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Introduction

We fix a prime number p. In this introduction we always denote by O and O′

rings of integers of non-Archimedean local fields of characteristic zero, π and π′

are uniformizing elements of O and O′ and p is the characteristic of the residue

fields of O and O′, which have q resp. q′ elements. All rings and algebras over a

commutative ring are assumed to be commutative. Unless otherwise stated, R is

a unitary O-algebra resp. unitary ring.

The easiest approach to formal groups over a p-adic ring R might be to classify

them by reduced Cartier modules over the ring ER (see [Zin84]). In [Dri76],

Drinfeld generalized this equivalence to formal O-modules over R and reduced

Cartier modules over the ring EO,R for each O and O-algebra R.
In the case that R is a perfect field of characteristic p, Dieudonné modules over

R can be considered as reduced Cartier modules over R and by demanding cer-

tain nilpotence conditions concerning the operator V of the Dieudonné modules

it is possible to show that these Dieudonné modules are equivalent to the cat-

egory of p-divisible formal groups over R. Zink generalized the concept of a

Dieudonné module in [Zin02], obtained the display structure (3n-display in the

original source) for general rings R and constructed a BT functor from the cat-

egory of displays over R to the category of formal groups over R. For rings R

with p nilpotent in R, we get, by considering only nilpotent displays (displays

in [Zin02]), that the restriction of the BT functor to the category of nilpotent

displays over R has its image in the category of p-divisible formal groups over

R. Zink was able to show that this restriction functor is an equivalence in many

important cases and Lau finally showed in [Lau08] that this restriction functor

is an equivalence for all rings R with p nilpotent in R. So we can basically de-

scribe p-divisible formal groups with structures from linear algebra. The task

of this thesis is now to generalize this equivalence to nilpotent O-displays and

π-divisible formal O-modules for O-algebras R with π nilpotent in R. For this

purpose we investigate the idea of Drinfeld’s proof in [Dri76] for the generalized

Cartier equivalence and obtain our generalized equivalence in a similar manner.

Hence, we do not obtain the equivalence by generalizing every result needed for

iii



iv Introduction

establishing the equivalence of nilpotent displays over R and p-divisible formal

groups over R (even though we still have to generalize many results), but we use

the already established equivalence for the O = Zp case. One advantage is that

we better understand the relations between the different display structures for

varying O. Some parts of this generalization of the theory are already utilized in

[Hed, Chapter 9].

Now until the end of the paragraph following Proposition 2, R is a not nec-

essarily unitary O-algebra resp. O′-algebra. For an O-algebra R we define an

O-algebra structure on the set

WO(R) = { (b0, b1, . . . ) | bi ∈ R },

which is uniquely determined by demanding:

• For every O-algebra morphism R → R′ (of not necessarily unitary O-
algebras) the induced morphism WO(R) → WO(R

′) is an O-algebra mor-

phism.

• The maps

wn :WO(R) → R

b = (b0, b1, . . .) 7→ bq
n

0 + πbq
n−1

1 + . . .+ πnbn

are O-algebra morphisms.

We will call this the O-algebra of ramified Witt vectors over R, its elements ram-

ified Witt vectors and the map wn the n-th Witt polynomial. The construction of

WO(R) clearly depends on the choice of π, but if we choose any other uniformizing

element and consider the O-algebra of ramified Witt vectors with respect to this

element, we obtain that both O-algebras of ramified Witt vectors are canonically

isomorphic. We can state the following Lemma:

Lemma 1. Let B be a π-torsion free O-algebra and τ : B → B an O-algebra
morphism with τ(x) ≡ xq mod π. Then there is a unique O-algebra morphism

κ : B →WO(B), such that wn(κ(b)) = τn(b) holds for each b ∈ B and n ≥ 0.

This Lemma is particularly important, when we consider a nonramified exten-

sion of non-Archimedean local fields of characteristic zero O → O′. If we denote

by σ the relative Frobenius of this extension, then there is a unique O-algebra
morphism

κ : O′ →WO(O′), (1)

such that wn(κ(a)) = σn(a) holds for each a ∈ O′ and n ≥ 0, where the O-algebra
structure of WO(O′) has been established with respect to a fixed prime element
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of O.
Next we introduce the O-module morphism V : WO(R) → WO(R) and the O-
algebra morphism F : WO(R) → WO(R) for all O-algebras R, the first is called

the Verschiebung and the second one is the Frobenius. They are defined by

functoriality in R and the relations, for all n ≥ 0,

wn(
Fx) = wn+1(x),

wn+1(
V x) = πwn(x), w0(

V x) = 0,

where x ∈ WO(R) and the equations and multiplications have to be unterstood

in R. One easily verifies that

FV = π, V (Fxy) = xV y

hold for all x, y ∈ WO(R). If we denote the Image of V : WO(R) → WO(R)

by IO,R, we obtain that IO,R is the ideal of ramified Witt vectors, whose first

component is zero, which is the same to say that IO,R = ker(w0 : WO(R) → R)

holds, because
V (b0, b1, . . .) = (0, b0, b1, . . .)

holds for all (b0, b1, . . .) ∈WO(R).

We define the Teichmüller representant [a] ∈ WO(R) by (a, 0, 0 . . .) for R an

O-algebra and a ∈ R. For a nilpotent O-algebra N we denote by ŴO(N ) the

O-subalgebra ofWO(N ), which consists of the ramified Witt vectors with finitely

many nonzero entries. For the relations of the different O-algebras of ramified

Witt vectors with varying O, we have the following result:

Proposition 2. LetO → O′ be an extension of rings of integers of non-Archimedean

local fields of characteristic zero, π, π′ fixed uniformizing elements of O resp. O′

and f the degree of extension of the residue fields. Let AlgO resp. AlgO′ denote

the category of (not necessarily unitary) O-algebras resp. O′-algebras. Then

there exists a unique morphism u : WO → WO′ of functors from AlgO′ to AlgO,

such that w′
n ◦u = wfn holds. For a nilpotent O′-algebra N the restriction mor-

phism uN : ŴO(N ) → WO′(N ) has its image in ŴO′(N ). Furthermore, for an

O′-algebra R we have uR([a]) = [a] for a ∈ R, uR(F
f
x) = F ′

(uR(x)), uR(
V x) =

(π/π′)V
′
(uR(

F f−1
x)) for x ∈ WO(R), where all the objects related to O′ are

marked with a dash.

With abuse of notation, we usually replace uR by u if it is clear which R we

consider. The morphism of functors u of the previous Proposition is, up to a

canonical isomorphism of functors, independent of the choice of the uniformizing

elements π, π′ of O resp. O′. In the following, when we consider the Definition

of an f -O-display and the functors Ωi(O,O′) resp. Γi(O,O′) etc., we sometimes

make use of the O-algebra resp. O′-algebra of ramified Witt vectors for a partic-

ular choice of the uniformizing element π resp. π′ for O resp. O′. Nevertheless,
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up to canonical isomorphism, the structures are independent of the choice of π

resp. π′.

Unless otherwise stated, until the end of this introduction S,R,R′ etc. are

now assumed to be unitary O-algebras with π nilpotent in them and if they are

assumed to be unitary O′-algebras, then π′ should always be nilpotent in them.

Definition 3. Let f ≥ 1 be a natural number. An f -O-display P over R is a

quadruple (P,Q, F, F1), where P is a finitely generated projectiveWO(R)-module,

Q a submodule of P and F : P → P and F1 : Q → P are F f
-linear maps, such

that the following properties are satisfied:

1. IO,RP ⊂ Q and P/Q is a direct summand of the R-module P/IO,RP .

2. F1 is an F f
-linear epimorphism, i.e., its linearisation

F ♯
1 :WO(R)⊗Ff

,WO(R)
Q → P

w ⊗ q 7→ wF1q,

where w ∈WO(R) and q ∈ Q, is surjective.

3. For x ∈ P and w ∈WO(R), we have

F1(
V wx) = F f−1

wFx.

The finite projective R-module P/Q is the tangential space of P. If f = 1, we

call P just an O-display.

Except for the occuring f , this Definition is completely analogous to [Zin02,

Definition 1], where the defined structure is called a 3n-display there. Further-

more, for each f -O-display P = (P,Q, F, F1) there exists a unique WO(R)-linear

map

V ♯ : P →WO(R)⊗Ff
,WO(R)

P,

which satisfies the following equations for all w ∈WO(R), x ∈ P and y ∈ Q:

V ♯(wFx) = π · w ⊗ x
V ♯(wF1y) = w ⊗ y

By V n♯ : P →WO(R)⊗Ffn
,WO(R)

P we denote the composite map

F f(n−1)
V ♯ ◦ . . . ◦F f

V ♯ ◦ V ♯, where F fi
V ♯ is the WO(R)-linear map

id⊗F fi,WO(R)V
♯ :WO(R)⊗F fi,WO(R) P →WO(R)⊗F f(i+1),WO(R) P.

We call P nilpotent, if there is a number N such that the composite map

pr ◦V N♯ : P →WO(R)⊗F fN ,WO(R)P →WO(R)/(IO,R+πWO(R))⊗F fN ,WO(R)P
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is the zero map. The f -O-displays over R form a category, we call it (f−dispO /R)
or only (dispO /R), when f = 1 (see section 2.2 for the morphisms between the

f -O-displays). The nilpotent f -O-displays over R form a full subcategory, we

denote it by (f − ndispO /R) or (ndispO /R), respectively.

Let N be a nilpotent R-algebra. For a given f -O-display P = (P,Q, F, F1)

we consider the following WO(R)-modules:

P̂N = ŴO(N )⊗WO(R) P,

Q̂N = ŴO(N )⊗WO(R) L⊕ ÎO,N ⊗WO(R) T,

where P = L⊕T is a normal decomposition, i.e., L and T areWO(R)-submodules

of P , such that Q = L ⊕ IO,RT holds, and ŴO(N ) is the WO(R)-subalgebra of

WO(N ) as before Proposition 2. We obtain an F f
-linear map F1 : Q̂N → P̂N

given by w⊗ y 7→ F f
w⊗ F1y and V w⊗ x 7→F f−1

w⊗ Fx for w ∈WO(N ), y ∈ Q
and x ∈ P . Hence, it is possible to define the formal O-module BT

(f)
O (P,−) (see

Appendix A for the definitions of (π-divisible) formal O-modules) by the exact

sequence of O-modules

0 // Q̂N
F1−id // P̂N

// BT
(f)
O (P,N ) // 0

for all N ∈ NilR, where NilR denotes the category of nilpotent R-algebras. In

case f = 1, we just write BTO(P,−) instead of BT
(1)
O (P,−). Furthermore, if P

is nilpotent, then BT
(f)
O (P,−) is a π-divisible formal O-module, so we obtain a

functor

BT
(f)
O : (f − ndispO /R)→ (π − divisible formal O −modules/R),

which we want to be an equivalence for f = 1. In a more general setting, assume

that O → O′ is nonramified of degree f and R is an O′-algebra with π′ nilpotent

in R. Then it is not too hard to check with the help of (1) that BT
(f)
O (P,−) is

a (π′-divisible) formal O′-module for a (nilpotent) f -O-display P. Hence, it also

makes sense to ask, whether

BT
(f)
O : (f − ndispO /R)→ (π′ − divisible formal O′ −modules/R)

is an equivalence.

Definition 4. LetO → O′ be an extension of rings of integers of non-Archimedean

local fields of characteristic zero, R an O′-algebra and P an f -O-display over R.

Then we call an O′-action, i.e., an O-algebra morphism ι : O′ → EndP, strict,
iff the induced action ι : O′ → P/Q coincides with the O′-module structure

given by the R-module structure of P/Q and restriction to scalars. We denote

by (ndispO,O′ /R) the category of nilpotent O-displays over R equipped with a
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strict O′-action. The objects in this category are (P, α), where P is a nilpotent

O-display over R and α : O′ → EndP the strict O′-action, but if it is clear that

we have such an action attached, we write with abuse of notation just P instead

of (P, α).

After taking Drinfeld’s paper [Dri76] as inspiration, we state at first:

Lemma 5. Let O → O′ be a nonramified extension of degree f , R an O′-algebra

and P = (P,Q, F, F1) an O-display over R equipped with a strict O′-action. Then

we may decompose P and Q canonically in P =
⊕

i∈Z/fZ Pi, Q =
⊕

i∈Z/fZQi,

where each Pi and Qi = Pi ∩ Q are WO(R)-modules, Pi = Qi for all i ̸= 0 and

F (Pi), F1(Qi) ⊆ Pi+1 hold for all i (where we consider i modulo f).

With the help of this we can construct the functor

Ω1(O,O′) : (ndispO,O′ /R)→ (f − ndispO /R)

given by sending (P,Q, F, F1) equipped with a strict O′-action to

(P0, Q0, F
f−1
1 F, F f

1 ) and restricting a morphism between two f -O-displays to the

zeroth component.

Furthermore, for a nonramified extension O → O′ of degree f and R an

O′-algebra, we define the functor

Ω2(O,O′) : (f − ndispO /R)→ (ndispO′ /R)

by sending P0 = (P0, Q0, F0, F1,0) to P ′ = (P ′, Q′, F ′, F ′
1), where the elements of

the quadruple are given by

P ′ = WO′(R)⊗WO(R) P0,

Q′ = ker(WO′(R)⊗WO(R) P0 → P0/Q0 : w ⊗ x 7→ w0 pr(x)),

F ′ = F ′ ⊗WO(R) F0,

F ′
1(w ⊗ z) = F ′

w ⊗WO(R) F1,0(z),

F ′
1(

V ′
w ⊗ x) = w ⊗WO(R) F0x,

for all w ∈ WO′(R), x ∈ P0 and z ∈ Q0, where we have used the morphism

u :WO(R)→WO′(R). Here the operators related to WO′(R) are marked with a

dash. The mapping of the morphisms is simply given by tensoring. We define

Γ1(O,O′) : (ndispO,O′ /R)→ (ndispO′ /R)
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as the composite of Ω2(O,O′) and Ω1(O,O′).

It can be checked that for each O′-algebra R the diagram

(ndispO,O′ /R)
BTO

++XXXXXXXXXXXXXXXXXXXXXXX

Ω1(O,O′)

��
(f − ndispO /R)

BT
(f)
O //

Ω2(O,O′)
��

(π′-divisible formal O′ −modules/R)

(ndispO′ /R)
BTO′

33ffffffffffffffffffffffff

is commutative.

Now let O′ be totally ramified over O and R an O′ algebra. We define the functor

Γ2(O,O′) : (ndispO,O′ /R)→ (ndispO′ /R).

by sending a nilpotent O-display over R equipped with a strict O′-action, say

P = (P,Q, F, F1) (plus the attached O′-action), to

P ′ = WO′(R)⊗O′⊗OWO(R) P,

Q′ = ker(WO′(R)⊗O′⊗OWO(R) P → P/Q : w ⊗ x 7→ w0 pr(x)),

F ′(w ⊗ x) = F ′
w · y−1 ⊗ F1((π

′ − [π′])x),

F ′
1(

V ′
w ⊗ x) = y−1w ⊗ F1((π

′ − [π′])x),

F ′
1(w ⊗ z) = F ′

w ⊗ F1(z),

for all w ∈WO′(R), x ∈ P and z ∈ Q, where we have used the morphism

O′ ⊗O WO(R) → WO′(R)

a⊗ w 7→ au(w),

where a ∈ O′ and w ∈WO(R), and y ∈WO′(R) is given by V ′
y = π′ − [π′].

The diagram

(ndispO,O′ /R)
BTO //

Γ2(O,O′)

��

(π′-divisible formal O′ −modules/R)

(ndispO′ /R)
BTO′

33ffffffffffffffffffffffff

is commutative.

We define the boolean variable P (O,O′, R), for a nonramified extension O → O′

of degree f and an O′-algebra R to be true, iff the following assertion is true:

The BT
(f)
O functor is an equivalence between nilpotent f -O-displays

over R and π′-divisible formal O′-modules over R.
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In case O′ = O, we just write P (O, R) instead of P (O,O′, R). As in Drinfeld’s

argumentation we need that P (Zp, R) is true for all rings R with p nilpotent in

R. This has been established in [Lau08].

From now on, when we talk about BT
(f)
O and BTO(= BT

(1)
O ) we always

consider the functors restricted to nilpotent display structures. Whenever we talk

about Ω1(O,O′),Ω2(O,O′) or Γ1(O,O′), we always assume O′ to be nonramified

over O of degree f and whenever we talk about Γ2(O,O′), we always assume O′

to be totally ramified over O.
When we claim assertions like

For every O′-algebra R with π′ nilpotent in R the functors Γ1(O,O′)

and Γ2(O,O′) are equivalences of categories.

we actually mean that for every nonramified extension O → O′ and every O′-

algebra R with π′ nilpotent in R the functor Γ1(O,O′) is an equivalence of

categories and the analogous assertion for every totally ramified extension and

Γ2(O,O′).

Now let O → O′ be a nonramified/totally ramified extension and R an O′-algebra

with π′ nilpotent in R. If we assume that P (O, R) respectively P (O,O′, R) (in

the nonramified case) is true, then Ω1(O,O′) or Γ1(O,O′) or Γ2(O,O′) respec-

tively Ω2(O,O′) is faithful, which follows from the above diagrams. So assuming

P (O, R) respectively P (O,O′, R) to be true, one only has to show, in order to ob-

tain all desired equivalences, that Ω1(O,O′) or Γ2(O,O′) respectively Ω2(O,O′)

is full and essentially surjective.

Now let a ⊆ R be an ideal. An O-pd-structure is a map γ : a→ a, such that

• π · γ(x) = xq,

• γ(r · x) = rq · γ(x) and

• γ(x+ y) = γ(x) + γ(y) +
∑

0<i<q(
(
q
i

)
/π) · xi · yq−i

hold for all r ∈ R and x, y ∈ a. Let us denote by γn the n-fold iterate of γ. If we

define

αn = πq
n−1+qn−2+...+q+1−n · γn : a→ a,

we may define for each n a map

w′
n :WO(a) → a

(x0, x1, . . . , xn, . . .) → αn(x0) + αn−1(x1) + . . .+ α1(xn−1) + xn,

which should not be confused with the n-th Witt polynomial of WO′(S) for some

O′ and some O′-algebra S. The map w′
n is wn-linear, this means that beside

additivity w′
n(rx) = wn(r)w

′
n(x) holds for all n ∈ N, x ∈WO(a) and r ∈WO(R).
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The main application of this structure is the following: We define on aN aWO(R)-

module structure by setting

ξ[a0, a1, . . .] = [w0(ξ)a0,w1(ξ)a1, . . .]

for all ξ ∈WO(S) and [a0, a1, . . .] ∈ aN and get an isomorphism ofWO(S)-modules

log :WO(a) → aN

a = (a0, a1, . . .) 7→ [w′
0(a),w

′
1(a), . . .].

Since F acts on the right hand side by

F [a0, a1, . . .] = [πa1, πa2, . . . , πai, . . .]

for all [a0, a1, . . .] ∈ aN, we obtain for the ideal a ⊂WO(a), defined by

log−1( [a, 0, 0, . . .] | for all a ∈ a),

that F a = 0 holds.

Now we turn our focus to deformation theory. A surjection S → R of O-
algebras with π nilpotent in S, such that the kernel a may be equipped with

an O-pd-structure, is called an O-pd-thickening. Let us consider such an O-pd-
thickening and a nilpotent f -O-display P = (P,Q, F, F1) over R. A P-triple
T = (P̃ , F, F1) over S consists of a finitely generated projective WO(S)-module

P̃ , which lifts P , and F f
-linear morphisms F : P̃ → P̃ and F1 : Q̂ → P̃ , where

Q̂ denotes the inverse image of Q by the surjection P̃ → P (which has kernel

WO(a)P̃ ). Furthermore, the following equations are required:

F1(
V wx) = F f−1

wFx

F1(aP̃ ) = 0,

with w ∈ WO(R), x ∈ P̃ and a ⊂ WO(R) as above. F1 is uniquely determined

by these requirements.

Let α : P1 → P2 be a morphism between nilpotent f -O-displays over R and Ti be
a Pi-triple over S for i = 1, 2. Then an α-morphism α̃ : P̃1 → P̃2 is a morphism

of WO(S)-modules which lifts α and commutes with the F and F1 maps, which

only makes sense since α̃(Q̂1) ⊂ Q̂2. For triples we have the following assertion:

Proposition 6. Let α : P1 → P2 be a morphism between two nilpotent f -O-
displays over R. For Pi-triples Ti over S there is a unique α-morphism of triples

α̃ : T1 → T2.

The Hodge filtration of an f -O-display P over an O-algebra R is the R-

submodule Q/IO,RP ⊆ P/IO,RP .
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Proposition 7. Let S → R be an O-pd-thickening. Then nilpotent f -O-displays
over S are equivalent to nilpotent f -O-displays P ′ over R plus a lift of the Hodge

filtration to a direct summand of P/IO,SP , where (P, F, F ′′
1 ) is the unique P ′-

triple over S.

With the help of this result we can prove the following Proposition:

Proposition 8. Let O → O′ be a nonramified / totally ramified extension,

S → R a surjection of O′-algebras with π′ nilpotent in S and nilpotent kernel.

If one of the functors Ω1(O,O′),Ω2(O,O′),Γ1(O,O′) or Γ2(O,O′) is essentially

surjective over R, then this is also true for the respective functor over S.

The last Proposition enables us to show that, given a nonramified / totally

ramified extension O → O′ with ramification index f , BT
(f)
O ,Γi(O,O′),Ωi(O,O′)

are equivalences of categories for all O′-algebras R, which are complete local

rings with perfect residue field, nilpotent nilradical and π′ nilpotent in R. This

is particularly important for O = O′, since we obtain then that BTO is an

equivalence for all O-algebras R with the above properties.

By using stack theory, we obtain the following Proposition:

Proposition 9. Let O → O′ be a nonramified / totally ramified extension.

Assume that Ω1(O,O′),Ω2(O,O′),Γ1(O,O′) or Γ2(O,O′) is fully faithful for all

O′-algebras with π′ nilpotent in them, then the respective functor is an equiva-

lence for all such algebras.

The proof of the last Proposition eventually reduces to the fact that we already

know that the functors right before the Proposition are equivalences for these O′-

algebras.

Let O → O′ be a nonramified / totally ramified extension with ramification index

f . By the last Proposition, what remains to show that BT
(f)
O ,Γi(O,O′),Ωi(O,O′)

are equivalences for all O′-algebras R with π′ nilpotent in R is, assuming that

P (O, R) resp. P (O,O′, R) is true for all O′-algebras R with π′ nilpotent in R,

that for all O′-algebras R with π′ nilpotent in R the functor BTO′ is faithful

resp. BT
(f)
O is faithful when we restrict to the full subcategory of the nilpotent

f -O-displays over R consisting of the objects which lie in the image of Ω1(O,O′).

For this we are going to construct, for a fixed nilpotent f -O-display P over R,

a crystal of Ocrys -modules on SpecR (see Definition 5.1.1 for our definition

of the crystalline site). It suffices, to give the value of the crystal DP for O-
pd-thickenings SpecR′ → SpecS, where SpecR′ ↪→ SpecR is an affine open

neighbourhood. When the triple over S associated to PR′ looks like (P̃ , F, V −1),

we define

DP(SpecR
′ → SpecS) := S ⊗w0,WO(S) P̃ .

If the setting is clear, we just write DP(S) instead of DP(SpecR
′ → SpecS).

Let S → R be an O-pd-thickening with kernel a. We now introduce the category
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Ext1,S→R (for the basic definitions of (generalized) Cartier theory we refer to

section 2.4 in this thesis). For S an O-algebra and L an S-module, we may define

the group C(L) =
∏

i≥0 V
iL, which becomes an EO,S-module by the equations

ξ(
∑
i≥0

V ili) =
∑
i≥0

V iwn(ξ)li,

V (
∑
i≥0

V ili) =
∑
i≥0

V i+1li,

F (
∑
i≥0

V ili) =
∑
i≥1

V i−1πli

for all ξ ∈ WO(S) and li ∈ L. Let G be a (π-divisible) formal O-module over R

with Cartier moduleM , which we consider as an EO,S-module. Then an extension

(L,N,M) of M by the S-module L is an exact sequence of EO,S-modules

0→ C(L)→ N →M → 0,

with N a reduced EO,S-module and aN ⊂ V 0L, where a ⊂ WO(S) ⊂ EO,S is as

above.

Now let G,G′ be two formal O-modules over R, M(= MG),M
′(= MG′) their

Cartier modules and β : M → M ′ a morphism between them over R. Fur-

thermore, let (L,N,M) and (L′, N ′,M ′) be extensions of M and M ′. Then

a morphism of extensions (L,N,M) → (L′, N ′,M ′) consists of a morphism of

S-modules φ : L → L′, a morphism of EO,S-modules u : N → N ′ and the

EO,R-linear morphism β, such that the diagram of EO,S-modules

0 // C(L) //

C(φ)
��

N

u

��

// M

β

��

// 0

0 // C(L′) // N ′ // M ′ // 0

is commutative, where C(φ) is given by sending V il to V iφ(l) for each i ≥ 0 and

l ∈ L.

Definition 10. With the above notation, we define the category Ext1,S→R by

the objects (L,N,M), such that M is the Cartier module of a π-divisible formal

O-module over R. The morphisms are those previously described.

We show the equivalence of Ext1,S→R with a second category Ext2,S→R when

a is nilpotent. Since we deal only with π-divisible formal O-modules and not

the more general π-divisible O-modules, we find in (the generalization of) [Zin,

Universal extension, Theorem 3] a stronger result than in [Mes72, Chapt. 4

Theorem 2.2.] for p-divisible formal groups or [FGL07, Theoreme B.6.3.] for

π-divisible formal O-modules, where the results are only stated with respect to
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nilpotent (O-)pd-thickenings, but continue to hold for all p-divisible groups or π-

divisible O-modules, respectively. We utilize this result for Ext2,S→R and obtain

with the help of the association to Ext1,S→R the following result:

Theorem 11. If S → R is an O-pd-thickening with nilpotent kernel and G a

π-divisible formal O-module over R, then there is a universal extension

(Luniv, Nuniv,MG) ∈ Ext1,S→R. Here the universality means, for any π-divisible

formal O-module G′ over R, any morphism of EO,R-modules β :MG →MG′ and

any extension (L,N,MG′) ∈ Ext1,S→R, there is a unique morphism

(φ, u, β) : (Luniv, Nuniv,MG)→ (L,N,MG′).

Definition 12. We define the crystal of Grothendieck-Messing on the nilpotent

ideal crystalline site (see Defintion 5.1.1) by

DG(S) = LieNuniv.

It is now very interesting to associate DP and D
BT

(f)
O (P,−)

with each other.

Let S → R be an O-pd-thickening and P a nilpotent f -O-display over R. Then

we verify that the exact sequence of EO,S-modules

0→ C(Q̂/IO,SP̃ )→ EO,S ⊗WO(S) P̃ /U →M(P)→ 0 (2)

lies in Ext1,S→R. Here (P̃ , F, F1) is the unique P-triple over S, the second arrow

maps y ∈ Q̂ to V f ⊗ F1y − 1⊗ y, the third arrow is given by the canonical map

P̃ → P and U is the EO,S-submodule of EO,S ⊗WO(S) P̃ generated by (F ⊗ x −
V f−1 ⊗ Fx)

x∈P̃ .

Proposition 13. In case f = 1 and the kernel of the O-pd-thickening S → R is

nilpotent, the previous extension is the universal one.

Theorem 14. For a nilpotent O-display P over R and the associated π-divisible

formal O-module G we obtain a canonical isomorphism of crystals on the nilpo-

tent ideal crystalline site over SpecR:

DP ≃ DG

It respects the Hodge filtration on DP(R) and DG(R), respectively.

If we consider a morphismWO(R)→ S of (topological) O-pd-thickenings (see
Definition 3.2.1) over R, we obtain that

DP(S) ≃ S ⊗WO(R) P

holds. We mainly consider S = WO,n(R). Given a morphism α : P → P ′ of

O-displays over R, we obtain a morphism G → G′ of the associated π-divisible
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formal O-modules G and G′. By the universality of DG and DG′ , we obtain a

morphism

WO,n(R)⊗WO(R) P = DG(WO,n(R))→ DG′(WO,n(R)) =WO,n(R)⊗WO(R) P
′,

which must be given by 1⊗α. Since we clearly obtain a morphism of the inverse

systems (WO,n(R) ⊗WO(R) P )n and (WO,n(R) ⊗WO(R) P
′)n, we get α back by

passing to the projective limit. So we can state:

Proposition 15. Let R be an O-algebra with π nilpotent in R. Then BTO is

faithful.

From the faithfulness of BTO we can deduce together with Proposition 9,

applied to Γi(O,O′), the generalized main Theorem of display theory:

Theorem 16. For every O and every O-algebra R with π nilpotent in R, the

BTO functor is an equivalence of categories between the category of nilpotent

O-displays over R and the category of π-divisible formal O-modules over R.

Furthermore, the following result holds:

Proposition 17. Let O → O′ be nonramified (of degree f) and R an O′-algebra

with π′ nilpotent in R. Then Ω1(O,O′) is fully faithful.

As mentioned above, since P (O, R) is true, we only need to show for the pre-

vious Proposition that BT
(f)
O is faithful when we restrict to the full subcategory

of the category of nilpotent f -O-displays over R consisting of the objects which

lie in the image of Ω1(O,O′). For this purpose, we let P be an O-display over R

equipped with a strict O′-action and denote by P0 its image via Ω1(O,O′). Now

let S → R be an O′-algebra morphism, which is also an O-pd-thickening. We

consider (2) for P and P0 and are able to write down the unique morphism of

extensions from the extension for P to P0 explicitly. With the help of this the

result follows easily.

So we obtain with the help of Proposition 17, Proposition 9 and Theorem 16

that the following assertions hold (in fact the assertion for the Γi(O,O′) can be

established without using Proposition 17) :

Corollary 18. Let O′ over O be nonramified of degree f and R an O′-algebra

with π′ nilpotent in R. Then the following functors are equivalences of categories:

• Ω1(O,O′) : (ndispO,O′ /R)→ (f − ndispO /R)

• BT (f)
O : (f − ndispO /R)→ (π′ − divisible formal O′ −modules/R)

• Ω2(O,O′) : (f − ndispO /R)→ (ndispO′ /R)

• Γ1(O,O′) : (ndispO,O′ /R)→ (ndispO′ /R)
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Let O′ be totally ramified over O and R an O′-algebra with π′ nilpotent in R.

Then

• Γ2(O,O′) : (ndispO,O′ /R)→ (ndispO′ /R)

is an equivalence of categories.
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Chapter 1

O-algebras of ramified Witt

vectors

From now on, we fix a prime number p and all rings and algebras over a com-

mutative ring are assumed to be commutative. In this chapter we first define

a special ring structure, a so-called RRS, in Definition 1.1.1, which should be

considered as a generalization of the rings of integers of a non-Archimedean local

field of characteristic zero and construct to each RRS O and each (not necessarily

unitary) O-algebra R an O-algebra of ramified Witt vectors WO(R). If there is

given a suitable kind of ring morphism O → O′, we will be able to construct a

morphism of functors WO → WO′ from the category of O′-algebras to the cate-

gory of O-algebras. After restricting to the rings of integers of non-Archimedean

local fields of characteristic zero for O, we will consider the relations of WO(l) to

local field theory, where l is a perfect field extending the residue field of O. With

the help of these structures we will be able to define and to work on f -O-displays
in the next chapters.

1.1 The O-algebra of ramified Witt vectors WO(R)

Definition 1.1.1. Let O be a commutative unitary ring, 0 ̸= π ∈ O not a zero-

divisor and q a power of p. If additionally p ∈ πO and x ≡ xq mod π holds for

all x ∈ O, we call the triple (O, π, q) a ramification ring structure, short RRS. If

all the other attachments are clear or only of a theoretical use (where the exact

structure is not needed), we usually just write O. An excellent morphism µ of

RRSs between (O, π, q = pf ) and (O′, π′, q′ = pg) is a ring morphism µ : O → O′,

such that 0 ̸= µ(π) ∈ π′O′ is not a zero-divisor and g
f ∈ N holds.

Even though the structure is defined quite generally here, we are most inter-

1



2 Chapter 1. O-algebras of ramified Witt vectors

ested in taking O to be the ring of integers of a non-Archimedean local field of

characteristic zero, so, generally, this should be the case one has in mind. Here

one has (O, π, q), where π is a uniformizing element of O and q is the order of

the residue field of O. Let O be an RRS. Our aim is now to introduce for an

O-algebra R an O-algebra structure on the set

WO(R) = { (b0, b1, . . . ) | bi ∈ R },

which is uniquely determined by certain additional properties. We will call this

the O-algebra of ramified Witt vectors over R, its elements the ramified Witt

vectors and the map

wn :WO(R) → R

b = (b0, b1, . . .) 7→ bq
n

0 + πbq
n−1

1 + . . .+ πnbn

the n-th Witt polynomial.

Theorem 1.1.2. Let O be an RRS. Then for any O-algebra R, there exists a

unique O-algebra structure on WO(R) with the following properties:

1. For every O-algebra morphism ν : R→ R′ the induced morphism

ν : WO(R) → WO(R
′) given by b = (b0, b1, . . .) 7→ (ν(b0), ν(b1), . . .) for all

b ∈WO(R) is an O-algebra morphism.

2. The maps wn :WO(R)→ R are O-algebra morphisms.

In order to prove this Theorem, we first have to establish the following Lemma.

Lemma 1.1.3. Let B be a π-torsion free O-algebra, τ : B → B an O-algebra
morphism with

τ(x) ≡ xq mod π.

Consider a sequence u0, u1, . . . of elements of B. There is a vector b ∈ WO(B)

with wn(b) = un, iff

τ(un−1) ≡ un mod πn (1.1)

is fulfilled for every n. Furthermore, the vector b is unique.

Proof: Let x and y be elements of B. If x ≡ y mod πn is satisfied, then xq ≡ yq

mod πn+1 holds. Especially we get τ(xq
r
) ≡ xq

r+1
mod πr+1 for all r ≥ 0.

Now suppose we have a vector b which satisfies wn(b) = un for every n. Then we

obtain

τ(un−1) = τ(bq
n−1

0 + πbq
n−2

1 + . . .+ πn−1bn−1)

≡ bq
n

0 + πbq
n−1

1 + . . .+ πn−1bqn−1

= bq
n

0 + πbq
n−1

1 + . . .+ πn−1bqn−1 + πnbn − πnbn
= un − πnbn ≡ un mod πn.



1.1. The O-algebra of ramified Witt vectors WO(R) 3

Hence, we have shown the forward direction. To prove that (1.1) is sufficient, we

construct b inductively (and in a unique way, so we see as well that b is unique).

Let b0, b1, . . . , bn−1 be already constructed. Now we search for a bn, such that

bq
n

0 + πbq
n−1

1 + . . .+ πn−1bqn−1 + πnbn = un

is satisfied. By above calculations we have

un ≡ τ(un−1) ≡ bq
n

0 + πbq
n−1

1 + . . .+ πn−1bqn−1 mod πn,

where we have used the congruence (1.1). So we have un − (bq
n

0 + πbq
n−1

1 + . . .+

πn−1bqn−1) = πnk for a suitable k ∈ B. Hence it is possible to take bn = k. The

uniqueness follows, since B is π-torsion free. �

Now we turn to the proof of Theorem 1.1.2.

Proof: We first consider B = O[X0, Y0, X1, Y1, . . .] with its obvious O-algebra
structure. We then define τ : B → B to be the O-algebra morphism given by

τ(Xi) = Xq
i and τ(Yi) = Y q

i for all i ≥ 0 and denote by X,Y the ramified Witt

vectors (X0, X1, . . .), (Y0, Y1, . . .) ∈WO(B).

We define the elements X + Y ,X · Y , a ·X ∈WO(B) for each a ∈ O by

wn(X + Y ) = wn(X) + wn(Y ),

wn(X · Y ) = wn(X)wn(Y ),

wn(a ·X) = awn(X).

These elements exist and are uniquely determined by Lemma 1.1.3, because

B is clearly a π-torsion free O-algebra and τ fulfils the required properties of

this Lemma. Now let R be an arbitrary O-algebra and b = (b0, b1, . . .), c =

(c0, c1, . . .) ∈ WO(R). We consider the O-algebra morphism Lb,c : B → R given

by Lb,c(Xi) = bi and Lb,c(Yi) = ci for all i ≥ 0 and define b+ c, b · c, a · b for each
a ∈ O by

b+ c = Lb,c(X + Y ),

b · c = Lb,c(X · Y ),

a · b = Lb,c(a ·X),

where Lb,c : WO(B) → WO(R) should denote the by Lb,c induced map. It is

easily seen that this O-algebra structure on WO(R) is the only one which can

fulfil the required properties of the Theorem - if it is one, but this is easily verified.

Furthermore, it is not too hard to check that Lb,c is an O-algebra morphism.

It remains to verify the required properties in the assertion. Let R and R′ be

two O-algebras, ν : R → R′ an O-algebra morphism and ν : WO(R) → WO(R
′)

the induced map. We have to show that it is an O-algebra morphism. For this
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purpose, let b, c ∈WO(R) and a ∈ O. Consider the diagram

WO(B)

Lb,c

��

Lν(b),ν(c)

%%LLLLLLLLLL

WO(R) ν
// WO(R

′).

It can easily be verified that this diagram is commutative. Hence we obtain

ν(b+ c) = νLb,c(X + Y )

= Lν(b),ν(c)(X + Y )

= Lν(b),ν(c)(X) + Lν(b),ν(c)(Y )

= ν(b) + ν(c).

Similarly, we get ν(b · c) = ν(b) · ν(c) and ν(ab) = aν(b). This proves the first

requirement. For the second one, we consider the commutative diagram

WO(B)
wn //

Lb,c

��

B

Lb,c

��
WO(R) wn

// R,

where b, c are as above. With similar considerations as above it is easily verified

that the wn :WO(R)→ R are O-algebra morphisms. �

We should remark that for each O a ring of integers of a non-Archimedean

local field of characteristic zero and each O-algebra R the O-algebra WO(R)

clearly depends on the choice of π for the RRS (O, π, q), but we will see in

Corollary 1.2.3 that this does not make big difficulties for us.

With the help of Lemma 1.1.3 we can deduce:

Lemma 1.1.4. Let O be an RRS, B a π-torsion free O-algebra and τ : B → B an

O-algebra morphism with τ(x) ≡ xq mod π. Then there is a unique O-algebra
morphism κ : B →WO(B), such that wn(κ(b)) = τn(b) holds for each b ∈ B and

n ≥ 0.

This Lemma is particularly important, when we consider a nonramified exten-

sion of non-Archimedean local fields of characteristic zero O → O′. If we denote

by σ the relative Frobenius of this extension, then there is a unique O-algebra
morphism

κ : O′ →WO(O′), (1.2)

such that wn(κ(a)) = σn(a) holds for each a ∈ O′ and n ≥ 0. Here, the O-algebra
structure of WO(O′) has been established with respect to a fixed prime element

of O. Our next aim is to introduce the O-module morphism V : WO(R) →
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WO(R) and the O-algebra morphism F : WO(R) → WO(R) for all O-algebras
R, which should be similar to those mappings defined in [Zin02]. The first is

called the Verschiebung and the second one is the Frobenius. They are defined

by functoriality in R and the relations, for all n ≥ 0,

wn(
Fx) = wn+1(x), (1.3)

wn+1(
V x) = πwn(x), w0(

V x) = 0, (1.4)

where x ∈ WO(R) and the equations and multiplications have to be unterstood

in R. It is very important to remark that in contrast to the original Definition

we have a π here instead of a p. We have to show that we can construct in

both cases for every R and every element of WO(R) a unique image, hence the

maps are well-defined, and that they are O-algebra morphisms resp. O-module

morphisms.

With the same notation as in the proof of the Theorem, we receive with the help

of Lemma 1.1.3 that this is the case for B = O[X0, Y0, X1, Y1, . . .]. It should be

remarked that

F (X + Y ) = FX +F Y , (1.5)
F (X · Y ) = FX ·F Y , (1.6)
F (a ·X) = a ·F X (1.7)

hold for all a ∈ O and (1.5) and (1.7) are true for V instead of F .

Now consider a general O-algebra R. We define for b ∈ WO(R) the Frobenius

and the Verschiebung by

F b = Lb,0(
FX), (1.8)

V b = Lb,0(
VX), (1.9)

where 0 = (0, 0, . . .) ∈ WO(R) and Lb,0 is as in the proof of the Theorem. It is

not too hard to check that

F ,V :WO(R)→WO(R)

are O-algebra morphisms resp. O-module morphisms with the help of the equa-

tions (1.5) to (1.7) for F and (1.5) and (1.7) for V instead of F . It remains to

show that F and V are functorial and that the defining equations hold.

For the first aspect consider an O-algebra morphism ν : R → R′, which in turn

induces the O-algebra morphism ν :WO(R)→WO(R
′). For b ∈WO(R) we have

by construction

Lb,0(
FX) = FLb,0(X), (1.10)

Lν(b),ν(0)(
FX) = FLν(b),ν(0)(X), (1.11)

Lb,0(
VX) = V Lb,0(X), (1.12)

Lν(b),ν(0)(
VX) = V Lν(b),ν(0)(X). (1.13)
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To show the functoriality, we assert that the diagram

WO(R)
F ,V //

ν
��

WO(R)

ν
��

WO(R
′)

F ,V
// WO(R

′)

is commutative.∗ This means that ν(F b) =F ν(b) and ν(V b) =V ν(b) must hold

for all b ∈WO(R). Since νLb,0 = Lν(b),ν(0), we easily obtain the claimed equations

by the equations (1.10)-(1.13).

It remains to show that the equations (1.3) and (1.4) hold. For this, we remark

that for every n ≥ 0 and every b ∈WO(R) the diagram

WO(B)

Lb,0

��

wn // B

Lb,0

��
WO(R) wn

// R

is commutative. If in addition we consider for every b ∈WO(R) the diagram

WO(B)
F

//

wn+1

##

Lb,0

��

WO(B)

Lb,0

��

wn // B

Lb,0

��
WO(R) F

//

wn+1

;;WO(R) wn
// R

and use of which parts of the diagram we already know that they are commutative,

we obtain, by utilizing the definition of F b, that the equations for F are fulfilled.

Analogous considerations lead us to establish the equations for V .

Concerning these two morphisms, we need to mention two elementary relations:

FV = π (1.14)
V (Fxy) = xV y x, y ∈WO(R) (1.15)

The equations can be obtained by considering the values of the Witt polynomials

in a suitable universal case. We denote the image of V : WO(R) → WO(R) by

IO,R and we obtain easily that

V (b0, b1, . . .) = (0, b0, b1, . . .)

∗Here we consider the diagram only for V and F , respectively, and not in the way that we
set, for instance, V in the first line and F in the second.
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holds for all (b0, b1, . . .) ∈ WO(R). Hence we can say that IO,R is the ideal

of ramified Witt vectors, whose first component is zero, or, equivalently said,

IO,R = ker(w0 : WO(R) → R). This ideal will become important, for example,

for the definition of an f -O-display over WO(R), which we will introduce in the

next chapter.

1.2 The morphism u and some basic results

Let µ : O = (O, π, q = pk) → O′ = (O′, π′, q′ = pl) be an excellent morphism of

RRSs. We denote by AlgO the category of O-algebras. When we consider the

Witt functor WO from AlgO to AlgO, we study the interaction between the two

functors for O and O′.

The following proposition will first become essential, when we consider re-

duced Cartier modules and their equivalence to formal O-modules, where O is

the ring of integers of a non-Archimedean local field of characteristic zero. We

define the Teichmüller representant [a] ∈ WO(R) by (a, 0, 0 . . .) for O an RRS,

R an O-algebra and a ∈ R. For an RRS O and a nilpotent O-algebra N , we

denote by ŴO(N ) the O-subalgebra of WO(N ), which consists of the ramified

Witt vectors with finitely many nonzero entries.

Proposition 1.2.1. Let O = (O, π, q = pk) and O′ = (O′, π′, q′ = pl) be two

RRSs with g := l
k ∈ N≥1 and µ as above. Then there is a unique functor

morphism u : WO → WO′ , such that w′
n ◦ u = wgn holds (where the wi and

w′
i belong to the obvious structures), with both functors considered as functors

from AlgO′ to AlgO. For a nilpotent O′-algebra N the restriction morphism

uN : ŴO(N ) → WO′(N ) has its image in ŴO′(N ). Furthermore, for an O′-

algebra R we have uR([a]) = [a] for a ∈ R, uR(
F g
x) = F ′

(uR(x)), uR(
V x) =

(µ(π)/π′)V
′
(uR(

F g−1
x)) for x ∈ WO(R), where all the objects related to O′ are

marked with a dash.

With abuse of notation, we usually denote uR by u if it is clear which R we

consider.

Proof: As usual, we first consider a special O′-algebra, which is in this case

B = O′[X0, Y0, . . .]. We define the O′-algebra morphism τ on B by τ(Xi) = Xqg

i

and τ(Yi) = Y qg

i . With the help of Lemma 1.1.3 we want to define uB and show

that this uB is unique. Let b ∈WO(B). Consider the sequence (wgn(b))n; because

τ(wg(n−1)(b)) ≡ wgn(b) mod π′n

for all n ≥ 1, where we have used µ implicitly, there is a unique b′ ∈ WO′(B),

such that wgn(b) = w′
n(b

′) for all n. Hence it is sensible, and also the only way,

to define uB(b) = b′, so we get the unique map uB. Now we have to show that
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the relations

uB(b+ c) = uB(b) + uB(c), (1.16)

uB(b · c) = uB(b)uB(c), (1.17)

uB(ab) = auB(b), (1.18)

hold for all b, c ∈WO(B) and a ∈ O. Since

w′
n(uB(b+ c)) = wgn(b+ c) = wgn(b) + wgn(c)

= w′
n(uB(b)) + w′

n(uB(c))

holds, we have established (1.16) and the equations (1.17) and (1.18) follow anal-

ogously.

Similarly to our F and V considerations, we can pass from B to any O′-algebra

R, and establish the map uR. To show that u is functorial and w′
n ◦ u = wgn

holds, we also refer to the discussion concerning F and V , which follows then

easily by the construction of uR. For the assertions for the nilpotent O-algebras
we also consider B at first, make the calculations in the Witt polynomials there,

from which we finally obtain, by passing to the respective nilpotent O-algebra,
the result. The equations are easily verified by considering the universal situation

B, where we just need to consider the Witt polynomials, and then by passing to

any O′-algebra R as usual by considering only special elements x, [a] ∈ WO(R),

where a ∈ R. �

For many considerations in the next chapter we need a Corollary, which can

be found in [Dri76] and is a direct consequence of Proposition 1.2.1.

Corollary 1.2.2. (cf. [Dri76, Proposition 1.2]) Let O → O′ be an extension

of rings of integers of non-Archimedean local fields of characteristic zero, π, π′

fixed uniformizing elements of O resp. O′ and f the degree of extension of

the residue fields. Then there exists a unique morphism u : WO → WO′ of

functors from AlgO′ to AlgO , such that w′
n ◦ u = wfn holds. For a nilpotent

O′-algebra N the restriction morphism uN : ŴO(N ) → WO′(N ) has its image

in ŴO′(N ). Furthermore, for an O′-algebra R we have uR([a]) = [a] for a ∈ R,
uR(

F f
x) = F ′

(uR(x)), uR(
V x) = (π/π′)V

′
(uR(

F f−1
x)) for x ∈ WO(R), where all

the objects related to O′ are marked with a dash.

The assertion for the nilpotent O′-algebras will first get important in section

2.4 and 2.5.

Corollary 1.2.3. Let O be a ring of integers of a non-Archimedean local field

of characteristic zero, π0, π1 two uniformizing elements of O and q the order of

the residue field. Then the excellent morphism of RRS O0 = (O, π0, q) → O1 =

(O, π1, q), given by the identity, induces a morphism of functors u, which is for all
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O-algebras R an isomorphism uR : WO0(R) ≃ WO1(R). Hence, the functor WO
is, up to a canonical in R functorial isomorphism, independent of the particular

choice of the uniformizing element.

By the previous two corollaries we also obtain that the morphism of functors

u in Corollary 1.2.2 is, up to a canonical isomorphism of morphisms of functors,

independent of the choice of the uniformizing elements π, π′ of O resp. O′. Hence,

given an extension O → O′, we will often just make assertions for the morphism

WO →WO′ without particularly referring to any uniformizing element of O and

O′.

Corollary 1.2.4. The canonical excellent morphism (Z, p, p) → (Zp, p, p) of

RRSs induces a morphism u, which is for all Zp-algebras R an isomorphism

uR :WZ(R) ≃WZp(R).

Lemma 1.2.5. Let O be an RRS and k an O-algebra with πk = 0, which is a

perfect field of characteristic p. Then WO(k) is a principal ideal domain and all

ideals are of the form V n
WO(k) or 0.

Proof: We consider an ideal 0 ̸= J ⊆ WO(k) (for J = 0, this is trivial). Hence,

there is a w ∈ J , such that wl ̸= 0 for a natural number l and so there is an n,

such that for all i < n and w′ ∈ J we have w′
i = 0 and it exists an element x ∈ J ,

such that xn ̸= 0. If we show that (V
n
1)WO(k) ⊆ xWO(k) holds, or which is the

same to say that V n
1 = xŵ for a ŵ ∈WO(k), we then have

(V
n
1)WO(k) ⊆ xWO(k) ⊆ J ⊆V n

WO(k) = (V
n
1)WO(k),

which are then in fact identities. We leave it to the reader to show the existence

of ŵ. �

Lemma 1.2.6. Let O be an RRS and R an O-algebra with πR = 0. Then we

get that

F (x0, x1, . . .) = (xq0, x
q
1, . . .)

holds for all (x0, x1, . . .) ∈WO(R). Hence, if R is perfect, F is an isomorphism.

Proof: By going to the universal situation WO(B) with B = O[X0, X1, X2 . . .]

and X as usual, it can be verified that FX = (b0, b1, . . .) holds with bi =

Xq
i + πPi, where Pi is an element of O[X0, X1, X2, . . .] and so, if we consider

the O-algebra morphism φ : B → R given by Xi 7→ xi, we get F (x0, x1, . . .) =

(φ(b0), φ(b1), . . .) = (xq0, x
q
1, . . .). The last assertion is clear. �
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1.3 Generalized results concerning rings of integers of

non-Archimedean local fields of characteristic zero

We now restate some basic facts of rings of integers of non-Archimedean local

fields of characteristic zero from a more general point of view, which is very

helpful especially when the interaction of the WO is of interest. We mainly refer

to Serre’s book over local fields [Ser79]. In this section all rings are assumed to

be unitary.

Lemma 1.3.1. (cf. [Ser79, Chapter II, Proposition 8]) Let O = (O, π, q) be

a ring of integers of a non-Archimedean local field of characteristic zero and A

a complete and separated O-algebra in the π-adic topology, such that A/πA

is a perfect ring of characteristic p. Then there exists exactly one system of

representatives f : A/πA→ A, for which f(λq) = f(λ)q. In order for a ∈ A to be

an element of f(A/πA), it is necessary and sufficient that a is a qn-th power for

all n ≥ 0; we also note that f(λµ) = f(λ)f(µ) holds for all λ, µ ∈ A/πA. Finally,
if π is not a zero-divisior of A, every element of A may be uniquely expressed by

∞∑
i=0

f(ai)π
i

for suitable ai ∈ A/πA.

Let ω : A → A′ be an O-algebra morphism between two π-adically com-

plete and separated O-algebras, such that A/πA and A′/πA′ are perfect rings

of characteristic p. Then ω commutes with multiplicative representatives, i.e.,

ω(fA(a)) = f ′A(ω(a)) for all a ∈ A/πA, where the indices of the f ’s have their

obvious meaning and ω is the induced map from A/πA to A′/πA′, because, by

the previous Lemma, we know that it is necessary and sufficient for an element of

a π-adic complete and separated O-algebra to be a multiplicative representative

that it is a qn-th power for all n.

LetXi, Yi, for i ≥ 0, be a family of variables. Then we denote by S = O[Xq−∞

i , Y q−∞

i ]

the union of all rings O[Xq−n

i , Y q−n

i ] for all n. It is obvious that S is complete and

separated in the π-adic topology. If k = O/πO, then S/πS = k[Xq−∞

i , Y q−∞

i ]

is perfect of characteristic p. The Xi, Yi are multiplicative representatives in

S, since they are qn-th powers for all n. Now consider x =
∑∞

i=0Xiπ
i and

y =
∑∞

i=0 Yiπ
i. For ⋆ = +,× or −, we obtain that x ⋆ y =

∑∞
i=0 f(Q

⋆
i )π

i holds,

where Q⋆
i ∈ k[X

q−∞

i , Y q−∞

i ]. These Q⋆
i determine the structure of a π-adic com-

plete and separated O-algebra with perfect residue ring of characteristic p:

Lemma 1.3.2. Let A be as above and f : A/πA → A as in Lemma 1.3.1. Let

{ai} and {bi} be two sequences of elements of A/πA. Then

∞∑
i=0

f(ai)π
i ⋆

∞∑
i=0

f(bi)π
i =

∞∑
i=0

f(ci)π
i
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where ci = Q⋆
i (a0, b0, a1, b1, . . .).

Proof: This is the obvious generalization of [Ser79, Chapter II, Proposition 9]. �

Proposition 1.3.3. (cf. [Ser79, Chapter II, Proposition 10]) Let A,A′ be two

π-adically complete and separated O-algebras, such that A/πA and A′/πA′ are

perfect of characteristic p and π is not a zero-divisor in A. Then we may lift every

O-algebra morphism φ : A/πA → A′/πA′ uniquely to an O-algebra morphism

g : A→ A′, such that

A

��

g // A′

��
A/πA φ

// A′/πA′

commutes.

Proof: Since every O-algebra morphism from A to A′ commutes with multiplica-

tive representatives, we must have for an element a ∈ A with coordinates {ai}

g(a) =

∞∑
i=0

g(fA(ai))π
i =

∞∑
i=0

fA′(φ(ai))π
i,

so the uniqueness follows and by Lemma 1.3.2 we get that g, when defined by

the above equation, is a ring morphism. In order to show that it is an O-algebra
morphism we consider the ring morphisms t : O → A and t′ : O → A′ which

define the O-algebra structure, which are the unique lifts of t0 : k → A/πA and

t′0 : k → A′/πA′, with k the residue field of O, and obtain the diagram of ring

morphisms

O

��

t //

t′

##
A

g //

��

A′

��
k

t0
//

t′0

::
A/πA φ

// A′/πA′.

This diagram must be commutative, because t′0 = φt0 must hold, since φ is a

O-algebra morphism and since the squares in this diagram must commute. We

obtain that gt is the unique lift of t′0 and hence must be equal to t′, which then

shows that g is an O-algebra morphism. �

Corollary 1.3.4. Let O be a ring of integers of a non-Archimedean local field

of characteristic zero and k its residue field. Then there is a unique isomorphism
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of O-algebras between O and WO(k), such that

O //

��

WO(k)

{{xx
xx

xx
xx

x

k

is commutative. Hence, this isomorphism is given by the ordinary O-algebra
structure O →WO(k).

Proof: This follows easily by the previous Proposition by remarking that WO(k)

is π-adic by obvious reasons and that WO(k)/πWO(k) = k holds, since we have

x =

∞∑
n=0

V n
[xn] =

∞∑
n=0

V nFn
[xq

−n

n ] =

∞∑
n=0

πn[xq
−n

n ]

for each x ∈WO(k) �

Lemma 1.3.5. Let O → O′ be a totally ramified extension of rings of integers of

non-Archimedean local fields of characteristic zero and k the residue field of O′

and O,which has q elements. Then O′⊗OWO(l) and WO′(l), where l is a perfect

field extending k, are canonically isomorphic as O′-algebras. This morphism is

obtained by sending a⊗ w to au(w) and is WO(l)-linear as well.

Proof: Since it is easily seen that π′ is not a zero divisor inO′⊗OWO(l) andWO′(l)

and that both rings are π′-adic, we just need to confirm thatO′⊗OWO(l)/π
′O′⊗O

WO(l) and WO′(l)/π′WO′(l) equal l. Then we can utilize Proposition 1.3.3. By

the analogous calculation as in the proof of the previous Corollary we obtain

WO′(l)/π′WO′(l) = l. We now consider the exact sequence

0→ π′O′ → O′ → k → 0.

After tensoring these O-modules with WO(l) we obtain the exact sequence

0→ π′O′ ⊗O WO(l)→ O′ ⊗O WO(l)→ k ⊗O WO(l)→ 0.

Since π′O′⊗OWO(l) is the maximal ideal of O′⊗OWO(l) we get that the residue

field is

O ⊗O WO(l)/π
′O′ ⊗O WO(l) ∼= k ⊗O WO(l) = k ⊗O l ∼= l,

hence first assertion follows. Because of the uniqueness of this (iso)morphism we

also obtain the last assertion of the Lemma. �

Lemma 1.3.6. Let O and O′ be rings of integers of non-Archimedean local fields

of characteristic zero, k the residue field of O′ and l a perfect field extending k.

If O′ is nonramified over O, then ul : WO(l) → WO′(l) is an isomorphism. If

O′ is totally ramified over O with ramification index e, where π, π′ are fixed
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uniformizing elements of O resp. O′, then ul : WO(l) → WO′(l) is injective and

turns WO′(l) into a free WO(l)-module of rank e obtained by adjoining π′ to

WO(l), which satisfies an Eisenstein equation π′e + a1π
′e−1 + . . . + ae = 0, i.e.,

ai ∈ πO and ae /∈ π2O holds.

Proof: The assertion for the nonramified case is easily seen by computing ul
directly. In the totally ramified case, we obtain, because of WO(k) = O and

WO′(k) = O′, that

WO(k)[π
′]/(P (π′)) =WO′(k)

holds, where P (x) = xe + a1x
e−1 + . . . + ae. Hence, by Lemma 1.3.5 we obtain

the isomorphism

WO(l)[π
′]/(P (π′)) = O′ ⊗WO(k) WO(l) ≃WO′(l).

�





Chapter 2

f-O-Display theory

Unless otherwise stated, from now on, O is always an RRS and the rings resp.

O-algebras denoted by R,R′, S, S′, R0 etc. are always assumed to be unitary. Let

f ≥ 1 be a natural number. In this chapter we introduce the basic definitions and

assertions of f -O-display theory generalized to our situation. Once we finished

this, we are going to introduce for each O-algebra R (with π nilpotent in R)

the BT
(f)
O functor, which associates to each (nilpotent) f -O-display over R a

(π-divisible) formal O-module over R. Furthermore, we will revisit Drinfeld’s

equivalence for reduced EO,R-modules and formal O-modules and let us inspire

by this in order to introduce functors Ωi(O,O′) and Γi(O,O′) for nonramified/

totally ramified extensions O → O′ of rings of integers of non-Archimedean local

fields of characteristic zero in the last section, of which we will show in the

end that they are equivalences which will in turn be important to establish the

generalized main Theorem of display theory. Furthermore, from now on, when

we consider rings of integers of non-Archimedean local fields of characteristic zero

O,O′ etc., then π, π′ etc. are uniformizing elements of O,O′ etc. and p is the

characteristic of the residue fields of O,O′ etc., which have q, q′ etc. elements.

For the constructions made for Drinfeld’s generalized Cartier equivalence and

the functors Ωi(O,O′) resp. Γi(O,O′) etc., we sometimes make use of the O-
algebra resp. O′-algebra of ramified Witt vectors for a particular choice of the

uniformizing element π resp. π′ for the rings of integers of non-Archimedean

local fields of characteristic zero O resp. O′. Nevertheless, up to canonical

isomorphism, the structures are independent of the choice of π resp. π′.

15
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2.1 f-O-Displays

In this section we introduce the definition of an f -O-display and some aspects

concerning Zink’s display theory with respect to an O-algebra of ramified Witt

vectors.

Definition 2.1.1. Let O be an RRS, f ≥ 1 a natural number and R an O-
algebra. An f-O-display P over R is a quadruple (P,Q, F, F1), where P is a

finitely generated projectiveWO(R)-module, Q a submodule of P and F : P → P

and F1 : Q → P are F f
-linear maps, such that the following properties are

satisfied:

1. IO,RP ⊂ Q and there is as normal decomposition of P , i.e., there is a direct

sum decomposition ofWO(R)-modules P = L⊕T , such that Q = L⊕IO,RT

holds.

2. F1 is an F f
-linear epimorphism, i.e., its linearisation

F ♯
1 :WO(R)⊗Ff

,WO(R)
Q → P

w ⊗ q 7→ wF1q,

where w ∈WO(R) and q ∈ Q, is surjective.

3. For x ∈ P and w ∈WO(R), we have

F1(
V wx) =F f−1

wFx.

The finite projective R-module P/Q is the tangential space of P. If f = 1, we

call P just an O-display.

This definition is very similar to [Zin02, Definition 1]. Furthermore, as in

Zink’s article we should remark that

F1(
V 1x) = Fx

holds for all x ∈ P , hence F is uniquely determined by F1. When we apply this

equation to an element y ∈ Q we get

Fy = π · F1y

by (1.14). In the definition of an f -O-display we demanded the existence of a

normal decomposition. However, we may state an equivalent form for π-adically

complete and separated R, which will be needed later.

Proposition 2.1.2. (cf. [Zin02, Remark after Lemma 21]) Let S → R be a

surjection of rings, such that S is complete and separated in the adic topology of

the kernel, and P a finitely generated projective R-module. Then there is a tuple

consisting of a finitely generated projective S-module P̃ and an isomorphism

ϕ : R⊗S P̃ → P . This tuple is uniquely determined up to isomorphism.
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Now if we consider w0 :WO(R)→ R for a π-adically complete and separated

O-algebra R, where O is an RRS, then the kernel is IO,R and WO(R) is complete

and separated in the IO,R-adic topology by the obvious generalization of [Zin02,

Proposition 3]. Let us consider for an f -O-display over R the finitely generated

projective R-module P0 = P/IO,RP . The R-modules L0 = Q/IO,RP and T0 =

P/Q form a direct sum decomposition of P0. By lifting the finitely generated

projective R-module L0 to a finitely generated projective WO(R)-module L we

obtain by the universal property of projective modules a morphism of the lifts

L → P . If we lift T0 in the same way we obtain a morphism L ⊕ T → P ,

which is an isomorphism by the lemma of Nakayama. By these considerations

the following Corollary is easily seen:

Corollary 2.1.3. Let O be an RRS and R a π-adically complete and separated

O-algebra. Then the first property of Definition 2.1.1 is equivalent to the assertion

that IO,RP ⊆ Q holds and P/Q is a finitely generated projective R-module.

Next we introduce an operator V ♯, which reminds us of the usual operator V

in Cartier and Dieudonné theory:

Lemma 2.1.4. (cf. [Zin02, Lemma 10]) Let O be an RRS, R an O-algebra and

P an f -O-display over R. There exists a unique WO(R)-linear map

V ♯ : P →WO(R)⊗Ff
,WO(R)

P,

which satisfies the following equations for all w ∈WO(R), x ∈ P and y ∈ Q:

V ♯(wFx) = π · w ⊗ x,
V ♯(wF1y) = w ⊗ y

Furthermore, we get F ♯V ♯ = π idP and V ♯F ♯ = π idWO(R)⊗
Ff

,WO(R)
P .

The proof in Zink’s paper is easily generalized toWO(R) and the F f
-linearity,

so we do not state it here.

By V n♯ : P →WO(R)⊗Ffn
,WO(R)

P we mean the composite map F f(n−1)
V ♯ ◦

. . . ◦F f
V ♯ ◦ V ♯, where F fi

V ♯ is the WO(R)-linear map

id⊗F fi,WO(R)V
♯ :WO(R)⊗F fi,WO(R) P →WO(R)⊗F f(i+1),WO(R) P.

Now we are able to introduce the Definition of a nilpotent f -O-display.

Definition 2.1.5. Let O be an RRS, R an O-algebra with π nilpotent in R and

P an f -O-display over R. We call P nilpotent, if there is a number N such that

the composite map

pr ◦V N♯ : P →WO(R)⊗F fN ,WO(R)P →WO(R)/(IO,R+πWO(R))⊗F fN ,WO(R)P

is the zero map.
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2.2 Morphisms, base changes and descent data for f-O-
displays

Let O be an RRS, R an O-algebra and P = (P,Q, F, F1),P ′ = (P ′, Q′, F ′, F ′
1)

two f -O-displays over R.

Definition 2.2.1. A morphism α : (P,Q, F, F1) → (P ′, Q′, F ′, F ′
1) between two

f -O-displays is a morphism of WO(R)-modules

αP : P → P ′,

such that the image of αQ := αP |Q is contained in Q′ and that the diagrams

P
αP //

F
��

P ′

F ′

��
P αP

// P ′

and

Q
αQ //

F1

��

Q′

F ′
1

��
P αP

// P ′

commute.

Together with these morphisms, the f -O-displays over R form a category,

we call it (f − dispO /R) or only (dispO /R), when f = 1. For π nilpotent in

R, the nilpotent f -O-displays over R form a full subcategory, we denote it by

(f − ndispO /R) or (ndispO /R), respectively.

Another very similar (and in fact categorial equivalent) structure compared to

f -O-displays are the f -O-Dieudonné modules over an O-algebra R with πR = 0,

which is a perfect field.

Definition 2.2.2. Let O be an RRS and R as above. Then an f -O-Dieudonné

module is a finitely generated free WO(R)-module M together with two maps,

an F f
-linear map F : M → M and an F−f

-linear map V : M → M , such that

FV = V F = π. A morphism between two such modules M and M ′ is as usual,

i.e., a WO(R)-linear map M → M ′ such that the two corresponding pairs F, F ′

and V, V ′ respect this mapping.

The following proposition may be considered as an extension of Proposition

15 in [Zin02].

Proposition 2.2.3. With O and R as above, the category of f -O-displays over
R is equivalent to the category of f -O-Dieudonné modules over R. Nilpotent
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f -O-displays correspond to f -O-Dieudonné modules, where V is topologically

nilpotent in the π-adic topology, i.e., for all r ∈ N, there is an n ∈ N, such that

V nM ⊆ πrM .

Since this fact is not very hard to prove, we only give a sketch of proof

which is based on what has been done in [Zin02]. For a given ramified f -O-
Dieudonné module (M,F, V ), we get an f -O-display (P,Q, F, F1) by defining

P =M , Q = VM , F :M →M and F1 = V −1 : VM →M .

If we start with an f -O-display (P,Q, F, F1) we get an f -O-Diedonné module

(P, F, V ) by setting as the composite V = ιV ♯, where V ♯ : P →WO(k)⊗Ff
,WO(k)

P is as usual and ι : WO(k) ⊗Ff
,WO(k)

P → P is given by w ⊗ x 7→F−f
wx.

Implicitly, we have used Lemma 1.2.6 here, since it justifies to use F−f
here and

in the above Definition. The equivalence of the nilpotent structures is left to the

reader.

To introduce the notion of a base change, we need an O-algebra morphism

R→ S.

Definition 2.2.4. (cf. [Zin02, Definition 20]) We define the f-O-display obtained

by base change PS = (PS , QS , FS , F1,S) to consist of

• PS :=WO(S)⊗WO(R) P ,

• QS := ker(w0 ⊗ pr), where

w0 ⊗ pr :WO(S)⊗WO(R) P → S ⊗R P/Q,

• FS :=F f ⊗F and

• F1,S : QS → PS to be the unique F f
-linear morphism which satisfies

F1,S(w ⊗ y) = F f
w ⊗ F1y,

F1,S(
V w ⊗ x) = F f−1

w ⊗ Fx

for all w ∈WO(S), x ∈ P and y ∈ Q.

Because the uniqueness of F1,S is clear, we choose a normal decomposition

P = L⊕ T and get an isomorphism

QS ≃WO(S)⊗WO(R) L⊕ IO,S ⊗WO(R) T,

with which the existence is easily verified. Hence, the definition is sensible.

We should remark a very important case of base change, which will be needed

for obtaining that BT
(f)
O (P,−) is a π-divisible formal O-module over R for a

nilpotent f -O-display over R, where R is an O-algebra with π nilpotent in R (cf.

[Zin02, Example 23]). Let R be an O-algebra, such that πR = 0. Let Frobq
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denote the Frobenius endomorphism defined by Frobq(r) = rq for all r ∈ R and

P = (P,Q, F, F1) be an f -O-display over R. The Frobenius F on WO(R) is given

by WO(Frobq). Hence, if we set

P (q) = WO(R)⊗F,WO(R) P,

Q(q) = IO,R ⊗F,WO(R) P + Im(WO(R)⊗F,WO(R) Q)

and define the operators F (q) and F
(q)
1 in a unique way by

F (q)(w ⊗ x) = F f
w ⊗ Fx,

F
(q)
1 (V w ⊗ x) = F f−1

w ⊗ Fx,
F

(q)
1 (w ⊗ y) = F f

w ⊗ F1y

for all w ∈ WO(R), x ∈ P and y ∈ Q, we obtain that the f -O-display obtained

by base change with respect to Frobq is P(q) = (P (q), Q(q), F (q), F
(q)
1 ). It is

essential to demand πR = 0 here, otherwise Q(q)/IO,RP
(q) would not necessarily

be a direct summand of P (q)/IO,RP
(q). Let us denote the k-fold iterate of this

construction by P (qk) and consider the map V ♯ : P → WO(R) ⊗F f ,WO(R) P of

Lemma 2.1.4 and F ♯ : WO(R)⊗F f ,WO(R) P → P . V ♯ maps P into Q(qf ) and F ♯

maps Q(qf ) into IO,RP . Both commute with the pairs (F, F (qf )) and (F1, F
(qf )
1 )

respectively, so V ♯ induces the so called Frobenius morphism of P, which is a

morphism of f -O-displays

FrP : P → P(qf ), (2.1)

and F ♯ induces a map of f -O-displays

VerP : P(qf ) → P,

which is called the Verschiebung. By using Lemma 2.1.4 we obtain two analogous

relations to the ones cited in this Lemma

FrP VerP = π · idP(qf ) and VerP FrP = π · idP .

In order to overcome the nilpotence requirement of π in Definition 2.1.5, we

can extend it now to the following case:

Let R be a topological O-algebra, where the linear topology is given by the

ideals R = a0 ⊃ a1 ⊃ . . . ⊃ an . . . , such that aiaj ⊂ ai+j holds. Furthermore,

we demand the nilpotence of π in R/a1 (and hence in all R/ai) and that R is

complete and separated with respect to this filtration.

Definition 2.2.5. With R as above an f -O-display over R is called nilpotent,

if the f -O-display obtained by base change to R/a1 is nilpotent in the sense of

Definition 2.1.5.
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Let P be a nilpotent f -O-display over R. We denote by Pi the f -O-display
over R/ai obtained by base change. Then Pi is a nilpotent f -O-display in the

sense of Definition 2.1.5. There are obvious transition isomorphisms (see Defini-

tion 2.2.1)

ϕi : (Pi+1)R/ai → Pi.

Conversely, assume we are given for each index i a nilpotent f -O-display Pi over
the discrete O-algebra R/ai and transition isomorphisms ϕi as above. It is easily

seen that the system (Pi, ϕi) is obtained from a nilpotent f -O-display P over R.

Hence, we obtain, after considering the morphisms of the category of systems of

nilpotent f -O-displays (Pi, ϕi) and the morphisms of the category of nilpotent

f -O-displays over R, that both categories are equivalent by the above association.

This equivalence fits well to [Mes72, Chapter II, Lemma (4.16)].

We need to introduce descent theory for f -O-displays, i.e., we need to find

out, given a faithfully flat O-algebra morphism R → S, what structure do we

have to require addtitionally to an f -O-display over S to lift it uniquely to an

f -O-display over R.

Lemma 2.2.6. (cf. [Zin02, 1.3. Descent]) Let R → S be a faithfully flat O-
algebra morphism. Then we get the exact sequence

R→ S

q1−→
−→
q2

S ⊗R S

q12−→
q23−→
q13−→

S ⊗R S ⊗R S, (2.2)

where qi is the map, which sends an element of S to the i-th factor of S ⊗R S

and qij is given by sending the first component of S ⊗R S to the i-th component

of S ⊗R S ⊗R S and the second one to the j-th component of it.

Definition 2.2.7. With O, R→ S, qi and qij as above and π nilpotent in R we

denote for an f -O-display over S, say P, the f -O-display over S ⊗R S obtained

by base change via qi by q
⋆
iP and similarly for f -O-displays over S⊗RS⊗RS and

qij . A descend datum for P relative to R→ S is an isomorphism of f -O-displays
α : q⋆1P → q⋆2P, such that the cocycle condition holds, i.e., the diagram

q⋆12q
⋆
1P

q⋆12α // q⋆12q
⋆
2P

q⋆13q
⋆
1P

q⋆13α

��

q⋆23q
⋆
1P

q⋆23α

��
q⋆13q

⋆
2P q⋆23q

⋆
2P

is commutative.

It is obvious that we obtain for any f -O-display P over R a canonical descent

datum αP for the base change PS over S relative to R→ S.
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Theorem 2.2.8. (cf. [Zin02, Theorem 37]) With the terminology as in Definition

2.2.7, we get that the functor P 7→ (P, αP) from the category of f -O-displays
over R to the category of f -O-displays over S equipped with a descent datum

relative to R→ S is an equivalence of categories. We also obtain an equivalence,

when we restrict to nilpotent f -O-display structures.

Definition 2.2.9. Let O be an RRS, S an O-algebra, R an S-algebra and P an

f -O-display over R. We call an S-action, i.e., an O-algebra morphism ι : S →
EndP, strict, iff the induced action ι : S → P/Q coincides with the S-module

structure given by the R-module structure of P/Q and restriction to scalars.

Now we try to utilize this assertion to prove a result, which will become

important in chapter four, when we are dealing with algebraic stacks.

Proposition 2.2.10. Let O → O′ be a morphism of RRSs, i.e., not necessarily

excellent (see Definition 1.1.1), R → S a faithfully flat morphism of O′-algebras

and f, f ′ two natural numbers ≥ 1. Let GA be a functor between the category

of (nilpotent) f -O-displays over A and the category of (nilpotent) f ′-O′-displays

over A for A = R,S, S ⊗R S, S ⊗R S ⊗R S. Assume that these functors are

compatible with the base change functors induced by qi, qij (with the obvious

notation) and R → S, that GS⊗RS is fully faithful and GS⊗RS⊗RS is faithful.

Now let P ′ be a (nilpotent) f ′-O′-display over R, such that the base change P ′
S

lies in the image of GS . Then P ′ lies in the image of GR. The same assertion is

true, when the domain of GA is the category of (nilpotent) f -O-displays over A
equipped with a strict O′-action for each A as above.

Proof: Let P be a (nilpotent) f -O-display over S, such that GS(P) = P ′
S . It is

our aim to construct for P a descent datum relative R→ S, so we would obtain by

Theorem 2.2.8 a (nilpotent) f -O-display over R, which has the image P ′. Since we

obtain a descent datum for P ′
S , we may lift the isomorphism α′ : q⋆1P ′

S
∼= q⋆2P ′

S

to α : q⋆1P ∼= q⋆2P, since GS⊗RS is fully faithful. Now we may establish the cocycle

diagram for α, where we need to show its commutativity, but this follows from the

faithfulness of GS⊗RS⊗RS and the compatibility of the G’s with the base change

functors. The last assertion follows from the same argumentation as above by

attaching a strict O′-action to the objects of the categories of the equivalence of

Theorem 2.2.8. �

2.3 The formal O-module BT
(f)
O (P ,−)

Let O be an RRS, R an O-algebra and N a nilpotent R-algebra. Then by

restriction to scalars N can be considered as a nilpotent O-algebra. We get that

WO(N ) is a WO(R)-algebra. As in the previous chapter, we denote by ŴO(N )

the WO(R)-subalgebra of WO(N ) consisting of the ramified Witt vectors with
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finitely many non-zero entries. For a given f -O-display P = (P,Q, F, F1) we

consider the following WO(R)-modules, which can obviously be considered as

O-modules by restriction to scalars via O →WO(R):

P̂N = ŴO(N )⊗WO(R) P (2.3)

Q̂N = ŴO(N )⊗WO(R) L⊕ ÎO,N ⊗WO(R) T (2.4)

Here P = L ⊕ T is a normal decomposition. Let S be the unitary R-algebra

R|N | = R ⊕ N with an addition in the obvious way and a multiplication given

by

(r1, n1)(r2, n2) = (r1r2, r1n2 + r2n1 + n1n2) (2.5)

for all ni ∈ N and ri ∈ R. If we denote by PS = (PS , QS , FS , F1,S) the f -O-
display over S obtained from P via base change R → S, we can consider P̂N as

a submodule of PS and obtain Q̂N = P̂N ∩QS . By restricting FS : PS → PS and

F1,S : QS → PS , we obtain operators

F : P̂N → P̂N ,

F1 : Q̂N → P̂N .

Now we are able to associate to an f -O-display P a finite dimensional formal

O-module BT
(f)
O (P,−), for the basic definitions of formal groups / formal O-

modules we refer to Appendix A. In the case that f = 1, we will just refer

to BTO(P,−). Our aim is to use the O-module structure of the just introduced

modules, such that every group BT
(f)
O (P,N ) becomes an O-module and for every

R-algebra morphism N → N ′ the induced group morphism BT
(f)
O (P,N ) →

BT
(f)
O (P,N ′) becomes an O-module morphism. For this purpose we formulate a

theorem, which is a modified version of theorem 81 given by Zink in [Zin02]. The

proof is very similar, but because of its importance for the understanding of the

BT
(f)
O functor we will write it down here fully.

Theorem 2.3.1. Let P = (P,Q, F, F1) be an f -O-display over R. Then the

functor from NilR (the category of nilpotent R-algebras) to the category of O-
modules, which associates to any N ∈ NilR the cokernel of the morphism of

abelian groups

F1 − id : Q̂N → P̂N (2.6)

where id is the natural inclusion, is a finite dimensional formal O-module, when

considered as a functor to abelian groups equipped with a natural O-action. This
functor is called BT

(f)
O (P,−). We obtain an exact sequence of O-modules

0 // Q̂N
F1−id // P̂N

// BT
(f)
O (P,N ) // 0.



24 Chapter 2. f -O-Display theory

In the proof, we have to make use of something similar to divided powers as

has been done in [Zin02, 1.4. Rigidity.].

Definition 2.3.2. (cf. [Fal02, Definition 14]) Let O be an RRS, R an O-algebra
and a ⊆ R an ideal. An O-pd-structure is a map γ : a→ a, such that

• π · γ(x) = xq,

• γ(r · x) = rq · γ(x) and

• γ(x+ y) = γ(x) + γ(y) +
∑

0<i<q(
(
q
i

)
/π) · xi · yq−i

hold for all r ∈ R and x, y ∈ a. If γn denotes the n-fold iterate of γ, we call γ

nilpotent, if a[n] = 0 for all n ≫ 0, where a[n] ⊆ a is generated by all products∏
γai(xi) with xi ∈ a and

∑
qai ≥ n.

If we define for each n a map

αn = πq
n−1+qn−2+...+q+1−n · γn : a→ a, (2.7)

we can define

w′
n :WO(a) → a (2.8)

(x0, x1, . . . , xn, . . .) → αn(x0) + αn−1(x1) + . . .+ α1(xn−1) + xn,

which should not be confused with the n-th Witt polynomial of WO′(S) for some

O′ and some O′-algebra S. The map w′
n is wn-linear, this means that beside

additivity w′
n(rx) = wn(r)w

′
n(x) holds for all n ∈ N, x ∈WO(a) and r ∈WO(R).

The main application of this structure is the following: We define on aN aWO(R)-

module structure by setting

ξ[a0, a1, . . .] = [w0(ξ)a0,w1(ξ)a1, . . .]

with ξ ∈ WO(S) and [a0, a1, . . .] ∈ aN. It is not too hard to check that we then

get an isomorphism of WO(S)-modules

log :WO(a) → aN (2.9)

a = (a0, a1, . . .) 7→ [w′
0(a),w

′
1(a), . . .].

We should also remark how F ,V and multiplication are described on the right

hand side (by passing to a suitable universal situation):

[a0, a1, . . .][b0, b1, . . .] = [a0b0, πa1b1, . . . , π
iaibi, . . .], (2.10)

F [a0, a1, . . .] = [πa1, πa2, . . . , πai, . . .], (2.11)
V [a0, a1, . . .] = [0, a0, a1, . . . , ai, . . .] (2.12)
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hold for all [a0, a1, . . .], [b0, b1, . . .] ∈ aN. We define the ideal a ⊂WO(a) by

log−1( [a, 0, 0, . . .] | for all a ∈ a). (2.13)

It should be remarked that F a = 0 holds. We will use this ideal in the following

simple Lemma:

Lemma 2.3.3. (cf. [Zin02, Lemma 38]) Let P = (P,Q, F, F1) be an f -O-display
over R and a ⊆ R an ideal equipped with an O-pd-structure. Then there is a

unique extension of F1 to

F1 :WO(a)P +Q→ P,

such that F1aP = 0 holds.

Proof: If we choose a normal decomposition P = L⊕ T , then

WO(a)P +Q = aT ⊕ L⊕ IO,RT.

We define F1 : WO(a)P +Q→ P with the help of this decomposition. We need

to verify that F1aL = 0 holds, which follows, since F a = 0. �

Furthermore, if αn(a) = 0 for all n≫ 0, we get a map

log : ŴO(a)→ a(N), (2.14)

which becomes an isomorphism if γ is nilpotent. Now we turn to the proof of

Theorem 2.3.1.

Proof: If N 2 = 0, then N has a trivial O-pd structure γ = 0, and we can consider

all the results of 1.4. of [Zin02] without fearing our new situation here. Of course,

all the argumentations dealing with the N 2 = 0 case and γ = 0 can be extended

to arbitrary nilpotent R-algebras with a nilpotent O-pd structure. We can extend

F1 : Q̂N → P̂N to a map

F1 : ŴO(N )⊗WO(R) P → ŴO(N )⊗WO(R) P (2.15)

by applying Lemma 2.3.3 to F1 : QS → PS first (with S = R ⊕ N ) and then

restricting to ŴO(N ) ⊗WO(R) P . So now we first show that (2.6) is injective.

The functors N 7→ P̂N and N 7→ Q̂N from NilR to ModO are exact in the sense

that if we apply any of these two functors to any short exact sequence in NilR
we obtain a short exact sequence in ModO, where we establish the fact for Q̂N
by considering its decomposition (2.4). Any nilpotent N admits a filtration

0 = N0 ⊂ N1 ⊂ . . . ⊂ Nr = N

with N 2
i ⊂ Ni−1, so we are allowed to reduce our observations to N 2 = 0 and we

then may equip N with the trivial O-pd structure again. The map (2.6) can be

seen as the restriction of

F1 − id : ŴO(N )⊗WO(R) P → ŴO(N )⊗WO(R) P, (2.16)
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where F1 is the map (2.15). We obtain the injectivity of (2.6), when we prove

that (2.16) is an isomorphism by showing that this F1 is nilpotent, what we will

do now.

Because the divided powers are nilpotent, we get an isomorphism

ŴO(N )⊗WO(R) P →
⊕
i≥0

N ⊗wi,WO(R) P.

We want to describe, what happens if we let F1 act on the right hand side induced

by this isomorphism. We define the operators Ki for all i ≥ 0 by

Ki : N ⊗wf+i,WO(R) P −→ N ⊗wi,WO(R) P

a⊗ x 7−→ πf−1a⊗ Fx.

Then it is easily checked that F1 is given on the right side by

F1[u0, u1, . . .] = [K1uf ,K2uf+1, . . .]

and the nilpotence follows.

Hence, we may define BT
(f)
O (P,N ) by the exact sequence

0 // Q̂N
F1−id // P̂N

// BT
(f)
O (P,N ) // 0.

There is an obvious O-module structure on BT
(f)
O (P,N ). For an R-algebra

morphism η : N → M with N ,M ∈ NilR we receive an O-module morphism

BT
(f)
O (P, η) : BT (f)

O (P,N )→ BT
(f)
O (P,M) by the commutative diagram

0 // Q̂N
F1−id //

η′

��

P̂N
//

η′′

��

BT
(f)
O (P,N ) //

BT
(f)
O (P,η)

��

0

0 // Q̂M
F1−id // P̂M

// BT
(f)
O (P,M) // 0,

where η′′ is the induced morphism η ⊗ id : P̂N → P̂M and η′ is the restriction

of η′′ to Q̂N . It is easily seen that the image of η′ is contained in Q̂M by using

η(ÎO,N ) ⊂ ÎO,M and the decomposition for Q̂N and Q̂M. We need to verify that

the conditions of Definition A.0.1 hold. The first two points are clear because we

already remarked that the functors N 7→ P̂N and N 7→ Q̂N are exact. For the

remaining points we need to look at t
BT

(f)
O (P,−)

. Because we only consider ModR

in NilR, we have for any N ∈ ModR that N 2 = 0. Hence, we can equip N with

the trivial O-pd structure again. We define an isomorphism

expP : N ⊗R P/Q −→ BT
(f)
O (P,N )
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by the commutative diagram

0 // Q̂N
id // P̂N

//

F1−id

��

N ⊗R P/Q //

expP
��

0

0 // Q̂N
F1−id // P̂N

// BT
(f)
O (P,N ) // 0.

One can easily deduce from this diagram that expP is an isomorphism. We see

furthermore that t
BT

(f)
O (P,−)

is isomorphic toM 7→M⊗RP/Q via this exponential

mapping. Hence, it suffices to consider the latter functor and we obtain easily that

the last two points of Definition A.0.1 are satisfied. We conclude that BT
(f)
O (P,−)

is a formal group (withO-action), but since it is easily seen that the twoO-actions
on the tangential space coincide, it is also a formal O-module. �

Let α : R→ S be an O-algebra morphism and P an f -O-display over R. We

get an f -O-display α⋆P over S by base change and obtain a formal O-module

BT
(f)
O (α⋆P,−) over S. On the other hand, we obtain a formal O-module

α⋆BT
(f)
O (P,−) over S by considering NilS as a subcategory of NilR and restrict-

ing BT
(f)
O (P,−) to it. The following Corollary says that the functor P →

BT
(f)
O (P,−) from the category of f -O-displays to the category of formal O-

modules commutes with base change.

Corollary 2.3.4. (cf. [Zin02, Corollary 86]) With the conditions as above we

get an isomorphism of formal O-modules over S

α⋆BT
(f)
O (P,−) ∼= BT

(f)
O (α⋆P,−).

We have for all N ∈ NilS the obvious isomorphism

ŴO(N )⊗WO(R) P ∼= ŴO(N )⊗WO(S) WO(S)⊗WO(R) P = ŴO(N )⊗WO(S) α⋆P,

which induces the isomorphism of the Corollary. We want to cite two Propositions

of [Zin02], from which we deduce that BT
(f)
O (P,−) is a π-divisible formal O-

module for all nilpotent f -O-displays P. The proofs are omitted here, because

apart from some obvious changes we would only copy them.

Proposition 2.3.5. (cf. [Zin02, Proposition 87]) Let O = (O, π, q = pm) be an

RRS, R an O-algebra, such that πR = 0, and P a nilpotent f -O-display over

R. Furthermore, let FrP : P → P(qf ) be the Frobenius endomorphism (see (2.1))

and G = BT
(f)
O (P,−) resp. G(qf ) = BT

(f)
O (P(qf ),−) be the formal O-module

associated to P resp. P(qf ). We obtain, because BT
(f)
O commutes with base

change by Corollary 2.3.4, a morphism of formal O-modules

BT
(f)
O (FrP) : G→ G(qf ),



28 Chapter 2. f -O-Display theory

which is the Frobenius morphism of the formal O-module G (with respect to

x 7→ xq) iterated f times FrfG. (This Frobenius is the obvious generalization of

[Zin84, Kapitel V]).

Proposition 2.3.6. (cf. [Zin02, Proposition 88]) With the setting as in Propo-

sition 2.3.5, we obtain that there is a number N and a morphism of nilpotent

f -O-displays
γ : P → P(qfN ),

such that the diagram

P π //

FrNP
��

P

γ||xx
xx

xx
xx

x

P(qfN )

is commutative.

Corollary 2.3.7. (cf. [Zin02, Proposition 89]) Let O be an RRS, R an O-algebra
with π nilpotent in R and P a nilpotent f -O-display over R. Then BT

(f)
O (P,−)

is a π-divisible formal O-module (cf. Definition A.1.2).

Proof: First we consider the case, when πR = 0. Then we may apply BT
(f)
O to

the diagram of Proposition 2.3.6 and we obtain that some iteration of the Frobe-

nius on BT
(f)
O (P,−) factors through π and some other morphism. By [Zin84,

5.18 Lemma] and [Zin84, 5.10 Satz], we obtain that π is an isogeny. Hence,

BT
(f)
O (P,−) is a π-divisible formal O-module over R.

If π is nilpotent in R, then a formal O-module is π-divisible, iff its reduction mod-

ulo π is π-divisible (cf. [Zin84, 5.12 Korollar]). Hence, we know that BT
(f)
O (P,−)

is π-divisible. �

2.4 Drinfeld’s equivalence of formal O-modules and re-

duced Cartier modules revisited

Let O be an RRS and R an O-algebra. First we will introduce the Cartier ring

EO,R as it has been done in [Dri76]. In this article the not necessarily commutative

O-algebra AO,R is considered, which is generated by WO(R) and the elements F

and V in which the following relations are demanded to hold for all a ∈WO(R)

V aF = V a, (2.17)

Fa = FaF, (2.18)

aV = V Fa, (2.19)

FV = π. (2.20)
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The right ideals, spanned by V l, i.e.,

V lAO,R = {
∑

n,m≥0

V n[an,m]Fm ∈ AO,R | an,m ∈ R, ak,m = 0 if k < l },

where we have the elements in the usual presentation, give us a topology and we

define

EO,R = lim←−AO,R/V
lAO,R.

We may embed WO(R) in EO,R by

x =

∞∑
i=0

V i[xi]F
i ∈ EO,R (2.21)

for each x ∈ WO(R). Furthermore, each element e ∈ EO,R may be written in a

unique way as

e =
∑

n,m≥0

V n[an,m]Fm, (2.22)

where an,m ∈ R and for fixed n the coefficients an,m are zero for m large enough.

We now come to the definition of a special kind of Cartier module (this means an

EO,R-module here), for which we will show that the category of all those modules

is equivalent to the category of formal O-modules over R (see Definition A.0.2),

when O is the ring of integers of non-Archimedean local field of characteristic

zero:

Definition 2.4.1. (cf. [Dri76]) With R and O as above, a Cartier module over

R and O, i.e., an EO,R-module, say M , is called reduced, if the action of V is

injective,M = lim←−M/V kM andM/VM is a finite projective R-module. M/VM

is called the tangential space of M .

Definition 2.4.2. Let O be an RRS, O → S a ring morphism, R an S-algebra

and M a (reduced) EO,R-module. Then we call an S-action, i.e., an O-algebra
morphism ι : S → EndM , strict, iff the induced action ι : S →M/VM coincides

with the S-module structure given by the R-module structure of M/VM and

restriction to scalars.

Unless otherwise stated, we will assume for the rest of this section that O
and O′ are rings of integers of non-Archimedean local fields of characteristic zero.

This is important, when, for example, one wants to show that the element y

defined by (2.24) is a unit in WO(R), which would not be the case for each RRS,

e.g., (Z, p, p). Now let R be an O-algebra and M a reduced EO,R-module.

If we assume that the R-moduleM/VM is free, we may choose as in [BC91, (1.5)]

a V -basis of M , say m1, . . . ,md ∈M . This means that the reductions of the mi
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modulo V form an R-module basis of M/VM . We may write each element of M

in a unique way as ∑
n≥0

d∑
i=1

V n[cn,i]mi

with cn,i ∈ R. Furthermore, we get that F is uniquely described by

F (mi) =
∑
n≥0

d∑
j=1

V n[cn,j,i]mj

for each i = 1, . . . , d with cn,j,i ∈ R. Conversely, if we are given cn,j,i ∈ WO(R)

for each n ≥ 0 and 1 ≤ i, j ≤ d, there exists up to unique isomorphism a reduced

EO,R-module M with M/VM free over R and a V -basis m1, . . . ,md ∈ M , such

that

F (mi) =
∑
n≥0

d∑
j=1

V ncn,j,imj

holds for each i = 1, . . . , d.

The same argumentation holds for the action of π. This means, given a reduced

Cartier moduleM and a V -basis m1, . . . ,md ∈M , there are uniquely determined

elements dm,j,i ∈ R for m ≥ 1 and 1 ≤ i, j ≤ d, such that

πmi = [π]mi +
∑
m≥1

d∑
j=1

V m[dm,j,i]mj

holds for all i = 1, . . . , d. Conversely, if we are given dm,j,i ∈ WO(R) for each

m ≥ 1 and 1 ≤ i, j ≤ d, we obtain up to unique isomorphism a reduced EO,R-

module M with M/VM free over R and a V -basis m1, . . . ,md ∈M , such that

πmi = [π]mi +
∑
m≥1

d∑
j=1

V mdm,j,imj

holds for each i = 1, . . . , d. We obtain F by the fact that

π − [π] = V yF (2.23)

holds with y ∈ WO(R), which can be considered as the image of an element

y ∈WO(O) (with a little misuse in the notation) given by

wn(y) = 1− πqn+1−1 (2.24)

via the obvious morphism WO(O) → WO(R). Hence, since y0 = w0(y) is a unit

in O, y is a unit in WO(O) and so a unit in WO(R) and we obtain

Fmi = y−1
∑
m≥1

d∑
j=1

V m−1dm,j,imj

=
∑
m≥1

d∑
j=1

V m−1(F
m−1

(y−1)dm,j,i)mj ,
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so by the aforementioned, the exists a unique reduced Cartier module, satisfying

the structural equations for F and hence the equations for π as well.

Theorem 2.4.3. (cf. [Dri76]) Let O be the ring of integers of a non-Archimedean

local field of characteristic zero and R an O-algebra. Then the category of formal

O-modules over R is equivalent to the category of reduced EO,R-modules.

The proof, which now follows, is essentially the same, as the one that can be

found in the article of Drinfeld, but we have taken an extended form of reduced

Cartier modules, since we consider an extended form of formal O-modules, at

least compared to the Definition of formal O-modules in the article of Drinfeld,

which rely on the Definition of formal groups in the sense of [Laz75], where the

tangential space is finite and free. The second part of the proof is due to Zink.

Here the proof of the equivalence is a bit different from Drinfeld’s. Nevertheless,

the functor is the same. We will give the full proof here, since in Drinfeld’s article

the proof was very short and needs explanation at many points.

Proof: When O = Zp, the theorem is established in [Zin84, 4.23 Satz]. Hence, it

suffices to prove that if O → O′ is an extension and the theorem is true for O,
then it is true for O′ as well.

First we assume O′ to be nonramified over O of degree f and R to be an O′-

algebra. Formal O′-modules over R are equivalent to reduced EO,R-modules

equipped with a strict O′-action. The morphism O′ → R induces a morphism

O′ → WO(R) which is obtained by the composition of κ : O′ → WO(O′) (see

(1.2)) andWO(O′)→WO(R). From this we obtain that O′⊗OEO,R is isomorphic

to a product of f copies of EO,R. This can be seen in the following way: Let

σ denote the relative Frobenius of the extension O → O′. Then O′ ⊗O O′ is

isomorphic to O′f via the map x⊗ y 7→ (xy, xσ(y), . . . , xσf−1(y)). So we get

O′ ⊗O EO,R = O′ ⊗O (O′ ⊗O′ EO,R) = (O′ ⊗O O′)⊗O′ EO,R = O′f ⊗O′ EO,R

= (O′ ⊗O′ EO,R)
f = Ef

O,R.

We obtain a Z/fZ-grading on M via M =
⊕

i∈Z/fZMi, where

Mi = {m ∈M | ι(a)m =F−i
am for all a ∈ O′ }.

Here ι : O′ → EndM is the strict O′-action and the F−i
a comes from O′ →

WO(R). Since a(Mi) ⊆Mi for all a ∈WO(R), V (Mi) ⊆Mi+1 and F (Mi) ⊆Mi−1

by (2.17)-(2.20), we have deg a = 0 for all a ∈WO(R), deg V = 1 and degF = −1.
V :Mi →Mi+1 is an isomorphism for i ̸= −1, and the actions of O′ on M0, i.e.,

ι and the other action obtained by O′ → WO(R) → EO,R, coincide. We define

U := V 1−fF : M0 → M0. The image lies in M0, since the map has degree

zero. To the element
∑∞

n,m=0 V
′nu(xm,n)F

′m of the Cartier ring EO′,R in the
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usual representation, i.e., xm,n ∈ WO(R), such that xm,n = 0 for fixed n and

almost all m, where u is taken from Corollary 1.2.2, we associate the operator∑∞
n,m=0 V

fnxm,nU
m. We have to verify that this association is well-defined, so

by this we would have turned M0 into an EO′,R-module, which is reduced, and

may take this functor as an equivalence.

Obviously it suffices to show that, if
∑∞

n,m=0 V
′nu(xm,n)F

′m = 0, then the asso-

ciated operator operates as zero on M0. We should bear in mind that

∞∑
n,m=0

V ′nu(xm,n)F
′m =

∞∑
n,m,k=0

V ′n+k[u(xm,n)k]F
′k+m

by means of (2.21). We define x
(0)
m,n := xm,n for all m,n. By reducing modulo V ′

we get
∞∑

n,m=0

V ′nu(x(0)m,n)F
′m ≡

∞∑
m=0

[u(x
(0)
m,0)0]F

′m ≡ 0 mod V ′,

from which it follows that u(x
(0)
m,0)0 = (x

(0)
m,0)0 = 0 for all m ≥ 0. Hence we can

write x
(0)
m,0 =V y

(1)
m,0 for all m and obtain u(x

(0)
m,0) =V ′

u(F
f−1

y
(1)
m,0). So we have∑∞

n,m=0 V
′nu(xm,n)F

′m = V ′u(x
(1)
0,1)+

∑∞
m>0 V

′u(x
(1)
m,1)F

′m+
∑∞

n>1,m=0 V
′nu(x

(1)
m,n)F ′m,

where x
(1)
0,1 := x

(0)
0,1, x

(1)
m,1 =F f−1

y
(1)
m,0 + x

(0)
m,1 for all m > 0 and x

(1)
m,n := x

(0)
m,n

for all n ≥ 2,m ≥ 0. By reducing modulo V ′2 we get that (x
(1)
m,1)0 = 0

for all m. Inductively, we get (x
(j)
m,j)0 = 0 for all j ≥ 0 and m, where for

j ≥ 1 we define x
(j)
0,j := x

(j−1)
0,j , x

(j)
m,n := x

(j−1)
m,n for all n ≥ j + 1,m ≥ 0 and

x
(j)
m,j := x

(j−1)
m,j +F f−1

y
(j)
m−1,j−1 for m > 0 with x

(j−1)
m−1,j−1 =V y

(j)
m−1,j−1. Hence, we

see for t ∈M0 and tm := Umt for all m ∈ N0

∞∑
n,m=0

V fnxm,nU
mt =

∞∑
m=0

x
(0)
m,0tm +

∞∑
n=1,m=0

V fnx(0)m,ntm

=

∞∑
m=0

V y
(0)
m,0Ftm +

∞∑
n=1,m=0

V fnx(0)m,ntm

=

∞∑
m=0

V y
(0)
m,0V

f−1tm+1 +

∞∑
n=1,m=0

V fnx(0)m,ntm

=

∞∑
m=0

V fF
f−1

y
(0)
m,0tm+1 +

∞∑
n=1,m=0

V fnx(0)m,ntm

= V fx
(1)
0,1t0 +

∞∑
m=1

V fx
(1)
m,1tm +

∞∑
n=2,m=0

V fnx(1)m,ntm

By repeating this step inductively, we get that
∑∞

n,m=0 V
fnxm,nU

mt ∈ V kM for

all k and because M is separated,
∑∞

n,m=0 V
fnxm,nU

mt = 0 must hold. Hence,
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the association is well-defined. We obtain a functor from the category of reduced

EO,R-modules with a strict O′-action to the category of reduced EO′,R-modules

by passing to the M0-modules and restricting the morphisms to the zeroth com-

ponent. It is easily seen that this functor is an equivalence.

Now we consider the case, where O → O′ is a totally ramified extension,

and assume R to be an O′-algebra . Let us consider the unique continuous ring

morphism µ : EO,R → EO′,R, which is obtained by

µ|WO(R) = u,

µ(V ) = V ′,

µ(F ) = (π/π′)F ′.

With the help of this morphism we can build an obvious functor G from the cate-

gory of reduced EO′,R-modules in the category of reduced EO,R-modules equipped

with a strict O′-action. First we show that this functor is fully faithful. We de-

fine φ ∈ EO′,R by V ′φ = π′ − [π′] and get that φ must be of the form yF ′ with

y ∈ WO′(R) as in equation (2.23) (with V ′ and F ′ instead of V and F ). From

equation (2.24) (with π′ instead of π), we get that y is a unit. It follows that all

elements Fk
y are units in WO′(R) for all k ≥ 0 and hence, we may write each

element of EO′,R in the form

∞∑
n,m=0

V ′nu(xm,n)φ
m,

where xm,n ∈WO(R). LetM,M ′ be two reduced EO′,R-modules and ψ : G(M)→
G(M ′) an EO,R-linear morphism between them which respects the O′-action. We

need to show that ψ is EO′,R-linear. But this follows from V ′ψ = µ(V )ψ =

ψµ(V ) = ψV ′, u(w)ψ = µ(w)ψ = ψµ(w) = ψu(w) for each w ∈ WO(R) and

φψ = ψφ, which in turn follows from V ′φψ = (π′ − [π′])ψ = ψ(π′ − [π′]) =

ψV ′φ = V ′ψφ. Hence, G is fully faithful.

In order to show the essential surjectivity of G, we first consider the case, where

the tangential space of the reduced EO,R-module equipped with a strict O′-action

is free. Let M be such a module and m1, . . . ,md a V -basis of M . If the action

of π′ is described by

π′mi = [π′]mi +
∑
n≥1

d∑
j=1

V n[cn,j,i]mj (2.25)

with cn,j,i ∈ R for i = 1, . . . , n, we define the reduced EO′,R-module M ′ with

M ′/V ′M ′ free by

π′m′
i = [π′]m′

i +
∑
n≥1

d∑
j=1

V ′n[cn,j,i]m
′
j , (2.26)
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where the m′
i should be a V ′-basis of M ′ and the Teichmüller representants are

elements of WO′(R). Since u([a]O) = [a]O′ for each a ∈ R (where the indices

should indicate in which O-algebra resp. O′-algebra of ramified Witt vectors we

consider the Teichmüller representants), we obtain that we may rewrite (2.26) as

π′m′
i = u([π′])m′

i +
∑
n≥1

d∑
j=1

V ′nu([cn,j,i])m
′
j . (2.27)

By iterating the equation (2.25) for each k ≥ 0, we obtain in M that

π′kmi = [π′k]mi +
∑
n≥1

d∑
j=1

V nξ
(k)
n,j,imj

holds with ξ
(k)
n,j,i ∈WO(R). Now let

π =

e∑
k=1

akπ
′k (2.28)

be obtained from the Eisenstein equation of degree e, when e is the ramification

index of the extension O → O′, which π′ satisfies, so ak ∈ πO for all k < e and

ae ∈ O×. From the above equations, we obtain

πmi = (

e∑
k=1

akπ
′k)mi (2.29)

=

e∑
k=1

ak[π
′k]mi +

∑
n≥1

d∑
j=1

V n(

e∑
k=1

akξ
(k)
n,j,i)mj .

This yields

∑
n≥1

d∑
j=1

V n(
e∑

k=1

akξ
(k)
n,j,i)mj = (π −

e∑
k=1

ak[π
′k])mi (2.30)

= V αFmi

with

V α = π −
e∑

k=1

ak[π
′k]. (2.31)

We need to verify that α0 is a unit in R. Then we would get the structural

equations by

Fmi = α−1
∑
n≥1

d∑
j=1

V n−1(

e∑
k=1

akξ
(k)
n,j,i)mj .
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By some calculation, we obtain that

α0 = 1−
e−1∑
k=1

(ak/π)π
′kq + πq−1 · a−q+1

e · S,

with

S =
∑

0≤i1,...ie−1,j≤q,i1+...+ie−1+j=q

(
q

i1, . . . , ie−1, j

) e−1∏
k=1

(−ak/π)ikπ′ik .

We see that α0 is clearly a unit when considered as an element of O′ and hence

a unit in R.

We obtain inM ′ by the iteration of π′ given by (2.27) and addition, the analogue

to (2.29)

πm′
i = (

e∑
k=1

akπ
′k)m′

i

=
e∑

k=1

aku([π
′k])m′

i +
∑
n≥1

d∑
j=1

V ′n(
e∑

k=1

aku(ξ
(k)
n,j,i))m

′
j .

From this we obtain the analogue to (2.30)

∑
n≥1

d∑
j=1

V ′n(
e∑

k=1

aku(ξ
(k)
n,j,i))m

′
j = (π −

e∑
k=1

ak[π
′k])m′

i

= u(π −
e∑

k=1

ak[π
′k])m′

i

= V ′u(α)(π/π′)F ′m′
i,

with α ∈WO(R)
× given by (2.31). Since we may considerM ′ as an EO,R-module

via the map µ, we obtain that the structural equations are the same as those for

M . Hence, M and M ′ are isomorphic in a canonical way as EO,R-modules.

Clearly, the π′-action of both modules is respected by this isomorphism and so

the essential surjectivity is clear for reduced EO,R-modules with strict O′-action

and free tangential space. Now let M be an arbitrary reduced EO,R-module with

a strict O′-action, i.e., M/VM is just projective and not necessarily free. Let

P2
α→ P1

β→M/VM → 0 (2.32)

be an exact sequence of R-modules, with P1 and P2 finite and free. Let e1, . . . , ed,

be a basis of P1 and mi be liftings of the β(ei). We find equations

π′mi = [π′]mi +
∑
n≥1

d∑
j=1

V n[cn,j,i]mj
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for each i = 1, . . . , d and define the reduced EO′,R-module L1 with tangential

space P1 by these equations (with some V -basis ẽi instead of mi), where we

consider the Teichmüller representants as elements of WO′(R) and V ′ in place of

V . It is not too hard to verify that the obvious surjective mapping L1
β̃→ M ,

given by ∑
n,i

V ′n[cn,i]ẽi 7→
∑
n,i

V n[cn,i]mi,

with cn,i ∈ R, is an EO,R-linear morphism (where L1 is considered as an EO,R-

module via the map µ) respecting the O′-action and may be identified modulo

V with β. The kernel K of β̃ is a reduced EO,R-module equipped with a strict

O′-action and K/V K equals the image of α. When we repeat this procedure for

K instead of M and P2 → Imα instead of β, we obtain a reduced EO′,R-module

L2 with tangential space P2 and an EO,R-linear morphism α̃ : L2 → L1 respecting

the O′-action, which equals α modulo V = V ′. Hence, we may represent M by

an exact sequence of reduced EO,R-modules with strict O′-actions

L2
α̃→ L1 →M → 0, (2.33)

such that the tangential spaces of L1 and L2 are free (and the morphisms respect

the O′-actions). Since the functor G is fully faithful, α̃ is also a EO′,R-linear

morphism of reduced EO′,R-modules and we obtain an exact sequence of (at first

not necessarily reduced) EO′,R-modules

L2
ι→ L1 → Coker(α̃) =:M ′ → 0.

Clearly, when we consider this sequence as a sequence of EO,R-modules with strict

O′-actions, we get (2.33) back. But since µ maps V to V ′ it is clear that M ′ is

also a reduced EO′,R-module. Hence, the equivalence is established in the totally

ramified case as well. �

We should remark that for each O an RRS, R an O-algebra, we may consider

ŴO(N ) for each N ∈ NilR as an EO,R-module. For e ∈ EO,R as in (2.22), the

action is written as a right multiplication and is defined by

we =
∑

n,m≥0

V m
([an,m](F

n
w)),

where w is an element of ŴO(N ). It is left to the reader that this association

defines indeed a module structure. This generalizes [Zin02, Equation (166)].

Clearly, an morphism between N → N ′ in NilR induces a morphism of EO,R-

modules ŴO(N )→ ŴO(N ′).

Now let O be the ring of integers of a non-Archimedean local field of characteristic

zero again. By considering ŴO(N ) as an EO,R-module we will be able to see how

the functor from reduced EO,R-modules to formal O-modules over R described

in Theorem 2.4.3 looks precisely, but first we need two Lemmas.
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Lemma 2.4.4. (cf. [Zin86, (2.10) Lemma]) Let R be anO-algebra, N a nilpotent

R-algebra with a nilpotent O-pd structure and M a reduced EO,R-module. Then

we have an isomorphism of O-modules

ŴO(N )⊗EO,R
M ≃ N ⊗R M/VM,

given by n⊗m 7→
∑

iw
′
i(n)⊗F im for all n ∈ ŴO(N ) and m ∈M , where the w′

i

are given by (2.8). The inverse mapping is given by n⊗m 7→ log−1(n, 0, . . .)⊗m
for all n ∈ N and m ∈ M/VM , where m is any lifting of m and log is given by

(2.14).

The proof is left as an easy exercise.

Lemma 2.4.5. (cf. [Zin84, 4.41 Satz]) Let M be a reduced EO,R-module and N
a nilpotent R-algebra. Then Tor

EO,R

i (ŴO(N ),M) = 0 holds for each i ≥ 1.

Proof: First we consider the case, where N 2 = 0. If we take an exact sequence

of reduced EO,R-modules

0→ L→ P →M → 0

with P a finite free EO,R-module, we obtain by tensoring with ŴO(N ) by Lemma

2.4.4 an exact sequence (since M/VM is a projective, hence flat R-module) of

O-modules

0→ N ⊗R L/V L→ N ⊗R P/V P → N ⊗R M/VM → 0.

This shows that the sequence of EO,R-modules

0→ ŴO(N )⊗EO,R
L→ ŴO(N )⊗EO,R

P → ŴO(N )⊗EO,R
M → 0

is exact. Thus, by considering the long exact sequence

0← ŴO(N )⊗EO,R
M ← ŴO(N )⊗EO,R

P ← ŴO(N )⊗EO,R
L← Tor

EO,R

1 (ŴO(N ),M)

← Tor
EO,R

1 (ŴO(N ), P )← Tor
EO,R

1 (ŴO(N ), L)← Tor
EO,R

2 (ŴO(N ),M)← . . .

we first conclude that Tor
EO,R

1 (ŴO(N ),M) = 0 and since Tor
EO,R

1 (ŴO(N ), P ) =

0 for each i ≥ 1, we obtain

Tor
EO,R

i (ŴO(N ), L) = Tor
EO,R

i+1 (ŴO(N ),M)

for each i ≥ 1. Inductively, since L is also a reduced EO,R-module, we obtain

that Tor
EO,R

i (ŴO(N ),M) = 0 for each i ≥ 1.

For general N we proceed inductively as well. Assume the assertion has been
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shown for each N with N r−1 = 0 and let N ′ be a nilpotent R-algebra with

N ′r = 0. By considering the exact sequence

0→ N ′r−1 → N ′ → N ′/N ′r−1 → 0

and considering the long exact sequence analogue to the above one only with

the variation in the first argument, we obtain by Tor
EO,R

i (ŴO(N ′r−1),M) =

Tor
EO,R

i (ŴO(N ′/N ′r−1),M) = 0 for each i ≥ 1 that Tor
EO,R

i (ŴO(N ′),M) = 0

holds for each i ≥ 1. �

Proposition 2.4.6. For each reduced EO,R-module M the functor from NilR
to ModO given by ŴO(−) ⊗EO,R

M is a formal O-module. Furthermore, the

equivalence functor from the category of reduced EO,R-modules to the category

of formal O-modules as constructed in Theorem 2.4.3 is given by this functor.

Intuitively, the Proposition says that the construction of Drinfeld of the equiv-

alence is the obvious generalization of the classical equivalence for Zp.

Proof: The only fact which is nontrivial in order to establish that ŴO(−)⊗EO,R
M

is a formal O-module, is that the tangential space is a finite projective R-module

and that it preserves exact sequences. But this follows from Lemmas 2.4.4 and

2.4.5.

The second assertion is already confirmed for the Zp-case (cf. [Zin84, 4.23 Satz]).

Hence, as in Drinfeld’s proof, it suffices to show that if the assertion is true for

some O, for any extension O → O′ the assertion then follows for O′. So we first

consider the case, in which O′ is nonramified over O, and then the case, in which

O′ is totally ramified over O. We will only focus on the objects and leave it to

the reader to verify that the assertion holds for the morphisms as well. Let O′ be

nonramified over O, R an O′-algebra and M a reduced EO,R-module equipped

with a strict O′-action. By construction we obtain an EO′,R-module M0. We

need to show now that ŴO(−)⊗EO,R
M and ŴO′(−)⊗EO′,RM0 are isomorphic as

formal O′-modules. We consider the O′-module morphism τN , which is obtained

by the commutative diagram of O′-modules

ŴO(N )⊗EO,R
M

τN
��

⊕f−1
i=0 (ŴO(N )⊗EO,R

M)i

pr

��
ŴO′(N )⊗EO′,R M0 (ŴO(N )⊗EO,R

M)0,
ωNoo

where ωN is obtained by sending a⊗m to u(a)⊗m with u as usual. This map

makes sense, because

(ŴO(N )⊗EO,R
M)i = {

∑
j∈J

aj ⊗mj | J finite , aj ∈ ŴO(N ),mj ∈Mi }
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holds for all i = 0, . . . , f − 1, where M =
⊕f−1

i=0 Mi is the graduation of M from

the proof of Theorem 2.4.3. Since each (ŴO(N ) ⊗EO,R
M)i may be considered

in a canonical way as an EO′,R-module, we obtain that ωN and the projection

are in fact an EO′,R-module morphisms, hence O′-linear. In order to show that

τN is an isomorphism of O′-modules for each N , it suffices to reduce to the case

N 2 = 0, which is rather obvious by Lemma 2.4.4 since M (as an EO,R-module)

and M0 (as an EO′,R-module) have the same tangential spaces.

Now let O → O′ be totally ramified and R an O′-algebra. We start with a

reduced EO′,R-module M ′ and consider the EO,R-module M equipped plus a

strict O′-action, which is obtained by restriction to scalars. We get an O′-module

morphism

γN : ŴO(N )⊗EO,R
M = ŴO(N )⊗EO,R

EO′,R⊗EO′,RM
′ λN⊗idM′→ ŴO′(N )⊗EO′,RM

′,

where λN : ŴO(N ) ⊗EO,R
EO′,R → ŴO′(N ) is obtained by sending a ⊗ e to

u(a)e. Hence, by reducing to the N 2 = 0 case and the fact that the tangential

spaces of M and M ′ are the same, we obtain by Lemma 2.4.4 again that γN is

an isomorphism for each N . �

It is of course interesting to ask how we may describe the reduced Cartier

module of a formal O-module associated to an f -O-display over an O-algebra R,
where O is the ring of integers of a non-Archimedean local field of characteristic

zero.

Proposition 2.4.7. (cf. [Zin02, Proposition 90]) Let P = (P,Q, F, F1) be an

f -O-display over an O-algebra R. The reduced EO,R-module associated to the

formal O-module BT
(f)
O (P,−) associated to P is given by

M(P) =M
BT

(f)
O (P,−)

= EO,R⊗WO(R)P/(F⊗x−V f−1⊗Fx, V f⊗F1y−1⊗y)x∈P,y∈Q.

If O′ is the nonramified extension of degree f of O and R an O′-algebra, we obtain

a naturally arising strict O′-action on P by the usual map O′ → WO(O′) →
WO(R) (see (1.2)), from which we also get a strict O′-action on M(P).

Proof: First we need to verify thatM =M(P) is indeed a reduced EO,R-module.

By setting N = (F⊗x−V f−1⊗Fx, V f⊗F1y−1⊗y)x∈P,y∈Q we obtain a diagram
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of EO,R-modules

kerV

��

kerV

��

kerV

��
0 // N //

V

��

EO,R ⊗WO(R) P

V
��

// M

V

��

// 0

0 // N
α //

��

EO,R ⊗WO(R) P

β
��

// M

��

// 0

CokerV CokerV =
⊕

i≥0RF
i ⊗w0,WO(R) P CokerV,

whose rows and columns are exact. Because it is obvious that V : EO,R ⊗WO(R)

P → EO,R ⊗WO(R) P is injective, is suffices by the snake lemma to show for the

injectivity of V :M →M that the obvious map

β ◦ α : N →
⊕
i≥0

RF i ⊗w0,WO(R) P

has kernel V N , which is not too difficult to verify. By generalizing the above

diagram from V to V k, we obtain exact sequences

0→ N/V kN → EO,R ⊗WO(R) P/V
kEO,R ⊗WO(R) P →M/V kM → 0

and since

N/V k+1N → N/V kN

is surjective, we get by a standard argument (cf. [Liu06, Chapter I, Lemma 3.1.])

an exact sequence

0→ lim←−N/V
kN → lim←−EO,R ⊗WO(R) P/V

kEO,R ⊗WO(R) P → lim←−M/V kM → 0.

Since

lim←−EO,R ⊗WO(R) P/V
kEO,R ⊗WO(R) P = EO,R ⊗WO(R) P

and

lim←−N/V
kN = N

holds, it is clear thatM = lim←−M/V kM holds. Furthermore, the tangential space

ofM is P/Q, which is a finite projective R-module. Hence, M is a reduced EO,R-

module. By representing BT
(f)
O (P,N ) by the usual sequence, we have an obvious

morphism from P̂N to ŴO(N ) ⊗EO,R
M and the image of F1 − id : Q̂N → P̂N

lies in the kernel of this mapping, so there is a canonical O-module morphism

BT
(f)
O (P,N )→ ŴO(N )⊗EO,R

M
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and by reducing to the N 2 = 0 case we obtain the isomorphism, since the tan-

gential spaces are the same. If R is an O′-algebra, with O′ nonramified over O
of degree f , then the assertion for the strict O′-action is obvious. �

In case that P is nilpotent and R a perfect field extending the residue field of

O, the reduced Cartier module can be described by

M = EO,R ⊗WO(R) P/(V
f ⊗ x− 1⊗ V x, F ⊗ x− V f−1 ⊗ Fx)x∈P ,

where the operator V : P → P on the right hand side of the tensor product in

the expression V f ⊗ x− 1⊗ V x is constructed after Proposition 2.2.3. Since this

V is topological nilpotent, we obtain, if V kP is a subset of πP for a fixed k, that

for each x ∈ P
V knf ⊗ x = 1⊗ V knx = 1⊗ πnx′

holds for each n and some x′ ∈ P . We can represent M by the following simpler

module structure given by P f , where the i-th component xi of an element x =

(x0, . . . , xf−1) ∈ P f corresponds to V i ⊗ xi. The actions of F, V and an element

w ∈WO(k) are given by

Fx = (πx1, πx2, . . . , πxf−1, Fx0),

V x = (V xf−1, x0, . . . , xf−2),

wx = (wx0,
F wx1, . . . ,

F i
xi, . . . ,

F f−1
wxf−1)

where the F and V on the right hand side are the operators of the f -O-Dieudonné

module. This does indeed define an EO,R-modules structure because of the above

described nilpotence of V . Furthermore, if R is an O′-algebra, where O′ is the

nonramified extension of O of degree f , we have an obvious strict O′-action on

M = P f by O′ →WO(O′)→WO(R).

2.5 Introducing Γi(O,O′) and Ωi(O,O′)

In this section, each O and O′ are assumed to be rings of integers of a non-

Archimedean local fields of characteristic zero and R an O′-algebra. Assume now

for this abstract that π′ is nilpotent in R. We will construct four functors: For

O → O′ nonramified of degree f , we define functors Ω1(O,O′) from nilpotent O-
displays over R equipped with a strict O′-action (see Definition 2.2.9) to nilpotent

f -O-displays over R and Ω2(O,O′) from nilpotent f -O-displays over R to nilpo-

tent O′-displays over R and we will consider the composition Γ1(O,O′). For a

totally ramified extension O → O′, we set up a functor Γ2(O,O′) from nilpotent

O-displays over R equipped with a strict O′-action to nilpotent O′-displays over

R. Their motivation arises from the previous section by considering Drinfeld’s



42 Chapter 2. f -O-Display theory

method of proving the equivalence between formal O-modules and reduced EO,R-

modules. In the end, showing that BTO is an equivalence of categories for each O
and each O-algebra R with π nilpotent in R is equivalent to show that Γ1(O,O′)

and Γ2(O,O′) are equivalences for all cases.

2.5.1 The functors Ωi(O,O′) and Γ1(O,O′)

Unless otherwise stated, in this subsection we only consider nonramified exten-

sions. Here we introduce the functors Ωi(O,O′) and Γ1(O,O′).

Lemma 2.5.1. Let O → O′ be nonramified of degree f , R a π′-adic O′-algebra

and P = (P,Q, F, F1) an O-display over R equipped with a strict O′-action

ι. Then we may decompose P and Q canonically in P =
⊕

i∈Z/fZ Pi, Q =⊕
i∈Z/fZQi, where each Pi and Qi = Pi ∩Q are WO(R)-modules, Pi = Qi for all

i ̸= 0, F (Pi), F1(Qi) ⊆ Pi+1 for all i (where we consider i modulo f) and

µi,j :WO(R)⊗Fi
,WO(R)

Pj → Pi+j ,

given by w ⊗ pj 7→ wF i
1pj is an isomorphism for all i+ j ≤ f and j ̸= 0.

Proof: First we need to remark that we have got two actions of O′ on P; one is

obtained by the given action ι and the other one is obtained by the composite

map of O′ → WO(O′) → WO(R), where the first map is (1.2). If we denote the

relative Frobenius of the extension O → O′ by σ, we obtain that P and Q are

O′ ⊗O WO(R) =WO(R)
f -modules and that we may decompose them as follows:

P =
⊕

i∈Z/fZ

Pi,

Q =
⊕

i∈Z/fZ

Qi,

where

Pi = {x ∈ P | (a⊗ 1)x = (1⊗ σi(a))x for all a ∈ O′ }

and

Qi = Q ∩ Pi.

The elements a ⊗ 1 and 1 ⊗ σi(a) in the construction of the Pi are elements of

O′ ⊗O WO(R). Since

P/Q =
⊕

i∈Z/fZ

Pi/Qi,

we get, because of the strictness of the attached O′-action on P, that Pi = Qi for

all i ̸= 0. It is easily verified that F (Pi), F1(Qi) ⊆ Pi+1 hold for all i.



2.5. Introducing Γi(O,O′) and Ωi(O,O′) 43

To show that µi,j :WZp(R)⊗Fi
,WZp (R)

Pj → Pi+j is an isomorphism, we just need

to consider the obvious generalization of [Zin02, Lemma 9], which says that for

a given normal decomposition L⊕ T = P we obtain an F -linear isomorphism

L⊕ T F1⊕F−→ L⊕ T.

Since each normal decomposition looks like

L = L0 ⊕ P1 ⊕ . . .⊕ Pf−1

T = T0 ⊕ 0⊕ . . .⊕ 0

the result is easily seen. �

Definition 2.5.2. Let f ≥ 1 be an integer, O → O′ a (not necessarily non-

ramified / totally ramified) extension of rings of integers of non-Archimedean

local fields of characteristic zero and R an O′-algebra. Then the category (f −
dispO,O′ /R) is defined by the f -O-displays P over R equipped with a strict

O′-action as objects and those morphisms between f -O-displays respecting the

attached O′-actions as morphisms. Now let R be π′-adic. The category (f −
ndispO,O′ /R) is the full subcategory of (f − dispO,O′ /R), whose objects are the

nilpotent f -O-displays over R equipped with a strict O′-action. The objects in

the categories (f − dispO,O′ /R) resp. (f − ndispO,O′ /R) are (P, α), where P is

a (nilpotent) f -O-display over R and α : O′ → EndP the strict O′-action, but if

it is clear that we have such an action attached, we write with abuse of notation

just P instead of (P, α).

Definition 2.5.3. With the setting as in the previous Proposition we are able

to define a functor

Ω1(O,O′) : (dispO,O′ /R)→ (f − dispO /R)

given by sending (P,Q, F, F1) equipped with a strict O′-action to

(P0, Q0, F
f−1
1 F, F f

1 ) and restricting a morphism between two f -O-displays re-

specting the attached O′-actions to the zeroth component. Furthermore, we

obtain by restriction the functor

Ω1(O,O′) : (ndispO,O′ /R)→ (f − ndispO /R).

It is easily checked that the functors commute with base change.

At first glance, it appears to be not too difficult to show that Ω1(O,O′) is an

equivalence of categories in both cases (i.e., for the nilpotent and not neccesarily

nilpotent case) as in Drinfeld’s proof of the previous chapter. Unfortunately,

we can only deduce P0 = WO(R) ⊗Ff−i
,WO(R)

Pi from the previous Lemma for

i ̸= 0, so we can only show the essential surjectivity directly for cases when
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F : WO(R) → WO(R) is an automorphism (see Proposition 3.3.3 for the case of

perfect fields, which extend the residue field of O′).

Furthermore, it is not too hard to convince oneself by (1.2) that for any O′-

algebra R, the BT
(f)
O functor from f -O-displays over R to formal O-modules

defines a functor to formal O′-modules. Analogously, if π′ is nilpotent in R, the

BT
(f)
O functor restricted to nilpotent f -O-displays over R to π-divisible formal

O-modules defines in fact a functor to π′-divisible formal O′-modules. Hence, the

following Proposition makes sense.

Proposition 2.5.4. Let O → O′ be nonramified of degree f and R a π′-adic

O′-algebra. Then the following diagram is commutative:

(dispO,O′ /R)
BTO //

Ω1(O,O′)

��

( formal O′ −modules/R)

(f − dispO /R)
BT

(f)
O

33hhhhhhhhhhhhhhhhhhhh

If π′ is nilpotent in R, then the restriction of the above diagram

(ndispO,O′ /R)
BTO //

Ω1(O,O′)

��

(π′-divisible formal O′ −modules/R)

(f − ndispO /R)
BT

(f)
O

33fffffffffffffffffffffff

is commutative.

Proof: Let P be a (nilpotent) O-display P over R and P0 its image via Ω1(O,O′).

In order to show the commutativity on the objects, we just have to construct a

morphism

BTO(P,−)→ BT
(f)
O (P0,−)

and to show that this morphism is in fact an isomorphism. For this purpose

consider for a nilpotent R-algebra N the sequence

0 // Q̂N
F1−id // P̂N

// BTO(P,N ) // 0

and the one defining BT
(f)
O (P0,−). By using the Z/fZ-grading of Q and P , we

obtain for the above sequence

0 //
⊕

i∈Z/fZ Q̂i,N
F1−id //

⊕
i∈Z/fZ P̂iN // BTO(P,N ) // 0,

where P̂i,N and Q̂i,N have their obvious meaning, and it should be remarked that

P̂i,N = Q̂i,N holds for all i ̸= 0, which is important for the reason, why we may

apply the map F1 on P̂i,N for i ̸= 0. There is a map θ from
⊕

i∈Z/fZ P̂i,N = P̂N to
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P̂0,N defined by θ(x0, x1, . . . , xf−1) =
∑f

j=1 F
f−j
1 xj (with indices taken modulo

f) and we want to show that the image of θ of the image of F1− id is contained in

the image of F f
1 − id, which would establish a map BTO(P,N )→ BT

(f)
O (P0,N ).

An element (x0, . . . , xf−1) of P̂N =
⊕

i∈Z/fZ P̂i,N is contained in (F1 − id)(Q̂N ),

iff there is a (q0, . . . , qf−1) ∈
⊕

i∈Z/fZ Q̂i,N = Q̂N , such that

xi = F1qi−1 − qi (2.34)

hold for all i, where the indices have to be considered modulo f again. Inductively

we obtain for such an element (x0, . . . , xf−1) that

qi = F i
1q0 −

i∑
j=1

F i−j
1 xj (2.35)

holds for all i = 0, . . . , f . So we get

F f
1 q0 − q0 =

f∑
j=1

F f−j
1 xj , (2.36)

from which we can deduce θ(F1− id)(Q̂N ) ⊆ (F f
1 − id)(Q̂0,N ). Hence the induced

map

θ : BTO(P,N )→ BT
(f)
O (P0,N )

is well-defined. It is obvious that θ is a morphism respecting the O′-module

structure and that θ = θ(N ) is functorial in N . Furthermore, θ is injective,

since, if (x0, . . . , xf−1) ∈ BTO(P,N ) is mapped to zero, i.e., (2.36) holds for

some q0 ∈ Q̂0,N , we get that (q0, . . . , qf−1) with q0 as right above and qi given

by (2.35) for i = 1, . . . , f − 1 fulfils (2.34) relative to (x0, . . . , xf−1) and hence

(x0, . . . , xf−1) is zero. We obtain the surjectivity, since for x0 ∈ BT (f)
O (P0,N )

we may take the element (x0, 0, . . . , 0) ∈ BTO(P,N ), which is mapped to x0.

Hence, BTO(P,−) and BT (f)
O (P0,−) are isomorphic. The commutativity on the

morphism sets is left to the reader. �

In order to obtain a functor from nilpotent O-displays over R equipped with a

strict O′-action to nilpotent O′-displays over R, it would suffice to give a suitable

functor from nilpotent f -O-displays to nilpotent O′-displays over R.

Definition 2.5.5. With O → O′ nonramified of degree f and R an O′-algebra,

we define a functor

Ω2(O,O′) : (f − dispO /R)→ (dispO′ /R)
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by sending P0 = (P0, Q0, F0, F1,0) with a normal decomposition L0 ⊕ T0 = P0 to

P ′ = (P ′, Q′, F ′, F ′
1), where the elements of the quadruple are given by

P ′ = WO′(R)⊗WO(R) P0,

Q′ = IO′,R ⊗WO(R) T0 ⊕WO′(R)⊗WO(R) L0,

F ′ = F ′ ⊗WO(R) F0,

F ′
1(w ⊗ z) = F ′

w ⊗WO(R) F1,0(z),

F ′
1(

V ′
w ⊗ x) = w ⊗WO(R) F0x,

for all w ∈ WO′(R), x ∈ P0 and z ∈ Q0, where we have used the morphism

u : WO(R) → WO′(R). Here the operators related to WO′(R) are marked with

a dash. The mapping of the morphisms is simply given by tensoring. Of course,

for π′-adic O′-algebras R this defines a functor

Ω2(O,O′) : (f − ndispO /R)→ (ndispO′ /R)

and we define

Γ1(O,O′) : (dispO,O′ /R)→ (dispO′ /R)

as the composite of Ω2(O,O′) and Ω1(O,O′) and analogously for the nilpotent

case for all π′-adic O′-algebras R.

It is easily checked that the definition of Q′ is in fact independent of the

normal decomposition of P0 and that F ′
1 exists. It should be remarked that this

functor looks very similar to the usual base change and that it is rather obvious

that the functors commute with base change.

Furthermore, it gets now apparent why it was necessary to define f -O-displays,
since if we would simply tensor an O-display over R by WO′(R) as above via

the morphism u, we would not obtain sensible mappings F ′ and F ′
1 in general,

because we only know u(F
f
x) =F ′

u(x) (see Corollary 1.2.2).

Proposition 2.5.6. LetO → O′ be nonramified of degree f and R anO′-algebra.

Then the following diagram is commutative:

(f − dispO /R)
BT

(f)
O //

Ω2(O,O′)
��

( formal O′ −modules/R)

(dispO′ /R)
BTO′

33gggggggggggggggggggg

If π′ is nilpotent in R, then the restriction of the above diagram

(f − ndispO /R)
BT

(f)
O //

Ω2(O,O′)
��

(π′-divisible formal O′ −modules/R)

(ndispO′ /R)
BTO′

33ffffffffffffffffffffffff
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is commutative.

Proof: Let P0 = (P0, Q0, F0, F1,0) be a (nilpotent) f -O-display over R and P ′ =

(P ′, Q′, F ′, F ′
1) its image via Ω2(O,O′). We need to show that BT

(f)
O (P0,−) and

BTO′(P ′,−) are isomorphic in the category of (π′-divisible) formal O′-modules

over R. For N ∈ NilR the equations

P̂ ′N = ŴO′(N )⊗WO(R) P0

Q̂′
N = ÎO′N ⊗WO(R) T0 ⊕ ŴO′(N )⊗WO(R) L0

hold (for a normal decomposition L0 ⊕ T0 of P0) and we define a map

µ = uN ⊗ id : P̂0,N → P̂ ′N ,

where uN is the map defined in Proposition 1.2.1. We obtain a commutative

diagram

0 // Q̂0,N
F1,0−id//

µ|
Q̂0,N

��

P̂0,N //

µ

��

BT
(f)
O (P0,N ) //

µ

��

0

0 // Q̂′
N

F ′
1−id

// P̂ ′N
// BTO′(P ′,N ) // 0,

where µ is the induced map, which makes sense, because it is easily verified that

the image of µ|
Q̂0,N

is contained in Q̂′
N . In order to show that µ is in fact an

isomorphism, we may reduce to the case that N 2 = 0. If we consider the exact

sequence

0 // Q′ // P ′ =WO(R)⊗WZp (R) P0
ω // R⊗R P0/Q0 = P0/Q0

// 0,

where ω = w′
0 ⊗ pr, we get that P ′/Q′ is isomorphic to P0/Q0 as R-modules. It

is easily seen that the diagram

0 // Q̂0,N
id //

µ|
Q̂0,N

��

P̂0,N //

µ

��

F1,0−id

��

N ⊗R P0/Q0
//

expO,P0

��
id

xx

0

0 // Q̂0,N F1,0−id
//

µ|
Q̂0,N

��

P̂0,N //

µ

��

BT
(f)
O (P0,N ) //

µ

&&

0

0 // Q̂′
N

id // P̂ ′N
//

F ′
1−id

��

N ⊗R P
′/Q′ //

expO′,P′

��

0

0 // Q̂′
N F ′

1−id
// P̂ ′N

// BTO′(P ′,N ) // 0

is commutative, where the upper two rows and the lower two rows are as in the

diagram at the end of the proof of Theorem 2.3.1 for the construction of expO,P0
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and expO′,P ′ , respectively. Since both exp mappings are isomorphisms, we get

that µ : BT
(f)
O (P0,N ) → BTO′(P ′,N ) is an isomorphism. The commutativity

on the morphism sets is easy. �

2.5.2 The functor Γ2(O,O′)

After establishing the functors Ωi(O,O′) and Γ1(O,O′) in the nonramified case,

we will now construct Γ2(O,O′) in the totally ramified case. As in the non-

ramified case, we took the construction of Drinfeld’s functors, which helped to

establish the equivalence of reduced EO,R-modules and formal O-modules over

an O-algebra R, as inspiration. In this section O → O′ is always assumed to be

a totally ramified extension.

Definition 2.5.7. With O → O′ totally ramified and R an O′-algebra with π′

nilpotent in R, we define a functor

Γ2(O,O′) : (dispO,O′ /R)→ (dispO′ /R)

by sending the O-display P equipped with a strict O′-action to the O′-display

P ′, which is defined by

P ′ = WO′(R)⊗O′⊗OWO(R) P,

Q′ = ker(WO′(R)⊗O′⊗OWO(R) P → P/Q : w ⊗ x 7→ w0 pr(x)),

F ′(w ⊗ x) = F ′
w · y−1 ⊗ F1((π

′ − [π′])x),

F ′
1(

V ′
w ⊗ x) = y−1w ⊗ F1((π

′ − [π′])x), (2.37)

F ′
1(w ⊗ z) = F ′

w ⊗ F1(z), (2.38)

for all w ∈WO′(R), x ∈ P and z ∈ Q, where we have used the morphism

O′ ⊗O WO(R) → WO′(R)

a⊗ w 7→ au(w),

where a ∈ O′ and w ∈WO(R), and y ∈WO′(R) is given by V ′
y = π′ − [π′]. Here

P is considered as an O′ ⊗O WO(R)-module. The mappings of the morphisms

should be the obvious ones. The functor

Γ2(O,O′) : (ndispO,O′ /R)→ (ndispO′ /R)

is defined by restriction.

We can deduce (2.37) by the equation for F ′, since wF ′(x) = F ′
1(

V ′
wx) must

hold for each w ∈WO′(R) and x ∈ P ′. Furthermore, we can deduce the equation
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for F ′ by (2.38), because for each w ∈WO′(R) and x ∈ P

y−1F ′
w ⊗ F1((π

′ − [π′])x)
(2.38)
= y−1F ′

1(w ⊗ (π′ − [π′])x)

= y−1F ′
1(w

V ′
y ⊗ x)

= y−1F ′
1((

V ′
(F

′
wy)⊗ 1)(1⊗ x))

= y−1((F
′
wy)⊗ 1)F ′(1⊗ x) = F ′(w ⊗ x)

must hold. One can easily verify that the functors commute with base change.

It is not all obvious that this definition makes sense: We have to check that P ′ is

a finite projective module over WO′(R), that the map F ′
1 exists (it is clear that

it is unique, if it exists) and is an F ′
-linear epimorphism and that the nilpotence

condition is preserved. First of all it is clear that P is finite over O′ ⊗O WO(R),

hence P ′ is finite overWO′(R). The fact that P ′ is projective overWO′(R) follows

with the next Proposition. But first we need a small Lemma:

Lemma 2.5.8. Let (S,m) ↪→ (S,m) be an embedding of local rings and P a

finite S-module. If P = S ⊗S P is free over S, then P is free over S.

Proof: Since P/mP is free over the field S/m, we may take a basis x1, . . . , xd
of P/mP and consider liftings x1, . . . , xd ∈ P , which lift the corresponding xi.

Because

S/m⊗S/m P/mP = P/mP

holds, the elements 1 ⊗ xi ∈ S/m ⊗S/m P/mP form a basis of P/mP . If we

consider now the elements 1 ⊗ xi ∈ S ⊗S P = P , we obtain a basis of P . This

can be seen as follows: First we get by the Lemma of Nakayama that

α : S
d → P

ei 7→ 1⊗ xi

is surjective and then that it is injective, because P is free, so the kernel is finitely

generated and by the Lemma of Nakayama zero. By defining

β : Sd → P

ei 7→ xi

we obtain the commutative diagram of S-modules

Sd
β //

� _

��

P

��

S
d α // P .

The injectivity of β follows, since α is an isomorphism of S-modules. The sur-

jectivity follows by Nakayama again, hence β is an isomorphism and P is free.

�
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Proposition 2.5.9. Let R and O → O′ be as in the previous Definition and P

a finite projective WO(R)-module equipped with an O-algebra morphism O′ →
EndWO(R) P . Then P is a finite and projective O′ ⊗O WO(R)-module.

Proof: First we consider the case, where R = k is a perfect field of characteristic

p, which extends the residue field of O and O′. Then WO(k)⊗OO′ is isomorphic

to WO′(k) by Lemma 1.3.5, hence a PID by Lemma 1.2.5. Since P is finite and

torsion free over WO(k)⊗O O′, it must be free.

Now let R = k′ be an arbitrary field extending the residue fields of O and O′.

We consider the algebraic closure k of k′ and the result follows with Lemma 2.5.8

if we take S =WO(k
′)⊗O O′ and S =WO(k)⊗O O′.

Next we assume that (R,m) is local with residue field k. The WO(k) ⊗O O′-

module WO(k)⊗WO(R) P is free, so there is a basis of the form 1⊗ y1, . . . , 1⊗ yd
with yi ∈ P . We claim that the yi form a basis of the WO(R)⊗O O′-module P .

Let us consider the morphism of WO(R)⊗O O′-modules

γ : (WO(R)⊗O O′)d → P

ei 7→ yi.

Clearly the cokernel B of γ is finitely generated as an WO(R)-module and

WO(k) ⊗WO(R) B is zero. Since R is local, we obtain that WO(R) is local with

the maximal ideal M = WO(m) + IO,R. By the above we get MB = B and so

B = 0 by Nakayama. Hence, γ is surjective. Since P is finite and projective as a

WO(R)-module and WO(R) ⊗O O′ is finitely generated over WO(R), the kernel

of γ is also finitely generated over WO(R). By tensoring with WO(k) we obtain

the zero module, hence the kernel of γ is zero by Nakayama again and P is free

over O′ ⊗O WO(R).

Now let R be a general O′-algebra with π′ nilpotent in R. P is projective over

WO(R)⊗OO′, iff Pn :=WO,n(R)⊗WO(R) P is projective over WO,n(R)⊗OO′ for

each n ≥ 1, where WO,n(R) =WO(R)/
V n
WO(R).

We first show that Pn is finitely presented overWO,n(R)⊗OO′. For any collection

x1, . . . , xk of generators of Pn over WO,n(R), the kernel of the WO,n(R)-linear

surjection

WO,n(R)
k → Pn

ei 7→ xi

is finitely generated. Now for a fixed choice of generators y1, . . . , yd of generators

of Pn over WO,n(R), we consider the WO,n(R)⊗O O′-linear surjection

δ : (WO,n(R)⊗O O′)d → Pn

ei 7→ yi.

Clearly, the yiπ
′j also form a generating system over WO,n(R), hence we obtain

by the above that the WO,n(R) ⊗O O′-module ker δ is finitely generated over
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WO,n(R), hence also over WO,n(R) ⊗O O′, which establishes the fact that Pn is

finitely presented over WO,n(R)⊗O O′.∗

It suffices to show that for each maximal ideal of WO,n(R)⊗OO′ the localization

of Pn at this ideal is free over the localized ring. It is not too hard to verify that

the maximal ideals of A :=WO,n(R)⊗O O′ are of the form

M = π′0(WO,n(m) + IO,n,R) + π′WO,n(R) + . . .+ π′e−1WO,n(R),

where m runs through the maximal ideals of R and IO,n,R ⊆ WO,n(R) has its

intuitive meaning. We claim that

AM ≃ WO,n(Rm)⊗O O′ (2.39)

holds. First one sees that every element of the image of A\M via the obvious

morphism WO,n(R) ⊗O O′ → WO,n(Rm) ⊗O O′ is a unit. Now let B be any

A-algebra such that A\M ⊂ B×. By considering WO,n(R) as a subring of A in

the canonical way we get that there is a unique morphism of WO,n(R)-algebras

g :WO,n(Rm)→ B, since WO,n(Rm) is the localization of WO,n(R) at WO,n(m)+

IO,n,R. By considering the value z of π′ ∈ A in B we get a unique morphism of A-

algebrasWO,n(Rm)⊗OO′ → B given by g and π′ 7→ z. By the universal property

of localizations the isomorphism (2.39) is established. Since (WO,n(Rm)⊗OO′)⊗A

Pn is clearly free overWO,n(Rm)⊗OO′ by the assertion for local rings, the general

assertion follows. �

Our next aim is to show that F ′
1 exists. Let L⊕ T = P be a normal decom-

position of P. We define M0 for each WO(R)-module M by R⊗w0,WO(R)M . Let

us now consider the exact sequence of O′ ⊗O R-modules

0→ L0 → P0 → T0 → 0,

where the O′-action on L0 is induced by the action of O′ on Q and the O′-action

on T0 is given as the action on the cokernel of the map L0 → P0. By tensoring

this sequence with R ⊗O′⊗OR − we get the canonical morphism of R-modules

R ⊗O′⊗OR P0 → R ⊗O′⊗OR T0. If we consider the canonical O′ ⊗O R-linear

morphism T0 → R⊗O′⊗OR P0, we obtain the commutative diagram

T0 //

LLLLLLLLLLL

LLLLLLLLLLL R⊗O′⊗OR P0

��
R⊗O′⊗OR T0,

where the equality follows from the strictness of the O′-action on the tangent

space. Hence, we get the injectivity of T0 → R ⊗O′⊗OR P0 and obtain for the

exact sequence of R-modules

0→ ∆→ P0 = L0 ⊕ T0 → R⊗O′⊗OR P0 → 0
∗The same method can be applied to show that P is finitely presented over WO(R)⊗O O′.
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that ∆ ⊆ L0. Since the sequence splits (because R ⊗O′⊗OR P0 is projective over

R by the previous Proposition), we obtain an R-module decomposition of L0

into ∆ ⊕ L∆,0, such that L∆,0 ⊕ T0 ≃ R ⊗O′⊗OR P0 in P0. Now we can lift

∆ ⊕ L∆,0 = L0 and T0 to the projective WO(R)-modules ∆⋆ ⊕ L∆ = L and T .

The obvious morphism of WO′(R)-modules

WO′(R)⊗WO(R) L∆ ⊕WO′(R)⊗WO(R) T →WO′(R)⊗O′⊗OWO(R) P

is an isomorphism, which can be seen be reducing fromWO′(R) to R and utilizing

the construction above. Hence

Q′ =WO′(R)⊗WO(R) L∆ ⊕ IO′,R ⊗WO(R) T

holds and we define the map

F ′
10 : Q

′ → WO′(R)⊗O′⊗OWO(R) P (2.40)

by

F ′
10(w ⊗ l∆) = F ′

w ⊗ F1(l∆)

F ′
10(

V ′
w ⊗ t) = wy−1 ⊗ F1((π

′ − [π′])t)

for w ∈WO′(R), l∆ ∈ L∆ and t ∈ T .
We have to check that

F ′
10(1⊗ δ⋆) = 1⊗ F1(δ

⋆) (2.41)

holds for each δ⋆ ∈ ∆⋆ and with this we are going to establish that the relation

(2.38) defining F ′
1 holds for our construction of F ′

10. Hence, the existence of F ′
1

would follow.

If we declare on R the O′⊗OR-module structure by the product mapping ε, then

0→ ker(ε)→ O′ ⊗O R
ε→ R→ 0

is an exact sequence of O′ ⊗O R-modules. By tensoring this sequence with the

projective O′ ⊗O R-module P0, we obtain the exact sequence

0→ ker(ε)P0 = ∆→ P0 → R⊗O′⊗OR P0 → 0.

Now let us have a look at

ker(ε) = {
e−1∑
i=0

riz
i |

e−1∑
i=0

riπ
′i = 0 in R },

where we have considered O′⊗O R as R[z]/P (z) and P is the Eisenstein polyno-

mial of degree e, where e is the ramification index of the extension O → O′, for

which P (π′) = 0.
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Lemma 2.5.10. ker ε ⊆ O′ ⊗O R = R[z]/P (z) is generated as an ideal by

z⊗1−1⊗π′. This element is nilpotent, hence ker(ε) is contained in the nilradical.

Proof: The elements

1⊗ 1, z ⊗ 1, . . . , ze−1 ⊗ 1

form a basis of O′ ⊗O R considered as a free R-module. From this we obtain a

new R-module basis

1⊗ 1, z ⊗ 1− 1⊗ π′, . . . , ze−1 ⊗ 1− 1⊗ π′e−1.

The elements z ⊗ 1− 1⊗ π′, . . . , ze−1 ⊗ 1− 1⊗ π′e−1 are all elements of ker ε, so

we obtain an R-module surjection

O′ ⊗O R/(z ⊗ 1− 1⊗ π′, . . . , ze−1 ⊗ 1− 1⊗ π′e−1)→ R

given by the product morphism. Since the left hand side of this morphism is

isomorphic to R, it is in fact an isomorphism. It is obvious that the elements

zi⊗1−1⊗π′i are for each i ≥ 1 elements of the ideal generated by z⊗1−1⊗π′.
Since the z ⊗ 1 and 1⊗ π′ are both nilpotent, z ⊗ 1− 1⊗ π′ is nilpotent as well.

�

Now let δ1, . . . , δn1 and l∆,1, . . . , l∆,n2 and t1, . . . , tn3 be generating systems

for the R-modules ∆, L∆,0 and T0, respectively. Since each element in ∆ may be

represented by a finite sum of elements cipi with ci ∈ ker(ε) and pi ∈ P0, we get

the following system of equations

δ1 =

n1∑
i=1

b
(0)
i1 δi +

n2∑
i=1

c
(0)
i1 l∆,i +

n3∑
i=1

d
(0)
i1 ti

...

δn1 =

n1∑
i=1

b
(0)
i,n1

δi +

n2∑
i=1

c
(0)
i,n1

l∆,i +

n3∑
i=1

d
(0)
i,n1

ti,

where the b
(0)
ij , c

(0)
ij and d

(0)
ij are all in ker(ε). Now we subtract from both sides of

the first equation b
(0)
1,1δ1 and obtain

κ1δ1 =

n1∑
i=2

b
(0)
i,1 δi +

n2∑
i=1

c
(0)
i,1 l∆,i +

n3∑
i=1

d
(0)
i,1 ti,

where κ1 = 1− b(0)1,1 is a unit in O′ ⊗O R, since b
(0)
1,1 is contained in the Jacobson

radical by the previous Lemma. After multiplying with κ−1
1 we obtain an equation

δ1 =

n1∑
i=2

b
(1)
i,1 δi +

n2∑
i=1

c
(1)
i,1 l∆,i +

n3∑
i=1

d
(1)
i,1 ti,
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with b
(1)
i,1 , c

(1)
i,1 and d

(1)
i,1 in ker(ε). Inserting this for δ1 in the other n1−1 equations,

we obtain the system of equations

δ1 =

n1∑
i=2

b
(1)
i1 δi +

n2∑
i=1

c
(1)
i1 l∆,i +

n3∑
i=1

d
(1)
i1 ti

...

δn1 =

n1∑
i=2

b
(1)
i,n1

δi +

n2∑
i=1

c
(1)
i,n1

l∆,i +

n3∑
i=1

d
(1)
i,n1

ti

with b
(1)
i,j , c

(1)
i,j and d

(1)
i,j in ker(ε). Hence, we could express every δi without using

δ1. Now let us consider

δ2 =

n1∑
i=2

b
(1)
i2 δi +

n2∑
i=1

c
(1)
i2 l∆,i +

n3∑
i=1

d
(1)
i2 ti.

By subtracting b
(1)
22 δ2 from both sides, we receive

κ2δ2 =

n1∑
i=3

b
(1)
i2 δi +

n2∑
i=1

c
(1)
i2 l∆,i +

n3∑
i=1

d
(1)
i2 ti,

where κ2 = 1− b(1)2,2 is a unit in O′ ⊗O R. After multiplying with κ−1
2 we obtain

an equation

δ2 =

n1∑
i=3

b
(2)
i,1 δi +

n2∑
i=1

c
(2)
i,1 l∆,i +

n3∑
i=1

d
(2)
i,1 ti,

with b
(2)
i,1 , c

(2)
i,1 and d

(2)
i,1 in ker(ε). Inserting this for δ2 in the other n1−1 equations,

we obtain the system of equations

δ1 =

n1∑
i=3

b
(2)
i1 δi +

n2∑
i=1

c
(2)
i1 l∆,i +

n3∑
i=1

d
(2)
i1 ti

...

δn1 =

n1∑
i=3

b
(2)
i,n1

δi +

n2∑
i=1

c
(2)
i,n1

l∆,i +

n3∑
i=1

d
(2)
i,n1

ti

with b
(2)
i,j , c

(2)
i,j and d

(2)
i,j in ker(ε). Hence, we could express every δi without using

δ1, δ2. We could repeat this for δ3, δ4, etc. until reaching the equation for δn1 and

in the end we obtain a system of equations

δ1 =

n2∑
i=1

ci1l∆,i +

n3∑
i=1

di1ti

...

δn1 =

n2∑
i=1

ci,n1 l∆,i +

n3∑
i=1

di,n1ti
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with ci,j and di,j in ker(ε), where no δi is needed in order to express a δj . Let

ci,j be of the form
∑e−1

k=0 rijkz
k and di,j be of the form

∑e−1
k=0 sijkz

k with rijk
and sijk ∈ R. Then we define c⋆ij :=

∑e−1
k=0[rijk]π

′k and d⋆ij :=
∑e−1

k=0[sijk]π
′k in

O′ ⊗O WO(R). Let l⋆∆,i ∈ L∆ be liftings of l∆,i and t
⋆
i ∈ T be liftings of ti and

consider for each j the element

ωj =

n2∑
i=1

c⋆i,jl
⋆
∆,i +

n3∑
i=1

d⋆i,jt
⋆
i

of P . When projected to ∆⋆ we get that the collection of all these projected

elements must generate ∆⋆ over WO(R), because the reductions generate ∆ and

we can apply the Lemma of Nakayama then. Let lj ∈ L∆ be the projection of ωj

to L∆ and
∑n3

i=1
V wijt

⋆
i with wij ∈ WO(R) be the projection of ωj to T , where

have used the strictness of the O′-action in order to get that the zeroth entries

in the scalar factors can be chosen to be zero. If we define now

δ⋆j = ωj − lj −
n3∑
i=1

V wijt
⋆
i

=

n2∑
i=1

c⋆i,jl
⋆
∆,i +

n3∑
i=1

d⋆i,jt
⋆
i − lj −

n3∑
i=1

V wijt
⋆
i

we get for each j an element of ∆⋆, whose collection generates this module over

WO(R). In order to show that (2.41) holds for each δ⋆ ∈ ∆⋆, it suffices to verify

this equation for each δ⋆j . Let us consider 1⊗ δ⋆j ∈WO′(R)⊗O′⊗OWO(R) P . After

applying (the above constructed map) F ′
10 to this element, we obtain with the

above description

F ′
10(1⊗ δ⋆j ) =

n2∑
i=1

(
e−1∑
k=0

[rqijk]π
′k)⊗ F1(l

⋆
∆,i) +

n3∑
i=1

y−1mij ⊗ F1((π
′ − [π′])t⋆i )

− 1⊗ F1(lj)−
n3∑
i=1

y−1(π/π′)u(wij)⊗ F1((π
′ − [π′])t⋆i ),

where mij is given by V ′
mij =

∑e−1
k=0[sijk]π

′k ∈WO′(R). Furthermore, we obtain

1⊗ F1(δ
⋆
j ) =

n2∑
i=1

(
e−1∑
k=0

[rqijk]π
′k)⊗ F1(l

⋆
∆,i) +

n3∑
i=1

1⊗ F1((
e−1∑
k=0

[sijk]π
′k)t⋆i )

− 1⊗ F1(lj)−
n3∑
i=1

u(wij)⊗ F (t⋆i ),

so to verify (2.41) it suffices to confirm

y−1mij ⊗ F1((π
′ − [π′])t⋆i ) = 1⊗ F1((

e−1∑
k=0

[sijk]π
′k)t⋆i ) (2.42)

y−1(π/π′)⊗ F1((π
′ − [π′])t⋆i ) = 1⊗ F (t⋆i ) (2.43)
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for each i and j. We make the following definitions for elements in O′⊗OWO(R)

for k ≥ 0:

Xk = π′k + [π′q]π′k−1 + . . .+ [π′(k−1)q]π′ + [π′kq]

X⋆
k = π′k + [π′]π′k−1 + . . .+ [π′k−1]π′ + [π′k]

X =

e−1∑
k=0

ak+1Xk

X⋆ =
e−1∑
k=0

ak+1X
⋆
k

Here π =
∑e

k=1 akπ
′k is as in (2.28). We need for the outcome the equation in

WO′(R)

u(α)π/π′ = yX (2.44)

in WO′(R), where the unit α ∈ WO(R) is defined as in (2.31) by V α = π −∑e
k=1 ak[π

′k]. The equation can be checked by considering the equation in

WO′(O′) and then by evaluating the Witt polynomials and applying Lemma

1.1.3.

Now we turn to solving equation (2.43):

y−1(π/π′)⊗ F1((π
′ − [π′])t⋆i ) = u(α)−1X ⊗ F1((π

′ − [π′])t⋆i )

= u(α)−1 ⊗XF1((π
′ − [π′])t⋆i )

= u(α)−1 ⊗ F1(X
⋆(π′ − [π′])t⋆i )

= u(α)−1 ⊗ F1(
V αt⋆i )

= 1⊗ F (t⋆i )

Here we have used (2.44) and X⋆(π′ − [π′]) = π −
∑e

k=1 ak[π
′k] =V α.

Next we turn our focus to (2.42). At first we will reorganize the right hand side

of (2.42) by

1⊗ F1((
e−1∑
k=0

[sijk]π
′k)t⋆i ) = 1⊗ F1((

e−1∑
k=1

[sijk](π
′k − [π′k]))t⋆i )

+ 1⊗ F1((
e−1∑
k=0

[sijk][π
′k])t⋆i )

=

e−1∑
k=1

[sqijk]Xk−1 ⊗ F1((π
′ − [π′])t⋆i ) + 1⊗ F1(

V κt⋆i )

=

e−1∑
k=1

[sqijk]Xk−1 ⊗ F1((π
′ − [π′])t⋆i ) + u(κ)⊗ F (t⋆i ),
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where κ ∈WO(R) is defined by V κ =
∑e−1

k=0[sijk][π
′k]. After subtracting∑e−1

k=1[s
q
ijk]Xk−1 ⊗ F1((π

′ − [π′])t⋆i ) from both sides of (2.42), we obtain that we

have to show

(y−1mij −
e−1∑
k=1

[sqijk]Xk−1)⊗ F1((π
′ − [π′])t⋆i ) = u(κ)⊗ F (t⋆i ). (2.45)

If we assume now that

mij − y
e−1∑
k=1

[sqijk]Xk−1 = u(κ)π/π′ (2.46)

holds in WO′(R), we get (2.45) with the same method we used to show (2.43),

so we need only to confirm (2.46). For this purpose we first pass to the universal

situation R0 = O′[Y1, . . . , Ye−1] and have the map R0 → R, which sends Yk to sijk
and hence −

∑e−1
i=1 Yiπ

′i to sij0, in mind. If we define now, with abuse of notation,

mij ,κ andX,Xj etc. in the same manner inWO′(R0), resp. WO(R0), resp. O′⊗O
WO(R0), than we did in the original case in WO′(R), resp. WO(R), resp. O′ ⊗O
WO(R) (i.e., we replace sijk by Yk for k ̸= 0 and sij0 by Y0 := −

∑e−1
i=1 Yiπ

′i), it

suffices for the verification of (2.46) inWO′(R), to verify the equation inWO′(R0),

which in turn can be done by Lemma 1.1.3 only by considering the values of the

Witt polynomials of both sides. Let us define Z ∈ R0 by −
∑e−1

i=1 Yiπ
′i−1. We get

by

w′
n(

V ′
mij) =

e−1∑
k=0

Y qn

k π′k

= π′w′
n−1(mij)

that

w′
n(mij) =

e−1∑
k=1

Yk
qn+1

π′k−1 + π′q
n+1−1Zqn+1

holds. Furthermore

w′
n(y

e−1∑
k=1

[Y q
k ]Xk−1) =

e−1∑
k=1

Y qn+1

k (1− π′qn+1−1)(

k−1∑
ν=0

π′k−1π′ν(q
n+1−1))

=

e−1∑
k=1

Y qn+1

k (π′k−1 − π′kqn+1−1)

holds, which yields

w′
n(mij − y

e−1∑
k=1

[Y q
k ]Xk−1) = π′q

n+1−1Zqn+1
+

e−1∑
k=1

Y qn+1

k π′kq
n+1−1.
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Because of

wn(
V κ) =

e−1∑
k=0

Y qn

k π′kq
n

= πwn−1(κ)

= πw′
n−1(u(κ))

we get

(π/π′)w′
n(u(κ)) = π′q

n+1−1Zqn+1
+

e−1∑
k=1

Y qn+1

k π′kq
n+1−1

and we obtain that (2.46) holds, which in turn verifies (2.43) and this finally

confirms (2.41).

Now we are able to show that (2.38) holds for F ′
10. For this purpose let z =

l⋆∆ + δ⋆ +
∑n3

i=0
V wit

⋆
i be an arbitrary element of Q, where l⋆∆ ∈ L∆, δ

⋆ ∈ ∆⋆,

the t⋆i ∈ T form a generating system of T over WO(R) and wi are elements of

WO(R). Then we obtain for w ∈WO′(R) with (2.41) and (2.44)

F ′
10(w ⊗ z) = F ′

10(w ⊗ l⋆∆) + F ′
10(w ⊗ δ⋆) +

n3∑
i=1

F ′
10(

V ′
((F

′
w)(π/π′)u(wi))⊗ t⋆i )

= F ′
w ⊗ F1(l

⋆
∆ + δ⋆) +

n3∑
i=1

y−1(F
′
w)(π/π′)u(wi)⊗ F1((π

′ − [π′])t⋆i )

= F ′
w ⊗ F1(l

⋆
∆ + δ⋆) +

n3∑
i=1

u(α)−1(F
′
w)Xu(wi)⊗ F1((π

′ − [π′])t⋆i )

= F ′
w ⊗ F1(l

⋆
∆ + δ⋆) +

n3∑
i=1

u(α)−1(F
′
w)u(wi)⊗ F1(X

⋆(π′ − [π′])t⋆i )

= F ′
w ⊗ F1(l

⋆
∆ + δ⋆) +

n3∑
i=1

u(α)−1(F
′
w)u(wi)⊗ F1(

V αt⋆i )

= F ′
w ⊗ F1(l

⋆
∆ + δ⋆) +

n3∑
i=1

(F
′
w)u(wi)⊗ F (t⋆i )

= F ′
w ⊗ F1(l

⋆
∆ + δ⋆) +

n3∑
i=1

F ′
w ⊗ F1(

V wit
⋆
i )

= F ′
w ⊗ F1(z),

so (2.38) continues to hold. Hence, the existence of F ′
1 follows, since it is the map

F ′
10. With the above results it is an easy exercise to show that F ′

1 is an F ′
-linear

epimorphism.

Now we should also have a look on the fact that Γ2(O,O′) preserves the nilpotence
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condition. Let P be a nilpotentO-display over R equipped with a strictO′-action.

It can be easily verified that for each n ≥ 0 the diagram

P //

V n♯

��

P ′

V ′n♯

��
WO(R)⊗Fn

,WO(R) P //

��

WO′(R)⊗F ′n ,WO′ (R) P
′

��
R/πR⊗pr ◦w0,WO(R) WO(R)⊗Fn ,WO(R) P // // R/π′R⊗pr ◦w′

0,WO′ (R) WO′(R)⊗F ′n
,WO′ (R) P

′

is commutative. We have to show that the composite map µn of the two vertical

arrows on the right half is zero for some n. But if the composite map of the two

vertical arrows on the left half is zero for some n0, then µn0(1⊗ x) = 0 for each

x ∈ P . Since the elements 1 ⊗ x generate the WO′(R)-module P ′, we get that

µn0 = 0 holds.

Proposition 2.5.11. Let O → O′ be totally ramified and R an O′-algebra with

π′ nilpotent in R. Then the following diagram is commutative:

(dispO,O′ /R)
BTO //

Γ2(O,O′)

��

( formal O′ −modules/R)

(dispO′ /R)
BTO′

33hhhhhhhhhhhhhhhhhhhh

Also the restriction of the above diagram

(ndispO,O′ /R)
BTO //

Γ2(O,O′)

��

(π′-divisible formal O′ −modules/R)

(ndispO′ /R)
BTO′

33ffffffffffffffffffffffff

is commutative.

Proof: Let P = (P,Q, F, F1) be a (nilpotent) O-display over R with a strict

O′-action and P ′ = (P ′, Q′, F ′, F ′
1) be its image via Γ2(O,O′). We need to

show that BTO(P,−) and BTO′(P ′,−) are isomorphic in the category of (π′-

divisible) formal O′-modules over R. For a nilpotent R-algebra N we have

P̂ ′N ≃ ŴO′(N )⊗O′⊗OWO(R) P and we may define

µ = uN ⊗ id : P̂N = ŴO(N )⊗WO(R) P → P̂ ′N .

We have to show that

Q̂N
F1−id //

µ|
Q̂N

��

P̂N

µ

��

Q̂′
N

F ′
1−id

// P̂ ′N
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is commutative, which would induce an O′-module morphism µ : BTO(P,N )→
BTO′(P ′,N ). This follows easily for w ⊗ l ∈ Q̂N with w ∈ ŴO(N ) and l ∈ L.
For V w⊗ t with w ∈ ŴO(N ) and t ∈ T we have to utilize that y−1(π/π′)u(w)⊗
F1((π

′ − [π′])t) = u(w) ⊗ F (t) holds in P̂ ′N by (2.43). To show that µ is an

isomorphism of O′-modules, we can reduce to N 2 = 0 and proceed in a similar

manner as showing that BTO(P0,N ) and BTO′(P ′,N ) are isomorphic in Propo-

sition 2.5.6. The commutativity on the morphism sets is left to the reader. �

2.5.3 Concluding remarks

Definition 2.5.12. Let O → O′ be a (not necessarily nonramified / totally

ramified) extension of rings of integers of non-Archimedean local fields of char-

acteristic zero and R an O′-algebra. We denote by (CartO′ /R) the category

of reduced EO′,R-modules and by (CartO,O′ /R) the category of reduced EO,R-

modules equipped with a strict O′-action.

After considering the constructions made by Drinfeld concerning Cartier mod-

ules, Proposition 2.4.7 and the construction of the Ωi(O,O′) and Γi(O,O′), the

assertions of the following Proposition is obvious:

Proposition 2.5.13. Let O → O′ be nonramified of degree f and R a π′-adic

O′-algebra. Then the diagram

(dispO,O′ /R) //

**UUUUUUUUUUUUUUUU

��

(CartO,O′ /R)

jjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjj

(f − dispO /R) //

��

22dddddddddddddddddddddddddddddddddddd
( formal O′ −modules/R)

(dispO′ /R)

44iiiiiiiiiiiiiiii
// (CartO′ /R)

TTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTT

is commutative, where the arrows follow by the previous constructions. Let

O → O′ be totally ramified and R an O′-algebra with π′ nilpotent in R. Then

the diagram

(dispO,O′ /R) //

**TTTTTTTTTTTTTTT

��

(CartO,O′ /R)

jjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjj

( formal O′ −modules/R)

(dispO′ /R)

44jjjjjjjjjjjjjjjj
// (CartO′ /R)

TTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTT

is commutative, where the arrows follow by the previous constructions again.
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We need to make some conventions, which should hold troughout the rest of

this thesis.

Conventions 2.5.14. Whenever we talk about Ω1(O,O′),Ω2(O,O′) or Γ1(O,O′),

we always assume O′ to be nonramified over O of degree f and whenever we talk

about Γ2(O,O′), we always assume O′ to be totally ramified over O.
When we claim assertions like

For any O′-algebra R with nilpotent nilradical and π′ nilpotent in R

the functors Γ1(O,O′) and Γ2(O,O′) are equivalences of categories.

we actually mean

Let O → O′ be nonramified. Then for any O′-algebra R with nilpo-

tent nilradical and π′ nilpotent in R the functor Γ1(O,O′) is an equiv-

alence of categories.

Let O → O′ be totally ramified. Then for any O′-algebra R with

nilpotent nilradical and π′ nilpotent in R the functor Γ2(O,O′) is an

equivalence of categories.

Unless otherwise stated, when we talk about BT
(f)
O , BTO(= BT

(1)
O ),Γi(O,O′),

Ωi(O,O′) we always consider the functors restricted to nilpotent display struc-

tures.

Definition 2.5.15. Let O → O′ be a nonramified extension of degree f . For an

O′-algebra R with π′ nilpotent in R we define the boolean variable P (O,O′, R)

to be true, iff the following assertion is true:

The BT
(f)
O functor is an equivalence between nilpotent f -O-displays

over R and π′-divisible formal O′-modules over R.

In case O′ = O, we just write P (O, R) instead of P (O,O′, R).

Theorem 2.5.16. (cf. [Lau08, Theorem 1.1.]) The functor BTZp is an equiva-

lence of categories for all rings with p nilpotent in it.

Hence, the previous Theorem, the main Theorem of (classical) display theory,

says that P (Zp, R) is true for each ring R with p nilpotent in R. This is particu-

larly important, since we need a starting point in order to argue in the analogous

way as Drinfeld did.

The following Lemma only presents very basic facts, all of which are obvious but

need to be noted, so we will not prove them.

Lemma 2.5.17. Let O → O′ be a nonramified / totally ramified extension and

R an O′-algebra with π′ nilpotent in R. Then:
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• Let { i, j } = { 1, 2 }. If Γ1(O,O′) and Ωi(O,O′) are equivalences of cate-

gories, then the same is true for Ωj(O,O′)

Now we assume that P (O, R) is true. Then the following assertions are true:

• Γ1(O,O′) and Ω1(O,O′) resp. Γ2(O,O′) are faithful.

• BT (f)
O resp. BTO′ is essentially surjective.

• If BTO′ is faithful, then Γ1(O,O′) resp. Γ2(O,O′) is fully faithful.

• If BT
(f)
O is faithful on the image of Ω1(O,O′), then Ω1(O,O′) is fully faith-

ful.

• Γ1(O,O′) resp. Γ2(O,O′) is an equivalence of categories, iff BTO′ is one.

• Ω1(O,O′) is an equivalence of categories, iff BT
(f)
O is one.

Let us now only assume that P (O,O′, R) is true for a nonramified extension

O → O′ (i.e., P (O, R) is not necessarily true).

• Ω2(O,O′) is faithful.

• If BTO′ is faithful, then Ω2(O,O′) is fully faithful.

• BTO′ is an equivalence of categories, iff Ω2(O,O′) is one.

Unfortunately, we cannot see directly, under the assumption that P (O, R)
resp. P (O,O′, R) is true, that BT

(f)
O or BTO′ (both with respect to P (O, R))

resp. BTO′ (with respect to P (O,O′, R)) is full, since we only know this fact for

the full subcategory of nilpotent f -O-displays over R resp. nilpotent O′-displays

over R whose objects are the images of Ω1(O,O′) resp. Ω2(O,O′) or Γ1(O,O′) or

Γ2(O,O′), and for these functors we do not know so far that they are essentially

surjective in general.

To prove that BTO is an equivalence of categories, is eventually equivalent to

show that Γ1(O,O′) and Γ2(O,O′) are equivalences for all O′-algebras R with π′

nilpotent in R, where O → O′ is a nonramified / totally ramified extension.

The in the end established equivalence of nilpotent f -O-displays over R and

nilpotent O′-displays over R is nontrivial, since the equivalence of Γ1(O,O′) resp.

BTO′ does not tell much about nilpotent f -O-displays and to which category their

category is equivalent to. Hence, we also obtain that BT
(f)
O is an equivalence

between nilpotent f -O-displays and π′-divisible formal O′-modules over R. This

equivalence is particularly interesting, when O = Zp and O → O′ nonramified,

since the ramified f -Zp-displays over R are closely related to the classical displays.
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Deformation theory

Let O be an RRS and S → R a surjection of O-algebras. A lift for a fixed

(nilpotent) f -O-display over R is a (nilpotent) f -O-display over S, for which the

(nilpotent) f -O-display obtained base change to R is isomorphic to the original

f -O-display over R. In this chapter we show for some special cases that lifts of

nilpotent f -O-displays exist, and what information we need to obtain unique lifts.

With these results we are able to show the equivalence of BTO for each O a ring of

integers of a non-Archimedean local field of characteristic zero and R a complete

local O-algebra with perfect residue field, nilpotent nilradical and π nilpotent in

R. Throughout this chapter our standard source of reference will be [Lau10], in

which Lau established deformation theory for frames and windows, which in turn

are introduced in [Zin01]. These structures generalize the concept of (nilpotent)

displays over p-adic rings, but not in a way which would contain our f -O-displays,
hence we have to do a slight generalization of frames and windows as well. So,

just like Lau, we get results, which are valid for more general structures then just

for f -O-displays over π-adic O-algebras.

3.1 O-frames and f-O-windows

Definition 3.1.1. (cf. [Lau10, Definition 2.1.]) An O-frame is a quintuple

F = (S, I,R, σ, σ1), where O = (O, π, q) is an RRS, S an O-algebra, I ⊆ S an

ideal, R = S/I together with an O-algebra morphism σ : S → S and a σ-linear

morphism of S-modules σ1 : I → S, which satisfy the following properties:

1. I + πS ⊆ Rad(S),

2. σ(a) ≡ aq mod πS for all a ∈ S and

3. σ1(I) generates S as an S-module.

63
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A special situation one should have in mind for an O-frame is the so called

Witt O-frame (WO(R), IO,R,WO(R)/IO,R = R,F ,V
−1

) for a π-adic complete and

separated O-algebra R. We will denote this O-frame by WO,R.

Now let F = (S, I,R, σ, σ1) and F ′ = (S′, I ′, R′, σ′, σ′1) be two O-frames. We

declare a morphism of O-frames α : F → F ′ by an O-algebra morphism α : S →
S′, such that α(I) ⊆ I ′, σ′α = ασ and σ′1α = ασ1 hold. We could extend the

definition of a morphism by demanding that just σ′1α = uασ1 holds with u ∈ S′ a

unit. This the definition of Lau in [Lau10, Definition 2.6.], where our morphisms

would be strict morphisms in his notation. Nevertheless, these general morphisms

are not important for us.

Nearly all assertions from [Lau10] can be rewritten such that they fit to our

situation here. If a proof is essentially the same (beside some obvious changes)

and the idea behind it not used here any further, we omit it. Let ρ : A→ B be a

ring morphism. We define for any A-moduleM the B-moduleM (ρ) by B⊗ρ,AM .

For any B-module N and ρ-linear map g : M → N , we define the B-linear map

g♯ :M (ρ) → N by b⊗m 7→ bg(m). The following Lemma is easy, but nonetheless

very important.

Lemma 3.1.2. (cf. [Lau10, Lemma 2.2.]) Let F be an O-frame. Then there is

as unique θ ∈ S, such that σ(a) = θσ1(a) holds for all a ∈ I.

Proof: The third condition of Definition 3.1.1 says that the linearisation σ♯1 :

I(σ) → S is surjective. If b ∈ I(σ) satisfies σ♯1(b) = 1, then necessarily θ = σ♯(b).

For a ∈ I we obtain σ(a) = σ♯1(b)σ(a) = σ♯1(ba) = σ♯(b)σ1(a), which confirms the

assertion. �

Definition 3.1.3. (cf. [Lau10, Definition 2.3.]) An f -O-window over an O-frame

F is a quadruple P = (P,Q, F, F1), where P is a finitely generated projective S-

module, Q ⊆ P a submodule, F : P → P and F1 : Q → P are σf -linear

morphisms of S-modules, with the following properties:

1. There is a decomposition P = L ⊕ T with Q = L ⊕ IT , where L, T are

S-submodules of P ,

2. F1(ax) = σf−1(σ1(a))F (x) for a ∈ I and x ∈ P and

3. F1(Q) generates P as an S-module.

If we have f = 1, then we just denote f -O-windows by O-windows.

If we are now given a Witt O-frame for a π-adic O-algebra R, where O is

an RRS, then the f -O-windows are precisely the f -O-displays over R. We need

to remark that, as in the usual display theory, F is uniquely determined by F1:

If b ∈ I(σ) satisfies σ♯1(b) = 1, then we obtain by the second condition of the

Definition of an f -O-window F (x) = F ♯
1(b

′x) for all x ∈ P , where
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F ♯
1 : S ⊗σf ,S Q→ P is the σf -linearisation of F1 and b′ is the image of b via the

map I(σ)
1⊗id→ S ⊗σf−1,S I

(σ) = I(σ
f ). In particular we have F (x) = σf−1(θ)F1(x)

for all x ∈ Q, see the proof of Lemma 3.1.2.

Similar to what we have done in the previous chapter there is for an f -O-window
over an O-frame F a unique morphism of S-modules

V ♯ : P → S ⊗σf ,S P

satisfying V ♯(wF1y) = w ⊗ y for all y ∈ Q and w ∈ S. We define V n♯ : P →
S ⊗σfn,S P as usual, i.e., as the composite of the S-linear maps

id⊗σi,SV
♯ : S ⊗σfi,S P → S ⊗σf(i+1),S P,

from i = 0, . . . , n−1. The nilpotence condition in the f -O-display case is defined

relative to IO,R + πWO(R), we will do it more general. For this purpose we call

an ideal J of S with σ(J)+I+θS ⊆ J , where θ is obtained from Lemma 3.1.2, an

ideal of definition for F . The ideal I + πS is always an ideal of definition, since

θ is an element of this ideal, which follows from the argumentation of Lemma

3.1.2.

Definition 3.1.4. For an ideal of definition J for an O-frame F , we call an

f -O-window over F nilpotent (with respect to J), if there is a number N , such

that V N♯ ≡ 0 modulo J .

Lemma 3.1.5. (cf. [Lau10, Lemma 2.5.]) Let F = (S, I,R, σ, σ1) be an O-frame,

P = L⊕T a finitely generated projective S-module and Q = L⊕ IT , where L, T
are S-submodules of P . Then the set of f -O-window structures (P,Q, F, F1) over

F corresponds bijectively to the set of σf -linear isomorphisms Ψ : L ⊕ T → P

given by Ψ(l + t) = F1(l) + F (t) for l ∈ L and t ∈ T . Conversly, if we start with

a Ψ, we obtain an f -O-window over F by F (l + t) = σf−1(θ)Ψ(l) + Ψ(t) and

F1(l + at) = Ψ(l) + σf−1(σ1(a))Ψ(t) for l ∈ L, t ∈ T and a ∈ I.

We call the triple (L, T,Ψ) a normal decomposition of (P,Q, F, F1).

Let O be an RRS, α : F = (S, I,R, σ, σ1) → F ′ = (S′, I ′, R′, σ′, σ′1) be a

morphism between two O-frames and P = (P,Q, F, F1),P ′ = (P ′, Q′, F ′, F ′
1) be

f -O-windows over F and F ′, respectively. We declare an α-morphism g between

P and P ′ as a morphism of S-modules P → P ′ with g(Q) ⊆ Q′, which fulfils

F ′g = gF and F ′
1g = gF1. A morphism of f -O-windows over F is an idF -

morphism.

We are allowed to define a base change for f -O-windows, which is a lot like the

base change defined in section 2.2 of the previous chapter and is of course an

extension for f -O-displays over π-adic O-algebras, when considering the f -O-
windows over the Witt O-frame for this O-algebra.
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With α as above, we associate an f -O-window α⋆P =: P ′ = (P ′, Q′, F ′, F ′
1) over

F ′ to an f -O-window P over F in the following way:

P ′ = S′ ⊗S P

Q′ = S′ ⊗S L⊕ I ′ ⊗S T

F ′ = σ′f ⊗ F
F ′
1(s

′ ⊗ q) = σ′f (s′)⊗ F1y

F ′
1(i

′ ⊗ p) = σ′f−1σ′1(i
′)⊗ Fx

Here P = L ⊕ T is a normal decomposition and s′ ∈ S′, i′ ∈ I ′, y ∈ Q and

x ∈ P . There is an obvious mapping HomF ′(α⋆P, P̃) → Homα(P, P̃) for all f -

O-windows P̃ over F ′ given by composing maps, which is in fact an isomorphism

(cf. [Lau10, Lemma 2.9.]). This property determines α⋆P uniquely.

Definition 3.1.6. Let F and F ′ be two O-frames and α : F → F ′ a morphism

between them. We say that α is crystalline if it induces an equivalence of cate-

gories between f -O-windows over F and f -O-windows over F ′. If we are given

two ideals of definition J ⊂ S and J ′ ⊂ S′ such that α(J) ⊆ J ′, then α⋆ sends

nilpotent f -O-windows over F with respect to J to nilpotent f -O-windows over
F ′ with respect to J ′. We call α nilcrystalline if it induces an equivalence of

categories between the nilpotent f -O-windows.

We now come to the central assertions of this section. The proofs of them are

generally omitted, since they are essentially the same as the ones given in [Lau10],

one has only to observe that adding O in the frames, the changes induced by it

and the occurrence of f does not make big differences. Since we demand in the

next Theorem a different condition than in the referred source in order to obtain

the nilcrystalline property, will give an outline what changes in the proofs of the

referred source in the generalized setting. This new setting is helpful to deduce

deformation assertions for O-pd-thickening more directly (see the next section)

than with the naturally generalized condition for J of [Lau10, Theorem 10.3.].

The equivalence property for nilpotent f -O-window structures in Lemma 3.1.8

cannot be found in the reference, but this is easily seen.

Theorem 3.1.7. (cf. [Lau10, Theorem 3.2., Theorem 10.3.]) Let O be an RRS

and α : F = (S, I,R, σ, σ1)→ F ′ = (S′, I ′, R′, σ′, σ′1) a morphism between two O-
frames, such that it induces R ∼= R′ and a surjection S → S′ with kernel b ⊂ I. If
there is a finite sequence b = b0 ⊇ . . . ⊇ bn = 0 with σ(bi) ⊆ bi+1 and σ1(bi) ⊆ bi
such that σ1 is elementwise nilpotent on bi/bi+1 and finitely generated projective

S′-modules lift to projective S-modules, then α is crystalline. If we drop the

elementwise-nilpotence condition and are given an ideal of definition J ⊂ S with

(
∏n

i=0 σ
i(J))b = 0 for large n, then α is nilcristalline with respect to the ideals J

and J ′ = J/b ⊂ S′.
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We now only show what changes in the proof of [Lau10, Theorem 10.3.] in

the generalized setting with the different condition for J .

Proof: Let P be an f -O-window over F with normal decomposition (L, T,Ψ) and

let the elements x1, . . . , xr ∈ L be generators of the S-module L. We consider

the σf -linear map

λ : L ⊆ L⊕ T (Ψ♯)−1

→ L(σf ) ⊕ T (σf ) pr→ L(σf ).

P is nilpotent with respect to J , iff λ is nilpotent modulo J (see [Lau10, Remark

10.2.]). Hence, since we consider nilpotent P, there is a k ≥ 1, such that for the

composite map

λk : L
λ→ L(σf ) = S ⊗σf ,S L

1⊗λ→ S ⊗σf ,S L
(σf ) = L(σ2f ) → . . .→ L(σkf )

and each generator xm ∈ L the element λk(xm) is of the form
∑r

i=1 jim ⊗ xi
with jim ∈ J . With the analogous setting as in the proofs of [Lau10, Theorem

10.3.] and [Lau10, Theorem 3.2.] (where we have b and bi here in place of

a and ai there), we have to show that the endomorphism U of the group H =

Homσf -linear(L, bP ) given by U(wL) = F ′
1w

♯
Lλ is nilpotent. For x ≥ 1 the operator

Ux equals

L
λx

→ L(σxf ) = S ⊗σ(x−1)f ,S S ⊗σf ,S L
1⊗w♯

L→ (bP )(σ
(x−1)f ) hx−1→ bP

F ′
1→ bP,

where hx−1 is given by the composite map

(bP )(σ
(x−1)f ) = S ⊗σ(x−2)f ,S S ⊗σf ,S bP

1⊗F ′♯
1→ (bP )(σ

(x−2)f ) 1⊗F ′♯
1→ . . .→ bP.

It is easily seen that for any fixed y ≥ 1 the condition (
∏n

i=0 σ
i(J))b = 0 for

large n is equivalent to (
∏n

i=0 σ
yi(J))b = 0 for large n. Now let a fixed n ≥ 1 be

chosen that large, such that (
∏n

i=0 σ
fki(J))b = 0 holds. We claim that the map

Ukn equals zero. It is not too hard to verify that for each generator xm ∈ L the

element λkn(xm) is of the form

r∑
i=1

∑
z∈Zi

n∏
c=0

σfkc(jicz)⊗ 1⊗ . . . 1⊗ xi

where jicz ∈ J and Zi are finite index sets. After applying 1⊗ w♯
L and hkn−1 to

this element we obtain that the image is zero by assumption, hence Ukn is zero.

�

The Hodge filtration of an f -O-window P over an O-frame F = (S, I,R, σ, σ1)

is the R-submodule Q/IP ⊆ P/IP .
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Lemma 3.1.8. (cf. [Lau10, Lemma 4.2.]) Let O be an RRS and α : F =

(S, I,R, σ, σ1)→ F ′ = (S′, I ′, R′, σ′, σ′1) a morphism between two O-frames, such

that S ∼= S′ holds. Then R → R′ is surjective and I ⊆ I ′ holds. The f -O-
windows P over F are equivalent to a pair consisting of an f -O-window P ′ over

F ′ together with a lift of its Hodge filtration to a direct summand V ⊆ P/IP .

If J is an ideal of definition for F ′, then we have the equivalence for nilpotent

f -O-window structures with respect to the ideal J for F and F ′.

3.2 Applications to triples

To show how these two results are useful, we consider a morphism of O-frames

α : F = (S, I,R, σ, σ1) → F ′ = (S′, I ′, R′, σ′, σ′1), where O is an RRS, S →
S′ surjective with the kernel b and I ′ = IS′. We would like to factor α into

morphisms

(S, I,R, σ, σ1)
α1→ F ′′ = (S, I ′′, R′, σ, σ′′1)

α2→ (S′, I ′, R′, σ′, σ′1), (3.1)

in such a way that α2 fulfils the first or the second part of the hypotheses of

Theorem 3.1.7, i.e., for the crystalline or the nilcrystalline property (with respect

to an ideal of definition J for F ′′). We must have I ′′ = I + b. So all what

remains is to define σ′′1 : I ′′ → S, or which is the same as to define a σ-linear

morphism σ′′1 : b→ b with σ′′1 = σ1 on I∩b, such that the hypotheses of Theorem

3.1.7 are fulfilled. Then by using the above Lemma and Theorem we get that

(nilpotent) f -O-windows over F (with respect to J) are equivalent to (nilpotent)

f -O-windows P ′ over F ′ (with respect to J/b) together with a lift of the Hodge

filtration to a direct summand of P/IP , where P ′′ = (P,Q′′, F ′′, F ′′
1 ) is the unique

lift of P ′ under α2.

With the help of the isomorphism defined in (2.14) it is possible for us to define

σ′′1 in cases, which are important for us, which will be helpful in Proposition 3.3.4.

We need to define the notion of an O-pd-thickening:

Definition 3.2.1. Let S → R be a surjection of O-algebras, such that the kernel

a may be equipped with an O-pd-structure (see Definition 2.3.2). If π is nilpotent

in S we call S → R an O-pd-thickening. If the O-pd-structure on a is nilpotent,

we call S → R a nilpotent O-pd-thickening. We call S → R a topological O-
thickening, if there is a sequence of subideals an of a, such that π is nilpotent in

S/an, S is complete and separated in the linear topology defined by the an and

each an may be equipped with an O-pd-structure.

To apply these structures we take (3.1) in a more concrete term:

WO,S
α1→WO,S/R = (WO(S), Ĩ, R, σ, σ

′′
1)

α2→WO,R, (3.2)

where S → R is an O-pd-thickening with kernel a. Let J ⊆ WO(S) be IO,S +

πWO(S) + WO(a). Since Ĩ = IO,S + WO(a), we are able to define with the
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help of log (cf. (2.9)) the map σ′′1 in the way that σ′′1 [a0, a1, . . .] = [a1, a2, . . .]

in logarithmic coordinates on WO(a). We can take J as an ideal of definition

for WO,S and WO,S/R and we may apply Lemma 3.1.8 then. Now consider the

filtration bi = πib on b = WO(a), which is zero for large n by considering (2.11)

and (2.12) and FV = π. Furthermore, (
∏n

i=0 σ
i(J))b = 0 holds for large n, since

σn(j) ∈ IO,S + πWO(S) for all n > 0 and j ∈ J , (IO,S + πWO(S))
n ⊆ IO,S for

large n, In+1
O,S ⊆ πnWO(S) for all n ≥ 0 and πnWO(a) is zero for n large enough.

Hence, we may apply Theorem 3.1.7 to α2 to obtain that is nilcristalline with

respect to J ⊂WO(S) and J
′ = J/b ⊂WO(R).

Since it is easily seen that nilpotent f -O-windows over WO,S with respect to J

and IO,S + πWO(S) are the same, we obtain:

Proposition 3.2.2. With S → R an O-pd-thickening, we obtain that nilpotent

f -O-displays over S are equivalent to nilpotent f -O-displays P ′ over R plus a lift

of the Hodge filtration to a direct summand of P/IO,SP , where (P,Q′′, F, F ′′
1 ) is

the unique lift of P ′ under α2.

From this result we can deduce rigidity assertions:

Corollary 3.2.3. Let S → R be an O-pd-thickening or a surjection ofO-algebras
with nilpotent kernel and π nilpotent in S and P,P ′ be two f -O-displays over S.
Then

HomS(P,P ′)→ HomR(PR,P ′
R)

is injective.

Proof: First let S → R be an O-pd-thickening. By Proposition 3.2.2 we get that

the nilpotent f -O-displays over S are equivalent to nilpotent f -O-displays over R
plus the lift of the Hodge filtration, which must be respected by the morphisms in

the category for R. This shows that HomS(P,P ′)→ HomR(PR,P ′
R) is injective.

Now let S → R be a surjection of O-algebras with nilpotent kernel a and π

nilpotent in S and n chosen that large, such that an = 0. If we define Si = S/ai

for i = 1 . . . n, we can consider the obvious surjections of O-algebras

S = Sn → Sn−1 → . . .→ S1 = R.

For Si+1 → Si the kernel a
i/ai+1 can be equipped with the trivial O-pd structure,

so the injectivity of HomS(P,P ′) → HomR(PR,P ′
R) follows inductively by the

above assertion for O-pd-thickenings. �

As in [Zin02, 2.2. Triples and Crystals], we should now have a look at P-
triples, where P is a nilpotent f -O-display over R.

Definition 3.2.4. Let S → R be an O-pd-thickening with kernel a. A P-triple
T = (P̃ , F, F1) over S consists of a finitely generated projective WO(S)-module
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P̃ , which lifts P , and F f
-linear morphisms F : P̃ → P̃ and F1 : Q̂ → P̃ , where

Q̂ denotes the inverse image of Q by the surjection P̃ → P (which has kernel

WO(a)P̃ ). Furthermore, the following equations are required:

F1(
V wx) = F f−1

wFx

F1(aP̃ ) = 0,

with w ∈ WO(R) and x ∈ P̃ . Here a ⊂ WO(R) is given by the logarithm (see

(2.13)).

F1 is uniquely determined by these requirements (by choosing any lifting of

P to a nilpotent f -O-display over S and applying Lemma 2.3.3.

A morphism between triples is as follows: Let α : P1 → P2 be a morphism

between nilpotent f -O-displays over R and Ti be a Pi-triple S for i = 1, 2.

Then an α-morphism α̃ : P̃1 → P̃2 is a morphism of WO(S)-modules which

lifts α and commutes with the F and F1 maps, which only makes sense since

α̃(Q̂1) ⊂ Q̂2. We need to define base change of triples. For this purpose let

S → R, S′ → R′ be O-pd-thickenings, respectively, and let φ : R → R′ be an

O-algebra morphism. Assume we are given a morphism of O-pd-thickenings, i.e.,
an O-algebra morphism S → S′, such that

S //

��

S′

��
R

φ // R′

commutes. Now for a P-triple T over S, we define the PR′-triple TS′ over S′ by

setting

TS′ = (WO(S
′)⊗WO(S) P̃ , F̃ , F̃1),

where F̃ is the F f
-linear extension of F and F̃1 on Q̂′ is uniquely determined by

F̃1(w ⊗ y) = F f
w ⊗ F1y,

F̃1(
V w ⊗ x) = F f−1

w ⊗ Fx,
F̃1(a⊗ x) = 0,

for x ∈ P̃ , y ∈ Q̂, w ∈ WO(S
′) and a ∈ a′ ⊂ WO(a

′), where a′ is the kernel of

S′ → R′.

Now let S → R be an O-pd-thickening. It is rather obvious that nilpotent

f -O-windows over WO,S/R with respect to J = IO,S + πWO(S) + WO(a) and

P-triples for all nilpotent f -O-displays over S are practically the same. For this

purpose consider the category f -O-CS/R consisting of the objects (P, T ), where
P is a nilpotent f -O-display over S and T a P-triple over S. A morphism
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between two objects of f -O-CS/R, say (P, T )→ (P ′, T ′), consists of a morphism

of displays α : P → P ′ and an α-morphism α̃ : T → T ′. We obtain an equivalence

of categories between the category of nilpotent f -O-windows over WO,S/R with

respect to J and the category f -O-CS/R, such that the diagram

( nilpotent f -O-windows over WO,S/R with respect to J ) //

α2⋆

��

f -O-CS/R

ssffffffffffffffffffffffffff

(f − ndispO /R)

commutes (the upper categories lie over the lower one), where α2⋆ is induced by

the map α2 of (3.2). This equivalence is given by sending a nilpotent f -O-windows
over WO,S/R with respect to J , say P̃ = (P̃ , Q̃, F̃ , F̃1), to (α2⋆P̃, (P̃ , F̃ , F̃1)), and

morphism between to f -O-windows over WO,S/R with respect to J , say τ : P̃ →
P̃ ′, to (α2⋆τ, τ). The inverse functor is easily constructed. Hence, it follows that

we could also work with nilpotent f -O-windows over WO,S/R with respect to J

in place of P-triples, but since we try to follow the notation of [Zin02], we take

P-triples. Since α2⋆ is an equivalence of categories by Theorem 3.1.7 we obtain

with the above notation:

Proposition 3.2.5. (cf. [Zin02, Theorem 46]) Let S → R be an O-pd-thickening
and α : P1 → P2 a morphism between two nilpotent f -O-displays over R. For

Pi-triples Ti over S there is a unique α-morphism of triples α̃ : T1 → T2.

Hence, given an O-pd-thickening S → R and a nilpotent f -O-display P over

R, it makes sense to talk about ”the” P-triple over S, since by the previous

association we can always find a P-triple and it is uniquely determined up to

unique isomorphism by the previous Proposition.

3.3 Applications to f-O-displays

In this section every O,O′, etc. is assumed to be a ring of integers of a non-

Archimedean local field of characteristic zero. We want to prove that P (O,O′, R)

is true for as many O′-algebras R as possible. All these proofs have a very similar

framework and the following Definition is helpful to simplify the proofs.

Definition 3.3.1. Let R be a fixed ring with p nilpotent in R. We say that the

boolean variable A(R) is true, iff the following three assertions hold:

• Let O → O′ be a nonramified extension and R equipped with an additional

O′-algebra structure. If P (O, R) is true, then Ω1(O,O′) is an equivalence

of categories. (Hence, P (O,O′, R) is true.)
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• Let O → O′ be a nonramified extension and R equipped with an addi-

tional O′-algebra structure. If P (O,O′, R) is true, then Ω2(O,O′) is an

equivalence of categories. (Hence, P (O′, R) is true.)

• Let O → O′ be a totally ramified extension and R equipped with an addi-

tional O′-algebra structure. If P (O, R) is true, then Γ2(O,O′) is an equiv-

alence of categories. (Hence, P (O′, R) is true.)

Lemma 3.3.2. Let R be a ring with p nilpotent in R, such that A(R) is true.

Then for each nonramified extension O → O′ and each O′-algebra structure on R,

P (O,O′, R) is true. In particular, P (O, R) is true for each O and each O-algebra
structure on R.

Proof: First we prove that P (O, R) is true with O arbitrary and R equipped with

an O-algebra structure. We choose O0, such that O0 is nonramified over Zp and

O is totally ramified over O0. We can establish with Theorem 2.5.16 and the

three points of Definition 3.3.1 that P (O, R) is true by first considering the step

Zp → O0 and then O0 → O. By using the first part of Definition 3.3.1 again we

obtain that P (O,O′, R) is true for each nonramified extension O → O′ and each

O′-algebra structure on R. �

Proposition 3.3.3. Let l be a perfect field of characteristic p. Then A(l) is true.

Hence by Lemma 3.3.2 we obtain that P (O,O′, l) is true for each nonramified

extension O → O′, such that l is a perfect field of characteristic p extending the

residue field of O′.

Proof: We need to confirm the points defining A(l), assuming that P (O, l) resp.
P (O,O′, l) is true. First we consider the case that O′ is nonramified over O
and l extends the residue field of O′. We first show the essential surjectivity of

Ω1(O,O′). Let P0 = (P0, Q0, F0, F10) be a nilpotent∗ f -O-display over l. We

define for each i = 1, . . . , f − 1

Pi =WO(l)⊗Fi−f P0

and consider

P =

f−1⊕
i=0

Pi

Q = Q0 ⊕
f−1⊕
i=1

Pi.

∗We could use the same arguments for the not necessarily nilpotent case to establish the
essential surjectivity there.
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The operators F and F1 are given by

F (x0, 1⊗ x1, . . . , 1⊗ xf−1) = (xf−1, 1⊗ F0x0, 1⊗ x1, . . . , 1⊗ xf−2)

F1(y0, 1⊗ x1 . . . , 1⊗ xf−1) = (xf−1, 1⊗ F10y0, 1⊗ x1, . . . , 1⊗ xf−2)

with xi ∈ P0 and y0 ∈ Q0. Then P = (P,Q, F, F1) is a nilpotent O-display over

l. By letting the O′-action of P0 act on the second factors of the tensor products

of the Pi we obtain a strict O′-action of P. It is clear that P +O′ is mapped via

Ω1(O,O′) to P0 and an easy exercise to show the fully faithfulness.

Now we have a look at Ω2(O,O′). Since ul :WO(l)→WO′(l) is an isomorphism

by Lemma 1.3.6, it is easily seen that Ω2(O,O′) is essentially surjective. Because

we assume P (O,O′, l) to be true we need for the fully faithfulness only to show

that

HomO(P0,P⋆0)→ HomO′(P ′,P ′
⋆)

is surjective, where P0,P⋆0 are nilpotent f -O-displays over l and P ′,P ′
⋆ are the

respective associated O′-displays over l, but this is again fairly obvious.

Now let O′ be totally ramified over O and let l extend the residue field of O′ and

O. We consider Γ2(O,O′) and assume P (O, l) to be true. Let P = (P,Q, F, F1) be

an O-display over l equipped with a strict O′-action and P ′ = (P ′, Q′, F ′, F ′
1) its

image via Γ2(O,O′). By considering Lemma 1.3.6, we obtain the isomorphism of

ringsO′⊗OWO(l) ≃WO′(l) and so the module P ′ is P interpreted asO′⊗OWO(l)-

module from which the essential surjectivity follows easily and it is left as an

exercise to the reader to verify that Γ2(O,O′) is full for l, which would establish

that it is an equivalence. �

Proposition 3.3.4. Let O → O′ be a nonramified extension of rings of integers

of non-Archimedean local fields of characteristic zero of degree f and R an O′-

algebra with nilpotent nilradical and π′ nilpotent in R. Then BT
(f)
O is faithful.

In particular, BTO is faithful for each O an each O-algebra R with nilpotent

nilradical and π nilpotent in R.

The last assertion of the Proposition is only a partial result compared to the

fact that we prove the faithfulness for all O′-algebras with π′ nilpotent in them

in Chapter 5. Nevertheless, there we need crystal theory, so it seems sensible to

state this result on its own, since we need only deformation theory.

Proof: Let k′ be the residue field of O′.

If R = l is a perfect field extending k′, the fully faithfulness of BT
(f)
O follows from

Proposition 3.3.3.

Now let k be any field extending k′ and l the algebraic closure of k. If P,P⋆
are two nilpotent f -O-displays over k, Pl,P⋆,l the corresponding nilpotent f -O-
displays over l obtained by base change and X,X⋆, Xl, X⋆,l the corresponding
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π′-divisible formal O′-modules, then the faithfulness of the BT
(f)
O,k functor follows

from the commutative diagram

HomO,k(P,P⋆)
BT

(f)
O,k //

� _

��

HomO′,k(X,X⋆)

��
HomO,l(Pl,P⋆,l) � �

BT
(f)
O,l// HomO′,l(Xl, X

′
⋆,l),

where the indices of the Hom-sets should indicate over which O′-algebra we con-

sider them. Now let R be a reduced O′-algebra with π′R = 0 and P,P⋆ two

nilpotent f -O-displays over R. Hence, we may embed R into a product
∏

i∈I Ki

of fields, each extending k′, and with the help of the commutative diagram

HomO,R(P,P⋆) //
� _

��

HomO′,R(X,X⋆)

��∏
i∈I HomO,Ki(PKi ,P⋆,Ki)

� � //
∏

i∈I HomO′,Ki
(XKi , X⋆,Ki)

the faithfulness follows for this case. Now we may assume that R is an O′-algebra

with π nilpotent in R and nilpotent nilradical a. Let R1 = R/a and P,P⋆ be

nilpotent f -O-displays over R. We obtain the injectivity of HomO,R(P,P⋆) →
HomO,R1(PR1 ,P⋆,R1) by Corollary 3.2.3. With the commutative diagram

HomO,R(P,P⋆) //
� _

��

HomO′,R(X,X⋆)

��
HomO,R1(PR1 ,P⋆,R1)

� � // HomO′,R1(XR1 , X⋆,R1)

the result follows. �

Proposition 3.3.5. Let O → O′ be a nonramified / totally ramified extension,

S → R a surjection of O′-algebras with π′ nilpotent in S and nilpotent kernel and

P̂ a nilpotent f -O-display over S (for Ω1(O,O′)) resp. a nilpotent O′-display over

S (for Ω2(O,O′) resp. Γ1(O,O′) resp. Γ2(O,O′)), such that P̂R lies in the image

of Ω1(O,O′)R resp. Ω2(O,O′)R resp. Γ1(O,O′)R resp. Γ2(O,O′)R. Then P̂ lies

in the image of the respective functor over S. In particular, if one of the functors

Ω1(O,O′),Ω2(O,O′),Γ1(O,O′) or Γ2(O,O′) is essentially surjective over R, then

this is also true for the respective functor over S.

Proof: The assertions for Γ1(O,O′) follows from the assertions for Ωi(O,O′), so

we will only consider Ωi(O,O′) and Γ2(O,O′). Let a be the kernel and an = 0

for an integer n ≥ 0. By considering the sequence S/ai for i = 0, . . . , n and the

O′-algebra surjections S/ai → S/ai−1, we obtain that we may reduce for each
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functor to the case, where a2 = 0. By taking the trivial O-pd structure on a, we

may construct the morphisms of O-frames (see (3.2))

WO,S
α1→ (WO(S), Ĩ, R, σ, σ1)

α2→WO,R.

With the help of Theorem 3.1.7 and Lemma 3.1.8 we get that the category of

nilpotent (f -)O-displays over S is equivalent to the category of nilpotent (f -)O-
displays over R equipped with a lift of the Hodge filtration. Of course the same

is true for O′. Additionally, the equivalence assertions over O continue to hold,

if we add a strict O′-action to each object and consider only those morphisms

respecting the O′-actions. Hence, we obtain commutative diagrams

(ndispO,O′ /S)
Ω1,S // (f − ndispO /S) (f − ndispO /S)

Ω2,S // (ndispO′ /S)

(ndisp†O,O′ /R)

��

α1 // (f − ndisp†O /R)

��

(f − ndisp†O /R)

��

α2 // (ndisp†O′ /R)

��
(ndispO,O′ /R)

Ω1,R // (f − ndispO /R), (f − ndispO /R)
Ω2,S // (ndispO′ /R)

and

(ndispO,O′ /S)
Γ2,S // (ndispO′ /S)

(ndisp†O,O′ /R)

��

α′
// (ndisp†O′ /R)

��
(ndispO,O′ /R)

Γ2,R // (ndispO′ /R),

where the dagger at each category in the middle of each diagram should indicate

the further structure (i.e., the lift of the Hodge filtration) and the horizontal

maps are Ω1(O,O′),Ω2(O,O′) and Γ2(O,O′) (over S and R) or at least induced

by it (for the α-arrows in the middle of each diagram). We need to know what

happens with the liftings in the middle left categories of the diagrams, when α1,

α2 or α′ are applied. With the help of this it easily shown that P̂ lies in the

image of the respective functors over S, since we only need to show that the to

P̂ corresponding element in the middle right categories of the respective above

diagram lies in the image of α1 resp. α2 resp. α′.

First we consider α1: Let P be a nilpotent O-display over S equipped with a strict

O′-action. The element (ndisp†O,O′ /R) corresponding to P is (PR, S⊗w0,WO(S)L)

with L as usual and the induced strict O′-action. The element of (f−ndisp†O /R)

corresponding to Ω1(O,O′)S(P) is

(Ω1(O,O′)S(P)R, S ⊗w0,WO(S) L0) = (Ω1(O,O′)R(PR), S ⊗w0,WO(S) L0),
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where L0 is obtained as in Lemma 2.5.1. Hence, α1 is given by sending

(PR, S ⊗w0,WO(S) L) to (Ω1(O,O′)R(PR), (S ⊗w0,WO(S) L)0), where the last zero

in the index should indicate one takes only the zeroth component of the obvi-

ous direct sum decomposition of S ⊗w0,WO(S) L (see the proof of Lemma 2.5.1).

Let (P̂R,M0) be the element of (f − ndisp†O /R) corresponding to P̂ and P⋆ ∈
(ndispO,O′ /R) chosen, such that Ω1(O,O′)R(P⋆) = P̂R holds. Let (P, F, F1)

be the P⋆-triple over S. By Proposition 3.2.5, we can lift the O′-action of P⋆
uniquely, so P becomes an O′ ⊗O WO(S)-module and we obtain the usual grad-

ing (see Lemma 2.5.1)

P =

f−1⊕
i=0

Pi.

Since the lifted O′-action leaves the Pi invariant, we get that with the S-module

M =M0 ⊕
f−1⊕
i=1

S ⊗WO(S) Pi

we obtain a lifting respecting the O′-action, hence (P⋆,M) is an element of

(ndisp†O,O′ /R) and

α1(P⋆, S) = (P̂R,M0)

holds, so P̂ lies in the image of Ω1(O,O′)S .

We get that for a nilpotent f -O-display P0 over S the corresponding element

in (f − ndisp†O /R) is (P0,R, S ⊗w0,WO(S) L0) with L0 as usual (cf. Definition

2.5.5). Because of the construction of Ω2(O,O′) we obtain that the element of

(ndisp†O′ /R) corresponding to Ω2(O,O′)S(P0) is

(Ω2(O,O′)S(P0)R, S ⊗w′
0,WO′ (S) L0,⋆) = (Ω2(O,O′)R(P0,R), S ⊗w′

0,WO′ (S) L0,⋆),

where L0,⋆ =WO′(S)⊗WO(S) L0. Because of

S ⊗w′
0,WO′ (S) L0,⋆ = S ⊗w′

0,WO′ (S) WO′(S)⊗WO(S) L0

= S ⊗w0,WO(S) L0

we get that α2 is given by sending (P0,M) to (Ω2(O,O′)R(P0),M), where P0 ∈
(f − ndispO /R) and M is a lifting of the Hodge filtration. Hence, the element of

(ndisp†O′ /R) corresponding to P̂ lies in image of α2 by obvious reasons and so P̂
lies in image of Ω2(O,O′)S .

Now we have a look at α′: Let P be a nilpotent O-display over S equipped with a

strictO′-action. With the notation as right after the proof of Proposition 2.5.9 the

element of (ndisp†O,O′ /R) corresponding to P is (PR, L∆,0⊕∆) plus the induced

strict O′-action. The element of (ndisp†O′ /R) corresponding to Γ2(O,O′)S(P) is

(Γ2(O,O′)S(P)R, L∆,0).
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Hence, α′ is given by sending (PR, L∆,0 ⊕ ∆) to (Γ2(O,O′)R(PR), L∆,0). Let

(P̂R,M0) be the element of (ndisp†O′ /R) corresponding to P̂ and P⋆ ∈ (ndispO,O′ /R)

chosen, such that Γ2(O,O′)R(P⋆) = P̂R holds. Let (P, F, F1) be the P⋆-triple over
S. By Proposition 3.2.5, we can lift the O′-action of P⋆ uniquely. If we define

the S-module P0 by S ⊗w0,WO(S) P and the R-module P⋆,0 by R ⊗w0,WO(R) P⋆,

we get a commutative diagram of S-modules with exact rows

0 // ∆S
//

��

P0
//

��

S ⊗O′⊗OS P0 //

��

0

0 // ∆R
// P⋆,0 // R⊗O′⊗OR P⋆,0 // 0,

where the upper line lifts the lower line via S → R. Clearly ∆S is O′-invariant

for the lifted O′-action and for the module M0, considered as a submodule of P0

(the sequence splits), holds κ(M0) ⊆ M0 ⊕ ∆S for each κ ∈ O′ by assumption,

since M0 respected the O′-action when we considered the element (P̂R,M0) of

(ndisp†O′ /R). Since M0 lifts the module L∆,0,R ⊂ R ⊗w0,WO(R) P⋆ we get that

(P⋆,∆S ⊕M0) is in (ndisp†O,O′ /R) and is mapped to (P̂R,M0) via α
′. Hence, P̂

lies in the image of Γ2(O,O′)S . �

Proposition 3.3.6. Let R be a complete local ring with maximal ideal m, perfect

residue field, nilpotent nilradical and p nilpotent in R. Then A(R) is true. Hence

by Lemma 3.3.2 we obtain that P (O,O′, R) is true for each nonramified exten-

sion O → O′ and each O′-algebra structure on R. Furthermore, Ωi(O,O′) and

Γi(O,O′) over R are equivalences of categories for nonramified/ totally ramified

extensions O → O′ and each O′-algebra structure on R.

Proof: Let us assume that R is equipped with an O′-algebra structure and

P (O, R) resp. P (O,O′, R) is true. Then by Proposition 3.3.4 the functors

Ω1(O,O′),Γ2(O,O′) resp. Ω2(O,O′) are fully faithful, so we only have to show

that they are essentially surjective. With the help of the previous Proposition we

may consider from now on only reduced R in the proof. By considering Proposi-

tion 3.3.3 this is immediate for the case, when R is a perfect field of characteristic

p extending the residue field of O′. For general reduced complete local R with

perfect residue field and p nilpotent in R, equipped with an O′-algebra structure

we obtain, by using the previous Proposition again, that the equivalences are

established for R/mn for each n.

Now we take a look at Ωi(O,O′) and Γ2(O,O′) for the whole R. Since these

functors are compatible with base change, we may take a nilpotent f -O-display
P resp. a nilpotent O′-display P over R, make a base change to R/mn for each

n and we obtain a nilpotent f -O-display resp. a nilpotent O′-display PR/mn .

These nilpotent displays now correspond to nilpotent O-displays over R/mn with

strict O′-actions resp. to nilpotent f -O-displays over R/mn and they form an
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inverse system. By building the projective limit we obtain an O-display over R

with a strict O′-action resp. an f -O-display over R, say P⋆, which is mapped

via Ωi(O,O′) resp. Γ2(O,O′) to P, when the functors are considered as functors

from general display structures, i.e., not necessarily nilpotent ones. To show the

essentially surjectivity of Ωi(O,O′, ) and Γ2(O,O′), when restricted to nilpotent

display structures again, it remains to show that these display structures P⋆ are

nilpotent. For this we may utilize the fact that R is reduced and may be embed-

ded into a product of algebraic closed fields of characteristic p. Hence we may

restrict ourselves to the case, when R is an algebraically closed field of charac-

teristic p which extends the residue field of O′. First we treat Ω1(O,O′) and

consider the commutative diagram of WO(R)-modules

P⋆
//

V fN♯
⋆

��

P = P⋆,0

V N♯

��
WO(R)⊗F fN ,WO(R) P⋆

��

// WO(R)⊗F fN ,WO(R) P⋆,0

��
R⊗wfN ,WO(R) P⋆ // // R⊗w′

fN ,WO(R) P⋆,0,

where N is chosen that large, such that the right vertical composite map is zero.

The nilpotence of P⋆ follows, since P⋆,i = F i
1(Q⋆,0) holds for each i = 1, . . . , f − 1

with the usual graduation and so the composite map

P⋆
V f(N+1)♯

−→ WO(R)⊗F f(N+1),WO(R) P⋆ → R⊗wf(N+1),WO(R) P⋆

is zero.

Let us now consider Ω2(O,O′). Here we obtain the commutative diagram of

WO(R)-modules

P⋆
//

V N♯
⋆

��

P =WO′(R)⊗WO(R) P⋆

V N♯

��
WO(R)⊗F fN ,WO(R) P⋆

��

// WO′(R)⊗F ′N ,WO′ (R) WO′(R)⊗WO(R) P⋆

��
R⊗wfN ,WO(R) P⋆ // R⊗w′

N ,WO′ (R) WO′(R)⊗WO(R) P⋆,

where N is chosen as above. The lower horizontal map is an isomorphism, from

which we can deduce the nilpotence of P⋆.
Now we shift our focus towards the totally ramified case. We get a commutative
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diagram of WO(R)-modules

P⋆
//

V N♯
⋆

��

P

V N♯

��
WO(R)⊗FN ,WO(R) P⋆

��

// WO′(R)⊗F ′N ,WO′ (R) P

��
R⊗wN ,WO(R) P⋆ // R⊗w′

N ,WO′ (R) P

withN as above. Since the lower horizontal map is an isomorphism the nilpotence

of P⋆ follows. �





Chapter 4

The stack of truncated

f-O-displays

In this chapter we assume that the reader is familiar with the basic terminology

of stacks, as it can be found in [LMB91]. We take the ideas of [Lau08], but apply

them not to the functors BTO resp. BT
(f)
O , but to the functors Ωi(O,O′) and

Γi(O,O′), where O → O′ is a nonramified / totally ramified extension of rings of

integers of non-Archimedean local fields of characteristic zero. Unless otherwise

stated, if we just talk about O (with no reference to an O′) then we just mean any

ring of integers of a non-Archimedean local field of characteristic zero; for given

f ≥ 1 and O, k is the residue field of O′, where O′ is the nonramified extension

of O of degree f , and R is an k-algebra. The primary ideas are essentially taken

from [Lau08], but with the definition of a truncated f -O-display inspired from

[Lau, Chapter 3].

4.1 Truncated f-O-displays

If we denote for an π-adic O-algebra R and a positive integer n the ring of

truncated ramified Witt vectors of length n by WO,n(R) and the kernel of w0

by IO,R,n then we have an O-algebra morphism Fn : WO,n+1(R) → WO,n(R)

induced by the Frobenius on WO(R) and the inverse of the Verschiebung of

WO(R) induces a
Fn-linear bijective map V −1

n : IO,R,n+1 → WO,n(R). If πR = 0,

the Frobenius induces an O-algebra endomorphism Fn of WO,n(R) and the ideal

IO,R,n+1 of WO,n+1(R) is a WO,n(R)-module. Since this Fn is obtained by the

map Fn :WO,n+1(R)→WO,n(R) because the (n+1)-th entry has no influence on

the value, this abuse of notation seems to be tolerable. A similar argumentation

establishes that IO,R,n+1 is a WO,n(R)-module, since for every lift of a fixed

81
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element of WO,n(R) to an element of WO,n+1(R) the multiplication with a fixed

element of IO,R,n+1 has the same value.

Definition 4.1.1. Let f ≥ 1, O as usual and R a k-algebra. An f-O-pre-display
over R is a sextuple P = (P,Q, ι, ε, F, F1), where P and Q are WO(R)-modules

with morphisms

IO,R ⊗WO(R) P
ε−→ Q

ι−→ P,

and F : P → P and F1 : Q → P are F f
-linear maps, such that ιε : IO,R ⊗WO(R)

P → P and ε(1 ⊗ ι) : IO,R ⊗WO(R) Q → Q are the multiplication morphisms

and F1ε =F f−1V −1 ⊗F holds. If P and Q are WO,n(R)-modules, we call P an

f -O-pre-display of level n.

A morphism between two f -O-pre-displays P,P ′ consists of a tuple of mor-

phisms (α0, α1), such that

IO,R ⊗WO(R) P
ε //

1⊗α1

��

Q
ι //

α0

��

P

α1

��
IO,R ⊗WO(R) P

′ ε′ // Q′ ι′ // P ′

commutes and α1 ◦ F1 = F ′
1 ◦ α0 and α1 ◦ F = F ′ ◦ α1 hold. It is easily seen

that we obtain an abelian category, named (f − pre-dispO /R), which contains

(f − dispO /R) as a full subcategory. We denote the abelian subcategory of f -O-
pre-displays of level n by (f − pre-dispO,n /R).

Definition 4.1.2. A truncated pair of level n over R is a quadruple B = (P,Q, ι, ε),

where P and Q are WO,n(R)-modules with module morphisms

IO,n+1,R ⊗WO,n(R) P
ε−→ Q

ι−→ P

such that

• ιε : IO,n+1,R ⊗WO,n(R) P → P and ε(1 ⊗ ι) : IO,n+1,R ⊗WO,n(R) Q → Q are

the multiplication maps, i.e., they coincide with

IO,n+1,R ⊗WO,n(R) P → IO,n,R ⊗WO,n(R) P
mult−−−→ P

and

IO,n+1,R ⊗WO,n(R) Q→ IO,n,R ⊗WO,n(R) Q
mult−−−→ Q,

respectively, where IO,n+1,R → IO,n,R is the restriction map and mult the

multiplication map,

• P is projective and of finite type over WO,n(R),

• Coker(ι) is projective over R and
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• We have an exact sequence

0→ JR,n+1 ⊗R Coker(ι)
ε→ Q

ι→ P → Coker(ι)→ 0,

where JR,n+1 is defined as the kernel of the restriction map WO,n+1(R)→
WO,n(R) and ε is induced by ε.

A normal decomposition for a truncated pair is a pair of projective WO,n(R)-

modules (L, T ) with L ⊆ Q and T ⊆ P , such that

L⊕ T ι+1−−→ P and L⊕ (IO,R,n+1 ⊗WO,n(R) T )
1+ε−−→ Q

are bijective morphisms. By the obvious generalization of [Lau, Lemma 3.3.]

every ramified truncated pair admits a normal decomposition .

Definition 4.1.3. A truncated f -O-display of level n over R is an f -O-pre-
display P = (P,Q, ι, ε, F, F1) of level n over R, such that (P,Q, ι, ε) is a truncated

pair of level n and the image of F1 generates P as a WO,n(R)-module.

The rank of P is defined as the rank of P over WO,n(R). We denote the

category of truncated f -O-displays of level n over R by (f − dispO,n /R). This is

a full subcategory of the category of f -O-pre-displays of level n over R.

If we are given a truncated pair (P,Q, ι, ε) with normal decomposition (L, T ), then

we have a bijection between the set of pairs (F, F1) such that (P,Q, ι, ε, F, F1) is

a truncated f -O-display and the set of F f
n -linear isomorphisms Ψ : L ⊕ T → P ,

such that Ψ|L = F1|L and Ψ|T = F |T . If L and T are free WO,n(R)-modules,

then Ψ is described by an invertible matrix with coefficients in WO,n(R). The

proof of the bijection is an obvious variation of [Zin02, Lemma 9] and the case,

when L and T are free, is a variation of the explanation after this Lemma. We

call (L, T,Ψ) a normal decomposition of P = (P,Q, ι, ε, F, F1).

Furthermore, we need to remark that morphisms (α0, α1) between two truncated

f -O-displays over level n, say P,P ′, may be described in a reduced way. If we

are given a normal decomposition (L, T ) of P, it suffices to know (α0|L, α1|T ),
since we obtain by the definition of a morphism that α1|ιL = ι′ ◦ α0|L and

α0|ε(IO,n+1,R⊗WO,n(R)T ) = ε′(1⊗ α1|T ) must hold.

All assertions from Lemma 3.5. to Proposition 3.14. in [Lau] are true in their

obvious generalization, and their proofs will be essentially the same, so we omit

most of them here. We will only prove Lemma 3.6. and Lemma 3.10., since we

need to know what truncation means.

Lemma 4.1.4. (cf. [Lau, Lemma 3.6.]) Let f ≥ 1, O and a morphism of

k-algebras β : R→ R′ be given. Then there is a unique base change functor

β⋆ : (f − dispO,n /R) → (f − dispO,n /R
′)



84 Chapter 4. The stack of truncated f -O-displays

together with a natural isomorphism

Hom(f−pre-dispO,n /R)(P, β⋆P ′) ∼= Hom(f−dispO,n /R′)(β⋆P,P ′),

for all truncated f -O-displays P of level n over R resp. P ′ of level n over R′.

Here β⋆ is the functor (f − pre-dispO,n /R
′)→ (f − pre-dispO,n /R) obtained by

restriction to scalars.

Proof: In terms of normal decompositions β⋆ is given by

(L, T,Ψ) 7→ (WO,n(R
′)⊗WO,n(R) L,WO,n(R

′)⊗WO,n(R) T,
F f
n ⊗Ψ).

The rest is obvious. �

Lemma 4.1.5. (cf. [Lau, Lemma 3.10.]) Let f ≥ 1, O and a k-algebra R be

given. Then there are unique truncation functors

τn : (f − dispO /R) → (f − dispO,n /R)

τn : (f − dispO,n+1 /R) → (f − dispO,n /R)

together with a natural isomorphism

Hom(f−pre-dispO /R)(P,P ′) ∼= Hom(f−dispO,n /R)(τnP,P ′),

if P is an f -O-display or a truncated f -O-display of level n+ 1 over R and P ′ a

truncated f -O-display of level n over R. These truncation functors are compatible

with base change.

Proof: In terms of normal decompositions τn is given by

(L, T,Ψ) 7→ (WO,n(R)⊗WO(R) L,WO,n(R)⊗WO(R) T,
F f
n ⊗Ψ).

The rest is obvious again. �

We now fix some integers h ≥ 0, f ≥ 1 and the ring O and denote by f −
DispO,n → Spec k the fibered category of truncated f -O-displays of level n and

rank h. Hence, f −DispO,n(SpecR) is the groupoid of truncated f -O-displays of
level n and rank h over R. There is an obvious morphism τO,n : f −DispO,n+1 →
f −DispO,n induced by the truncation functors.

Lemma 4.1.6. (cf. [Lau, Proposition 3.15.]) The fibered category f − DispO,n

is a smooth Artin algebraic stack with affine diagonal. The truncation morphism

f −DispO,n+1 → f −DispO,n is smooth and surjective.

Proof: By the generalization of [Lau, Proposition 3.14.], we know that f−DispO,n

is an fpqc stack. To clarify the affineness of the diagonal, we have to show that

for truncated f -O-displays P1 and P2 of level n and rank h over a k-algebra R



4.1. Truncated f -O-displays 85

the sheaf Isom(P1,P2) is represented by an affine scheme. By passing to an open

cover of SpecR, we may assume that P1 and P2 have normal decompositions

with free modules. The homomorphisms of the underlying truncated pairs are

clearly represented by an affine scheme. Commuting with F and F1 is a closed

condition and a homomorphism of truncated pairs is an isomorphism iff it in-

duces isomorphisms on Coker(ι) and Coker(ε), which is equivalent to demand

that two determinants are invertible. Hence, Isom(P1,P2) is represented by an

affine scheme.

For each integer integer d with 0 ≤ d ≤ h, let f − DispO,n,d be the substack

of f − DispO,n where Coker(ι) has rank d. We define the functor XO,n,d from

the category of affine k-schemes to (Sets) by defining XO,n,d(SpecR) as the set

of invertible WO,n(R)-matrices of rank h. Hence, XO,n,d is an affine open sub-

scheme of the affine space of dimension nh2 over k. We now define the morphism

πO,n,d : XO,n,d → f −DispO,n,d in the way that πO,n,d(M) is the truncated

f -O-display given by the normal representation (L, T,Ψ), where L =WO,n(R)
h−d,

T = WO,n(R)
d and M is the matrix representation of Ψ. We define the sheaf of

groups GO,n,d by associating to each k-algebra R the group of invertible matrices(
AB
CD

)
with A ∈ Aut(L), B ∈ Hom(T,L), C ∈ Hom(L, IO,R,n+1 ⊗WO,n(R) T ) and

D ∈ Aut(T ), where L and T are as above. GO,n,d is an affine open subscheme

of the affine space of dimension nh2 over k and πO,n,d is a GO,n,d-torsor. So we

see that f − DispO,n,d and f − DispO,n are smooth algebraic stacks over k. The

truncation morphism τO,n is smooth and surjective because it commutes with the

obvious projection XO,n+1,d → XO,n,d, which is smooth and surjective. �

For a truncated f -O-display P of level n over a k-algebra R there is a unique

morphism V ♯ : P → P (1) = WO,n(R) ⊗F
f
n ,WO,n(R)

P with V ♯(F1(x)) = 1 ⊗ x for

all x ∈ Q. The proof of this is fairly similar to the one of Lemma 2.1.4. V ♯ is

compatible with truncation. We call P nilpotent, if there is an m, such that the

m-th fold iterate of V ♯, i.e., the composite morphism P → P (1) → . . . → P (m),

is zero. Because IO,R,m is nilpotent, P is nilpotent, iff its truncation to level 1 is

nilpotent. An f -O-display over R is nilpotent iff all its truncations are nilpotent.

Lemma 4.1.7. (cf. [Lau, Lemma 3.17.]) There is a unique reduced closed

substack f − nDispO,n ⊂ f − DispO,n such that the geometric points of f −
nDispO,n are precisely the nilpotent truncated f -O-displays of level n. We have

the cartesian diagram

f − nDispO,n+1

��

// f − nDispO,n

��
f −DispO,n+1

// f −DispO,n .

In particular, f−nDispO,n+1 → f−nDispO,n is smooth and essentially surjective

on R-valued points for every R.
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Proof: Apart from the last assertion, this is the obvious generalization of a partial

result made in [Lau, Lemma 3.17.]. The smoothness and essential surjectivity

follow easily. �

Is is sensible to ask if it is possible to establish the analogous results (compared

to [Lau08, Chapter 1 and 2]) for truncated π-divisible O-modules of level n and

height h and then proceed as in the rest of [Lau08]. These results are indeed

true (see [Fal02]). Nevertheless, it is possible to use our established arguments

in the codomains of Ω1(O,O′),Ω2(O,O′),Γ1(O,O′) resp. Γ2(O,O′) in order to

establish that these functors are equivalences for all O′-algebras with π′ nilpotent

in them, under the assumption that the respective functor is fully faithful for all

O′-algebras with π′ nilpotent in them. For the fully faithfulness of the functors

we will establish a generalized version of Zink’s universal extensions in the next

chapter.

4.2 Applications to f-O-displays

Proposition 4.2.1. (cf. [Lau08, Proposition 1.2.]) Let f ≥ 1 and O be given.

For any positive integer h there is a sequence of finitely generated reduced k-

algebras B1 → B2 → . . . with faithfully flat smooth maps and a nilpotent f -O-
display P of rank h over B =

∪
Bi with the property that for any other nilpotent

f -O-display P ′ over a reduced k-algebra R and of rank h, there are is a sequence

R→ S1 → S2 → . . . of faithfully flat étale k-algebra morphisms and a k-algebra

morphism B → S =
∪
Si such that PS ∼= P ′

S .

Proof: We construct recursively an infinite commutative diagram

Y1

��

Y2oo

��

Y3oo

��

. . .oo

f − nDispO,1 f − nDispO,2
oo f − nDispO,3

oo . . . ,oo

where Ym = SpecBm for a finitely generated k-algebra Bm, such that Y1 →
f − nDispO,1 and Ym+1 → χm+1 = f − nDispO,m+1×f−nDispO,m

Ym are smooth

presentations. By Lemma 4.1.7 the morphisms Bm → Bm+1 are faithfully flat

and smooth. We have a canonical nilpotent f -O-display P over B = lim−→Bm.

A nilpotent f -O-display P ′ over a reduced k-algebra R is equivalent to a compati-

ble system of morphisms SpecR→ f−nDispO,m. For SpecS1 = SpecR×f−nDispO,1

Y1, there is a natural map SpecS1 → χ2 and for m ≥ 2 we have got for

SpecSm = SpecSm−1 ×χm Ym that there is a natural map SpecSm → χm+1.

Hence we obtain compatible isomorphisms τn(P)S ∼= τn(P ′)S over S =
∪
Sn,

where τn should be the truncation morphisms, hence we obtain PS ∼= P ′
S . Be-

cause a surjective smooth morphism has a section étale locally, we may replace

the Sn by an étale system. �
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Definition 4.2.2. (cf. [Lau08, Definition 5.4.]) A nilpotent f -O-display over a

k-algebra R is called of reduced type if all its truncations are in f − nDispO,m.

Proposition 4.2.3. (cf. [Lau08, Lemma 5.5.]) A nilpotent f -O-display over a

k-algebra R is of reduced type, iff there are k-algebra morphisms R → S ← A

with A reduced, S =
∪
Si for a system of étale faithfully flat k-algebra morphisms

R → S1 → S2 → . . ., and the base change of this f -O-display to S descends to

A.

Proof: While the backward direction is immediate, we need, in order to prove

the forward direction, the proof of Proposition 4.2.1. But here, we may drop the

equivalence condition in the first line of the second part, since we already demand

that our f -O-display is of reduced type. �

Unless otherwise stated, from now on until the end of this chapter, R,S, etc.

are just O′-algebras and not necessarily k-algebras.

Definition 4.2.4. We call a faithfully flat morphism of O′-algebras R → S an

admissible covering, if S ⊗R S is reduced.

The use of this Definition is the following: Let us assume that Ω1(O,O′),

Ω2(O,O′),Γ1(O,O′) or Γ2(O,O′) is fully faithful for all O′-algebras with π′ nilpo-

tent in them. If R→ S is an admissible covering over O′ with π′ nilpotent in R,

we may apply Proposition 2.2.10. So if we get that for a nilpotent f -O-display
P over R resp. nilpotent O′-display P over R the nilpotent f -O-display over S

resp. nilpotent O′-display over S obtained by base change lies in the image of the

corresponding functor over S, then P does so as well. All assertions we will need

about admissible coverings, can be found in [Lau08, Chapter 3], where the ring

morphisms have to be replaced by O′-algebra morphisms. The proof of [Lau08,

Proposition 3.4.] depends on [Lau08, Lemma 3.3.], which is not correct. In [Lau,

8.2.] it is clarified, how to prove the Proposition without using this Lemma.

Proposition 4.2.5. (cf. [Lau08, Proposition 4.4.,Lemma 6.1.]) Let O → O′ be

a nonramified / totally ramified extension. Assume that Ω1(O,O′),Ω2(O,O′),

Γ1(O,O′) or Γ2(O,O′) is fully faithful for all O′-algebras with π′ nilpotent in

them, then the respective functor is an equivalence for all such algebras.

Proof: It remains to show that Ω1(O,O′),Ω2(O,O′),Γ1(O,O′) resp. Γ2(O,O′)

is essentially surjective for all O′-algebras R with π′ nilpotent in R. We treat

only the Ω1(O,O′)-case, since the others follow analogously. At first we show

the assertion for all reduced k-algebras R, where k is always the residue field of

O′ here. Let P be a nilpotent f -O-display over R. With R → S ← B given as

in Proposition 4.2.1, PS descends to B. Since R → S is an admissible covering,

it is enough to show that Ω1(O,O′) is essentially surjective over B. When k′
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is an uncountable algebraically closed field of characteristic p extending k, then

B → B⊗kk
′ is an admissible covering and we may apply [Lau08, Proposition 3.2.]

to B ⊗k k
′ =

∪
Bi ⊗k k

′, so we may reduce to the base ring
∏
(B ⊗k k

′)m, where

the product runs through all maximal ideals m of B ⊗k k
′. We may reduce to

(B ⊗k k
′)m, since nilpotent f -O-displays are compatible with arbitrary products

of reduced local O′-algebras. The residue field of (B ⊗k k
′)m is k′ by [Lau08,

Lemma 4.3.] and we may apply [Lau08, Proposition 3.4.] to consider just the

completion of (B⊗k k
′)m, for which the assertion is already known by Proposition

3.3.6.

Now we consider general O′-algebras R with π′ nilpotent in R. By Proposition

3.3.5 it suffices to treat the case, where R is a k-algebra. Let P be a nilpotent f -O-
display overR. Because f−DispO,1 is of finite type, we obtain that f−nDispO,1 →
f −DispO,1 is finitely presented. Since P is modulo a nilpotent ideal of reduced

type, we may assume by Proposition 3.3.5 that P is of reduced type. Now let

R → S ← A be as in Proposition 4.2.3. Because Ω1(O,O′) fully faithful, it

suffices to show that PS lies in the image of Ω1(O,O′), which holds, since PS
descends to A, which is reduced, and the result follows by the first part of the

proof. �



Chapter 5

Crystals

In this section we associate to each nilpotent O-display and to each correspond-

ing π-divisible formal O-module a crystal and show that they are isomorphic on

the nilpotent ideal crystalline site of O-pd-thickenings. From this we can deduce

that BTO is faithful for all O-algebras with π nilpotent in them. For nilpo-

tent f -O-displays we will construct an extension with which we can establish

the fully faithfulness of Ω1(O,O′). Combining these results we obtain all desired

equivalences. The rings O,O′,O0 are always assumed to be rings of integers non-

Archimedean local fields of characteristic zero.

5.1 The crystal associated to f-O-displays

We need to have a look at the different types of crystalline sites (see [Zin02,

Remark after Theorem 46]).

Definition 5.1.1. Let X be a scheme over SpecO with π locally nilpotent in

OX (which should not be confused with O).

• The crystalline site consists of objects (U, T, δ), with U ⊂ X an open sub-

scheme, U → T a closed immersion over SpecO, with π locally nilpotent

on T , defined by an ideal J ⊂ OT and δ an O-pd structure on J (where

we extend Definition 2.3.2 trivially from an ideal of an O-algebra to J ),
which has to be compatible with the canonical O-pd structure on πO ⊂ O.

• The nilpotent ideal crystalline site consists of those objects of the crystalline

site, for which the ideal J is (locally) nilpotent.

89
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The nilpotent ideal crystalline site should not be confused with the (more

common) nilpotent crystalline site, which consists of those objects in the crys-

talline site, where the O-pd structure on J is (locally) nilpotent, which is a

stronger condition than to demand that J itself is (locally) nilpotent.

We letWO(Ocrys
X ) be the sheaf on the crystalline site, which associates to (U, T, δ)

the O-algebra WO(Γ(T,OT )). We call a crystal in WO(Ocrys
X )-modules a Witt

crystal. For an f -O-display P over an O-algebra R with π nilpotent in R we will

now define a Witt crystal KP on the crystalline site over SpecR. It suffices, to give

the value of KP for O-pd-thickenings SpecR′ → SpecS, where SpecR′ ↪→ SpecR

is an affine open neighbourhood. If the P-triple over S associated to PR′ looks

like (P̃ , F, F1) (see section 3.2) we define

KP(SpecR
′ → SpecS) = P̃ ,

which we will also denote by KP(S) if the setting is clear.

Definition 5.1.2. The sheaf KP on the crystalline site over SpecR is called the

Witt crystal associated to P. We define the Dieudonné crystal by

DP(S) = KP(S)/IO,SKP(S),

which is a crystal in Ocrys
SpecR-modules on the crystalline site.

We define for any topological O-pd-thickening (S, an)→ R′ the crystals by

KP(S) = lim←−
n

KP(S/an)

DP(S) = lim←−
n

DP(S/an).

It can be easily verified, that we can formulate the main assertions for triples for

topological O-pd-thickenings in an obviously generalized manner. Both crystals

are compatible with base change: If we consider a morphism of O-pd-thickenings
as in Section 3.2

S //

��

S′

��
R // R′

we obtain

KPR′ (S
′) ≃ WO(S

′)⊗WO(S) KP(S),

DPR′ (S
′) ≃ S′ ⊗S DP(S).

These isomorphisms are by obvious reasons also true, when we consider topolog-

ical O-pd-thickenings. Now let us consider the canonical morphism

w0 :WO(R)→ R.
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The kernel IO,R may be equipped with an O-pd-structure

γ(V w) = πq−2 V (wq) (5.1)

for all w ∈ WO(R). One easily verifies that this is indeed such a structure by

going to a suitable universal situation. The morphism w0 : WO(R) → R is a

topological O-pd-thickening, since w0 :WO,n(R)→ R are O-pd-thickenings with
an O-pd-structure given by γ. If S → R is an O-pd-thickening with kernel a, then

a considered as an ideal of WO(S) (by (2.13)) has the same O-pd-structure as

considered as an ideal of S. The kernel of the composite map WO(S)→ S → R

is IO,S ⊕ a, where on both summands we have O-pd-structures, so this follows

for the whole kernel. Hence, WO(S) → R is a topological O-pd-thickening by

considering WO,n(S) → R for each n. For the following Theorem we need to

introduce the Cartier morphism

∆ :WO(R)→WO(WO(R)),

which is uniquely determined for every O-algebra by functoriality and

ŵn(∆(ξ)) =Fn
ξ

for all ξ ∈ WO(R), where ŵn : WO(WO(R)) → WO(R) should denote the n-th

Witt polynomial for WO(WO(R)). Furthermore, the following relations hold for

each n and ξ ∈WO(R) (the operators belonging toWO(WO(R)) are marked with

a hat):

WO(wn)(∆(ξ)) =Fn
ξ

∆(F ξ) =F̂ (∆(ξ)) =WO(
F )(∆(ξ))

∆(V ξ)−V̂ (∆(ξ)) = [V ξ, 0, 0, . . .]

By passing to a suitable universal situation, these equations are easily verified.

Theorem 5.1.3. (cf. [Zin02, Proposition 53, Corollary 56]) Let S → R be an O-
pd-thickening with kernel a and P = (P,Q, F, F1) be a nilpotent f -O-display over

R. Let T = (P̃ , F, F1) be the unique P-triple over S and T the unique P-triple
related to the topological O-pd-thickening WO(S) → R with kernel IO,S ⊕ a.

Then

T = (WO(WO(S))⊗∆,WO(S) P̃ , F, F1)

holds, where F and F1 are uniquely determined by the equations

F (ξ̂ ⊗ x) = F̂ f
ξ̂ ⊗ Fx

F1(ξ̂ ⊗ y) = F̂ f
ξ̂ ⊗ F1y

F1(
V̂ ξ ⊗ x) = F̂ f−1

ξ̂ ⊗ Fx
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for all ξ̂ ∈ WO(WO(S)), x ∈ P̃ and y ∈ Q̂, where Q̂ is the inverse image of Q by

the map P̃ → P . Then we have

KP(S) = P̃ =WO(S)⊗ŵ0
(WO(WO(S))⊗∆,WO(S) P̃ ) = DP(WO(S)).

IfWO(R)→ S is a morphism of (topological) O-pd-thickenings over R, we obtain
that

KP(S) ≃ WO(S)⊗WO(R) KP(R)

DP(S) ≃ S ⊗WO(R) KP(R)

hold, where WO(R)→WO(S) is given by

WO(R)
∆→WO(WO(R))→WO(S).

The proof of [Zin02, Proposition 53] is absolutely analogous to the situation

here, so we omit it. The last assertion of the Theorem follows easily from the first

one by considering the trivial O-pd-thickening R → R and then making a base

change with respect to WO(R) → S. The most important situations, in which

we will use this fact, are for S =WO,n(R).

5.2 Universal extensions and the crystal of Grothendieck-

Messing

In this section we want to introduce more general (universal) extensions compared

to the ones introduced by Zink and show the existence of universal extensions. For

S an O-algebra and L an S-module, we may define the group C(L) =
∏

i≥0 V
iL.

We may turn C(L) into an EO,S-module by the equations

ξ(
∑
i≥0

V ili) =
∑
i≥0

V iwn(ξ)li,

V (
∑
i≥0

V ili) =
∑
i≥0

V i+1li,

F (
∑
i≥0

V ili) =
∑
i≥1

V i−1πli,

for all ξ ∈ WO(S) and li ∈ L. We may interpret C(L) as the Cartier module of

the additive group of L. If L̂+ denotes the functor from NilS to (O −modules )

defined by

L̂+(N ) = (N ⊗S L)
+

for each N ∈ NilS , then there is a functor isomorphism

N ⊗S L ≃ ŴO(N )⊗EO,S
C(L) (5.2)
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given by n ⊗ l 7→ [n] ⊗ V 0l for n ∈ N and l ∈ L. The inverse mapping is given

by sending w ⊗
∑

i≥0 V
ili to

∑
i≥0wi(w) ⊗ li for w ∈ ŴO(N ) and li ∈ L for all

i ≥ 0 (cf. [Zin86, (2.1) Lemma.]).

Definition 5.2.1. Let S → R be an O-pd-thickening with kernel a and G a

(π-divisible) formal O-module over R with Cartier module M , which we consider

as an EO,S-module. Then an extension (L, ι,N, κ,M) of M by the S-module L

is an exact sequence of EO,S-modules

0→ C(L)
ι→ N

κ→M → 0,

with N a reduced EO,S-module and aN ⊂ V 0L, where a ⊂ WO(S) ⊂ EO,S is

given by (2.13). For simplicity, we just write (with abuse of notation) (L,N,M)

instead of (L, ι,N, κ,M).

Now let G,G′ be two formal O-modules over R, M,M ′ their Cartier modules

and β :M →M ′ a morphism between them over R. Furthermore, let (L,N,M)

and (L′, N ′,M ′) be extensions of M and M ′. Then a morphism of extensions

(L,N,M) → (L′, N ′,M ′) consists of a morphism of S-modules φ : L → L′, a

morphism of EO,S-modules u : N → N ′ and the EO,R-linear morphism β, such

that the diagram of EO,S-modules

0 // C(L) //

C(φ)
��

N

u

��

// M

β

��

// 0

0 // C(L′) // N ′ // M ′ // 0

is commutative, where C(φ) is given by sending V il to V iφ(l) for each i ≥ 0 and

l ∈ L.

Definition 5.2.2. With the above notation, we define the category Ext1,S→R by

the objects (L,N,M), such that M is the Cartier module of a π-divisible formal

O-module over R. The morphisms are those previously described.

In [Zin02, 3.2. The universal extension] we received a geometric interpretation

of the extensions in Zink’s sense in order to utilize [Mes72, Chapt. IV Theorem

(2.2)]. The generalization of Messing’s result can be found in [FGL07, Theoreme

B.6.3.]. In these Theorems the divided power respectively the O-pd structure on

the kernel a of the surjection of rings S → R was required to be nilpotent. Luckily,

since we deal only with p-divisible formal groups respectively π-divisible formal

O-modules we can overcome the nilpotence condition of the O-pd structure (cf.

[Zin, Die Universelle Erweiterung nach Grothendieck und Messing, Theorem 3]).

First we establish the existence of a universal extension over an O-algebra R

with π nilpotent in R, for which we consider [FGL07, Annexe B.2]. We should

remark that in this book it is only referred to coherent sheaves in this particular
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section, nevertheless all assertions also work when we take the sheaves to be quasi-

coherent (which is in fact more natural as a generalization of [Mes72]). From

now on, if we write OF we mean the usual O, where the F should indicate the

non-Archimedean local field of characteristic zero. This convention is sometimes

necessary in order to stress that this O is not the structure sheaf of a scheme.

In the following Definition and Proposition and the discussion after them, we

consider π-divisible formal OF -modules in the sense of Messing / Fargues, i.e.,

fppf-sheaves in OF -modules with additional conditions.

Definition 5.2.3. (cf. [FGL07, Definition B.3.2.]) Let H be a π-divisible formal

OF -module over S = SpecR, with R an OF -algebra and πNR = 0. An OF -vector

extension of H (by V ) is an extension

0→ V → E → H → 0

of sheaves of OF -modules over Sfppf , such that V is a quasi-coherent OS-module,

V is the associated fppf -sheaf and the induced action of OF on LieE is strict.

Here LieE is defined as the kernel of f⋆f
⋆E

ε=0→ E, where f : Spec(R[ε]) →
SpecR = S.

As in [Mes72], we have Hom(H,W ) = 0 for each quasi-coherent OS-module

W . Hence, any extension of H by W is uniquely determined by its class in

Ext1(H,W ), because the extensions do not admit automorphisms. Therefore, we

may introduce the notion of a universal O-vector extension: This is an O-vector
extension

0→ VO(H)→ EO(H)→ H → 0,

such that for any morphism of π-divisible formal O-modules u : H → H ′ and any

O-vector extension
0→W → E → H ′ → 0

there are unique morphisms EO(H)→ E and VO(H)→W , which is induced by

an R-linear morphism VO(H)→W , such that the diagram

0 // VO(H) //

��

EO(H) //

��

H //

u

��

0

0 // W // E // H ′ // 0

is commutative.

Proposition 5.2.4. (cf. [FGL07, Proposition B.3.3., Remarque B.3.6.]) With

the notation as above, there exists a universal O-vector extension. Furthermore,

EO(H) is a formal O-module, VO(H) and LieEO(H) are corresponding to finite

projective R-modules and there is an exact sequence

0→ VO(H)→ LieEO(H)→ LieH → 0.
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The proof of Fargues first uses that there is a universal vector extension for

the case OF = Zp. We consider I = ker(OS ⊗Zp OF → OS) and construct

0 // VZp(H) //

��

EZp(H) //

��

H // 0

0 // VZp(H)/I · LieEZp(H) // Ẽ // H // 0,

where Ẽ = VZp(H)/I · LieEZp(H)
⨿

VZp (H)EZp(H) = EZp(H)/I · EZp(H). This

is possible since the OF -action on H as a p-divisible formal group induces OF -

actions on VZp(H) and EZp(H) (cf. [Mes72, Chapt. IV Proposition (1.15)]). Then

the lower horizontal sequence is the universal one as in [FGL07]. We only have to

check that in the proof of the universality of the constructed sequence, we may

use quasi-coherent modules as well as coherent ones and that we can consider

morphisms of π-divisible formal O-modules H → H ′ and O-vector extensions

of H ′ than just the identity morphism H → H and O-vector extensions of H

(where we use [Mes72, Chapt. IV Proposition (1.15)] again), so the proof works

completely in the same manner.

We need to remark that formal O-modules in Zink’s sense and in Messing’s/

Fargues’ sense are not the same, i.e., the first ones are functors from NilR to

the category of abelian groups equipped with a strict O-action, while the second

ones are fppf-sheaves over SpecR in O-modules, such that the O-action is strict.

However, we can overcome this problem by associating to a formal O-module

over R, say G, in Zink’s sense an fppf-sheaf in the following way: Let S be an

R-algebra with nilradical N . Then we define

G′(S) = lim−→
B=(x1,...,xn)⊂N

G(B),

where the colimes runs over each finitely generated ideal B contained in N .

It is obvious that each such B is in NilR, hence the definition makes sense.

Conversely, given a formalO-moduleG′ in Messing’s / Fargues’ sense over SpecR,

we associate a functor G : NilR → (abelian groups) by defining

G(N ) = ker(G′(R⊕N )→ G′(R)),

where N ∈ NilR and the O-algebra structure on R ⊕ N is given by (2.5). The

strict O-action on G is obtained by obvious arguments. It needs to be checked

that these associations do indeed deliver a formal O-module in the sense of the

other definition and that they are inverse to each other, which is left to the

reader. Hence, after considering the morphisms we obtain an equivalence of the

categories of formal O-modules in both senses. The π-divisible formal O-modules

correspond to each other.
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Definition 5.2.5. Let R be an O-algebra with π nilpotent in R. A vector group

associated to an R-module M is the functor M : NilR → (O − modules) by

N →M ⊗R N . A morphism of vector groups M → N for two R-modules M,N

is a morphism of functors induced by an R-module morphism M → N . Let G be

a π-divisible formal O-module (in the sense of Zink) over R. An O-extension of

G by the finite projective R-module M is an exact sequence of formal O-modules

over R

0→M → E → G→ 0. (5.3)

By the previous Proposition and the above translation we obtain:

Proposition 5.2.6. (cf. [Zin, Die Universelle Erweiterung nach Grothendieck

und Messing, Theorem 2]) Let G be a π-divisible formal O-module (in the sense

of Zink) over an O-algebra R with π nilpotent in R. Then there is a universal

O-extension of formal O-modules over R

0→ VO(G)→ EO(G)→ G→ 0. (5.4)

This means, given a morphism f : G → H of π-divisible formal O-modules over

R and an O-extension
0→M → E → H → 0, (5.5)

there is a unique morphism ofR-modules VO(f) : VO(G)→M (inducing VO(G)→
M) and a unique morphism of formal O-modules EO(G)→ E over R, such that

the diagram

0 // VO(G) //

��

EO(G) //

��

G //

��

0

0 // M // E // H // 0

commutes.

It is also possible to apply the argumentation Fargues used to establish Propo-

sition 5.2.4 to [Zin, Die Universelle Erweiterung nach Grothendieck und Messing,

Theorem 2] and one would obtain this result for π-divisible formal O-modules

in Zink’s sense directly. From now on, (π-divisible) formal O-modules are only

considered in the sense of Zink (i.e., as functors from NilR to the category of

abelian groups with an attached strict O-action).
Now we come to the construction of the exponential, for which the following

Proposition will be essential.

Proposition 5.2.7. Let S be an O-algebra and a ⊂ S an ideal equipped with

an O-pd structure γ. Then for any nilpotent S-algebra N the algebra a ⊗S N
inherits a nilpotent O-pd structure γ̃ from a which is uniquely determined by

γ̃(a⊗ n) = γ(a)⊗ nq for a ∈ a and n ∈ N .
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Proof: We only need to refer to the proof of [Mes72, Chapter III, Lemma (1.8)],

where we define the map φ : S(a×N ) → a⊗N by the formula

φ(

l∑
i=1

si(ai, ni)) =

l∑
i=1

γ(ai)⊗ (sini)
q +

∑
(

(
q

i1, . . . , il

)
/π)

l∏
j=1

(sjaj ⊗ nj)ij .

Here the last sum runs over all l-tuples (i1, . . . , il) with ij > 0 and
∑l

j=1 ij = q.

A similar argumentation, compared to the one there, for our φ establishes the

map γ̃. �

Before we can construct the exponential, we first need a reformulated state-

ment of Lemma 2.4.4. Let S be an O-algebra. By utilizing that Drinfeld’s functor

between reduced EO,S-modules and formal O-modules over S is given by sending

M to ŴO(−)⊗EO,S
M by Proposition 2.4.6, we get for each formal O-module G

over S and each nilpotent S-algebra N equipped with a nilpotent O-pd structure

an isomorphism

logG(N ) : G(N )→ LieG⊗S N .

Definition 5.2.8. Let G be a formal O-module over an O-algebra S and a ⊆ S
be an ideal equipped with an O-pd structure. We define the exponential

expG : a⊗ LieG→ G

by

a⊗ LieG(N ) = a⊗S N ⊗S LieG
log−1

G (a⊗SN )
−→ G(a⊗S N )→ G(N )

for each N ∈ NilS , where logG is defined as right above and the last map is

induced by the product morphism a⊗S N → N .

The Definition makes sense, since a ⊗S N inherits by Proposition 5.2.7 a

nilpotent O-pd structure and logG(a⊗S N ) is an isomorphism.

Theorem 5.2.9. (cf. [Zin, Die Universelle Erweiterung nach Grothendieck und

Messing, Theorem 3]) Let S be an O-algebra with π nilpotent in S, a ⊂ S an ideal

equipped with an O-pd structure and H1,H2 two π-divisible formal O-modules

over S with reductions to S/a = R, say H1,R,H2,R. Let

0→ V2 → E2 → H2 → 0

be a (not necessarily universal) O-extension of H2. For a given morphism f :

H1,R → H2,R, there exists a unique morphism g : EO(H1) → E2, such that for

each morphism u : VO(H1)→ V2 of vector groups, which lifts VO(f) : VO(H1,R)→
V2,R, we obtain, with the morphism given as in the diagram

VO(H1)

u

��

� � i1 // EO(H1)

g

��
V2

� �

i2
// E2,
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that g ◦ i1 − i2 ◦ u factors as

VO(H1)→ a⊗ LieE2

expE2→ E2,

where the first map is induced by an S-module morphism VO(H1)→ a⊗ LieE2.

We omit the proof, since it is the obvious generalization of the referenced

source.

Now we are going to introduce a category of extensions, which is similar to the

one explained in [RZ96, 5.19]. Let S → R be an O-pd-thickening. We consider

sextuples (W, ι, E, ρ, G̃,G), where G̃ is a π-divisible formal O-module over S,

G its base change to R, E a formal O-module over S and W a vector group

associated to a finite projective S-module, such that ι : W → E and ρ : E → G̃

induce an O-extension of G̃

0→W→ E → G̃→ 0.

A morphism (W, ι, E, ρ, G̃,G) → (W′, ι′, E′, ρ′, G̃′, G′) is a tuple (v, β), where

v : E → E′ is a morphism of formal O-modules over S and β a morphism of

formal O-modules G→ G′ over R, which gives rise to the commutative diagram

0 // WR

v0
��

ιR
// ER

//

vR
��

G //

β

��

0

0 // W′
R

ι′R

// E′
R

// G′ // 0,

where v0 is required to be a morphism of vector groups. Furthermore, we require

that for each lifting of v0 to a morphism of vector groups ṽ0 : W→W′ the map

ι′ ◦ ṽ0 − v ◦ ι : W→ E′

factors over

W ξ→ a⊗S LieE′ expE′→ E′,

where ξ is a morphism of vector groups.

Definition 5.2.10. We define the category Ext2,S→R by the above objects and

by the above morphisms.

It is essential to know how to switch between the extensions of Definition

5.2.2 and the extensions of Definition 5.2.10 precisely in order to utilize Theorem

5.2.9 for the extensions in Ext1,S→R. But before we can give the Theorem which

explains this to us, we need to understand the exponential mapping in [Zin86].
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Proposition 5.2.11. (cf. [Zin86, (2.3) Satz., (2.11) Satz.]) Let S → R be an O-
pd-thickening with kernel a,M ′ a reduced EO,S-module andM = EO,R⊗EO,S

M ′.

Then there is an exact sequence of EO,S-modules

0→ C(a⊗S M
′/VM ′)

exp→ M ′ →M → 0.

Here the map exp is given by sending V i(a ⊗m) to V i log−1(a, 0, . . .)m, where

log is given by (2.9). By passing over to functors from NilR to (O − modules )

via ŴO(−)⊗EO,R
K for K = C(a⊗S M

′/VM ′),M ′, we obtain the map

expG′ : a⊗S LieG′ → G′,

where G′ is the formal O-module over S associated toM ′, where we have utilized

(5.2) for obtaining ŴO(−)⊗EO,R
C(a⊗S M

′/VM ′) ≃ a⊗S LieG′ .

Theorem 5.2.12. Let S → R be an O-pd-thickening with nilpotent kernel a.

Then there is an equivalence of Ext1,S→R and Ext2,S→R, such that

Ext1,S→R //

��

Ext2,S→R

tthhhhhhhhhhhhhhhhhhh

(π − divisible formal O −modules/R)

is commutative. (The Exti,S→R lie over the category of π-divisible formal O-
modules over R.)

Proof: Let (W, ι, E, ρ, G̃,G) be an object of Ext2,S→R andW the finite projective

S-module associated to W. We consider the O-extension of formal O-modules

over S

0→W→ E → G̃→ 0, (5.6)

Translating this to Cartier modules, we obtain that

0→ C(W )→ME →M
G̃
→ 0

is exact. We now consider the exact sequence

0→ C(aLieM
G̃
) = EO,aMG̃

→M
G̃
→MG → 0

of Proposition 5.2.11. The inverse image of C(aLieM
G̃
) by the morphismME →

M
G̃

is C(W + aLieME). So if we set L = W + aLieME , we obtain that the

exact sequence

0→ C(L)→ME →MG → 0

is an extension in the sense of Definition 5.2.1, if aME ≃ aLieME holds, but this

follows easily by bearing in mind that aV =F a = 0 holds. Hence, aME ⊂ V 0L
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and we obtain an object (L,ME ,MG) of Ext1,S→R.

Now assume that we are given an extension

0→ C(L)→ N →M =MG → 0

in Ext1,S→R. Since M/VM is a finitely generated projective R-module, we may

lift it by Proposition 2.1.2 uniquely up to isomorphism to a finitely generated

projective S-module P . We consider now any map τ which makes the diagram

N/V N //

τ
%%LLLLLLLLLLL

M/VM

P

OO
(5.7)

commutative. The existence of τ is guaranteed by the universal property of

projective modules (for N/V N). With the help of the Nakayama lemma we

obtain that τ is surjective, so the sequence

0→W = ker τ → N/V N → P → 0

is exact. Furthermore, we have L =W + a(N/V N) ⊂ N/V N . We now consider

M̃ = N/C(W ) and claim that this module is a reduced EO,S-module. For this

purpose we consider the commutative diagram

0

��

0

��

ker(V : M̃ → M̃)

��
0 // C(W ) //

V
��

N //

V

��

M̃

V
��

// 0

0 // C(W ) //

��

N //

��

M̃

��

// 0

0 // W //

��

LieN //

��

Lie M̃ = P

��

// 0

0 0 0 ,

where each row and column is exact. Via the snake lemma we obtain that V :

M̃ → M̃ is injective. Since Lie M̃ = P is a finitely generated projective S-module,

we only need to show lim←− M̃/V kM̃ = M̃ . By generalizing the previous diagram

via taking V k instead of V , we obtain the exact sequences

0→ C(W )/V kC(W )→ N/V kN → M̃/V kM̃ → 0

and since C(W )/V k+1C(W ) → C(W )/V kC(W ) is surjective for each k ≥ 0, we

obtain by a standard result that the sequence

0→ C(W ) = lim←−C(W )/V kC(W )→ N = lim←−N/V
kN → lim←− M̃/V kM̃ → 0
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is exact. But, because of the exactness of

0→ C(W )→ N → M̃ → 0,

the canonical morphism M̃ → lim←− M̃/V kM̃ must be an isomorphism. Hence, M̃

corresponds to a formal O-module G̃ over S, which lifts G. Since a is nilpotent,

G̃ is π-divisble by [Zin84, 5.12 Korollar]. Hence, the previous exact sequence

corresponds to an O-extension of formal O-modules over S

0→W ι→ E
ρ→ G̃→ 0

and we obtain an object (W, ι, E, ρ, G̃,G) of Ext2,S→R. It is easily checked that

these two associations are inverse to each other.

We now focus on the morphisms of each category. Let (v, β) : (W, ι, E, ρ, G̃,G)→
(W′, ι′, E′, ρ′, G̃′, G′) be a morphism in Ext2,S→R, where W resp. W′ is associated

to the finite projective S-module W resp. W ′. From v we obtain a morphism of

EO,S-modulesME →ME′ . With the notation as for the definition of a morphism

in Ext2,S→R, we take a lifting of v0 : WR →W′
R to a morphism of vector groups

ṽ0 : W→W′. Since the diagram

W ι //

ṽ0
��

E

v

��
W′

ι′
// E′

fails to be commutative by a map

W→ a⊗S LieE′ expE′→ E′,

where W→ a⊗S LieE′ is induced by an S-module morphismW → a⊗SLieE
′ =

aLieE′, we obtain, with β⋆ : MG → MG′ the morphism of EO,R-modules corre-

sponding to β, that the first vertical morphism in the commutative diagram

0 // C(L) = C(W + aLieE) //

��

ME
//

��

MG
//

β⋆

��

0

0 // C(L′) = C(W ′ + aLieE′) // ME′ // MG′ // 0

is induced by maps from aLieE → aLieE′, W → W ′ and the nontrivial W →
aLieE′ from above. Hence, the first vertical map is induced by a module mor-

phism and we obtain a morphism in Ext1,S→R.

Conversely, let us start with a morphism in Ext1,S→R, say

0 // C(L) = C(W + aLieE)
κ //

C(φ)
��

ME
//

u

��

MG
//

β⋆

��

0

0 // C(L′) = C(W ′ + aLieE′)
κ′

// ME′ // MG′ // 0,
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where we take the sum respresentation of L and L′ from the description of the

objects (see above). Once we make the base change from S to R, we obtain a

commutative diagram of EO,R-modules

0 // C(WR) //

C(φR)
��

ME,R //

uR

��

MG
//

β⋆

��

0

0 // C(W ′
R)

// ME′,R // MG′ // 0,

where the columns are exact. When we take the morphism of formal O-modules

v : E → E′ corresponding to the morphism u : ME → ME′ and β : G → G′

the morphism corresponding to β⋆, then we claim that we obtain a morphism

(v, β) : (W, ι, E, ρ, G̃,G)→ (W′, ι′, E′, ρ′, G̃′, G′), where domain and codomain of

this morphism correspond to (L,ME ,MG) and (L′,ME′ ,MG′), respectively. First

of all, by base change to R, we obtain by the above diagram that the diagram of

formal O-modules over R

0 // WR
//

��

ER
//

��

G //

β

��

0

0 // W′
R

// E′
R

// G′ // 0

is commutative and WR → W′
R is a morphism of vector groups. Now let φ̃ :

W → W ′ be any lifting of φR : WR → W ′
R. We consider the (not necessarily

commutative) diagram of EO,S-modules

C(W )

C(φ̃)
��

κ // ME

u

��
C(W ′)

κ′
// ME′ .

Since its reduction to R is commutative, we obtain with

α = u ◦ κ− κ′ ◦ C(φ̃) : C(W )→ME′

that the diagram of EO,S-modules

C(W )

��

α // ME′

ω
��

C(WR) 0
// ME′

R
,

with ω the base change morphism, is commutative. Hence, α factorizes as

C(W )→ C(a⊗ LieME′)
exp→ ME′ ,
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so by Proposition 5.2.11 we obtain the demanded lifting property of a morphism

in Ext2,S→R. Hence, the tuple (v, β) is indeed a morphism in Ext2,S→R.

This establishes the equivalence and it is obvious that the diagram in the assertion

of the Theorem commutes. �

With the help of the previous Theorem we receive a translated statement

of Theorem 5.2.9 for the extensions in Ext1,S→R when the kernel of S → R is

nilpotent:

Theorem 5.2.13. (c.f. [Zin02, Theorem 92.]) If S → R is an O-pd-thickening
with nilpotent kernel and G a π-divisible formal O-module over R, then there is a

universal extension (Luniv, Nuniv,MG) ∈ Ext1,S→R. Here the universality means,

for any π-divisible formal O-module G′ over R, any morphism of EO,R-modules

β : MG → MG′ and any extension (L,N,MG′) ∈ Ext1,S→R, there is a unique

morphism

(φ, u, β) : (Luniv, Nuniv,MG)→ (L,N,MG′).

Definition 5.2.14. With the notation as above, we define the crystal of Grothendieck-

Messing on the nilpotent ideal crystalline site by

DG(S) = LieNuniv.

It is clear that in order to check the universality of a given extension, say

(L,N,M), we only have to verify that there is a unique morphism to each exten-

sion (L′, N ′,M), with the morphism M →M the identity.

5.3 Comparision of the crystals and the generalized main

Theorem of display theory

Our next aim is to give an explicit description of the universal extension for

G = BTO(P,−), where P is a nilpotentO-display. The proof of Proposition 5.3.4,

in which we get such a description, basically reduces to trivial O-pd-thickenings
k → k in the end, where k is a perfect field extending of the residue field of O.
In this case we can work fairly well with the obvious generalization of the results

made in [Zin86, 2. Liftungen von formalen Gruppen].

Proposition 5.3.1. (cf. [Zin86, (2.5) Satz]) Let k be a perfect O-algebra with

πk = 0 and τ : k′ → k an O-pd-thickening over WO(k) (i.e., τ is an O-pd-
thickening, where ker τ is equipped with an O-pd-structure γτ together with an

O-algebra morphism φ : WO(k) → k′, such that w0 = τ ◦ φ holds and φγ(x) =

γτφ(x) is fulfilled for all x ∈ IO,k, where γ is given by (5.1) ∗). If M is a reduced

∗The last condition only makes sense, since necessarily φ(IO,k) ⊆ ker τ .
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EO,k-module, such that F :M →M is an injection and V nilpotent on M/FM ,

then for any extension

0→ C(L)→M ′ →M → 0

in Ext1,k′→k there is a uniquely determinedWO(k)[F ]-linear section σ :M →M ′,

such that σ(V m)− V σ(m) ∈ V 0L for each m ∈M .

With k′ → k as in the Proposition, we define the category ofWO[F ]-trivialized

extensions by the objects (E, σ), where E is any extension

0→ C(L)→M ′ →M → 0

in Ext1,k′→k, i.e., the conditions in the Proposition forM do not necessarily hold,

and σ : M → M ′ a WO(k)[F ]-linear section, such that σ(V m) − V σ(m) ∈ V 0L

for eachm ∈M . The morphisms between the objects are the morphisms between

the extensions respecting the sections.

The category H consists of objects (M,T, t, φ), where M is a reduced EO,k-

module, T a finitely generated projective k′-module and t and φ are k′-linear

maps, such that

k′ ⊗WO(k) M
t //

��

T

φ

��
k ⊗WO(k) M // M/VM

is commutative. A morphism (M,T, t, φ) → (M ′, T ′, t′, φ) between two such

objects consists of an EO,k-module morphism M → M ′ and a morphism of k′-

modules T → T ′, such that the obvious compatibility with the above commutative

diagram for both objects is fulfilled.

If we are given a WO[F ]-trivialized extension (with the notation as above), then

the section σ defines a WO(k)-linear map M → M ′/VM ′ or equivalently a k′-

linear map

t : k′ ⊗WO(k) M →M ′/VM ′.

Because σ is a section, we obtain that the diagram

k′ ⊗WO(k) M
t //

��

M ′/VM ′

φ

��
k ⊗WO(k) M // M/VM

is commutative, where φ is the obvious map induced by the extension. Hence

the following assertion makes sense:

Proposition 5.3.2. (cf. [Zin86, (2.6) Satz]) The functor given by sending (E, σ)

to (M,M ′/VM ′, t, φ) defines an equivalence of categories between the WO[F ]-

trivialized extensions and the category H.



5.3. Comparision of the crystals and the generalized main Theorem of
display theory 105

In the original source T needs not to be finitely generated and projective

and the M and M ′ only need to be V -reduced (i.e., they are modules over the

Cartier ring where all conditions hold for reduced Cartier modules apart from

the conditions on the tangential spaces), but a close look on the proof in the

referred source yields that we can require the stronger conditions and this in the

generalized setting for O. Since we will only deal with the trivial case that k = k′

is a perfect field of characteristic p, which extends the residue field of O, we will

assume this for the following discussion (this makes it trivial that M/πM is a

free/projective k-module for a reduced EO,k-module M). We now consider for H

the fiber over a reduced EO,k-module M , such that the conditions of Proposition

5.3.1 hold. Since M/πM is finitely generated and free over k by considering the

exact sequence of k-modules

0→M/FM
V→M/πM →M/VM → 0,

we obtain that k⊗WO(k)M is finitely generated and free over k. Hence, we obtain

that there is an initial object in H(M) given by (M,k ⊗WO(k) M, id, ρ), where

ρ is the obvious mapping. By Proposition 5.3.1, there is an one-to-one corre-

spondence between the extensions of M in Ext1,k→k and the WO[F ]-trivialized

extensions lying over M . Hence, (M,k ⊗WO(k) M, id, ρ) corresponds to the uni-

versal extension.

Lemma 5.3.3. Let S → R be an O-pd-thickening and P = (P,Q, F, F1) a

nilpotent f -O-display over R. By Proposition 3.2.5 there exists a unique P-triple
(P̃ , F, F1) over S. The exact sequence of EO,S-modules

0→ C(Q̂/IO,SP̃ )→ EO,S ⊗WO(S) P̃ /U →M(P)→ 0 (5.8)

lies in Ext1,S→R, where the second arrow maps y ∈ Q̂ to V f ⊗ F1y − 1 ⊗ y, the
third arrow is given by the canonical map P̃ → P and U is the EO,S-submodule

of EO,S ⊗WO(S) P̃ generated by (F ⊗ x− V f−1 ⊗ Fx)
x∈P̃ .

Proof: It is not too hard to verify that the module N in the middle of sequence

(5.8) is a reduced Cartier module and from the canonical map P̃ → EO,S⊗WO(S)P̃

we obtain an isomorphism P̃ /IO,SP̃ ≃ N/V N . We need to check the well-

definedness of the mapping C(Q̂/IO,SP̃ ) → N . The mapping Q̂ → N given by

y 7→ V f ⊗ F1y − 1⊗ y is a group morphism. The subgroup IO,SP̃ of Q̂ is in the

kernel since for each w ∈WO(S) and x ∈ P̃

V f ⊗ F1
V wx− 1⊗V wx = V f ⊗F f−1

wFx− 1⊗V wx =

V wV f−1 ⊗ Fx− 1⊗V wx = V wF ⊗ x− 1⊗V wx =V w ⊗ x− 1⊗V wx = 0

holds. By representing Q̂ as aT̃ ⊕ IO,ST̃ ⊕ L̃, where a is embedded in WO(S)

as usual and L̃ and T̃ are liftings of the modules corresponding to a normal
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decomposition P = L⊕ T , we obtain readily that

F (V f ⊗ F1y − 1⊗ y) = 0

holds for y ∈ Q̂, so we obtain that the image of Q̂ in N is an S-module morphism

in a natural way, i.e., via

s ⋆ (V f ⊗ F1y − 1⊗ y) = [s](V f ⊗ F1y − 1⊗ y)

for s ∈ S and y ∈ Q̂. This makes sense, since for s, s′ ∈ S and y ∈ Q̂, we have

s ⋆ (V f ⊗ F1y − 1⊗ y) + s′ ⋆ (V f ⊗ F1y − 1⊗ y) =

([s] + [s′])(V f ⊗ F1y − 1⊗ y) =

([s+ s′] +
∞∑
i=1

V i[ai]F
i)(V f ⊗ F1y − 1⊗ y) =

(s+ s′) ⋆ (V f ⊗ F1y − 1⊗ y)

for some ai ∈ R, where we have used F (V f⊗F1y−1⊗y) = 0 for the last equation.

The induced map Q̂/IO,SP̃ → N is an S-module morphism, which extends in a

unique way to an EO,S-module morphism C(Q̂/IO,SP̃ ) → N , and we get that

the sequence (5.8) is a complex of V -reduced Cartier modules (see the discussion

after Proposition 5.3.2 for the definition of V -reduced Cartier modules). Hence, in

order to show the exactness of the sequence, we only need to check the exactness

on the tangent spaces, which is trivial. Furthermore, we need to confirm that

aN ⊂ Q̂/IO,SP̃ holds, where a ⊂ WO(S) as usual and Q̂/IO,SP̃ should be the

submodule of N via the image of the second arrow in (5.8). Let a ∈ a, x ∈ P̃ and

ξ =
∑
V i[ξi,j ]F

j ∈ EO,S be in the usual representation. We obtain that aξ⊗x =∑
i,j V

iF i
a[ξi,j ]F

j⊗x =
∑

j a[ξ0,j ]F
j⊗x =

∑
j V

j(f−1)⊗F j(f−1)
(a[ξ0,j ])F

jx holds,

which equals 1 ⊗
∑

j a[ξ0,j ]F
jx for f = 1 and 1 ⊗ a[ξ0,0]x for f > 2, so we only

need to verify that an element of the form 1 ⊗ ax lies in the image of Q̂ → N .

But this is clear because of V f ⊗ F1ax− 1⊗ ax = −1⊗ ax. �

We now show under which circumstances the sequence (5.8) defines the uni-

versal one. It is not too hard to check that, when S = R is a perfect field, we get,

with the discussion after the proof of Proposition 2.4.7 and the discussion be-

fore the assertion of the previous Lemma that f = 1 must hold for f -O-displays
in general, since otherwise the module in the middle of the sequence gets too

”small”. Bearing this in mind, since we will reduce to this perfect field case, we

can assert:

Proposition 5.3.4. Let S → R be an O-pd-thickening with nilpotent kernel and

P = (P,Q, F, F1) a nilpotent O-display over R (i.e., f = 1). Then the universal

extension of the formal O-module BTO(P,−) is given by the exact sequence (5.8).
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Proof: In order to show the universality of the extension, we first reduce to the

case, where S = R. Consider the universal extension

0→ C(Luniv)→ Nuniv →M(P)→ 0,

whose existence is guaranteed by Theorem 5.2.13. Let M̃ be a lifting ofM(P) to a
reduced Cartier module over S. If we then consider the sequence (cf. Proposition

5.2.11)

0→ C(a⊗S Lie M̃)→ M̃ →M(P)→ 0,

there are unique maps φ : Luniv → a⊗S Lie M̃ and u : Nuniv → M̃ , such that

0 // C(Luniv) //

C(φ)
��

Nuniv //

u

��

M(P) // 0

0 // C(a⊗S Lie M̃) //
M̃

// M(P) // 0

is commutative. If we define L̃ as the kernel of Luniv → a ⊗S Lie M̃ , we obtain

by the snake lemma and the lemma of Nakayama (applied to the cokernel of

LieNuniv → Lie M̃) that

0→ C(L̃)→ Nuniv u→ M̃ → 0 (5.9)

is exact. It is not too hard to check that this extension is universal. Conversely,

if we start with the previous universal extension of M̃ , we obtain the universal

extension of M by

0→ C(L̃+ aNuniv)→ Nuniv →M → 0,

where the sum L̃ + aNuniv is taken in LieNuniv. Let (P̃ , F, F1) be the unique

P-triple over S and Q̃ ⊂ Q̂ an arbitrary WO(S)-submodule, such that P̃ =

(P̃ , Q̃, F, F1) is a nilpotent O-display over S. If we can show that

0→ C(Q̃/IO,SP̃ )→ N →M(P̃)→ 0 (5.10)

in Ext1,S→S is universal, then we obtain by the above considerations that the

assertion is true for the general case, so we are allowed to restrict ourselves to

the case S = R.

By starting with the universal extension (5.9) for M̃ =M(P̃), we obtain a mor-

phism of finitely generated projective S-modules L̃→ Q̃/IO,SP̃ . In order to show

that this morphism is an isomorphism we first reduce to the localizations of this

morphism for each prime ideal of S. With the help of the Nakayama lemma

we may reduce to the residue fields and from this we may pass to the algebraic

closures. Hence, it suffices to consider the case when S = R is a perfect field and

to show that (5.10) is universal. By the discussion following Proposition 2.4.7 we
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are allowed to identify M(P̃) with P̃. Since Proposition 5.3.1 can be applied to

our extension, we obtain that the map P̃ → EO,S ⊗WO(S) P̃ given by sending x

to 1⊗ x induces the unique WO(S)[F ]-linear section σ

0 // C(Q̃/IO,SP̃ ) // N // P̃
σ||

// 0,

such that V σ(x) − σ(V x) ∈ Q̃/IO,SP̃ . Because this section defines a WO(S)-

linear map P̃ → N/V N , which is the natural P̃ → P̃ /IO,SP̃ = S ⊗WO(S) P̃ ,

we obtain the universality of this extension by the argumentation prior Lemma

5.3.3. �

Theorem 5.3.5. (cf. [Zin02, Theorem 94]) Let R be an O-algebra with π nilpo-

tent in R. For a nilpotent O-display P over R and the associated π-divisible

formal O-module G we obtain a canonical isomorphism of crystals on the nilpo-

tent ideal crystalline site over SpecR:

DP ≃ DG

It respects the Hodge filtration on DP(R) and DG(R), respectively.

Proof: By Proposition 5.3.4 we obtain DP(S) = P̃ /IO,SP̃ = DG(S). The asser-

tion for the Hodge filtration is also clear by this Proposition. �

Now let S → R be an O-pd-thickening with nilpotent kernel, φ :WO(R)→ S

be a morphism of O-pd-thickenings and P = (P,Q, F, F1) a nilpotent f -O-display
over R. By Theorem 5.1.3 we conclude that if Qφ denotes the inverse image of

Q/IO,RP by the map S⊗WO(R)P → R⊗WO(R)P = P/IO,RP , then the extension

(5.8) is given by

0→ C(Qφ)→ EO,S ⊗WO(R) P/(F ⊗ x− V f−1 ⊗ Fx)x∈P →M(P)→ 0.

Here EO,S is considered as an WO(R)-module by the map WO(R) → WO(S) as

in Theorem 5.1.3. We need to describe the second arrow of the extension. For

any y ∈ Qφ we take a lifting y ∈ Qφ ⊂WO(S)⊗WO(R) P . We obtain with

1⊗ y ∈ EO,S ⊗WO(S) (WO(S)⊗WO(R) P ) = EO,S ⊗WO(R) P

that the image of y by the second arrow is given by V f ⊗ F1,φy − 1 ⊗ y, where
F1,φ is obtained by base change of the lifted F1, which in turn is an element of

the P-triple with respect to WO(R) → R. This extension is universal for f = 1

by Proposition 5.3.4.

Proposition 5.3.6. (cf. [Zin02, Proposition 98]) Let R be an O-algebra with π

nilpotent in R. Then BTO is faithful.
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Proof: Let P and P ′ be two nilpotent O-displays over R and α : P → P ′ a

morphism between them. If we denote by G and G′ the associated π-divisible

formal O-modules, then α induces a morphism a : G→ G′ and hence a morphism

b : MG → MG′ . For each n ≥ 1, we obtain with S = WO,n(R) and Proposition

5.3.4 that there is a unique morphism of the above described universal extensions

lying over b. Since α induces such a morphism of extensions as well, it must be

induced by it. By Theorem 5.1.3 and Theorem 5.3.5 we obtain DG(WO,n(R)) =

WO,n(R)⊗WO(R) P and DG′(WO,n(R)) =WO,n(R)⊗WO(R) P
′ for each n ≥ 1. If

we now apply a to the functor D we obtain for each n ≥ 1 a morphism

WO,n(R)⊗WO(R) P = DG(WO,n(R))→ DG′(WO,n(R)) =WO,n(R)⊗WO(R) P
′,

which is given by 1⊗α. Since we clearly obtain by these morphisms a morphism

of the inverse systems (WO,n(R)⊗WO(R) P )n and (WO,n(R)⊗WO(R) P
′)n, we get

α back by passing to the projective limit. Hence, the faithfulness follows. �

Since all our argumentation to establish all desired equivalences relies in the

end on stack theory, it seems sensible to ask, whether it is possible to prove

the main assertions, i.e., that BTO is an equivalence of categories, for a large

class of O-algebras without using this theory again, i.e., we only use stack theory

implicitly for establishing that BTZp is an equivalence. This is possible for all

O-algebras with nilpotent nilradical and π nilpotent in R.

Proposition 5.3.7. Let R be an O-algebra with nilpotent nilradical and π nilpo-

tent in R. Then BTO is an equivalence of categories between the nilpotent O-
displays over R and the π-divisible formal O-modules over R. Furthermore,

Γ1(O,O′) resp. Γ2(O,O′) is an equivalence of categories for nonramified / to-

tally ramified extensions O → O′ and O′-algebras R with nilpotent nilradical and

π′ nilpotent in R.

Proof: By [FGL07, Theoreme B.7.1.] and Theorem 5.3.5, we can establish the

obvious generalization of [Zin02, Corollary 95]. By Theorem 5.3.5 and Proposition

5.3.6 we can deduce, together the generalization of [Zin02, Corollary 95], the

obvious generalization of [Zin02, Proposition 99], i.e., BTO is fully faithful for all

O and all O-algebras R with nilpotent nilradical and π nilpotent in R.

For the first assertion we choose O0, such that O0 is nonramified over Zp and O
is totally ramified over O0. Since BTZp is an equivalence by Theorem 2.5.16†,

we obtain that BTO0 is an equivalence, since it is fully faithful by the above

assertion and essentially surjective by Lemma 2.5.17. Analogously we obtain

†See also [Lau08, Proposition 4.4.], where the equivalence is established particularly for
rings with nilpotent nilradical and p nilpotent in them, which is possible to prove with simpler
methods than the general assertion for all rings with p nilpotent in them, which in fact relies on
this result.
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that BTO is an equivalence. The assertion for Γ1(O,O′) resp. Γ2(O,O′) also

follows by Lemma 2.5.17. �

By using Proposition 4.2.5, which relies on stack theory, we can deduce with

the help of Proposition 5.3.6 and Lemma 2.5.17 the generalized main Theorem

of display theory:

Theorem 5.3.8. BTO is an equivalence of categories between the category of

nilpotent O-displays over R and the category of π-divisible formal O-modules

over R for all O-algebras R with π nilpotent in R.

It should be remarked that we can extend this result to all π-adic O-algebras
by taking projective limits,

Proof: We chooseO0, such that Zp → O0 is a nonramified andO0 → O is a totally

ramified extension. Since we know, that the assertion holds by Theorem 2.5.16

for the Zp-case, we get by Lemma 2.5.17 and Proposition 5.3.6, that Γ1(Zp,O0) is

fully faithful for all O0-algebras R with p nilpotent in R. Hence, by Proposition

4.2.5 Γ1(Zp,O0) is an equivalence for all O0-algebras R with p nilpotent in R.

By Lemma 2.5.17 we obtain that BTO0 is an equivalence for all O0-algebras R

with p nilpotent in R. The analogous argumentation for the extension O0 → O,
Γ2(O0,O) and all O-algebras with π nilpotent in it establishes the result. �

Corollary 5.3.9. Let O → O′ be a nonramified / totally ramified extension and

R an O′-algebra with π′ nilpotent in R. Then

• Γ1(O,O′) : (ndispO,O′ /R)→ (ndispO′ /R)

• Γ2(O,O′) : (ndispO,O′ /R)→ (ndispO′ /R)

are equivalences of categories.

As for the previous Theorem we can extend these equivalences to all π′-

adic O′-algebras, where Γ2(O,O′) is given by lim←−Γ2(O,O′)R/π′i . (Γ2(O,O′) was

originally only defined for the case, where π′ is nilpotent in R.)

Proof: Since P (O, R) and P (O′, R) are true by Theorem 5.3.8, the result follows

by Lemma 2.5.17. �

To obtain all other equivalences, we are now going to consider the nilpotent

f -O-display case. Let O → O′ be nonramified of degree f and R an O′-algebra

with π′ nilpotent in R. We consider the functor Ω1(O,O′) over R. Let P =

(P,Q, F, F1) be a nilpotent O-display over R with a strict O′-action and P0 =

(P0, Q0, F0 = F f−1
1 F, F10 = F f

1 ) its image via Ω1(O,O′). Let S → R be an

O′-algebra morphism, which is also an O-pd-thickening. Since we can lift the

O′-action of P to the P-triple (P̃ , F, F1) over S uniquely by Proposition 3.2.5,

we obtain an f -grading on this triple. The module P̃ looks like
⊕
P̃i (compare
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Lemma 2.5.1) and we obtain Q̂ = Q̂0 ⊕
⊕

i̸=0 P̃i. Hence, the P0-triple over

S looks like (P̃0, F
f−1
1 F, F f

1 ). Since BTO(P,−) ≃ BT
(f)
O (P0,−) as formal O′-

modules over R (and hence as formal O-modules as well), we obtain that the

corresponding reduced EO,R-modules are isomorphic. By using the description of

reduced Cartier modules by Proposition 2.4.7 and the proof of Proposition 2.5.4

we obtain that the EO,R-linear isomorphism κ between the modules

MBTO(P,−) = EO,R ⊗WO(R) P/(F ⊗ x− 1⊗ Fx, V ⊗ F1y − 1⊗ y)x∈P,y∈Q

and

M
BT

(f)
O (P0,−)

= EO,R⊗WO(R)P0/(F ⊗x−V f−1⊗F0x, V
f ⊗F10y−1⊗y)x∈P0,y∈Q0

corresponding to the isomorphism of the associated formal O-modules is given

by sending 1⊗ x0 to 1⊗ x0 and 1⊗ xi to V f−i ⊗ F f−i
1 xi for i ̸= 0 with xi ∈ Pi,

where Pi is obtained from the obvious decomposition of P . If we now consider

the sequences (5.8) for P and P0, we obtain a morphism of sequences

0 // C(Q̂/IO,SP̃ ) //

��

EO,S ⊗WO(S) P̃ /U //

µ

��

M(P)

κ

��

// 0

0 // C(Q̂0/IO,SP̃0) // EO,S ⊗WO(S) P̃0/U0
// M(P0) // 0,

where U is the EO,S-submodule of EO,S⊗WO(S)P̃ generated by (F⊗x−1⊗Fx)
x∈P̃ ,

U0 is the EO,S-submodule of EO,S ⊗WO(S) P̃0 generated by (F ⊗ x − V f−1 ⊗
F f−1
1 Fx)

x∈P̃0
and µ is given by µ(1⊗x0) = 1⊗x0 and µ(1⊗xi) = V f−i⊗F f−i

1 xi

for i ̸= 0 with xi ∈ P̃i in the obvious decomposition of P̃ as above. In order to

show that µ is well-defined, we consider the morphism

τ : EO,S ⊗WO(S) P̃ → EO,S ⊗WO(S) P̃0/(F ⊗ x− V f−1 ⊗ F f−1
1 Fx)

x∈P̃0
,

which is analogously constructed as µ. Is easily seen that F ⊗ x0 − 1 ⊗ Fx0
is mapped via τ to zero for x0 ∈ P̃0. For the other cases we represent xi by∑

j ajF
i
1zj for aj ∈ WO(S) and zj ∈ Q̂0 with which we can also show that

F ⊗ xi − 1⊗Fxi is mapped to zero via τ . Hence µ is well-defined. Furthermore,

it is not too hard to check that the first vertical morphism in the diagram is

obtained by the projection Q̂/IO,SP̃ → Q̂0/IO,SP̃0. Hence, the above morphism

of extensions is indeed a morphism in Ext1,S→R and µ is surjective.

Proposition 5.3.10. Let O → O′ be nonramified (of degree f) and R an O′-

algebra with π′ nilpotent in R. Then Ω1(O,O′) is fully faithful.

Proof: Since P (O, R) is true by Theorem 5.3.8, it suffices to show that BT
(f)
O

is faithful when we restrict to the full subcategory of the nilpotent f -O-displays
over R consisting of the objects which lie in the image of Ω1(O,O′). Let P and

P ′ be two O-displays over R equipped with strict O′-actions, P0 resp. P ′
0 their
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images via Ω1(O,O′) and α : P0 → P ′
0 a morphism between them. α induces a

morphism of formal O-modules

BTO(P,−) ≃ BT (f)
O (P0,−)→ BT

(f)
O (P ′

0,−) ≃ BTO(P ′,−). (5.11)

Now let S = WO,n(R) for n ≥ 1 and we consider extensions of Ext1,S→R. If we

denote the exact sequences of (5.8) for P,P ′,P0,P ′
0 by E,E′, E0, E

′
0, we obtain

a commutative diagram

E //

��

E′

��
E0

// E′
0,

where the arrows are morphisms in Ext1,S→R. The above extensions are universal

by Proposition 5.3.4 and so the morphisms, except the lower one, are uniquely

determined by the isomorphisms BTO(P,−) ≃ BT
(f)
O (P0,−) and BTO(P ′,−) ≃

BT
(f)
O (P ′

0,−) and the morphism BTO(P,−) → BTO(P ′,−) given by (5.11).

The lower morphism is induced by α. Furthermore, the vertical morphisms of

extensions are obtained by the discussion before this Proposition. We obtain, by

passing to the Lie algebras of the modules in the middle of each extension in the

diagram, a commutative diagram

WO,n(R)⊗WO(R) P //

��

WO,n(R)⊗WO(R) P
′

��
WO,n(R)⊗WO(R) P0 // WO,n(R)⊗WO(R) P

′
0.

So we get, because of the surjectivity of the vertical arrows, that there is at most

one mapping WO,n(R) ⊗WO(R) P0 → WO,n(R) ⊗WO(R) P
′
0 for each n ≥ 1, which

leaves the diagram commutative, and the fully faithfulness of Ω1(O,O′) follows.

�

Furthermore, we obtain by Proposition 4.2.5, Lemma 2.5.17 and Theorem

5.3.8:

Corollary 5.3.11. Let O′ over O be nonramified of degree f and R an O′-

algebra with π′ nilpotent in R. Then the following functors are equivalences of

categories:

• Ω1(O,O′) : (ndispO,O′ /R)→ (f − ndispO /R)

• BT (f)
O : (f − ndispO /R)→ (π′ − divisible formal O′ −modules/R)

• Ω2(O,O′) : (f − ndispO /R)→ (ndispO′ /R)

We can extend these results to all π′-adic O′-algebras by taking projective limits.
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Formal O-modules

Let R be a commutative unitary ring and NilR denote the category of nilpotent

R−algebras. As in [Zin84] we can embed the category of R−modules ModR in

NilR by setting M2 = 0 for any M ∈ ModR. In particular, this is the case for the

R-module R. If we are given a functor H from NilR to the category of abelian

groups or sets, we denote by tH its restriction to ModR.

Definition A.0.1. (cf. [Zin84, Chapter 2],[Zin02, Definition 80]) A (finite di-

mensional) formal group over R is a functor F : NilR → (abelian groups), where

the following properties are fulfilled:

1. F (0) = 0,

2. F is exact, i.e., if

0→ N1 → N2 → N3 → 0

is a sequence of nilpotent R−algebras, which is exact as a sequence of R-

modules, then

0→ F (N1)→ F (N2)→ F (N3)→ 0

is an exact sequence of abelian groups.

3. The functor tF commutes with infinite direct sums.

4. tF (R) is a fintely generated projective R−module. (By [Zin02, 3.1 The

functor BT.] tF (M) is in a canonical way an R-module for eachM ∈ ModR.)

tF (R) is called the tangential space of F . The rank of tF (R) is called the dimen-

sion of F . The morphisms between two formal groups are the natural transfor-

mations between the functors.

Hence, we obtain the category formal groups over R.

115
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Definition A.0.2. Let O be a unitary ring and R a unitary O-algebra. Then

a formal O-module over R, is a formal group over R with an action on it by O
(i.e., a ring morphism from O to the endomorphisms of the formal group), which

induces the natural action on the tangential space, i.e., it coincides with the

O-module structure obtained by the R-module structure of the tangential space

and restriction to scalars. The morphisms between two formal O-modules are the

natural transformations between the functors respecting the attached O-actions.

Hence, we obtain the category formal O-modules over R.

A.1 π-divisible formal O-modules

Definition A.1.1. (cf. [Zin84, 5.4 Definition]) With O an RRS and R an O-
algebra, a morphism φ : G→ H of formal O-modules over R of equal dimension is

called an isogeny if kerφ is representable (i.e., kerφ ≃ Spf A with A ∈ NilR, where

Spf A : NilR → Sets is given by Spf A(N ) = HomR−Alg(A,N ) for N ∈ NilR.).

Definition A.1.2. (cf. [Zin84, 5.28 Definition],[FGL07, Definition B.2.1.]) A

formal O-module G over an O-algebra R is called π−divisible, if the multiplica-

tion map π : G→ G is an isogeny. The category of π-divisible formal O-modules

over R is a full subcategory of the category of formal O-modules over R.

Lemma A.1.3. Let (Zp, p, p) → O → O′ be excellent morphisms of RRSs and

R an O′-algebra. Assume that πc = π′a and π′d = πb holds for some a, b ∈ O′

and c, d ∈ N1. Then a formal O′-module G is π′-divisible, iff π : G → G is an

isogeny.

This Lemma is especially interesting, when O and O′ are rings of integers of

non-Archimedean local fields of characteristic zero. Then this assertion fits well

to [FGL07, Remarque B.2.2.].

Proof: This follows easily by [Zin84, 5.10 Satz]. �



Bibliography

[BC91] Jean-Franois Boutot and Henri Carayol. Uniformisation p-adique des

courbes de shimura: les theoremes de cerednik et de drinfeld. Aster-

isque, 196-197:45–158, 1991. [cited at p. 29]

[Dri76] Vladimir Gershonovich Drinfeld. Coverings of p-adic symmetric re-

gions. Funktsional’nyi analiz i Ego Prilozheniya, 10:29–40, 1976.

[cited at p. iii, viii, 8, 28, 29, 31]

[Fal02] Gerd Faltings. Group schemes with strict O-action. Moscow Mathe-

matical Journal, 2:249–279, 2002. [cited at p. 24, 86]

[FGL07] Laurent Fargues, Alain Genestier, and Vincent Lafforgue.

L’isomorphisme entre les tours de Lubin-Tate et de Drinfield,

volume 262 of Progress in Mathematics. Birkhuser, 2007. [cited at p. xiii,

93, 94, 95, 109, 116]

[Hed] Mohammad Hadi Hedayatzadeh. Exterior powers of barsotti-tate

groups. http://arxiv.org/abs/1009.2460. [cited at p. iv]

[Lau] Eike Lau. Smoothness of the truncated display functor.

http://arxiv.org/abs/1006.2723. [cited at p. 81, 83, 84, 85, 86, 87]

[Lau08] Eike Lau. Displays and formal p-divisible groups. Inventiones Mathe-

maticae, 171:617–628, 2008. [cited at p. iii, x, 61, 81, 86, 87, 88, 109]

[Lau10] Eike Lau. Frames and finite group schemes over complete reg-

ular local rings. Documenta Mathematica, 15:545–569, 2010.

http://arxiv.org/abs/0908.4588. [cited at p. 63, 64, 65, 66, 67, 68]

[Laz75] Michel Lazard. Commutative Formal Groups, volume 443. Springer,

Berlin, Heidelberg, New York, 1975. [cited at p. 31]

117



118 Bibliography

[Liu06] Qing Liu. Algebraic Geometry and Arithmetic Curves, volume 6 of Ox-

ford Graduate Texts in Mathematics. Oxford University Presss, Berlin,

Heidelberg, New York, 2006. [cited at p. 40]

[LMB91] Gerard Laumon and Laurent Moret-Bailly. Champs algebrigues. Ergeb-

nisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, Heidel-

berg, New York, 1991. [cited at p. 81]

[Mes72] William Messing. The Crystals Associated to Barsotti-Tate Groups:

with Applications to Abelian Schemes, volume 264 of Lecture Notes

in Mathematics. Springer, Berlin, Heidelberg, New York, 1972.

[cited at p. xiii, 21, 93, 94, 95, 97]

[RZ96] Michael Rapoport and Thomas Zink. Period spaces for p-divisible

groups, volume 141 of Annals of Mathematics Studies. Princeton Uni-

versity Press, 1996. [cited at p. 98]

[Ser79] Jean-Pierre Serre. Local Fields, volume 67 of Graduate Texts in Math-

ematics. Springer, 1979. [cited at p. 10, 11]

[Zin] Thomas Zink. Formale gruppen und displays. Homepage:

http://www.math.uni-bielefeld.de/~zink/V-DFG.html; visited on

December 5th 2011. [cited at p. xiii, 93, 96, 97]

[Zin84] Thomas Zink. Cartiertheorie kommutativer formaler Gruppen, vol-

ume 68. Teubner Texte zur Mathematik, Leipzig, 1984. [cited at p. iii,

28, 31, 37, 38, 101, 115, 116]

[Zin86] Thomas Zink. Cartiertheorie ber perfekten Ringen. I, volume Preprint.

Akademie der Wissenschaften der DDR, Berlin, 1986. [cited at p. 37, 93,

98, 99, 103, 104]

[Zin01] Thomas Zink. Windows for displays of p-divisible groups. In Moduli of

Abelian Varieties. Birk 2001. [cited at p. 63]

[Zin02] Thomas Zink. The display of a formal p-divisible group. Asterisque,

278:127–248, 2002. [cited at p. iii, vi, 5, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 36,

39, 43, 69, 71, 83, 89, 91, 92, 93, 103, 108, 109, 115]


