The GUI is generated
from an XML file generated by a vMAGIC application 169

5.22 View of a HiLDEGART test using AR annotations 170
5.23 Tool flow for a real-time design verification using HiLDEGART . . . 171
5.24 q-current step response at 3000 rpm (Test bed: Controller at FPGA,

Motor as EUT) . 172
5.25 test . 173
5.26 HiLDEGART measurements of the inverted pendulum system. Sev-

eral reconfiguration cycles are shown 174
5.27 HiLDEGART test of the inverted pendulum system using an Aug-

mented Reality extension. Balance controller is active 175

List of Tables

3.1 Set of basic operations . 42
3.2 Used synthesis models from DesignWare library (Synopsys, [SYN11]) 43
3.3 Algorithm characterisation of a numeric trapezoidal integration . . . 49
3.4 Average operations per step (AOSi) of a numeric trapezoidal integra-

tion for various bit-widths . 51
3.5 Resource utilisation of various basic operations, synthesised for a

Virtex II device (XC2V4000), using synthesis tools from Xilinx . . 54
3.6 Tools used for the software implementation of the benchmarks 61
3.7 Tools used for the software implementation of the benchmarks . . . 62
3.8 Algorithm characterisation of a parallel PID controller 69
3.9 Various FPGA-based implementations of a PID controller 71
3.10 Varios CPU-based implementations of a PID controller 72
3.11 Comparison of circuit size (SizeAlgi) and utilised slices of various

realisations of a PID controller . 72
3.12 Various FPGA-based implementations of a state-feedback controller 80
3.13 Varios CPU-based implementations of a state-feedback controller . . 81
3.14 Comparison of circuit size (SizeAlgi) and utilised slices of various

8-bit state-feedback implementations 82
3.15 Various FPGA-based implementations of a state observer 90
3.16 Varios CPU-based implementations of a state observer 91
3.17 Comparison of circuit size (SizeAlgi) and utilised slices of various

8-bit state observer implementations 91

4.1 Configuration bandwidth for configuration ports in Virtex architec-
tures [Xil10](1 Virtex-4, Virtex-5 and Virtex-6. 2 Virtex-II and Virtex-
II PRO) . 105

4.2 Resource utilisation of swinging-up and balancing controllers, synthe-
sised for Virtex II-Pro FPGA . 125

4.3 Abilities and realisation aspects of motor controllers [15] 132
4.4 Resources of implemented FPGA-based controllers [15] 132

5.1 Implementation Examples . 166

Glossary

Latin Symbols

latalg Latency of a CDFG, defined as the number of steps required to
complete one iteration.

NormOph,i Normalised operation.

Anorm Area normalised to a specific technology.

Ab Operative Area of the Balance controller.

Aconst Hardware resources required for all configurations of a controller
system (e.g., sensors signal processing).

Adynamic_FS Worst-case resource utilisation of a controller-system implemented
using run-time reconfiguration, with a free placement partition
approach.

Adynamic_FS Worst-case resource utilisation of a controller-system implemented
using run-time reconfiguration, with a fixed-size slot partition ap-
proach.

Arec Resources required to realise partial reconfiguration (e.g., for the
communication infrastructure, and for the reconfiguration con-
troller).

Astatic Resource-requirements of a static implementation.

As Operative Area of the Swing-up controller.

Atb Transition areas from the swinging-up controller to the balancing
controller.

Adjaceny Matrix for a graph G with n edges is an n×n matrix where the non-diagonal
entry ai j is the number of edges from node i to node j, and the
diagonal entry aii is the number of loops.

Angular_Speedmax Maximum angular speed limit for the transition of controllers of
the inverted pendulum system.

214 Glossary

Angular_Speedmin Minimum angular speed limit for the transition of controllers of
the inverted pendulum system.

Area Chip area of a computing device.

Bconst Additional hardware resources, required for instance to process I/O
signals.

Bdynamic_FP Worst-case resource utilisation of a parametrisable controller when
using run-time reconfiguration with a free-placement slot approach.

Bdynamic_FS Worse case resource utilisation of a parametrisable controller when
using run-time reconfiguration with a fixed-size slot approach.

Bgeneral The resource requirements of a parameterisable structure.

Bsize Amount of required configuration bits.

Bstatic The resource requirements of a static structure.

BPC Transferred bit per cycle.

C Set of n controllers with different structures.

Cdensity Computational Density, using normalised values.

Cdensity,DeHon Computational Density, defined as a throughput/area ratio.

c critical circuit in a graph G.

Depthn,i Critical path delay of a normalising operation n∈BO using i number
of input bits.

DepthOph,i Critical path delay of an operation h ∈ BO using i number of input
bits.

Ee f f iciency Energy Efficiency, defined as a throughput/power ratio.

Fsim Maximum simulation frequency.

init_si initialization time of the ith specific realisation.

initi Initialisation time of a controller.

Instructions is the number of repetitive operations required for a controller.

no output ports.

ñr Overall number of read accesses using event based communication.

nr Number of read operations in the standard HiLDE wrapper.

Glossary 215

p_smax1 Control period of the largest specific realisation.

pmax1 Control period of the largest controller cmax1 ∈C.

PAR The set of n parameter-groups for a control structure.

AOSi Average operations per execution step. It is an approximation of
average parallelism..

Power Power consumption of a computing device when executing a spe-
cific controller.

Powernorm Normalised power consumption.

S Set of n resource-requirements of all controllers in C.

Sarea Area normalisation factor.

Sdelay Delay normalisation factor.

si Resource-requirements of the ith controller ∈C.

Spower Normalisation factor for power consumption.

smax1 Resource-requirements of the largest controller cmax1 ∈C.

smax2 Resource-requirements of the second largest controller cmax2 ∈C.

SizeAlgi Size of an algorithm, calculated by adding the size of all individual
operations for a specific number i of input bits.

SizeOpn,i Chip area of a normalising operation n ∈ BO using i number of
input bits.

SizeOph,i Chip area of a given operation h∈ BO when using i number of input
bits.

Stepsh,i Number of equivalent steps required to compute an operation.

tcon f Reconfiguration time.

Tcon execution time of a controller, when realised as software or hard-
ware.

Tf req clock frequency of the packet processor.

tcon f _si Is the reconfiguration time of the ith specific realisation.

tcon fi Reconfiguration time of a controller.

T hroughput Control cycles per second.

216 Glossary

T hroughputnorm Normalised throughput.

T hroughputgeneral Operations per execution time.

Thw2sw conversion-times from a hardware-specific to a simulator-internal
number representation.

tr_si Reaction time of the ith specific realisation αi.

tr_smax1 Reaction time of the largest specific realisation of PAR.

tri Reaction time of a controller.

trmax1 reaction time of the largest controller cmax1 ∈C.

Treceive transfer-times from the prototyping system to the main memory of
the host.

Trun latency of the design under test.

Tsend transfer-times from the main memory of the host to the prototyping
system.

Tsw2hw conversion-times from a simulator-internal to a hardware-specific
number representation.

U Set of n resource-requirements of initialisation routines of all con-
trollers in C.

ui Resource-requirements of the initialisation routines of the ith con-
troller ∈C.

umax1 Resource-requirements of the initialisation routine of the largest
controller cmax2 ∈C.

umax2 Resource-requirements of the initialisation routine of the second
largest controller cmax2 ∈C.

Vdd,re f voltage input of the reference architectures’ core.

Vdd voltage input of the architectures’ core.

WL represents the word length of an ALU.

wordwidth Word width of the port in a HiLDE simulation.

w Period of a graph with periodic scheduling, which is given by the
critical circuit of that graph.

Greek Symbols

Glossary 217

αmax1 Largest specific implementation of a multi-controller system with
one structure and a set of n parameter groups.

αmax2 Area required for the second largest specific controller.

γmax1 Area required for the initialization routine of the largest specific
controller.

∆(out) Number of output ports with a new value.

λ Half the minimum drawn feature size on a process.

λre f λ of the reference technology.

Abbreviations
ADC Anolog to Digital Converter.

ALU Arithmetic Logic Unit.

API Application Programming Interface.

AR Augmented Reality.

ASIC Application Specific Integrated Circuit.

AST Abstract Syntax Tree.

BCS Basic Cyclic Scheduling.

BO Basic Operations.

BPU Branch Processing Unit.

BR Base Region.

CDFG Cyclic Data Flow Graphs.

CLB Configurable logic block.

CMOS Complementary Metal Oxide Semiconductor.

CNC Computerised Numerically Control.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DAC Digital to Analog Converter.

DC Direct Current.

DCM Digital Clock Manager.

218 Glossary

DDR Double Data Rate.

DDS Direct Digital Synthesis.

DEC Decoupling.

DMA Direct Memory Access.

DR Dynamic Reconfiguration.

DSP Digital Signal Processor.

DUT Design Under Test.

EEPROM Electrically Erasable Programmable Read-Only Memory.

EMF Electromagnetic Field.

EPROM Erasable Programmable Read-Only Memory.

EUT Equipment Under Test.

FDI Fault Detection and Isolation.

FF Flip-Flop.

FFT Fast Fourier Transform.

FIFO First In – First Out (Memory).

FOC-EMF-DeC Field Oriented Control with back Electromagnetic Field compensa-
tion and Current Decoupling.

FOC-EMF Field Oriented Control with back Electromagnetic Field compensa-
tion.

FOC Field Oriented Control.

FPGA-iL FPGA-in-the-Loop.

FPGA Field Programmable Gate Array.

FPU Floating Point Unit.

FSR Full Signal Range.

GCLK Global Clock.

GPIO General Purpose Input/Output.

GUI Graphical User Interface.

HiLDEGART HiLDE for Guided Active Real-Time Test.

Glossary 219

HiLDE Hardware-in-the-Loop Design Environment.

HiL Hardware in the Loop.

Hw/Sw Hardware and Software.

I/Os Inputs/Outputs.

ICAP Internal Configuration Access Port.

IOB Input Output Block.

IOI Input Output Interconnections.

IP Intellectual Property.

IU Integer Unit.

JTAG Joint Test Action Group.

LB Local Bus (RAPTOR System).

LQR Linear Quadratic Controller.

LSU Load/Store Unit.

LUT Lookup table.

MAC Multiply-ACcumulate.

MiL Model-in-the-loop.

MIMO Multi-Inputs Multi-Outputs.

NRE Non-recurring engineering.

OCM Operator Control Module.

OFDM Orthogonal Frequency Division Multiplexing.

PCI Peripheral Component Interconnect.

PC Personal Computer.

PID Proportional-Integral-Derivative (Controller).

PIO Programmable Input Output.

PLB Processor Local Bus.

PLC Programmable Logic Controllers.

PLL Phase-Looked-Loop.

220 Glossary

PPC PowerPC.

PRR Partially Reconfigurable Region.

PWM Pulse-Width Modulation.

QL Quantisation Level.

RAM Random Access Memory.

RFNN Radial Functions Neural Networks.

RH Reconfigurable Hardware.

RISC Reduced Instruction Set Computer.

RTL Register Transfer Level.

RTR Run-Time Reconfiguration.

RT Reconfigurable Tile.

SiL Software-in-the-Loop.

SoC System on Chip.

SRAM Static Random Access Memory.

SRU System register unit.

SSI Serial Synchronous Interface.

TTM Time-to-Market.

UART Universal Asynchronous Receiver Transmitter.

VCM Virtex Configuration Manager.

VHDL Very-high-speed integrated circuit Hardware Description Language.

vMAGIC VHDL Manipulation and Generation Interface.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Thesis Outline

	2 Realisation of Digital Control
	2.1 Digital Control
	2.1.1 Software-Based Design
	2.1.2 ASIC-Based Design

	2.2 Reconfigurable Hardware
	2.2.1 Field Programmable Gate Array
	2.2.2 General FPGA-Based Design Flow

	2.3 Utilisation of Reconfigurable Hardware for Digital Control
	2.3.1 Application Spectrum
	2.3.2 Factors of the Technology Migration
	2.3.3 Coupling of Reconfigurable Hardware and Software Architectures
	2.3.4 Run-Time Hardware Reconfiguration

	2.4 Summary

	3 Technology Comparison of Reconfigurable Hardware and Software Architectures
	3.1 Algorithmic Characterisation
	3.1.1 Controller Representation: Cyclic Data Flow Graph
	3.1.2 Scheduling of a CDFG
	3.1.3 Basic Operations Set: Selection and Weighting
	3.1.4 Normalised Operations and Steps
	3.1.5 Average Parallelism

	3.2 Resource Utilisation Assessment
	3.2.1 Computational Density
	3.2.2 Energy Efficiency

	3.3 Computing Architectures
	3.3.1 PowerPC 750-G Processor
	3.3.2 FPGA Device

	3.4 Realisation Flow
	3.4.1 Hardware Implementation-Flow
	3.4.2 Software Implementation-Flow

	3.5 Benchmarks
	3.5.1 PID Controller
	3.5.2 State-Feedback Controller
	3.5.3 State Observer

	3.6 Summary

	4 Run-Time Hardware Reconfiguration
	4.1 Controller Adjustment
	4.2 Run-Time Hardware Reconfiguration
	4.2.1 Configuration Granularity
	4.2.2 Configuration Interface
	4.2.3 Partial Reconfiguration Process
	4.2.4 Partition and Placement Approaches
	4.2.5 Communication Infrastructure

	4.3 Control Adjustment Through Run-Time Reconfiguration
	4.3.1 Structure Adaptation
	4.3.2 Parameter Adaptation

	4.4 Implementation Examples
	4.4.1 The RAPTOR System
	4.4.2 System Architecture
	4.4.3 Inverted Pendulum System
	4.4.4 Self-Optimising Motion Controller

	4.5 Summary

	5 Design Verification through Hardware-in-the-Loop Simulations
	5.1 Classification of Test-Systems
	5.1.1 Model- and Software-in-the-Loop
	5.1.2 Rapid Prototyping
	5.1.3 Hardware-in-the-Loop Simulation
	5.1.4 On-Line Test
	5.1.5 FPGA-in-the-Loop

	5.2 HiLDE: HiL Design Environment
	5.2.1 Hardware Components
	5.2.2 Software Components
	5.2.3 Communication and Performance
	5.2.4 HilDE Tool Flow
	5.2.5 Implementation Examples

	5.3 HiLDEGART: HiL Design Environment for Guided Active Real-Time Test
	5.3.1 Hardware Components
	5.3.2 Software Components
	5.3.3 HiLDEGART Tool Flow
	5.3.4 HiLDEGART Implementation Examples

	5.4 Summary

	6 Summary and Outlook
	6.1 Summary
	6.2 Outlook

	Author's Publications
	Bibliography
	List of Figures
	List of Tables
	Glossary

