
Bielefeld University
Faculty of Technology
Research Institute for Cognition and Robotics / Applied Informatics

Technical Report

Facial Communicative Signal Interpretation in Human-Robot
Interaction by Discriminative Video Subsequence Selection

Christian Lang1,2, Sven Wachsmuth1,2,
Marc Hanheide1,2,3, and Heiko Wersing4

February 2012

1 Research Institute for Cognition and Robotics, Bielefeld University, Germany
2 Applied Informatics, Bielefeld University, Germany

3 School of Computer Science, University of Lincoln, UK
4 Honda Research Institute Europe, Offenbach, Germany

Facial communicative signals (FCSs) such as head gestures, eye gaze, and facial
expressions can provide useful feedback in conversations between people and also
in human-robot interaction. This paper presents a pattern recognition approach for
the interpretation of FCSs in terms of valence, based on the selection of discrimi-
native subsequences in video data. These subsequences capture important temporal
dynamics and are used as prototypical reference subsequences in a classification
procedure based on dynamic time warping and feature extraction with active ap-
pearance models. The approach is evaluated on a database containing videos of
people interacting with a robot by teaching the names of several objects to it. The
verbal answer of the robot is expected to elicit the display of spontaneous FCSs by
the human tutor, which were classified in this work. The achieved classification
rates are comparable to the average human recognition performance and outper-
formed our previous results on this task.



1 Introduction

Facial communicative signals (FCSs) such as head gestures, eye gaze, and facial expressions
are one important means of nonverbal communication. People often use them to give implicit
feedback about a conversation, for instance by appearing to understand or seeming to be puzzled.
In order to move towards a fairly natural communication and collaboration between humans and
robots, besides the understanding of speech, also the recognition and interpretation of FCSs are
important capabilities a robot should have, as they can provide useful information about the
current interaction.

This paper presents an approach for the recognition of FCSs in task-oriented human-robot in-
teraction based on the selection of prototypical reference subsequences for a k-nearest-neighbor-
based classification method. The following Sec. 2 briefly introduces related work about FCS
recognition in general. Sec. 3 describes the motivation for our valence-based approach to FCS
recognition, then the scenario and video database used for its evaluation is introduced in Sec. 4.
The utilized face detection and feature extraction techniques are addressed in Sec. 5. Subse-
quently, the main contribution of this paper—the recognition approach based on reference sub-
sequence selection—is explained in Sec. 6 and evaluated in Sec. 7. Finally, Sec. 8 concludes
and remarks on future work.

2 Related Work

A large number of visual head pose estimation techniques are reviewed in the comprehensive
survey of Murphy-Chutorian and Trivedi [30]. Among the state of the art approaches are the
work of Wang and Sung [46] using geometric relations of facial features in an EM-framework,
the utilization of active appearance models (AAMs) [8] for non-rigid head tracking as investi-
gated by Baker et al. [1], and the 3D head tracking method method of Zhao et al. [50] based on
SIFT features [27].

Morimoto and Mimica [29] presented a review of several eye tracking approaches. Wang and
Sung’s [45] system evaluated geometric relations of iris and eye corners to robustly estimate
the eye gaze, whereas Newman et al. [31] used template matching. Ishikawa et al. [20] and
also Ivan [21] utilized AAMs for eye gaze estimation, Varchmin et al. [44] combined eigeneye
analysis and neural networks for that purpose.

Fasel and Luettin [12] and also Pantic and Rothkrantz [33] presented surveys on facial expres-
sion recognition techniques. A huge body of research investigated an interpretation in terms of
discrete classes, most often basic emotions [10]. The applied methods include haar-like features
and dynamic binary patterns [47], local facial feature deformations [39], and also flexible mod-
els [26] and the related AAMs [9, 36]. Buenaposada et al. [4] built linear subspace deformation
and illumination models and used a k-nearest-neighbor-based classifier with a certain temporal
history for the classification of basic emotions.

Many approaches (e.g. [43, 28]) investigated the recognition of action units (AUs) [11], for
instance by means of gabor filters and support vector machines (SVMs) [3] or geometric facial
feature modeling and neural networks [41]. Relatively few works considered the interpreta-
tion of facial expressions in terms of emotional dimensions. Fragopanagos and Taylor [15] and
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also Caridakis et al. [5] investigated valence and activation recognition with neural networks,
whereas Gunes and Pantic [19] used hidden markov models (HMMs) and SVMs for the contin-
uous prediction of valence and four other dimensions.

The importance of temporal dynamics for facial analyses was already noticed very early [17]
and has often been addressed by various bayesian approaches [49, 40] or related graphical mod-
els such as HMMs [7].

While most early works considered posed facial expressions, there is a growing interest in
authentic, spontaneous facial expressions nowadays [43, 39, 3]. Zeng et al. [48] presented a
comprehensive survey on this topic.

An important issue with the recognition of authentic, spontaneous FCSs is the definition of
the categories in whose terms the interpretation is performend. We take a different approach
here than the research cited above and motivate and explain it in the next section.

3 Motivation

The way people use FCSs in human-human interaction has been investigated in a vast amount
of psychological research; please see [24] for a discussion. Due to the complex and in large
parts controversial nature of these signals, we suggest to take a pragmatic view in human-robot
interaction and to focus on scenario-specific investigations instead of trying to build general
purpose systems for comprehensive FCS recognition, at least for the midterm development of
the field [24]. We consider facial expression recognition to illustrate this point: Often the six
basic emotional expressions happiness, anger, disgust, fear, surprise, and sadness according to
Ekman [10] have been used as classification categories, due to their universality (although this
is controversial [37]). However, these facial expressions are not the most important ones in
interaction situations as most of them rarely occur in everyday life in a pronounced way and
even less in human-robot interaction [41, 5, 23]. As a consequence, many works used posed
facial expressions (e.g. [4, 47]), which are quite different from authentic, spontaneous ones (e.g.
[43]).

On the contrary, facial expressions that carry some communicative semantics as proposed by
Fridlund [16] are much more frequently displayed in those interaction situations. Some exam-
ples of this kind of “communicative” facial expressions are looking disappointed or puzzled,
appearing to agree or disagree with the interlocutor, or seeming satisfied with or frustrated by
the situation. Fridlund [16] argued that there are no prototypical displays of certain communica-
tive facial expressions as their meaning depends heavily on the context. Hence, we suggest to
investigate the automatic recognition of FCSs in specific interaction scenarios, i.e. in a certain
context.

Another problem is the definition of classification categories and the acquisition of reliable
ground truth data. Spontaneously displayed FCSs are often difficult to interprete in precise cat-
egories, thus obtaining ground truth labels by human raters judging recorded interaction videos
might be very subjective and ambiguous.1 Also interviewing the participants about the intended

1In a pre-study of previous work [23], several people judged videos of participants teaching objects to a robot.
These human raters did neither agree on the number of FCSs nor on the labels that should be used to describe the
observed FCSs.
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meaning of their facial displays is not feasible in many cases.
To cope with this problem, we used an approach different from the usual practice: We defined

the ground truth labels in terms of the interaction situation. In our scenario (please see Sec. 4),
a particular interaction with the robot can either be successful or problematic, and this can be
objectively determined from the situation. The FCSs displayed in these situations are treated
as examples for one of two classes (success and failure). As already argued earlier [25], we
think that in many practical interactions with robots, the detection of failure situations by FCS
interpretation would improve the interaction experience notably, as the robot could change into
a “problem solving” state and offer options that are applicable for many types of failures, for
instance. A finer classification of the displayed FCS (“angry”, “sad”, “disappointed”, “puzzeld”,
etc.) is not essentiell to achieve this.

While this approach yields reliable ground truth labels, it faces another problem: As the defi-
nition of these labels is independent of the visual appearance, their is no guarantee that a mean-
ingful FCS is displayed at all, however, studies [2, 23] suggest that usually a meaningful display
occurs. Thus, the research question investigated in this work is not the standalone interpretation
of FCS in itself (as in most work on facial expression recognition), but their interpretation as
feedback about the interaction in terms of valence, and the question to which degree this feed-
back can be gained from FCSs at all. One can regard this as interpretation on pragmatic level,
while the former is on semantic level. This definition of valence is also different from the defi-
nition used in most other works on valence recognition [15, 5, 19], where the visual appearance
of the face is rated by human coders in order to get a ground truth valence value. An exception
is the work of Barkhuysen et al. [2], who used the correct or wrong understanding of a spoken
dialog system to define a positive or negative ground truth value, which is very similar to our ap-
proach. They conducted several user studies, but did not report results of automatic recognition
approaches. Please refer to [23] for a comparison of these studies to our object-teaching study,
which is briefly introduced in the following section.

4 Scenario and Video Database

For the evaluation of our approach, we used the object-teaching scenario introduced in previous
work [23]: A person teaches the names of several objects to a robot, which is expected to term
them correctly afterwards (please see Fig. 1(a) for a scenario overview). In its verbal answer,
the robot can say the correct or a wrong object name. The facial display of the human teacher
during the answer of the robot and her or his reaction to that answer constitutes video data of the
respective category: success in case of a correct answer, or failure if the answer is wrong. The
video database recorded in this scenario contains 221 success and 227 failure scenes, distributed
over 11 participants (please see Fig. 1). The FCSs the teachers showed during the interaction are
authentic and spontaneous, as the participants did not know beforehand that a Wizard of Oz study
was performend and that FCSs are important at all, but assumed that the object classification
performance of an autonomously acting robot was to be evaluated. For further details on this
scenario and the recorded video database, please refer to [23].

The interpretation of the FCSs in the object-teaching scenes in terms of valence turned out to
be a difficult classification problem, as the human recognition performance was only 82.0% on
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(a) scenario overview (b) object-teaching scene

(c) examples of facial expressions

Figure 1: Example images from the used object-teaching video database. Please refer to Sec. 4.
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Figure 2: Example for the utilized face detection and feature extraction methods. Please refer to
Sec. 5.

average (78.1% for success scenes and 86.0% for failure scenes, with a high variance in each
case), which is comparatively low for a two-class problem. Further details about this can be
found in [23].

5 Face Detection and Feature Extraction

For each success and failure video in the database, an automatic face detection based on the
approach of Castrillón et al. [6] was applied. It succeeded for 98% of the scenes, the remaining
2% were rejected by the system due to too poor face detection and were thus excluded from
the experiments described in Sec. 7. The feature extraction on frame level is done by an active
appearance model (AAM) [8]. For each human teacher, we used an individual AAM, built from
hand-annotated images with 55 landmarks placed over the face, because person-specific AAMs
are known to yield better fitting results than generic ones [18]. In order to fit to an input image,
an AAM needs a suitable initializion, which is provided by overlaying the mean AAM shape on
the detected face, based on the method described by Rabie et al. [35]. The parameter vector of
the AAM (when fitted to a particular face image in the input video sequences) is used as feature
vector for the respective frame. Fig. 2 shows an example of the face detection and feature
extraction.

6 Reference Subsequence Selection For Facial
Communicative Signal Classification

An evaluation of previous recognition results using a SVM classification [25] revealed that ap-
parently only a short subsequence of a scene video is actually discriminative in terms of success
and failure in many cases, although the videos are already segmented to contain only the rele-
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vant interaction part, i.e. the reaction of the teacher to the answer of the robot.2 Furthermore,
the visual impression from watching these videos suggest that the temporal dynamics seem to
be especially important.

This motivates the search for comparatively short video subsequences with high discrimina-
tive power und their usage as prototypical representatives for the two classes in a classification
approach considering temporal dynamics. A subsequence is a set of several consecutive frames
of a video, where each frame is represented by the corresponding AAM parameter vector. The
“discriminative power” of a subsequence refers to its suitability to distinguish success from
failure videos (please see below). The presented method consists of the following major steps,
which are explained in detail in the subsequent sections, after a short comparison to some related
approaches in Sec. 6.1:

1. For all possible subsequences (within a certain range of length) of all videos of the given
training data, a “discriminativity”-value is computed. This value is high for subsequences
that are similar to other subsequences of the same class, but are rather different to any
subsequence of the opposite class. Thus, a high discriminativity-value indicates a sub-
sequence with high discriminative power. To account for the temporal nature of the
subsequences, dynamic time warping (DTW) [38] is used as distance measure between
subsequences. [→Sec. 6.2]

2. From all considered subsequences, a certain number of subsequences with high discrimi-
nativity-values is chosen as reference subsequences for each class. [→Sec. 6.3]

3. These reference subsequences are used as prototypes in a nearest-neighbor-based classifi-
cation. [→Sec. 6.4] To take into account the possibly different expressiveness of a person
regarding positive and negative FCSs, this classification scheme is extended by introduc-
ing a bias that favors one class over the other. [→Sec. 6.5]

4. This classification approach involves several parameters which are optimized on the train-
ing data by means of model selection techniques. Therefore, the steps 1. to 3. are iterated
over different parameter sets to perform a leave-one-out cross-validation on the training
data for parameter optimization. [→Sec. 6.6]

6.1 Related Approaches

Buenaposada et al. [4] also used a nearest-neighbor-based classifier to classify facial expres-
sions. In their method, the prototypes are points in a linear subspace corresponding to a single
face image each, where the temporal dynamics are considered at classification level, whereas
in our approach the prototypes correspond to sequences of face images (instead of single im-
ages) and the DTW distance function accounts for the temporal dynamics. Also the prototype
selection method is entirely different.

2More concretely, the relevant interaction part starts when the robot starts to utter the object name and ends when
the human teacher finishes her or his reaction to the robot. Those intervals were annotated by human coders in
the present database [23], but can in principle be determined automatically by exploiting knowledge about the
task and the typical turn-taking behavior.
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Most works on the detection of specific subsequences in sequential input data stem from
datamining research. Tiwari et al. [42] presented a survey on methods to find frequently occur-
ring patterns in large datasets. In typical state of the art datamining techniques for discriminative
subsequence detection (e.g. [22]) and related pattern matching problems (e.g. [14]), the data
are usually sequences of ordinal, univariate items (alphabet). This allows for effective pruning
strategies as integral parts of the respective methods where large parts of the generated search
trees can be discarded as they cannot contain a desired subsequence. Due to the continuous, mul-
tivariate feature vector data and the traits of the DTW distance measure, those pruning strategies
are not applicable in our case. Nowozin et al. [32] used discriminative subsequences to classify
human actions. They used complex features based on gabor filters that are transformed in se-
quences of sets of integers for a subsequent classification with a boosting algorithm. To perform
the pattern search for suitable subsequences, they developed an extension of the PrefixSpan algo-
rithm [34] that relies on an effective search tree pruning, which is not applicable for our features
again.

Tiwari et al. [42] pointed out that most pattern mining approaches focus on the performant
computation of frequent patterns, leaving the quality assessment for a specific use case for sub-
sequent processing steps. Our approach does not search for frequent patterns first, but directly
tries to estimate the quality of the considered subsequences in terms of expected discrimination
power.

6.2 Discriminative Subsequence Detection

The goal of the discriminative subsequence detection is to find (comparatively short) video sub-
sequences within the input videos that are characteristic for either success or failure scenes and
can thus be used as prototypical reference subsequences to classify a new scene. Each video
is represented as a sequence A = a1a2 . . . aN of AAM frame parameter vectors ai of the face,
normalized to zero mean and unit variance. In order to find suitable subsequences, an exhaustive
search over all possible subsequences of length l ∈ [lmin, lmax] (in frames) of all training video
sequences is performed.

For each subsequence of each video, a discriminativity-value sm,i is computed:

sm,i =

∑
kminn,j{dnm(i, j) | cm 6= cn, n 6= m, j ∈ Pnm,i}∑
kminn,j{dnm(i, j) | cm = cn, n 6= m, j ∈ Pnm,i}

, (1)

where m and i are the indices of the i-th subsequence in the m-th video, kmin{X} denotes
the k smallest values of set X , dnm(i, j) is the normalized distance of the i-th subsequence in the
m-th video to the j-th subsequence in the n-th video, cm denotes the class (success or failure)
of the m-th video, and Pnm,i is the index set of all subsequences in the n-th video, the lengths of
which are constrained by the length of the i-th subsequence in the m-th video:

Pnm,i = {j | blm,i/fe ≤ ln,j ≤ blm,i · fe | j ∈Mn}, (2)

where lm,i is the length (in frames) of the i-th subsequence in the m-th video, Mn is the
index set of all subsequences in the n-th video, and f ≥ 1 is a factor describing the maxium
allowed difference in length of two subsequences. This avoids comparison of subsequences of
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very different lengths and prunes the search space for the calculation of sm,i. In the experiments
described in Sec. 7, f = 1.2 was pragmatically chosen, as this value is expected to be a rea-
sonable compromise between evaluating all relevant subsequences and pruning the search space
to avoid needless computations. Values significantly higher are not expected to influence the
resulting discriminativity-value sm,i, as according to eq. 1 only the k smallest distances are con-
sidered, and two subsequences with very different lengths are unlikely to have a small distance
to each other. Nevertheless, a high f -value would substantially increase the computational effort
because many irrelevant distances needed to be calculated. On the other hand, f should not be
chosen too small to avoid pruning of relevant subsequences.

The distance dnm(i, j) of two subsequences is computed via dynamic time warping (DTW)
[38] over the AAM parameter vector sequences. The resulting distance value is normalized by
the length lm,i to allow for fair comparison of subsequences of different lengths in (1).

Equation (1) yields high discriminativity-values for subsequences with low minimum dis-
tances to subsequences of videos representing the own class (denominator) and high minimum
distances to subsequences of videos representing the other class (numerator). This is similar
to the Fisher criterion [13], which minimizes the within scatter while maximizing the between
scatter of data from two classes to find an optimal discriminant function. Thus, the higher the
discriminativity-value of a subsequence (compared to the discriminativity-values of other sub-
sequences of the given video set), the better it is suited as a representative of the respective
class.

6.3 Reference Subsequence Selection

For each of the two classes, t non-overlapping subsequences with high discriminativity-values
are selected as reference subsequences. It might be beneficial for the classification to not select
the t subsequences with the t highest discriminativity-values overall, but to preferably select
v subsequences per video, for the following reason: If a small number of videos of one class
c is very similar to each other and also rather different to any video of the other class, the
major part of the t subsequences with highest discriminativity-values overall might stem from
these few videos. A larger number of videos of class c might be typical for this class as well,
but not that similar to the aforementioned small group of videos. This larger group would be
underrepresented by the reference subsequence selection. Thus, the resulting classifier would be
able to classify videos similar to the small group very confidently, but would probably perform
poor for videos similar to the larger group. To avoid this problem, a more uniform distribution
of reference subsequences over the training videos is required. This motivates the following
selection method: Sc is the index set of the best v subsequences for each training video of class
c:

Sc =
⋃

m|cm=c

{ arg
(m,i)

sm,i | i ∈ Rmv }, (3)

whereRmv is the index set of the v non-overlapping subsequences with the highest discriminati-
vity-values in the m-th video. Further, Qc contains the indices of all subsequences that are not
part of SC :
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Qc =
⋃

m|cm=c

{(m, i) | i ∈Mm , (m, i) /∈ Sc}, (4)

The index set Rc of the final reference subsequences for class c is given by a combination of
the elements of Sc and Qc:

Rc =

{
t arg max

(m,i)
{sm,i | (m, i) ∈ Sc} | if ‖Sc‖ ≥ t

Sc ∪ Tc | if ‖Sc‖ < t
(5)

with Tc = (t− ‖Sc‖) arg max
(m,i)

{sm,i | (m, i) ∈ Qc}, (6)

where k arg max{X} denotes the arguments associated with the k largest values of the setX .

6.4 Nearest-Neighbor-based Classification

The classification of a test video sequence (indexm) starts with the computation of the minimum
distance d∗m,(n,j) of every reference subsequence (index (n, j)) to all subsequences (index i) of
the test video, considering a similar pruning condition for the involved subsequence lengths as
in (2):

d∗m,(n,j) = min {dnm(i, j) | i ∈Mm}, (7)

where (n, j) ∈ Rsuccess ∪Rfailure. For each class c, the u best distances are combined to get a
classification score dm,c:

dm,c =
∑
γ∈Γ

1

γw
, Γ = umin {d∗m,(n,j) | (n, j) ∈ Rc}, (8)

where the parameter w weights the influence of large distances compared to small ones. The
test video sequence is classified into the class with the highest classification score. This is a
k-nearest-neighbor-based classification, as the best distances to a certain number of reference
subsequences are combined to form the final classification.

6.5 Biased Classification

The degree of expressiveness of positive compared to negative valence might vary considerably,
depending on the individual characteristics of a person. While some people display both with
approximately the same expressiveness, others might show a clear bias, meaning that the ab-
sence of failure signs could reasonably be interpreted as success, or vice versa. Taking this into
account, we introduce a bias b on the classification scores:

d′m,success = dm,success , d′m,failure = b · dm,failure, (9)

where d′c is the new classification score for class c. The value of b is chosen such that the
training error is minimized. The candidate values for b are computed as follows: For each clas-
sification of a training video (index g), the quotient zg of the classification scores is calculated:
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parameter / description grid values
(lmin, lmax): considered subsequence lengths [Sec. 6.2] (5,5), (10,10), (15,15), (5,20)
k: # distances for subsequence scores [Eq. (1)] 1, 2, 5, 10
t: # reference subsequences in total [Sec. 6.3] 10
v: # reference subsequences per video [Eq. (3)] 0, 1, 2
u: # distances for classification scores [Eq. (8)] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
w: distance weight [Eq. (8)] 1, 2
b: classification bias [Sec. 6.5] 1.0, b∗

Table 1: Overview of all parameters. Please refer to Sec. 6.6 and Sec. 7.

zg =
dm,success

dm,failure
, (10)

As d′g,success = d′g,failure holds for b = zg, these zg values are the points where changes in the
classification results of the training data occur when one alters b. Thus, when one sorts all zg
values in ascending order, for any two neighboring values zg1 and zg2 , all selections of b from the
interval (zg1 , zg2) will yield the same classification result, hence only one value b ∈ (zg1 , zg2)
needs to be considered as candidate for the optimization. We choose the mean values of the
interval borders in each case (because they have maxium distance to the “change points” for the
classification). Together with one value slightly below the minimum zg value and another value
slightly above the maximum zg value, they constitute the candidate values for the optimization.
Finally, we select the value b = b∗ that yields the best classification result on the training data.
If there are several best values, the median of them is chosen.

6.6 Parameter Optimization

The presented approach involves several parameters. They are optimized on the training data
by means of a grid search over different candidate parameter sets, where a leave-one-out cross-
validation is performed for each set to test its suitability: For all possible combinations of pa-
rameters, each training video is treated as test data once, whereas all remaining videos are used
to train the classifier. Finally, the parameter set yielding the best classification rate is selected
and used to train the classifier on all training videos. In case of several parameter sets showing
the same optimal performance, the set with the highest ψ value is selected:

ψ =

∑
rm=cm

|d′m,success − d′m,failure|∑
rm 6=cm |d′m,success − d′m,failure|

, (11)

where rm is the classification result for the m-th video. This auxiliary value ψ is high for
correctly classified videos with a high difference in classification scores (“confidently correct”)
and for misclassified videos with a low difference in classification scores (“near miss”). Thus,
this parameter selection tries to improve generalization.

A complete list of all parameters together with their values used in the grid search in the
experiments described in Sec. 7 is given in Tab. 1. Parameters that influence the training are
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experiment Sec. 1 2 3 4 5 6 7 8 9 10 11 mean std.
per-scene-opt: 7
– all scenes 91 79 83 97 71 67 82 85 62 78 79 79.5 10.2
– only success 86 88 81 94 73 90 79 85 45 83 74 79.8 13.1
– only failure 94 67 86 100 70 38 84 86 70 73 83 77.2 17.0
med-scenes: 7.1
– all scenes 94 93 83 97 88 83 84 85 68 87 90 86.5 7.7
– only success 93 94 94 94 91 90 80 85 45 92 87 85.8 14.1
– only failure 94 92 71 100 85 75 87 86 78 82 91 85.7 8.6
med-persons: 7.1
– all scenes 91 79 74 85 75 72 75 60 56 65 86 74.3 10.7
– only success 79 76 65 69 64 70 88 27 100 92 78 73.3 19.1
– only failure 100 83 86 100 85 75 65 100 35 37 91 77.8 23.6
svm: 7.2
– all scenes 76 83 80 95 84 57 62 74 66 71 88 76.0 11.5
– only success 67 82 89 90 81 60 52 69 25 75 83 70.3 19.2
– only failure 83 83 67 100 88 54 70 81 87 67 91 79.2 13.3

Table 2: Results of the experiments. The columns show the experiment, the section reporting
about the respective details, the classification rate (in percent) for each person, and the
mean and standard deviation of these classification rates.

listed in the upper block, those only affecting the classification of test data in the lower one.

7 Evaluation

This section presents an evaluation of our approach on the database introduced in Sec. 4. We
performed the classification on each person separately in a leave-one-out cross-validation man-
ner, i.e. each video of the respective person was chosen as test data once, whereas all remaining
videos were used as training data.

The training and classification for each scene was performed as described in Sec. 6. Table 1
shows the used grid values for the parameter optimization. The classification results are listed
in Tab. 2, row “per-scene-opt”. On average, the classification rate was 79.5% in total, 79.8% for
success and 77.2% for failure scenes. This is only slightly below the average human recognition
performance on this task (Sec. 4) and better than our previous results (Sec. 7.2). The standard
deviation of the classification rates is very high and even systematic misclassifications occur
(persons six and nine), both holds for the human performance and the previous results as well
[23, 25]. Fig. 3 depicts example images taken from the most discrimative reference subsequence
of some people.

7.1 Parameter Stability

The leave-one-out training and test procedure results in an individual parameter set for each
classification, which is fine for a performance evaluation of the classifier. For the practical usage
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Figure 3: Example images from the selected reference subsequences. Top row: signaling suc-
cess via head gestures (left) and gaze direction (right). Bottom row: signaling failure
via facial expressions. In each case, the first, middle, and last image of a reference
subsequence is shown. Please refer to Sec. 6 and Sec. 7.

in a classification system, a certain stability of these parameters is required, as a classifier trained
with one specific parameter set is usually expected to give reasonable results on various test data.

In order to estimate the parameter stability of the presented classification approach, we com-
puted, for each person separately, a single parameter set that consists of the median values of
the parameters resulting from the per-scene-optimization (except for parameter b, where the ge-
ometric mean was used instead of the median). The reasoning behind this is that, if a sufficient
stability is present, the slightly different training data sets in the leave-one-out cross-validation
classifications of the single scenes should yield slightly different parameter sets, which on av-
erage capture some characteristics of the respective person. Thus, taking the median value of
each parameter should be a good guess for a single parameter set that yield good results for all
scenes.

The classification rates resulting from a training with this median parameter set are shown
in Tab. 2, row “med-scenes”. Compared to the “per-scene-opt” results, the classification rate
improved for almost all persons. However, these numbers are not meant to be taken for the
evaluation of the classifier in terms of classification rates (for this purpose, the “per-scene-opt”
results are determinative). As the median operation is performed on the parameter sets of all
scenes, it also processes information extracted from the respective test data, which is a likely
reason for the performance improvement. The point here is that a single parameter set with
plausible values (median values, see argumentation above) yielded a reasonable good perfor-
mance for all scenes of a person (Tab. 3). This is an indication that stable parameters exist for
each person.

An important question is whether a single stable parameter set can also be selected for all
persons. The partially large differences between the median parameter sets for different persons
(Tab. 3) let us doubt this. This negative expectation is confirmend by a tentative experiment
where we computed again the median values of all the median parameter sets, resulting in a
single parameter set for all persons. This parameter selection impairs the classification results
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person (lmin, lmax) k t v u w b

1 (5,5) 2 10 2 10 2 1.1837
2 (5,20) 1 10 0 10 1 0.9241
3 (15,15) 10 10 1 1 1 0.8748
4 (5,5) 1 10 0 1 1 0.8245
5 (5,20) 2 10 2 4 1 0.8165
6 (5,5) 5 10 0 8 1 0.9749
7 (5,20) 5 10 1 8 2 1.1378
8 (5,20) 10 10 0 4 2 0.6705
9 (5,10) 5 10 1 3 2 2.0374

10 (10,10) 1 10 0 3 1 1.1012
11 (5,20) 5 10 1 9 1 1.0100

m.o.p. (5,15) 5 10 1 4 1 1.0075

Table 3: Median parameters for each person (rows 1–11) and median over all persons (last row).
Please refer to Sec. 7.1.

notably, as the row “med-persons” in Tab. 2 shows. Thus, suitable parameters of the classifier
appear to be person-specific and do not generalize well to other persons.

7.2 Comparison to Previous Results

In previous work [25], we evaluated the classification performance of a SVM classification of
AAM feature vectors, neglecting any temporal dynamics. The previous results are shown in
Tab. 2, row “svm”. The classification based on reference subsequences outperformed the SVM
classification in terms of classification rate on average and for seven of the eleven persons.
There was no significat correlation between the classification rates for different persons of the
two approaches (Spearman test, r = 0.43, p = 0.19 for all scenes, r = 0.27, p = 0.42 for
success scenes, and r = 0.26, p = 0.45 for failure scenes).

8 Conclusion

We presented an approach for the interpretation of facial communicative signals (FCSs) in terms
of valence by discriminative reference subsequence selection. In contrast to most related works,
we defined the ground truth labels in terms of the interaction situation and not by the visual ap-
pearance of the face. We evaluated this approach on a database containing human-robot interac-
tion videos in an object-teaching scenario. In the reported experiments, an average classification
rate of 79.5% was achieved for a person-dependent classification, which is comparable to the
human performance of 82.0% and outperforms our previous results based on a SVM classifica-
tion.

We showed that stable classifier parameters can be found for each person in the database.
However, these parameters are person-specific and do not generalize well to new persons, which
is natural to some degree due to the large variations regarding the display of FCSs between

14



different people. This is a major challenge for a person-independent classification that is a main
target of future work.

As the training of the presented classifier involves an exhaustive search over candidate sub-
sequences, it is very time-consuming. Possibilities to speed up this search, for instance by
means of a more sophisticated pruning and concentration on the most relevant parts of the
search space, shall be investigated. Future work could also evaluate other, possibly more so-
phisticated approaches for the reference subsequence selection, for instance by modifying the
discriminativity-score to explicitly take into account the expected number of matches for a can-
didate subsequence in later classifications, based on the statistics of the training data.
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