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Abstract. In this thesis, we investigate thick subcategories for stable
categories of certain Frobenius categories and for derived categories of hered-
itary abelian categories. Both types of categories arise in the representation
theory of finite-dimensional algebras. There is a close relation between such
stable categories and the derived categories of hereditary abelian categories.
We show that this relation is well-behaved concerning thick subcategories.

Then, we give a classification of the thick subcategories of Db(mod(A))
where A is a finite-dimensional hereditary algebra of finite or tame repre-
sentation type.

This enables us to classify the thick subcategories of algebraic triangu-
lated categories with finitely many indecomposable objects and the thick
subcategories of the stable module categories of an important class of self-
injective algebras of tame representation type.

The classification is of a combinatorial nature and we emphasise combi-
natorial aspects such as counting and the lattice structure.

Zusammenfassung. In dieser Doktorarbeit untersuchen wir die dicken
Unterkategorien für stabile Kategorien von gewissen Frobenius Kategorien
und für derivierte Kategorien von erblichen abelschen Kategorien. Beide
Arten von Kategorien kommen in der Darstellungstheorie von endlich-di-
mensionalen Algebren vor. Es gibt einen engen Zusammenhang zwischen
solchen stabilen Kategorien und den derivierten Kategorien von erblichen
abelschen Kategorien. Wir zeigen, dass diese Beziehung verträglich ist mit
den dicken Unterkategorien.

Dann klassifizieren wir die dicken Unterkategorien von Db(mod(A)),
wobei A eine endlich-dimensionale erbliche Algebra vom endlichen oder vom
zahmen Darstellungstyp ist.

Dies versetzt uns in die Lage, die dicken Unterkategorien von alge-
braischen triangulierten Kategorien mit endlich vielen unzerlegbaren Ob-
jekten zu klassifizieren. Ebenso klassifizieren wir die dicken Unterkategorien
einer wichtigen Klasse von selbst-injektiven Algebren vom zahmen Darstel-
lungstyp.

Die Klassifikation ist kombinatorischer Natur und wir legen besonderen
Wert auf kombinatorische Aspekte wie Zählen und die Verbandsstruktur.
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CHAPTER 1

Introduction

A full subcategory S of a triangulated category T is called thick if it
is a triangulated subcategory of T which is in addition closed under taking
direct summands.

The study of thick subcategories is a way to extract a mathematical
structure from the triangulated category. More precisely, the set of all thick
subcategories of a triangulated category forms a lattice. This yields an
invariant of the category which can help to understand the category itself.

The structure can be used to gain information about the objects of the
ambient triangulated category. For example one can make a statement about
the vanishing of morphisms between two given objects of the category. (We
will present this as an application of our classification at the end of this
thesis.)

The classification problem was approached in various mathematical fields
as in stable homotopy theory, in commutative algebra and in the represen-
tation theory of finite groups. The first work was done by Hopkins and
Smith concerning the p-local finite stable homotopy category [48]. Hop-
kins [47] and Neeman [66] studied the concept for the category of perfect
complexes Dper(R) of a noetherian ring R. They showed that the thick
subcategories of Dper(R) correspond to specialisation closed subsets of the
prime ideal spectrum of R. Benson, Carlson and Rickard [14] classified the
thick subcategories of the stable module category of the group algebra kG
for a p-group G in terms of closed subvarietes of the maximal ideal spectrum
of the group cohomology ring.

The existing classifications which have been mentioned all depend on
some tensor structure. In this thesis, we consider triangulated categories
where such additional structure is not available. Thus, we need to develop
techniques which are completely different from the existing ones. An al-
ternative approach towards triangulated categories without tensor structure
can be found in the recent thesis of Stevenson (see [82] and [83]); he exploits
the external action of another tensor triangulated category.

1. The main results

The triangulated categories of our interest are the stable categories of
certain Frobenius categories and the derived categories of abelian heredi-
tary categories. Both types of categories arise in the representation theory
of finite-dimensional algebras. Actually, these two kinds of triangulated
categories and their thick subcategories are strongly related.

Namely, we consider algebraic triangulated categories, that is, triangu-
lated k-categories T which are triangle equivalent to the stable category of
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6 1. INTRODUCTION

a Frobenius category. If T has only finitely many indecomposable objects
and if it is connected and standard and if the field k is algebraically closed,
then by a Theorem of Amiot [1], T is triangle equivalent to an orbit cat-

egory Db(mod(k~∆))/〈Φ〉 where ~∆ is a quiver of Dynkin type and Φ is an

admissible automorphism on Db(mod(k~∆)). An example of such a category
is the stable module category mod(Λ) of a self-injective algebra Λ of finite
representation type.

If the self-injective algebra Λ is not of finite, but of tame representation
type, then there is no comparable classification for mod(Λ) so far. But
important examples for these algebras are algebras which are isomorphic
to orbit algebras Â/G where A is a tame hereditary algebra and G is an

admissible group of automorphisms on Â. The stable module category of Â
in turn is triangle equivalent to Db(mod(A)). This is due to Happel [46].

Hence, in both cases the stable category is related to the derived category
of the module category of a hereditary algebra. Thus, the first step in the
classification is a comparison of the thick subcategories of the stable category
to those of the derived category.

We can formulate this comparison in a more general setting (not only
for finite or tame representation type). Namely, we consider orbit categories
Db(mod(A))/〈Φ〉 where A is any hereditary algebra and Φ is an automor-
phism on Db(mod(A)). Now for an arbitrary automorphism Φ it is not
clear whether the orbit category is triangulated. Keller proves in [56] that
it is triangulated making certain assumptions on Φ and we formulate our
theorem in this setting.

Theorem 1.1. Let A be a hereditary k-algebra. Let Φ: Db(mod(A)) →
Db(mod(A)) be an automorphism such that Db(mod(A))/〈Φ〉 is triangulated.
Then, there is a bijective correspondence between

• the set of thick subcategories of Db(mod(A))/〈Φ〉, and
• the set of thick 〈Φ〉-invariant subcategories of Db(mod(A)).

For self-injective algebras of the form Â/G which are not necessarily
triangle equivalent to such an orbit category, this comparison comes along
as follows. We need to assume here that the associated push-down functor
Fλ : mod(Â) → mod(Â/G) is dense and that the automorphism group G′

on Db(mod(A)) induced by G (via the equivalence mod(Â) ∼= Db(mod(A)))
fulfils the assumptions (of Keller’s Theorem) such that the orbit category
Db(mod(A))/G′ is triangulated.

Theorem 1.2. Let A be a hereditary algebra and let G be a cyclic ad-
missible group of automorphisms on its repetitive category Â. Then, there
is a bijective correspondence between

• the set of thick subcategories of mod(Â/G), and
• the set of G′-invariant thick subcategories of Db(mod(A)).

Being aware of this, the next step in the classification of thick subcate-
gories of a stable category is a classification of the thick subcategories of the
derived category of a hereditary algebra. Also this is an interesting task on
its own, of course.
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There is already a classification of the set of thick subcategories of
Db(mod(A)) which are generated by an exceptional sequence. We call this
set Thexc(A). This classification is due to Ingalls and Thomas [53] if A is the
path algebra of a quiver of Dynkin or extended Dynkin type and it is gener-
alised by Igusa, Schiffler and Thomas [52] to arbitrary path algebras over an
algebraically closed field. The statement also holds without the assumption
that the field is algebraically closed (see Krause [59]). The classification of
Thexc(A) is in terms of the poset of noncrossing partitions NC(W, c) of the
Weyl group W associated to A with c ∈ W being the Coxeter transforma-
tion.

As soon as A is not of finite representation type, there are thick subcat-
egories which are not generated by an exceptional sequence. We complete
the classification in case that A is a hereditary k-algebra of tame represen-
tation type and k is an arbitrary field. Parts of this are based on Dichev’s
classification [34] for tame path algebras over algebraically closed fields.

For a tame hereditary algebra it is known (see for instance [75]) that
the subcategory of regular modules decomposes into uniserial categories∐

j∈J Hj ×
∐s

i=1 Uni of which at most three factors Un1
, . . . ,Uns are of rank

> 1. The classification depends on this decomposition. Namely, we intro-
duce the set of noncrossing arcs NA(n) on a circle with n points. Fixing the
above notation for the decomposition of the regular part we get the following
classification.

Theorem 1.3. Let A be a tame hereditary k-algebra. The set of thick
subcategories of Db(mod(A)) is given by the union of sets

Thexc(A) ∪ Threg(A)

where Thexc(A) corresponds bijectively to NC(W, c), Threg(A) corresponds
bijectively to a set of tuples

{(p, x1, . . . , xs) | p ∈ 2J , xi ∈ NA(ni)}.
Moreover, the intersection of Thexc(A) and Threg(A) equals the set of

such tuples with an additional assumption on the elements of NA(n).
Now we can combine the Theorems 1.1 or 1.2 with the last Theorem

1.3 in order to get a classification for thick subcategories of algebraic tri-
angulated categories. First to the algebraic triangulated categories T with
finitely many indecomposable objects. As said these are always of the form

Db(mod(k~∆))/〈Φ〉. From this we define the type of T to be (∆, r, t) where
r and t depend on Φ. Moreover, there is a list of all possible automorphisms
Φ due to Xiao and Zhu [85].

Theorem 1.4. Let T be a triangulated category with finitely many inde-
composable objects which is connected, algebraic and standard of type (∆, r, t)
excluding the cases (Dn, r, 2) for n even and (D4, r, 3). Put s = gcd(p, h∆)
where p is a natural number depending on the type of T and h∆ is the Cox-
eter number of ∆. Let W∆ be the associated Weyl group and let c ∈ W∆

be the Coxeter transformation. Then, there is a bijective correspondence
between

• the set of thick subcategories of T , and
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• the set (NC(W∆, c))
cs of noncrossing partitions which are invariant

under s-fold conjugation by c.

We have to exclude the two mentioned types in this theorem since in
these cases it is not possible to transfer the action of Φ to the noncross-
ing partitions. Therefore, we classify the thick subcategories for the type
(D4, r, 3) by hand. The missing type (Dn, r, 2) for an even n is covered by
an alternative formulation of the above theorem for Dynkin types A und
D. Namely, for these types there is an alternative description of NC(W∆, c)
motivated by the the poset of intersection subspaces of the hyperplanes of
the root system of W . For ∆ = An this is the original poset of noncrossing
partitions invented by Kreweras [61]. Altogether, this gives a complete clas-
sification of thick subcategories for these algebraic triangulated categories
of finite type.

An important class of self-injective algebras of tame representation type
are the r-fold trivial extension algebras (r ∈ N) of tame hereditary alge-

bras A, i.e. orbit algebras of the form Â/〈νr
Â
〉 where νÂ is the Nakayama

automorphism. In this case it is possible to combine Theorem 1.2 with The-
orem 1.3 to get the following classification. Again we fix the notation for
the decomposition of the regular part of mod(A) described above.

Theorem 1.5. Let A be a tame hereditary algebra. The set of thick
subcategories of mod(Â/〈νr

Â
〉) corresponds bijectively to

Thexc(A)
inv ∪ Threg(A)

inv.

Here Thexc(A)
inv corresponds bijectively to

(NC(W, c))c
r
= {w ∈ NC(W, c) | crwc−r = w}

and Threg(A)
inv corresponds bijectively to

{(p, x1, . . . , xs) | p ∈ 2J , xi ∈ (NA(ni))
r}

where (NA(ni))
r denotes the set of noncrossing arcs on a circle which are

invariant under rotation by r 2π
ni

of the circle.

Again we also describe the intersection of the two sets.
In general, the whole machinery is applicable to a variety of triangulated

categories. Explicitly, we also execute it for mod(Λq) where Λq is the tame
self-injective algebra k〈X,Y 〉/(X2, Y 2,XY − qY X) for q ∈ k∗, and for the
cluster category C~∆ where ∆ is of Dynkin or extended Dynkin type.

In all the cases we emphasise combinatorial aspects and questions such
as the poset or the lattice structure and the number of thick subcategories.

2. Outline

The thesis is organised as follows. In Chapter 2 we present the category
theoretical background of the thesis. We introduce the different notions of
categories and relate them to each other. After this we are able to introduce
orbit categories and we do this in Chapter 3. This chapter is also already
concerned with the thick subcategories of orbit categories in general, that
is, Theorem 1.1 is discussed here.
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In the sequel the general structure is the following. First we present
and discuss the necessary background on the relevant categories and then
we classify the thick subcategories of those categories.

According to this, Chapter 4 is about hereditary algebras A and their
module categories mod(A), Chapter 5 introduces noncrossing partitions
(which are needed for the upcoming classification and related to hereditary
algebras via roots and Weyl groups) and finally, in Chapter 6 we present the
classification of thick subcategories of Db(mod(A)).

Analogously, we proceed concerning algebraic triangulated categories.
In the Chapters 7 and 8 we present everything which is relevant for these
categories, and the Chapters 9 and 10 contain the classification of their thick
subcategories.

The final three chapters are devoted to related topics which are inter-
esting in the whole context.

In Chapter 11 we briefly present other classification approaches for thick
subcategories (as mentioned in the very beginning of this chapter) and com-
pare them to the approach of this thesis.

Chapter 12 is called Hom-Vanishing and contains an application (al-
ready mentioned above) of our classification. Namely, we show how the
classification provides information about the question whether or not there
are non-zero morphism between two objects of the triangulated category.

At last, in Chapter 13 we give the classification of the thick subcategories
for the cluster category.

3. Basic assumptions and conventions

Throughout, k denotes a field. We say explicitly if we need k to be
algebraically closed.

Every category in this thesis is k-linear, small, i.e. its objects form
a set, and Hom-finite which means that the morphism spaces are finite-
dimensional.

Moreover, all considered categories are supposed to be idempotent com-
plete, i.e. each idempotent in the category splits. In particular, this implies
that the categories are Krull-Remak-Schmidt.

Concerning (valued) diagrams we make the following convention. If ~∆
is an oriented (valued) diagram, we denote by ∆ its underlying diagram. If
the respective object does not depend on the orientation, we will just write
∆.





CHAPTER 2

Preliminaries

Throughout this thesis, the subject of study will always be some category
and in particular its subcategories. There will appear different concepts and
kinds of categories and this chapter intends to distinguish and connect the
several notions.

1. Additive and abelian categories

In principle all our categories A are additive, i.e. every finite family of
objects has a product, each set of morphisms HomA(A,B) is an abelian
group and the composition of morphisms is bilinear.

Definition 2.1. An additive category A is said to be abelian if every
morphism has a kernel and a cokernel and if every monomorphism is the
kernel and every epimorphism is the cokernel of some morphism.

As said in the introduction, all considered categories are idempotent
complete and hence Krull-Remak-Schmidt.

Definition 2.2. An additive category is called Krull-Remak-Schmidt
category if every object decomposes into a finite direct sum of objects having
local endomorphism ring.

This property is very important, in particular for the classification of
subcategories. It turns out that for the sort of subcategories we are consid-
ering, it suffices then to name the indecomposable objects of the subcategory.
Actually, a decomposition into indecomposable direct summands is unique.

Theorem 2.3 (Krull-Remak-Schmidt). Let X = Xa1
1 ⊕ . . . ⊕ Xar

r be
a decomposition of an object in a Krull-Remak-Schmidt category such that
the Xi are pairwise non-isomorphic indecomposable objects with ai ≥ 1. If
X = Y b1

1 ⊕ . . .⊕ Y bs
s is another decomposition of this form, then r = s and,

up to reordering, Xi
∼= Yi and ai = bi. �

Moreover, all appearing abelian categories A will be finite length cate-
gories, i.e. each object X in A has a finite composition series

0 = X0 ⊆ X1 ⊆ . . . ⊆ Xn−1 ⊆ Xn = X

with composition factors Xi/Xi−1 being simple objects. Actually, for an
abelian category the finite length property implies that the category is Krull-
Remak-Schmidt. Also, for a finite length object, being indecomposable and
having a local endomorphism ring are equivalent.

The property of a category being abelian yields an additional structure
on it given by exact sequences which are sequences of objects in the category
and morphisms between them such that the image of one morphism equals

11



12 2. PRELIMINARIES

the kernel of the following morphism. In particular, there are the short exact
sequences

0→ A
f−→ B

g−→ C → 0

where f is a monomorphism, g is an epimorphism and Im(f) = Ker(g).
That is, A is essentially a subobject of B and C is isomorphic to the corre-
sponding quotient. Also, short exact sequences define extensions of objects
in the abelian category. Moreover, these short exact sequences make abelian
categories into exact categories in the sense of Quillen [67]. An exact cate-
gory is an additive category together with a class of sequences A→ B → C
fulfilling certain axioms.

Definition 2.4. A full subcategoryW of an abelian category A is called
a wide subcategory (after Hovey [49]) if it is abelian and closed under ex-
tensions. For a full subcategory W being abelian means that if there is a
morphism f : A→ B in W, then Ker(f),Coker(f) ∈ W.

This definition of a wide subcategory makes sure that the category itself
is an abelian category whereas the kernel and the cokernel are the same as
in the ambient abelian category.

Note that a wide subcategory is automatically closed under direct sum-
mands. Moreover, for a wide subcategory the so-called 2-out-of-3-property
holds, that is whenever two objects of a short exact sequence are contained
in W, then so is the third. For arbitrary abelian categories it is not true
that the 2-out-of-3-property implies wideness. But it is true if we assume
the following property.

Definition 2.5. An abelian category H is called hereditary if

ExtnH(A,B) = 0

for all n ≥ 2 and all A,B ∈ H.
In case of an hereditary category H, Dichev [34, Theorem 3.3.1] points

out that a subcategoryW is wide if and only if it is closed under direct sum-
mands and if it fulfils the 2-out-of-3-property. Thus, one has to look at short
exact sequences when it comes to the classification of wide subcategories.

Example 2.6. Let A be an algebra over a field. Then, the category
Mod(A) of all left (or right) modules over A is an abelian category. The
same holds for the category mod(A) of all finite-dimensional modules over A.

This leads us to a comment on notation and convention. If not stated
otherwise, we will always consider finite-dimensional left modules and denote
the category by mod(A).

This is our main example of an abelian category. Precisely, we are going
to consider algebras whose module category is equivalent to the category of
representations of certain diagrams. These categories are also hereditary.
More on that topic in Chapter 4.

2. Triangulated categories

There are important categories which do not admit an exact structure as
described above. Therefore, one tries to endow them with another compa-
rable structure, in this case a triangulated structure. An example of such a
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category is the derived category of an abelian category which we will define
further down.

We take the formulations and notations for the definition of derived and
triangulated categories from [58]. Originally, these concepts were invented
by Verdier in [84].

Definition 2.7. Let T be an additive category with an equivalence
Σ: T → T . A triangle in T is a sequence (α, β, γ) of maps

X
α−→ Y

β−→ Z
γ−→ ΣX.

A morphism between two triangles (α, β, γ) and (α′, β′, γ′) is a triple

(φ1, φ2, φ3)

of morphisms in T making the following diagram commutative.

X
α //

φ1

��

Y
β

//

φ2

��

Z
γ
//

φ3

��

ΣX

Σφ1

��

X ′ α′

// Y ′ β′

// Z ′ γ′

// ΣX ′

The category T is called triangulated if it is equipped with a class of distin-
guished triangles (called exact triangles) satisfying the following axioms.

(TR1) A triangle isomorphic to an exact triangle is exact. For each ob-

ject X, the triangle 0 → X
id−→ X → 0 is exact. Each map α fits

into an exact triangle (α, β, γ).
(TR2) A triangle (α, β, γ) is exact if and only if (β, γ,−Σα) is exact.
(TR3) Given two exact triangles (α, β, γ) and (α′, β′, γ′), each pair of maps

φ1 and φ2 satisfying φ2◦α = α′◦φ1 can be completed to a morphism

X
α //

φ1

��

Y
β

//

φ2

��

Z
γ
//

φ3

��

ΣX

Σφ1

��

X ′ α′

// Y ′ β′

// Z ′ γ′

// ΣX ′

of triangles.
(TR4) Given exact triangles (α1, α2, α3), (β1, β2, β3) and (γ1, γ2, γ3) with

γ1 = β1 ◦ α1, there exists an exact triangle (δ1, δ2, δ3) making the
following diagram commutative.

X
α1 // Y

α2 //

β1

��

U
α3 //

δ1
��

ΣX

X
γ1

// Z
γ2

//

β2

��

V
γ3

//

δ2
��

ΣX

Σα1

��

W

β3

��

W
β3

//

δ3
��

ΣY

ΣY
Σα2 // ΣU

Example 2.8. Let A be a finite-dimensional self-injective algebra, i.e.
projective and injective A-modules coincide. Let mod(A) be the stable mod-
ule category of A which is given as follows. The objects of mod(A) are the
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same as in mod(A) and morphisms are by definition

HomA(X,Y ) := HomA(X,Y )/{X → P → Y | P projective}.
Then, mod(A) is triangulated. The equivalence Σ is given by

X 7→ Coker(X 7→ E(X))

where E(X) denotes the injective hull of X. Exact triangles in mod(A)
arise from short exact sequences in mod(A). Namely, given a short exact
sequence 0 → X → Y → Z → 0, the fact that E(X) is injective and the
universal property of the cokernel yield morphisms in mod(A) making the
diagram

0 // X // Y //

��
�

�

� Z //

∼

��
�

�

� 0

0 // X // E(X) // ΣX // 0

commutative. This defines an exact triangle X → Y → Z → ΣX. Now one
can check the axioms (TR1) to (TR4) for mod(A). This turns out to be
possible since the algebra is self-injective.

More generally, this holds for arbitrary Frobenius categories. In the con-
text of an exact category with a set E of exact sequences we may introduce
the notion of projective and injective objects (for example Happel calls this
E-projective or E-injective in [46]) such that it coincides with the notion of
projectivity or injectivity if the category is abelian. Hence, it makes sense
to define the following for an exact category.

Definition 2.9. An exact category is called Frobenius if it has enough
projective and injective objects and if moreover, projective and injective
objects coincide.

A triangulated category is called algebraic if it is triangle equivalent to
the stable category of a Frobenius category.

Theorem 2.10 (Happel [46]). Let F be a Frobenius category. Then, its
stable category F is triangulated. �

The idea of the triangulated structure of F is as described above for the
stable module category of a self-injective algebra.

By the way these are our main examples for a triangulated category.
More on algebraic triangulated categories in Chapter 7 and on self-injective
algebras in Chapter 8.

The lattice of thick subcategories. The correspondent of a wide
subcategory of an abelian category in the triangulated world is the follow-
ing. (For hereditary abelian categories it will literally turn out to be a
correspondent).

Definition 2.11. A full subcategory S of a triangulated category T is
called thick if the following conditions hold.

• Let X → Y → Z → ΣX be an exact triangle. If two of {X,Y,Z}
are contained in S, then so is the third.
• X ∈ S implies ΣnX ∈ S for all n ∈ Z.
• S is closed under direct summands.
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This definition ensures that a thick subcategory is a triangulated cate-
gory itself. Note that we also have a 2-out-of-3-property here.

The following concept will help us to describe thick subcategories

Definition 2.12. We say that a thick subcategory S of a triangulated
category T is generated by a set of objects E in T if S = Thick(E) where
Thick(E) denotes the smallest thick subcategory of T containing the objects
in E.

The set T (T ) of all thick subcategories of a triangulated category has
an interesting combinatorial property.

Definition 2.13. A lattice is a partially ordered set in which any two
elements have a unique supremum called the join ∨ and an infimum called
the meet ∧.

The set T (T ) forms a lattice. The partial order is given by inclusion,
the join of two thick subcategories R and S is its intersection which is thick
again. The meet of R and S is Thick(S ∪ R).

Moreover, in certain situations there is a lattice complement.

Definition 2.14. Let S be a thick subcategory of a triangulated cate-
gory T . Then we call

S⊥ = {Y ∈ T | HomT (X,Y ) = 0 ∀ X ∈ S}
and

⊥S = {X ∈ T | HomT (X,Y ) = 0 ∀ Y ∈ S}
the right respectively left perpendicular categories with respect to S.

One can check that the perpendicular categories are thick subcategories
again.

Now we need the assumption that our triangulated category is locally
finite, that is for each indecomposable object X ∈ T there are at most
finitely many isomorphism classes of indecomposable objects Y ∈ T such
that HomT (X,Y ) 6= 0.

Proposition 2.15 (Krause [59], Proposition 4.4). Let T be a locally
finite triangulated category. Let S be a thick subcategory of T . Then,

S ∨ S⊥ = T and S ∧ S⊥ = 0.

�

3. Auslander-Reiten theory

One of the most important tools used in this thesis is Auslander-Reiten
theory. Namely, it is essential for the classification of the categories we
work with. Moreover, we are going to use it all the time in order to picture
categories and highlight subcategories within these categories.

Originally, Auslander-Reiten theory was defined for abelian categories
in [9]. Happel introduced Auslander-Reiten triangles for triangulated cat-
egories in [45]. In [59] and [64] the theory is explained in the setting of a
Krull-Remak-Schmidt category which covers both concepts. We keep with
this general setting without going too much into details, i.e. there will be
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no proofs. Hence, throughout this section, let C be a Krull-Remak-Schmidt
category.

The idea of Auslander-Reiten theory is to illustrate the category by its
smallest building blocks. For objects these are the indecomposable objects.
To get something appropriate for morphisms we need some preparation.

Definition 2.16. The radical of C is by definition the collection of sub-
groups

RadC(X,Y ) ⊆ HomC(X,Y )

for each pair X,Y of objects in C where

RadC(X,Y ) = {φ ∈ HomC(X,Y ) | idX −φ′φ is invertible ∀ φ′ : Y → X}.
Definition 2.17. A morphism φ is called irreducible if φ is neither a

section nor a retraction, and if φ = φ′′φ′ is a factorisation, then φ′ is a
section or φ′′ is a retraction.

For each n > 1 and each pair X,Y define recursively RadnC(X,Y ) to
be the set of morphisms φ that admit a factorisation φ = φ′′φ′ with φ′ ∈
RadC(X,Z) and φ′′ ∈ Radn−1

C (Z, Y ) for some object Z. Then we set

IrrC(X,Y ) = RadC(X,Y )/Rad2C(X,Y ).

This is a bimodule over the division rings ∆(X) and ∆(Y ) where

∆(X) = EndC(X)/RadC(X,X).

Note that a morphism X → Y is irreducible if and only if it belongs to

RadC(X,Y ) \ Rad2C(X,Y ).

Definition 2.18. A morphism φ : X → Y is called right almost split if
φ is not a retraction and if every morphism X ′ → Y that is not a retraction
factors through φ. The morphism φ is right minimal if every endomorphism
α : X → X with φα = φ is invertible. Dually, we define left almost split and
left minimal.

Definition 2.19 (Liu [64]). A sequence of morphisms X
α−→ Y

β−→ Z in
C is called Auslander-Reiten sequence if

• α is minimal left almost split and a weak kernel of β,
• β is minimal right almost split and a weak cokernel of α, and
• Y 6= 0.

Theorem 2.20 (Liu [64]). Let C be a Krull-Remak-Schmidt category

and let X
f−→ Y

g−→ Z be an Auslander-Reiten sequence.

• Up to isomorphism, the sequence is the unique Auslander-Reiten
sequence starting with X and ending with Z.
• Each irreducible morphism f1 : X → Y1 or g1 : Y1 → Z fits into an
Auslander-Reiten sequence

X
(f1 f2)−−−−−→ Y1 q Y2

(

g1
g2

)

−−−→ Z.

�
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This theorem justifies to define the Auslander-Reiten translation τ(Z) of
an object Z in C to be the unique object X whenever there is an Auslander-
Reiten sequence ending in Z. Analogously, τ−1(X) = Z. Moreover, it
makes sense to define the Auslander-Reiten quiver ΓC of C in the following
manner. The vertex set consists of isomorphism classes of indecomposable
objects of C. For vertices X,Y there is a unique arrow X → Y with valu-
ation (dim∆(X) Irr(X,Y ),dim∆(Y ) Irr(X,Y )) if and only if Irr(X,Y ) 6= 0.
Since the irreducible morphism fit into Auslander-Reiten sequences, the
Auslander-Reiten quiver consists of meshes like

Y1

��
;;

;;
;;

;;
;;

;;
;;

;;
;;

Y2

&&M
MM

MM
MM

MM
MM

MM

τ(Z)

??������������������

''N
NN

NN
NN

NN
NN

NN

77ppppppppppppp

Zτ
oo_ _ _ _ _ _ _ _ _ _ _ _ _

Yn

88qqqqqqqqqqqqq

representing an Auslander-Reiten sequence τ(Z)→ Y1 q . . . q Yn → Z.
Throughout this thesis, we will mostly not distinguish between the ver-

tices and arrows of the Auslander-Reiten quiver and the indecomposable
objects and morphisms they stand for.

For the existence of Auslander-Reiten sequences we need to get more
concrete now. Thus, for the rest of this section consider the abelian category
mod(A) of a finite-dimensional algebra A over a field k. We keep with [7]
for the theory in this context. Here, we can define the Auslander-Reiten
translate τ of a module M concretely. Namely, take a minimal projective
resolution

P1
p1−→ P0

p0−→M → 0

of M . Apply the functor HomA(−, A) to this sequence and define Tr(M) :=
Coker(HomA(p1, A)). This gives a module over the opposite algebra of A.
Hence, applying the standard duality D = Homk(−, k) on this brings us
back to mod(A). Then, define the Auslander-Reiten translation to be

τ = DTr and τ−1 = TrD.

This is the appropriate definition for τ which is compatible with the above
general definition of it as the unique object an Auslander-Reiten sequence
starts in. Indeed, in this context we can make a statement on the existence
of Auslander-Reiten sequences.

Theorem 2.21. For any indecomposable non-projective A-module M
there exists an Auslander-Reiten sequence 0 → τM → E → M → 0 in
mod(A).

For any indecomposable non-injective A-module N there exists an Aus-
lander-Reiten sequence 0→ N → F → τ−1N → 0. �

One can prove this using the following Auslander-Reiten formulas which
are anyway very useful.
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Theorem 2.22. Let M and N be indecomposable A-modules. Then,
there exist isomorphisms

Ext1A(M,N) ∼= DHomA(τ
−1N,M) ∼= DHomA(N, τM).

Here Hom is the analogue of Hom defined in Section 2 in the sense that
one factors out morphisms which factor through an injective module (instead
of projective).

Note that in case the algebra is hereditary, the above formulas appear
as (see [2, Corollary 5.1.2])

Ext1A(M,N) ∼= DHomA(τ
−1N,M) ∼= DHomA(N, τM).

As said Auslander-Reiten theory of a category is an important tool to
encode information about it. This works out to a certain extend. Ideally,
the Auslander-Reiten quiver tells us everything about the category as in the
following case. A category C is said to be standard if ind(C) is equivalent to
the mesh category of its Auslander-Reiten quiver. The mesh category k(Γ)
of an Auslander-Reiten quiver Γ is defined as follows. The path category
of Γ is by definition the category whose objects are the vertices of Γ and
given two vertices x,y, the k-space of morphisms from x to y is given by the
k-vectorspace with basis the set of all paths from x to y. The composition of
morphisms is induced from the usual composition of paths. The mesh ideal
of a path category is the ideal generated by the elements

∑n
i=1 αiβi for all

meshes

y1

α1

��
==

==
==

==
==

==
==

==
=

y2
α2

''N
NN

NN
NN

NN
NN

NN

x

β1

@@�����������������

βn
''N

NN
NN

NN
NN

NN
NN

β2

77ppppppppppppp
zτ

oo_ _ _ _ _ _ _ _ _ _ _ _ _

yn

αn

77ppppppppppppp

in Γ. Finally the mesh category k(Γ) is the quotient category of the path
category of Γ by the mesh ideal.

4. Derived categories

Following up the previous sections, we now start with an abelian cat-
egory and define its derived category which turns out to be triangulated.
The definition of a derived category is not particularly catchy, thus we will
recall the definition briefly and focus on important notions, properties and
examples we will need in this thesis.

Again, originally the concept was invented by Verdier [84]. Our reference
here is [58].

4.1. The formal definition. Let A be an abelian category. A complex
in A is a sequence of maps

X : · · · → Xn−1 dn−1

−−−→ Xn dn−→ Xn+1 → · · ·
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such that dn ◦ dn−1 = 0 for all n ∈ Z. A map φ : X → Y between complexes
consists of maps φn : Xn → Y n with dnY ◦ φn = φn+1 ◦ dnX . Then, denote by
C(A) the category of complexes.

For a complex X denote by ΣX or X[1] the shifted complex with
(ΣX)n = Xn+1 and dnΣX = −dn+1

X .
A map φ : X → Y is null-homotopic if there are maps ρn : Xn → Y n−1

such that φn = dn−1
Y ◦ρn+ρn+1◦dnX for all n ∈ Z. The null-homotopic maps

form an ideal in C(A) and the homotopy category K(A) is the quotient of
C(A) with respect to this ideal.

Let X be a complex. For each n ∈ Z the cohomology is defined as

HnX = Ker dn/ Im dn−1.

A map φ : X → Y between complexes induces a map Hnφ : HnX → HnY in
each degree, and φ is called a quasi-isomorphism if Hnφ is an isomorphism
in each degree.

Finally, the derived category D(A) of A is obtained from K(A) by for-
mally inverting all quasi-isomorphisms, that is

D(A) = K(A)[S−1]

the localisation of K(A) with respect to the class S of all quasi-isomorphisms.
Mostly in this thesis we will be concerned with the so-called bounded

derived category Db(A) which is the derived category as constructed above
but this time we only consider bounded complexes, i.e. complexes in

Cb(A) = {X ∈ C(A) | Xn = 0 for |n| � 0}.
4.2. The derived category of a hereditary category. If the cate-

gory A is hereditary, there is an explicit description of the objects and the
morphisms of D(A). Namely, we have the following for objects caused by
the vanishing of Ext2(−,−).

Lemma 2.23. Let A be an abelian hereditary category and let X be a
complex in D(A). Then, X is isomorphic to the complex

· · · → Hn−1X
0−→ HnX

0−→ Hn+1X → · · · .
�

Hence, indecomposable objects of D(A) are given by complexes

· · · → 0→ A→ 0→ · · ·
concentrated in degree n where A is indecomposable in A. For an object
A in A we denote its associated complex concentrated in degree 0 also by
A. Note that there is a canonical embedding A ↪→ D(A) sending an object
A ∈ A to this particular complex.

The description of morphisms in case of A hereditary goes back to the
following observation.

Lemma 2.24. Let A be an abelian category. Let A,B objects in A and
n ∈ Z. There is a canonical isomorphism

ExtnA(A,B)→ HomD(A)(A,Σ
nB).

�
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Since this is zero for n ≥ 2, morphisms in D(A) reduce to morphisms
and extensions in A. Precisely,

D(A) =
∐

n∈Z

ΣnA

with non-zero maps ΣiA → ΣjA only if j − i ∈ {0, 1}. This structure is
visualised in the following figure.

A[−1]

Ext

Ext

Ext

Ext

b b bbbb

A[0] A[1]

In particular, this picture appears if A is equal to mod(k~∆) where ∆ is

a Dynkin diagram or an extended Dynkin diagram and k~∆ is its associated
path algebra (for background on representations of diagrams see Chapter 4).
Namely, in this case the Auslander-Reiten quiver of Db(A) has a particular
shape.

Definition 2.25. Let ~∆ be a quiver. The repetition of ~∆ [70] is the

translation quiver Z∆ = Z~∆ defined as follows. The vertices of Z∆ are the

pairs (i, x) with i ∈ Z and x ∈ ~∆0. To each arrow α : x→ y in ~∆ and each
i ∈ Z there is an arrow (i, α) : (i, x)→ (i, y) and an arrow σ(i, α) : (i−1, y)→
(i, x). The translation τ is defined on (Z∆)0 via τ(i, x) = (i − 1, x). The

repetitive quiver does not depend on the orientation of ~∆.
Given a translation quiver Z∆ with translation τ , we define Z∆/〈τ r〉 for

r ∈ N to be the quiver which is obtained from Z∆ by identifying any vertex
x of Z∆ with τ r(x) and proceeding compatibly with the arrows.

Proposition 2.26 (Happel [46], Section 5.6). Let A = k~∆ be a finite-
dimensional hereditary k-algebra.

(1) If ∆ is a Dynkin diagram, then the Auslander-Reiten quiver of

Db(mod(k~∆)) is of the form Z∆.
(2) If ∆ is an extended Dynkin diagram, then the connected components

of the Auslander-Reiten quiver of Db(mod(k~∆)) are of the form Z∆
and ZA∞/〈τ r〉 for some r ∈ N.

�

Here A∞ denotes the infinite Dynkin diagram of type A which is infinite
in one direction. That is, ZA∞/〈τ r〉 is nothing else than a stable tube of
rank r.

Example 2.27. Let ~A3 be the quiver 1→ 2→ 3. Then the Auslander-

Reiten quiver of Db(mod(k ~A3)) is of this form.

b b bb b b

Dotted arrows stand for morphisms in the derived category coming from
extensions in the module category.
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In fact, this encodes all the information about Db(mod(k ~A3)) as we
deduce from the following statement.

Proposition 2.28 (Happel [46], Proposition 5.6). Let ∆ be a Dynkin
diagram. Then,

ind(Db(mod(k~∆)))

is equivalent to the mesh category k(Z∆). �

As the translation quiver suggests, the Auslander-Reiten translation τ
on the module category may be extended to the derived category. For the
module category of a finite-dimensional k-algebra A of finite global dimen-
sion we can do this explicitly. Namely, by understanding each object of
Db(mod(A)) as its projective resolution P • we identify Db(mod(A)) with
Kb(proj(A)) where proj(A) denotes the full subcategory of mod(A) consist-
ing of projective modules. Then,

τ(P •) = Σ−1νA(P
•)

does the job (see Happel [46, Section 4.9]). Here νA = DHomA(−, A) is
the Nakayama functor which sends projective to injective modules and vice
versa. Note that for a non-projective A-module understood as an object of
the derived category this definition of τ coincides with the definition of τ for
modules. Moreover, an indecomposable projective module is mapped to the
Σ−1-shift of the corresponding indecomposable injective module. Actually,
τ gives an auto-equivalence on Db(mod(A)).

4.3. The triangulated structure. As announced D(A) is a triangu-
lated category. To be correct we remark that one has to define the triangu-
lated structure firstly for K(A) and note then that it carries over to D(A).
Anyhow, we formulate it directly for D(A). The equivalence D(A)→ D(A)
is given by the shift Σ = [1] defined above. Concerning triangles we state
exemplarily how we extend a morphism α : X → Y of complexes to a triangle

X
α−→ Y

β−→ Z
γ−→ ΣX.

In fact, the exact triangles are just the triangles which are isomorphic to
triangles of this particular shape. Namely, let Z be the complex with Zn =

Xn+1 q Y n and dnZ =

(
−dn+1

X 0
αn+1 dnY

)
. Then, the triangle X

α−→ Y
β−→ Z

γ−→
ΣX is degreewise defined by

Xn αn

−−→ Y n

(

0
id

)

−−−→ Xn+1 q Y n (− id 0)−−−−−−→ Xn+1.

To verify the axioms (TR1) to (TR4) see [84, II.1.3.2].
The same construction turns the bounded derived category Db(A) into

a triangulated category.
Finally, it is important to emphasise that the triangulated structure of

D(A) is again related to the exact structure of A. Namely, the canonical
embedding A ↪→ D(A) sends every short exact sequence

E : 0→ A
α−→ B

β−→ C → 0
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in A to an exact triangle A
α−→ B

β−→ C
γ−→ ΣA in D(A) where γ is the

morphism induced by E under Ext1A(C,A)
∼= HomD(A)(C,ΣA). By the

way, this also induces a long exact sequence in cohomology

. . .→ Hn(A)→ Hn(B)→ Hn(C)→ Hn+1(A)→ Hn+1(B)→ . . .

in A.
For this reason we can compare thick subcategories of the triangulated

category Db(A) to wide subcategories of the abelian category A.
Theorem 2.29 (Brüning [27]). Let A be a hereditary abelian category.

The assignments S 7→ {H0C | C ∈ S} and W 7→ {C ∈ Db(A) | HnC ∈
W ∀n ∈ Z} induce a bijective correspondence between

• the class of thick subcategories of Db(A), and
• the class of wide subcategories of A. �

Example 2.30. Let ~A3 be as above. The following figure pictures a

thick subcategory of Db(mod(k ~A3)) (black and white dots indicating the
indecomposable objects of the subcategory) together with its corresponding

wide subcategory of mod(k ~A3) (only white dots).

b b bb b b

b

b

bb

b

b

bc

bc

bc



CHAPTER 3

Orbit categories

Many of the categories we are interested in are equivalent to orbit cate-
gories of triangulated categories. Therefore, we discuss them in this chapter,
in particular the question under which circumstances they are triangulated
and if they are, their triangulated structure. The general reference for all
this is [56].

If there is a triangulated structure on the orbit category, it makes sense
to ask for thick subcategories. Hence, at the end of this chapter we state one
of the main theorems of this thesis which explains the thick subcategories
of the orbit category in terms of the original triangulated category. This is
essential for the later classification.

Definition 3.1. Let T be an additive category, let F : T → T be an
automorphism and let 〈F 〉 be the group of automorphisms generated by
F . The orbit category T /F = T /〈F 〉 has the same objects as T and the
morphisms X → Y are in bijection to

⊕

n∈Z

HomT (X,FnY ).

The composition of morphisms is defined in a natural way (compare [31]).

To illustrate this definition we consider an example already known from
above.

Example 3.2. Let T = Db(mod(k ~A3)) with ~A3 as above. Let F be

τ2 : Db(mod(k ~A3)) → Db(mod(k ~A3)). The definition of morphisms in the
orbit category makes objects lying in the same orbit under F isomorphic.

Therefore, we identify each object X in Db(mod(k ~A3)) with τ2(X). Thus,

Db(mod(k ~A3))/τ
2 would look like

where we understand vertices on the dotted lines as identified. By the way,
this is the translation quiver ZA3/〈τ2〉 where τ denotes also the translation
on the repetition ZA3.

Now let T be triangulated. Is T /F then triangulated, too? This is not
at all obvious and not true in all cases. We would like to endow the orbit
category with a triangulated structure such that the projection π : T → T /F

23
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is a triangle functor, that is a functor preserving exact triangles. Here is
the problem with the triangulated structure of T /F . Let u : X → Y be a
morphism in T /F . This is usually a sum of morphisms u1, . . . , uN in T with
ui : X → FniY . We would like to extend this to a triangle in the orbit in
such way that it is compatible with how we would do it in T . But u does
not just lift to a morphism in T and hence it is not obvious how we can use
the triangulated structure of T to define one in the orbit category.

In his article on triangulated orbit categories [56] Keller introduces a
framework, assuming some conditions on T and F , in which we get that
T /F is triangulated. In fact, all the categories we study do fulfil these
conditions.

Next to those, a prominent example of an orbit category which is trian-
gulated is the cluster category

C~∆ = Db(mod(k~∆))/τ−1 ◦ Σ

associated to a quiver ~∆ without oriented cycles. We will discuss this in
Chapter 13.

Theorem 3.3 (Keller [56]). Let H be a connected hereditary abelian
category admitting a tilting object. Let T = Db(H), let F : T → T be an
automorphism, and let Σ: T → T be the shift. Assume that the following
hypotheses hold:

• For each indecomposable U of H there are only finitely many inte-
gers i such that F iU lies in H.
• There is an integer N ≥ 0 such that the 〈F 〉-orbit of each inde-
composable of T contains an object ΣnU for some 0 ≤ n ≤ N and
some indecomposable object U of H.

Then, the orbit category T /F admits a triangulated structure such that the
projection T → T /F is triangulated.

We recall the idea of Keller’s proof since we will need some aspects of it
further down.

Proof. The idea is that we embed the orbit category into a bigger
category which is triangulated. Then, we extend a morphism in the orbit
category to a triangle in the ambient category and show that the extension
also lies in the orbit category.

The ambient triangulated category is given by the derived category of
a differential graded (dg) category. For the basics about dg categories we
refer to [57].

Fix a tilting object T of H and let A = End(T ) be the endomor-
phism algebra. Then Db(mod(A)) is triangle equivalent to Db(H). Let
A = Cbdg(proj(A)) be the dg category of bounded complexes of finitely gen-
erated projective A-modules. We assume that F is a standard equivalence,
i.e. it is isomorphic to the derived tensor product by a complex of A-A-
bimodules and this defines a dg functor F as well. Let B be the dg orbit
category of A with respect to F . This yields

D(Mod(A)) ∼= DA and H0B ∼= Db(mod(A))/F.
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Now let M be the triangulated subcategory of DB generated by the
representable functors B(−,X) =: X̂ for X ∈ B. Embed the orbit category

Db(mod(A))/F ∼= H0B ↪→M⊆ DB, X 7→ X̂.

Consider the projection π : A → B, the restriction

π∗ : DB → D(Mod(A))

along π and the left adjoint π∗ : D(Mod(A))→ DB to π∗.
Then, π∗ restricts to the canonical projection

Db(mod(A))→ Db(mod(A))/F.

Hence, a morphism in Db(mod(A))/F is of the form π∗X̂ → π∗Ŷ where

X,Y ∈ A and X̂ = A(−,X). Extend this to a triangle inM and apply π∗
to this triangle. We get a triangle

π∗π
∗(X̂)→ π∗π

∗(Ŷ )→ π∗(E)→ Σπ∗π
∗(X̂)

in D(Mod(A)). For the elements of the triangle we have

π∗π
∗(X̂) ∼= π∗(B(−, π(X))) = B(π(−), π(X))

∼=
⊕

n∈Z

A(Fn−,X) =
⊕

n∈Z

Fn(X̂).

By the first assumption of the theorem these objects lie in D(mod(A))
and so does π∗(E). Using this finiteness property together with the second
assumption of the theorem, we can show that π∗(E) is a sum of finitely
many 〈F 〉-orbits of shifted indecomposables Z1, . . . , Zm of H. The adjoint
of the inclusion Z :=

⊕m
i=1 Zi ↪→ π∗(E) yields an isomorphism π∗(Z) ∼= E

where Z ∈ Db(mod(A)). �

Given such a triangulated orbit category of the above form, it is evident
that the thick subcategories of the orbit category T /F are somehow related
to the thick subcategories of T and since the projection π : T → T /F is a
triangle functor and also crucial for the definition of the orbit category, it is
a good guess to use this functor for a correspondence. Clearly, if S is a thick
subcategory of T /F , then the preimage π−1(S) is immediately seen to be
thick in T since π is a triangle functor. What we can also say about π−1(S)
is that it is invariant under 〈F 〉. This shows that not all thick subcategories
of T appear.

But, given a thick subcategory S of T which is invariant under 〈F 〉, it
is not that easy to show that π(S) is thick in T /F . Here the same problems
show up as discussed above for the triangulated structure. Nevertheless, it
is possible and stated and proven in the sequel.

Theorem 3.4. Let A be a hereditary k-algebra. Let Φ: Db(mod(A)) →
Db(mod(A)) be an automorphism such that the hypotheses of Keller’s Theo-
rem hold. Then, the canonical projection π : Db(mod(A))→ Db(mod(A))/Φ
induces a bijective correspondence between

• the set of thick 〈Φ〉-invariant subcategories of Db(mod(A)), and
• the set of thick subcategories of Db(mod(A))/Φ.
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Proof. Let S be a thick subcategory of Db(mod(A))/Φ. Then, as seen
in the preparation of this theorem, π−1(S) is thick and 〈Φ〉-invariant.

Now let S be a thick 〈Φ〉-invariant subcategory of Db(mod(A)). We
want to show that π(S) is thick in the orbit category. As seen above it is
not obvious how to lift a given triangle

π(X)→ π(Y )→ π(Z)→ Σπ(X)

with π(X), π(Y ) ∈ π(S) in Db(mod(A))/Φ to a triangle X → Y → Z → ΣX
in Db(mod(A)). But as in the proof of Keller’s Theorem we may apply π∗
and obtain a triangle

⊕

n∈Z

Φn(X)→
⊕

n∈Z

Φn(Y )→
⊕

n∈Z

Φn(Z)→ Σ
⊕

n∈Z

Φn(X)

in D(mod(A)). This yields a long exact sequence

. . .→ Hp(
⊕

n∈Z

Φn(X))→ Hp(
⊕

n∈Z

Φn(Y ))→ Hp(
⊕

n∈Z

Φn(Z))

→ Hp+1(
⊕

n∈Z

Φn(X))→ Hp+1(
⊕

n∈Z

Φn(Y ))→ . . .

in mod(A). Consider the terms of this sequence.

Hp(
⊕

n∈Z

Φn(X)) = H0(Σp(
⊕

n∈Z

Φn(X))) = H0(
⊕

n∈Z

Φn(ΣpX))

= H0(
⊕

|n|<r

Φn(ΣpX))

for some r ∈ N large enough. We find this r because of the first assump-
tion of Keller’s Theorem. Since S is thick and 〈Φ〉-invariant and X ∈ S,⊕

|n|<r Φ
n(ΣpX) lies in S for each p ∈ Z and therefore, Hp(

⊕
n∈Z Φ

n(X))

lies in H0(S) for each p ∈ Z.
By Brüning’s Theorem 2.29, H0(S) is a wide subcategory of mod(A).

Hence, the cokernel of

Hp(
⊕

n∈Z

Φn(X))→ Hp(
⊕

n∈Z

Φn(Y ))

as well as the kernel of

Hp+1(
⊕

n∈Z

Φn(X))→ Hp+1(
⊕

n∈Z

Φn(Y ))

are contained in H0(S) for each p ∈ Z. Moreover, Hp(
⊕

n∈ZΦ
n(Z)) is an

extension of these two objects and therefore, it is also an object of H0(S)
for each p ∈ Z.

Z is a direct summand of
⊕

n∈ZΦ
nZ and hence, Hp(Z) is a direct sum-

mand of Hp(
⊕

n∈Z Φ
nZ) for each p. Since H0(S) is closed under direct

summands, we have that Hp(Z) ∈ H0(S) ∀p. Applying Brüning’s corre-
spondence again, we conclude that Z ∈ S and thus π(Z) ∈ π(S). �

Example 3.5. Consider again Db(mod(k ~A3)) and F = τ2. Here is an

example of a 〈τ2〉-invariant thick subcategory of Db(mod(k ~A3)).
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It corresponds to its projection into the orbit category Db(mod(k ~A3))/〈τ2〉.

b
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CHAPTER 4

Hereditary algebras

An algebra A is called hereditary if all submodules of projective A-
modules are projective again. Equivalently, mod(A) is an hereditary cate-
gory.

Later we want to classify the thick subcategories of Db(mod(A)) for a
tame hereditary algebra A. This chapter collects all the needed properties
of mod(A).

The main reference for the following definitions and facts is the prelim-
inary chapter of [75].

For the time being, let A be a finite-dimensional hereditary algebra over
an arbitrary field k. Let 1A = e1 + . . . + es be a decomposition of the
identity into pairwise orthogonal idempotents. We assume that A is basic,
i.e. Aei � Aej for all i 6= j. Denote the indecomposable projective modules
Aei by Pi. Hence, A ∼= ⊕s

i=1Pi. Note that this means that we also have s
corresponding simple modules denoted by S1, . . . , Ss and injective modules
denoted by I1, . . . , Is.

1. Diagrams, dimension vectors and quadratic forms

We assign to A an oriented diagram in the following manner. Decompose
A/ rad(A) into a product

∏s
i=1 Fi of division rings Fi. Concretely, Fi

∼=
End(Pi). This is possible since A is basic. Consider rad(A)/ rad2(A) as
A/ rad(A)-A/ rad(A)-bimodule and decompose it as the direct sum of Fi-
Fj-bimodules iMj . The oriented diagram of A is given by s vertices and an
arrow from a vertex i to a vertex j provided iMj 6= 0. Moreover, we add to
such an arrow a valuation (dimFi(iMj),dimFj(iMj)). Denote the associated
valued diagram (forgetting the orientation of the edges) by (ΓA, dA) = (Γ, d).

This defines a bilinear form associated to A. Denote fi = dimk(Fi) and
dij = dimFi(iMj). Define a bilinear form B = BA on Rs as follows. For
x, y ∈ Rs,

B(x, y) =
∑

i

fixiyi −
1

2

∑

i,j

dijfixiyj.

This also gives a quadratic form on Rs defined as

q(x) = B(x, x)

for x ∈ Rs.
Both forms are of great importance for the representation theory of A.

The Grothendieck group K0(A) of an algebra A makes A-modules approach-
able for q and B. Namely, let G be the free abelian group generated by the
isomorphism classes [X] for X ∈ mod(A). Then, the Grothendieck group is

29
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the factor group G/H where H is generated by the elements [X]− [Y ] + [Z]
for all short exact sequences 0→ X → Y → Z → 0. Now we have a bijection

dim: K0(A)
∼−→ Zs, [M ] 7→ (m1, . . . ,ms)

where mj is the multiplicity of the simple module Sj as a composition factor
of M .

We call dim([M ]) = dim(M) the dimension vector or the dimension type
of M . There is another way to express dim(M) and we will use this later in
this thesis, namely

(dim(M))i = dimEnd(Pi)Hom(Pi,M)

for all i ∈ {1, . . . , s}. See for instance [12, Lemma 1.7.6].
It is very convenient that in this homological context and if A is hered-

itary, the bilinear form B simplifies to

B(dim(M),dim(N)) = dimk HomA(M,N) − dimk Ext
1
A(M,N)

for A-modules M,N .
Having this connection in mind, we can state how the quadratic form q

determines the representation type of A.

Theorem 4.1. Let A be a finite-dimensional hereditary algebra, let (Γ, d)
be the associated valued diagram and let q : Rs → R be the associated qua-
dratic form. Then,

(1) A is of finite representation type ⇔ q is positive definite ⇔ (Γ, d)
is a Dynkin diagram,

(2) A is of tame representation type ⇔ q is positive semidefinite but
not definite ⇔ (Γ, d) is an extended Dynkin diagram.

Proof. The relation between the quadratic form and the diagram in
both cases can be derived from Theorems 1 and 4 of [22, Chapter VI].

The other equivalence is for finite representation type well-known as
Gabriel’s Theorem. One finds a proof in [10, Theorem 3.6].

Concerning tame representation type, we may leave the property of hav-
ing a semidefinite but not definite quadratic form as a definition of tame type
as Ringel does in [75]. �

Here is a complete list of Dynkin and extended Dynkin diagrams.

Dynkin diagrams.

An • • · · · • •

Bn • (1,2) • · · · • •

Cn • (2,1) • · · · • •
•

Dn • • · · · •
GG

GG
G

wwwww

•
•

E6 • • • • •
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•

E7 • • • • • •
•

E8 • • • • • • •

F4 • • (1,2) • •

G2 • (1,3) •

Extended Dynkin diagrams.

Ã11 • (1,4) •

Ã11 • (2,2) •
• · · · •

FF
FF

F

Ãn •
xxxxx

FF
FF

F •

• · · · •
xxxxx

B̃n • (1,2) • · · · • (2,1) •

C̃n • (2,1) • · · · • (1,2) •

B̃Cn • (1,2) • · · · • (1,2) •
•

B̃Dn • (2,1) • · · · •
FF

FF
F

xxxxx

•
•

C̃Dn • (1,2) • · · · •
FF

FF
F

xxxxx

•
•

FF
FF

F •

D̃n • · · · •
FF

FF
F

xxxxx

•
xxxxx •

•

•

Ẽ6 • • • • •
•

Ẽ7 • • • • • • •
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•

Ẽ8 • • • • • • • •

F̃41 • • • (1,2) • •

F̃42 • • • (2,1) • •

G̃21 • • (1,3) •

G̃22 • • (3,1) •

Remark 4.2. If we assume the field k to be perfect, then Gabriel points
out in [42, Section 8] that mod(A) is Morita equivalent to the category of
finite-dimensional representations of the valued graph (Γ, d). We will talk
about these representations further down.

Moreover, it is well-known that if the field is algebraically closed, then we
may associate an actual quiver to the algebra instead of a valued oriented
graph. In fact, each finite-dimensional hereditary basic algebra over an
algebraically closed field is isomorphic to the path algebra of a finite acyclic
quiver. For algebras of finite or tame representation type these quivers have
underlying diagrams An,Dn, E6, E7, E8 or Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, respectively.

2. The Weyl group and roots

In the cases described in the remark above the indecomposable modules
can by completely described by their dimension type. This is done by the
root system of the corresponding diagram. The definition of this needs some
preparation. Note that all the definitions apply to an arbitrary hereditary
algebra using its associated diagram. This is going to be important for the
introduction of noncrossing partitions.

Let (Γ, d) be a valued graph and B(−,−) its associated bilinear form.
For every vertex i ∈ Γ we define a simple reflection si : R

s → Rs by

si(x) = x− 2
B(x, ei)

B(ei, ei)
ei

where ei is the vector with ith entry 1 and 0 elsewhere.

Definition 4.3. The Weyl group W = WΓ associated to Γ is the group
of linear transformations of Rs generated by the simple reflections si, i ∈ Γ.

An important element of the Weyl group is the following. A product of
all simple reflections of W is called a Coxeter element of W . Two different
Coxeter elements (coming from a different order of the simple reflections)
are conjugate to each other (see [4, Lemma 2.6.2]). If we fix the follow-
ing regulation for the order, the Coxeter element is uniquely determined.

Namely, we call a numbering of the vertex set of ~Γ admissible if the follow-
ing rule holds. If there is an arrow j → i, then j > i. We may reorder our
vertex set {1, . . . , s} to an admissible one if necessary. Indeed, this is always
possible if there are no oriented cycles. The Coxeter elements coming from
two different admissible numberings are equal. See for instance [7, VII.4].



2. THE WEYL GROUP AND ROOTS 33

Definition 4.4. Let {1, . . . , s} be an admissible numbering of ~Γ. Then,
we call

c = s1 · · · ss
the Coxeter transformation.

This has an important homological meaning. As in [36] one could de-
fine the Auslander-Reiten translation τ via a product of Coxeter functors
according to an admissible numbering. This explains the idea of the fact
that

dim(τ(M)) = cdim(M) and dim(τ−1(N)) = c−1(dim(N))

for all M ∈ mod(A) not projective and N ∈ mod(A) not injective. For
the indecomposable projectives one gets cdim(Pi) = − dim(Ii). This fits
together with the picture that τ(Pi) = Σ−1(Ii) in the derived category.

Definition 4.5. A vector x ∈ Rs is called positive if xi ≥ 0 for all i. It
is called sincere if all its components are non-zero.

A vector x ∈ Rs is called a real root if it is of the form w(ei) for some
w ∈W and some i ∈ Γ.

An important class of indecomposable modules whose dimension vector
is a real root is given by the exceptional ones.

Theorem 4.6 (Ringel [76], Corollary 2). Let X be an indecomposable
A-module with Ext1(X,X) = 0, then dim(X) is a real root. �

Theorem 4.7 (Ringel [75]). Let q be a quadratic form associated to a
tame hereditary algebra. Then, q vanishes precisely on a one-dimensional
subspace of Rs generated by a sincere vector h. �

Definition 4.8. We call an indecomposable module X homogeneous if
dim(X) is a multiple of h.

In [75] one finds the precise values for h but this is not relevant for us.
It is only important that h is sincere.

If the module category of the algebra is equivalent to the category of
representations of its associated graph, then we can even make the following
statement. For the moment denote the category of finite-dimensional repre-
sentations of the valued graph Γ = (Γ, d) by L(Γ). For the precise definition
of this see Section 4 below in this chapter.

Theorem 4.9 (Dlab, Ringel [36]). Let A be an algebra such that mod(A)
is equivalent to L(Γ) for a valued graph Γ.

If Γ is Dynkin, then dim induces a bijective correspondence between the
positive real roots of Γ and the indecomposable A-modules.

If Γ is extended Dynkin, then, dim induces a bijective correspondence
between the positive real roots of Γ and the indecomposable non-homogeneous
A-modules. �

Remark 4.10. In the context of the theorem we also have that a positive
vector v is a real root if and only if q(v) = 1 which is maybe the more famous
definition of a real root. See for instance [55, Lemma 2.1].
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3. Preprojective, regular and preinjective modules

The structure of the module category of a hereditary algebra A is very
well understood in terms of its Auslander-Reiten quiver. This holds in par-
ticular if A is of finite or tame representation type. Recall from Chapter 2.3
the basics about Auslander-Reiten theory.

Definition 4.11. An indecomposable moduleX of finite length is called
preprojective if X ∼= τ−n(P ) for some n ∈ N0 and some indecomposable
projective P . Analogously, X is called preinjective if X ∼= τn(I) for some
n ∈ N0 and some indecomposable injective module I.

Finally, X is called regular if it is neither preprojective nor preinjective.
We call an arbitrary module regular if it does not have preprojective or
preinjective direct summands.

In any case, the preprojective and the preinjective modules are classified
by a countable series of modules τ−n(Pi) and τn(Ii) where n ∈ N0 and
i ∈ {1, . . . , s}.

If the algebra is of finite representation type, then there are no regular
modules and the preprojective and the preinjective modules coincide.

If the algebra is of tame representation type, then one knows the struc-
ture of its regular part completely.

Theorem 4.12 (Ringel [75]). Let A be a tame hereditary algebra. The
regular A-modules of finite length form an exact abelian extension-closed
subcategory R of mod(A). �

SinceR is abelian, we can consider simple objects and composition series
within R. We call a module simple regular if it is regular and simple in R.
Analogously, we define the regular socle and the regular length of an object
in R.

Theorem 4.13 (Ringel [75]). Let T be the set of orbits of simple regular
modules under the action of τ . All these orbits are finite and all but at most
three of them are one element sets.

The regular part R decomposes as the direct sum of uniserial categories
Rt where t runs through T . �

We call the smallest natural number r such that τ r(R) ∼= R for all
R ∈ Ri the rank of the factor Ri. For later considerations we specify the
notation of the above decomposition to

R =
∐

j∈J

Hj ×
s∐

i=1

Uni .

Here Hj are the factors of rank 1 and Uni are the s (at most three) factors
of rank ni greater than 1. Hence, the index set J arises from T . In general,
J is not easy to describe. But if the field k is algebraically closed, then it
can be identified with the points of the projective line P1(k) over k.

Since R is uniserial, its indecomposable modules are up to isomorphism
uniquely determined by its regular socle S and its regular length n. Denote
such a module by S[n]. Analogously, S[n] denotes the module with regular
top S and regular length n. With this notation in hand, we can state some
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facts about the structure ofR. We do this in the general setting of a uniserial
category.

Proposition 4.14 (Chen-Krause [30]). Let U be a uniserial category.
For a morphism φ : A → B between indecomposable objects, the following
are equivalent:

(1) The morphism φ is irreducible.
(2) There exists a simple object S and an integer n such that φ is, up

to isomorphism, of the form S[n] � S[n+1] or S[n+1] � S[n]. �

Proposition 4.15 (Chen-Krause [30]). Let U be a connected Hom-finite
k-linear uniserial length category admitting a Serre-functor τ . Suppose that
U has m <∞ simple objects. Then, the Ext-quiver of U is of type Ãm (with
cyclic orientation). �

This means that we may enumerate the simple objects of a connected
component of our category by R1, . . . , Rm where τ(Ri) = Ri+1 for 1 ≤ i < m
and τ(Rm) = R1, and for these simples we have

dimEnd(Ri) Ext
1(Ri, Ri+1) = 1 for 1 ≤ i < m, dimEnd(Rm) Ext

1(Rm, R1) = 1,

and there are no non-trivial extensions between simple objects in all other
constellations.

Together with the above properties this shows that the Auslander-Reiten
quiver of a connected component of R with m simple objects is a tube
ZA∞/〈τm〉.

Finally, we should think about the position of the elements in the regular
part R within the root system. Let S[j] be an indecomposable element in a
uniserial connected component of R of rank n. Then, again by [75] this is
homogeneous if and only if j is an integer multiple of the rank n.

Above we already established the name R for the regular part of the
category mod(A). In the same manner, we denote by P the preprojective
and byQ the preinjective part. To complete the picture, the next proposition
explains the vanishing or not vanishing of morphisms and extensions between
the different parts.

Proposition 4.16. Let A be a tame hereditary algebra with P, R, Q
the preprojective, regular and preinjective part of mod(A). Then,

Hom(Q,P) = 0 = Ext1(P,Q),
Hom(R,P) = 0 = Ext1(P,R),
Hom(Q,R) = 0 = Ext1(R,Q).

Proof. We only prove the first assertion, the rest is dual. The proof is
taken from [32, Section 7] for path algebras but as we will see now there are
no difficulties to adapt it. Let X ∈ Q and Y ∈ P indecomposable. Since X
is not projective we have X ∼= τ−iτ i(X) for i ≥ 0. Thus,

Hom(X,Y ) ∼= Hom(τ−iτ i(X), Y ) ∼= Hom(τ i(X), τ i(Y ))

for a suitable i ≥ 0 such that τ i(Y ) is projective. If φ : τ i(X) → τ i(Y ) was
a non-zero morphism, then Im(φ) would be non-zero projective since the
category is hereditary, but then Im(φ) would be a direct summand of τ i(X).
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This would imply τ i(X) ∼= Im(φ) since τ i(X) is indecomposable. This is a
contradiction since τ i(X) is not projective. Hence, Hom(X,Y ) = 0.

Also Ext1(Y,X) ∼= DHom(τ−(X), Y ) = 0. �

Altogether this leads to the following picture of Db(mod(A)).

b b b bb bb b b b b bb bb b b b b bb bb b

R[−1] R[0] R[1]

Q[−1] P[0] Q[0] P[1]

The order of the parts in this picture comes from the existence of non-zero
morphisms between the parts. The picture is supposed to suggest that the
only non-zero morphisms are from left to right.

Also the picture gives an idea of what we mean by a regular object of
Db(mod(A)) from now on.

4. Representations of valued graphs and quivers

As mentioned above, in certain situations all modules of a hereditary
algebra correspond to representations of valued graphs or quivers. Here is
briefly the definition of the category of representations. A reference for this
is [36].

Definition 4.17. A valued graph (Γ, d) is a finite set of vertices together
with non-negative integers dij for all pairs i, j ∈ Γ such that dii = 0 and sub-
ject to the condition that there exist non-zero natural numbers fi satisfying
dijfj = djifi ∀i, j ∈ Γ. We call pairs i, j with dij 6= 0 edges.

An orientation Ω of a valued graph (Γ, d) is given by prescribing, for
each edge i, j an order (indicated by an arrow i→ j).

A k-modulation M of a valued graph (Γ, d) is a set of division rings Fi,
i ∈ Γ, together with an Fi-Fj-bimodule iMj and an Fj-Fi-bimodule jMi for
all edges i, j of (Γ, d) such that

(1) each Fi contains k in its center and [Fi : k] <∞ for all i,
(2) k operates centrally on each iMj ,
(3) there are Fj-Fi-bimodule isomorphisms

jMi
∼= HomFi(iMj, Fi) ∼= HomFj (iMj , Fj),

(4) dimFj(iMj) = dij .

A k-species (M,Ω) of a valued graph (Γ, d) is a k-modulation M of
(Γ, d) together with an admissible orientation.

Definition 4.18. A representation X = (Xi, jϕi) of a k-species (M,Ω)
of (Γ, d) is a set of finite-dimensional right Fi-spaces Xi, i ∈ Γ, together with
Fj-linear mappings

jϕi : Xi ⊗Fi iMj → Xj

for all oriented edges i→ j.
A morphism α : X → X ′, X = (Xi, jϕi), X

′ = (X ′
i , jϕ

′
i), of representa-

tions is defined as a set α = (αi) of Fi-linear mappings αi : Xi → X ′
i, i ∈ Γ,

satisfying

jϕ
′
i(αi ⊗ 1) = αj(jϕi)

for all i→ j.
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The representations of a k-species (M,Ω) form an abelian category
which we denote by L(M,Ω) =: L. In L each object has finite length
and admits a decomposition into indecomposable objects.

Clearly, if we have an algebra A such that mod(A) ∼= L(M,Ω) for some
oriented graph and some modulation, then the graph is the one we get out
of the algebra as described in Section 1 at the head of this chapter.

Remark 4.19. A quiver and its representations is a particular case of
the definition above. A quiver is an oriented graph without the valuation
and a representation of a quiver is a tuple of finite-dimensional vector spaces
corresponding to the vertices and linear maps between these vector spaces
corresponding to arrows of the quiver. The category of finite-dimensional
representations of a quiver is equivalent to mod(A) where A is the path
algebra of the quiver.





CHAPTER 5

Noncrossing partitions

The purpose of this chapter is to introduce the relevant background
about noncrossing partitions and their combinatorics. Noncrossing parti-
tions are the tool to classify thick subcategories in this thesis.

We start with an arbitrary Coxeter group W , i.e. a group with presen-
tation

〈s1, . . . , sn | (sisj)mij = 1〉
where mii = 1, mij ≥ 2 for i 6= j and mij = ∞ if there is no such relation.
We call the generating set S := {s1, . . . , sn} the set of simple reflections.
Next, let R := {wsw−1 | w ∈W, s ∈ S} be the set of reflections. For w ∈W
we define the absolute length l(w) to be the shortest expression of w as a
product of elements in R. This differs from the usual notion of length in W
which is the shortest expression of W as a product of elements in S. With
respect to the absolute length we define a partial order ≤ on W via the rule

v ≤ w⇔ l(v) + l(v−1w) = l(w)

for v,w ∈W . We call this order the absolute order.
A Coxeter element c is a product of the simple reflections in some order.

The Coxeter number h is the order of an Coxeter element. Since different
Coxeter elements are conjugate to each other, the Coxeter number does not
depend on the chosen Coxeter element.

The following definition is due to Brady/Watt [24] and Bessis [16].

Definition 5.1. For a Coxeter group W and a Coxeter element c the
set of noncrossing partitions with respect to W and c is defined as

NC(W, c) := {w ∈W | id ≤ w ≤ c}
In the context of this thesis, W is given by a Weyl group WΓ associ-

ated with a graph Γ which is in turn associated with a finite-dimensional
k-algebra. We discussed this in Chapter 4. Recall that here the simple

reflections are given by si(x) = x − 2 B(x,ei)
B(ei,ei)

ei for x ∈ Rs according to the

vertices i of Γ. For such a reflection group we can name the reflections in
R explicitly. Namely, there is a bijective correspondence between the posi-
tive real roots and the reflections. The Bijection sends a positive real root
β = w(ei) to sβ where

sβ(x) = x− 2
B(x, β)

B(β, β)
β

for x ∈ Rs. Of course, for simple roots this yields sei = si. The correspon-
dence works out since by [51, Section 1.2] for a non-zero vector α ∈ Rs and
w ∈W we have

sw(α) = wsαw
−1

39
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and hence sβ = sw(ei) = wsiw
−1 ∈ R.

For Γ = As−1 together with a certain orientation the above definition of
noncrossing partitions coincides with the original definition of noncrossing
partitions of the set {1, . . . , s} due to Kreweras [61] which also motivates
the name. In fact, this is a very useful intuitive description of the elements
in NC(WΓ, c). Next to An, one has something similar for Γ of type Bn and
Dn. The next three sections are devoted to these cases.

1. The An-type

In order to motivate this description, we need to slightly change the
context to actual real reflection groups. This is the original geometric ap-
proach to reflection groups motivated by the classification of semisimple Lie
algebras.

For the definitions concerning reflection groups we keep with [51].
Let Φ be a finite generating set in the Euclidean space Rn with inner

product (x, y) =
∑n

i=1 xiyi for x = (xi), y = (yi) ∈ Rn. For α ∈ Φ define

sα(x) = x− 2
(x, α)

(α,α)
α

for x ∈ Rn. This is the reflection in the hyperplane

Hα := {x ∈ Rn | (x, α) = 0}
orthogonal to α. Then, Φ is called a root system if

• Φ ∩ Rα = {α,−α} for all α ∈ Φ, and
• sα(Φ) = Φ for all α ∈ Φ,

• 2 (α,β)
(α,α) ∈ Z for all α, β ∈ Φ.

Then, W = W (Φ) is the subgroup of automorphisms of Rn generated
by the reflections sα for α ∈ Φ.

The connection from reflection groups to Coxeter groups is the follow-
ing. To a Coxeter group W = 〈s1, . . . , sn | (sisj)mij = 1〉 one defines a
Coxeter diagram with vertices corresponding to the simple reflections and
edges depending on the numbers mij in a certain way (see [51, Chapter
2.1]). Then, the finite irreducible Coxeter groups are precisely those with
Coxeter diagram of Coxeter-Dynkin type. These are precisely the Dynkin
diagrams listed above plus the exceptional diagrams

H3 • • 5 •,
H4 • • • 5 •,
I2(m) • m •.

To a Coxeter diagram Γ in turn, one can define a root system Φ such
that W (Φ) is isomorphic to the original Coxeter group W . Also, this is
isomorphic to the Weyl group WΓ associated with a Dynkin diagram Γ.
Note that in this geometrical context here the roots and reflections are not
necessarily precisely the same as defined in Chapter 4, but the two concepts
correspond to each other.

For a Coxeter group of type An this means concretely the following. A
reference for this is [51, Chapter 2.10]. Let V be the subspace of Rn+1 for
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which the coordinates sum to zero. Let Φ be the set of vectors of squared
length 2. Then, Φ consists of the vectors

ei − ej for 1 ≤ i 6= j ≤ n+ 1

and Φ forms a root system. For a root α = ei − ej ∈ Φ the reflection sα
is the reflection in the hyperplane Hα = {x ∈ Rn+1 | xi = xj} or shortly
Hα = {xi = xj}. For two roots α and β, the product sαsβ is a rotation
fixing the intersection Hα ∩Hβ.

Let ΠA(n+1) be the poset of intersection subspaces of the hyperplanes
of the root system Φ. By the particular shape of the hyperplanes we can
view these intersection subspaces as partitions w of the set {1, . . . , n+1} into
disjoint blocks. For example for n+1 = 6 the intersection {x1 = x4}∩{x4 =
x5} ∩ {x2 = x6} = {x1 = x4 = x5} ∩ {x2 = x6} corresponds to the partition
{1, 4, 5} ·∪{2, 6} ·∪{3}.

Up to now, everything we defined in this section was supposed to give
an understanding for the following connection. The following is actually
relevant for later calculations.

We place the numbers 1, 2, . . . , n + 1 clockwise around a circle in order
(n + 1 adjacent to 1) and we draw a chord of the circle between i and j if
they are in the same block of w and no other elements strictly between them
when going clockwise from i to j around the circle are also in this block.
Then, NCA(n + 1) consists of the elements of ΠA(n + 1) in which all these
chords may be drawn without crossing each other.
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Figure 1. A noncrossing and a crossing partition of {1, . . . , 6}.

From now on we fix the following numbering of An

1 2 · · · n− 1 n
and according to this a Coxeter element c = s1 · · · sn.

Let W = WAn be the corresponding Weyl group. Identify the simple
reflection si ∈ W with the transposition (i, i + 1) for 1 ≤ i ≤ n in the
symmetric group Sn+1. This yields an isomorphism WAn

∼= Sn+1. One can
easily check the relations for WAn .

Theorem 5.2 (Brady [23], Chapter 3). There is a bijection

f : NC(WAn , c)
∼−→ NCA(n+ 1).

Write w ∈ NC(WAn , c) ⊂ Sn+1 as a product of disjoint cycles. Then, f(w)
is the disjoint union of blocks formed by these cycles. �

Example 5.3. Let n = 5 and consider v = (2, 3)(1, 4)(4, 5) ∈ S6. Then,
one can check that l(v) + l(v−1c) = 3 + 3 = 6 = l(c) and hence, v ∈
NC(WA6

, c). This is sent to f(v) = {2, 3} ·∪{1, 4, 5} ·∪{6} which corresponds
to the noncrossing partition in the figure above.
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2. The Dn-type

Thanks to Reiner and Athanasiadis [8], there is a analogue description
for the noncrossing partitions associated with a graph of type Dn.

In this section we fix the following numbering for Dn.

n

1 2 · · · n− 3 n− 2

II
II

II
II

I

tttttttttt

n− 1

Let ΠD(n) the poset of intersection subspaces of the hyperplanes of the
root system of type Dn, i.e. the integer vectors in V = Rn of length

√
2.

Choose as simple roots αi = ei − ei+1 for 1 ≤ i < n and αn = en−1 + en.
Hence, the root system Φ consists of vectors ±ei ± ej for 1 ≤ i < j ≤ n.
Then, the hyperplanes orthogonal to these roots are of the form

{xi = ±xj | 1 ≤ i < j ≤ n}.

Thus, we can consider the elements of ΠD(n) as partitions w of the set
[±n] = {1, 2, . . . , n,−1,−2, . . . ,−n, } into blocks such that

• if B is a block, then also −B is a block,
• there is at most one zero block, i.e. a block containing both i and
−i,
• the zero block, if present, does not consist of a single pair {i,−i}.

We call those elements Dn-partitions.
Now draw the numbers

1, . . . , n− 1,−1, . . . ,−(n− 1)

clockwise around a circle and label its centroid by n and −n. Given a Dn-
partition w and a block B of w, let con(B) denote the convex hull of the set
of points labeled with the elements of B. Two distinct blocks B and B′ of
w are said to cross if con(B) and con(B′) do not coincide and one of them
contains a point of the other in its relative interior.

The poset NCD(n) is defined as the Dn-partitions w with the property
that no two blocks of w cross.

In order to make the visualisation of the Dn-partitions well-defined, we
additionally label the convex hull of a non-zero block containing n or −n by
+ or −, respectively.
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Figure 2. Examples for noncrossing D5-partitions.
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The Weyl group associated with Dn looks as follows. Denote by S2n the
symmetric group on [±n]. For i 6= −j we write ((i, j)) = (i, j)(−i,−j). By
identifying the simple reflections si in WDn with ((i, i+1)) for i < n and sn
with ((−(n − 1), n)), we get that the Weyl group WDn is isomorphic to the
subgroup of S2n generated by the reflections ((i, j)) for i 6= −j.

For a cycle z = (i1, . . . , ik) in S2n denote by z̄ the cycle (−i1, . . . ,−ik).
We call zz̄ a paired cycle if z and z̄ are disjoint whereas a cycle z = z̄ =
(i1, . . . , ik,−i1, . . . ,−ik) is called a balanced cycle.

One can show that each element of WDn is a product of disjoint paired
and balanced cycles.

Fix a Coxeter element c = s1 · · · sn.
Theorem 5.4 (Athanasiadis/Reiner [8]). There is a bijection

f : NC(WDn , c)→ NCD(n).

For w ∈ NC(WDn , c), f(w) is the partition of [±n]
• whose nonzero blocks are formed by the paired cycles of w and
• whose zero block is the union of the elements of all balanced cycles
of w if such exist.

The inverse g : NCD(n) → NC(WDn , c) maps a partition w to the product
of disjoint cycles g(w)

• whose paired cycles are formed by the nonzero blocks of w, each
ordered with respect to the order −1,−2, . . . ,−n, 1, 2, . . . , n and
• whose balanced cycles are (n,−n) and the cycle formed by the en-
tries of the zero block of w other than n and −n ordered as above,
if the zero block exists. �

3. The Bn-type

Again as in [51, Chapter 2.10] we choose V = Rn and as a root system Φ
the set of all vectors of squared length 1 or 2. Then, Φ consists of the vectors
±ei for 1 ≤ i ≤ n and ±ei ± ej for 1 ≤ i < j ≤ n. Thus, the hyperplanes
orthogonal to these roots are of the form {xi = 0} and {xi = ±xj}. Hence,
ΠB(n) is defined as ΠD(n) except that the zero block might consist of a
single pair {i,−i}.

Then, we draw the numbers 1, . . . , n,−1, . . . ,−n clockwise around a cir-
cle and define NCB(n) to be the set of partitions in ΠB(n) which do not cross
when visualised in this circle. This description goes back to Reiner [69].
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Figure 3. Examples for noncrossing B4-partition

As the picture suggests, NCB(n) is the same as the subset of NCA(2n)
consisting of those A2n-partitions which are invariant under rotation by π.
More generally, the following holds.
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Proposition 5.5 (Reiner [69], Proposition 1). Let n, s ≥ 2 be inte-
gers. The subset of elements of NCA(sn) invariant under rotation by 2π

s is

isomorphic to NCB(n). �

It is also this relationship to the A2n-case which gives a bijection between
NCB(n) and NC(WBn , c) for a suitable choice of the numbering of Bn and
c. This is done in [19].

4. The lattice structure and the Kreweras complement

Recall that a lattice is a partially ordered set in which any two elements
have a unique supremum and a unique infimum.

The set of noncrossing partitions is a partially ordered set by means of
the absolute order on W . Is it also a lattice? This is quite clear for the
classical cases A,B and D where one can use the alternative descriptions of
NC(W, c) described above. For NCA(n) Kreweras showed in [61] the lattice
property. Here the meet of two partitions is the intersection and the join
is the noncrossing closure, i.e. we join blocks of the two partitions which
would otherwise cross.

For arbitrary Coxeter groups the problem was surprisingly hard to solve.
Finally it was done by Brady and Watt in the finite case.

Theorem 5.6 (Brady/Watt [23], Theorem 7.8). Let W be a finite real
reflection group and let c be a Coxeter element. Then, NC(W, c) is a lattice.

�

An important construction in this context is the following

Definition 5.7. Let W be a Coxeter group and let c be a Coxeter
element. For an element w ∈ W the element Kc(w) := w−1c is called the
Kreweras complement.

This defines an order-reversing map from the poset NC(W, c) into itself.
Moreover, the Kreweras complement is actually a complement.

Theorem 5.8 (Armstrong [4], Theorem 2.6.14). Let W be a finite Cox-
eter group and let c be a Coxeter element. Let w ∈ NC(W, c). Then,

w ∨Kc(w) = c and w ∧Kc(w) = id .

That is, Kc(w) is the lattice complement of w in NC(W, c). �

In the lattice NCA(n) there is an explicit construction of the Kreweras
complement which is compatible with the above general definition. In fact,
this is the original Kreweras complement due to Kreweras. Let w ∈ NCA(n).
Draw primed numbers 1′, . . . , n′ clockwise around a circle so that the primed
numbers interlace the unprimed numbers 1, . . . , n. Then, K(w) is the unique
maximal partition of {1′, . . . , n′} such that w ·∪K(w) is a noncrossing parti-
tion of {1, 1′, 2, 2′, . . . , n, n′}. Forgetting the primes, we obtain an element
K(w) ∈ NCA(n).

For example the Kreweras complement of {1, 4, 5} ·∪{2, 3} ·∪{6} in NCA(6)
is equal to {1, 3} ·∪{2} ·∪{4} ·∪{5, 6}.
This is confirmed by a quick calculation in S6, namely

((1, 4, 5)(2, 3))−1(1, 2, 3, 4, 5, 6) = (1, 3)(5, 6).
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5. Counting noncrossing partitions and the cyclic sieving

phenomenon

The number of elements in NCA(n) is a very famous number, the Catalan
number

Cn =
1

n+ 1

(
2n

n

)
.

This is generalisable to the number of elements in NC(W, c) for W a fi-

nite irreducible Coxeter group. For type Bn there are Cat(Bn) :=
(2n
n

)

noncrossing partitions (see [69, Proposition 6]) and for type Dn there are

Cat(Dn) :=
(2n
n

)
−

(2n−2
n−1

)
noncrossing partitions (see [8, Theorem 1.2]).

But we cannot only count the number of all elements but also the number
of certain invariant elements in NC(W, c). On the one hand, this is currently
of great interest in combinatorics, and on the other hand, it will turn out to
be relevant for the classification of thick subcategories further down in this
thesis.

Independently from the whole topic of noncrossing partitions, Reiner,
Stanton and White [68] defined the following phenomenon and identified it
in many examples.

Definition 5.9. Let X be a finite set, let G be a finite cyclic group
acting on X and let f(q) ∈ N[q] be a polynomial. For g ∈ G denote by
Xg := {x ∈ X | gx = x} the fixed point set. The triple (X,G, f(q)) is said
to exhibit the cyclic sieving phenomenon if for all g ∈ G

#Xg = f(zo(g))

where o(g) denotes the order of g and zd = e
2πi
d denotes the dth root of

unity.

We have such a cyclic sieving phenomenon for noncrossing partitions.
In order to define the polynomial in this context we need to go a bit further
back in the theory of reflection groups. Out of the classification of finite
irreducible complex reflection groups W on Cn by Shephard and Todd [78],
there arise certain invariants d1 ≤ . . . ≤ dn called the degrees of W . The
exact definition of the degrees is not relevant for this thesis and can be
found in [78]. Any real reflection groups can be regarded as a complex
reflection group and hence in particular, our finite irreducible Coxeter groups
are complex reflection groups and we can associate to them the following
degrees. This list is taken from [77].
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Group degrees
An 2, 3, 4, . . . , n+ 1

Bn, Cn 2, 4, 6, . . . , 2n
Dn 2, 4, 6, . . . , 2n− 2
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
H3 2, 6, 10
H4 2, 12, 20, 30

I2(m) 2,m

Now let W be a finite irreducible complex reflection group with degrees
d1, . . . , dn. We state the theorem in this generality but mostly think of W
as of a finite irreducible Coxeter group. Define the W-q-Catalan number to
be

Cat(W, q) :=
n∏

i=1

[h+ di]q
[di]q

where [n]q := 1 + q + . . . + qn−1 and h := dn. Note that h is the Coxeter
number for the finite Coxeter groups.

Let c be a Coxeter element. This acts on NC(W, c) by conjugation.

Theorem 5.10 (Bessis/Reiner [17], Theorem 1.1). The triple

(NC(W, c), 〈c〉,Cat(W, q))

exhibits the cyclic sieving phenomenon. �

In order to keep this in mind, we should translate again what this actu-
ally means, namely for 1 ≤ t ≤ h

#(NC(W, c))c
t
= Cat(W, zo(ct))

where

(NC(W, c))c
t
= {w ∈W | ctwc−t = w}.

Of course for t = h these are all elements in NC(W, c) and its number is
given by Cat(W, 1). Moreover, as one expects, Cat(WAn , 1) = Cn.

Next, we figure out what conjugation by the Coxeter element means
for the classical cases NCA(n) and NCD(n). Recall from Theorem 5.2 the
isomorphism f : NC(WAn−1

, c) → NCA(n + 1). As in the context of this
theorem we assume that An has the same numbering and we consider the
same Coxeter element c = s1 · · · sn as there.

Proposition 5.11. Let w ∈ NC(WAn , c) and let t ∈ N. Then, f(ctwc−t)
is the partition f(w) rotated by t 2π

n+1 .

Proof. The Coxeter element is of the form

c = s1 · · · sn = (1, 2) · · · (n, n+ 1) = (1, 2, 3, . . . , n + 1).

We can write an element of NC(WAn , c) ⊂ Sn+1 as a product of disjoint
cycles. It is sufficient to observe the conjugation by the Coxeter element of
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one of these cycles,

(1, 2, . . . , n+ 1)(p1, p2, . . . , pk)(n + 1, n, . . . , 2, 1)

= ([p1 + 1], . . . , [pk + 1]),

where [pj + 1] = (pj + 1)mod(n + 1) if pj + 1 6= n+ 1 and [pj + 1] = n + 1
otherwise, and we see that this is just the clockwise rotation. �

Remark 5.12. T. Araya [3] also observes this phenomenon concerning
rotation of ‘non-crossing spanning trees’ which are in correspondence with

exceptional sequences of Db(mod(k ~An)).

In the Dn-case, simple rotation is not enough. Therefore, we introduce
the following action on NCD(n).

Definition 5.13. Let w ∈ NCD(n). Denote by ρ : NCD(n)→ NCD(n)
the rotation of w by π

n−1 and denote by σ : NCD(n)→ NCD(n) the following

operation: If w ∈ NCD(n) contains a non-zero block containing n or −n,
the visualisation of this block is labeled by a sign + or −. Then, σ changes
this sign. On blocks not containing n or −n or on zero-blocks σ acts like
the identity.

Now let f : NC(WDn , c) → NCD(n) be as in Theorem 5.4 where Dn is
numbered as there and where c = s1 · · · sn.

Lemma 5.14. Let w ∈ NC(WDn , c) and let f(w) be the corresponding
element in NCD(n). Then,

f(cwc−1) = (σρ)(f(w)).

Proof. The Coxeter element is given by

c = s1 · · · sn = (1, 2, . . . , n− 1,−1, . . . ,−(n− 1))(n,−n).
Let w ∈ NC(W ~Dn

, c). Then, f(w) is a disjoint union of blocks corresponding
to a disjoint product w of cycles in S2n. Thus, it is sufficient to consider the
blocks separately.

If n is not contained in the block, conjugation by the Coxeter element of
the corresponding cycle yields as in the An-case a rotation by 2π

2(n−1) =
π

n−1 .

If n is contained in a non-zero block, this block corresponds to one part
(i1, . . . , ik) of a paired cycle with ik = n and one can easily check that

c(i1, . . . , ik)c
−1

is given by the ‘rotated cycle’ in which additionally n is replaced by −n.
If we have a zero-block, this corresponds to the balanced cycles (n,−n)

and the cycle formed by the entries of the zero block other than n and −n.
The latter conjugated by the Coxeter element is again given by the ‘rotated
cycle’ and

c(n,−n)c−1 = (n,−n).
Hence, we get the ‘rotated zero-block’. �





CHAPTER 6

Thick subcategories for tame hereditary algebras

In this chapter we classify the thick subcategories of Db(mod(A)) where
A is a hereditary algebra over a field k of finite or of tame representation
type.

Recall from Chapters 4 and 2.4 the shape of Db(mod(A)).
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R[−1] R[0] R[1]

Q[−1] P[0] Q[0] P[1]

Moreover, recall from Chapter 2 the two notions of subcategories in this
context, namely the wide subcategories of mod(A) and the thick subcate-
gories of Db(mod(A)). By Theorem 2.29 they correspond to each other
and therefore, we are allowed to jump between the two concepts if this is
convenient.

Our classification is divided into two parts. First we present the classi-
fication of the thick subcategories generated by an exceptional sequence.

Definition 6.1. An A-module X is called exceptional if X is indecom-
posable and Ext1(X,X) = 0. A sequence (X1,X2, . . . ,Xr) of A-modules is
called exceptional if each Xi is exceptional and

HomA(Xj ,Xi) = 0 = Ext1A(Xj ,Xi) for all i < j.

Such a sequence is called complete if r equals the number of simple A-
modules.

Thick subcategories generated by exceptional sequences are classified via
noncrossing partitions. We denote the set of these thick subcategories by
Thexc(A).

But not each thick subcategory is of this form. For example, let A be
the Kronecker algebra. It is well-known that its regular part R decomposes
into a direct sum of uniserial categories of rank one. By Theorem 4.12, R is
a wide subcategory of mod(A) for each tame hereditary algebra and hence,
it induces a thick subcategory of Db(mod(A)). But none of the objects in
R is exceptional and thus, it is certainly not generated by an exceptional
sequence.

Hence, in a second step, we classify the thick subcategories of the regular
part R.

Finally, we study how the two classes fit together and state the classifi-
cation theorem about all thick subcategories of Db(mod(A)).

49
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1. Thick subcategories and noncrossing partitions

First of all, a remark on the history of this classification theorem. The
first formulation is due to Ingalls and Thomas [53] in the context where A
is a path algebra of a Dynkin or an extended Dynkin quiver. A generalisa-
tion of this is given by Igusa, Schiffler and Thomas in [52] for path algebras
of arbitrary quivers over an algebraically closed field using braid group ac-
tions. The statement also holds without the assumption that the field is
algebraically closed (see Krause [59]).

Theorem 6.2 (Ingalls-Thomas, Igusa-Schiffler-Thomas, Krause). Let A

be a hereditary k-algebra. Let ~Γ be the associated valued oriented graph, let
W = WΓ be the associated Weyl group and let {1, . . . , n} be an admissible

numbering of ~Γ. Let c be the Coxeter transformation c = s1 · · · sn. There is
an order preserving bijective correspondence between

• the set Thexc(A) of thick subcategories S of Db(mod(A)) generated
by an exceptional sequence in mod(A), and
• the set NC(W, c) of noncrossing partions.

Proof. For a detailed proof see [59]. �

We state some explanations concerning the above theorem.

Remark 6.3. (1) Note that originally, the formulation of Ingalls
and Thomas was a bijection between the noncrossing partitions
and the wide subcategories of mod(A) but as mentioned these cor-
respond to the thick subcategories of Db(mod(A)). However, this
explains why we speak of exceptional sequences in mod(A) and also
this explains how an exceptional sequence in mod(A) generates a
thick subcategory in Db(mod(A)).

(2) The correspondence of the theorem is given as follows. We denote
it by cox. Let S be a thick subcategory generated by an exceptional
sequence E = (E1, . . . , Er). Then

cox(S) := sE1
· · · sEr

where sEi = sdim(Ei). Recall from Chapter 5 that there is a bi-
jection between reflections sβ and positive real roots β. Since Ei

is exceptional, dim(Ei) is a positive real root by Theorem 4.6 and
hence it makes sense to define cox like this.

(3) Note that if {1, . . . , n} is an admissible numbering, then the se-
quence of simple modules (S1, . . . , Sn) in this very order is an ex-
ceptional sequence. Thus, the whole category Db(mod(A)) which
is generated by this sequence corresponds to the Coxeter transfor-
mation c.

Remark 6.4. If the algebra is of finite representation type, then one
can easily see that each thick subcategory is generated by an exceptional
sequence. Hence, for the finite type the classification is done at this point.

Observe that the theorem implies that for most of the Weyl groups which
are not finite the poset of noncrossing partitions does not form a lattice with
respect to the absolute order since Thexc(A) does not and since cox preserves
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the order of the posets. For instance, consider a tame hereditary algebra
whose regular part admits a tube of rank 2 with regular simple modules R1

and R2. These are exceptional modules and hence Thick(R1),Thick(R2) ∈
Thexc(A). But Thick(R1) ∨ Thick(R2) = Thick(R1, R2) is the whole tube
and we cannot find an exceptional sequence in it.

On the other hand, for finite Weyl groups it confirms the lattice prop-
erty for NC(W, c) since here Thexc(A) coincides with the set of all thick
subcategories and this is a lattice.

An important construction in this context is the Kreweras complement
introduced in Chapter 5. The next proposition is concerned with the corre-
sponding operation on the level of thick subcategories.

Proposition 6.5. Let A be a hereditary k-algebra, let cox, c, W be
as in Theorem 6.2. Let S be a thick subcategory which is generated by an
exceptional sequence. Then,

Kc(cox(S)) = cox(⊥S).
�

This is exactly what one would expect since both the Kreweras comple-
ment and the perpendicular category are lattice complements as soon as the
respective poset forms a lattice.

The proof of the above fact can be deduced from the definition of the
Kreweras complement and the following important observation.

Proposition 6.6 (Krause [59], Proposition 6.6). Let A be a heredi-
tary k-algebra. Let S be a thick subcategory of Db(mod(A)) which is gener-
ated by an exceptional sequence (E1, . . . , Er) in mod(A). Then, one can
complete this to a complete exceptional sequence (E1, . . . , En) such that
⊥S = Thick(Er+1, . . . , En). �

Braid group actions. The key to the proof of Theorem 6.2 is the intro-
duction of braid group actions on sequences of reflections and on exceptional
sequences. The braid group on n strands has the following presentation

Bn := 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σrσs = σsσr〉
where 1 ≤ i ≤ n − 2 and |r − s| ≥ 2. On the set of isomorphism classes of
complete exceptional sequences of mod(A) this acts via

σi((X1, . . . ,Xn)) = (X1, . . . ,Xi−1, L,Xi,Xi+2, . . . ,Xn)

for all 1 ≤ i ≤ n−1 where L is the unique module making the new sequence
exceptional.

On the set of sequences of reflections (x1, . . . , xn) such that c = x1 · · · xn,
Bn acts like this:

σi((x1, . . . , xn)) = (x1, . . . , xi−1, xixi+1x
−1
i , xi, xi+2, . . . , xn)

for all i.

Theorem 6.7 (Crawley-Boevey [33], Ringel [76], Igusa-Schiffler [52]).
Let A be a connected hereditary k-algebra with simple modules S1, . . . , Sn

forming an exceptional sequence (S1, . . . , Sn). Let W be the associated Weyl
group and fix a Coxeter element c = s1 · · · sn. Then, the braid group Bn on
n strings acts transitively on
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• the isomorphism classes of complete exceptional sequences

(X1, . . . ,Xn)

in mod(A), and
• the sequences (x1, . . . , xn) of reflections such that c = x1 · · · xn.

Moreover, σ(X1, . . . ,Xn) = (Y1, . . . , Yn) implies

σ(sX1
, . . . , sXn) = (sY1

, . . . , sYn)

for all σ ∈ Bn. �

This means that we get all possible factorisations of the Coxeter element
into reflections by starting with c = s1 · · · sn and applying the braid group
action. In particular, it gives us all noncrossing partitions as prefixes of
these factorisations.

Moreover, it shows how to compute the inverse of the bijection cox.
Namely, given w ∈ NC(W, c). Write this as a product x1 · · · xr of reflec-
tions. Since w ∈ NC(W, c), we can extend this to a product of n reflections
x1 · · · xrxr+1 · · · xn factorising c. By the theorem, there is σ ∈ Bn such that
σ((s1, . . . , sn)) = (x1, . . . , xn). Apply the same σ to the exceptional sequence
(S1, . . . , Sn) and denote the resulting exceptional sequence by (X1, . . . ,Xn).
Setting S := Thick(X1, . . . ,Xr) we have

cox(S) = sX1
· · · sXr = x1 · · · xr = w.

2. Thick subcategories of the regular part

Let R be the subcategory of regular modules of mod(A). Recall from
Chapter 4.3 that this is of the form

R =
∐

j∈J

Hj ×
s∐

i=1

Uni

where all the notations are as described there.
By Theorem 4.12 the regular part R is a wide subcategory of mod(A)

and hence it is an abelian category. Therefore, we may consider wide sub-
categories of R and these are in turn wide subcategories of mod(A).

We call an object in Db(mod(A)) regular if it is isomorphic to some shift
of a regular object in mod(A). By Theorem 2.29 and again 4.12, the regular
objects of Db(mod(A)) form a thick subcategory of Db(mod(A)). We denote
the set of thick subcategories of this thick subcategory by Threg(A). Equiv-

alently, this is the set of thick subcategories of Db(mod(A)) consisting only
of regular objects. Moreover, it corresponds to the set of wide subcategories
of R.

The aim is to understand Threg(A). In order to do so, we classify the
wide subcategories of R. We start with the wide subcategories of the unis-
erial direct factors of R separately.

All the following is loosely based on Dichev’s classification [34] of wide

subcategories of the category of nilpotent representations of Ãn.

Definition 6.8. An indecomposable object X in an abelian category
is called a brick if its endomorphism ring End(X) is a division ring. Two
bricks X and X ′ are called orthogonal if Hom(X,X ′) = 0 = Hom(X ′,X).
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Definition 6.9. Place the numbers 1, . . . , n clockwise around a circle.
An arc on the circle is a pair a = (i, j), i, j ∈ {1, . . . , n}. Corresponding to
an arc (i, j) we draw an arc clockwise around the circle from i to j. For an
arc a = (i, j) we denote by s(a) = i its start and by e(a) = j its end point.
Note that (i, j) is different from (j, i). If i = j we make the convention that
(i, i) corresponds to an arc which circles the circle once.

i

j

i

Figure 1. Arcs (i, j), (j, i) and (i, i).

We say that two arcs cross if the corresponding arcs on the circle inter-
sect whereas we make the following convention concerning the coincidence
in one point. Two arcs a and b are not regarded as crossing if s(a) = e(b)
or vice versa (and if they do not cross anywhere else), but they are crossing
if s(a) = s(b) or e(a) = e(b).

i

j

r

s

i = r

s

j

i

j = r
s

i

r

s

j

Figure 2. The arcs (i, j), (r, s) in the figure cross, cross, do
not cross, do not cross (from left to right).

Then, the set of noncrossing arcs on a circle with n points is by definition
the set NA(n) of families (a1, . . . , ar) of arcs which pairwise do not cross.

By definition the empty family consisting of no arcs at all is an element
of NA(n).

Proposition 6.10. Let Un be a connected uniserial length category with
n simple objects R1, . . . , Rn. There is a bijective correspondence between

(1) the set of wide subcategories of Un,
(2) the set of families of pairwise orthogonal bricks in Un, and
(3) the set NA(n) of noncrossing arcs on a circle with n points.

Proof. First note that the subcategory {0} corresponds to an empty
family of bricks which corresponds to the empty family of noncrossing arcs.
Now we can assume that all objects are non-zero or non-empty, respectively.
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We begin with the correspondence of the first two sets. Let C be a wide
subcategory of Un =: U . Let (E1, . . . , Er) be a complete family of simple
objects in C. We claim that this gives us a family of pairwise orthogonal
bricks. Since C is closed under kernels and cokernels, we can argue as in
Schur’s lemma: If f : S → S′ is a non-zero morphism between two simple
objects in C, then Ker(f),Coker(f), Im(f) belong to C. If f is not an iso-
morphism, then either the kernel is a proper non-zero subobject of S or the
image is a proper non-zero subobject of S′. But then, S or S′ would not be
simple, a contradiction. Hence, the simple objects are pairwise orthogonal.
The argument above can also be used if S = S′, i.e. if S is simple, there are
no non-invertible endomorphisms of S and hence, End(S) is a division ring.

Vice versa, if (E1, . . . , Er) is a family of pairwise orthogonal bricks, we
assign to it the wide subcategory Thick(E1, . . . , Er), i.e. the smallest wide
subcategory containing {E1, . . . , Er}. (We use here the same notation as
for thick subcategories to avoid a new name again and since it corresponds
anyway.)

In order to show that these two assignments give a bijective correspon-
dence, it remains to show that

• if (E1, . . . , Er) is a family of pairwise orthogonal bricks, then the
bricks E1, . . . , Er are the simple objects in Thick(E1, . . . , Er), and
• if E1, . . . , Er are the simple objects of a thick subcategory C, then
C = Thick(E1, . . . , Er).

Let E = (E1, . . . , Er) be a family of pairwise orthogonal bricks. Let E be the
full subcategory of Un consisting of objects which have a composition series
with composition factors isomorphic to one of E1, . . . , Er. In [80, Chapter
X] we find the proof that E is an exact abelian extension-closed subcategory
of U . (It is shown in the setting that the ambient category is a module
category, but there are no properties needed which are not given here.)
Therefore, since Thick(E1, . . . , Er) is the smallest exact abelian extension-
closed subcategory of U containing E1, . . . , Er, Thick(E1, . . . , Er) ⊆ E . The
other inclusion is immediate by induction on the composition length of an
object in E . Hence, Thick(E1, . . . , Er) = E and clearly, E1, . . . , Er are the
simple objects in E and therefore in Thick(E1, . . . , Er).

Next, if E1, . . . , Er are the simple objects in a thick subcategory C, then
clearly, C is the same as the full subcategory of objects in U which admit a
composition series with composition factors isomorphic to one of the Ei. As
seen above this is equal to Thick(E1, . . . , Er).

Finally, we show the correspondence between the second and the third
set. It is given as follows. Let R1, . . . , Rn be the simple objects in Un
numbered as indicated in the sequel of Proposition 4.15. Recall that the
indecomposable objects in Un are uniquely determined by their socle and

their length. For convenience denote here by Rr
i := R

[r]
i the indecomposable

object with length r and socle Ri (the lower index should not be confused
with the length as in the notation using the top to classify the object). Let
c denote the permutation c = (1, 2, . . . , n) of the set {1, . . . , n}. Now let
E = Rr

i be a brick in Un. Then, we assign to E the arc (i, cr(i)). This
actually gives an arc since by [36, Theorem 3.5] the length of E is ≤ n
since E is a brick. In this manner we assign to a family of orthogonal bricks
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(E1, . . . , Es) a family of arcs (a1, . . . , as). Vice versa, if we have an arc (i, j),
there is a number 1 ≤ r ≤ n with j = cr(i), and we assign to (i, j) the
unique brick Rr

i and proceed analogously with a family of noncrossing arcs.
By definition the composition of these two assignments equals the identity.
It remains to show that actually two arcs (i, cr(i)) and (j, cp(j)) cross if and
only if Hom(Rr

i , R
p
j ) 6= 0 or Hom(Rp

j , R
r
i ) 6= 0.

Suppose that (i, cr(i)) and (j, cp(j)) cross. Without loss of generality we
may assume the following situation: the start point j of the second arc lies
between i and cr(i) and the end point cp(j) lies beyond cr(i) going clockwise
around the circle. In other words, there is a number 0 ≤ q < r with j = cq(i).
Hence, (j, cr(i)) = (j, cr−q(j)) with r − q > 0. Moreover, p ≥ r − q since

cp(j) lies beyond cr(i) = cr−q(j). This gives us an inclusion i : Rr−q
j � Rp

j

and a projection p : Rr
i � Rr−q

cq(i) = Rr−q
j . The existence of the projection

is shown by using induction to check that the top of Rr
i is Rcr−1(i). Hence,

if the arcs cross, we have a morphism f = i ◦ p : Rr
i → Rp

j . This is not
zero since otherwise p would be zero since i is a monomorphism. But this
is certainly not the case.

Now let f : Rr
i → Rp

j be a non-zero morphism. Then Im(f) is a non-zero

subobject of Rp
j which is a brick as well and with socle Rj and length q with

1 ≤ q ≤ p. Also it is a quotient of Rr
i , thus there is a number 0 ≤ t < r

with Im(f) = Rr−t
ct(i). Hence, Rq

j = Im(f) = Rr−t
ct(i) which implies ct(i) = j

and q = r − t. Therefore, j = ct(i) lies between i and cr(i) (not coinciding
with cr(i)). Moreover, p ≥ q = r − t⇒ p + t ≥ r and hence cp(j) = cp+t(i)
lies beyond cr(i). Altogether, (i, cr(i)) and (j, cp(j)) cross. �

Remark 6.11. We changed Dichev’s definition of noncrossing arcs on
the circle a bit. This will enable us to deal also with extensions on the level
of the arcs in the next section.

Remark 6.12. Behind the idea of the noncrossing arcs on the circle
there is covering theory. We could also consider arcs between integers on
the number line. Identifying each simple object S with τn(S) gives us the
circle.

Theorem 6.13. Let A be a tame hereditary algebra with regular part R
decomposing as

∐
j∈J Hj ×

∐s
i=1 Uni . Then, there is a bijective correspon-

dence between

• the set Threg(A) of thick subcategories of Db(mod(A)) consisting
only of regular objects, and
• the set {(p, x1, . . . , xs) | p ∈ 2J , xi ∈ NA(ni)}.

Proof. As mentioned above the set Threg(A) is in correspondence with
the set of wide subcategories of R. Then, the definition of the correspon-
dence is obvious in consideration of Proposition 6.10. Additionally, we have
to recognise that each of the direct factors of R is exact abelian extension-
closed and that there are no non-zero morphisms between different direct
factors. The latter is true since objects from different factors do not have
composition factors in common.

Moreover, observe that uniserial categories with one simple object do not
admit proper thick subcategories and therefore, either the whole factor Hj is
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part of the thick subcategory or none of it is. This explains the appearance
of the power set 2J . �

3. Thick subcategories of Db(mod(A))

Finally, we bring the previous results together and state the main clas-
sification theorem.

In the previous sections, we have seen the classification of thick subcat-
egories which are generated by exceptional sequences on the one hand and
the classification of thick subcategories which only consist of regular objects
on the other hand.

The next proposition explains how these two fit together. It is due to
Dichev [34] in the case that the algebra is a tame hereditary algebra over
an algebraically closed field. We adapt the proof to the not algebraically
closed case without greater difficulties.

Proposition 6.14. Let A be a tame hereditary algebra over a field k. Let
C be a thick subcategory of Db(mod(A)). Then, at least one of the following
holds.

(1) The thick subcategory C is generated by an exceptional sequence in
mod(A);

(2) each object in C is regular.

Proof. Since in this proof we want to work with concepts like projective
objects and extensions, instead of a thick subcategory C of Db(mod(A)) we
will now and then consider its corresponding wide subcategory {H0(C) |
C ∈ C} and denote it by the same letter.

Let (Γ, d) be the valued graph of the algebra A. This is an extended
Dynkin diagram since the algebra is tame. Let C be a thick subcategory of
Db(mod(A)).

We assume that the second statement does not hold and claim that then
C is generated by an exceptional sequence.

If C does not only consist of regulars, there is an indecomposable pre-
projective or preinjective module X which is simple in C. Without loss of
generality we may assume that X is preprojective, i.e. X ∼= τ−l(Pm) where l
is a positive integer, m ∈ Γ and Pm is the indecomposable projective object
associated with m.

Let D := τ l(C). We show that D is generated by an exceptional sequence
which implies that C is generated by the τ−l-shift of this sequence which is
exceptional as well since τ is an auto-equivalence on Db(mod(A)).

Let SP denote the set of preprojective objects which are simple in D, SQ
those objects which are preinjective and simple in D and SR those objects
which are regular and simple in D. Note that D = Thick(SQ ∪ SR ∪ SP).
The modules in SQ ∪SR ∪SP are pairwise orthogonal since they are simple
in D. Then, Pm is an element in SP .

Within SP and SQ we can order the modules in the following manner to
an exceptional sequence. Let A,B ∈ SP with A = τ−i(P1) and B = τ−j(P2)
where P1 and P2 are indecomposable projective. There are no non-zero
morphisms between A and B in either direction because they are simple. If



3. THICK SUBCATEGORIES OF Db(mod(A)) 57

j ≥ i, then we put B in front of A in our sequence and with this we make
sure that Ext1(A,B) ∼= Ext1(P1, τ

i−j(P2)) = 0. The same works within SQ.
Now we try to do the same in SR. Let R be a non-zero object in SR. If

such an object does not exist, SQ ∪ SP gives us immediately an exceptional
sequence which generates D. Otherwise as mentioned in Chapter 4.1 we
have

dimEnd(Sm)Hom(Pm, R) = (dim(R))m.

On the other hand, Hom(Pm, R) = 0 since Pm and R are simple objects
in D. Hence, dim(R) is not sincere. Moreover, the regular length of R is
strictly smaller than the rank n of the tube in which R lies. This is because
all objects in that tube of regular length ≥ n are sincere since the objects
of regular length n already are sincere because they are homogeneous. This
implies that SR is finite since there are only finitely many tubes of rank
strictly greater than one. Also we get that all R ∈ SR are exceptional and
hence by Theorem 4.6 dim(R) is a positive real root for all R ∈ SR.

Summing up, for all R ∈ SR we have (dim(R))m = 0 for a fixed vertex
m ∈ Γ.

Let (Γ′, d′) be the valued graph which we get from (Γ, d) if we remove
the vertex m from Γ and adjust the valuation d. Since (Γ, d) is extended
Dynkin, the result is either one Dynkin diagram (the one corresponding
to the extended Dynkin diagram (Γ, d)) or it splits up into two Dynkin
diagrams. To see this, check the lists of diagrams in Chapter 4.

Thus, we can consider each R ∈ SR as an indecomposable representation
of Γ′ since dim(R) is a positive real root for Γ′. In this setting we can order
the objects in SR to an exceptional sequence as above since in the Dynkin
case all representations are preprojective. The exceptionality carries over to
mod(A) since if there was a non-trivial extension of two objects in mod(A),
this would also be a non-trivial extension in the category of representations
of Γ′.

Hence, within SR we can order the objects to an exceptional sequence.
Moreover, by Proposition 4.16 we have that Ext1(SP ,SQ), Ext1(SP ,SR)

and Ext1(SR,SQ) are zero.
Altogether, we have shown that we can order the simple objects in D to

an exceptional sequence. �

The above proposition does not yet complete the classification since there
are thick subcategories which are both generated by an exceptional sequence
and in which all objects are regular. For example, suppose there is a uniserial
subcategory of mod(A) with three regular simple objects R1, R2, R3. Then
(R2, R1) forms an exceptional sequence which generates a thick subcategory
only consisting of regular objects.

Therefore, we need to refine the definition of noncrossing arcs on a circle.

Definition 6.15. We call an object x ∈ NA(n) exceptional if we cannot
arrange a subfamily of arcs of x to a sequence (a1, . . . , ar) such that s(ai+1) =
e(ai) for 1 ≤ i < r and s(a1) = e(ar). We denote the set of these elements
by

NAexc(n) := {x ∈ NA(n) | x exceptional}.
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Figure 3. A possible x ∈ NA(n) \ NAexc(n).

In the sequel we use the notations and concepts introduced in Section 2
of this chapter, in particular in the proof of Proposition 6.10.

Lemma 6.16. Let Un be a connected uniserial category with n simple
objects. Let x = (a1, . . . , ar) ∈ NA(n) and let (E1, . . . , Er) be the corre-
sponding sequence of pairwise orthogonal bricks in Un. Then, x ∈ NAexc(n)
if and only if we can rearrange (E1, . . . , Er) to an exceptional sequence.

Proof. Again we denote by R1, . . . , Rn the simple objects in Un.
Start with the following observation. Let (i, cr(i)) and (j, cp(j)) be two

arcs such that cr(i) = j. Then, we have for the corresponding bricks

Ext1(Rp
j , R

r
i )
∼= DHom(Rr

i , τ(R
p
j )) = DHom(Rr

i , R
p

c−1(j)
)

and this is non-zero since (i, cr(i)) and

(c−1(j), cp(c−1(j))) = (cr−1(i), cr+p−1(i))

cross.
Now let (E1, . . . , Er) and (a1, . . . , ar) be as in the statement.
Assume first that (a1, . . . , ar) is not exceptional, i.e. we can arrange

parts of it to a sequence as in the definition of exceptionality. Without loss of
generality this arrangement is again denoted by (a1, . . . , ar) and (E1, . . . , Er)
is the corresponding sequence of bricks. Let us try to order this sequence to
an exceptional sequence. We are free to start with E1. By the preliminary
observation we know that Ext1(E2, E1) 6= 0 and hence we have to put E2

in front of E1. Then, Ext1(E3, E2) 6= 0 forces us to put E3 in front of E2

and therefore also in front of E1. This goes on and we are forced to the
following order (Er, Er−1, . . . , E2, E1) which is not exceptional since also
Ext1(E1, Er) 6= 0.

Next, assume that (a1, . . . , ar) is exceptional. Then, we find an index
i ∈ {1, . . . , n} such that (i, c(i)) is not surrounded by any arc of (a1, . . . , ar).
Here not being surrounded means formally that there is no arc of the form
(j, cp(j)) with i = cq(j) for some 0 ≤ q < p. If such an i did not exist, it
would contradict the assumption that (a1, . . . , ar) is exceptional.

The fact that none of the arcs surrounds (i, c(i)) corresponds to the
fact that none of the bricks contains Ri as a composition factor. Without
loss of generality we may assume i = n. The full subcategory of Un in
which all objects do not have Rn as a composition factor is equivalent to
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mod(k ~An−1) with ~An−1 linearly oriented. See for instance [63, Proposition
5.2]. But in the Dynkin case we can order the bricks to an exceptional
sequence since they are anyway pairwise orthogonal. Moreover, the bricks
do not have self-extensions since otherwise the corresponding arc would not
be exceptional. �

Altogether this gives the following classification theorem.

Theorem 6.17. Let A be a tame hereditary k-algebra with regular part
R decomposing as

∐
j∈J Hj ×

∐s
i=1 Uni . The poset of thick subcategories of

Db(mod(A)) is given by the union of posets

Thexc(A) ∪ Threg(A)

where one has bijective correspondences

Thexc(A) ←→ NC(W, c),

Threg(A) ←→ {(p, x1, . . . , xs) | p ∈ 2J , xi ∈ NA(ni)},
Thexc(A) ∩Threg(A) ←→ {(x1, . . . , xs) | xi ∈ NAexc(ni)}.
Proof. That the union is in bijection with the poset of thick subcate-

gories, follows from Proposition 6.14.
The correspondences for Thexc(A) and Threg(A) are stated in Theorem

6.2 and Theorem 6.13. The classification of the intersection follows imme-
diately from Lemma 6.16. �

Unfortunately, it is not possible to formulate this adequately as a sum
of lattices. This fails already for the reason that NC(W, c) is not a lattice in
most cases.





CHAPTER 7

Finite algebraic triangulated categories

One of the main goals of this thesis is to classify thick subcategories of
algebraic triangulated categories of finite type. This chapter provides the
necessary information about these categories.

Throughout this chapter we assume that k is an algebraically closed
field.

Recall that a triangulated category is called algebraic if it is triangu-
lated equivalent to the stable category F of a Frobenius category F . By
Theorem 2.10 such categories are triangulated.

The main example for us is the stable module category mod(A) of a self-
injective algebra A. In fact, the whole classification of algebraic triangulated
categories of finite type is a generalisation of the classification of self-injective
algebras of finite representation type due to Riedtmann [70] and Asashiba
[5]. Although the theory for self-injective algebras is covered by this general
theory, we will present the important results for self-injective algebras in the
next chapter.

A further important example is the stable category CM(R) of maximal
Cohen-Macaulay modules over a commutative complete local Gorenstein
isolated singularity R.

Definition 7.1. A triangulated category T is called locally finite (after
[85]) if for each indecomposable X of T there are at most finitely many
isomorphism classes of indecomposables Y such that HomT (X,Y ) 6= 0. If
there are only finitely many indecomposable objects at all the category is
called finite.

The structure of a locally finite triangulated category is classified via
the shape of its Auslander-Reiten quiver. In order to describe this shape,
we recall some definitions and notations concerning translation quivers and
automorphism groups of quivers.

Let ~∆ = (~∆0, ~∆1, s, t) be a quiver. For a vertex x ∈ ~∆0 we denote by
x+ the set of direct successors of x and by x− the set of direct predecessors
of x.

In Chapter 2 we already got to know the repetition Z∆ of a quiver ~∆.

Definition 7.2. A group of automorphisms G of a quiver ~∆ is said to
be admissible [70] if no orbit of G intersects a set of the form {x} ∪ x+ or
{x} ∪ x− in more than one point. It is said to be weakly admissible [35] if,

for each g ∈ G \ {1} and for each x ∈ ~∆0 we have x+ ∩ (gx)+ = ∅. Note
that admissible implies weakly admissible.

Theorem 7.3 (Xiao/Zhu [85]). Let T be a Krull-Schmidt locally finite
connected triangulated category. Then, the Auslander-Reiten quiver ΓT of

61
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T is isomorphic to Z∆/Φ where ∆ is Dynkin of type A,D or E and Φ is a
weakly admissible group of automorphisms of Z∆. The underlying graph ∆
is unique up to isomorphism, and the group Φ is unique up to conjugacy. �

Example 7.4. Let G = 〈x | xp = 1〉 be the cyclic group of prime order
p. Let k be a field with char(k) = p. Then, the group algebra kG (for
the definition of kG see Chapter 8) is of the form k[X]/(X − 1)p. The
indecomposable kG-modules are given by k[X]/(X−1)i for 1 ≤ i ≤ p where
this is projective and injective for i = p. The Auslander-Reiten sequences
look as follows.

k[X]/(X − 1)i → k[X]/(X − 1)i+1 ⊕ k[X]/(X − 1)i−1 → k[X]/(X − 1)i

for 1 < i ≤ p− 1. Hence, the Auslander-Reiten quiver of mod(kG) is of the
form ZAp−1/〈τ〉.

The result of Xiao und Zhu generalises Riedtmann’s Theorem [70] which
says that the stable Auslander-Reiten quiver of a representation-finite alge-
bra is isomorphic to Z∆/Φ where ∆ is Dynkin and Φ is an admissible group
of automorphisms. Riedtmann also gives a complete list of possible admis-
sible groups of automorphisms of Z∆. Xiao and Zhu as well as Amiot [1]
extend this list to a list of possible weakly admissible groups of automor-
phisms as follows.

Theorem 7.5 (Xiao/Zhu [85]). Let ∆ be a Dynkin graph and let Φ be a
non trivial weakly admissible group of automorphisms of Z∆. This is a list
of its possible generators.

• ∆ = An with n odd: possible generators are τ r and φτ r with r ≥ 1
where φ is the reflection at the ‘central line’ of ZAn which is given
by the vertices {(i, n+1

2 ) | i ∈ Z}. Here we take as a basis of ZAn

the linearly oriented ~An.

1 // 2 // · · · // n− 1 // n
• ∆ = An with n even: then possible generators are φτ r with r ≥ 1
where φ(p, q) = (p + q − n

2 − 1, n + 1− q). Here φ2 = τ .
• ∆ = Dn with n ≥ 5: possible generators are τ r and φτ r with r ≥ 1
where φ exchanges (i, n−1) and (i, n) ∀i ∈ Z and fixes the other ver-
tices of ZDn. Here we take as a basis of ZDn the linearly oriented
~Dn. n

1 // 2 // · · · // n− 3 // n− 2
''P

PPP
P

66mmmmmmm

n− 1
• ∆ = D4: possible generators are τ r and φτ r with r ≥ 1 and where φ
is either defined as for n ≥ 5 or as follows. Again with the linearly

oriented ~D4, φ((i, 3)) = (i, 4), φ((i, 4)) = (i − 1, 1), φ((i − 1, 1)) =
(i, 3) and φ((i, 2)) = (i, 2) ∀i ∈ Z.
• ∆ = E6: possible generators are τ r and φτ r with r ≥ 1 and where
φ is the reflection at the central line of ZE6 which is given by
{(i, 3), (i, 4) | i ∈ Z}. Here we assume the following orientation
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and numbering.

4

1 2oo 3oo

OO

// 5 // 6
• ∆ = E7, E8: possible generators are τ r with r ≥ 1. �

Remark 7.6. The only weakly admissible group of automorphisms which
is not admissible occurs for An with n even and is generated by φ.

Remark 7.7. If T is locally finite, but not finite, then the group Φ of
automorphisms is trivial.

Now we know the shape of the Auslander-Reiten quiver of our categories.
But the classification goes even farther as we are able to classify them up to
triangulated equivalence. This is particularly convenient for our purposes of
classifying thick subcategories.

Theorem 7.8 (Amiot [1]). If T is a finite triangulated category which
is connected, algebraic and standard, then there exists a Dynkin diagram ∆

of type A,D or E and an auto-equivalence Φ of Db(mod(k~∆)) such that T
is triangle equivalent to the orbit category Db(mod(k~∆))/Φ. �

Remark 7.9. Since T is standard and since by Proposition 2.28 the

category of indecomposable objects in Db(mod(k~∆)) is equivalent to the
mesh category k(Z∆), ∆ and Φ are those induced by ∆ and the group of
automorphisms coming from the Auslander-Reiten quiver of T . We denote

the automorphism of Db(mod(k~∆)) induced by the group of automorphisms
Φ of Z∆ by the same character Φ.

Note that the construction of the orbit category requires an automor-
phism on T . A standard construction allows one to replace a category with
auto-equivalence by a category with automorphism.

Finally, one may ask whether each Dynkin type ∆ and each weakly ad-
missible group of automorphisms Φ give rise to a locally-finite triangulated
category with Auslander-Reiten quiver Z∆/Φ. Xiao and Zhu [85] point out

that this is actually true. Just take the orbit category Db(mod(k~∆))/Φ. To
show this one checks the assumptions in Keller’s Theorem 3.3 on triangu-
lated orbit categories.

However, it is not possible to realise each possible Auslander-Reiten
quiver Z∆/Φ via the stable module category of a representation-finite self-
injective algebra. Thus, the generalisation to an arbitrary algebraic trian-
gulated category really leads to a greater class of categories.

In order to name our categories precisely, we introduce the type of a finite
connected triangulated category. This is adopted from Asashiba’s approach
[5] for self-injective algebras.

Definition 7.10. Let T be a finite connected triangulated category
with Auslander-Reiten quiver ΓT

∼= Z∆/Φ. As we have seen, Φ is always
generated by an element φτ r with r ≥ 1 where φ is an automorphism of
order t = 1, 2, 3 or of infinite order (which only appears for An with n even).
Then we define the type of T to be typ(T ) = (∆, r, t) where t ∈ {1, 2, 3,∞}.

Note that the type does not depend on the orientation of ∆.



64 7. FINITE ALGEBRAIC TRIANGULATED CATEGORIES

The set of types of finite connected triangulated categories is equal to
the disjoint union of the following sets.

• {(An, r, 1) | n, r ∈ N};
• {(A2n+1, r, 2) | n, r ∈ N};
• {(A2n, r,∞) | n, r ∈ N};
• {(Dn, r, 1) | n, r ∈ N, n ≥ 4};
• {(Dn, r, 2) | n, r ∈ N, n ≥ 4};
• {(D4, r, 3) | r ∈ N};
• {(En, r, 1) | r ∈ N, n = 6, 7, 8};
• {(E6, r, 2) | r ∈ N}.



CHAPTER 8

Self-injective algebras

Every algebra is projective as a module over itself. If the algebra is also
injective, it is called self-injective.

The stable module category of a self-injective algebra is our most impor-
tant example of an algebraic triangulated category. Hence, in this chapter,
we collect some knowledge about self-injective algebras.

Most importantly, the stable module category mod(A) of a self-injective
algebra is a triangulated category. We have already discussed this in Chapter
2.2. Recall that the shift Σ in the triangulated category mod(A) is given
by X 7→ Coker(X ↪→ E(X)). In literature, this equivalence is often called
Ω−1 with inverse Ω(X) the kernel of the projective cover of X, also known
as Heller’s syzygy functor.

Next to the definition above there are other criteria to check whether an
algebra is self-injective. An algebra is self-injective if and only if its projec-
tive and injective modules coincide. Also there is the following connection.

Definition 8.1. A finite-dimensional algebra A over a field k is called
Frobenius if A is equipped with a nondegenerate bilinear form (−,−) : A×
A→ k with (ab, c) = (a, bc) for all a, b, c ∈ A.

A Frobenius algebra is called symmetric if (−,−) is symmetric.

Proposition 8.2. A Frobenius algebra is self-injective. �

Moreover, being symmetric has a consequence which is important for
the appearance of thick subcategories.

Proposition 8.3 ([38],I.7.5). If the algebra A is symmetric, then τ ∼=
Ω2. �

Corollary 8.4. Let A be a symmetric algebra and let C be a thick
subcategory of mod(A). Let Γ0 be a connected component of the stable
Auslander-Reiten quiver of A. If an indecomposable X corresponding to
a vertex in Γ0 is in C, this holds for all indecomposables corresponding to
Γ0.

In particular, if mod(A) is connected, it does not contain non-zero proper
thick subcategories.

Proof. If X ∈ C, then also τ(X) = Ω2(X) ∈ C since C is thick. Hence,
the middle term of the Auslander-Reiten sequence ending in X belongs to
C. Thus, starting with X, we get everything corresponding to the connected
component Γ0. �

65
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Examples for self-injective algebras are preprojective algebras of repre-
sentation-finite hereditary algebras (see [54]), finite-dimensional Hopf alge-
bras (see [62]), Hecke algebras (see [39]), and group algebras of finite groups.
Let us recall some details concerning this last class of examples.

1. Group algebras

Definition 8.5. Let G be a finite group and let k be a field. The
group algebra kG consists of linear combinations of the form

∑
g∈G agg with

ag ∈ k ∀g ∈ G. Addition in kG is given by
∑

g∈G

agg +
∑

g∈G

agg =
∑

g∈G

(ag + bb)g,

multiplication by a scalar a ∈ k is defined as

a
∑

g∈G

agg =
∑

g∈G

aagg,

and finally, multiplication in kG is given by
∑

g∈G

agg
∑

g∈G

agg =
∑

g∈G,h∈G

(agbh)gh.

Proposition 8.6. Let G be a finite group. The group algebra kG is
self-injective.

Proof. One can show that the following bilinear form turns kG into
a symmetric Frobenius algebra. Namely, for a, b ∈ G define (a, b) := the
coefficients of 1 ∈ G in ab if ab is expressed in the group basis. For instance
see [38, I.3.2]. �

The following statement shows that the characteristic of the field has a
great influence on the category of modules over the group algebra.

Theorem 8.7 (Maschke). Let G be a finite group and let k be a field.
Then, the group algebra kG is semisimple if and only if the characteristic of
k does not divide the order of G. �

Hence, if char(k) - |G|, the module category of kG is not particularly
interesting. Concerning thick subcategories of mod(kG), that would mean
that they are classified by collections of the simple kG-modules. Thus, if we
deal with p-groups for example, we will always assume that char(k) = p.

In this thesis, we are mostly interested in finite algebraic triangulated
categories and we have already seen how they look in Theorem 7.3 and
Theorem 7.8. Hence, we should think about what holds for group algebras.

First of all, the finiteness condition. For group algebras there is a char-
acterisation of those of finite representation type.

Theorem 8.8 (Higman). Let G be a finite group and let k be a field
of characteristic p dividing the order of G. The group algebra kG is re-
presentation-finite if and only if the Sylow p-subgroups of G are cyclic.

Proof. For a proof see for example [7, Theorem 5.6]. �
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Moreover, we want to know of which type in the sense of Definition 7.10
the categories mod(kG) are for a representation finite group algebra kG.
The answer is given in the following theorem.

Theorem 8.9 ([12], Corollary 6.3.5, Theorem 6.5.5). Let k be an alge-
braically closed field. Let B be a block of kG with defect group D. Then, B
has finite representation type if and only if D is cyclic.

If this is the case, i.e. D is cyclic of order pn, then the stable Auslander-
Reiten quiver of B is of the form ZApn−1/〈τ e〉 where e is the inertial index
of kG. �

For the definitions of block, defect group and inertial index see [12]. The
details are not important for our purpose. What is in particular important
is that representation-finite group algebras for p-groups are of type A. This
insight enables us to compare (and distinguish) our classification of thick
subcategories to that of Benson, Carlson and Rickard [14] for the stable
module category of the group algebra of a p-group. We will do this in
Chapter 11.

2. Finite representation type

There is an elaborate classification of representation-finite self-injective
algebras. As said, by now the theory is covered by the general theory dis-
cussed in Chapter 7. Nevertheless, it is worthwhile to present it here in
order to see which types actually occur for self-injective algebras. Moreover,
historically this is the guideline for the general theory.

Everything starts with Riedtmann’s Theorem on the shape of the Aus-
lander-Reiten quiver.

Theorem 8.10 (Riedtmann [70]). Let A be a finite-dimensional re-
presentation-finite algebra over an algebraically closed field k. Then, a con-
nected component of the stable Auslander-Reiten quiver of A is of the form
Z∆/Φ where ∆ is Dynkin of type A,D or E and Φ is admissible. �

We have already discussed admissible automorphism groups in Chapter
7.

Note that the theorem does not assume A to be self-injective. But if A
is self-injective, the theorem yields the most possible information about the
module category. Namely, in this case, we get the stable Auslander-Reiten
quiver from the original quiver by only deleting projective vertices. Thus,
one only has to study where in the quiver the projectives might be. This is
done by Riedtmann (and others) in her further work on self-injective algebras
for the different Dynkin types; see [71], [73], [72], [26]. In this thesis, this
is not needed since we are interested in the stable module category and
although we do not specify the position of the projectives, we do know the
triangulated structure by Theorem 7.8.

As indicated in Chapter 7, not each possible admissible automorphism
group occurs for self-injective algebras. The classification of Asashiba [5]
points out which ones do occur.

Let Λ be a representation-finite self-injective standard algebra with sta-
ble Auslander-Reiten quiver sΓΛ

∼= Z∆/〈φτ r〉. Here τ is the translation
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on Z∆ and φ is an automorphism of order 1, 2 or 3 defined in 7.5 such
that 〈φτ r〉 is an admissible group of automorphisms of Z∆. Define the
type typ(Λ) = (T (Λ), f(Λ), t(Λ)) of Λ where T (Λ) = ∆ is the tree class,
f(Λ) = r/m∆ is the frequency, t(Λ) is the order of φ and m∆ = h∆ − 1
where h∆ is the Coxeter number associated to ∆, i.e. the order of the Cox-
eter element.

Remark 8.11. Note that the definition of type in Chapter 7 is not the
generalisation of this one since the second entry is different. For instance,
if we have an algebra Λ with typ(Λ) = (A5, 2, 2), then the type of the
corresponding triangulated category is given by typ(mod(Λ)) = (A5, 10, 2).

The type determines Λ up to stable equivalence (i.e. a triangle equiva-
lence between the stable module categories).

Theorem 8.12 (Asashiba [5]). Let Λ,Λ′ representation-finite and self-
injective algebras.

(1) If Λ is standard and Λ′ is non-standard, then Λ and Λ′ are not
stably equivalent.

(2) If both Λ and Λ′ are standard, then Λ and Λ′ are stably equivalent
if and only if typ(Λ) = typ(Λ′).

(3) If both Λ and Λ′ are non-standard, then Λ and Λ′ are stably equiv-
alent if and only if typ(Λ) = typ(Λ′). �

Moreover, Asashiba gives a complete list of these types for standard
algebras.

Theorem 8.13 (Asashiba [5]). The set of types of standard self-injective
algebras of finite representation type is equal to the disjoint union of the
following sets

• {(An, s/n, 1) | n, s ∈ N};
• {(A2p+1, s, 2) | p, s ∈ N};
• {(Dn, s, 1) | n, s ∈ N, n ≥ 4};
• {(D3m, s/3, 1) | m, s ∈ N,m ≥ 2, 3 - s};
• {(Dn, s, 2) | n, s ∈ N, n ≥ 4};
• {(D4, s, 3) | s ∈ N};
• {(En, s, 1) | n = 6, 7, 8, s ∈ N};
• {(E6, s, 2) | s ∈ N}. �

Completing the classification, in the appendix of [6] Asashiba gives a
representative for each of the above types. These representatives are given
by quivers and relations.

One could also give them as orbit algebras of the repetitive algebras of
the respective Dynkin type.

3. Repetitive algebras and covering theory

Repetitive algebras are an important concept in the study of self-injective
algebras. For one thing they are self-injective and constructing repetitive
algebras provides a method to build self-injective algebras out of other al-
gebras.



3. REPETITIVE ALGEBRAS AND COVERING THEORY 69

In order to construct these algebras, we need to introduce the practice
of identifying algebras with categories and the other way round. This will
also enable us to define orbit algebras by just using the concept of orbit
categories we already know. Let k be a field. Following [21] and [44], we
call a k-category R locally bounded if

• distinct objects of R are not isomorphic,
• for each object x of R, R(x, x) is a local k-algebra, and
• for each object x of R, we have

∑

y∈obj(R)

(dimk R(x, y) + dimk R(y, x)) <∞.

If additionally, R has only finitely many objects, then it is called bounded.
Now to a bounded k-category R we associate a finite-dimensional k-algebra
with underlying vector space

⊕
x,y∈obj(R) R(x, y). We denote the associated

algebra by the same letter R.
For a locally bounded category R we define Mod(R) (or mod(R)) to be

the category of (finitely generated) contravariant functors from R to Mod(k).
This is of course defined in this way so that it coincides with the category
of modules for the associated algebra R.

A well-known example of this concept is the path category of a finite
acyclic quiver. The associated algebra is just the path algebra of the quiver.

Let G be an admissible group of k-linear automorphisms of the category
R, i.e. the action of G on the objects of R is free and there are only finitely
many orbits. Then we define the orbit category R/G as in Chapter 3 and
we may as well associate an algebra to this, the orbit algebra. It is finite-
dimensional since G is admissible.

Moreover, it is important to mention that a group G of automorphisms
on R defines a group of automorphism on Mod(R). To be specific, this
works as follows. Let g : R → R be in G and let M ∈ Mod(R), i.e.
a functor M : Rop → mod(k). Then, g(M) is defined to be the functor
M(g−1(−)) : Rop → mod(k).

The whole construction comes along with a projection

F : R→ R/G.

By definition this is a covering functor in the sense of Gabriel [44]. Hence, we
may associate functors on the level of the corresponding module categories,
namely the pull-up functor F• : Mod(R/G) → Mod(R) defined by M 7→
M ◦ F and the push-down functor

Fλ : Mod(R)→ Mod(R/G)

as the left adjoint functor to F•. In [21, Section 3.2] one finds an explicit
definition of Fλ. For example for modules M ∈ Mod(R) one has

(FλM)(a) =
⊕

F (x)=a

M(x) for a ∈ R/G.

Using this one can show the following about the composition of the two
functors.
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Proposition 8.14 (Gabriel [43], Lemma 3.2). For M ∈ Mod(R) there
is an isomorphism ⊕

g∈G

g(M) ∼= F•Fλ(M).

�

The push-down functor can help to relate the category Mod(R/G) to
Mod(R). For example for morphisms one gets what one expects.

Proposition 8.15 (Gabriel [43], Theorem 3.6 c). Suppose that R is
locally bounded and that G acts freely on R. Then,

HomR/G(FλM,FλN) =
⊕

g∈G

HomR(M,g(N))

for all M,N ∈ ind(R). �

Originally, Gabriel assumes in this statement that G acts freely on
ind(R), but with [65] it is sufficient to assume G acting freely on R.

It would be convenient if one could describe the category mod(R/G)
in terms of mod(R). Together with the proposition above this would be
possible if the push-down functor restricted to mod(R) was dense. This is
not always true and we need to assume a further condition on R. For any
R-module M we denote by supp(M) the full subcategory of R consisting of
all objects a ∈ R such that M(a) 6= 0.

Moreover, for an object a ∈ R we denote by Ra the full subcategory of
R formed by ⋃

M∈ind(R),a∈supp(M)

supp(M).

Then, R is called locally support-finite if Ra is finite for each object a of R.

Proposition 8.16 (Dowbor-Lenzing-Skowronski [37]). Let R be locally
support-finite and let G be a group of automorphisms on R acting freely on
the objects of R. Then, the push-down functor induces a bijection between the
G-orbits of isomorphism classes of objects in ind(R) and the isomorphism
classes of objects in ind(R/G). In particular, Fλ : mod(R)→ mod(R/G) is
dense. �

Now we turn to specific examples of the covering theory above. The
definition of a repetitive algebra goes back to Hughes and Waschbüsch [50].
Let A be a finite-dimensional k-algebra and let 1A = e1 + . . .+ en be a de-
composition of the identity of A into a sum of pairwise orthogonal primitive
idempotents. Moreover, we assume that A is basic, i.e. Aei � Aej for all

i 6= j. Firstly, we associate to A the repetitive category Â whose objects are
em,i with m ∈ Z and i ∈ {1, . . . , n}, and whose morphism spaces are

Â(em,i, er,j) =





ejAei if r = m,

D(eiAej) if r = m+ 1,

0 otherwise.

The algebra Â associated with the repetitive category is called the repetitive
algebra of A.
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Theorem 8.17 (Happel [46], Lemma 2.2). Let A be a finite-dimensional

algebra and let Â be the associated repetitive algebra. Then, Â is self-injective
and accordingly, mod(Â) is a Frobenius category. �

If G is an admissible automorphism group, this implies that the orbit
algebra Â/G is self-injective, too.

At this point we should also define an important automorphism of Â,
namely νÂ : Â→ Â mapping em,i to em+1,i. This induces an automorphism

on mod(Â) (and on mod(Â)) which coincides with the Nakayama automor-

phism νÂ = DHomÂ(−, Â). Note that for a self-injective algebra Λ, on
mod(Λ) we have

νΛ ∼= τΛΩ
−2
Λ .

This is by the definitions of all the appearing functors. Observe also that
τ and Ω are triangle equivalences on mod(Λ) which makes νΛ a triangle
equivalence, too.

With the help of νÂ we may define the following important concept.

Definition 8.18. Let A be a basic connected algebra, Â its repetitive
algebra and νÂ the Nakayama automorphism. Then T (A) = Â/〈νÂ〉 is called
the trivial extension algebra of A. One can show that T (A) is the same as
AnD(A) which is the more usual definition of the trivial extension algebra.

Similarly, we define the r-fold trivial extension algebra T (A)r = Â/〈νr
Â
〉

as in [81, Section 6].

Example 8.19. Let A = k( ~A3) with ~A3 : 1
α−→ 2

β−→ 3. The identity of A
decomposes into e1 + e2 + e3. Then, the repetitive category is determined
by the quiver

e0,3 β∗

&&M
MM

MM
e1,3 β∗

&&M
MM

MM
e2,3

. . . e0,2

β 88qqqqq

α∗

&&M
MM

MM
e1,2

β 88qqqqq

α∗

&&M
MM

MM
e2,2

β 88qqqqq

α∗

&&M
MM

MM
. . .

e1,1

α 88qqqqq
e2,1

α 88qqqqq
e3,1

with respect to the relations α∗α = 0, ββ∗ = 0 and αα∗ = β∗β.
The repetitive algebra Â is the path algebra of the above infinite quiver
with respect to these relations. The following figure is an extract from the
Auslander-Reiten quiver of Â.
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Deleting the projective/injective representations, we see that the stable

Auslander-Reiten quiver is ZA3. Consider the orbit algebra T (A) = Â/νÂ.
This is given by the quiver

1 � 2 � 3
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with respect to the inherited relations from Â. Checking what νÂ does

on mod(Â), we get that the stable Auslander-Reiten quiver of Â/νÂ is

ZA3/〈τ3φ〉 where φ is the ‘reflection’ of ZA3 defined in Theorem 7.5. Thus,
typ(mod(T (A))) = (A3, 3, 2) in the sense of Definition 7.10.

As the example suggests, for algebras like the above one, mod(Â) is
closely related to the bounded derived category of mod(A).

Theorem 8.20 (Happel [46], Theorem 4.9). If A is a finite-dimensional

algebra of finite global dimension, then mod(Â) and Db(mod(A)) are equiv-
alent as triangulated categories. �



CHAPTER 9

Thick subcategories of finite algebraic triangulated

categories

The purpose of this chapter is to classify the thick subcategories of a
finite triangulated category which is connected, algebraic and standard, i.e.
exactly the kind of category discussed in Chapter 7. As there we assume
in this chapter that the field k is algebraically closed unless it is stated
otherwise.

1. The classification

We have seen in Chapter 7 that each such triangulated category is tri-

angulated equivalent to an orbit category Db(mod(k~∆))/〈φτ r〉 where ~∆ is
a Dynkin quiver and 〈φτ r〉 is an admissible group of automorphisms. Thus,
we want to classify thick subcategories of these orbit categories. By The-
orem 3.4 we know that the thick subcategories of the orbit category are

in bijective correspondence with the thick subcategories of Db(mod(k~∆))
which are invariant under 〈φτ r〉. By Theorem 6.2 and since ∆ is Dynkin,

we get that the thick subcategories of Db(mod(k~∆)) are in correspondence
with NC(W∆, c) where W∆ = W is the associated Weyl group and c ∈ W∆

is the Coxeter transformation with respect to an admissible numbering of ~∆.
Hence, we need to explain what the automorphism φτ r means for NC(W, c).

As long as we are only concerned with τ this is fairly evident. We
formulate the statement in a greater generality than necessary in this chapter
since we will need this at least for tame hereditary algebras later in this
thesis.

Recall that we denote by cox the bijection from the set Thexc(A) of
thick subcategories of Db(mod(A)) which are generated by an exceptional
sequence to NC(W, c).

Proposition 9.1. Let A be a hereditary algebra over an arbitrary field
k (not necessarily algebraically closed). Let c be the Coxeter transformation
in the associated Weyl group. Let S ∈ Thexc(A). Then,

cox(τ(S)) = c cox(S)c−1.

Proof. Let E1, . . . , Er be an exceptional sequence in mod(A) generat-
ing S. Thus, cox(S) = sE1

· · · sEr . Since it is more convenient here we will
work with the wide subcategory which corresponds to S by Theorem 2.29
and call it also S. The wide subcategory S is also generated by the above
exceptional sequence. Moreover, we are allowed to choose E1, . . . , Er in such
a way that they are simple in the wide subcategory S. In fact, this is then
a complete list of simple objects in the wide subcategory.

73
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We can reorder this sequence in such way that the possible indecompos-
able projective modules lie at the end of the sequence:

(E1, . . . , Es−1, Es = Pis , . . . , Er = Pir).

Just preserve the order within the projectives and the non-projectives, re-
spectively. After that, we only have to take care that Hom(P,E) = 0 and
Ext1(P,E) = 0 for P one of the projective modules and E one of the non-
projective modules. The second equation is clear and the first one holds by
Schur’s lemma.

Consider the sequence

(τ(E1), . . . , τ(Es−1), Iis , . . . , Iir )

in mod(A).
Clearly, this generated τ(S) since Thick(τ(E1), . . . , τ(Es−1), Iis , . . . , Iir)

equals
τ(Thick(E1, . . . , Es−1,ΣEs, . . . ,ΣEr)) = τ(S).

We show that it is an exceptional sequence in mod(A). By definition of
the sequence it actually lies in mod(A).

Next, we have to check the exceptionality of the sequence. Using the
fact that Σ, ν τ = Σ−1ν are equivalences on Db(mod(A)) = Db(A), we get
for i < j

HomA(τ(Ej), τ(Ei)) = HomDb(A)(τ(Ej), τ(Ei)) = HomDb(A)(Ej , Ei) = 0

Ext1(τ(Ej), τ(Ei)) ∼= HomDb(A)(τ(Ej), τ(ΣEi)) ∼= HomDb(A)(Ej ,ΣEi)

∼= Ext1(Ej , Ei) = 0.

There are no non-zero morphisms from one of the injective modules Ii to
one of the modules τ(Ej) since τ(Ej) is not injective. Moreover,

Ext1(Ii, τ(Ej)) ∼= HomDb(A)(Ii,Στ(Ej)) ∼= HomDb(A)(Σ
−1Ii, τ(Ej))

∼= HomDb(A)(τ
−1(Σ−1Ii), Ej) ∼= HomA(Pi, Ej) = 0.

And lastly, for k < l

HomA(Iil , Iik)
∼= HomA(Pil , Pik) = 0,

and clearly, there are no non-trivial extensions between two injectives.
As mentioned in Chapter 4.2 we know that cdim(M) = dim(τ(M)) for

M ∈ mod(A) indecomposable not projective and cdim(Pi) = − dim(Ii).
Hence,

sτ(Ei) = csEic
−1 and sIi = csPic

−1.

Altogether, we have

cox(τ(S)) = sτ(E1) · · · sτ(Es−1)sIis · · · sIir = c cox(S)c−1.

�

The above proposition controls the finite algebraic triangulated cate-

gories T ∼= Db(mod(k~∆))/〈φτ r〉 with typ(T ) = (∆, r, 1) but it does not help
yet if the order of φ is strictly greater than 1. Fortunately, in most cases
one may express φ in terms of τ and the shift functor Σ. This helps since
each thick subcategory is invariant under the shift functor and therefore,
the shift has no influence on the question of whether the thick subcategory
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is invariant under the automorphism group. The following Proposition de-
scribes Σ in terms of τ and the respective automorphism φ. We conclude
this from [43] and [18].

Proposition 9.2. Let ∆ be a Dynkin graph, let h∆ = m∆ + 1 be the

Coxeter number and let Σ: Db(mod(k~∆))→ Db(mod(k~∆)) be the shift func-
tor.

(1) Let ∆ be of the form An(n ≥ 3 odd),Dn(n odd) or E6, then Σ is iso-

morphic to φτ−
h∆
2 . Here φ is the automorphism of Db(mod(k~∆))

of order 2 induced by the automorphism φ of Z∆ defined in Theo-
rem 7.5.

(2) Let ∆ be of the form A1,Dn(n even), E7 or E8, then Σ ∼= τ−
h∆
2 .

(3) Let ∆ be of the form An(n even), then Σ ∼= φτ−
m∆
2 where φ is the

automorphism of infinite order discussed in Theorem 7.5.

In particular, in all cases Σ2 ∼= τ−h∆. �

Figure 1. Illustration of the shift Σ of Db(mod( ~A3)) as the

composition of τ−
4
2 and φ where φ is the reflection at the

dashed line.

Before we apply this to the classification, we insert one proposition which
simplifies later calculations.

Proposition 9.3. (1) Let s := gcd(h∆, p) with p ∈ N. Then, a

thick subcategory S of Db(mod(k~∆)) is 〈τp〉-invariant if and only
if it is 〈τ s〉-invariant.

(2) Let s := rmodh∆ with r ∈ N and let

φ : Db(mod(k~∆))→ Db(mod(k~∆))

be an automorphism. A thick subcategory S of Db(mod(k~∆)) is
〈φτ r〉-invariant if and only if it is 〈φτ s〉-invariant.

Proof. Let gcd(h∆, p) = s. Then, there are m,n ∈ Z with s = mh∆ +

np. Let S 6= 0 be a thick subcategory of Db(mod(k~∆)) which is 〈τp〉-
invariant. Let X 6= 0 be indecomposable in S. Then, by Proposition 9.2

X = τ0(X) = τ−mh∆−np+s(X) ∼= τ−np(Σ2m)τ s(X).

Then, Σ2mτ s(X) ∼= τnp(X) ∈ S since S is 〈τp〉-invariant. This implies
τ s(X) ∈ S since S is thick.

Conversely, a 〈τ s〉-invariant subcategory is clearly 〈τp〉-invariant.
The second part works similarly applying τ−h∆ = Σ2. �

Remark 9.4. In particular, there are no proper thick subcategories in
the case p and h∆ are coprime since a 〈τ1〉-invariant thick subcategory is
either 0 or the whole ambient category.
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Finally, we obtain the following classification.

Theorem 9.5. Let T be a finite triangulated category which is connected,
algebraic and standard of type (∆, r, t) excluding the cases (Dn, r, 2) for n
even and (D4, r, 3). Let c ∈ W∆ be the Coxeter transformation with respect

to an admissible numbering of some fixed orientation ~∆ of ∆. Put

p =





r if typ(T ) = (∆, r, 1),
h∆

2 + r if typ(T ) = (A2n+1, r, 2), (Dn, r, 2) with n odd or (E6, r, 2),
m∆

2 + r if typ(T ) = (A2n, r,∞),

and s = gcd(h∆, p). Then, there is a bijective correspondence between

• the set of thick subcategories of T , and
• the set (NC(W∆, c))

cs of noncrossing partitions w satisfying

w = cswc−s.

Proof. Let T be as above. Then, T is triangulated equivalent to

Db(mod(k~∆))/〈φτ r〉 where φ and τ are induced by the respective weakly

admissible groups of automorphisms of Z∆ and ~∆ is the oriented diagram
for some fixed orientation of ∆.

By Theorem 3.4 the thick subcategories of T are in bijective correspon-

dence with the thick 〈φτ r〉-invariant subcategories of Db(mod(k~∆)).

Using Proposition 9.2, a thick subcategory S of Db(mod(k~∆)) is 〈φτ r〉-
invariant if and only if it is 〈τp〉-invariant. This is because Σ(S) = S.

By Proposition 9.3, Theorem 6.2 and Proposition 9.1 the thick 〈τp〉-
invariant subcategories of Db(mod(k~∆)) are in correspondence with the ele-
ments of NC(W∆, c) which are invariant under s-fold conjugation by c. �

Remark 9.6. The cases (Dn, r, 2) for n even and (D4, r, 3) are excluded
in this general theorem since in these cases it is not possible to express the
automorphism φ of order 2 or 3 in terms of τ and Σ. We consider these
cases separately in Proposition 9.12 and Proposition 9.13.

2. The An-case

If ∆ = An we can formulate the classification theorem in terms of the
alternative description NCA(n + 1) of noncrossing partitions introduced in
Chapter 5.1.

Proposition 9.7. Let T be a finite triangulated category which is con-
nected, algebraic and standard of type (An, r, t). Again let s = gcd(hAn , p)
where p depends on the type as discussed in Theorem 9.5. Then, there is a
bijective correspondence between

• the set of thick subcategories of T , and
• the set of elements of NCA(n + 1) invariant under a clockwise ro-
tation by s 2π

n+1 .

Proof. By Proposition 5.11 conjugation by the Coxeter transformation
corresponds to rotation. Then, use Theorem 9.5. �
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Example 9.8. Let Λ the Nakayama algebra with sΓΛ = ZA5/〈τ4〉.
Then, hA5

= 6 and s = gcd(4, 6) = 2.
Hence, we are interested in the noncrossing partitions of {1, . . . , 6} which

are invariant under rotation by 2
3π. They are listed here together with their

corresponding thick subcategories of mod(Λ) indicated by their indecom-
posables arranged in the Auslander-Reiten quiver sΓΛ = ZA5/〈τ−4〉.
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3. The Dn-case

Analogously, we can formulate the classification for ∆ = Dn. Recall the
maps ρ, σ : NCD(n)→ NCD(n) from Definition 5.13.



78 9. THICK SUBCATEGORIES OF ALGEBRAIC TRIANGULATED CATEGORIES

Proposition 9.9. Let T be a finite triangulated category which is con-
nected, algebraic and standard of type (Dn, r, t) excepting (Dn, r, 2) for n

even and (D4, r, 3). Let s = gcd(hDn , r) or s = gcd(hDn , r +
h∆

2 ) depending
on t (see Theorem 9.5). Then, there is a bijective correspondence between

• the set of thick subcategories of T , and
• the set of elements of NCD(n) invariant under (σρ)s.

Note that σs = id if s is even and σs = σ if s is odd, and that ρ and σ
commute.

Proof. Apply Theorem 9.5 and Lemma 5.14. �

Example 9.10. Let Λ be a self-injective representation-finite algebra
with typ(Λ) = (D5, 2, 2), i.e. its stable Auslander-Reiten quiver is of the form
ZD5/〈φτ14〉 or typ(mod(Λ)) = (D5, 14, 2). We have s = gcd(8, 14 + 8

2) = 2

and hence, applying Proposition 9.9, we look for the ρ2-invariant elements
of NCD(5). Here ρ2 is a rotation by π

2 . The invariance works for instance
for the first two of the following partitions, but not for the third.
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The corresponding thick subcategories in the first two cases are the fol-
lowing thick subcategories.
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Since we cannot express φ in terms of Σ and τ if n is even, we have to
study this case separately. The following lemma and the following proposi-
tion work for arbitrary n but we only have to use it for even n.

Lemma 9.11. Let S be a thick subcategory of Db(mod(k ~Dn)). Let φ

be the automorphism of Db(mod(k ~Dn)) induced by the automorphism φ of
order 2 of ZDn defined in Theorem 7.5. Then,

cox(φ(S)) = σ(cox(S)).

Proof. Recall that φ : ZDn → ZDn exchanges (i, n−1) and (i, n) ∀i ∈ Z
and fixes the other vertices. According to Riedtmann [74] we call the vertices
(i, n − 1) and (i, n) for i ∈ Z high vertices and the others low vertices.

Accordingly, we will call the indecomposable objects of Db(mod(k ~Dn)) high

or low. The map φ induces an automorphism on Db(mod(k ~Dn)) and hence

on mod(k ~Dn). Fix the following orientation and numbering of Dn.
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n

1 // 2 // · · · // n− 3 // n− 2

$$I
II

II
II

II

::tttttttttt

n− 1

Determining the Auslander-Reiten quiver of mod(k ~Dn) with respect to this
orientation one sees that φ maps the indecomposable high representation
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Figure 2. Auslander-Reiten quiver of mod(k ~D5). High rep-
resentations are coloured grey.

En−1
n−t of ~Dn represented by the dimension vector en−1 + en−2 + . . . + en−t

to the high representation En
n−t representated by en + en−2 + . . .+ en−t and

vice versa. The low representations are fixed.
We have

sEn
n−t

= snsn−2 · · · sn−t · · · s−1
n−2s

−1
n = ((−(n − t), n))

and

sEn−1
n−t

= sn−1sn−2 · · · sn−t · · · s−1
n−2s

−1
n−1 = ((n− t, n)).

Now let S be a thick subcategory and let w be the corresponding Dn-
partition. Again we consider w block by block.

A pair of non-zero blocks {i1, . . . , ik} ·∪{−i1, . . . ,−ik} corresponds to a
paired cycle (i1, . . . , ik)(−i1, . . . ,−ik). This is a product of reflections

((i1, i2))((i2, i3)) · · · ((ik−1, ik)) = sE1
· · · sEk−1

corresponding to an exceptional sequence E1, . . . , Ek−1 in mod(k ~Dn).
If n and −n are not contained in the paired cycle, then none of the

representations E1, . . . , Ek−1 are high representations and hence applying φ
does not change w. If n is contained, we have the product of reflections

(i1, . . . , n)(−i1, . . . ,−n) = ((i1, i2)) · · · ((ik−1, n))

corresponding to an exceptional sequence Ei1 , . . . , Eik−1
= En−1

ik−1
. A con-

sideration of the morphisms in k(ZDn) as in [74] shows that the sequence
φ(Ei1) = Ei1 , . . . , φ(E

n−1
ik−1

) = En
ik−1

is exceptional. Hence,

sφ(E1) · · · sφ(Eik−1
) = ((i1, i2)) · · · ((−ik−1, n)) = (i1, . . . ,−n)(−i1, . . . , n).



80 9. THICK SUBCATEGORIES OF ALGEBRAIC TRIANGULATED CATEGORIES

Finally, consider a zero-block represented by

(i1, . . . , ik,−i1, . . . ,−ik)(n,−n) = ((i1, i2)) · · · ((ik−1, ik))((ik, n))((ik ,−n))
= sEi1

· · · sEn−1
ik

sEn
ik
.

Applying φ to the exceptional sequence, yields the same term since ((ik, n))
and ((ik,−n)) commute. �

Proposition 9.12. Let T be a finite triangulated category which is con-
nected, algebraic and standard of type (Dn, r, 2). Let s = rmodhDn . There
is a bijective correspondence between

• the set of thick subcategories of T , and
• the set of elements of NCD(n) invariant under σs+1ρs.

Proof. Use the second part of Proposition 9.3 for the reduction to
s = rmodhDn . Then, apply Lemma 5.14 and Lemma 9.11. �

Finally, the case of a category of type (D4, r, 3) is still missing. Easy
observations allow us to classify the thick subcategories in this case by hand.

Proposition 9.13. Let T be a finite triangulated category which is con-
nected algebraic and standard of type (D4, r, 3).

Put s = rmod3. So we may assume s ∈ {0, 1, 2}.
If s = 0, the only proper thick subcategories of T are in correspondence

with the following thick subcategories of Db(mod(k ~D4)).
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In the cases s = 1 and s = 2 there are no proper thick subcategories.

Proof. Let φ be the automorphism of order 3 described in Theorem

7.5. Since Σ ∼= τ3, we have that a thick subcategory of Db(mod(k ~D4)) is
〈φτ r〉-invariant if and only if it is 〈φτ s〉-invariant.

In case s = 0, adding further indecomposables to the described proper
thick subcategories would yield the whole category because of thickness.

The same argument shows that in case s = 1 and s = 2 there are no
proper thick subcategories. �

4. The number of thick subcategories

Thinking of Chapter 5.5, there is a polynomial determining the number
of thick subcategories. Namely, the classifying set (NC(W∆, c))

cs is the
fixed point set appearing in the cyclic sieving phenomenon for noncrossing
partitions.

Theorem 9.14. Let T be a finite triangulated category which is con-
nected, algebraic and standard of type (∆, r, t) excluding the cases (Dn, r, 2)
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for n even and (D4, r, 3). Let c ∈ W∆ be the Coxeter transformation with

respect to an admissible numbering of ~∆. Put

p =





r if typ(T ) = (∆, r, 1),
h∆

2 + r if typ(T ) = (A2n+1, r, 2), (Dn, r, 2) with n odd or (E6, r, 2),
m∆

2 + r if typ(T ) = (A2n, r,∞),

and s = gcd(h∆, p). Then, the number of thick subcategories of T equals

Cat(W∆, zo(cs)) = Cat(W∆, e
2πis/h∆).

Proof. Use Theorem 9.5 and Theorem 5.10. Moreover, the order of cs

equals h∆

s since s divides h∆. �

Example 9.15. We return to the previous example of a self-injective
algebra Λ with typ(mod(Λ)) = (D5, 14, 2). We have s = gcd(8, 18) = 2.
The order of c2 equals 4, and hence the number of thick subcategories of
mod(Λ) is equal to

Cat(WD5
, e

πi
2 ) = 6.

Let us check this number. The thick subcategories correspond by Propo-
sition 9.9 to the elements of NCD(5) which are invariant under rotation by
π
2 and these are the following six elements of NCD(5).
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Again there are two cases which are not covered by the theorem. If
typ(T ) = (D4, r, 3), then we can count the thick subcategories by hand ac-
cording to Theorem 9.13. If typ(T ) = (Dn, r, 2) for an even n, then we
can use the combinatorial description NCD(n) to count. This is possible
in general for types (Dn, r, t) with t ≤ 2 and (An, r, t), and for the sake of
completeness we present the observations for all these types. Also this ap-
proach contains a description or even an algorithm to construct the relevant
elements in NCA(n) or NCD(n).

Proposition 9.16. Let h = xs with x, s ∈ N and x > 1. Then, there is
a surjective map

F : {elements of NCA(h) invariant under rotation by (s
2π

h
)} → NCA(s).

Moreover, for each w ∈ NCA(s) there are exactly s + 1 elements in the
preimage of w under F . Hence, the number of elements of NCA(h) invariant

under rotation by s2π
h equals (s+ 1)Cs =

(2s
s

)
.
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Proof. The map F is given as follows. Let w = w1 ·∪ . . . ·∪wr be an
invariant noncrossing partition of {1, . . . , h}. Then,

F (w) = F (w1) ∪ . . . ∪ F (wr)

with
F (wi) = F ({p1, . . . , pm}) = {[p1], . . . , [pm]}

where [pj] = pj mod s if s - pj and [pj] = s otherwise.

To a partition in NCA(s) we construct all partitions in its preimage.
This construction requires the Kreweras complement K(w) for w ∈ NCA(n)
defined in Chapter 5.4.

Now let w ∈ NCA(s). We list all s+1 partitions in the preimage of w. In
particular, this provides a method to construct all (s2π

h )-invariant noncross-
ing partitions of {1, . . . , h} from the noncrossing partitions of {1, . . . , s}.

Let w = w1 ·∪ . . . ·∪wr be a noncrossing partition of {1, . . . , s}. A block
wi of w corresponds in the preimage

• either to a big block of cardinality x|wi|
• or to x disjoint blocks of cardinality |wi|.

Otherwise the partition in the preimage would be crossing or not invariant.
To each block wi of w we define a partition in the preimage which con-

tains a big block of cardinality x|wi|. All other blocks of this partition are
uniquely determined by this. Otherwise the partition would be crossing.
This construction yields r partitions in the preimage.

Next we define to each block of K(w) a partition in the preimage of
w. Let v be a partition in the preimage of K(w) under F containing a big
block. There is a partition u ∈ NCA(h) with v = K(u). Thus,

F (u) = F (K(v)) = K(F (v)) = K(K(w)) = w,

and u does not contain a big block since otherwise K(u) ·∪u would be cross-
ing. Therefore, u is different from the partitions defined in the first step.
Moreover, the partitions constructed from different blocks of K(w) are dif-
ferent since the assignment K is bijective. Simion and Ullman show in [79]
that K(w) has s − r + 1 blocks and hence, we obtain s − r + 1 further
partitions in the preimage.

Altogether, we have defined r + s − r + 1 = s + 1 partitions in the
preimage.

It remains to show that there are no further. Let v ∈ NCA(h) be a
partition in F−1(w). If v contains a big block, we have counted v in the first
step. If not, v contains exactly xr blocks, hence K(v) contains h− (xr) + 1
blocks. Consider K(v). If K(v) contains a big block, we have counted
v in the second step. If not, K(v) contains x(s + 1 − r) blocks. Thus,
h− xr + 1 = x(s+ 1− r) and this implies x = 1, a contradiction. �

Remark 9.17. The above proposition counts the number of thick sub-
categories for a finite algebraic triangulated category of type (An, r, t). Just
put h = hAn and s = gcd(h, p) according to Theorem 9.5.

Example 9.18. Let s = 2 and h = 3 · 2 = 6. The noncrossing partitions
of {1, 2} are the following black coloured partitions.
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The elements of NCA(h) invariant under rotation by s2π
h are given by

the following partitions. First we construct the preimage of the first parti-
tion.
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And this is the preimage of the second partition. The grey coloured parti-
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tions represent the partitions of the primed numbers as used in the proof of
Proposition 9.16.

Proposition 9.19. Let s be an integer with 0 ≤ s ≤ hDn = 2n − 2.
Then,

#(NCD(n))(σρ)
s
=





(2p
p

)
with p = gcd(n − 1, s) if s /∈ {0, n − 1, 2n − 2},

Cat(Dn) if s = 0, 2n − 2, or if

s = n− 1 with n even,

Cat(Dn−1) if s = n− 1 with n odd.

Here Cat(Dn) =
(
2n
n

)
−

(
2n−2
n−1

)
.

Proof. Denote by NCD
±(n) the elements of NCD(n) with a non-zero

block containing n or −n.
Assume s /∈ {0, n − 1, 2n − 2}. The elements of NCD

±(n) are not (σρ)s-

invariant: Let w ∈ NCD
±(n) and let B be a block of w with n ∈ B. Then

C := (σρ)s(B) is a block containing n or −n which is neither B itself nor
−B = σρn−1(B). If the partition was (σρ)s-invariant, C would be a block
of w, but this is not possible since C and B or −B are neither equal nor
disjoint.

Hence, we have a correspondence between

• (NCD(n))(σρ)
s
, and

• the elements of NCD(n)\NCD
±(n) invariant under rotation by s π

n−1 .

Let p = gcd(n− 1, s). Since each element of NCD(n) \ NCD
±(n) is invariant

under rotation by (n− 1) π
n−1 , we can add a correspondence with
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• the elements of NCD(n)\NCD
±(n) invariant under rotation by p π

n−1 .

These elements, in turn, are canonically in correspondence with

• the elements of NCA(2n − 2) invariant under rotation by p π
n−1 .

For this purpose, just forget the centroid. Note that a zero-block containing
only a single pair i and −i — which is not allowed for NCD(n) — does not
appear since p 6= n− 1 by assumption.

Since p is a non-trivial divisor of 2n − 2, by Proposition 5.5 the above
elements correspond to

• NCB(p)

and the number of elements in that is equal to
(2p
p

)
.

Next, assume s = 2n− 2 or s = 0. Then, the number equals the number
of elements in NCD(n) invariant under rotation by 2π. These are all, and
as mentioned in Chapter 5 their number equals the type D Catalan number
Cat(Dn) =

(2n
n

)
−

(2n−2
n−1

)
.

If s = n− 1 where n is even, we have to count the elements of NCD(n)
invariant under σρn−1. This is again all of NCD(n) by definition.

Finally, let s = n− 1 and let n be odd. We look for the (σρ)n−1 = ρn−1-
invariant elements of NCD(n). These are the elements NCD(n) \ NCD

±(n).

As above we compare this with the elements of NCA(2n − 2) which are
invariant under rotation by (n − 1) π

n−1 = π. But this time, this set, which

consists of
(
2(n−1)
n−1

)
elements, is too big. We have to ignore the elements

which would correspond to a single pair {i,−i} in NCD(n). With the help
of Proposition 9.16 we can count these elements. Recall the surjective map

F : {elements of NCA(2n − 2) inv. under rotation by π} → NCA(n − 1).

Let w be a partition of NCA(2n−2) which we want to ignore, i.e. w contains
exactly one block of the form {i, i+(n−1)} where 1 ≤ i ≤ n−1. Then, F (w)
contains a singleton {i}, and F (w) \ {i} can be understood as an arbitrary
element of NCA(n − 2). Hence, the preimage of F (w) consists of Cn−2 =
1

n−1

(2(n−2)
n−2

)
elements. There are n − 1 possibilities to place the ‘forbidden’

block in w and thus, we subtract (n− 1) 1
n−1

(2(n−2)
n−2

)
=

(2(n−2)
n−2

)
. �

Remark 9.20. The above proposition counts the number of thick sub-
categories of a finite algebraic triangulated category of type (Dn, r, 1) or

(Dn, r, 2) if n is odd. Just put s = gcd(hDn , r) or s = gcd(hDn , r +
hDn
2 ),

respectively.

Proposition 9.21. Let s be an integer with 0 ≤ s ≤ hDn = 2n − 2.
Then,

#(NCD(n))σ
s+1ρs =





(2p
p

)
with p = gcd(n− 1, s) if s /∈ {0, n − 1, 2n − 2},

Cat(Dn−1) if s = 0, 2n − 2, or if

s = n− 1 with n even,

Cat(Dn) if s = n− 1 with n odd.

Proof. The arguments are completely analogous to the arguments in
Proposition 9.19 taking into account the change from σs to σs+1. �
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Remark 9.22. This counts in particular the thick subcategories of a
finite algebraic triangulated category of type (Dn, r, 2) for even n. Put
s = rmodhDn . This is the case which was not yet covered by Theorem
9.14.

5. Overview

Let T be a finite triangulated category which is connected, algebraic
and standard of type (∆, r, t). The following table gives an overview of the
classification of the thick subcategories of T and of the number of thick
subcategories of T . Moreover, one can see where to find the respective
information within this thesis.

Note that each row contains at least one entry concerning classification
and one entry concerning counting. Hence, the classification is complete.

In all cases denote by c ∈ W∆ the respective Coxeter transformation
with respect to an admissible numbering of some fixed orientation of ∆.
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type classifying poset alternative description number as number
W -q-Catalan number directly

(An, r, 1) elements of NCA(n + 1) Cs if s = n + 1;

(NC(WAn
, c))c

s

, invariant under rotation Cat(WAn
, e

2πis

n+1 )
(

2s
s

)

else;
by s 2π

n+1
,

s = gcd(n + 1, r), s = gcd(n + 1, r),
see Theorem 9.5 see Proposition 9.7 Theorem 9.14 Proposition 9.16

(An, r, 2) elements of NCA(n + 1) Cs if s = n + 1;

n ≥ 3 odd (NC(WAn
, c))c

s

, invariant under rotation Cat(WAn
, e

2πis

n+1 )
(

2s
s

)

else;
by s 2π

n+1
,

s = gcd(n + 1, n+1

2
+ r), s = gcd(n + 1, n+1

2
+ r),

see Theorem 9.5 see Proposition 9.7 Theorem 9.14 Proposition 9.16

(An, r,∞) elements of NCA(n + 1) Cs if s = n + 1;

n even (NC(WAn
, c))c

s

, invariant under rotation Cat(WAn
, e

2πis

n+1 )
(

2s
s

)

else;
by s 2π

n+1
,

s = gcd(n + 1, n
2

+ r), s = gcd(n + 1, n
2

+ r),
see Theorem 9.5 see Proposition 9.7 Theorem 9.14 Proposition 9.16

(Dn, r, 1) elements of NCD(n) Cat(Dn)

(NC(WDn
, c))c

s

, invariant under (σρ)s Cat(WDn
, e

πis

n−1 ) if s = 2n− 2
s = gcd(2n− 2, r), s = gcd(2n− 2, r), or s = n− 1 odd;

Cat(Dn−1)
if s = n− 1 even;
(

2p
p

)

else where

p = gcd(n− 1, s);
see Theorem 9.5 see Proposition 9.9 Theorem 9.14 Proposition 9.19

(Dn, r, 2) elements of NCD(n) Cat(Dn)

n odd (NC(WDn
, c))c

s

, invariant under (σρ)s Cat(WDn
, e

πis

n−1 ) if s = 2n− 2;
s = gcd(2n− 2, 2n−2

2
+ r), s = gcd(2n− 2, 2n−2

2
+ r), Cat(Dn−1)

if s = n− 1;
(

2p
p

)

else where

p = gcd(n− 1, s);
see Theorem 9.5 see Proposition 9.9 Theorem 9.14 Proposition 9.19

(Dn, r, 2) elements of NCD(n) Cat(Dn−1)
n even invariant under σs+1ρs, if s = 0

s = r mod(2n− 2), or s = n− 1;
(

2p
p

)

else where

p = gcd(n− 1, s);
see Proposition 9.12 Proposition 9.21

(D4, r, 3) s = r mod 3,
s = 0: six distinguished 8
proper thick subcategories,
s = 1, 2: no proper ones, 2
see Proposition 9.13

(En, r, 1)

n = 6, 7, 8 (NC(WEn
, c))c

s

, Cat(WEn
, e2πis/hEn )

s = gcd(hEn
, r),

see Theorem 9.5 Theorem 9.14

(E6, r, 2) Cat(WE6
, e

πis

6 )

(NC(WE6
, c))c

s

,
s = gcd(12, r + 6),
see Theorem 9.5 Theorem 9.14



7. THE LATTICE STRUCTURE 87

6. The cyclic sieving phenomenon for thick subcategories

We have seen above that the W -q-Catalan number appearing in the
cyclic sieving phenomenon for noncrossing partitions helps us counting thick
subcategories.

But we can also view it the other way round. The set of thick sub-
categories yields a correspondent of this combinatorial phenomenon in the
algebraic or category theoretical world. To make this clear, we formulate it
explicitly.

Let ~∆ be a Dynkin quiver and denote by T (Db(k~∆)) the set of thick

subcategories of Db(mod(k~∆)). The Auslander-Reiten translation τ acts
canonically on this set. Note that then 〈τ〉 is a finite group since τh∆ = Σ−2

and this is the identity on T (Db(k~∆)). Then, the triple

(T (Db(k~∆)), 〈τ〉,Cat(W∆, q))

exhibits the cyclic sieving phenomenon.
Here the fixed point set

(T (Db(k~∆)))τ
s

for 1 ≤ s ≤ h∆ corresponds to the set of thick subcategories of the orbit

category Db(mod(k~∆))/〈τ s〉. As mentioned in Chapter 7, after an observa-

tion of Xiao und Zhu [85] the orbit category Db(mod(k~∆))/〈τ s〉 is actually
a triangulated category for each s.

7. The lattice structure

Let T be a finite triangulated category which is connected, algebraic
and standard of type (∆, r, t). The set T (T ) of thick subcategories of T
forms a lattice as it does for any triangulated category. In fact, we can view

it as a sublattice of the lattice of thick subcategories of Db(mod(k~∆)) by
identifying a thick subcategory S in T with its preimage π−1(S) where π is

the projection Db(mod(k~∆)) → Db(mod(k~∆))/Φ ∼= T . Analogously, T (T )
corresponds to a sublattice of NC(W, c). Denote by

c̃ox : T (T )→ NC(W, c)

the associated map. This is given by S 7→ cox(π−1(S)). It is order-
preserving since π and cox are. Also it is compatible with taking lattice
complements.

Proposition 9.23. Let S be a thick subcategory of T . Then,

c̃ox(⊥S) = Kc(c̃ox(S)).
Proof. First we need to show that π−1(S⊥) = (π−1(S)⊥). Observe that

we usually identify the objects in the orbit category with the objects in the
original category but for clarity we will speak for instance of π(X) indicating
that the object is considered in the orbit category. Pick an element Z ∈
π−1(S⊥). Then, for each R ∈ π−1(S) we have

0 = HomT (π(R), π(Z)) ∼=
⊕

n∈Z

HomDb(k~∆)(R,ΦnZ).
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In particular, this implies HomDb(k~∆)(R,Z) = 0 for each R ∈ π−1(S) and

hence, Z ∈ (π−1(S))⊥.
Now pick Z ∈ (π−1(S))⊥. Consider an arbitrary object of S. This is of

the form π(R) for some R ∈ π−1(S) since π is dense. Then,

HomT (π(R), π(Z)) ∼=
⊕

n∈Z

HomDb(k~∆)(Φ
n(R), Z).

Observe that π−1(S) is naturally 〈Φ〉-invariant and therefore, Φn(R) ∈
π−1(S) for each n ∈ Z. Hence, we have that HomDb(k~∆)(Φ

n(R), Z) equals

zero for each n ∈ Z and so does the above direct sum. Thus, π(Z) ∈ S⊥
and so Z ∈ π−1(S⊥).

The assertion for the left perpendicular category is analogous.
An application of Proposition 6.5 now proves the statement. �

Example 9.24. As in Section 2 of this chapter we consider a triangulated
category T of type (A5, 4, 1). The following diagram shows exemplary how
we may determine ⊥S from a thick subcategory S of T via the Kreweras
complement K in NCA(6).

b

b

b

bb

b

1
2

3

4
5

6
b

b

b b

b

b
1

2

34

5

6

b b

bb
bb

b bb

K

S ⊥S



CHAPTER 10

Thick subcategories for orbit algebras of repetitive

algebras

1. The classification

In Chapter 8.3 we introduced repetitive algebras and their orbit algebras.
This is an important class of self-injective algebras. Self-injective algebras of
finite representation type are of this form. Namely they are isomorphic to an
orbit algebra Â/G where A is a representation-finite hereditary algebra and
G is an admissible group of automorphisms. The stable module categories
of these algebras are classified by Amiot’s Theorem 7.8 as orbit categories of
derived categories of representation-finite hereditary algebras and therefore,
we could give a complete classification of the thick subcategories by the last
chapter.

If A is an arbitrary hereditary finite-dimensional algebra and G is an
admissible group of automorphism on Â, there is no such classification of
mod(Â/G) similar to Amiot’s. Let

H : Db(mod(A))→ mod(Â)

be the triangulated equivalence of Theorem 8.20 and let H ′ be its quasi-
inverse. In the sequel we refer to H as the Happel functor. Recall that
g ∈ G induces an automorphism on mod(Â) which we denote by the same
letter. Then, via the Happel functor g ∈ G induces an automorphism g′ on
Db(mod(A)) according to the following diagram.

mod(Â)

g
��

Db(mod(A))

g′

��
�

�

�

Hoo

mod(Â)
H′

// Db(mod(A))

If we assume that the induced automorphism group G′ is generated
by one automorphism on Db(mod(A)), we can consider the orbit category

Db(mod(A))/G′. Now in general it is not clear whether mod(Â/G) is trian-
gulated equivalent to Db(mod(A))/G′ whereG′ is the induced automorphism

group. If one does not assume certain properties for Â (like that it is lo-
cally bounded and locally support-finite), the categories might not even be
equivalent as additive categories.

Nevertheless, we can classify the thick subcategories of mod(Â/G) in the

following setting. We assume that the push-down functor Fλ : mod(Â) →
mod(Â/G) associated to the projection F : Â→ Â/G is dense. Moreover, we
assume that the induced automorphism group G′ on Db(mod(A)) fulfils the
assumptions in Keller’s Theorem 3.3. Note that this means in particular that

89
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we need to assume that G′ and therefore also G is a cyclic group generated
by one automorphism of Db(mod(A)).

Theorem 10.1. Let A be a hereditary finite-dimensional k-algebra, let
Â be its repetitive algebra and let G be a cyclic admissible group of automor-
phism on Â. Assume that Fλ and G′ fulfil the assumptions described above.
Then, there is a bijective correspondence between

• the set of thick subcategories of mod(Â/G),

• the set of G-invariant thick subcategories of mod(Â), and
• the set of G′-invariant thick subcategories of Db(mod(A)).

Proof. Let C be a thick subcategory of mod(Â/G). In [21, Section 3.2]
it is shown that Fλ is an exact functor which sends projectives to projectives.
Hence, taking into account the construction of triangles for the two Frobe-
nius categories, one can show that it is a triangle functor. Hence, F−1

λ (C) is
a thick subcategory of mod(Â) and it is clear that it is G-invariant.

Now let C be a thick and G-invariant subcategory of mod(Â). We need

to show that Fλ(C) is thick in mod(Â/G). We proceed very similarly to the
proof of Theorem 3.4 and actually use parts of the proof.

Consider a triangle in mod(Â/G). The push-down functor is dense
and hence, we can write the objects of the triangle as images of objects
in mod(Â). Thus, the triangle has the form

Fλ(X)→ Fλ(Y )→ Fλ(Z)→ ΣFλ(X).

Assume Fλ(X), Fλ(Y ) ∈ Fλ(C). This implies X,Y ∈ C. Applying the pull-
up functor F• to the above triangle yields by Proposition 8.14 to a sequence
in Mod(Â) of the form

⊕

g∈G

g(X)→
⊕

g∈G

g(Y )→
⊕

g∈G

g(Z)→ Σ
⊕

g∈G

g(X).

The pull-up functor is exact since the push-down functor is (see for instance
[20]). Moreover, it is easily seen in this setting that F• sends projectives
to projectives. Therefore, this is a triangle again. In [60] Krause and Le
extend the Happel functor to a functor

H ′ : Mod(Â)→ K(Inj(A))
which also preserves triangles. Apply this to the last triangle and get, since
H ′ commutes with direct sums, a triangle of the form

⊕

g∈G

H ′(g(X)) →
⊕

g∈G

H ′(g(Y ))→
⊕

g∈G

H ′(g(Z))→ Σ
⊕

g∈G

H ′(g(X)).

Since H ′g = g′H ′ for each g ∈ G this leads to a triangle
⊕

g′∈G′

g′(H ′(X))→
⊕

g′∈G′

g′(H ′(Y ))→
⊕

g′∈G′

g′(H ′(Z))→ Σ
⊕

g′∈G′

g′(H ′(X))

in D(Mod(A)). Since G′ fulfils the assumptions of Keller’s Theorem, this
is actually in D(mod(A)) as in the proof of Theorem 3.3. Now consider
H ′(C) where H ′ is the quasi-equivalence of the original Happel functor here.
This is a thick subcategory of Db(mod(A)) and it is G′-invariant. We have
H ′(X),H ′(Y ) ∈ H ′(C). Hence, we are exactly in the same situation as in the
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proof of Theorem 3.4. As there we can show that H ′(Z) lies in H ′(C). Thus,
Z ∈ C and Fλ(Z) ∈ Fλ(C). This shows that Fλ(C) is closed under triangles.
Moreover, one can easily show that it also fulfils the other properties of a
thick subcategory.

Finally, the correspondence with the thick subcategories of Db(mod(A))
comes for free using the Happel functor. �

Note that the theorem yields an applicable method to classify thick
subcategories of mod(Â/G) in the described setting since we know the thick
subcategories of Db(mod(A)) well by Chapter 6. If A is of tame or finite
representation type, we know them completely by Theorem 6.17. Thus, one
only needs to check which of them are invariant under the action of the
automorphism group.

In the sequel we execute this classification in two important cases.

2. Thick subcategories for trivial extension algebras of tame

hereditary algebras

In Chapter 8 we introduced the r-fold trivial extension algebra T (A)r =

Â/〈νr
Â
〉. We will use the classification of thick subcategories of Db(mod(A))

of Chapter 6 here and therefore, we refer to this chapter concerning notations
et cetera. However, we introduce one new notation here. Recall the set
NA(n) of noncrossing arcs. We denote by (NA(n))s the set of noncrossing
arcs which are invariant under rotation by s2π

n .

Theorem 10.2. Let A be a tame hereditary k-algebra with regular part
R decomposing as

∐
j∈J Hj ×

∐s
i=1 Uni . The poset of thick subcategories of

mod(T (A)r) corresponds bijectively to the union of posets

Thexc(A)
inv ∪ Threg(A)

inv

where one has bijective correspondences

Thexc(A)
inv ←→ (NC(W, c))c

r

= {w ∈ NC(W, c) | crwc−r = w},
Threg(A)

inv ←→ {(p, x1, . . . , xs) | p ∈ 2J , xi ∈ (NA(ni))
r},

Thexc(A)
inv ∩ Threg(A)

inv ←→ {(x1, . . . , xs) | xi ∈ (NAexc(ni))
r}.

Proof. As mentioned in Chapter 8.3, νÂ induces the Nakayama auto-

morphism on mod(Â) and this is isomorphic to τΩ−2. Since the Happel
functor is a triangle functor which in particular preserves Auslander-Reiten
triangles, the induced automorphism of νÂ on Db(mod(A)) is isomorphic to

τΣ2. Since A is tame, Â is locally support-finite and hence, by Proposition
8.16 the push-down functor is dense. Moreover, it is easy to check that τ rΣ2r

fulfils the assumptions of Keller’s Theorem. Thus, we can apply Theorem
10.1 and get that the thick subcategories of mod(T (A)r) correspond bijec-
tively to the thick subcategories of Db(mod(A)) which are invariant under
〈τ rΣ2r〉 and since each thick subcategory is invariant under Σ, these are the
thick subcategories which are invariant under 〈τ r〉.

The thick subcategories of Db(mod(A)) in turn correspond to Thexc(A)∪
Threg(A) as stated in Theorem 6.17.
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A thick subcategory C ∈ Thexc(A) corresponds to cox(C) ∈ NC(W, c) and
it is invariant under 〈τ r〉 if and only if cox(C) = cox(τ r(C)). By Proposition
9.1 this holds if and only if

cox(C) = cr cox(C)c−r.

A thick subcategory C ∈ Threg(A) corresponds to {(p, x1, . . . , xs) | p ∈
2J , xi ∈ NA(ni)}. By definition of NA(ni) the τ -action on C corresponds to
a rotation of the xi ∈ NA(ni) by

2π
ni
. Moreover, each homogeneous tube is

invariant under 〈τ r〉. �

Example 10.3. Let A = kQ where Q is the following quiver with un-
derlying graph D̃4.

1 2 3 4

5

Let r = 2. The author has written a gap program to compute noncross-
ing partitions invariant under r-fold conjugation with the Coxeter element
(using braid group actions). The result is that there actually are proper thick
subcategories in Thexc(A). A 〈τ2〉-invariant thick subcategory ofDb(mod(A))
is illustrated in the following figure.

0 0
1

0 0

0 0
1

1 0

1 0
1

0 0

0 1
1

0 0

0 0
1

0 1

1 1
3

1 1

1 1
2

0 1

0 1
2

1 1

1 0
2

1 1

1 1
2

1 0

2 2
5

2 2

1 1
3

2 1

2 1
3

1 1

1 2
3

1 1

1 1
3

1 2

0 0
0

1 0

1 0
0

0 0

0 1
0

0 0

0 0
0

0 1

1 1
1

1 1

1 1
1

0 1

0 1
1

1 1

1 0
1

1 1

1 1
1

1 0

1 0
1

1 0

1 1
2

1 1

0 1
1

0 1

1 1
2

1 1

1 0
1

1 0

2 1
3

2 1 1 2
3

1 21 2
3

1 2

2 2
4

2 2 2 2
4

2 2
b

b
b

3 33 3
7

1 0
1

0 1

1 1
2

1 1

0 1
1

1 0

1 1
2

1 1

1 0
1

0 1

2 1
3

1 2 1 2
3
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3

2 1

2 2
4

2 2 2 2
4

2 2
b

b
b

0 0
1

1 1

1 1
2

1 1

1 1
1

0 0

1 1
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1 1

0 0
1

1 1

2 1
3
1 2 1 2

3
2 11 2

3
2 1

2 2
4
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4

2 2
b

b
b

1 1
2

1 1

1 1
2

1 1

1 1
2

1 1

1 1
2

1 1 1 1
2

1 1
b

b
b

bb b bb b

As the figure suggests already, the Auslander-Reiten quiver of kQ admits
three exceptional tubes of rank 2 plus the usual infinite family of rank 1
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tubes. Clearly, all thick subcategories of Threg(A) are invariant under 〈τ2〉
and (NA(2))2 = NA(2).

3. Thick subcategories for k〈X,Y 〉/(X2, Y 2,XY − qY X)

Let k be an algebraically closed field and let q ∈ k∗. We classify the
thick subcategories of mod(Λq) where Λq is the algebra

k〈X,Y 〉/(X2, Y 2,XY − qY X).

The algebra is isomorphic to the path algebra of the following quiver. with

bx y

respect to relations x2 = y2 = xy− qyx = 0. This is isomorphic to the orbit
algebra B̂/〈Fq〉 where B = k(1 ⇒ 2) is the Kronecker algebra, consequently

B̂ is the path algebra of the following infinite quiver with respect to relations

b

b

b b b x0

y0
b

b

x1

y1
b

b

x2

y2
b

b

x3

y3
b

b

x4

y4
b

b

x5

y5
b b b

xi+1xi = yi+1yi = xi+1yi−yi+1xi = 0, and Fq sends vertices i to i+1, arrows
yi to yi+1 and xi to qxi+1.

The objects in mod(B̂) are locally representations of the Kronecker
quiver, i.e. representations of the following form in some degree. Such a

b b b b b b

V

W

0

0

0

0

0

f1
f2

representation is sent by Fq : mod(B̂) → mod(B̂) (the induced automor-

phism of Fq : B̂ → B̂) to a representation of the following form.

b b b b b b

V

W0

0

0

0

0

q−1f1

f2

The representations of the Kronecker quiver in turn are classified as
follows.

• The indecomposable preprojective representations are uniquely de-
termined by the dimension vectors (n, n + 1) for n ≥ 0. The
Auslander-Reiten translation τ of a representation with dimension
vector (n, n+1) is determined by the dimension vector (n−2, n−1)
(for n ≥ 2).
• The indecomposable preinjective representations are uniquely de-
termined by the dimension vectors (n + 1, n) for n ≥ 0. The
Auslander-Reiten translation τ of a representation with dimension
vector (n+1, n) is determined by the dimension vector (n+3, n+2).
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• There is a P1(k)-family of tubes of rank one where the indecom-
posable representations of regular length n have dimension vectors
(n, n). Denote an indecomposable regular representation with di-
mension vector (n, n) paramatrised by [λ : 1] ∈ P1(k) by R(λ, n).

Recall that indecomposable objects of Db(mod(B)) are just given by
shifts Σm(M) of the modules M described above.

We use the explicit construction of the Happel functor in [11] to deter-
mine the induced automorphism Fq on Db(mod(B)) and get the following
on indecomposable objects.

• Σm(kn ⇒ kn+1) 7→ Σm−1(kn+1 ⇒ kn+2) for n ≥ 1,
• Σm(0 ⇒ k) 7→ Σm−1(k ⇒ k2),
• Σm(kn+1 ⇒ kn) 7→ Σm−1(kn ⇒ kn−1) for n ≥ 2,
• Σm(k2 ⇒ k) 7→ Σm−1(k ⇒ 0),
• Σm(k ⇒ 0) 7→ Σm−1(0 ⇒ k),
• Σm(R(λ, n)) 7→ Σm−1(R(q−1λ, n))

for m ∈ Z.
Observe that F 2

q (X) = Σ−2τ−1(X) for X ∈ Db(mod(B)) not regular.
By Theorem 10.1 the thick subcategories of mod(Λq) correspond to the

thick subcategories of Db(mod(B)) which are invariant under 〈Fq〉. Again we
may apply this since Fq obviously fulfils the assumptions of Keller’s Theorem
and since the push-down functor is dense since B is of tame representation
type.

According to Theorem 6.17 the thick subcategories of Db(mod(B)) cor-
respond to Thexc(B)∪Threg(B) where Thexc(B) corresponds to NC(W, s1s2)

and Threg(B) corresponds to 2P1(k). Moreover, Thexc(B)∩Threg(B) = {0}.
One can easily see (use for instance braid group actions on NC(W, s1s2))

that a proper thick subcategory S ∈ Thexc(B) is of the form S = add(ΣnX |
n ∈ Z) for an indecomposable not regular object X ∈ Db(mod(B)). Then,
if S is 〈Fq〉-invariant, it contains X as well as F 2

q (X) = Σ−2τ−1(X). Thus,

it also contains τ−1(X). This would imply that S = Db(mod(B)).
Finally, denote by

ϕq : P1(k)→ P1(k), [λ, 1] 7→ [q−1λ, 1].

A thick subcategory S ∈ Threg(B) corresponds to V ∈ 2P1(k). Hence, the

〈Fq〉-invariant thick subcategories of Threg(B) correspond to 2P1(k)/ϕq .
Altogether, we can record the following.

Proposition 10.4. The set of thick subcategories of mod(Λq) is given
by

{mod(Λq), {0}} ∪ Threg(B)

where Threg(B) corresponds bijectively to 2P1(k)/ϕq . Hence, proper thick sub-
categories of mod(Λq) are collections of rank one tubes parametrised by orbits
of P1(k) under ϕq. �

Remark 10.5. (1) If q = 1, then Λq is isomorphic to the group
algebra of the Klein four group and P1(k)/ϕq = P1(k).

(2) If q is a root of unity, then the orbits in P1(k)/ϕq are finite.
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Figure 1. A proper thick subcategory of mod(Λq) marked
in the Auslander-Reiten quiver of mod(Λq)

(3) If k = C and |q| = 1, then we can regard P1(k) as the Riemann
sphere and ϕq describes a rotation of the sphere.





CHAPTER 11

Other classification methods - history and

comparison

The problem of classifying thick subcategories was approached before
in various mathematical fields. The methods used there are in principle
different from the combinatorial methods of this thesis. These different
methods from commutative algebra and algebraic topology apply mainly to
triangulated categories which are different from the triangulated categories
considered here. But there are also intersections. In this chapter, we briefly
present the most famous classification theorems, and compare them to our
classifications.

The first result is due to Hopkins [47] and Neeman [66] and classifies the
thick subcategories of the derived category of bounded complexes of finitely
generated projective modules Dper(R) over a commutative noetherian ring R
which is also known as the category of perfect complexes.

Theorem 11.1 (Hopkins, Neeman). Let R be a commutative noetherian
ring. There is a bijective correspondence between

• the set of thick subcategories of Dper(R), and
• the set of subsets of Spec(R) which are closed under specialisation.

�

Here Spec(R) denotes the spectrum of the ring R, i.e. the set of all prime
ideals of R.

A subset V of Spec(R) is called specialisation closed if

p ∈ V and p ⊆ q⇒ q ∈ V.
In [66] Neeman generalises this to the the unbounded derived category

D(R) of all R-modules where R is commutative and noetherian. Namely,
in this case there is a bijective correspondence between the set of localising
subcategories of D(R) and the set of all subsets of Spec(R). A subcategory
of D(R) is called localising if it is a full triangulated subcategory and if it is
closed under the formation of arbitrary direct sums.

Due to the fact that R is supposed to be a commutative ring, this ap-
proach in general does not apply to our classification in Chapter 6 of thick
subcategories of Db(mod(A)) where A is a hereditary algebra.

But we can compare the classification of Chapter 9 with the classifica-
tion of the thick subcategories of mod(kG) for a p-group G due to Benson,
Carlson and Rickard [14]. Therefore, we consider this classification in a bit
more detail. For the background of this theory we refer to [13, Chapter 5].

From now on let k be an algebraically closed field of characteristic p and
let G be a finite p-group. In order to use the commutative algebra methods
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here we consider the group cohomology ring

H∗(G, k) := Ext∗kG(k, k).

The multiplication is induced by the Yoneda composition of two homoge-
neous elements. One can show that H∗(G, k) is a graded commutative ring.
If p = 2, this is commutative, and if p is an odd prime, we modify the ring
by considering only even degrees.

Denote by
Proj(H∗(G, k))

the set of all homogeneous non-maximal prime ideals of H∗(G, k).
Note that in certain situations the group cohomology ring is well-known.

For example from [12, Corollary 3.5.7] we get that for G = (Z/pZ)r and
char(k) = p it is just the polynomial ring

k[x1, . . . , xr]

on r variables if p = 2, and it is the the tensor product of a polynomial ring
and an exterior algebra if p is odd.

Now let M be a finitely generated kG-module. Consider the map

H∗(G, k) = Ext∗kG(k, k)
−⊗kM−−−−→ Ext∗kG(M,M).

The kernel of this map is a homogeneous ideal IM in H∗(G, k) and we denote
by VG(M) the set

V (IM ) = {p ∈ Proj(H∗(G, k)) | IM ⊆ p}.
Theorem 11.2 (Benson-Carlson-Rickard). Let G be a p-group. There

is a bijective correspondence between

• the set of thick subcategories of mod(kG), and
• the set of subsets of Proj(H∗(G, k)) which are closed under special-
isation.

Here a specialisation closed subset V corresponds to the thick subcategory
consisting of modules M ∈ mod(kG) with VG(M) ⊆ V. �

Before we continue we should mention that there is also a generalisation
of this. In [15] Benson, Iyengar and Krause give a classification of the
localising subcategories of Mod(kG).

In Chapter 9 we classified thick subcategories of finite algebraic trian-
gulated categories. The category mod(kG) is a category of this kind if
kG is representation-finite. Let G be a p-group as in the Benson-Carlson-
Rickard classification which is additionally representation-finite. By Theo-
rem 8.9 the type of mod(kG) equals (Apn−1, e, 1). By [12, Section 6.5] the
inertial index e arising here divides p − 1. Since p is prime, this implies
gcd(hApn−1

, e) = gcd(pn, e) = 1. Thus, our approach implies that such a
category does not admit non-zero proper thick subcategories.

Example 11.3. Let G be a cyclic group of order p. Then,

Proj(H∗(G, k)) = Proj(k[x])

and this only consists of one point, the generic point. The generic point
corresponds to the whole category mod(kG) while the empty set corresponds
to the thick subcategory {0}.
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This consideration shows that already in the finite case the classification
of this thesis complements the existing methods. Namely, for arbitrary finite
groups the Benson-Carlson-Rickard classification does not capture all thick
subcategories but only those which are tensor ideal.

Finally, we apply both approaches to a tame example.

Example 11.4. Let
G = Z/2Z× Z/2Z

be the Klein four group. Here specialisation closed subsets of

Proj(H∗(G, k)) = Proj(k[x1, x2])

correspond to arbitrary subsets of P1(k) plus all of Proj(k[x1, x2]). This fits
together with our combinatorial classification of the thick subcategories of
mod(Λq) for q = 1 in Proposition 10.4.





CHAPTER 12

Hom-Vanishing

In the study of triangulated categories it is helpful to know whether there
are non-zero morphisms between two given objects of the category. Thick
subcategories are invariants of the category which can decide this question.
We will use the previous classifications of thick subcategories to formulate
an equivalent condition to the fact that the morphism space between two
objects vanishes. Precisely, we formulate this concerning the vanishing of
the following modified space of morphisms.

Definition 12.1. Given a pair of objectsX,Y in a triangulated category
T . The graded Hom-space is given as

Hom∗
T (X,Y ) =

⊕

n∈Z

HomT (X,ΣnY ).

Recall that we assigned in Chapter 2.2 to a thick subcategory S of a
triangulated category T the perpendicular categories ⊥S and S⊥. It is
important that these are thick subcategories again.

Proposition 12.2. Let T be a triangulated category. Let X,Y be two
objects in T . Then,

Hom∗
T (X,Y ) = 0⇐⇒ Thick(X) ⊆ ⊥ Thick(Y ).

Proof. We show

X ∈ ⊥ Thick(Y )⇐⇒ Hom∗
T (X,Y ) = 0.

This implies the assertion since Thick(X) is the smallest thick subcategory
containing X and is thus contained in each thick subcategory which contains
X, in particular then in ⊥Thick(Y ).

If X ∈ ⊥(Thick(Y )), then HomT (X,ΣnY ) = 0 for all n ∈ Z and hence,
Hom∗

T (X,Y ) = 0.
Now assume that Hom∗

T (X,Y ) = 0. Since Hom(X,−) is a homological
functor,

Ker(Hom∗
T (X,−)) = {Z ∈ T | Hom∗(X,Z) = 0}

is closed under suspensions, sums, summands and triangles and hence, it
is a thick subcategory of T . By assumption Y ∈ Ker(Hom∗

T (X,−)) and
therefore, Thick(Y ) ⊆ Ker(Hom∗

T (X,−)). This implies X ∈ ⊥Thick(Y ).
�

Proposition 12.3. Let A be a hereditary k-algebra, let cox, c, W be
as in Theorem 6.2. Let X,Y be two objects in Db(mod(A)) such that
Thick(X),Thick(Y ) are generated by an exceptional sequence. Then,

Hom∗
Db(A)(X,Y ) = 0⇐⇒ cox(Thick(X)) ≤ Kc(cox(Thick(Y ))).
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Proof. Use the above Proposition 12.2, the fact that cox is order-
preserving and Proposition 6.5. �

Now to the other class of triangulated categories we are concerned with
in this thesis, the orbit categories. Up to the end of this chapter we assume
that A is a hereditary k-algebra and Φ: Db(mod(A)) → Db(mod(A)) is an
automorphism such that the assumptions in Keller’s Theorem 3.3 hold, i.e.
T := Db(mod(A))/Φ is triangulated. To avoid inconveniently long formula-
tions we introduce the notation Thexc(T ) for the set of thick subcategories
S of T such that π−1(S) is generated by an exceptional sequence. Here π
denotes again the projection from the derived category to the orbit category.
Note that if T is a finite algebraic triangulated category, then Thexc(T ) co-
incides with the set of all thick subcategories of T . As for those in Chapter
9.7 we denote by

c̃ox : Thexc(T )→ NC(W, c)

the map sending a thick subcategory S to cox(π−1(S)).
Proposition 12.4. Let S ∈ Thexc(T ). Then,

c̃ox(⊥S) = Kc(c̃ox(S)).
Proof. The proof of Proposition 9.23 is not restricted to the case where

A is representation-finite. �

Proposition 12.5. Let X and Y be objects in T such that Thick(X)
and Thick(Y ) are in Thexc(T ). Then,

Hom∗
T (X,Y ) = 0⇐⇒ c̃ox(Thick(X)) ≤ Kc(c̃ox(Thick(Y ))).

Proof. Use Propositions 12.4 and 12.2 and the fact that c̃ox is order-
preserving. �



CHAPTER 13

Cluster categories, thick subcategories and

noncrossing partitions

There are several connections between classification problems in clus-
ter theory, the classification of thick subcategories and noncrossing objects.
This chapter intends to present these connections and distinguish the ap-
proach of this thesis from other concepts which look similar but are different.

In fact, cluster theory was the motivation to study noncrossing partitions
from the representation theory point of view in the first place.

For the basics about cluster categories we keep with [28].
In this chapter we assume that k is an algebraically closed field.

Definition 13.1. Let ~∆ be a quiver without oriented cycles. The cluster
category C~∆ associated to ~∆ is by definition the orbit category

C = C~∆ = Db(mod(k~∆))/(τ−1 ◦Σ).
This is a triangulated category by Theorem 3.3.

1. Cluster tilting objects and noncrossing partitions

The introduction of the cluster category was motivated by the study of
the cluster algebra introduced by Fomin and Zelevinsky in [40]. For the
definition of the cluster algebra and associated notions we refer to [28]. In
a certain way one can associate to a cluster algebra a quiver and the cluster
algebras of finite type are again classified by quivers of Dynkin type. For
this finite type by [41, Theorem 4.5] the clusters of the cluster algebra are
in bijective correspondence with the cluster tilting objects in the cluster
category of the associated Dynkin type. In order to define tilting in this
cluster context, we introduce the Ext-space in C in the following way:

Ext1C~∆
(X,Y ) :=

⊕

j∈Z

Ext1
Db(k~∆)

((τ−1 ◦Σ)j(X), Y )

where Ext1
Db(k~∆)

(X,Y ) := HomDb(k~∆)(X,Σ(Y )).

Definition 13.2. An object T in C is called a cluster tilting object if
Ext1C(T, T ) = 0 and if it is maximal with this property, i.e. if there is an
object U with Ext1C(T,U) = 0 = Ext1C(U, T ), then U is a direct summand
of T . A cluster tilting object is called basic if all its direct summands are
pairwise not isomorphic.

Theorem 13.3 (Ingalls/Thomas [53]). Let ~∆ be a quiver without ori-
ented cycles. There is a bijective correspondence between

• the set of basic cluster tilting objects in C~∆, and
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• the set of wide subcategories of mod(k~∆) which are generated by an
exceptional sequence.

Proof. The correspondence is a composition of the correspondences of
Proposition 2.26, Theorem 2.11, Corollary 2.17 in [53]. �

Remark 13.4. The bijection is not natural since it is a composition of
correspondences as mentioned above. There does not seem to be a way to
construct it directly.

Note that by Chapter 6 we hence have a bijective correspondence be-
tween

• the set of basic cluster tilting objects in C~∆, and
• the set of thick subcategories of Db(mod(k~∆)) generated by an
exceptional sequence, and
• NC(W∆, c).

2. Thick subcategories of the cluster category

Since C~∆ is a triangulated category by itself, we can also ask for its thick
subcategories. It is an orbit category of the bounded derived category of a
hereditary algebra and thus we can use Theorem 3.4 to determine the thick
subcategories.

Lemma 13.5. Let ~∆ be a quiver without oriented cycles. Let X be a

connected component of the Auslander-Reiten quiver of Db(mod(k~∆)) and

let S be a thick subcategory of Db(mod(k~∆)) with τ(S) = S. If there is an
indecomposable object which lies as well in X as in S, then add(X ) ⊆ S.

Proof. Let X ∈ X ∩ S be indecomposable. Since S is τ -invariant, all
τ -translates of X are contained in S. Since S is thick, all middle terms of the
corresponding Auslander-Reiten sequences lie in S. Then, the τ -translates
of these middle terms are again contained in S. Continuing like this, we get
that all of X lies in S since X is connected. �

Theorem 13.6. (1) Let ~∆ be a Dynkin quiver. Then the cluster
category C~∆ admits no non-zero proper thick subcategories.

(2) Let ~∆ be an extended Dynkin quiver. Let R =
∐

t∈T Rt be the

decomposition of the regular part of mod(k~∆) as in Theorem 4.13.
The only proper thick subcategories of C~∆ are of the form

π(Thick(
∐

s∈S

Rs)) ∼=
∐

s∈S

Rs

where S ∈ 2T (not empty) and π denotes the projection.

Proof. By Theorem 3.4 the thick subcategories of C correspond to the

thick subcategories of Db(mod(k~∆)) which are invariant under 〈τ−1Σ〉. This
is equivalent to being invariant under 〈τ〉.

Now let ~∆ be Dynkin. Let S be a thick subcategory of Db(mod(k~∆)) of

this form. By Proposition 2.26 the Auslander-Reiten quiver of Db(mod(k~∆))
is of the form Z∆ and hence it is connected. From Lemma 13.5 we get that

if there is a non-zero object in S, then automatically, S = Db(mod(k~∆)).
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Let ~∆ be extended Dynkin. Let S be a non-zero thick and 〈τ〉-invariant
subcategory of Db(mod(k~∆)). If S only consists of regular objects, then as
discussed in Chapter 6, it is of the form

Thick(
∐

s∈S

Ss) =
∐

n∈Z

Σn(
∐

s∈S

Ss)

where Ss is a wide non-zero subcategory of Rs and S ∈ 2T . This is 〈τ〉-
invariant if and only if Ss is 〈τ〉-invariant for each s ∈ S. Since Rs is
connected, by Lemma 13.5 Ss = Rs for each s ∈ S. Hence,

S = Thick(
∐

s∈S

Rs) =
∐

n∈Z

Σn(
∐

s∈S

Rs).

Now we have an isomorphism

Σn
∐

s∈S

Rs = (Στ−1)n
∐

s∈S

Rs
∼=

∐

s∈S

Rs

in the orbit category C for all n ∈ Z. Thus, a thick subcategory S only
consisting of regular objects corresponds to

π(S) ∼=
∐

s∈S

Rs.

Now assume that S contains a non-zero object X which is not regular.
Denote by P[0] and Q[0] the preprojective and preinjective components of

mod(k~∆). As seen in Chapter 4 and in Proposition 2.26, the connected

components of Db(mod(k~∆)) including non-regulars are given by Q[n− 1]∪
P[n] and are of the form Z∆ for n ∈ Z. Say X ∈ P[0]. By Lemma 13.5 this
impliesQ[−1]∪P[0] ⊆ S. Hence, Q[n],P[n] ⊆ S for all n ∈ Z since S is thick.
For each t ∈ T any morphism from P[0] to Q[0] factors through a module
in Rt[0] (see [80, Theorem 3.4]). In particular, this holds for the embedding
of X into its injective hull E(X) ∈ Q[0]. Thus, for each t ∈ T there is a
a module R ∈ Rt[0] and a monomorphism X → R. The cokernel of this
lies in Q[0] since it is not possible that it lies in R[0] because R[0] is a wide

subcategory of mod(k~∆). Hence, R ∈ S and since S is invariant under 〈τ〉,
Rt[n] ⊆ S for all t ∈ T and all n ∈ Z. Altogether, S = Db(mod(k~∆)). �

Remark 13.7. More generally, one could also consider the m-cluster
category

Cm~∆ := Db(mod(k~∆))/(τ−1Σm)

for m ∈ Z as introduced by Keller in [56].

If ~∆ is Dynkin we have the same result as above. In the extended Dynkin
case the proper thick subcategories appear as

∐

0≤n<m

Σn
∐

s∈S

Rs.
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[50] David Hughes and Josef Waschbüsch. Trivial extensions of tilted algebras. Proc. Lon-
don Math. Soc. (3), 46(2):347–364, 1983.

[51] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

[52] Kiyoshi Igusa and Ralf Schiffler. Exceptional sequences and clusters. J. Algebra,
323(8):2183–2202, 2010.

[53] Colin Ingalls and Hugh Thomas. Noncrossing partitions and representations of quiv-
ers. Compos. Math., 145(6):1533–1562, 2009.

[54] Osamu Iyama and Steffen Oppermann. Stable categories of higher preprojective al-
gebras. arXiv:math.RT/0912.3412, 2011.

[55] V. G. Kac. Infinite root systems, representations of graphs and invariant theory. II.
J. Algebra, 78(1):141–162, 1982.

[56] Bernhard Keller. On triangulated orbit categories. Doc. Math., 10:551–581, 2005.
[57] Bernhard Keller. On differential graded categories. In International Congress of Math-

ematicians. Vol. II, pages 151–190. Eur. Math. Soc., Zürich, 2006.
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