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Abstract

Abstract:

In this thesis an automated video based speed limit recognition system, in the
following called SpeedLimitAssistant, is introduced together with the framework
for adaptation of the system to the special characteristics of the signs in di�erent
countries. The system is to be used as a vehicle mounted driver assistance system.
Autonomous infrastructure detection has to be international in our globalised

world. Many publications concerning the detection and recognition of traf-
�c infrastructure have been published during the term of, and following the
PROMETHEUS project 1987 - 1995. Most prominent of the infrastructural parts
addressed are lane markings, tra�c signs and tra�c lights. The literature does
not address the challenge of extending the systems to be capable of coping with
the - sometimes subtle, sometimes distinct - di�erences met when considering a
system to be designed to recognize infrastructure in a variety of countries instead
of just one. In this thesis the tra�c sign recognition is given as an example ap-
plication for the internationalization of an autonomous recognition system. The
term internationalization is used to express the necessity to adapt the system and
especially the classi�ers involved to the special characteristics of the tra�c signs
encountered in di�erent countries. This process of adaptation is supported by the
framework developed and implemented in this thesis with the goal of reducing
human intervention in this process to a minimum.
The necessity of internationalization is especially true for tra�c signs since

their representation in di�erent countries is not similar even if the countries be-
long to the 52 states that signed the Vienna Convention on road tra�c from 1968
[United Nations Economic and Social Council, 1968]. In addition to the interna-
tionalization, the necessary and yet in the literature still disregarded extensions
to a successful tra�c sign recognition will be designed and evaluated. This in-
cludes a supplementary sign recognition, a three dimensional position estimation
and a scene interpretation. For system training and test a huge number of sam-
ples has to be gathered to let the conclusions be signi�cant. To support this task
bootstrapping labelling and classi�er construction tools have been developed and
evaluated.
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Figure 1: Input image and system output for Active Signs and Supplementary
Signs with timestamp (April 2007), time since last frame (66 ms), ex-
posure time (397 µs), GPS coordinates, vehicle velocity (86,1 km/h)
and vehicle yaw rate (-1.25 Deg/s).
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The main contribution of this work to the topic of tra�c sign recognition are
the following:

� A framework for adapting classi�ers on international tra�c signs with a
minimum of required human interaction.

� The detection and recognition of supplementary signs using a priori
knowledge and the classi�er internationalization framework.

� A three dimensional scene analysis to enhance the robustness of the system.

� A �exible modular framework that allows tra�c sign recognition to be
run on general purpose hardware and embedded control units in real time
without source code changes.
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1 Introduction and State of the Art

1.1 Introduction

Given the objective of enhanced safety in road tra�c and drivers comfort through
autonomous or assistance systems the recognition and comprehension of tra�c
infrastructure is one crucial part. Especially tra�c signs are valuable references
when trying to understand the environment from the position of the driver. They
advise the driver of directions, dangers, right of way and provide multiple further
information. Many accidents occur due to too high velocity of the tra�c partic-
ipants. In dangerous road sections the authorities have restricted the maximum
speed to a save limit. Modern tra�c routing has introduced variable speed lim-
itations that react to tra�c density, visibility and road condition. These signs
as well as temporary signs in construction sites cannot be added to maps due
to their temporal short term character. This is why an optical system for recog-
nizing the tra�c signs is necessary when not going to the lengths of equipping
all signs with transponders. Since the currently existent signposting is made for
the human driver to be perceived with his visual sensors, namely the eyes for
image acquisition and the brain for image interpretation, it is reasonable to use
the technical system camera as visual sensor to acquire images and the processor
to detect and recognize the signs in the autonomous system.
A helpful system for the driver can emphasise the existence of the speed limit

via additional optic, haptic or audio indication of the allowed maximum speed.
The system could in�uence the cruise control system in the vehicle, set the lim-
iter of the vehicle autonomously or via acknowledgement by the driver. The
introductory functionality of a driver assistant system is a visual reminder of the
current limits, thus helping the driver in a complex tra�c environment especially
when variable limits are installed or the driver is unfamiliar with the region he
is travelling in. In this work the focus is on the recognition of speed limit signs
and the end of speed limit signs. The recognition of other signs can be solved
analogous and necessary changes will be mentioned at the appropriate location.
Special emphasis will be made on the recognition of tra�c signs all over the

world. The di�erent appearances of signs from various countries have to be taken
into account when looking for a system capable of operating in several countries
instead of just one, as it is proposed in most of the literature. In this thesis the
main attention is placed upon the 52 states that signed the Vienna Convention
on road tra�c from 1968 [United Nations Economic and Social Council, 1968].
Nearly all industrially developed countries signed the treaty, even the United
States of America, which is one of the very few countries not abiding the regula-

1



1 Introduction and State of the Art

tions concerning speed limit signs. Since the signs in the USA look very di�erent
from those in most of the rest in the world the system proposed in this thesis will
be based on the detection and recognition of the standardized sign type, but will
allow for extra modules to be inserted to attend to the deviations introduced by
US-American signs.

1.2 Characterization of Speed Limit Signs in Europe

The tra�c signs to be detected and recognized belong to several groups sharing
similarities and having certain dissimilarities, both of which are to be described
in this section. Some of the di�erences have to be considered for the design of
the detector, others have impact on the implementation of the classi�er, while
some in�uence both the detector and the classi�cation system.
The main features are depicted in �gure 1.1. In this thesis we concentrate on

the detector and classi�er for circular signs. For the rare cases of speed limit signs
without circular rim, e.g. active speed regulation in the Netherlands, a matched
�lter algorithm, not elaborated in this thesis, can be used for the detection, while
the tracking and recognition part will stay the same as the ones for circular signs.
The detection and recognition of rectangular speed limits like in the United States
of America are not discussed in this thesis.
There are two types of relevant signs examined in this thesis, the limiting signs

and the end of limits. Each of these types has di�erent characterizing attributes
like the red rim for limits, which's relative width varies from country to country,
or the angle and texture of the black crossbar for end of limit signs.
Another main separation feature is the di�erentiation between passive, mostly

black letters on white ground and active, mostly white letters on black ground,
signs.
Passive signs usually consist of sheet metal plates with a printed re�ective foil

attached on the front side. In rare cases tripods or other constructs holding plastic
foil with the sign pattern printed on are used. The foils used vary strongly in
re�ectivity. The foils for the signs on sheet metal are produced in three qualities
of retro re�ective capacity, depending on the road type they are placed at. The
digits are, with a few exceptions, placed in the centre of the sign. Exceptions
are the signs in Denmark, where the additional text km is placed beneath the
digits, moving the digits upward on the sign. Another exception are older signs,
for instance in Germany, where the letters km previously placed to the right of
the digits are painted over in white, leading to a placement of the digits left of
the centre of the sign.
Active signs are powered by electricity and can change the type and value of

the limit over time. The sign is either composed of small light bulbs or, in the
newer versions, of light emitting diodes. If the exposure time is longer than one
activation cycle of the diodes there is no noticeable di�erence between light bulb

2



1.3 State of the Art

and diode signs. At shorter exposure times the diode signs weaken in brightness
in the image, if the exposure time of the camera falls into the gap between two
activations of the diode. Since many images of the signs are taken when passing
the sign the probability of having taken pictures with diode activation and open
shutter is high enough for diode signs not to compose a problem. Especially some
rare brands of active signs have di�erent activation cycles for di�erent segments,
leading to images where sometimes only the red rim or only the digits or parts of
the digits are visible in the image. This problem can be solved by using varying
exposure settings or variable apertures. Since this is more a sensor problem
than one of the algorithms used for detection and recognition this will not be
further elaborated in this thesis. Both the bulbs and the diodes have a directional
characteristic allowing them to be seen a far way ahead, while being dark when
seeing the signs under an angle, for instance when passing them. This makes it
necessary to detect and recognize these signs from farther away than the passive
signs.
Characteristics di�ering for both active and passive signs are the font and size

of the digits printed on the sign, especially regarding signs of di�erent countries,
see �gures 1.3 1.4. The real world size of the signs and the placement of the signs
relative to the road vary depending on the road type and the country as well and
have to be considered when designing a tra�c sign recognition system.
The view of a speed limit sign as shown in �gure 1.2 consists of three main

features. The outer red rim, the inner inlay and the digits showing the maximum
allowed speed. Later in the dissertation there will be references to inner and outer
cutouts meaning the pixels in the raster image shown in the examples in �gure
1.2 as green boxes. For end of limit signs the three de�ning parts are the outer
rim, the crossbar and the digits. Since there is just one circular shape there are
just outer detections and cutouts for end of limit signs.

1.3 State of the Art

The detection of tra�c signs using a camera appears in vision literature in
the year 1987 [Akatsuka and Imai, 1987]. Consecutively there were many pa-
pers concerning the topic in the years, until 1995 most of them connected with
the European Project PROMETHEUS (PrograMme for a European Tra�c
System of Highest E�ciency and Unprecedented Safety, 1987-1995). The al-
gorithms used in that period were based on colour pixel classi�cation and a
following shape forming or shape recognition based on a connected component
analysis [Mandler and Oberlaender, 1990] as described in the theses of W. Ritter
[Ritter, 1996] and S. Estable [Estable, 1996].
Colour is an obvious clue for tra�c signs, since the signs were designed to

stand out for the human eye and thus catching the attention of the driver. The
most popular type of detection still is the segmentation of colour in the image,

3



1 Introduction and State of the Art
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Figure 1.1: Features of tra�c signs. Signs possessing features marked in dark grey
boxes are not considered in the further examinations. Solutions for
the detection and recognition of these signs are given in the appendix,
but not part of this thesis.

thus reducing the area to be examined considerably. Most authors address the
choice of colour space, such as RGB, CMYK, HSV, HSL and many others. The
closing of gaps in the segments and the recognition of the shape in question is
another prominent subject worked on, see the appendix section A.5. The colour
schemes are not up to the task of detecting the achromatic end of limit signs
and even many coloured signs have fading colours, which are not detectable by
most algorithms. Sometimes even the growth of algae or lichen on the surface
of the signs taint the colour of the signs. For the representation in the image
coloured light sources at night such as vapour discharge lamps or di�erent types
of vehicle headlamps in�uence the perceived colour on the image. An additional
factor for the resulting RGB values on the imager is the white balance, which not
only slightly changes with the light intensity, but changes with the ageing of the
sensor as well.
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1.3 State of the Art

60
inner

outer

digits cutouts 60
Figure 1.2: Naming conventions for the parts of a tra�c sign.

Trackers were not used since follow-up detections were infrequent and due to
the very few sign candidates per image, both real and false detections, connecting
the detections or predicting their appearance in the next frame to be processed
was not of importance, though sometimes used as in [Estable et al., 1994].
The classi�cation of tra�c sign patterns was based on direct correlation

with the ideal sample pattern or with a limited number of samples collected
and labelled, using k-nearest neighbour (kNN) or neural network techniques
on the limited data sets (�gure 1.5). Large sets of data were hard to be
obtained due to the limited availability of frame grabbers and the compara-
tively low capacity of hard drives. Publications proposing this type classi�er
setup are [Akatsuka and Imai, 1987], [Ritter, 1992], [Kehtarnavaz et al., 1993],
[Piccioli et al., 1994], [Wei, 1994], [Zheng et al., 1994], [Ritter et al., 1995a],
[Ritter et al., 1995b] and [Murino et al., 1995].
Following the Prometheus project and with more computing power available

the scope of work moved from Detector-Classi�er systems to systems detecting,
tracking the sign candidates in consecutive images and classifying the candidates.
Some authors, notably [Gavrila, 1998, Kressel et al., 1999] were moving to grey
value detection of the signs thus avoiding the major drawbacks mentioned above.
Sample sets still remained small even though frame grabbers were getting avail-
able and storage capacities were growing. In addition to the classi�ers used in
the beginning of the 1990's radial basis classi�ers [Powell, 1992] were used by
[Gavrila, 1998, Kressel et al., 1999] as well as polynomial classi�ers in classi�er
hierarchies [Kressel et al., 1999].
The newest detection algorithms are the fast radial symmetry detector in-

troduced by [Loy and Barnes, 2004] and AdaBoost, see description in the section
A.2, as presented by [Viola and Jones, 2001] and used by [Bahlmann et al., 2005],
[Keller et al., 2008].
In the 2000's trackers are widely in use, but the sample sets stayed at the

level reached at the end of the nineties, except for [Escalera and Radeva, 2004],
where in addition to one ideal sample per class distortions and noise were added

5



1 Introduction and State of the Art

AT BE CH DE DK ES FR IT NL

Figure 1.3: Variety of restriction signs
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AT BE CH DE DK ES FR IT NL

Figure 1.4: Variety of end of restriction signs

7
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to the ideal sample to allow the classi�ers to better adapt to realistic scenes.
Additional classi�cation schemes for the tra�c sign recognition were introduced.
Among others a Fisher Discriminant Analysis ([Fisher, 1936], [Duda et al., 2000])
followed by a Bayesian Network were used by [Bahlmann et al., 2005] and
[Keller et al., 2008].
The algorithms mentioned above yield information about the processing chain

from an image to the recognition of a single real world tra�c sign, but the meaning
of a tra�c sign is in�uenced by additional factors. One factor in�uencing the
relevance of the signs is their placement at the street, e.g. validity for certain
lanes only. Another important information source are the supplementary signs,
which constrain the validity of the sign to, for instance a certain time of day,
certain weather conditions or some vehicle types and weights.
Most papers use daytime sequences with medium to good lighting conditions,

leaving out dense rain and especially night time, where additional problems for
the detection and recognition of tra�c signs arise, for example motion blur due
to long exposure time or colour changes due to active lighting. In the literature
the feasibility of the algorithmic approaches were in the centre of the research.
In this thesis in addition to the feasibility the robustness of the algorithm as
well as the possibility to implement the system on a hardware being a�ordable
and e�cient enough for series production is investigated. If the system is to
be used in a commercial driver assistance system, the power consumption has
to be reduced to limit the heat generation of the system. Not the least fac-
tors are the price and availability of the necessary hardware. Thus algorithms
having very high computational demands, requiring large amounts of memory
or having the necessity of specialized hardware for their processing chain were
not considered. In the literature there is no mentioning of the �exibility of the
algorithms where the internationalization of the algorithms is concerned. For a
tra�c sign recognition system at least the signs in the 52 countries signing the
Vienna Convention [United Nations Economic and Social Council, 1968] should
be covered by the detection and recognition system. Since there are additional
rules in�uencing the valid velocity or other tra�c regulations in most countries
these have to be adapted to the laws of the land in question, while the image
processing module should still be based on the same algorithms.

1.4 Tra�c Sign Recognition Research Groups

In �gure 1.5 prominent research and development groups working on tra�c signs
recognition and were in�uencing the whole community are referred to. In the
years up to 1995 the Prometheus project was the core around which most activi-
ties were clustered. Paclik [Somol et al., 1999] tried a di�erent approach still rely-
ing on colour as the main cue, but expanding the algorithm to allow for grey value
sign classi�cation as well. In 2002 Barnes et al. ([Loy and Barnes, 2004]) pub-
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1990-1995
PROMETHEUS 1996-2000 2001-2008

Authors

Detector

Tracker

Classifier

Samples

- Ott, Ritter, Janssen, 
   Gämlich, Estable
- Priese, Rehrmann
- Kehtarnavaz
- Estevez

Colour-Pixel-Classification,
Shape, Moments of 
Coloured Regions

None

Ideal Template
Few Real Samples

- Gavrila
- Lindner, Kreßel,
  Janssen
- Piccioli
- Paclik

Colour Pixels and
Form of Grey Value 
Objects (Chamfer, Hough)

Kalman, αβγ

Radial Basis Function
Polynomial Classifier
Neural Network

Ideal Templates + Distortions
Few Real Samples

- Barnes, Loy
- Bahlmann, Keller

Radial 
Symmetry
AdaBoost

Kalman, αβγ

LDA + Gaussian
Neural Networks
Correlation

Ideal Templates +  Distort.
Few Real Samples

K-Nearest Neighbour
Correlation
Neural Network

Figure 1.5: Time line of publications on tra�c sign recognition

lished a method for fast grey value based detection of tra�c signs that was used
by other groups as well. The methods currently most referenced are the boosting
algorithms ([Viola and Jones, 2001]) �rst applied on tra�c signs by Bahlmann et
al. ([Bahlmann et al., 2005]).
The results given in the literature for the performance of the detection and clas-

si�cation systems depend on their respective learn and test sets, so the numbers
give only a rough estimate of the algorithms comparative quality.

1.4.1 PROMETHEUS Groups

The work in the Prometheus project was mainly based on colour detection and the
classi�cation of the detected objects. The speci�cation for the project included
the preparation of demonstration vehicles which apply the developed algorithms
online. To be able to ful�l this task the most advanced mobile computer hard-
ware available at the time was installed in the vehicles, even if the hardware
�lled the whole luggage space of the vehicles. Due to the low speed, compared
with today's resources, of computers at the time the tracking was rudimentary
[Estable et al., 1994] or completely set aside by the authors since the signs were
seen by the system only once or twice in a standard passing of a road sign. Limited
storing capability available at the time led to comparatively small sample sets,
which usually were well below 1000 samples split on the classes to be recognized.
This fact in�uenced the choice of classi�ers used.
The main challenge in the detection step was to perform a powerful and ro-

bust colour segmentation of the signs. Di�erent colour spaces were investigated
allowing even slightly bleached signs to be at least partially segmented. Varying
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lighting conditions such as rising and setting sun, street lamps, and other in-
�uences led to attempts of using colour consistency approaches, usually looking
at the pavement for a clue to what the current colour deviation is to be able
to normalize the colour appearance. Bleached signs were usually disregarded as
well as end of limit signs were usually ignored, since due to their being nearly or
completely monochrome the colour detection would not work.
Focussing the detector on colour features induced an additional �eld of work,

namely searching for ways to describe the shape of signs in a pixel segmented
image. The �rst step was to assign each pixel a colour class, some allowing fuzzy
membership values, then doing morphological adjustments and after that combin-
ing the created segments to tra�c sign forms via Binary ConnectedComponents,
short BCC, or Colour Connected Components, short CCC ([Zuniga et al., 1982],
[Mandler and Oberlaender, 1990]). In addition to the problem of not �nding a
sign in an image due to missing colour cues there are situations in which the
detector �nds too many segments for the shape �nder to match in the given
time.
Especially Y-J. Zheng, W Ritter, R Janssen added a veri�cation step based

on normalized colour to ensure the sign candidate [Zheng et al., 1994] in a sin-
gle frame. The classi�cation of the image object sign was, partly due to the
limited sample sets for classi�er adaptation, limited to nearest neighbour classi-
�ers and rudimentary neural networks. Internationalization was not an issue in
these early steps of tra�c sign recognition, though there were some groups, no-
tably at the Daimler Benz Research Institute detecting and recognizing German
and French signs using a single k-nearest neighbour classi�er [Zheng et al., 1994].
The term internationalization is used to describe the algorithms necessary for
the adaptation to the di�erent characteristics of tra�c signs encountered in vary-
ing countries. Representatives using the colour detector type in the tra�c sign
recognition system are pointed out in the following:

1. Daimler Benz Research Institute, being the �rst to include a rudi-
mentary tracker [Estable et al., 1994], a colour based shape veri�cation
[Zheng et al., 1994] and a very fast polynomial classi�er and lookup ta-
ble based colour pixel detector [Bartneck and Ritter, 1992], allowing about
200ms processing time on a four CPU 40 MHz transputer system. The
thesis of Werner Ritter [Ritter, 1996] gives a good overview of the algo-
rithm proposed by the Daimler Benz research team, as does the thesis of
Stephane Estable [Estable, 1996]. The advantage of the colour based system
presented by the Daimler Benz Research Institute is a very fast detection of
tra�c signs allowing for the �rst so called in-step system, meaning that the
system is capable of recognizing tra�c signs on the given hardware online
in a vehicle moving in regular tra�c. The system was presented at the �nal
presentation of the Prometheus project 1994 in Paris, recognizing coloured
round, triangular, rectangular and octagonal signs of up to 60 di�erent
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classes using a k-Nearest Neighbour network.

2. University of Koblenz-Landau introducing the Colour Structure Code
as a fast (800ms per frame on a 4 CPU 40 MHz Transputer sys-
tem) detector for colour shapes [Priese et al., 1993], [Priese et al., 1994],
[Rehrmann et al., 1995]. The system was developed as an alternative de-
tector for the Daimler Benz system.

3. N. Kehtarnavaz [Kehtarnavaz and Ahmad, 1995] at the A&M University of
Texas used a neural network for binary colour segmentation in YIQ colour
space. The binary connected components are transformed to a log-polar
representation which is then Fourier transformed. This new representation
of the data is fed to a back propagation network that decides for the shape
type the of the sign. The system was used to �nd stop signs and yield signs
where the shape de�nes the meaning. The computation time is stated as 80
seconds on a Sun Sparc Server 1000 having a 40 MHz CPU. Special focus
was set on the di�erent types of distortions a sign might encounter when
represented in an image. Six types of noise were distinguished:
centroid noise error in object centre leading to a translation

of the pictogram pattern
occlusion noise occlusion of the sign by another object or a

partly coverage of the sign (dirt, wear & tear)
Gaussian noise distortions occurring due to dirt on the lens,

bad weather or similar factors
motion noise due to camera movement and

long shutter times
shear noise distortions through view angle
maximum distance scaling noise of the object

Adding the idea of looking at the distortions opened the path for the use of
Synthetic Samples for the adaptation of the tra�c sign classi�er as described
in section 4.2.2.

4. At the Universidad Carlos III de Madrid [de la Escalera and Moreno, 1997]
a rudimentary colour detection via RGB thresholding and a corner detector
with separated masks on the binary image are used for detecting the signs.
The more interesting part is the sample set used for the adaptation of the
classi�er used for the pictogram recognition which is composed of ideal sign
representations which are rotated ±6 ◦, modi�ed by three di�erent types
of Gaussian noise and translated ±3 pixel in both directions, thus creating
1620 templates sized 30x30 pixel from one ideal sample. The sample set is
fed into the training of a back propagation neural network. The processing
duration on one 256x256 pixel frame was given as 1440 ms on a Intel 486
with 33MHz. The algorithm was used on 9 di�erent triangular sign classes
and 9 di�erent circular sign classes.
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Colour based systems have the advantage of allowing a fast segmentation of
the image for all di�erent physical forms of signs. The di�erentiation between
the di�erent contours takes place in a follow up step and thus on a much smaller
amount of input data.

1.4.2 Radial Symmetry Detector

In the year 2002 Loy and Zelinsky from the National Australian Univer-
sity proposed the Fast Radial Symmetry Transform [Loy and Zelinsky, 2002,
Loy and Zelinsky, 2003] as a detector for circles and symmetrical polygons. The
results are very promising and led to the tra�c sign recognition proposed in
[Barnes and Zelinsky, 2004, Loy and Barnes, 2004]. The emphasis is on the de-
tection part, while tracker and recognition are rudimentary. Connecting elements
closer than 20 pixel to one of nearly equal size in previous frame is used as tracker
algorithm and thresholding on a cross correlation coe�cient as classi�cation step.
The tests were done on a comparatively small set of images having 1107 frames,
meaning 55 seconds of video at 20 Hz. The detector yielded 90% correct detec-
tions and 10% false positives on this set. There were 152 detected real world
objects in all, with an unspeci�ed number of misses. The speed on an - in the
year 2004 - up to date computer was 20 Hz on a QVGA (320x240 pixel) image.
Since the authors concentrated on the detector there is no mention of the follow
up chain like the decision unit or internationalization of the system.

1.4.3 AdaBoost Approach

In the papers [Bahlmann et al., 2005, Keller et al., 2008] the use of the AdaBoost
was proposed, see the appendix section A.2, algorithm as presented by Viola and
Jones 2001 [Viola and Jones, 2001] for the detection of tra�c signs. Additional
Haar wavelet [Haar, 1910] features based on colour cues were added, reducing the
false positive detections by the order of one magnitude. The detection module is
followed by a histogram based brightness normalization for the detected regions
and scaling module to a standardized size for these regions in the raster image.
The classi�er used to discriminate the di�erent sign classes is based on mul-

tivariate Gaussian distributions used on the top 25 linear discriminant analysis
(LDA) features of the normalized samples. The system is based on the analysis of
the whole track of signs detected in a passing by considering the weighted sum of
single classi�cation results, the weight being the higher, the newer the sample is
in the track. Thirty minutes of video including 4000 circular sign representations
of 23 di�erent classes were used as training set. The detector yielded 98.6% of the
signs while having 0.03%, or 0.3% using grey features only, false positives. Since
the detector kernel is used in varying scales at an unmentioned raster the false
positive number does not allow to conclude how many false positive candidates
were detected per frame. The classi�cation scheme rejected 15% of the positive
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samples and had an additional 6% error rate between di�erent sign classes. Every
600 frames a false positive was registered, this meaning one every minute at the
given frame rate of 10Hz.
The computational demands are very high, allowing for a frame rate of only

10Hz on a 2.8GHz Xeon CPU. Since the AdaBoost detector system is based on
the signs inlay information, here the numbers in the sign, indicating the speed
limit, as well as on the outline of the sign, it is expected to have less detection per-
formance when a larger variety of signs are encountered, especially with putting
attention to internationalization. The drawback of this solution is the fact that
the complete icon, meaning representation of the sign in the image, is trained in
the adaptation phase of the classi�er. Thus forcing a training on the complete set
of all countries' sign representations and a time consuming retraining whenever
a sign type of a new country is to be added to the operational area or a new
sign type is added to the required signs set. The advantage of this solution is the
universality of the approach. Given enough computation time this algorithm is
capable of detecting and recognizing all types of tra�c signs.

1.5 Scope of the Thesis

As shown above there are many recognition system approaches for tra�c signs.
Most of them are based on colour, which, as explained in the previous sections,
will not solve the problem of �nding the black and white end of limit signs,
cope with bleached signs or lighting conditions in�uenced by active lighting. The
learning and testing image sequences described in the papers mentioned were
usually comparatively small compared with the huge diversity of tra�c situations
encountered, such as daylight, darkness, tunnels, bleached or overgrown signs,
vehicles blocking the line of sight and many more. None of the papers above
has mentioned the problems when not only building a detector and classi�er
for one chosen country, but many - with the added necessity for generalization
capabilities of the system as well as the testing required that are implied by this
step.
The main contributions of this work to the subject of tra�c sign recognition

are a reliable, modular and fast detection and recognition framework. In this dis-
sertation the set of signs is expanded to include supplementary signs, see section
1.5.2. Furthermore for the �rst time the internationalization of the classi�ers is
addressed in depth in this work.
To be able to deal with the huge sets of data that have to be reviewed to get

a solid evaluation of the algorithms in a real world environment, a complete tool
chain with semi automatic labelling processes and automatic evaluation criteria
has to be developed and implemented. Another area left untouched in the lit-
erature are algorithms for the detection and recognition of supplementary signs
which are necessary to interpret the meaning of the associated signs. In the
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following chapters the work done on the design and implementation of an adap-
tive tra�c sign recognition system, capable of being adapted to the variations
encountered in di�erent countries, is illustrated.

1.5.1 Modular and Adaptable Tra�c Sign Recognition System

The framework proposed in this thesis is designed and implemented for the detec-
tion and recognition of Speed Limit signs together with the necessary auxiliary
modules. The system is based on grey value image interpretation and imple-
mented in a fashion that allows to integrate further algorithms for shape detec-
tors or colour detection methods, thus the system represents a �exible generic
framework for the detection and recognition of tra�c infrastructure. Thus the
systems design is capable of working on all kinds of tra�c infrastructure and
was used on tra�c lights, stop signs and triangular tra�c signs as well, see the
appendix section A.11 and [Lindner et al., 2004].

1.5.2 Supplementary Signs

The validity of a tra�c sign can be altered by a supplementary sign. Since an
autonomous system should be able to integrate this knowledge into its decision,
the additional signs have to be recognized as well. There are constraining and
explaining supplementary signs. For example "for lorries only" being constrain-
ing, while "curve ahead" is an explanatory sign. For the relevance of the sign the
constraining signs are of importance only. For autonomous driving the hint for a
curve ahead or the high probability of animals on the road might be important
information for the inclusion of a priori knowledge in lane detection or obstacle
detection algorithms. Since we are looking at a "Speed Limit Assistant" we will
restrict the algorithms to work on the constraining supplementary signs.
The presented algorithm �ts well into the modular concept of the described

tra�c sign recognition framework. The algorithm is fast and solves the detection
and recognition task in a hierarchical approach presented �rst in this thesis.
The auxiliary system for the detection and recognition of supplementary signs

will have to be easily adaptable to the conditions of di�erent countries and low in
hardware requirements, since it will have to run in addition to the original tra�c
sign recognition and thus only part of the computational power will be accessible.
Since the supplementary information always concurs with a speed limit sign or end
of limit the supplementary sign detection module will have information on where
and in which size range to search for the supplementary signs. The position, size
and pictogram of supplementary signs are not as well standardized as they are
for the limit signs. This results in the countries sign speci�cs having far more
impact on the location and appearance than they have for the detection and
recognition system for the circular signs, meaning additional care has to be taken
in the �exibility of the algorithm.
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Austria Belgium Germany Spain

France Italy Luxembourg Portugal

Figure 1.6: Representations of For Lorries Only supplementary signs in Europe

1.5.3 Internationalization and Classi�er from Scratch

In the literature concerning tra�c sign recognition very little is said about how to
handle the di�erences between signs in di�erent countries. Since most detectors
from the literature - with the exception of the AdaBoost algorithm - are inde-
pendent of the inner layout of the signs, the di�erences have to be regarded in
the classi�er only. Only very few references are to be found about the algorithms
working in multiple countries.
There are three ways to cope with the classi�er systems setup:

� Having one classi�er covering all countries.

� Having one classi�er per country.

� A mixture of the two above.

Of course the classi�er used could be general enough to be able to cope with
the di�erences encountered. This usually either dilutes the rejection capabilities
of the classi�er, allowing for more false positives or it reduces the rate of signs
correctly classi�ed, thus enlarging the false negative rate. For this reason an
alternative way is depicted in this thesis.
There are di�erent ways of deciding in which country the system is currently

used.

� By an additional sensor, namely GPS combined with a map.

� By discovering it by itself through classifying the detected signs with a clas-
si�er dedicated to the task of discerning the country by their appearance.

� By using multiple classi�ers, which are dedicated to the classi�cation of
tra�c signs in one country each and detecting the current country by de-
ciding which of the single classi�ers performs best and thus has most likely
been trained on the signs of this country.
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When the country the vehicle is currently driving in is ensured, separate classi�ers
previously adapted to the respective countries tra�c signs are used, which are
more speci�c, hence allowing better classi�cation results. The drawback is the
much higher adaptation cost and the very high consumption of persistent memory
in the control unit or computer.
The third possibility is a combination of the two approaches above. Allowing

one classi�er to cover more than one country, but still having multiple classi�ers
allowing for countries with very di�erent sign appearances.
In this thesis all three approaches for using a classi�cation system in multiple

countries were tested. The third scheme, namely using the same classi�er for
groups of countries, has been identi�ed as the best trade o�. A new scheme for
the classi�cation process has been implemented in using a modi�ed version of the
third scheme.
All the classi�er adaptation strategies need sample sets from all countries the

system should employable in. There are multiple ways to obtain the necessary
samples.

� Gathering data in the respective countries and labelling it.

� Take model signs from the rule books and distort them, creating what in
the following will be called synthetic signs.

� A mixture of the two approaches.

Gathering samples is a strenuous task, especially when many countries are in-
volved, labelling is even more so. Once there is a functioning system available
this system can be used as bootstrapping device for gathering more data, in the
sense of supervised or unsupervised learning, with or without a human in the
loop for verifying the labels given to the object. This eases the task of labelling
considerably. The learning set, enlarged by the new samples, is used to adapt a
new classi�er which is better adapted for the classi�cation of the tra�c sign. To
adapt a �rst complete classi�er system for a given country the synthetic signs can
be used to build a �rst version of a workable classi�er. The distortions used on
the pictures are derived from the distortions encountered in the countries already
adapted.
N. Kehtarnavaz [Kehtarnavaz and Ahmad, 1995] writes about the di�erent fac-

tors in�uencing the appearance of a tra�c sign in an image. The parameters were
manually adapted for the di�erent distortions and the algorithm was used to
adapt a classi�er from sign prototypes. Though it is not mentioned in the paper
this can of course be expanded to be used for the adaptation to di�erent countries
sign layouts. The drawbacks are that the parameters are guessed and not veri�ed
by a sample set, which does not perform as well as the strategy proposed in this
thesis. A newer work from the Nagoya University [Ishida et al., 2007] gives an al-
gorithm for rotation, blur and translation of the sign representatives in images to
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be learned from a previously gathered sample set. The paper by Ishida describes
a method close to the new approach proposed in this dissertation and which was
published by the author of this thesis and colleagues in [Hoessler et al., 2007] on
the subject of generating a new sample image set for classi�er adaptation and
will be described later in this work.
Some authors claim that their system would allow for di�erent countries di�er-

ences to be compensated by their recognition algorithm. At the "Ecole Nationale
Superieure des Mines de Paris" some work has been done to eliminate most di�er-
ences between the countries sign appearances by segmenting the single numbers
in a binarized version of the cut-out holding the signs centre and using optical
character recognition to recognize the meaning of the sign [Moutarde et al., 2007].
The paper states that French signs were recognizable in about 90% of the cases
and most of the false negatives were due to the numbers not being separable from
each other. The results given were achieved on a set of 281 signs and are to be
interpreted in relation to a test set of this size. The system trained on french
signs was tested on few German signs and was working there as well, without
further information for the tests in Germany being given in the paper. The prob-
lem of separability of the numbers on the sign is a limiting factor in this strategy,
allowing not more than 90% of the signs to be recognized in this manner.

  Austria  Belgium  Switzerland  Germany   Danmark        Spain        France          Italy     Netherlands

Figure 1.7: Representations of Speed Limit/End 40 km/h signs in Europe

1.5.4 Evaluation of a Complex System

Most evaluations are based on a small set of test samples and the score is either
based on the detection rate or the classi�cation of single signs. In some papers
the classi�cation result for a whole track is taken into account, thus representing
the real world tra�c sign object. In this dissertation in addition to detection
rate and classi�cation rate based on the correctness of the real world tra�c sign
object there will be an additional step, namely the scene evaluation.
Especially on motorways the signs are placed on both sides of the road or in

rows of up to one sign per lane above the road. Some of the signs are bound
to be far away from the current position of the vehicle. For the interpretation
of the current tra�c scene the correct classi�cation of one of those signs usually
is su�cient. The complete image sequence in which the allowed speed is to be
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determined and the detection systems results can be matched against the labelled
ground truth in three ways. Firstly per event, counting the limiting signs and
events resulting in a change of the allowed maximum speed, secondly per time
slice or per kilometre travelled with the correct speed limit being shown to the
driver. In this dissertation a scheme for evaluating and optimizing of the whole
tra�c sign system is proposed and has been implemented and tested. For this
type of evaluation elaborate tools and di�erent views on the recognition and
detection data have been developed and analysed.

1.6 Thesis Overview

The description of the algorithm presented in the thesis begins in chapter
2 with an overview of the requirements of the tra�c sign recognition sys-
tem and a description of the algorithm for the detection and recognition
of tra�c signs. This includes the detection 2.4, detection veri�cation sub-
sec:RuntimeDetectionVeri�cation and tracking 2.5 of circular sign candidates.
The three dimensional positioning of the circles tracked in subsequent images in
the real world relative to the camera position is explained in section 2.5.3. In the
following classi�cation of the circular image candidates 2.6 and connecting the
classi�cation results for the decision on the tra�c sign class of a real world object
2.6.3 is explained. At the end of chapter 2 necessary modules are explained, most
important the supplementary sign detection and recognition module 2.7.
In chapter 4 the o�ine system necessary for collecting training samples and

adapting the classi�ers introduced in section 2.6 are explained. In this chapter
the algorithms developed for allowing the expansion of the �eld of application of
the tra�c sign recognition system from one country to a multitude of di�erent
countries are presented.
The chapter 5 gives short overview on how the system is to be evaluated and

the obtainment of the necessary evaluation sets.
Chapter 6 contains the results of the evaluations made on the detection and

recognition system. This includes considerations concerning the camera settings
6.1, the adjustment of parameter settings in all modules based on the optimization
of example sets (6.3, 6.3.3, 6.4) and the evaluation of the performance of the
modules in the detector, tracker and three dimensional positioning systems (6.3.5,
6.5, 6.4.4). In the second part of chapter 6 the performance of the classi�cation
systems and and their expansion to ten European countries is evaluated 6.6.
This includes the evaluation of the algorithm for the creation of realistic synthetic
training samples 6.7.1, the adjustment of the number of necessary classi�ers 6.7.3,
as well as the detection and classi�cation performance of supplementary signs 6.8.
The results of the �nal tra�c sign recognition system on a per kilometre base
using a tra�c scene interpretation in the ten countries are given 6.10.
The chapters 7 and A hold the summary and the appendix, respectively.
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2.1 General Requirements

A tra�c sign recognition system to be introduced to modern vehicles has to com-
ply to strict constraints. It has to work day and night, at high vehicle speeds, be
feasible in small control units having a low power consumption and using mem-
ory sparingly. It has to cope with limited distortions of the signs in the image
encountered due to imperfect sign installation in the real world and perspective
deformations, as well as with defects and weathering and fading of the signs rep-
resentation in the image. The system has to be able to detect and recognize tra�c
signs even when they are occluded by other tra�c participants, the windscreen
wiper or bushes for some part of the period the sign would normally be visible for
the camera. This precondition leads to the necessity of detecting a wide variety
of sign sizes in the image at a high frame rate, since it can not be guaranteed that
the sign will be visible while still being far away and thus having a low resolution
in the image or still visible when being close and thus in high resolution.
The installation sites of tra�c signs vary widely as there are signs in construc-

tion sites close to the road surface and others installed at brides crossing the road
above the passing vehicle. The signs may be passed at low distance or as far as
several lanes away for multi lane highways. Thus the area in the image for the
detection of tra�c signs is not easy to be reduced. In �gure 6.3 a data base of
over nine hundred thousand signs' circles are analysed. Each centre of a tra�c
sign in a frame increments the value in the �gure by one.
The set of signs to be recognized is limited to the set mentioned in the Intro-

duction section 1.1, thus the speed limits, non overtaking signs and ends thereof.
Most triangular warning signs have immediate e�ect and thus have to either exe-
cute a direct in�uence of the system on the vehicle or warn the driver which may
distract him in the timespan where he should watch the road most intently due
to the immanent danger. Speed limits and non overtaking signs as well as their
cancellations in�uence long stretches of road. This allows for the implementation
of a reminder function without direct distraction of the driver or a slight and
easily over-steerable in�uence on the vehicle. This could be a gradual adaptation
of the cruise control or a slight moment on the steering wheel for instance when
using the turn signal at high speed in an non overtaking zone.
The often mentioned detection and recognition of Stop signs is problematic

since in western Europe most tra�c lights at major crossings have stop signs as
fall-back stage in case of power failure or in low tra�c periods. Since stop signs
as do right of way signs and yield signs presuppose direct action there would have
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to be clear warnings or even engagement in the system. The uncertainty imposed
by the existence of tra�c lights at the scene would require a recognition of the
tra�c lights and their current status as well.
This work will concentrate on designing and realizing a �exible framework for

the detection and recognition of Speed Limit signs. The �exibility and modu-
larity allows the simple integration of additional modules for the detection and
recognition of further object types. For the system to be easily ported to mobile
devices or di�erent control units and keeping the power consumption down at
acceptable rates only algorithms not necessitating specialized hardware (FPGA,
ASIC, customized DSP or similar) will be taken into account.

2.2 System Overview

Vehicle
Velocity

Yaw Rate

Detector

Hough
Circle

Tracker                     Classifier

Verification

Camera

Single 
Pattern Track

Decision Unit
ThreeD

GPS
Country

Road Type ...
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Specialists
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Country

Country
Select

Figure 2.1: System overview with main modules

Figure 2.2: Signs to be detected and classi�ed by the system

The overview of the system and the types of tra�c signs to be recognized are
shown in �gures 2.1,2.2.The �rst input are sequences of images of su�cient res-
olution and luminance dynamics, acquired by a camera mounted in the vehicle.
After obtaining the image a detector, in our case a detector for circles, is used to
reduce the number of candidates for signs in the image. Even general classi�ers
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as AdaBoost are used as detectors only ([Bahlmann et al., 2005]). Following the
primary detector is an optional position and size re�nement step. The tracker
combines tra�c sign shapes previously sighted in the images, to tracks over the
sequence of input images. A classi�er validates the single objects and then the
classi�cation results for one tracked object are combined to a result for the prob-
ability of there being a real world tra�c sign. The last step in the system is
the scene evaluation, which might include additional modules like supplementary
sign detection and recognition, three dimensional measurement as well as mi-
nor modules solving problematic cases, e.g. the separation of active signs versus
minimum speed signs for example, (�gure 2.18).

2.3 Camera Requirements

The camera obviously has to be installed forward looking, since the signs are
readable in this direction only. To allow for cleaning and better viewing angle the
camera usually is installed behind the windscreen, at the highest point accessible
with respect to installation preconditions and screen cleansing purposes (wiped
region). The sensor has to have a reasonably high dynamic luminance range to
allow for bright and dark regions in the image, the sun in the centre view and
the signs without illumination at the sides for example. In addition the signal to
noise ratio has to be high to permit night time use of the system. Long exposure
times at low lighting conditions are limited due to the resulting motion blur. This
factor currently limits the resolution of the sensor to about VGA (640x480 pixel)
to XGA (1024x768 pixel) even at low apertures. Another factor is the minimum
light exposure of the camera since the sun re�ecting in a tra�c sign can lead to
saturation of the sensor making the sign indecipherable in the image. The �eld
of view is dictated by the regions where signs may occur in road architecture and
the relative position of the vehicle.
If the camera is to be used by more than just the tra�c sign recognition

system there has to be trade-o� between the di�erent users. Possible additional
algorithms include lane departure functions looking at the road directly in front
of the vehicle, tra�c light detection looking skyward as far as possible and smart
cruise control systems in the vehicle, needing high resolution in the centre of the
image to measure the distance to vehicles at high distances.
The main two types of imaging sensors available are CCD and CMOS imagers.

Both types allow for the requirements above. The CCD sensors usually yield a
better signal to noise ratio at low light conditions and have a much lower �xed
pattern noise compared to the CMOS sensors, while the CMOS sensors allow
for multiple di�erent slopes in the characteristic curve, derived by performing
multiple exposures and thus nominal higher dynamics.
The camera with which the tests in this thesis were executed has the following

features as listed in the appendix section A.7. These are a CMOS imager with
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a 752 x 480 pixel resolution and a 10 bit grey value depth, an additional Bayer-
Pattern [Lukin and Kubasov, 2004] was applied to allow colour comparison and a
lens with a 7mm focal length and an approximate aperture of 2.0 . This reference
camera will be used in all further examinations, unless noted otherwise.
For the transformation from real world to image the pinhole camera model

was used, allowing for principal point (uv, vv) and focal length only. The local
distortions for all cameras tested were low enough not to interfere with the de-
tector and classi�er, so no recti�cation was necessary. For the reference camera,
as described in section A.7, the radial and skew distortions as explained in the
appendix section A.4 were small enough to be disregarded even for the three
dimensional reconstruction used in section 2.5.3. The translations of the sensor
relative to the vehicle were determined by the use of a laser distance meter. The
roll part of the rotation matrix (Rx) was adjusted to be close to zero, while yaw
(Rz) and pitch(Ry) were determined by �nding the vanishing point.

2.4 Tra�c Sign Detector

The detection step is using the most computational time of the complete system.
Due to the given processing power some algorithms were not suitable for the task
at hand, for example correlation over the whole set of sizes and sign types in
the entire image or using AdaBoost. Colour as primary detector was ruled out
due to the necessity of detecting achromatic signs. The detector using Chamfer
distance as proposed by Gavrila [Gavrila, 1998] yields results close to the ones
derived by the algorithm proposed in his thesis, but is challenged when there is a
partial occlusion of the circle, leading to very high distance values, meaning low
detection scores, in the distance transform, see section A.3. The best trade o�
between allowed computation time and quality of the result is the proposed type
of the fast Hough Transform, detecting the circular outline of the signs.
The maximum sizes of circles to be detected in the images can be derived from

the cameras �eld of view fov in radians, the pixel width of the sensor w, the real
world size of the signs s in metres and the minimum passing distance d of the
vehicle in metres. The resulting formula for the maximum size in pixels is given
below.

p =
w

2
− w

fov
· arctan

(
d− s/2
d+ s/2

· tan

(
fov

2

))
≈ w · s

2d+ s
(2.1)

The variables with the exclusion of the sizes of the signs are constant for all coun-
tries. The algorithm can be adjusted for each country depending on the sign sizes
commonly used in their tra�c infrastructure. For Germany this leads to a maxi-
mum sign diameter of about 60 pixels, given a sign diameter of 0.6 metres on rural
roads according to the rule book for tra�c sign placement [Bald and Giesa, 2002]
and a lateral distance of about 3 metres, on higher level roads the signs are larger,
but the minimal lateral distance to the camera increases as well. The smallest
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2.4 Tra�c Sign Detector

size of signs to be detected in the image is derived from the minimum resolution
necessary to be able to classify the circle for being a sign and the type of the sign.
This leads to the minimum size of 15 pixels in diameter. For the distribution of
tra�c sign sizes in the image see �gure 6.2.

For reasons of speed-up and memory economy the primary detection in the
image is run on a resolution pyramid, starting on a sub scaled by the factor of
two for the primary detection algorithm. For the classi�cation the sign candidate
in the image should be segmented as accurately as possible, thus there is a second
detection step verifying the detection and �ne positioning the centre as well as
determining the exact radius of the sign. Since the limiting signs consist of two
concentric circles the veri�cation and �ne positioning stage is used to split the
detection to deliver both radii.
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Figure 2.3: Scheme of the Coarse Detector

2.4.1 Coarse Detector

The primary detection of the circles in the images is performed on an image sub
scaled by the factor of two. The factor is derived by the minimum diameter of a
sign to be recognizable, which is about �fteen pixels and the smallest radius of
three pixels for the detector to deliver a veri�able peak in the accumulator. Thus
when a sign of radius seven pixels has to be detected, to allow for far o� signs to
be found before leaving the �eld of vision and to have a higher chance to detect
and track the signs in the image in case they are obstructed by other vehicles or
infrastructure in the following frames, the maximum factor for scaling the input
image down for optimizing computation time is two. Another bene�cial factor is
that by the scale of two eventual adverse e�ects from camera sensors employing
Bayer-Pattern �lters, see the appendix section A.6, are countermanded.
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Edge Detection

When using the fast Hough Transform the �rst step is to determine the position
and phase of the gradients of the object in the image. For the detection of the
edges an algorithm o�ering a su�cient precision in the phase gradient while being
computational e�cient was to be found. The Laplace �lter does not allow for
detecting the phase, Roberts Cross delivers too much noise in the resulting phase
and Kirsch generates phase information in four directions only. Edge detectors
examined more closely were Sobel �lter, Prewitt operator and Canny operator,
where the Sobel �lter provided the best performance in speed as well as detection
rate and thus is used in the system.
To ease the computational cost in later steps of the algorithm and to better

de�ne the position of the edges a non-maximum suppression scheme is used.
Since a large part of the image has to be processed this part of the algorithm

has to be optimized for computation time very thoroughly.

Hough Accumulator

The main detection step is established by the use of the fast generalized Hough
Transform [Duda and Hart, 1972, Li et al., 1986, Illingworth and Kittler, 1987].
To reduce memory consumption and computation time the radius range and
centre positions to be scanned is quantized. Due to the previously executed
computation steps the existence of an edge and the direction thereof at all image
points is known at this point of the system. If a single pixel belongs to the rim of
a circle the centre of this circle has to lie on a line either in the direction of the
gradient or in the opposite direction. The expected radius de�nes the distance
from the edge point where the accumulator is incremented.

Low Pass Filter on Accumulator and Maximum Extraction

In this step the highest entries of the accumulator image are extracted and entered
into a list structure. A low pass �lter is used on the accumulator images and a
�xed number of maxima extracted and passed on to the next step. The list of
points is submitted to a connected components search. The weighted centre of
the connected components comprise the candidates handed on to the detection
veri�cation stage.

2.4.2 Detection Veri�cation

The circle candidates detected in the previous steps are quantized to two pixels
accuracy in position and to a limited number of radius range segments in size. For
later tracking and classi�cation the circles have to be measured more accurately.
As an additional e�ect this step veri�es the circle candidates. This is necessary
since through the rough estimation in the coarse detector phantom candidates

24



2.4 Tra�c Sign Detector

are created, especially in areas containing many edges, tree branches or bushes
for example. These phantom candidates are eliminated in this step. The module
used to accomplish the task is depicted in �gure 2.4.
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Figure 2.4: Scheme of the Detector Veri�cation

There are two fast algorithms available that allow positioning and veri�cation.
One is edge correlation, the other is Chamfer Matching. Both work on edges
in full image resolution and are robust to minor distortions of the detected cir-
cles. The edge detection used in the preprocessing step to both algorithms has
to be insensitive to the e�ects introduced by the Bayer-Pattern. The resulting
edge direction image is �ltered, keeping only edges �tting to the templates' spa-
tial and directional patterns and removing unconnected speckle pixels using the
morphological erosion with a 3x3 pixel �lter.

Edge-Correlation

This scheme for positioning and verifying the circle candidates uses the phase
gradient image to correlate with ideal circle edge templates. The �tting edges on
the circular template are counted and set into relation to the number of pixels on
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the template. The template with the highest score has to exceed a threshold to
be accepted as a veri�ed circle candidate. For the detection of slightly distorted
circles, such as signs being rotated along their vertical axis by a few degrees, the
scores of templates having the same centre and adjacent radii are averaged, thus
including pixels of ellipsoids into the score.

Chamfer Matching

The algorithm is based on a distance transform in which the value of each pixel
in the transformed image represents the distance to the closest pixel set in the
binary input image, in this case the edge image. The output is the sum of
accumulated values under a mask applied to the distance transformed image, the
so-called Chamfer image. The basic idea of Chamfer Matching are explained
in the appendix section A.3. In the paper of Gavrila et al. [Gavrila, 1998] this
method is used as the main detection step. The algorithm explained in the paper
and its follow ups requires a huge amount of memory for the 8 split directional
edge images to be held in the system. This can be circumvented when it is used
as a position re�nement only, since the �ltering of the edge directional image as
explained in section 2.4.2 renders the use of multiple discrete gradient images
unnecessary.

Retrieving the Veri�ed Position

Following the correlation or Chamfer Matching step the three dimensional result
table, holding values for centre coordinate and radius is �lled with the correlation
or matching scores. From the table the position of the best score is extracted as
well as the position of the second best result with a minimum radius di�erence
to the �rst result. The results have to be better than the threshold for the
veri�cation step to be accepted as a circle object to be passed to the tracker. For
the correlation the threshold is given as the minimum percentage of the circle's
edge pixels to be detected, for the Chamfer Matching it represents the maximum
mean distance from the circle templates pixels to the next detected edge.

2.5 Tra�c Sign Tracker

The tracker is the central component in the system. It is used to collect the tra�c
sign candidates in the image sequence from the detector, accumulate the detected
circles over time and position and hand the tracks over to the classi�cation system,
administrating the classi�cation results as well. The type of tracker used is a
αβγ − tracker [Kalata, 1984], used on the centres of sign positions in the image
and the signs sizes in pixels. When the ego motion of the camera is known
the distance to the sign can be estimated and is used for tracking as well. The
result of the tracking process is the connection of all detected circles in the image
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2.5 Tra�c Sign Tracker

sequence to real world objects, allowing their classi�cation and the computation
of their three dimensional world position relative to the vehicle.
The tracker is run before the classi�cation of the circle candidates since the

classi�cation step is a computationally expensive step and should only be used
on image objects that are con�rmed by the tracker being able to predict their
movement and thus building up a track. Some circles in the image are non-
circular three dimensional objects in the real world that only seem to be circles
in some views while driving past them. Typical candidates for these objects are
tree branches or bushes. Another type of image objects to be removed by the
tracker before presenting them to the classi�er are moving circular real world
objects like the wheels of crossing cars.

2.5.1 General Setup

The main task of the tracker is to combine circle candidates from the same and
from consecutive images to tracked real world objects. The combination of circles
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Figure 2.5: Scheme of the tracking system to assign tracks in the image sequence
to real world objects

in a single frame is necessary since tra�c signs are composed of concentric circles.
These are the inner, usually white, circle holding the digits, the outer red circle
and if the resolution is high enough the outermost white rim around the red
circle. As depicted in �gure 2.5 the position of the next element for already
existing tracks is predicted either from the image coordinates and time di�erence
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between the two frames only, or, if the information is available, with the use of
additional information about the movement of the camera between the two time
steps.
The existing tracks in the image sequence are checked for possible image objects

for continuation close to the predicted position. Should one image object �t to
more than one track or more than one object �t to one track an association module
is called to solve the collision. Tracks that have no perpetuating image object
get an empty image object at the predicted position to allow the continuation of
the track in the next time step. Image objects not used to continue an existing
track open up new tracks.
A track ends when its prediction puts the expected continuation image objects

outside of the image area or the perpetuating objects were empty for more than
a prede�ned timespan. Here this means the track did not �nd a �tting image
object for a long time.

2.5.2 Prediction Without Egomotion

Should there be no information about the motion of the camera the whole tracking
is based on the previous sightings of objects in the images belonging to the
respective track. Since the task of connecting the tracks is not very di�cult
a simple movement pattern is used for the prediction. The model of movement
used assumes image objects to have a roughly constant speed in pixels per second.
Actually they have a constant acceleration in image coordinates given a straight
movement of the camera at a constant speed, but since the movement of the
camera is not known, the acceleration part of the prediction would allow even
minor yaw movements of the camera to result in very high acceleration values in
the prediction.
The prediction uses the αβγ − tracker [Kalata, 1984], there the parameter

setting necessary to reach the optimal Kalman �ltering [Kalman, 1960] given
white noise is explained. The �lter equation is depicted in equation 2.2. The
state vector x = (s, v, a)T consists of the position, velocity and acceleration of
the tracked object in the image in pixels. The currently detected position is sdet

and the position as predicted from previous detections is called spredicted

xtn+1 = xtn +

 v∆t+ a
2
∆t2

a∆t
0

+

 α
β/∆t
γ/∆t2

 (sdet − spredicted) (2.2)

Further elaboration on this prediction type is to be found in the diploma thesis
of Stefan Eder [Eder, 1999], where the parametrization for α, β and γ is ex-
plained in detail. For tracking presuming constant velocity the terms including
the acceleration are set to zero and the values for α and β change. The value for
α is chosen by the equation given in [Kalata, 1984], see equation 2.3, where σw
is the moving capability of the image object and σn is the measurement noise.
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Using the values from our system this leads to an α between 0.80 and 0.95.

α =
−Λ2 +

√
Λ4 + 16λ2

8
with Λ = T 2σw/σn (2.3)

α β γ
constant position α 0 0
constant velocity α 2 (2− α)− 4

√
1− α 0

constant acceleration α 2 (2− α)− 4
√

1− α β2

α

Table 2.1: Tracker parameter sets

The new tracks always start as a single detector image object. The object in
the next slot, the second for this track, is searched in an area centring around
the previous detected coordinates, since velocity and acceleration are not yet
initialized. In the following time steps the new position is determined from the
movement of the previous sightings. Since there is always some error in the pre-
diction of the movement the coordinate where the next image object is expected
is expanded to an area around the predicted spot. The dimensions of this area
depend on the accuracy of the previous prediction, using a small area when speed
and coordinate were predicted well in the last frame, or a large margin when the
previous prediction was inaccurate, indicating a change in the movement of the
camera.

2.5.3 Prediction Using Three Dimensional Object Position Estimation

In the case of a known movement of the vehicle and thus the camera, the predic-
tion can be more accurate. There are four factors in�uencing the pixel position
of a given object in the next frame. In addition to these variables the constants
the focal length and the coordinates of the focus of expansion in the image have
to be known.

� The dominant factor is the yaw movement of the vehicle measured by the
yaw rate sensor. This factor is easily compensated, since it translates di-
rectly into a pixel o�set.

� The vertical pitch movement is not measured in the current setup, but is
much smaller than the movement introduced by the yaw rate.

� The forward movement of the vehicle introduces another translation of the
object in the image. This translation depends on the distance of the real
world object and the distance from the centre of expansion in the image as
well.
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Figure 2.6: Coordinate systems

� The last factor is the lateral movement introduced by driving in a curve.
For vehicles this factor can be neglected since it is in the range of a few
centimetres between two frames only, leading to a minute change of the
image objects image positions.

By computing the prediction from the vehicle movement as derived from the
Ackermann Model (section 2.5.4), the distance to the sign in the real world can
be estimated by �nding the closest point to all lines of sight to the object from
the di�erent camera positions. A sketch of the coordinate system and the setup
is shown in �gure 2.6. The basic equations for the computation of the three
dimensional position of the signs were evaluated in the diploma thesis by Elmar
Tarajan [Tarajan, 2004], which was tutored by the author of this dissertation.
Knowing the position of the sign in the real world and the vehicle's movement
from frame to frame the expected position of the object in the next frame can be
predicted. Due to the comparatively small �eld of view of the camera the main
part of the movement in the image is due to the rotation of the vehicle. Given
the unknown world position of the real world object when the system detects the
�rst circle belonging to that object, the �rst estimation of the reappearance of the
object in the next frame is imprecise. The estimation is based on the minimum
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and maximum real world size of signs, the detected radius of the circle in the
image and the ego motion of the camera, see �gure 2.7. After two detections an
estimate of the real world objects distance is known via triangulation and the
margins for the pixel position of the object in the next frame can be adapted.
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UTn+1
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Figure 2.7: Deriving pixel positions umin and umax for the reappearance of the
circle in the next image from the previous image position, the objects
minimum and maximum size, dmin, dmax and the cameras movement.

2.5.4 Three Dimensional Positioning Formulas

The movement of the vehicle is approximated according to the Ackermann steer-
ing geometry by Rudolph Ackermann (1764-1834), reduced to a single track or
bicycle model, expecting vehicles to run on a circle with a radius depending on
the steering angle of the front wheels. The Yaw rate sensor proved to be much
more accurate than the use of the wheel angles due to the slippage on the wheels.
Since the system is much more sensitive to errors in the angle than in inaccura-
cies in forward movement the wheel angles are disregarded and only the yaw rate
from the acceleration sensors are used. The movement is applied on the centre
of the rear axle. The movement of the camera, which is �xed on the vehicle is
obtained by �rst transforming the coordinates of the previous camera position
into the centre of the rear axle, then applying the vehicle movement and after
that transforming the position back into the camera's coordinate system, see
[Tarajan, 2004].
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Figure 2.8: Ackerman vehicle movement and variable description with the param-
eters R = velocity

yaw rate
the radius of the circle the vehicle is supposed to

move on and α = yaw rate ·∆t the angle moved

xCtn
= xV tn + d (2.4)

xVtn+1
=

velocity

yaw rate

(
sin (α)

1− cos (α)

)
(2.5)

xCtn+1 = xCV tn+1
+

(
cos (α) − sin (α)
sin (α) cos (α)

)
d (2.6)

The task is to �nd the real world position of the sign relative to the vehicle.
The inputs are the lines of sight from the di�erent vehicle positions to the sign as
determined by detecting the signs centres in the images. The task then is to �nd
the point being closest to all the lines of sight in the track. The vectors are given
in three dimensional world coordinates relative to the start of the track. The
resulting sign position is x, the lines of sight from the respective camera position
to the sign are the vectors gi and the vector from the closest point of the line
of sight vectors to the sign position are ci. The sum of square distances of this
vector has to be minimized. To �nd the minimum the formula is di�erentiated
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for x,y and z. The resulting sign position is as elaborated in [Eder, 1999]:

x = (x, y, z)T (2.7)

The line of sight vectors from the respective camera position to the sign is:

gi = si + li ∗wi (2.8)

The vector from the line of sight to the sign position at the closest point:

ci = x− (si + lci ∗wi) (2.9)

with:
lci = (x− si) ·wi/ (wiwi) (2.10)

The goal of the algorithm is to �nd the point that has the lowest sum of squared
distances to all lines of sight:

x̂ = arg min
x

(∑
i

∣∣cTi (x) ci (x)
∣∣) (2.11)

To solve for x̂ we di�erentiate the distance ‖c‖2 by the position of the sign.∑
i

(
d |~ci|2 /dx

)
=

∑
i

(
fi ·
((
w2
iy + w2

iz

)
x− wix · wiy · y − wix · wiz · z

))
−∑

i

(
fi ·
((
w2
iy + w2

iz

)
six − wix · wiy · siy − wix · wiz · siz

))
= 0 (2.12)

with
fi = 2/

(
w2
ix + w2

iy + w2
iz

)
(2.13)

The di�erentiations of d |ci|2 /dy and d |ci|2 /dz are analogue. Solving the three
equations for x leads to

A · x = b with A =
∑
i

(
Ai/d

2
i

)
and b =

∑
i

(
bi/d

2
i

)
(2.14)

A =

 a11 a12 a13

a12 a22 a23

a13 a23 a33

 , Ai =

 ai11 ai12 ai13

ai12 ai22 ai23

ai13 ai23 ai33

 and bi =

 bi1
bi2
bi3


(2.15)

with the squared length of the line of sight vector

d2
i = dTi di = w2

ix + w2
iy + w2

iz (2.16)
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and

Ai =

 w2
y + w2

z −wxwy −wxwz
−wxwy w2

x + w2
z −wywz

−wxwz −wywz w2
x + w2

y

 (2.17)

bi = Ai (six, siy, siz)
T (2.18)

The equation can easily be solved by use of the Cramer rule. When either the x
or the y component of the line of sigh vectors have a very low variance in a track
the equation can be solved disregarding the third dimension since it does not
add information in the system. The equations simplify as shown in the following
equations when using the information of the x, y dimensions only:

Ai =

(
ai11 ai12

ai12 ai22

)
=

(
w2
iy −wixwiy

−wixwiy w2
ix

)
, d2

i =
1

w2
ix + w2

iy

(2.19)

bi =

(
bi1
bi2

)
=

(
w2
iysix − wixwiysiy

−wixwiysix + w2
ixsiy

)
(2.20)

and when using the information of the x, z dimensions only:

Ai =

(
ai11 ai12

ai12 ai22

)
=

(
w2
iz −wixwiz

−wixwiz w2
ix

)
, d2

i =
1

w2
ix + w2

iz

(2.21)

bi =

(
bi1
bi2

)
=

(
w2
izsix − wixwizsiz

−wixwizsix + w2
ixsiz

)
(2.22)

solving to:
x = (a11b2 − a12b1) /

(
a11a22 − a2

12

)
(2.23)

y or z = (a22b1 − a12b2) /
(
a11a22 − a2

12

)
(2.24)

As a measure for the quality of the solution of the equation the condition k of
the matrix A is used, with the inverse k′ for being easier to be used in graphs
since it has a clear upper bound of 1.

k = Ev1 (A) /Ev2 (A)
k′ = 1/k

(2.25)

with Ev1 being the larger eigenvalue of the matrix A and Ev2 the smaller one.
Since the matrix is 3x3 only, the eigenvalues can be computed without iteration
procedures being necessary.

2.5.5 Selfcalibration of the Three Dimensional Positioning System

For the computation of the ego motion of the camera and determining the viewing
angle the sign was detected under relative to the systems coordinate system some
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calibration values have to be measured or estimated. These values are the

� The position of the vanishing point in the images, meaning the pixel in the
image where the point of in�nity is depicted when driving straight forward,
thus the angle the camera is turned relative to the vehicle. This position in
the image is called (u0, v0) for horizontal, respectively vertical pixel position.

� The position of the camera relative to the turning point of the vehicle in the
Ackermann model used to compute the ego motion. The values are (lx, ly)
for the o�set from the turning point to the camera to the front and to the
right respectively. The vertical position lz is not part of the equations and
thus does not have to be computed in the system.

For the tra�c sign recognition system to be operational the camera has to point
roughly ahead, thus the values for (u0, v0) are close to the centre of the image.
The rotation of the camera along the x-axis has to be low for the classi�cation
system to work.
For the driver, especially if the system is not mounted permanently, but is �xed

detachable in the vehicle, the autonomous measurement of the calibration values
in question is highly desirable. The values could be measured or adapted by the
operator of the system every time the mounting changed or the mounting was
stressed by temperature changes or rough road conditions, but this would greatly
reduce the usability of the system.
The algorithm for the autonomous computation of the calibration values is

based on the fact that the mean distance of the lines of sight from the camera
to the sign ∆m = minu0, v0, lx, ly

√
(
∑

i |cTi ci|) is rising when the wrong calibra-
tion values are used, since the rays do not intersect in one point any more in a
decalibrated system. Using this the algorithm for self calibration is as follows:

1. start the tra�c sign recognition system with reasonable values, meaning
(u0, v0) being in the image centre and the cameras o�set to the turning
centre being about 1.5m to 2m in front without lateral o�set. This rough
setting allows the tracking system to work, while being too inaccurate for
measuring the three dimensional positions of the signs.

2. Gather tracks, veri�ed by the classi�er to belong to a tra�c sign, that have
a low condition k, thus the solution of the three dimensional equation can
be trusted.

3. Divide tracks in two types. The tracks that were recorded while the vehicle
was going straight, meaning not driving curves, eliminating the in�uence
of the camera position relative to the turning centre of the Ackermann
equation and the tracks recorded in curves, meaning tracks in which the
relative position of the camera a�ects the computation.
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4. Pick the tracks from straight movement of the vehicle with low variance
of the vertical viewing angle, meaning signs left and right of the road.
Then minimize the distance mean ∆m by varying the value for the images
horizontal centre point u0.

5. Pick tracks from straight movement of the vehicle with low variance of the
horizontal viewing angle, thus signs being above the lane. Then minimize
the distance mean ∆m by varying the value for the images vertical centre
point v0.

6. Pick the tracks with
∑
|α| > threshold, meaning the vehicle driving a

curve. Use the values determined for the centre point of the image above
(u0, v0) and �nd the values for the translation of the camera by minimizing
∆m (lx, ly).

The equations below show the case of just two time steps in which the object
was detected to clarify the e�ect of the camera not being mounted in the vehicles
turning point see �gure 2.9 and the following equations.

The positions of the turning point of the vehicle in the Ackermann model in
two time steps xV0, xV1 and the respective positions of the camera xC0, xC1 are
given in the equations 2.26.

xV0 =

(
xV 0x

xV 0y

)
=

(
0
0

)
,xV1 =

(
xV 1x

xV 1y

)
= d

(
cos (α)
sin (α)

)
xC0 =

(
xC0x

xC0y

)
=

(
lx
ly

)
xC1 =

(
xC1x

xC1y

)
= d

(
cos (α)
sin (α)

)
+ lx

(
cos (α)
sin (α)

)
+ ly

(
− sin (α)
cos (α)

)
(2.26)

The equations for the intersections when disregarding the di�erence between
turning point and camera mounting deliver the distance rV from the position
at time step 1 to the intersection. The correct distance is rC when observing
the mounting point of the camera relative to the turning point. The values r

′
V

and r
′
C are derived by using the approximations for small angles sin (α) = α and

cos (α) = 1. The approximations are added to clarify the dependencies. The
complete derivation is in the appendix section A.12.
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rV = d
cos (α) sin (β0)− sin (α) cos (β0)

sin (β1 + α) cos (β0)− cos (β1 + α) sin (β0)
(2.27)

r
′

V = d
β0 − α

α + β1 − β0

(2.28)

(2.29)

rC = d
cos (α) sin (β0)− sin (α) cos (β0)

sin (β1 + α) cos (β0)− cos (β1 + α) sin (β0)
+

lx
(cos (α)− 1) sin (β0)− lx sin (α) cos (β0)

sin (β1 + α) cos (β0)− cos (β1 + α) sin (β0)
+

ly
− sin (α) sin (β0)− (cos (α)− 1) cos (β0)

sin (β1 + α) cos (β0)− cos (β1 + α) sin (β0)
(2.30)

r
′

C = d
β0 − α

α + β1 − β0

+ lx
−α

α + β1 − β0

+ ly
−αβ0

α + β1 − β0

(2.31)

In the equations above the names of the variables are used from �gure 2.9.
The variables c0, c1, v0, v1 are the position of the camera and the turning
centre according to the Ackermann equation at time step 0 and 1. The value d
is the distance travelled between the two time steps and α the angle the vehicle
has turned. The vector s describes the direction of the line of sight from the
respective point to the crossing point of the lines of sight and thus the expected
position of the sign. When computing the crossing point s the distance from the
points coordinate at the second position of the vehicle and camera is given in the
variable r. Due to the small absolute values of the angles α, β0 and β1 involved
the values for r are given with the approximation sin (α) ≈ α and cos (α) ≈ 1
for clari�cation in r‘. There the in�uence of the vector l can be evaluated. As
can be seen when the vehicle is moving straight (α = 0) the vector l does not
in�uence the result of the triangulation. When the vehicle is turning the e�ect of
the longitudinal distance of the camera to the turning point has a much higher
impact than the lateral o�set, since ly has the small angle β0 as additional factor
diminishing the in�uence of the lateral o�set on the distance measurement. The
e�ect of the lateral camera o�set on the computed real world position of the sign
has proven to be neglectable and thus not further used in the system.

The experiments presented in section 6.4.3 have shown that the tra�c signs
three dimensional positions can be measured to better than one meter longitudi-
nal accuracy.
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Figure 2.9: Scheme of the self calibration with
1. the o�sets of the camera position relative to the turning centre of
the Ackermann model
2. the movement of the vehicle
3. the points where the visual lines cross, from the model with and
without providing for the camera not being in the turning centre

2.5.6 Solving Assignment

There are some cases, especially when the prediction has to be made without
knowledge about the ego motion, in which more than one image object �ts to
one track or more than one track �ts to one detector object. A standard case are
two signs on one post above each other.
The easiest solution is simply taking the closest image object and track pre-

diction pair, connect them and go for the next pair. Since the pitch rate is
unknown an abrupt pitch movement introduced by a bump in the road might
lead to having one pair, one unconnected track and an unused detector object.
To prevent this the sum of distances of all connections should be optimized, giv-
ing unconnected members very high distance values, thus minimizing the number
of unconnected tracks or image objects. The algorithm used to solve this problem
is the Hungarian Method [Kuhn, 1955].

2.5.7 Use of the Tracker as Blackboard

As mentioned above the tracking module is not only used to compute how to
connect the detected circles in the image sequence to tracks, but as a blackboard
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to store the gathered data for all modules in the system as well, see �gure 2.5.
The following elements are stored in this blackboard:

� The positions and qualities of the detected circles.

� The part of the raster image holding the circle, further on called cutout.

� The estimated three dimensional position of the real world object,

� The classi�cation results for each cutout.

� Information about eventual supplementary signs, their cutouts and classi-
�cation results.

� Information necessary for the extension modules described in section 2.8.

The storing of the cutouts allows the implementation of additional modules
rechecking the complete track in re�nement steps as described in section 2.8.2.
Keeping the whole images would be possible as well, of course, but would ne-
cessitate the use of much more memory. Running the extension modules for all
cutouts and not just the ones requiring the use of the additional modules often
forbids itself due to the computational cost.

2.6 Classi�er

The classi�er to be used has to cope with a huge amount of data due to the
possible variations in the observed signs. In addition the image representations
of the signs are distorted as explained in section 4.2.2. To achieve the goal of
�rstly determining if the image object to be classi�ed is a relevant tra�c sign and
secondly which speci�c type of sign the detected patterns have to be classi�ed.
The �rst task in the classi�cation process is to provide meaningful features from
the image patterns to be classi�ed. The representation of the patterns at the
input side is a raster image of the circular objects found in the image by the
detector. These images vary in their size, brightness, grade of blurring and more
characteristics, as explained in section 4.2.2. To remove as many systematic
di�erences as possible between the patterns to be recognized, a normalization
process is used as described in the following section 2.6.1.
There is a huge variety of classi�er types available to the scienti�c commu-

nity. To decide which type to use the characteristics of the problem has to be
considered. The patterns to be classi�ed di�er even when belonging to the same
class, for instance due to the use of di�erent fonts for the digits in speed limits
In addition there is a high number of classes to be discerned.
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Figure 2.10: Scheme of the speed limit classi�cation

� Neighbourhood classi�ers like nearest neighbour or k-nearest neighbour
tend to grow very fast in their computational complexity when facing this
variety of inputs since their capability to generalize is gained mainly by
adding further labelled examples to the feature space.

� Heuristic classi�cation failed since the problem is too complex to conceive
the rules necessary for such a network.

� The best way to cope with the high demands of variability and gener-
alization capabilities required by the problem was found in probabilistic
classi�ers.

The �rst step for object classi�cation is to remove as many systematic di�er-
ences between the patterns to be recognized as possible. Given enough examples
in the learning set and a high amount of computation time these deviations could
be learned as well, but this would introduce unnecessary complexity into the sys-
tem. The sign representations at the input side of the classi�er have sizes from a
few hundred to thousands of pixels, depending on the real world distance to the
sign and its real world size, in a depth of 8 to 12 bit, depending on the image
sensor.
For the con�rmation and stabilisation of the classi�cation the single classi-

�cation results are accumulated and a weighted result extracted as shown in
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section 2.6.3. The classi�cation of more than one pattern belonging to the same
tracked object, but taken from consecutive frames, as shown by Christian Woehler
[Woehler and Anlauf, 1999] for the classi�cation of pedestrians is not considered
useful for tra�c signs, since the object to be classi�ed is rigid and thus no ad-
ditional information besides con�rmation of the current result can be derived by
simultaneously classifying temporally successive patterns.
The selection of features to use for the classi�cation is based on the following

reasons:

� All signs are installed vertically except for few degrees, thus no rotation
invariant features are used. This includes histogram based features and
power spectrum features, meaning the squared magnitude of the the Fourier
transforms frequency components.

� The histograms of oriented gradients as used in the veri�cation stage for the
supplementary signs, see section 2.7.2, rely on stable edge directions which
cannot be extracted from the very small structures in the signs patterns.

� The Fourier transform components or the elements of the discrete cosine
transform are not used due to the high frequencies the patterns have in
position space as shown in �gure 6.1.

� Wavelet features like those produced by the Haar- or Daubechies wavelet
transform could be used to get scale invariant features, but since the scale
of the patterns is known through the diameter of the detected circle and the
discrete wavelet transform is inaccurate given the high quantisation noise
that originates in the small size of the input patterns.

� The pixel pattern as detected in the image can be used directly as input
to the classi�er. To get a constant number of input values for the classi�er
the pattern is scaled to a standard size using bilinear interpolation. The
patterns are normalized with respect to brightness and grey value variance
as well as described in the following section.

2.6.1 Normalization

The normalization is used to prepare the input feature vector for the following
classi�cation. The base information for the classi�cation consists of the pixels in
the detected circular region of the image. For ease of use the enclosing rectangle
is extracted from the image and the area not belonging to the circle is masked out
later in the process. The rectangular raster image regions extracted are further
on called cutouts. The input of the classi�er is a vector of constant length.
Thus when using the pixels values of the cutout as input the cutouts have to be
resized to an equal width and height. The algorithm used for resizing is bilinear
interpolation.
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Figure 2.11: Scheme of the normalization steps for the raster image regions hold-
ing the sign candidates

To determine the best output size of the resizing and thus the input dimension
of the classi�er a large number of cutouts was resized and visually inspected. The
smallest size where almost all cutouts were still recognizable was 17x17 pixels and
thus 289 input features for the classi�er. This was veri�ed by training classi�ers
for di�erent scales. Patterns of smaller sizes reduced the classi�ers quality, while
larger sizes lead to higher computational cost without yielding better classi�cation
results.

The resized cutouts vary strongly in the grey value mean and the variance
of their grey values. These di�erences do not add to the recognizability of the
signs. To enhance the similarities of cutouts showing tra�c signs the patterns
are normalized for their grey value mean and their grey value standard deviation.
Again the visual inspection by a human observer, veri�ed by adapting classi�ers
for di�erent settings, was used to determine the best algorithm.

The output of this normalization step is a 17x17 pixel raster image of an 8-bit
grey value range, thus the values from 0 to 255, with a mean value of 128. The
values are spread linearly from µ − σ equalling zero and µ + σ equalling 255.
Lower values are clipped to 0, higher values to 255 respectively.

The last step in the normalization stage is the masking of the rectangular raster
image region which is outside of the detected circle.

The presented tra�c sign recognition system has worked on images acquired
from mobile phone cameras, from several industrial cameras and in a control unit
especially designed for it without mayor performance decrease, thus the steps
taken to normalize the cutouts can be considered useful for most camera types.
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2.6.2 Single Pattern Classi�er

The classi�er has two tasks. Firstly it has to verify that the image pattern
represents one of the tra�c signs searched for and secondly it has to discriminate
between the di�erent classes of signs. Even on the strongly regulated roads in
Germany only every few kilometres a speed limit or end of speed limit sign is
to be found. Thus the number of tracks depicting circles that are not a sign of
interest or no sign at all are in the vast majority. This implies the classi�er has
to be very strict in rejecting false positive patterns.
The complete set of classes searched for consists of 70 classes as depicted in

�gure 2.2. Even when combining classes of similar meaning, here the di�erent
types of end of limit signs, the reduced set as shown in �gure 2.12 still consists
of 42 di�erent classes. Most types of classi�ers degrade in selectivity when too
many classes are to be separated.

Figure 2.12: Merged set of signs to be classi�ed by the system

The considerations above lead to the implementation of a two stage hierarchical
classi�er. The �rst stage is used to reject the main part of the patterns not
representing a sign and has the second function of determining the type of the
sign. As di�erent types the following six were identi�ed: outer circle of a limit,
inner circle of a limit, end of limit and the same for active signs, see �gure 2.13.
The blue arrow signs are an add on, since they present a very common type of
circular sign encountered on European roads and thus were considered important
as well, if only as a help to reject signs not belonging to the set as de�ned in
�gure 2.12. An additional class used in every classi�er is the rejection or garbage
class, representing all objects not belonging to one of the classes the classi�er is
adapted for.
For the classi�cation of one stage in the hierarchy the number of features pre-

sented to the classi�er has to be reduced, in our case by using the principal com-
ponent analysis (PCA). The dimensionality of the classi�cation problem has to
be reduced to allow an e�cient training of the classi�er. Di�erent schemes for fea-
ture reduction were considered, e.g. using a neural network [Kressel et al., 1999]
or using a linear discriminant analysis, but the best performance in generalization
and ease of retraining was reached using the PCA [Ott, 1977].
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Inner         Outer         End  Outer EndInner

Figure 2.13: Hierarchical classi�er setup, one cluster classi�er in stage I, followed
by six pictogram classi�ers for four pictogram types in stage II, di-
rectional arrows used as rejection class only, as well as the garbage
class

For the classi�cation of the reduced feature set many di�erent classi�er types
are feasible. The main requirements are classi�cation performance, computa-
tional speed and ease of retraining. Considering these factors the polynomial clas-
si�er of second degree was selected [Ott, 1977]. As shown in [Kressel et al., 1999]
a set of receptive �eld neural networks combined with radial basis classi�er per-
formed equally well where computational speed and recognition rate are con-
cerned, but the retraining with new training sets added to the huge existing sets
uses much more, up to two magnitudes, computational e�ort than retraining
the polynomial classi�er. The polynomial classi�er has the additional capability
of delivering a reliability of the classi�cation result which can be used to select
which of the single results to use in the track classi�cation, see the section 4.1.
More information about the mathematical foundations and the adaptation of the
classi�er and the principal component analysis will be given in the chapter 4.

The above classi�cation system is adapted to the appearances of tra�c signs
of a speci�c country. To allow the use of a limited set of classi�ers for a large
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number of countries, countries in which the signs have compatible appearances
share the same classi�er. The decision which classi�ers to use is done using the
Global Positioning System and a map. The algorithm discerning which countries
appearance types to recognize with a single classi�er is explained in sections 4.4
and 6.7.3, an exemplary setup is shown in �gure 4.3.

2.6.3 Track Classi�cation

The last step in the classi�cation process is the combination of the single pattern
classi�cation results to a conclusion for the whole track, meaning to conclude
from a sequence of image objects which class the corresponding real world object
belongs to. The tracks have very di�ering lengths, depending on the vehicle speed,
lateral o�set of the sign, obstacles in the line of sight and lighting conditions.
The classi�cation results have a reliability depending on the size of the sign in
the image and depending on possible motion blur. All these factors have to be
taken into account when merging the single classi�cation results.
The proposed method uses the reliability, depending on the size of the signs,

computed from the training set as weights for the output probabilities of the
single pattern classi�ers. The accumulated result is the weighted sum of these
probabilities, the decision being made by the maximum relative probability. The
relative probability has to be above a threshold, otherwise the classi�cation is
rejected and set to the result class Garbage. An additional rejection step has
been introduced by thresholding the sum of single probabilities for the resulting
class. This is necessary since the relative probability compared to the other
classes may be high, but the absolute sum might still be low when the track was
short or many of the entries could not be identi�ed due to the being rejected by
the single pattern classi�cation system.

2.7 Supplementary Sign Detection and Recognition

Supplementary signs are positioned close to the sign they are corresponding to.
There are very di�erent types of sizes and positions relative to the associated sign,
see section A.13. The vast majority of the sign positions are centred beneath the
circular sign. The low resolution of the supplementary signs in the image does not
allow the use of optical character recognition (OCR). In speed limit signs there
are two to three digits, while on the supplementary signs often whole sentences
are written on a sign of the same area. This necessitates the use of alternative
algorithms.
There are two types of supplementary signs, explanatory and restricting. The

explanatory type has no impact on the sign above, while the restrictive regulates
for whom or when the sign above is valid. Thus the restricting signs are regarded
in this system only. The rough position of restrictive supplementary signs is
known, since almost all of them mounted directly below the circular sign. The
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few signs not positioned underneath the main sign can be detected and recognized
with the algorithm presented in this chapter as well, since the concept is generic
with respect to position and size of the sign, but the implementation was realized
regarding the standard position of the signs only.
Additional challenges in detecting and classifying the supplementary signs are

the higher variety in shape and size as well as the edges usually being much less
prominent in the image than for the circular signs.
The general setup of the supplementary sign detection and recognition is de-

picted in �gure 2.14. The detection step shows two possible variants explained
in the following sections. An AdaBoost system has been tested for detection as
well, but was found to be slower and having less detection capability than the
custom designed detectors. After the detection of possible sign candidates a ver-
i�cation step based on Histogram of Oriented Gradients features checks which of
the candidates is to be passed on to the following classi�cation stage which is
designed similar to the scheme for the circular signs.
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via HOG Classifier Normalization Classification
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Figure 2.14: Scheme of the supplementary sign detection and recognition

2.7.1 Supplementary Sign Detection

The rectangular supplementary signs are less well de�ned in their shape and
looks than circular signs. The aspect ratio varies between 1/12 to 1/1 width to
height ratio. The outline has less distinct edges compared even to End of Limit
signs, since the black lines printed on the edges of the signs are thinner or even
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missing. Algorithms based on edge information are problematic in a second way
since the pictogram of the signs often possess strong vertical and horizontal edges
themselves, leading to a number of detections for rectangles in the inner area of
supplementary signs.
Two algorithms can be used in the �rst detection step. Both are used to �nd

the outline of the supplementary signs, since the variability of the pictogram is
too great to be used as a detection cue.
The �rst algorithm is based on the Radon Transform [Radon, 1917], which in

this case is closely related to a marginal distribution for the detection of hor-
izontal and vertical lines as used in this case. The idea is to accumulate the
horizontal edges along elements of the same vertical coordinate to one histogram,
the horizontal marginal distribution, and the vertical edges along the same hor-
izontal coordinate into another, the vertical marginal distribution. The peaks
in these distributions represent hints to the existence of horizontal, respectively
vertical lines. Using the transform on the horizontal and vertical edges in the
in the region of the image where presumably are supplementary signs leads to a
number of hypothesis for the position of horizontal or vertical lines.
The combination of the lines detected in the radon transform step to rectangles

leads to candidates for the position of supplementary signs. In this process slight
rotations of the rectangles have to be taken into account. This was not necessary
for the circular signs, but for the rectangular shapes rotations of up to 10 degrees
were recorded due to tilted sign posts, even if over 99% of the signs were tilted
less than 7 degrees. Another factor is the size and aspect ratio to be taken into
account. The rough size can be derived by adapting the search domain to the
size of the circular sign the rectangle is belonging to. The aspect ratio depends
on the sign types searched for. For the restrictive signs the aspect ratio from 0.5
to 1.2 are su�cient to cover next to all supplementary signs.
The following equation shows the actual algorithm providing a histogram

for each angle examined. The realization in software uses Bresenham lines
[Bresenham, 1965] saved in tables to speed up the accumulation of the histograms
and uses a low-pass on the two dimensional, in angle and position, accumulators
to get distinct peaks. Due to the comparatively high noise in the angle the re-
sults are close to the use of a one dimensional accumulator, in position only. Thus
adding up the results for the angles being close to being horizontal or vertical in
the margin of ±7 degrees, as mentioned above. The following equations show the
Radon Transform at the pixel position u and v. for an horizontal/vertical angle
o�set ∆a.

H (u,∆a) =
∑v1

v0 I (uv0 + v tan (∆a) , v) (2.32)

H (v,∆a) =
∑u1

u0 I (vu0 + u tan (∆a) , u) (2.33)

The second algorithm is used to allow for supplementary signs of which the
contrast is too low to be detected by the previous algorithm. It is based on the
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Figure 2.15: Parameters to be clustered ∆u1,∆v1,∆u2 and ∆v2

labelling of a set of supplementary signs and their relative size and position com-
pared to the circular sign they belong to. This leads to a set of �ve parameters
per labelled sign, this being upper left corners u and v pixel coordinate relative to
the circular signs centre position, lower right corners u and v pixel and rotation
angle. In the following steps the rotation angle is neglected due to being compar-
atively small. The main idea is to use the labelled positions as a priori knowledge
where supplementary signs are positioned. Since the large number of positions
cannot be tested in the following steps due to computation time restrictions the
positions have to be clustered �rst, leading to typical relative supplementary sign
positions. The remaining four parameters∆u1,∆v1,∆u2 and ∆v2 relative to the
circular signs centre position, are clustered, see �gure 2.15. The following three
approaches, all of them using Euclidean metrics, were tested:

� Agglomerative This clustering algorithm starts with as many clusters as
there are samples and merging those which are closer than a threshold. The
distances are computed to the cluster centres. The clustering process stops
when there are no more possible additions to a cluster. Clusters with a
small number of member samples are treated as outliers and dismissed in
the following detection steps. The number of clusters is thus variable and
depends on the sample set and the threshold as well as the minimum cluster
size.

� Divisively The type of divisive clustering used is called vector quantisation
[Schuermann, 1996a]. It starts with one cluster holding all samples. The
cluster is split along the plane de�ned by being orthogonal to the line of
highest standard deviation of the cluster and the centre of the cluster. This
is repeated for the cluster with the highest remaining standard deviation
until a minimum number of elements in the clusters is reached, the standard
deviation per cluster is below a threshold, or a maximum number of clusters
is reached.

� K-Means This scheme, as described in [MacQueen, 1967] starts with a
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2.7 Supplementary Sign Detection and Recognition

�xed number of clusters. The centres are either random coordinates, ran-
domly drawn single samples' coordinates or scattered in a chosen raster.
The algorithm assigns each sample to the closest cluster centre. After this
assignment step the centres are recomputed and the assignment step is re-
peated. This process is rerun until there are no more changes in the cluster
memberships. For this clustering scheme the number of resulting clusters
is pre-set at the start of the process.

All three clustering schemes were evaluated and achieved cluster centres that
were equally satisfying in covering the samples in the four dimensional posi-
tion space and in combination with the following veri�cation and classi�cation
steps. K-Means and divisive clustering reached roughly similar cluster centres af-
ter adding a rule allowing the removal of outliers. This rule includes the removal
of clusters with too few members and the renewed computation of the remaining
cluster centres after removing all samples farther away from the cluster centre
than 70% or one standard deviation of all cluster members. With agglomerative
clustering these rules were inherent in the clustering process by allowing clus-
ters of a certain minimum number of elements only and thus removing the small
clusters containing outliers. For ease of use and slightly better adaption to the
following classi�ction process agglomerative clustering was used for the following
evaluations. As metrics for the distance determination in the cluster process three
di�erent algorithms were tested, the de�nitions for an N-dimensional metric are
taken from [Duda et al., 2000].

Manhattan : Minkowsky L1 : dm =
(∑N

i=0 |x0i − x1i|
)

Euclidean : Minkowsky L2 : de =
√∑N

i=0 (x0i − x1i)
2

Chebyshev : Minkowsky L∞ : dc = max |x0i − x1i| with i ∈ 1..N

(2.34)

Since the positioning of the supplementary signs relative to the main sign varies
strongly from country to country, the step for determining the clustered detec-
tion areas has to be done for each country separately. In the online system the
according cluster rectangle set is selected for the country the vehicle is currently
travelling in.

2.7.2 Supplementary Sign Veri�cation

The detection process as described above leads to a comparatively high number
of candidates for supplementary signs. To classify all these with the pictogram
classi�er would be computationally expensive and would lead to a high number
of false positives. The step proposed here is to use a comparatively less costly
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classi�cation scheme to rule out candidates that do certainly not hold supple-
mentary signs. Due to the pattern in the sign being very variable the classi�er
for the veri�cation of the existence of a supplementary sign is using information
from the edge of the candidate only, plus an area in the middle of the sign where
mostly the sign post is positioned when there is no supplementary sign.

Figure 2.16: Examples of German supplementary signs

The areas inspected are schematically displayed in �gure 2.16. The �ve in-
spected regions cover the four edges with a margin of ±10% of the sign size
and the horizontal centre ±10% of the signs width for the whole signs height.
From these regions Histogram of oriented Gradient features as described in
[Dalal and Triggs, 2005] are extracted. These are combined to a vector which
is classi�ed by a polynomial classi�er. More information on this algorithm is
found in chapter 6.8. The output vector of the classi�er is used to reject unlikely
candidates for supplementary signs. In the case of too many elements passing
the threshold for being accepted as supplementary sign the classi�er is used for
ranking the candidates and allowing only the candidates with the highest classi-
�cation score to be handed over to the pictogram classi�er. Should the clustering
scheme have been used for the creation of the candidates an optional re�nement
step could be used. By shifting the borders of the candidate left and right, up and
down in a narrow margin until the highest count of edge in the correct direction
has been reached often a slightly better position of the candidate can be reached.
This module is independant from the country the image sequences are recorded
in.

2.7.3 Supplementary Sign Recognition

For the classi�cation of the candidates yielded by the detector the combination
of principal component analysis and polynomial classi�er as described in chapter
2.6 is used. The normalization step is adopted from there as well since the
supplementary signs are monochrome like the digits in the speed limits. Due
to the small letters on the supplementary signs no optical character recognition
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is used, but the sign types are clustered to classes of similar appearance and
meaning, see �gure 2.17. For German signs, as shown in the �gure, this results
in 8 positive classes and one garbage or reject class.
Since there can be more than one detected candidate for the same supple-

mentary sign, the candidate having the best classi�cation result for one of the
non-garbage classes is taken to be the one being closest to the correct position
of the sign and thus only its classi�cation result is taken into account in the
accumulation process over consecutive images. The �nal result of a track of
supplementary signs is determined via the weighted sum of the single patterns
classi�cation results.

1000-20

arrows

1052-35
tons

1052-36
wet

1040-30

time

1048-12

truck
1006-02

two rows

1006-01

one row

1006-00

pictogram
Pole

Garbage

Figure 2.17: Clustered classes of German supplementary signs

Since the appearance of supplementary signs varies greatly in di�erent countries
a separate classi�er is adapted for each country and the corresponding classi�er is
used. The country the vehicle is currently travelling in is determined via the GPS
system. For some countries no supplementary sign recognition system is neces-
sary, since no supplementary signs restricting the meaning of the corresponding
speed limit sign are used in this countries. The di�erences in appearance are
shown in �gure A.10 in the appendix.

2.8 Extension Modules for Improving Tra�c Scene

Interpretation

A complex system like the tra�c sign recognition is bound to have certain as-
pects where the main system of detecting and classifying the objects reaches its
limits. This is often due to objects looking exactly like the ones searched for,
but having a di�erent meaning, or due to other systematic errors. To include the
answer to these problems into the main system would weaken either the detector
or the classi�er in forcing a decision which can not be made by the given fea-
tures or including a huge amount of features into the solution, thus slowing the
system down. Thus the decision was made to use additional modules to cover
these contingencies. By analysing the algorithm the following three main exten-
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sion modules were identi�ed as necessary additions to the tra�c sign recognition
system for the detailed interpretation of the tra�c scene:

� The use of the three dimensional position information.

� The use of additional re�nement classi�ers.

� The fusion with additional inputs beside the camera images and the ego
motion.

2.8.1 Use of the Three Dimensional Information

The three dimensional position of the real world tra�c sign, when known to some
extent is important since the position of the sign in the world has an in�uence
on its meaning and the objects looking like signs in the images taken. Objects
having di�erent real world size or not being stationary, on the back of lorries for
example. These can be rejected using the algorithm as proposed in section 2.5.3.

2.8.2 Re�nement Classi�ers

Another necessary additional module, for example in Germany, is a unit capable
of distinguishing between active limit and exit signs. In Germany the exit number
on directional indicators is similar to an active road sign in the normalized grey
value image, see �gure 2.18. This necessitates a module to separate the two types
of signs after the classi�cation process. Thanks to the blackboard function of the
tracker the not normalized cutouts belonging to the track are still available and
can be used to check if the sign is an active sign or a passive exit or minimum speed
sign. The additional module for this task is run only if the main system decided
for the sign to be an active limit'and thus does not slow down the complete
system for all images processed.
The algorithm solving this task has to evaluate the di�erences of the two objects

in question. The main distinction of the active limit signs compared to passive
signs, apart from their di�ering colour, is, that they are composed of active
light sources whereas the blue exit signs are passive signs and are visible due to
re�ected light only. This leads to di�erences in the distribution of grey values
in the cutouts depicting these signs. The classi�er used for the few features is a
polynomial classi�er again to be able to reuse the existing module. The results
of the scheme are presented in the section 6.9.
Should the exposure time and the gain setting of the camera for the current

frame be known, this would be a valuable additional information as well, since
an approximate absolute intensity value could be derived from the pixel values
and the sensor speci�cations.
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Figure 2.18: Examples of normalized active signs (left) and exit number or min-
imum speed signs (right)

2.8.3 Fusion with Additional Inputs

The system is designed to be open for the use of additional information from
external sources. This thesis will not go into depth as how to use this informa-
tion to advance the systems performance. The following list mentions the main
resources of supplementary knowledge.

� The most important additional source of information is the use of a map.
Navigation systems can be used to achieve information about implicit speed
limits, upcoming exits, the number of lanes on the current road, or even the
speed limits valid at the time of digitalization of the map. This information
is not always accurate and ages quite quickly as signs are replaced.

� The laws di�er depending on the country visited. Thus the rules e�ective
in the current country have to be represented in the tra�c sign system to
give the driver the correct information.

� Further sources of hints as to the validity of tra�c signs and the currently
allowed speed can be achieved from various assistance systems like the lane
detection software, the detection of other tra�c participants or other sys-
tems yielding information about the surroundings of the vehicle.

� Possible future sources of information are beacons transmitting the current
speed limit at crucial sections of the road or radio transmissions coupled
with on vehicle GPS and map systems. Much work is currently �owing
into car-to-car communication allowing several vehicles to combine their
knowledge. Also upcoming are on-line updates of outdated parts of the
navigation systems map by the use of the on-board recognition systems of
multiple vehicles, [Hoehmann and Kummert, 2010].
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3 General Classi�er Adaptation Approach

One of the most important parts of the thesis is the internationalization of the
system. The term internationalization is used to describe the algorithms neces-
sary for the adaptation to the di�erent characteristics of tra�c signs encountered
in varying countries. The part of the thesis in�uenced the most by the di�erences
encountered in di�erent countries is the classi�er for the tra�c sign pictograms.
The detector and tracker are mostly independent from the country the vehicle is
currently travelling in.
In this chapter the steps necessary to adapt a classi�er and the extensions

developed to adapt the classi�ers to the appearance types of signs encountered
in di�erent countries are described.

3.1 Classi�er setup

The classi�er system consists of the parts described in chapter 2.6.2 and shown
in �gure 2.13. The �rst stage is used for the rejection of garbage patterns and
the distribution of the classi�ed cutouts to one of the six sub classi�er types,
restriction signs inner or outer circle and end of limit, both for active and passive
signs. The second classi�er is used to discern the correct speed limit and rejects
the remaining garbage patterns. The classi�er in stage I is kept generic for all
appearance types encountered in the di�erent countries the classi�er should be
functioning in. Of the classi�ers in stage II there are more than one version, each
version being dedicated to be used in a certain set or cluster of countries. Which
classi�er to use is determined by the country the vehicle is currently travelling
in, derived by the use of the Global Positioning System (GPS).

3.2 Obtaining Sample Sets

For the adaption of classi�ers sample sets have to be obtained. This usually
includes a high labelling and recording e�ort. For the system to be operative in
many countries this would mean an e�ort not being manageable. This necessitates
an automatic or at least semi automatic labelling process with a minimum of
human intervention.
The starting point is a large set being recorded in Germany. A small part of

the recorded set was labelled and a �rst classi�er adapted. This classi�er was
used to ease the task of labelling by yielding a correct result in roughly 90% on
the up to this point unlabelled set, thus allowing a much faster labelling. The

54



3.3 Training of the Classi�er for a New Country

result was a large labelled set of german tra�c sign cutouts. This labelled set was
used for developing the classi�er and adaption scheme presented in this thesis.
For the expansion of the systems operability to other countries the algorithm for
the generation of synthetic signs was developed, see section 4.2.2. This system
allows the generation of realistic sample sets from ideal samples obtained from
the countries rule books or even pictures in the internet. These templates are
geometrically and photometrically transformed to resemble images taken from a
moving vehicle. The transformation parameters are learned from samples from
the labelled German sample set. This algorithm is presented in the left half of
the �gure 3.1.

Ideal Signs + Distortion
“Synthetic” Set

ClassifierWeighting Adaptation

Automatic
Select

“Real” Set

Pre-Labelled Set
(large, all classes)

Evaluate
Driver Behaviour

Speed Limit Detect.
 +Recognition System

Pure “Synthetic”
Classifier

Adaptation

„Synthetic“
Samples

Distortion 
learned from
German Set

One per Class

Recordings

Semi-Automatic
Track-Wise Labelling

Figure 3.1: Scheme for the creation of the training sets and training of a classi�er
for a new country the system has to be working in.

3.3 Training of the Classi�er for a New Country

To obtain samples in addition to the synthetic ones, recordings are made in
the di�erent countries. The already existing classi�ers adapted with synthetic
samples are used in the detection and recognition system to label the newly
recorded images. As a further hint showing the label of the encountered object
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Figure 3.2: Example showing sample tracks pre-labelled by the system. The sam-
ple of high resolution and high classi�er con�dence is taken from a
track and displayed as representative. The human labeler can easily
correct errors by clicking on the sample, changing the label and thus
changing the label of all elements in the particular track. Here two
speed limit 60 signs are in the list of speed limit 100 signs.

the behaviour of the driver and thus the vehicle can be used, see section 4.3.
The task of the human labeller is to decide if a complete track was classi�ed
correctly by the system and, if not, to correct the label. This kind of labelling
is very fast, as shown in �gure 3.2, but leads to label errors for single patterns
when parts of the track do not belong to the same real world object as the rest
of the track. Another problem are cutouts belonging to the tra�c sign object,
but being indecipherable due to occlusions or low resolution. Thus there has to
be an additional selection process on a single image cutout base.

This would mean a very high labelling e�ort for a human labeller and there is
no unambiguous solution, especially in cases of partly covered signs or distorted
signs which are on the border of legibility. Due to the high e�ort otherwise
necessary the decision which cutout is to be used is made automatically in a
bootstrap loop, called Automatic Select in �gure 3.1. The decision is based on
the reconstruction error of the PCA on the single cutout and the classi�cation
result when using the current classi�er, which is either adapted using synthetic
samples only in the �rst loop, or the classi�er adapted in the last bootstrapping
loop. The samples are sorted by these values and the samples showing the highest
errors are not regarded in the next bootstrapping adaption step. All remaining
samples as well as the synthetic samples are used for adapting the next classi�er.
Using this new classi�er all samples, even the ones rejected in the previous loop,
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are classi�ed and sorted by their classi�cation values again. This loop is repeated
for until no or only few changes in the removed samples occur. More on this
subject is presented in section 4.3.1.

3.4 Training of Classi�ers for Country Sets

To expand the system to be serviceable in more countries the classi�er system
has to adapted since the signs show di�erent appearances in di�erent countries.
The di�erences are for instance di�ering fonts, sizes of the digits relative to the
sign, the width of the red rim, the type of diagonal stripe, additional writing in
the sign like km, see �gures 1.3 and 1.4. For a few countries one classi�er set
per country could be adapted and used, for a large number of countries keeping
one classi�er set for each would be cumbersome. Thus the classi�ers have to
be used for a number of appearance types and thus in a number of countries.
This means the appearance types and thus the countries have to be clustered,
see section 4.4. As a proof of concept all possible compositions of clusters for
all number of clusters have been tried. For each cluster of appearance types and
thus sample sets classi�ers have been adapted and the error rate computed. The
results are shown in section 6.7.3. The clusters of countries can be di�erent for
each of the six stage II classi�ers shown in �gure 2.13. To add further countries
to the domain the system is functionable in, the available samples of this country,
synthetic and real, are classi�ed by the already existing classi�ers of the other
countries. Based on the result of this classi�cation the country is either added to
one of the existing clusters of countries, if the classi�cation results were adequate
when using the according classi�er or a new cluster could be added, holding the
new country as only member. The classi�ers for the cluster to which the newly
added country was appended is re-adapted using the samples of all countries now
being in the cluster if the results were not satisfying with the existing classi�er,
see �gure 3.3.

Best performing
Existing

Classifier-Cluster

Sample Set
„new“ Country

“Synthetic”
(+”Real” if avail.)

Use existing
classifier cluster

Add classifier cluster
for “new” country

Re-Adapt classifier cluster
with added “new” countries

Sample Set
Performance

Good

Insufficient

OK

Figure 3.3: Scheme for adding a classi�er to a classi�er cluster for a new country
the system has to be working in.
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4 O�ine System and Classi�er Training

This chapter will explain the design and implementation of the o�ine part of the
classi�cation system. Further the creation and gathering of the training sets as
well as the e�cient training and bootstrapping of the classi�ers is explained in this
chapter. The creation of the testing sets is explained in depth in chapter 5.2. The
basic design of the online classi�er hierarchy used in the tra�c sign recognition
system is explained in section 2.6 and in �gures 2.10 and 2.13.
The generation of training sets for the classi�er adaptation requires a mod-

ule for the creation of realistic tra�c sign image samples. This step is nec-
essary since in countries where real sign samples could not be recorded in
su�cient numbers, a sample set adequate for the adaptation of a �rst sat-
isfactory classi�er has to be created. The samples have to be synthesised
from a small number of recorded signs or from tra�c sign icons or tem-
plates. For this task a process for distorting these exemplary signs or tem-
plates has to be implemented. Since the algorithms found in the literature
[Kehtarnavaz and Ahmad, 1995, Escalera and Radeva, 2004] were insu�cient for
the creation of a realistic training set, a novel algorithm allowing the creation of
a satisfactory training set was implemented and is presented here.
The main task of the o�ine part of the system is the training of the single clas-

si�ers and the bootstrapping of these classi�ers. The composition of the training
set is an integral part of the classi�er adaptation. As classi�cation algorithm the
polynomial classi�er [Ott, 1977] was chosen. The advantage of this algorithm
beyond its classi�cation and generalization capabilities is the very short readap-
tation time necessary when adding new samples as shown in chapter 4.3.1. The
same scheme used is valid with other classi�er types as well, but the time neces-
sary for veri�cation would increase unacceptably, especially where the multitude
of classi�ers for the di�erent countries are considered.

4.1 Classi�er Design

The classi�er used is a polynomial classi�er with a principal component analysis
as feature reduction step. The formulas describing the algorithm are taken from
[Schuermann, 1977] and [Schuermann, 1996b].
The principal component analysis, or Karhunen Loewe transform minimizes

the reconstruction error of a high dimensional Gaussian distribution when linearly
projecting it into a lower dimensional orthonormal space [Pearson, 1901]. The
following equations show the transformation algorithm.
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Expectation vector v = E {v} (4.1)

Moment matrix M = E
{
vvT

}
(4.2)

Covariance matrix K = M− E {v}E {v}T

= E
{

(v − v) (v − v)T
}

(4.3)

Eigenvalues of K λ = {λ1, λ2, , , λN} (4.4)

Eigenvectors of K BN = {b1,b2, . . . ,bN} (4.5)

Transformed vectors w = BT
M (v − v) (4.6)

Reconstructed vectors v̂M = BMw + v (4.7)

Mean reconstruction
error

R
2

M =
N∑

i=M+1

λi/
N∑
i=1

λi (4.8)

Reconstruction error
for one sample

R2
M =

N∑
i=1

(vi − v̂Mi)
2 /

N∑
i=1

v2
i (4.9)

Whitened transform w
′

= {w1/λ1, w2/λ2, . . . , wM/λM}T (4.10)

In equations 4.1 to 4.8 vn represents one data vector of dimension N, in our
case the grey values of the normalized cutout raster image. E {v} or v is the
expectation vector of all I available data vectors. λ and b being the eigenval-
ues and eigenvectors of the covariance matrix sorted by the magnitude of their
corresponding eigenvalues, the highest being the �rst. w is the M-dimensional
input vector v transformed into the M-dimensional subspace de�ned by the �rst
M eigenvectors. The mean reconstruction rate can given as R

2

M , meaning that
over the complete set of N input vectors the reconstruction value averages to RM .
The reconstruction error for a single sample is R2

M as depicted in equation 4.9.

An additional step can be taken by dividing each entry in the w vector by
the according eigenvalue, thus normalizing the distribution of all dimensions in
the transformed vector to a zero mean, as de�ned by the principal component
analysis, and a standard deviation of 1. This approach is called whitening. This
step is necessary only for an easier implementation of a �xed point computation
for the polynomial classi�er in the step following the principal axis transform.
On most integrated control units �xed point computation is � by orders of
magnitude � faster than �oating point computation, thus this step has to be
kept in mind when designing the tra�c sign recognition system.

The classi�er used for the analyses is the polynomial classi�er. This classi�er,
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as described in [Schuermann, 1996b], is based on the discriminant function

d (w) = ATx (w)

x (w) =

 complete quadratic︷ ︸︸ ︷
1, w1, . . . , wN︸ ︷︷ ︸

linear

, w2
1, w1w2, . . . , w

2
N


T

dim {x} =

(
N + G

G

)
(4.11)

− for the applied complete quadratic setting

In the ideal case the entry dk in the discrimination vector d is 1 for the class
the object having the feature vector belongs to and 0 for all other classes, thus
being identical to the target function y. The optimization of the matrix A in
the training of the classi�er minimizes the Euclidean error between the ideal
discrimination vector y and the resulting vectors d overall training samples. The
polynomial structure vector x (w) contains all possible polynomial combinations
up to the polynomial degree G. The dimension thus increases very fast with the
number of dimensions G. This limited the tests that were performed to quadratic
classi�ers, i.e. G = 2.

yk (w) =

{
1 for w being from class k
0 otherwise

(4.12)

S2 = E
{∥∥y −ATx (w)

∥∥2
}

= min
A

, leading to : (4.13)

A = E
{
xxT

}−1
E
{
xyT

}
(4.14)

The goal of the quadratic optimization shown S2 is to minimize the expectation
of error made between the target function y and the decision vector d. The matrix
A is the one used in equation 4.12 used to compute the decision vector from the
feature vector. To allow the repeated computation of the matrix A with di�erent
a priori weights of the classes or subclasses it su�ces to keep the moment matrices
E
{
xkxk

T
}
and the vector E

{
xkyk

T
}
for each class and subclass k. This will

be used for the creation of the classi�ers starting from few or purely synthetic
samples as described in the following section 4.3.

Max criterion dkmax (w) ≥ tmax (4.15)

Di� criterion dkmax (w)− dk2nd
(w) ≥ tdiff (4.16)

RAD criterion RAD = ‖ykmax (w)− d (w)‖ ≤ tRAD (4.17)

The decision for a class or for accepting the result of the classi�cation at all is
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based on the decision vector d. The �rst rule in equation 4.15 decides by �nding
for the highest component dk in the decision vector d and decide for class k. This
value has to be higher than the threshold tmax. The second rule for accepting
a classi�cation result is the minimum di�erence between the highest and second
highest output value in the decision vector. Should this di�erence be too small,
meaning smaller than tdiff , no safe decision for one class can be made. Where the
�rst two rules observe the highest values in the decision vector only, the third
rule reviews the plausibility of the complete decision vector. The idea behind the
third rule is that the classi�er was optimized to minimize the Euclidean distance
between the decision vector d and the target vector y. Should the Euclidean
distance between these two be too high, higher than tRAD, the reasoning is that
no sample resembling the current one was in the training set. Thus the decision of
the classi�er for this sample cannot be trusted and the classi�cation result has to
be rejected. All three rules are implemented as described in [Schuermann, 1996b].

4.1.1 Training of the Principal Component Analysis

The only free parameter in this transformation is the number of dimensions after
the transformation. In our case the number of dimensions (M) was chosen to allow
for an approximate 90% reconstruction rate (1−R2

). This rate was determined
by using the transformation and retransformation on a multitude of normalized
tra�c sign cutouts (chapter 2.6.1), and deciding if the retransformed image was
still decipherable by the human beholder. To allow e�cient pipelining and for a
faster computation the number of dimensions used in the �nal system had the
additional requirement of being dividable by the factor eight. Each classi�er in
the hierarchical setup has its own principal component analysis and thus the
dimensionality of the classi�ers may di�er. The input for the adaptation of the
principal component analysis were taken from the positive set only, since a high
number of garbage elements which introduce noise into the process and would
thus have an adverse e�ect on �nding principal axes in the distribution.
The importance of di�erent classes is regarded by computing a moment ma-

trix for each class or subclass and adding the matrices according to the selected
weighting. By remembering the number of contributing elements for each matrix
the moment matrices can be updated without high computational e�ort, thus
allowing bootstrapping in acceptable adaptation time (equation 4.2).
For the training and application of the classi�er the use of the whitening men-

tioned in chapter 4.1 has no e�ect besides numerical stability. When preparing
the transform and the following classi�cation for a use of �x point computation,
as it is necessary for many digital signal processors, the whitening is a necessary
step to assure that the input values of the polynomial classi�er are of the same
order of magnitude. Without this step the values might di�er by some orders
of magnitude, for the classi�ers in our case mostly two orders for the �rst �fty
eigenvalues.
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4.1.2 Training of the Polynomial Classi�er

The equations necessary for the training of the classi�er have been introduced
in equation 4.12-4.14. The complete set of classi�ers consists of seven PCA and
polynomial classi�er sets. One classi�er, stage I, called cluster classi�er dis-
tributes the samples to the sub classi�ers or rejects the samples as not depicting
signs at all (section 2.6.2, �gure 2.13). The six pictogram classi�ers in stage II
have to be trained in succession to the cluster classi�er, since the assignment of
the samples used in the training of these sub classi�ers is based on the result of
the cluster classi�er. Should the cluster classi�ers result indicate for the sample
to most likely be a garbage element the sample is not propagated to the second
stage.
All normalized and PCA-transformed samples serve as input for the training

of the polynomial cluster classi�er. Once this classi�er is trained the classi�er is
applied upon all input samples, thus dividing the complete set into the six sub
types plus rejecting a number of them by classifying them as garbage or rejecting
them using the RAD criterion.
The six pictogram classes actually de�ne just four di�erent types of signs,

active and passive limits and end of limit signs. The di�erentiation into inner
and outer is owed to the indistinctiveness of the detector which does not discern
between the inner and outer contours of a tra�c sign. For the end of limit signs
this distinction is unnecessary since the di�erence between �nding the circle on
the sign and �nding the outer contour of the complete sign is small enough to
be ignored when training the classi�er. Samples being labelled as belonging to
one of the four types, but classi�ed by the cluster classi�er as belonging to a
di�erent class or being a garbage sample, are not used in training the pictogram
classi�ers as they are assumed to be mislabelled or illegible. This reduces the size
of the training set for the pictogram classi�ers. The cluster classi�er is used to
divide the samples labelled as active or passive limit into inner or outer for the
training of the pictogram classi�er as well. Garbage samples being misclassi�ed
as belonging to one of the four sign types treated in the pictogram classi�ers are
used in training these classi�ers in stage II. As for the training of the principal
component analysis the samples belonging to di�erent classes or sub classes can
be weighted separately, allowing to add importance to classes having a low a priori
probability or allowing to mix samples from di�erent recording conditions, e.g.
day and night, weather conditions or road types with di�erent weighting. The
reweighting of the moment matrices computed in the process of training the
classi�er allows to easily adapt the weight factors.

4.2 Classi�er Internationalization

As introduced in section 1.5.3 one necessary step in a successful tra�c sign recog-
nition system is an algorithm for the convenient adaptation of the system to the
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Figure 4.1: Scheme for the Flow of the Labelled Samples in the Classi�er Training

di�erences in the appearance of tra�c signs encountered in di�erent countries.
In section 4.1 the adaptation of the classi�er for a single country is described.
In this thesis the system is evaluated on the signs of ten West-European states,

these being Austria (AT), Belgium (BE), Denmark (DK), France (FR), Germany
(DE), Italy (IT), Luxembourg (LU), Netherlands (NE), Spain (ES) and Switzer-
land (CH). The signs are depicted in section 1.2.
One possibility to expand the operational range to additional countries is to

add normalized tra�c sign samples from the countries that should be covered
by the tra�c sign recognition system to the process described above and keep
a single classi�er hierarchy for all countries. The advantage of this scheme is
the low memory use and the system not depending on the information in which
country it is currently applied.
Another possibility is to repeat this algorithm for each country the system

should be functionable in. As explained in section 1.5.3 this leads to a compar-
atively large classi�er system while supposedly delivering the best classi�cation
results, see section 6.7.
A third possibility is the use of several sets of classi�ers, where each set of

classi�ers covers a number of countries in which the signs have an appearance
similar enough to allow this combination without loosing overly much classi�ca-
tion performance.
The approach used is a modi�cation of the third possibility. In the hierarchy

of classi�ers explained in section 2.6.2 the top level is used to reject samples
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not resembling tra�c signs at all and to distribute the remaining samples for
further inspection by the respective sub classi�ers, see �gure 4.1. This top level
classi�er is trained with samples from all countries which should be covered by
the tra�c sign recognition system and thus has a lower rejection capability than
a set of classi�ers specialised on a single country each, but generalizes better than
a classi�er adapted on such a set.
The distribution of samples into the second stage of the hierarchy is not ham-

pered by this scheme as shown in section 6.7 since the variation in appearance of
the di�erent types of signs is too large to allow frequent confusion between the
classes even for a more generalizing classi�er. On the pictogram level the appear-
ances of the signs in di�erent countries vary too much to use a single classi�er
for all of them without loss of performance. This is especially true when sub-
tle details like the di�erence between digits closely resembling each other in the
given low resolution determine the meaning of the sign. Due to this fact several
classi�ers were trained on the pictogram level, each of them covering a number
of countries where this type of signs is similar in appearance, see �gure 4.2. The
number and composition of these clusters of countries in the pictogram classi�ers
depends on the di�erences in appearance of the respective sign type and the size
of memory allowance for the classi�ers limiting the number of classi�ers. The
scheme is explained in �gure 4.3.
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Figure 4.2: Expemplary hierarchical classi�er setup as in �gure 2.13, adapted for
di�erent appearance types, the respective Stage II Classi�er is chosen
according to the appearance of the signs in the country the vehicle is
currently travelling in.

To �nd the �rst complete set of classi�er clusters as described above a com-
plete search for all possible combinations is executed on the samples of a restricted
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Figure 4.3: Exemplary distribution of signs from di�erent countries to specialized
pictogram classi�ers

number of countries. Since the number of possible combinations would require
very large tests for high numbers of countries the following after the �rst ten are
decided by applying the existing classi�ers on the samples from the country to
be added and assigning the samples of the new country to the classi�er perform-
ing best on this set. Should none perform su�ciently accurate the samples are
inspected if they are di�erent enough to require a new pictogram classi�er, like
in the set of ten countries for instance the Italian end of limit signs, which show
a near vertical black bar which is very di�erent to the appearance of the end of
limit signs in the rest of the ten states reviewed. The examinations done for this
goal are described in section 6.7. The results were published in [Koch, 2007], a
diploma thesis which was supervised by the author of this thesis.

4.2.1 Obtaining Training Samples

Most countries have rulebooks describing the font, size and placement of the
digits in the tra�c sign, thus the appearance of the signs in the given country is
known and can be used in the process for the creation of synthetic samples, see
section 4.2.2, and the training of classi�ers from scratch as described in section
4.3. The use of these synthetic samples enables the developer to have a functional
set of classi�ers for each country, even if there is no recorded sample set, or
none of su�cient size to adapt a classi�er set. If there are no rule books for a
country and to check the accuracy of the rule books the internet can be a valuable
source of information. Using a choice of keywords pictures taken on holidays or
pictures from services showing sections of roads can be used for this purposes.
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All this can be done without even having a camera. Samples from the country
the developers are living in are easy to be obtained by simply taking pictures
of the signs encountered every day. The farther away the countries that should
be covered by the system, the harder it gets to obtain information about the
appearance of the signs. For countries close by, day trips can be used for the
exploration of the appearance of the signs, best recorded with the camera to be
used in the �nal tra�c sign recognition system.
There are several helpful hints on what to consider when obtaining sequences

of the signs encountered during the sample gathering drives, especially when
keeping in mind, that the expense in manpower and necessary hardware should
be minimized.

� Simply recording of all frames is easiest to implement, but leads to huge
amounts of data, approximately 40 GB per hour for the given setup and
thus was done for very few sequences only.

� Record all long tracks of circular objects detected by the system, meaning
tracks spanning many consecutive images. Those tracks belong to circular
objects encountered in the given country and thus constitute objects for
possible false positives once the classi�er is adapted to the countries char-
acteristics. These objects might be signs or advertisements typical for this
country, but not existing in other countries and thus the classi�er has to be
trained to discern between these and the tra�c signs to be recognized.

� Tracks where at least one element in the track has been classi�ed as belong-
ing to one of the tra�c sign classes by the cluster classi�er in stage I should
be recorded, since objects passing this test resemble tra�c signs enough to
be possible false positives when the classi�er is retrained and could be false
negatives of the current system used to record in the given country and
thus be valid speed limit or end of limit signs.

� For each of the tracks to be recorded due to one of the rules above record a
few frames ahead of the frames in the track should be recorded to allow the
tra�c sign detection system to adapt to the conditions like contrast and
brightness and set up the internal �lters.

� When recording any of the tracks recorded due to the rules above record
a few frames after the images in the track should be recorded to allow for
broken tracks, meaning real world objects of which more than one track was
created due to missing detections in more than two frames in the track.

� Of course there should be a manual trigger to allow the driver, or if present,
a system operator, to record a sequence. This might be necessary in the rare
case that none to the triggering mechanisms above did automatically record
the scene, for instance if a completely new type of sign is encountered.
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4.2.2 Synthetic Samples

In this section the newly developed and implemented scheme for the creation of
sample sets for the adaption of classi�ers is explained. The algorithm and exper-
imental results have been published in the diploma thesis [Hoessler, 2007] which
was co-supervised by the author of this dissertation and in [Hoessler et al., 2007].
This algorithm is necessary for the adaption of a classi�er when no or an insu�-
cient number of example samples for a new class of signs or appearance type of
signs has been recoded and labelled. This occurs for instance when extending the
usable area of the tra�c sign recognition system by another country. The com-
monly used method is using one or a few ideal samples, for instance from the rule
books for tra�c sign production and placement or from a photographed sample.
These few samples are replicated using geometric and photometric transforms,
thus creating a larger sample set for the training of the classi�er. The types of
transformations used are explained in section 1.5.3.

In the literature the parameters used for the transformations are arbitrary or
guessed by an experienced human operator. The main idea is the emulation of
the transformations the cutout image was undergoing from the real world sign to
the pixel raster image. Since the transformation parameters occurring are hard to
guess even for an experienced user they are learned from a sample set. The algo-
rithm presented in this thesis utilizes a large labelled set of samples belonging to
a common sign class, e.g. speed limit 80. The parameters for the transformations
necessary to create each of the samples from an ideal model are stored as a prob-
ability distribution and can be used to create new samples from an ideal model
belonging to a di�erent class or to a di�erent sign appearance type. Geomet-
ric and photometric transformations were used in the algorithm. The geometric
transformations considered in this thesis are translation of the sample tu,v, the
scaling su,v and rotation in the image plane α. The shearing parameters hu,v
are neglected since the samples did not show a measurable shearing component
due to the camera system and the detector used restricting the possible trans-
formations applied on the cutouts. The equation applied for the a�ne geometric
transformation reads as follows:

M (t, A) =

 a1 a2 tu
a3 a4 tv
0 0 1




a1 = su cos (α) + husv sin (α)
a2 = sv sin (α) + hvsu cos (α)
a3 = −su sin (α) + husv cos (α)
a4 = sv cos (α) + −hvsu sin (α)

(4.18)

This transformation is used pixel wise to construct a transformed from an original
image.

Pixtransformed = M (t, A)Pixoriginal (4.19)
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The photometric transformation is set by the equation:

Iphotometric = a Iaffine + b (4.20)

The parameters are describing the contrast on the sign and b the base luminance.
Due to the small size of the samples after the normalization process the e�ects
of the lenses point spread function (PSF) can be neglected. Other photometric
e�ects like non-uniform illumination, shadings or specular re�ections could be
included in the model in case the reconstruction from equation 4.22 could not
be solved satisfactory, but were not necessary for the tra�c sign case. The new
step is to estimate the parameter set from a labelled set of samples belonging to
one class. Each sample's image is assumed to be formed by the ideal original on
which the above geometric and photometric transforms are applied.

Iobserved = T (Φ) Iideal = T (t, s, α, a, b) Iideal
with Φ being dependant on t, s, α, a, and b

(4.21)

The optimization problem to be solved for retrieving the transformation param-
eters is set as follows:

Φ = arg min
Φ

E (Φ) with E (Φ) = ‖Iobserved − T (Φ)Iideal‖2 (4.22)

The equation is solved by the use of an optimizer, in this thesis the Levenberg-
Marquardt algorithm was used. The application of this algorithm on a large set
of samples generates an equally large set of transformation parameters Φ. The
set of Φ is used as probability distribution P (Φ).

Isynthetic = T (Φ) Iideal (4.23)

with T (Φ) being drawn from the previously determined probability distribution
P (Φ). An ideal sign is transformed with the parameter set Φ and compared
with a real sign. The parameter set is optimized until both signs resemble each
other and the optimization converges. The parameter set used in the last trans-
formation is saved. If the transformation/comparison loop does not converge, the
real sign either belongs to a di�erent appearance type than the ideal sign or the
transformation function does not cover the type of conversion that transformed
the real sign to the one perceived in the cameras image. If a di�erent appearance
type is the cause of the inability to reconstruct a sample an additional sample set
for this appearance type can be added to the synthetic sample set. Should the
reconstruction fail due to a missing type of transformation, this type of trans-
formation could be added to the set of transformations adapted if it seems to
be relevant, meaning reappearing and not being a singular case. For each real
sign that could be reconstructed one parameter set is saved. From the parameter
sets a probability distribution of the parameters can be created, for instance by
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creating a histogram of all detected transformation parameters and normalizing
it by dividing through the number of all sets of transformations. Some param-
eters are not independent, as can be detected by correlating the value pairs for
these parameters. This is true for the su and sv scaling parameters for instance,
due to the circular form of the signs. The correlation of those parameters has
to be taken account for by using combined histograms for the computation of
the probability distribution. In the recall phase the ideal sign template of a dif-
ferent class or appearance type is transformed either with one of the parameter
sets Φ previously computed or with a parameter set drawn from the computed
probability distribution.
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Optimize Ф 
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Figure 4.4: Scheme for the creation of synthetic signs. Transform an ideal tem-
plate in an transformation � comparison � optimization loop until
the di�erence in the comparison with a real sample is small enough.
Keep the transformation parameter set, then compare with next real
sample. If similarity in comparison could not be reached, show real
sample to human operator for decision if additional appearance type
or transformation type is necessary. For creating a sample set from
another template loop the scheme on the right part of the diagram.

To enhance the practical use of the algorithm, the backgrounds, especially for
the cutouts representing the outer contour of the signs, are varied as well, since
when part of the transform is a translation a small part of the background can
appear in the otherwise background independent circular sign area.
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Figure 4.5: Identifying new sign appearance types for the generation of synthetic
samples. If a �tting transformation from the ideal template to the
current real sample was found as depicted in �gure 4.4 the trans-
formation parameters are saved (Ok). Otherwise a human operator
decides if the sign is illegible or occluded, in which case the attempts
for reconstruction are stopped. When a reappearing new appearance
type is found, these real world signs are used to create a new ideal
template �tting for this type and removed from the list of real samples
to be reconstructed with the original ideal template.

4.2.3 Knowledge-Based Autonomous Sample Collection

One possibility of meeting the diverse goals of internationalizing tra�c sign recog-
nition elaborated in this dissertation is using driver and system feedback. The
system should be able to learn from its inputs and the drivers reactions what the
infrastructure in the current situation was requiring of the driver. For instance in
a country where the system is still not completely adapted a speed limiting sign
will still be detected due to its circular form, but the inscription might be unread-
able for the system because of a di�erent font or placing of the digits used. The
attentive driver will still abide � at least partly � to the encountered sign. This
- in context with other on-board sensors giving hints concerning the behaviour
of other vehicles in the vicinity and road curvature, etc. � can be used to add
the detected, but unrecognised, signs to a watch-list that is later on used to �ne
tune the classi�er. This list can be re�ned by keeping only those elements in
the list that su�ce some requirements, such as length of the track, classi�cation
result of the �rst stage of the classi�er hierarchy or behaviour of the driver when
encountering the object.

Another possible step is to use classi�ers trained on speci�c appearance types
or country speci�c appearances from other countries to check if the newly en-
countered object �ts into one of these appearance types and can be classi�ed
successfully by one of those classi�ers. This additional computation can either
be done in the running control device when there is free computation time due
to fewer detected circles or when the vehicle is stopping, when there are no new
object detections to be expected, or the computation is performed o�ine on the
collected data, thus requiring more storage capability in the collecting device.
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The two ways of utilising the information are �rstly unsupervised adding of the
pattern in question to the learning set and including it in the current classi�er
or secondly remembering the pattern and showing it to an expert � who might
even be the driver � to be able to incorporate it to the set of patterns used
to create the next version of the classi�er. The �rst solution has the advantage
of not encumbering a human with having to teach the classi�cation system and
having a higher update rate, while the second possibility has less necessity of
having a system being able to cope with wrongly labelled data.

4.3 Design and Implementation of a System for the

Automation of Sample Collection

As stated in section 4.2, the use of more than one classi�er will be necessary to
cope with the variability of the fonts and sizes used for classifying the signs. The
more countries have to be covered, the more attention has to be placed upon
automatizing the whole process. Using a recording device as described in 4.2.1
the recording of sequences showing tra�c signs is not a strenuous task, since
the operator just has to start the recorder at the begin of the tour and copy
the resulting sequences to the servers database after returning. Thus holiday
and business trips were used to gather data from Germany and the surrounding
countries and of course vehicles could be equipped without the driver having to
operate the system at all. The more work intensive part is the labelling process
for the obtained data. To keep the need for a human in this part of the system
as low as possible the following scheme was developed and can be followed in
�gure 3.1:

1. Obtain initial sample prototype images for one country set by using the
ideas from section 4.2.1 like using rule books or holiday pictures of the
signs. Then create a �rst training set by creating synthetic samples based
on the prototypes found, using a plausible distribution of the distortion
parameters used, see section 4.2.2.

2. Create classi�er set based upon the �rst training set created in the �rst
step.

3. Label samples of one frequent sign type, for example in this thesis the pas-
sive sign speed limit eighty was used, in larger quantities by recording many
occurrences of this sign at di�erent lighting conditions, di�erent weather
conditions and varying relative positions to the sign and varying velocities
of the vehicle. Since the classi�er is still unsatisfactory at this point of the
algorithm, some signs have to be relabelled in this stage.

4. From this set of samples for one sign type, compute the set of parameters
for the adaptation of the input parameters of the process for creating a
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better set of synthetic samples. Create a complete synthetic sample set of
all sign types using the algorithm described in section 4.2.2.

5. A complete classi�er set is adapted using the enhanced synthetic sample
set. Should there be no recordings of tra�c signs beyond the ones used to
create the parameter set for enhancing the parameter set for the creation
of the synthetic samples, the algorithm ends here.

6. Use the enhanced classi�er trained in the previous step to automatically
label the signs in all sequences recorded on track base, meaning giving one
tracked object the label the tra�c sign system decided is the most likely.

7. Either a human operator checks and corrects the labels on the complete
tracks by looking at the last detected circles � Or the label is accepted or
discarded based on the scheme presented in section 4.2.3.

8. With the enhanced synthetic sample set and the real samples derived by
processing the sequences recorded the �nal classi�er is trained. An addi-
tional step to improve the classi�cation performance is the selection and
bootstrapping algorithm explained in section 4.3.1.

Once the above scheme has been executed for the set of one country instead of
having to create a synthetic set before the enhanced synthetic set is unnecessary
since the distortions introduced by the imaging system are not dependant on the
country it is used in, thus one can start at the fourth step with the creation of
the enhanced synthetic sample set for every following country.
As shown in section 4.2 the algorithm for creating classi�er sets usable in

more than one country includes the weighted merging of the samples created for,
or gathered from di�erent countries. Both the adaptation of the principal axis
transform and the training of the polynomial classi�er allow a simple method
for this weighted merging of the samples by the weighted adding of the moment
matrices created by the features of the samples as can be seen in equation 4.2 and
4.14. The additional matrix E

{
xyT

}
necessary for the training of the classi�er

contributes one additional vector per class and characteristic sign type to be
stored as seen in equation 4.24.

E
{
xyT

}
= {pc1µ(xc1), pc2µ(xc2), . . . , pckµ(xck)} (4.24)

In the expectancy value matrix E{x, yT} the column vectors depend on the mean
vector of this class, possibly a weighted mean from di�erent appearance types
and a weight factor pci accounting for the a priori probability of the respective
class. Keeping the complete set of moment matrices for a single class requires(
dim {x}2 + dim {x}

)
Bytes/Value Bytes, in the case examined this amounts to

approximately 3MB ((8612 + 861) ∗ 4 Bytes). The diversity of the sign appear-
ances in some countries make the storing of a second or third set of matrices
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preferable, thus allowing the control over the a priori weight the samples for this
appearance type.

Class I

....
wgtI1 wgtIM

Appearance
Type J

wgtIJ

A=E(xxT)-1E(xyT)

.........

E(xxT) E(xyT)

wgt1 wgt2 wgtI wgtK

Class 2 Class I Class KClass 1 ....

Class KClass 1
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Type M
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Figure 4.6: Scheme for the training of a polynomial classi�er from separately
stored moment matrices for K di�erent classes and M di�erent ap-
pearance types. In the chart the split in di�erent appearance types
is highlighted for class I. In the system the other classes are treated
analogue. For the creation of new classi�ers only the moment matri-
ces have to be stored, not the complete samples sets raster images.
The weights wgtxy are set independent of the a priori probability for
the respective class or appearance type.

4.3.1 Bootstrap Training and Classi�er Re�nement

This section describes how to �ne tune a classi�er derived by the algorithm ex-
plained in section 4.3. Once there is a stable classi�er the next task is to optimize
the classi�cation results of this classi�er by readaption to achieve the optimal re-
sult for the complete tra�c sign recognition system. This does not necessarily
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Figure 4.7: The developed system for the retrieval of large sample sets, which
have to characterize in detail the problem of the recognition system.
Scheme for the selection process in the bootstrapping of the classi�er
system. Sets of synthetic signs and image cutouts of real recordings
are used in a weighted mix to adapt the classi�er system which in
term selects the samples to be used for the adaptation in the next
iteration step.

mean to get the maximum number of samples classi�ed correctly, since the a pri-
ori probability of the di�erent classes and appearances for classes vary strongly
and thus the more rare classes or appearances of signs might be disregarded in
favour of the more frequently encountered signs or appearances. Two approaches
are most often used in the literature. The �rst approach uses equal weights for
each sample. This represents the a priori distribution of the classes in the train-
ing set. The second uses equal weights for the accumulated samples for one class
or appearance class. The a priori weighting leads to the previously mentioned
loss of objects of seldom encountered classes, while the equal weighting for the
samples belonging to one class might lead to an over-emphasising of the rarely
encountered sign classes and thus to too-high losses at the side of the most fre-
quently encountered classes. Training the classi�ers with a designed weighting of
the di�erent appearance classes can be used to optimize the classi�cation result
for the complete tra�c sign recognition system. An advantage of the polynomial
classi�er is that for the weighting of the training set not the individual samples,
but only the respective moment matrices and mean vectors have to be reweighted
and used in equation 4.14 to adapt a new classi�er.
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The fact that a real world sign object has more than one image representation
in a track of circular objects leads to a certain redundancy, which can be used to
optimize the system. For a track to be accepted, at least three images holding
circular image objects have to be encountered, see section 2.5, while the vast
majority of tracks has many more entries. Thus the rejection of a few samples in a
real world objects track does not necessarily mean that the tra�c sign recognition
system is not able to classify the object correctly. This redundancy can be used
by altering the optimization goal of the classi�er from classifying each sample
correctly to classifying the majority of tracks correctly. The approach chosen
for this optimization is the reweighting of the moment matrices for the di�erent
appearance types and classes. This additional set of parameters is optimized via
a gradient descent on the track-wise classi�cation outputs. The limiting values
for the weights are the a priori values and the equal weights mentioned above.
Another function of the bootstrapping step is the detection of sample types not

being represented in the synthetic sample set. Should a sign's appearance type
be encountered in a recorded sequence that is not yet included in the collection
of appearance types this type can be added at this point of the algorithm and
the necessary samples be generated. The new type is detected by looking at
labelled tracks of objects where all elements in the track either have a very low
reconstruction rate in the principal axis transform of stage II of the classi�er or
are classi�ed with a very low output value for the correct class in this stage.
Due to the imperfect training set this part of the algorithm acts as an additional

selector for samples to be used in the training process. The three inputs used for
this are the reconstruction error and the classi�ers discriminant vector d. From
d the value for the correct class has to be above a threshold and the rejection
radius r has to be below a threshold. The complete description of this part is in
section 4.3.2.
With the existing classi�er newly recorded image sequences can be processed

to extract samples pre labelled by the existing classi�er. Then either the scheme
from section 4.2.3 or a human in the loop relabelling the tra�c sign objects tracks
is used to correct eventual wrong labels. In addition to adding samples that were
classi�ed correctly already the e�ect is both adding the cutouts of recognized
tracks and, if a human labeller was used, adding the samples complete of wrongly
classi�ed tracks to the correct set.

4.3.2 Selection of Samples in the Bootstrapping Process

A necessary step in the classi�er construction is the selection of suitable samples
from the imperfectly labelled set. The adaptation of a classi�er is based on a set of
synthetic signs which are correctly labelled, even if some of the samples might be
transformed in an unnatural looking way due to an unfortunate random selection
of transformation parameters. For the following classi�ers the sample set includes
label errors since the human labeller or the automatic labelling process might have
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made mistakes, or there might be errors in the track of images used to extract
the cutouts from, such as the �rst or last objects in the track not belonging to the
real world object labelled. Additional care has to be taken for the cutouts that
are labelled correctly, but are illegible due to bad image quality, occlusions, an
inaccurate circle location by the detector or unfavourable geometric conditions
like high rotation of the object. To keep these samples from diluting the classi�er
they are removed by the sample selection algorithms mentioned above, RAD
criterion, classi�cation value and reconstruction rate of the principal component
analysis, see section 4.3.1.

The process of pruning the sample set of unsuitable training samples is im-
plemented in a bootstrapping loop. There are two possible approaches. First,
starting with a small perfectly labelled set and adding more samples afterwards or
second, starting with the complete imperfectly labelled set and removing samples
from the set.

In the �rst approach we start with the created set of synthetic samples. The
�rst classi�er provides an estimate on how perfect signs look like after a set of
geometric and luminance transformations. Thus the selection on atypical signs
will be rather strong, removing most of these from the sample set. Training a
new classi�er including the real world samples accepted by the selection process
allows to run a second selection process on the complete set of samples, this
time adding samples that were not added in the �rst run, since the real world
signs included some transformations not covered by the generation process of the
synthetic signs. This procedure can be repeated until the changes in the samples
sets after the selection are small enough.

The second approach to prune the sample set is to start with the complete
imperfectly labelled samples set, train a classi�er based on this set and remove
the samples that do not satisfy the selection conditions, then retrain the classi�er
with the pruned set until the changes in the samples sets after the selection are
small enough. This approach was used in this thesis, since the generalization
capabilities of the classi�ers created using this approach were superior compared
to the classi�er created using the �rst approach.

The sets added and pruned in the bootstrapping process lead to new adapted
classi�ers in each step. To allow for computational e�ciency in the bootstrapping
process the re-adapting and pruning is �rst executed on the stage II polynomial
classi�er and only when it is stable there the principal component analysis for
this stage is re-adapted. When both parts of stage II for all sub classi�ers are
stable, stage I is re-adapted. This process is repeated until a satisfactory solution
is reached or the process ends due to no or too few changes in the pruning process
and thus the classi�ers not changing any more. The complete scheme is depicted
in �gure 4.7.
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4.4 Combination of Classi�ers of Di�erent Countries

The idea behind this approach is that for just a few appearance types a classi�er
for each of the types could be adapted and being used in the country this appear-
ance type is used. For a multitude of countries this would lead to a huge number
of classi�ers and the complexity of gathering samples for training sets. Thus a
way has to be found to reduce the number of classi�ers necessary to a manageable
number and adding a new classi�er only, if in a newly added country, where the
system should be functionable, the signs are too di�erent to be correctly classi�ed
with one of the existing sets of classi�ers. Otherwise one of an already existing
set of classi�ers should be used in this country. Which classi�er should be used
can be determined by testing the performance of the existing classi�ers on a small
set of real samples or on synthetic samples. Should a sample set of su�cient size
be recorded in this country these samples can be used for readaptation of the
respective classi�er set by adding it to the sets of the already included countries.
An implementation of this algorithm was published in the diploma thesis of Denis
Koch [Koch, 2007], which was supervised in the course of this thesis.
When the vehicle enters a country, which is detected by using GPS and a map,

the corresponding set of classi�ers is loaded and used. A set of classi�ers consists
of the seven classi�ers in stage I and stage II as explained in 2.13. The composition
may di�er from country to country with varying choices for inner/outer limit or
end of limit classi�ers.
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5 Design of the Evaluation System

The system can be evaluated module by module and � of course � by function,
but there are more intermediate steps necessary for system optimization and
evaluation. A simple example is the sole evaluation and parameter optimization
of the detector to allow the detection of signs being very far away and thus being
very small in the image or being partly occluded. Optimizing the system to
reliably detect even these small or occluded objects leads to an increasing rate
of false positive detections, since the thresholds in the detector would have to
be lowered very far to safely detect these candidates. In most cases the vehicle
approaches the far away signs up to a distance of less than 20 m in our system,
thus the small objects are just the begin of a track of objects becoming larger.
Those not getting large enough in the image usually are the signs on the more
distant roadside of a multi lane road. For the system the detection and recognition
of the one at the closer roadside su�ces, thus the non-observance of the far o�
sign does not impair the system, in the contrary, the recognition of signs having
a very large lateral o�set relative to the vehicle might complicate the decision for
the currently valid speed limit, when signs on parallel lanes or on exit lanes are
recognized.

5.1 Evaluation of the Camera Control

For the complete system the camera control has to be evaluated as well. Since
camera control is not in the scope of this thesis there are only a few hints on as
how the camera settings are evaluated.

The complete inclusion of the camera control into the evaluation concept would
lead to a huge expansion of the sets to be assessed, since there would have to be a
large number of frames for each camera setting to be evaluated. Due to this fact
the camera control is optimized with small sets of images for each camera setting,
examining the edges obtained from the images and the over all appearance of the
images. Since the image sensor allows settings for high dynamic range response
curve there are many parameters to be considered. The main control target is set
to a rectangle on the road, optimizing the mean value and the number of extreme
pixel values in the rectangle. There are additional heuristics for tunnel entrances
and exits and special settings for images under low lighting conditions such as at
night or in tunnels.
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5.2 Creation of the Training and Testing Set

For the following evaluations a database of labelled image sequences has to be
created. For the di�erent stages of evaluation the type of labelling has to be
di�erent. The di�erent types of labelling stages vary greatly in e�ort to be
expended in the labelling process and thus in the size of the set for a given time
spent for the labelling. The following four types of labelling were performed.

1. Exact labelling of the circles belonging to tra�c signs in the image. (Set1)

2. Labelling the circles detected by the tra�c sign detector. (Set2)

3. Labelling the whole tracks of circles as generated by the system by assigning
the class of the last element in the track to all elements in the track. (Set3)

4. Labelling in the real world domain, assigning the permitted maximum al-
lowed speed to sections of the road in recorded image sequences. (Set4)

The workload for the labelling process using the �rst scheme produces an ex-
tremely workload for the labelling person. Thus only comparatively few images
were labelled in this way. These images were used in the process of adapting the
detector. Some examples are depicted in �gure 5.1.
After the detector was developed and implemented the labelling was conducted

in the second way described above. Since the system detects nearly all signs at
least in some images of the image sequence belonging to one real world tra�c
sign object, as shown in section 6.3, new circle objects have to be added using
the �rst labelling scheme only seldomly. The drawback accepted in this faster
labelling method is the possibly imperfect placement of the circles in the images
as seen in �gure 5.2.
The huge number of labelled images necessary for the use of the evaluation

in multiple countries lead to the development and implementation of the third
labelling scheme. Here the tracks of circles in the sequences are the base for the
labelling. The tracks are used as they are created by the tracker. This means
that elements assigned wrongly to a track of circles will still be labelled with the
same class as the rest of the track, since reviewing every single item of the track
would cause much higher workload for the labeller. Here the trade o� was made
allowing some erroneous labels for gaining a much higher variety and number of
labelled sign cutouts. A typical case for errors in the assignment of circles to
a track is a circle object found in cluttered background which is connected to
a newly detected tra�c sign object, who's �rst image circle object is detected
in the next frame. The number of circle elements given a wrong label in this
manner is much lower than the number of correct labels, but has to be observed
when training or evaluating the classi�ers based on these training sets, meaning
that the type of classi�er chosen has to be robust against a small number of
wrongly labelled training samples, such as the polynomial classi�er has proven to
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Figure 5.1: Examples of labelled circles

be. This scheme of labelling produces an extremely low workload for the labeller,
especially when the whole tra�c sign recognition results are given as a �rst choice
for the labelling. Thus, as the whole tra�c sign recognition system gets more
re�ned and the number of errors decrease, the number of labels to be changed by
the labeller decreases as well. In �gure 5.3 the rectangular regions of the image
enclosing the detected circles, here called cutouts are depicted. Every second
row is comprised of cutouts which are generated when two circles are detected
for one image sign object. When the real world sign is still far away, on the left
side of the tracks, the image objects are barely decipherable, but getting more
recognizable when closing up to the object as can be seen in the right part of the
tracks. The lowest two rows show a track where objects from the back of a lorry
sometimes hide the sign object and thus introduce wrong labels in the sample set,
when the last object in the track de�nes the label of the whole track. Since this
kind of occlusion is extremely rare it does not in�uence the following analyses.
In the evaluation process the set is pruned by removing wrong labels, but the
problem to which extent signs with occlusions and cutouts imperfectly centred
on the signs circle have to be recognized remains. This part of the pruning of the
evaluation set is based subjectively on the appraisal of the labeller, removing too
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Figure 5.2: Examples of imprecisely detected circles

occluded or acentric samples from the evaluation set.
For the complete evaluation of the detection system the tra�c scene has to be

labelled, thus allowing to benchmark the tra�c sign recognition system against
the ground truth of the tra�c regulations. The database created in this step takes
all tra�c regulations of the country where the respective sequence was recorded
into account and thus allows the evaluation of a complete tra�c sign recognition
system on the base of distance travelled with the system showing the correct, the
false result or none.
For German roads more than 50.000 kilometres of driven distance were labelled

for the valid maximum velocity. The sets for other European countries are con-
siderable smaller, 10.000 kilometres in France and Italy for example. The exact
numbers are given in section A.9. In all there are about 109.000 kilometres of
labelled trips, resulting in 11.5 gigabytes of data. The set consists of 25,9 million
images showing 124.000 real world signs and over 13.000 supplementary signs.
In �gure 5.4 a labelled route of 200 km is depicted. The vehicle information yaw

rate and speed are shown in dark blue and light green. The ground truth label
is the dark blue line, where a label of 200 km/h stands for no speed limit. The
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Figure 5.3: Examples of rectangular image regions forming tracks with each sec-
ond row showing rectangles achieved by detecting two circles for one
image object. In the two bottom rows a track including wrong circles
is shown.

lines below the zero line show additional information like temporary or weather
dependant speed limitations. The red dots along the ground truth line depict
speed limit tra�c signs. The red line above the zero line and the red bar below
the zero line show discrepancies between the results of the speed limit recognition
system and the ground truth. In the �rst 17 kilometres the error shown by the
red line are generated by the fact that there was no previous tra�c sign, so for
the recognition system the real speed limit was unknown. In this route there are
23 kilometres of 198 kilometres shown to be incorrect. Disregarding this part of
the route the recognition system produces the correct result when compared with
the ground truth on 175 of 181 kilometres of the trip.

All the sets above were labelled by a human operator, but still there were errors
in the labelled sets, which was to be expected when considering the huge number
of signs labelled. These errors were corrected every time they were detected.
Often the tra�c sign recognition system itself did not make the same mistakes as
the labellers and thus when reviewing the mistakes the recognition system made
the label errors could be corrected.
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Figure 5.4: Example of a labelled route of about 200 km length with labelled aux-
iliary information yaw rate (top blue), travelled speed (light green),
allowed speed or ground truth (dark green), and error of speed limit
system (red)

5.3 Evaluating the Detector

The �rst and foremost of the output of the detector to be reviewed is the detection
rate and if the positioning of the circles is accurate enough. A second value being
important in this context is the number of other objects being detected along with
the signs. This second value should be kept as low as possible. From these two we
can de�ne a signal to noise ratio of the given detector, meaning the detection rate
relative to the whole number of circles detected. These two values can be plotted
in a two dimensional curve when varying a parameter. Another parameter that
has to be considered is the computational load created by the detector, which is
in�uenced by the parameter settings. Important parameters in the detector are:

� The edge threshold of the coarse detector

� The number of peaks used from accumulator

Important parameters in the detector veri�cation are:

� The type of edge detector used in veri�cation step

� The edge threshold

� The tolerance angle for checking if an edge pixel �ts to the circle edge
template
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� The type of algorithm used on the edge image: the correlation detector or
of the chamfer algorithm

� Spatial low pass on the template matching results on/o�

� The decision threshold for the corresponding algorithm used

� �nal acceptance threshold

The optimization of these parameters is explained more closely in section 6.3.4.

5.4 Tracker

Since the tracker is mostly used as a blackboard and to connect the detected
objects from consecutive images, the evaluation for this part of the algorithm is
based on its capability of connecting the correct objects while connecting as few
as possible of the objects not being signs. The connection of the correct objects
is of vital importance for labelling the signs, since for the time and e�ort to be
invested for labelling the objects it is not possible to label all single objects in the
sample set. Instead the label is given to the whole track, expecting all elements of
the track to belong to the same class. The labelled set for optimizing the tracker
consists of 664 real world signs and thus 664 tracks consisting of 13487 image
circles in 91146 frames and additionally 45740 veri�ed circles not belonging to a
tra�c sign.

5.5 Single Sign Classi�cation

In this section the evaluation of the single pattern classi�er is described. The
most impact on this evaluation has the selection of the test set. A set of ideally
segmented tra�c sign images could be used for evaluation, but this would not
help in analysing the complete tra�c sign recognition system, since the tra�c
sign pictures classi�ed would look di�erent from the ones detected by the system,
since the variations introduced by the imperfection of the detector would not be
included in the set. Thus the test set has to be created by running the tra�c
sign detector on a set of input images and the regions detected by the tra�c sign
detector have to be classi�ed. Since the large set described in chapter 5.2 includes
a comparatively high number of wrongly labelled signs due to tracking errors,
misplaced detections or label errors, a selection process has to be performed
on the set to reduce the number of wrongly labelled objects to allow a correct
evaluation. To perform this task with a minimum of human interaction required
three di�erent schemes were implemented.

� A principal axis transform was performed on a small set of correctly labelled
sign patterns. The complete set of patterns was transformed with the �rst

84



5.5 Single Sign Classi�cation

principal axes, leading to a reconstruction error R
2

M of about 0.1 or 10%
on the small set used to train the principle axis transform. This ratio is be
determined via equation 4.8. After the reconstruction, meaning the inverse
transform, the patterns were sorted by the error between the correlation
of the reconstructed pattern and the original pattern RM, computed as in
equation 4.9. The patterns yielding the highest error being most likely
candidates of having been incorrectly labelled.

Reject sample if R2
M ≥ θ1R

2

M (5.1)

� A polynomial classi�er was trained on the principal axis transformed set
of correctly labelled sign patterns. The complete set was classi�ed with
this preliminary classi�er. The samples were then sorted by the value of
the output value of the decision vector d of the class they were labelled to
belong to. The samples having the lowest output neuron being the ones to
be most likely wrongly labelled.

Reject sample if dk ≤ θ2 (5.2)

� Based on the classi�er trained for the second scheme, the Euclidean dis-
tance of the decision vector d of each sample to the ideal decision vector
y, meaning one for the labelled class and zero for all others, is computed.
This value is called reject radius or RAD criterion, as explained in equation
4.17. The samples are sorted by this value, the higher this value is, the
more likely its label is incorrect.

Reject sample if RADk ≥ θ3 (5.3)

The three algorithms described above allowed the removal of most, if not all of
the wrongly labelled patterns from the evaluation set, thus allowing to measure
the recognition rates of the di�erent classi�ers.
The values examined for the single pattern classi�er are the values in the deci-

sion vector d as de�ned in equation 4.12. For each sample belonging to a tra�c
sign class there are �ve possible results. For each sample in the evaluation set
the di�erent costs are added for each type of result.

1. The sample's decision vector d is accepted with respect to the RAD criterion
(4.17) and the highest value in the decision vector belongs to the correct
class of the sample.

RADk < θ3

⋂
maxidx (d) = k (5.4)

2. The sample's decision vector d is accepted with respect to the RAD criterion
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(4.17) and the highest value in the decision vector belongs to a di�erent class
than the one the sample was labelled as, thus the decision would lead to a
misclassi�cation.

RADk < θ3

⋂
maxidx (d) 6= k (5.5)

3. The sample's decision vector d is accepted with respect to the RAD criterion
(4.17) and the highest value in the decision vector belongs to the garbage
class, thus the decision would lead to a classi�cation as garbage.

RADk < θ3

⋂
maxidx (d) = Idxgarbage (5.6)

4. The sample's decision vector is rejected with respect to the RAD criterion
(4.17).

RADk ≥ θ3 (5.7)

5. A sample not belonging to a tra�c sign is wrongly classi�ed as a sign and
is not rejected by the RAD criterion. This is called a false positive.

RADk < θ3

⋂
maxidx (d) 6= Idxgarbage (5.8)

The correct classi�cation as in type one is set to create no costs. The cost for
the confusion of two tra�c sign classes as in type two of the results are set to be
the same, since no confusion between two classes is less unfavourable than the
others. The errors of type three are thought to be of less impact and thus the
costs are lower than those of type two. The rejection due to the RAD criterion is
assigned an even lower cost since this type of error is the easiest to be countered
in the track classi�cation stage.

5.6 Track Classi�cation

In this part the result based on the correct classi�cation of one real world tra�c
sign object has to be evaluated. In the previous chapter the evaluation of a
single image object was examined. If these were all correctly classi�ed the track
classi�cation stage would be super�uous. For the combination of the results of the
single pattern classi�cation the reliability of the information gained by the single
pattern classi�cation has to be considered, for example using the information
about the decision vector d for the single image objects and the resolution of the
raster images before the normalization process.
There are four di�erent types of results:

� The number of correctly classi�ed sign tracks.
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� The number of misclassi�cations where two sign classes are confused.

� The number of tracks not belonging to tra�c signs, but being classi�ed as
such, the false positives.

� The number of false negatives, where the track of a sign is classi�ed as
garbage or rejected.

5.7 Tra�c Scene Interpretation

This part of the evaluation is based on the results of the track classi�cation for
real world signs and is moving one step further. In many cases, when there is
only one real world sign present in a section of the road, the classi�cation of the
real world object as a track of image objects is the �nal result of the tra�c sign
recognition system. On most higher order roads like highways tra�c signs are
placed on both sides on the road or multiple signs are placed above the road
on overhead gantry signs, the recognition of one of the signs is su�cient. The
tra�c scene is recognized correctly when one of multiple signs with the same
meaning placed in one segment of the road is recognized. Thus rejecting, but
not misclassifying, the additional signs does not lead to an incorrect evaluation
of the tra�c scene. This means that rejecting signs with a large lateral o�set
might actually improve the over all system performance, even when reducing the
track classi�cation performance. Another case is the rejection of signs on parallel
roads or exit lanes, which again reduces the performance when evaluated via the
track classi�cation, while improving the system performance.
The evaluation of the complete system is done on a per-kilometre basis. The

ground truth is labelled along the complete routes travelled and the allowed speed
computed by the image recognition system is compared to this value. If the
resulting speed allowances di�er, the distance travelled while this di�erence exists
are accumulated. The number of kilometres the system di�ers from the ground
truth in relation to the complete distance travelled is the most important value
evaluated.
Additional values introduced are the expiration length for the validity tra�c

signs, after which the restriction introduced by a tra�c sign is supposed to end
even without a new tra�c sign overriding the previous. This is necessary since
tra�c signs in construction sites have no end of limit signs placed at the end of
the construction site. Another reason for the necessity of the elapsing length is
that the tra�c sign recognition system has no internal information if the vehicle
turned on to another road than the one the restriction was placed on. Thus
the validity of a sign has to be limited. When a navigation system is used the
information of the map can be used to end the area of validity of the sign.
The rules introduced for deciding for the allowed maximum speed in a scene

are as follows:
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� Active signs are deemed more important than passive signs.

� Limiting signs with supplementary signs restricting the validity to not ap-
plicable vehicle classes, e.g. lorries are ignored.

� Limiting signs with the arrow supplementary sign for vehicles leaving the
current road are ignored, since without the assistance of a navigation system
the route of the vehicle is unknown.

The following three rules have been introduced due to the imperfections of the
supplementary sign recognition system.

� If there are more than one sign of the same type in the same scene and
underneath one of them a supplementary sign has been recognized, the
other signs are set to having the same supplementary sign, weather or not
it was detected underneath those.

� In case more than one sign of similar importance is recognized in the same
scene, e.g. two active limits or two passive limits, the one showing the
higher value is deemed correct and the inaccuracy due to an oversight of
a supplementary sign underneath the limit with the smaller value. This
approach is correct in 70% of the cases in question.
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In this chapter the implementation details and results of the evaluation of the
algorithms presented in the chapters 2 and 4 are presented. First the general
considerations on the camera setup and setings are elaborated. In the following
sections the main parts of the algorithm are inspected. Those are the detector,
the tracker and the classi�cation process. The results of the necessary extension
modules for the detection and classi�cation of supplementary signs are presented
in the following section. The �nal section in this chapter is the over all evaluation
of the tra�c sign recognition system.

6.1 Examining Camera Exposure Time

As mentioned in section 2.3 the maximum exposure time expt is restricted by
certain limits. These limits are in�uenced by the following factors:

� The size of the sign s[m]
From the rules for manufacturing and setting up tra�c signs the diameters
of the sign are known for each country and can be stored in the systems data
base. For the use in countries where the permitted sign sizes are unknown
default values can be used until the system calculates the sizes itself.

� The lateral o�set of the road sign to the sensor when passing the sign ys[m]
The horizontal o�set where the system should work with undiminished ac-
curacy has to include cases where the sign is set beside the neighbouring
lane. The equations for vertical sign o�sets are the same as for horizontal
o�sets. Thus only the horizontal o�set is inspected in the following.

� The sensor resolution r[pixel/degree] and �eld of view [degree], e.g. focal
length, or image width w[pixel].

� The minimal size of a sign in an image to be recognized sp[pixel]
From tests with the classi�er we know that for the best recognition perfor-
mance the sign should be seen at least three times at a minimum size of 20
pixels or larger in the image.

� The minimum number of images in which the sign has to appear to be
accepted N
In this case the number of tracked elements N should be 3 or more.
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� The number of frames per second fps[Hz]
Depending on the computational speed of the system on the respective
hardware this can be a crucial factor.

� The maximum allowed movement of the signs representation in the image
during exposure time to be still recognizable b[%]
For a sign to remain recognizable the imposed motion blur cannot be al-
lowed to exceed certain limits. The inner part of a Speed Limit 100, for
instance, has ten black to white transitions, as shown in �gure 6.1. This
means if the sign moves about ten percent of it depicted size in the im-
age during one exposure the pattern shown in the image will become an
indecipherable grey bar.

� The vehicle speed v[m/s]
For most European countries 130 km/h or lower is the maximum speed,
but considering Germany higher speeds have to be checked as well.

Since varying all these parameters would lead to confusing results some will be
�xed and only a few are varied in the following inspection. This yields the worst
case results in this �eld. These factors combined should give us the maximum
vehicle velocity at which the system works unimpaired. The resulting two bounds
are the number of frames in which the signs representations are large enough and
the distance from which the motion blur becomes too large.
The variables are described in the list of in�uencing factors above and the

�gure 6.1.

d =
ys

tan
(
w
2r

) , dN = d− Nv

fps
(6.1)

The following equation describes the relation between the in�uencing factors
necessary for the signs size in the N-th image to be at least the minimum size
necessary for a reliably correct classi�cation sp.

sp ≤ αs · r = r

(
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)
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(
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(6.2)

The following equation describes the relation between the in�uencing factors
necessary for the signs to have a motion blur smaller than the maximum allowable
for a reliable classi�cation b.

b ≥ (αe − α) r

sp
=

r

sp

(
arctan

(
ds
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)
− arctan

(
ds
d

))
(6.3)

The above equation allows the computation of the camera setup according to the
factors given by maximum travelling speed and geometric factors.
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Figure 6.1: Scheme of the two limiting factors for velocity and exposure time.
Firstly the minimum necessary sizes, secondly the maximum blur.
The third element shows the black and white transitions on a speed
limit 100. See section 6.1

6.2 Training and Testing Sets

As described in section 5.2 there are four main types of sets used as ground
truth in the evaluations. In the set labelled using the �rst scheme, the exact
circle labelling, there were 3559 image circles belonging to tra�c signs in our
experiments. Of each real world tra�c sign in the set only one in each track of
image circles was labelled to get a more diverse set of circles. The sizes of the
circles varied from the minimum width of objects used in the detector, here 15
pixels, to the maximum size of 61 pixels for the evaluated system.

Day Night
Two Circled Signs / Speed Limit signs 951 621

Singly Circled Signs / End of Limit signs 222 193
Number of Circles 2124 1435

Table 6.1: Sample set for determining the circle veri�cation algorithm.

The set was split in night and day images to allow di�erent detector settings
for the substantially di�erent environment encountered at night as compared to
daytime images. This includes low light characteristics of the sensor like higher
image noise and arti�cial lighting of the scene through headlights and street lights.
The set labelled using the second scheme, labelling single circles as detected by

the system, was created for the �rst adaptation of the tracking and classi�cation
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algorithm and was not used in the following evaluations since the size of the set
labelled using the third scheme soon grew much larger and thus more signi�cant
than this one. This second labelled set consisted of about 5000 labelled tra�c
sign circles.

For the evaluation for the tracker the set was taken from German sequences.
The sequences were picked from day and night and many di�erent weather con-
ditions. The size of this set is given in table 6.2.

Frame Real world Frames showing Circles of Circles not of
number tra�c signs tra�c signs tra�c signs tra�c signs
91146 664 11874 3784 46146

Table 6.2: Sample set for adjusting and evaluating the tracker.

The third set, based on track labelling, has to be larger by far than the pre-
vious two sets to allow statements about the classi�ers performance in di�erent
countries and using di�erent classi�er training schemes. Over one million image
circles holding signs were labelled and about one million garbage objects were
added. The garbage objects were chosen from objects forming tracks of circles
in the image sequences only, since only these would reach the classi�cation stage
in the real system and thus are realistic inputs for the classi�er. The exact com-
position, separated country-wise, is given in the appendix section A.8. In the
following tables �rst the numbers for the German training and testing set are
given (6.3, 6.4), then the numbers for the European sets in table 6.5.

Active Passive Garbage
End of Limit Limit End of Limit Limit

Train 4671 16119 6622 30825 345639

Test 16125 120613 37730 383572 968515

Table 6.3: Sample set for German tra�c sign cutouts in the stage I classi�er, see
section 2.6.2.

For the detection and classi�cation of supplementary signs the set used for the
training and testing of European signs was �ltered for signs showing supplemen-
tary signs. Those were used in the adaptation of the supplementary sign modules.
The numbers are given in table 6.6.

The sample sets shown above are used to adapt and test all parts of the tra�c
sign detection and recognition algorithm.
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Active Passive
End of Limit Limit End of Limit Limit
Limit Inner Outer Limit Inner Outer

Train Garbage 5138 20857 17575 12131 67272 59476
Train/Synthetic 1000 per class

Train Tra�c Signs 4062 10936 13852 11588 60394 66896
Test Garbage 11382 30644 10793 16567 56785 23939

Test Tra�c Signs 14397 58442 49248 33991 188502 166657

Table 6.4: Sample set for German tra�c sign cutouts in the stage II classi�er,
see section 2.6.2. The di�erentiation between active and passive signs
divides signs with bright digits on dark ground from signs with dark
digits on bright ground. Limit inner and outer di�erentiates between
the outer cutouts created from circles including the red rim, while inner
cutouts derive from detected inner circles of the red rim.

Country AT BE CH DE DK ES FR IT LU NL

Train 2462 763 1184 26878 428 4330 2679 4348 249 1601

Test 6999 2150 3338 76691 1198 12267 7618 12434 711 4538

Table 6.5: Sample set for the European tra�c sign cutouts classi�er. The table
shows the number of real world signs. The number of cutouts is about
20 times higher since this is the mean length of an image tack.

6.3 Tra�c Sign Detector

In this section the evaluation and parametrization of the main parts of the tra�c
sign detector are introduced, beginning with the edge detector and ending with
the veri�cation of the detection results.
The detection range in size and centre coordinates can be determined by looking

at the rulebook [Bald and Giesa, 2002], but still have to be veri�ed by experi-
ments in case of the setup of the signs not being according to the rules. Figure 6.2
shows that the bulk of the signs have a diameter smaller than forty pixels. Since
a higher radius allows easier classi�cation and, most of the time, better three
dimensional positioning, circles up to a diameter of sixty pixels are detected.
The region in which the signs are detected depends on the mounting of the

camera. From the positions of the signs in the images the area to be scanned for
circles has to be from ten degrees above the horizon to one and a half degrees
below. To be able to detect temporary signs on tripods seldomly used by the
police at accident sites, or more often in France, the detection area is expanded to
�ve degrees below the horizon, leading to the image area from the top to the pixel
row three hundred in the camera system used for the evaluation. Horizontally no
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Country AT BE DE FR ES LU PT
Train Cutouts 3881 2390 14108 8671 6265 597 1896

Synthetic 1000 per class
Signs 191 118 695 427 309 29 93

Test Cutouts 14302 8807 51995 31956 23089 2202 6989
Signs 708 436 2574 1582 1143 109 346

Table 6.6: Sample set for the European supplementary signs. The table shows the
number of cutouts used for the adjustment and testing of the detector,
veri�cation step and classi�cation and the number of real world signs
composing these sets. In the training of the pictogram classi�er ad-
ditionally synthetic sign cutouts were used for training the classi�ers,
since for many classes a very low number of signs were recorded.

Diameter 17 19 21 23 25 27 29 31
Number 135329 175236 89604 102940 65091 58614 53888 35443

Diameter 33 35 37 39 41 43 45 47
Number 30808 23659 19878 19788 12769 7159 6138 6098

Diameter 49 51 53 55 57 59
Number 35271 5225 3808 2935 2012 1786

Table 6.7: Table showing the exact numbers of circles per diameter as displayed
in �gure 6.2

area can be ruled out as to be seen in �gure 6.3

6.3.1 Edge Detector

The edge detectors examined more closely, as stated in section 2.4.1, were Sobel
�lters, Prewitt algorithm and Canny �lter. The Canny �lter, while delivering the
clearest edges for the human observer, removed too much �ne structures from
small circles by applying the low pass �lter before applying the Sobel mask, since
the system is operating at the limit of its applicable resolution anyhow. Tests
with edges generated using the Canny �lter led to 15% less relevant tra�c sign
circles on a set of about 100 000 tra�c sign circle candidates. Between Prewitt
and Sobel �lter as initial mask there has been only a minor di�erence. Because of
the Sobel �lter having the more speci�ed positioning of the edges this mask was
used further on. In the veri�cation step the image is used in full resolution, thus
the Bayer-Pattern on the sensor alters the direction of the edges encountered.
To prevent this the Sobel �lter masks are stretched to touch pixels having the
same colour �lter only, resulting in two sparse 5x5 �lters.
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Figure 6.2: Distribution of the sizes of 905 thousand circles being the border of
tra�c signs in recorded images in the evaluation set
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Figure 6.3: Centres of circles belonging to labelled tra�c signs from about 905
thousand appearances in images. The darker the more centres were
in this pixel area. The X marks the projection of the vanishing point
in the image.
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The non-maximum suppression scheme from the Canny algorithm was reduced
to checking in two (horizontal and vertical) directions only for sake of speed with
only minor adverse e�ects in edge quality.

The realization of the phase gradient detection has to allow for low cost in CPU
time, cache friendliness and su�cient gradient accuracy. The 3x3 Sobel mask
is processed line wise and the resulting X and Y Gradient processed directly,
allowing to proceed without having to store 16 bit intermediate images.

The arc tangent is replaced by a pair of tables. In addition to the edge thinning
as described in the Canny operator, there is a minimum threshold applied to the
gradient amplitude to prevent edges generated by noise to enter the following
evaluations. The threshold is comparatively low (about 3 least signi�cant bits
resulting in a threshold of 30 in the Sobel edge image) to allow for low contrast
areas in the image to produce edges as well.

In addition to the absolute edge threshold there is a relative threshold compar-
ing the centre grey value of the edge �lter with the �lter result. This reduces the
number of edges in the bright areas of the image, edges in sky areas for instance.
This additional step, though costing additional computation time in the edge
detection process, reduces the number of edges considerably without removing
relevant edge pixels. There is a minor impact on the mean computation time of
the complete detection process, but the worst case calculation time was reduced
by 40%.

To let this scheme to be acceptable in computation time the operations are
realized by table lookups. There are three tables involved. Firstly the relative
threshold table yielding the logarithm to the basis of two of the grey value of
the pixel at the centre of the convolution mask. This value can be compared
to the shift value derived by the use of the second table to get a fast relative
edge threshold spaced in powers of two. The second table for determining the
number of bits the gradient values have to be shifted down to �t into the third
table, simultaneously thresholding the gradient by applying a high shift value on
elements below the threshold. The third is a square table holding the arc tangent
for the equation Θ = arctan(gu, gv).

gm (u, v) = max (|δu (u, v)| , |δv (u, v)|)
vc (u, v) = log2 (g (u, v))

vg (u, v) = log2 (gm (u, v))

s (u, v) =


16 , if gm < Edge Threshold ε

16 , if gm < vc + Relative Threshold εr

max (0, vg (u, v)− log2 (AtanTabSize/2)) , elsewise

Θ (u, v) = arctan (dv << s,du << s)

<< s : bitwise right shift, thus a division by 2s (6.4)
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gm: The maximum of the vertical δu and horizontal δu gradient value for one
pixel, vc: The log2 of the grey value of the centre pixel, s: the bit shift value, Θ:
the resulting phase gradient
The phase values are mapped to the values of 1 to 255 in the resulting image. A
value of zero indicates that there is no gradient at this position, see �gure 6.4.

6.3.2 Hough Detector

The fast generalized Hough transform is based on a gradient image in which
one or more objects have to be detected. The search is performed by ac-
cumulating votes in the Hough space, which's dimensions are the quantized
targeted variables. In our case these variables are the centre point of the
circle and its radius. The detection results are the peaks in the Hough
space. For a complete explanation of the Hough algorithm please refer to
[Duda and Hart, 1972, Illingworth and Kittler, 1987].

In the scheme of the fast Hough transform for circles to reduce memory con-
sumption and computation time the radius range to be scanned is quantized into
N discrete sets of radius ranges. The best trade o� for N in the current case is
four. The image dimensions u and v are quantized in single pixel steps on the
sub-sampled image. The accumulator for the N radius-bands is stored interleaved
to allow for e�cient memory management.

The Hough transformation algorithm implemented in this thesis closely re-
sembles the radial symmetry system used in the papers by Barnes et al.
[Barnes and Zelinsky, 2004]. The main di�erence is the use of more than one
entry per radius segment. This leads to a considerably higher signal to noise
ratio, meaning the ratio of maximum entry in accumulator to the applied thresh-
old necessary to extract a maximum number of positions with high accumulator
entries. The ratio is 1.55 rather than 1.45 when using just the one entry per
radius segment as proposed by Barnes et al. This new scheme detects 16% more
correct sign circles on a testset when using the algorithm described in the paper.
Additionaly 5% less background circle candidates are detected. The exact results
are shown in table 6.8. The set used for this evaluation consists of 9359 frames
containing 700 real world tra�c signs, resulting in 8495 tra�c sign circles of min-
imum size 15 pixels diameter in the images. The image sequences were gathered
at di�erent times of day and night, under di�ering lighting conditions, weather
conditions and in all seasons of the year and are a subset of the main evaluation
set. Computation time was given in the paper [Barnes and Zelinsky, 2004] as
20Hz in the year 2004, when 3 Ghz Pentium processors were the common CPU
for dektop computers. The algorithm presented in this thesis computes on a 500
MHz CPU in less than 30 milliseconds per frame, thus a considerable speed up
was achieved as well as a higher detection rate.
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Figure 6.4: Shift table for entering the arc tangent table and the arc tangent
table itself. Typical Values: MaxEdgeval for 10 Bit: 4095, for 12
Bit: 16383, AtanTabSize: 64. The size of 64 yields su�ciently low
quantization noise for detector accuracy. Scheme of deriving Θ from
gradient values u and v. See equation 6.4. The values in the table
are the quantized gradient values (1-255) and the respective value in
degrees.
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Parameter Barnes et al. Proposed Algorithm
Signal to Noise Ratio 1.45 1.55
Correctly Detected Circles 7252 8441
Background Circle Candidates 24678 23427

Table 6.8: Comparison of the algorithm proposed in this thesis with the algorithm
for circle detection proposed in [Barnes and Zelinsky, 2004]. The as-
sessed values are the relative height of the peaks in the hough space
(see above),the number of circles belonging to a tra�c sign detected
and the detected circles not belonging to a tra�c sign.

Low Pass on Accumulator and Maximum Extraction

In this step the points with the highest number of entries in the accumulator
image are extracted and entered into a list structure. Of the four accumulator
entries per image coordinate the maximum value is stored in an additional image.
A low pass �lter is used on this maximum image and via a histogram computed
on it the N coordinate points with the highest entries are selected and stored to
the so called island point list. This list holds the value resulting from the blur of
the maximum image as well as the four single radial accumulator values for this
coordinate and of course the image coordinates of the point itself.
The algorithm is realized in a single pass procedure by computing the maximum

value and the low pass on the maxima in a single run. The histogram is built
in this pass as well. The threshold to be used on the maximum image to get
the top N points is computed from the histogram and in a second pass over the
image these points are extracted. This second pass is circumvented by using the
threshold from the previous image on the current image and thereby extracting
the points on the �y while computing the maximum image. This allows for an
additional memory economy by keeping just the three lines of the maximum
image which are necessary for the low pass �lter. This approach is viable as long
as the image scene does not change considerably, which is true for the given frame
rate of 16 Hz.
The blurring step is necessary since the centre of the circle is generally not

situated in the middle of a pixel and in the worst case lies on the border point
of four pixels, where the contributions of all of them have to be accounted for.
An additional factor enforcing the use of a low pass �lter are the perspective
distortions leading to the image of an ellipse where the two focal points have
disjointed maxima close enough to get connected to one island by the use of the
low pass. The imperfection in the determination of the edge direction itself leads
to a spreading of the centre as well and thus calls for the blur too. Without
the blurring the number of detected circles belonging to tra�c signs decreases by
15%.
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Primary Detector Candidate Generation

The list of points is submitted to an eight-connected components search, mean-
ing that two pixels are considered connected when touching at the sides or the
corners. This search is one pass since the points are ordered in the u and v image
coordinates. Of the islands created the weighted centres are computed. This
�oating point image coordinate is the input for the following veri�cation step as
described in chapter 2.4.2. For the veri�cation step an additional hint which ra-
dius the circle creating the island had. Since the Hough accumulator is quantized
in four discrete radius sets the islands have quantized radius values as well. The
four accumulator entries per contributing island point are added up in separate
slots and the radius value belonging to the slot with the most entries is assigned
to the island.

6.3.3 Detector Fine Positioning and Veri�cation

The veri�cation step is necessary for �nding the pixel exact position of the centre
and radius of the circle in the image, since the coarse detection was performed
on the sub-scaled image and the radius quantised to the four values of the four
discrete radius sets in the Hough transform. The �ve values to be optimized are:

� The number of sign circles detected relative to all signs (Nc).

� The number of signs of which both inner and outer circle were detected
relative to the number of signs with two concentric circles (restrictions)
(Nd).

� The accuracy of the centre point as the mean Euclidean distance (∆uv).

� The mean absolute radius error (∆r).

� The number of additional circles detected that do not belong to tra�c signs,
meaning false positives in the case of tra�c sign detection relative to the
number of signs in the set (Nfpos).

To accomplish this task two algorithms, explained in section 2.4.2, were tested
and two sets of parameters adapted. The use of two parameter sets is necessary
since in environments with very low lighting, e.g. night time and in tunnels, the
camera sensor has a very high pixel noise. This made a second set of parameters
necessary, allowing for lower height of the edges and the higher noise of the edges
directions.
The �rst of the two algorithms is a chamfer matching approach, where a tem-

plate matching is performed in a distance transformed edge image. The distance
transformation results in an image showing the euclidean distance to the nearest
edge pixel. The mean distance of a circle template to the nearest edge pixel is
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computed by adding all values in the distance transformed edge image touched
by the template and dividing by the number of pixels of the template. The
second algorithm is a template matching algorithm matching edge position and
direction. The parameters are adapted by modifying the free parameters of the
algorithm and computing the corresponding �ve result values mentioned above.
The optimal parameters are de�ned by being the ones yielding the maximum
value for a linear combination of the �ve result values for all tested parameter
sets.

6.3.4 Detection Veri�cation Fine Tuning

There are a large number of parameters involved in the �ne positioning and
veri�cation step. The veri�cation sample set de�ned in section 6.2. It consists of
3559 tra�c sign circles belonging to 1987 tra�c signs, see table 6.1. It is used to
determine the best set of parameters. Since most of the parameters are switches
and not continuous values no gradient descent or similar optimization scheme was
used, but a brute force grid search approach. The objective of the optimization
is the best performance of the algorithm based on the �ve decision values (Nc,
Nd, ∆uv, ∆r and Nfpos) explained in the previous section.
There are seven parameters used in the optimization. The �rst four parameters

concern the generation and use of the edge image in the matching algorithms.
One parameter is the type of matching used, either on the edge image directly or
on the distance transformed edge image. The �nal two parameters are concerning
the use of the template matching results.
The parameters optimized are in the following list:

� Type of edge detection operator (u-grad, v-grad accordingly):

I :


−1 0 1

0 0 0
−1 0 1

 II :


−1 0 1
−2 0 2
−1 0 1

 III :


−1 0 0 0 1

0 0 0 0 0
−2 0 0 0 2

0 0 0 0 0
−1 0 0 0 1


(6.5)

� Edge threshold as de�ned in section 6.3.1.

� The tolerance angle ξ is set as the absolute di�erence between the phase
of the gradient at the current point and that of the template, or in case
of edge thinning the gradient of a circle centred at the point of the coarse
detection. For edge thinning the sign of the phase gradient is disregarded
allowing for black on white and white on black circles. The value for ξ is
given in the metric used for the phase gradient, leading to

ξ′ = 255 ∗ ξ/ (2π) + 1 (6.6)
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� Type of edge thinning:
Type I: Remove all phase gradient elements alpha computed as stated in
6.3.1 not �tting to a circle according to the tolerance angle.∥∥∥angle (u, v)− arctan

(u
v

)∥∥∥ > ξ (6.7)

Type II: Despeckle via morphologic operation, removal of singular pixels in
the already �ltered phase gradient image.
For the template detection the use of the Type I despeckle algorithm when
not using Type II in addition is super�uous since the directional testing
is inherent in the algorithm already. The use of the Type I despeckle is
required for the Chamfer algorithm, since the clutter pixels created in the
phase gradient image would reduce the maximum distance to the next set
pixel strongly, thus producing a distance transformed image holding very
low values only. The standard way to prevent this is the use of multi-
ple directionally split distance transformed images and templates, but this
scheme is too computationally expensive to be used here.

� Use of either the template matching or the Chamfer algorithm as explained
in section 2.4.2.

� Low-pass �ltering of the output of the matching algorithm, in radius dimen-
sion only to represent the possibility of the shape detected being slightly
ellipsoid due to

τ
′
(u, v, r) = τ (u, v, r − 1) + τ (u, v, r) + τ (u, v, r + 1) (6.8)

The value τ is the resulting matching value for a single template of the
respective veri�cation algorithm.

� Finally the decision threshold, which for the template matching algorithm
is the percentage of matching pixels of the template, while for the chamfer
algorithm it is the mean distance in pixels from the template to the next
matching phase gradient pixel (θI ,θII).

The ranges of parameters are given in the table 6.9. The values applied for
parameter ε are 16, 24, 32, 48, 64, 96, 128. The varying step width is used to
reduce the necessary number of tests.
Due to the constraints for the use of edge thinning and low pass �ltering ex-

plained above there are 11760 possible combinations of the parameters. For those
parameter sets the resulting object list was computed on the set of 2124 images
showing tra�c signs declared above. The algorithm ran at approximately 35 Hz
including image loading and result saving on the computer used, leading to a
complete computation time of about eight days.
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Parameter Symbol Range Step Num. of tests
Edge Type η I, II, III 3
Edge Threshold ε 16 - 128 8 -32 7
Tolerance Angle ξ′ 10 - 30 5 5
Edge Thinning χ 0, I, I+II 3
Algorithm Type κ 1, 2 2
Low Pass Filter λ 0, 1 2
Final Threshold Algorithm I θI 0.15-0.90 0.05 16
Final Threshold Algorithm II θII 0.50-2.00 0.10 16

Table 6.9: Table describing the experiments performed in the grid search for the
best parameter set. The values are the range in which the respective
parameter is varied, the step-width for this parameter in the grid and
the number of tests that have to be performed on this parameter if
all other parameters are �x. To get the whole number of experiments
done in the grid search all numbers of tests have to be multiplied, in
this case 322 560 experiments.

The task of the optimization is �nding the maximum of the following linear
combination of the factors in�uencing the circle position veri�cation algorithm:

DV (Nc,Nd,∆uv,∆r,Nfpos) =

a1 Nc + a2 Nd − a3 ∆uv − a4 ∆r − a5 Nfpos =

f (a1, a2, a3, a4, a5, η, ε, χ, κ, λ, θ)

(6.9)

The optimization problem is solved using a grid search. The positive factors are
the number of detected or doubly detected signs (Nc,Nd) while the imprecisions
in the detected circles position and sizes as well as the number of false positive
circles are negative factors.

The detection function D is a linear combination of the �ve target values.
Most important is the number of detected circles Nc followed by the number of
signs where both inner and outer circles were detected Nd. The number of false
positives Nfpos creates additional computational load for the following steps in the
tra�c sign recognition and hinders the association of circle objects in the tracker,
but is deemed less an aggravating factor than the two positive factors Nc and Nd.
The o�set in u and v direction is more relevant than errors of the same proportion
in the radial factor. Thus the factors for the optimisation were chosen from these
experiences as: (a1, a2, a3, a4, a5) = (1, 0.75, 0.5, 0.5, 0.25). The values for a1−a5
were chosen by using the track classi�er explained in 2.6.3 on a small set of tra�c
sign tracks. The results showed the in�uence of errors in the circle veri�cation
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I

II

III

Edgetype     u-grad      v-grad       p-grad       result        result      normed  
                                                   colour coded                                     cutout 

Figure 6.5: Example of the e�ects of the edge type on the shape veri�cation result.
The phase gradient edge images vary, producing di�ering positions
and radii of the detected inner and outer circles. In this example the
template matching algorithm was used.

step. The in�uence of the false positive circles could not be determined using this
approach, since circles detected at random positions in the images have next to
no e�ect, while the rejection of circular image objects is counter-productive, since
it always removes tra�c sign circles as well. Thus the value for a5 was chosen as
an experience value and not by a test set.

Due to high motion blur and sensor noise at night time or in tunnels a di�erent
set of parameters is used in case the camera is set to maximum exposure time
or the mean grey value of the image is below the target mean value, in our case
grey value 256 of 1023 maximum grey value.

As shown in table 6.10 the two di�erent algorithms evaluated lead to similar
results. The di�erence of in DV of 0.74 to 0.73 at day and 0.61 to 0.60 at night
are small. The Chamfer matching variant yields slightly higher detection results,
while being less precise in the positioning of the circle. The modules following
the detection process, namely the three dimensional positioning system and the
classi�er decline in performance when the coordinates and sizes of the circles
is imprecise. Thus the template matching algorithm is chosen using the two
parameter sets shown in table 6.11. The global evaluation of the tra�c sign
recognition system was performed on both the results of the template matching
and the chamfer matching algorithm, producing results of comparable quality.
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Day Night
Chamfer T-Match Chamfer T-Match

Opt. for max DV opt Nc opt DV opt Nc opt DV opt Nc opt DV opt Nc

Nc 0.90 0.91 0.89 0.90 0.95 0.95 0.90 0.95
Nd 0.79 0.83 0.79 0.83 0.71 0.86 0.59 0.78
Nfpos 0.48 1.18 0.89 1.71 0.69 0.97 1.00 1.58
∆uv 0.70 0.71 0.38 0.41 0.70 0.71 0.30 0.31
∆r 0.70 0.83 0.42 0.53 0.70 0.72 0.35 0.39
D 0.73 0.38 0.74 0.33 0.60 0.58 0.61 0.49

Table 6.10: Table of the eight best results of the parameter optimization for the
detection veri�cation. The results are split into brightness conditions
(Day/Night), algorithm type (Chamfer/Template Matching) and ob-
jective of the optimization (DV (Nc,Nd,∆uv,∆r,Nfpos) as weighted
measure of the quality of the algorithm and Nc as number of cor-
rectly detected and accepted tra�c sign circles). The evaluation set
is shown in table 6.1. It can be seen that when optimizing for the
number of detected signs Nc the value is only slightly higher than
the result for Nc when optimizing for the over all measure D, while
the values other measures are partly very low when compared to the
results for the D optimization. Thus showing the advantage of not
only taking Nc into account in the optimization process.

6.3.5 Summary of the Detector Results

The coarse detector based on a fast hough transform is capable of detecting over
98% of the tra�c sign image circles of a minimum size of 15 pixels in diameter.
The veri�cation and �ne positioning step is accepting 90% of the tra�c signs
circles and positions them to less than 2 pixels error in centre position and radius.
Over 95% of the signs are detected when allowing up to 3 pixels error. The
rate of non sign circles detected and veri�ed is less than 0.5 per frame. All
free parameters of the detection algorithms are adapted by optimization of the
results on an evaluataion set. The detector consisting of coarse detection and
veri�cation step is algorithmically optimized to be executed in less than 30 ms
per 752x320 pixel image on a 500 MHz computer without the use of hardware
speci�c optimizations.

6.4 Tracker

The evaluation of the tracker is mainly based on the number of correctly tracked
circle objects. The evaluation set consists of 664 real world tra�c signs consisting
of 13487 image circles to be tracked in 11874 of the 91146 frames. In addition
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η ε ξ′ χ κ λ θ DV

Day II 32 15 I + II Template Matching 1 0.30 0.74
Night III 24 15 I + II Template Matching 1 0.25 0.61

Table 6.11: Veri�cation step of the circle detection, table of the parameters for
the best results for optimization of DV , see table 6.10. These values
will be used in the following for the veri�cation step of the detector.
For the explanation of the values, see list in section 6.3.1

there are 45740 circle image objects not belonging to tra�c signs, but possibly
forming non tra�c sign tracks. Two types of trackers were implemented, one for
the use in case no ego motion information is available and one if the information
is available. For both types of tracking algorithms the values to be optimized are
the same. The best case are tracks tracked completely from the �rst to the last
circle belonging to the tra�c sign object without wrongly adding objects to the
start or end of the track and no non tra�c sign circles are connected to tracks.
The optimization of the parameters of the tracking algorithm is based on one

favourable and four negative factors

� The number of detected tra�c sign objects tracked for at least 3 frames
(n0). This is the favourable factor.

� Number of broken tracks. This is another common error, especially when
no ego motion information is available, the breaking of tracks in two or
more unconnected sub-tracks (n1).

� Number of late starts or early stops of tracks thus reducing the number of
tracked circle objects (n2).

� Number of tracks with elements added wrongly to a track (n3).

� Number of tracks built of non tra�c sign objects (n4).

The optimization function is de�ned as a linear combination of the �ve in�u-
encing factors, with N the number of labelled tra�c sign tracks :

DT (n0, n1, n2, n3, n4) =
1

N
(b0 n0 − b1 n1 − b2 n2 − b3 n3 − b4 n4) (6.10)

The most in�uence on the system result besides the real world signs not being
tracked at all, have the number of broken tracks since these shorten the tracks
strongly, thus complicating the classi�cation process and the three dimensional
pose estimation. The reduction of the track lengths by either loosing elements at
the begin or end of the track in�uences the classi�cation result, especially for short
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tracks. For the tracker a small number of wrongly added elements at the begin or
end of the track is of minor consequence due to the following classi�cation step.
The last factor is the number of tracks not belonging to tra�c signs. Some of
those tracks are inevitable since they belong to circular real world objects and are
thus in the tracker stage indiscernible from tra�c signs. Other tracks are wrongly
connected circles belonging to random objects having a circular form in the image.
The negative e�ect of these tracks is the additional computational load on the
system and the additional possibilities for false positives in the classi�cation step.
The weights in the evaluation function are chosen according to their relevance as:

b0 = 1, b1 = 0.5, b2 = 0.25, b3 = 0.1, b4 = 0.05 (6.11)

The values for b1 − b4 were determined by classifying a small number of tracks,
actively applying the four tracking faults and observing the errors introduced by
the tracking faults.
The use of the ego motion of the vehicle and thus the motion of the camera

allows a much better prediction of the position of the appearance of the circular
object in the next frame and has a di�erent set of parameters to be optimized
than the tracker without the use of ego motion. Thus the optimization was split
into two separate parts. One part for optimizing the necessary parameters for
tracking without ego motion, as it is necessary in case of unavailability of vehicle
data as it is the case for mobile devices as smart phones or if there is no connection
to the vehicle's internal bus system.

Track spanning detection errors (λ=2)Tracker with ego motion informationTracker without ego motion information

x

x

x

x

X predicted circle positions
   detected circle positions

σm minimum prediction rectangle size
σM maximum prediction rectangle size

σM

σM
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σm

   predicted circle positions
   without detections

   detected circle positions

x

X predicted circle positions
   detected circle positions

ϑu horizontal size of the prediction rectangle
ϑv vertical size of the prediction rectangle

ϑv

ϑu x

x

x

Figure 6.6: Figure explaining the parameters to be optimized in the tracker.

6.4.1 Tracker without ego motion

Should no information about the ego motion of the vehicle be available, the
process predicting the position of an object in the next frame from the position
detected in the current frame is based on image information alone. The αβγ −
tracker algorithm is explained in section 2.5.2.
One of the main parameters in�uencing the behaviour of the tracker are the

expected inaccuracy of the prediction and thus the size of the area in which the
next element of a track is expected. This rectangular area starts at a de�ned size
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for �nding the second element for a track and is adapted relative to the accuracy
of the previous prediction for the current circular object. The de�ned size at the
start of the tracking process is the maximum size of the rectangle. To prevent the
tracker from reducing the size of the rectangle too much, should there have been
a predicted position very close to the continuing circle, the second parameter for
the tracker is the minimum size for the rectangle. The next parameter is the
number of frames where there are no detected circles added to a track, but the
track is still labelled as not having ended, thus how many frames the tracker is
allowed to skip before breaking the track. The last parameter is the α variable
of the tracker, β and γ are derived from the α value, see table 2.1 for the use of
constant acceleration. The main parameters to be optimized are summarized in
the following list and explained in �gure 6.6:

� Minimum size of the rectangular area around the predicted position of the
circle to look for the next circular track element in pixels (σm).

� Maximum size of the rectangular area around the predicted position of the
circle to look for the next circular track element in pixels (σM).

� The maximum number of frames to predict the position of a following object
before ending a track (λ).

� The tracker constant de�ning the low pass property of the tracker (α).

To �nd the optimal parameter set for the tracker the value for DT1 in equa-
tion 6.12 has to be maximized on the given sampe set. This is done as for the
parameters for the circle veri�cation step in section 6.3.4 by the use of a grid
search.

DT1(n1, n2, n3, n4) = f(n1, n2, n3, n4, σm, σM , λ, α) (6.12)

The ranges of parameters are given in the table 6.12. This leads to 400 tests
to be run for the optimization of the tracker.
The optimum was found at σm = 15, σM = 45, λ = 1 and α = 0.85. As can

be seen in the table 6.13 for the variation of σM the maximum is comparatively
�at, allowing for minor changes of the parameters without large changes in the
results. The same is true for the other parameters, allowing the retaining of the
parameters even if there are minor changes in the over all tra�c sign recognition
system.

6.4.2 Advantage of Ego Motion Information

When the ego motion of the vehicle and thus that of the camera is known the
position of the next element in a track can be determined much more accurate that
without this information. This reduces the number of all the four negative factors,
broken tracks, early stops, wrong continuation and non sign tracks (n1−4), in the
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Parameter Symbol Range Step Num. of Tests
Minimum size of prediction area σm 5-25 5 5
Maximum size of prediction area σM 35-65 10 4
Maximum prediction number λ 0-3 1 4
The tracker constant α 0.80-0.95 0.05 5

Table 6.12: Parameter ranges to be tested in the optimization of the tracker with-
out the use of ego motion information. The Range gives the mini-
mum and maximum value to be checked for this parameter. The
Step de�nes the step width from the minimum value to the maximum
value in the Range. The Num. of Tests is derived by counting how
many steps have to be made from the minimum to the maximum
Range. The number of tests necessary for the complete optimiza-
tion is derived by multiplying the single numbers of tests necessary.
Π (Num.ofTests) = 400.

above optimization. The base for this kind of tracking is the three dimensional
position estimation as in section explained 2.5.4. The estimation is based on
�nding the point closest to all lines of sight from the respective camera position
to the centre of the detected sign in all images where it was detected.
Since the �rst estimation of the three dimensional position can be made only

after the second detection of the object, the �rst distance estimation |x0, y0| has
to be derived di�erently. It is based on the diameter of the �rst detected circle
d0 [pixel]. This diameter in pixels translates via knowledge about real world
diameters of tra�c signs with minimum size s [m] and maximum size S [m] and
the focal length f [m/pixel], see equation 6.13.

|x0, y0| ∈ (sf/d0, Sf/d0) (6.13)

When the current position relative to the camera (xn, yn) and the ego motion of
the camera (dn+1, αn+1) is known, the following position (xn+1, yn+1) and deriving
from that the expected pixel positions un+1, vn+1 can be estimated as depicted
in �gure 6.7 as:

(xn+1, yn+1) = (xn − dn+1 cos (αn+1) , yn − dn+1 sin (αn+1))

βn+1 + αn+1 = arctan
(
xn+1

yn+1

)
βn+1 = arctan

(
xn−dn+1 cos(αn+1)
yn−dn+1 sin(αn+1)

)
− αn+1

un+1 = −fβn+1

(6.14)

The vertical position vn+1 is computed analogue from the real world position in
longitudinal and vertical direction (xn+1, zn+1). The negative leading sign for
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σM DT n0 n1 n2 n3 n4

35 0.644 645 25 7 4 4054
45 0.646 646 21 6 5 4079
55 0.646 644 20 6 6 4087
65 0.634 643 20 5 9 4180

Table 6.13: Exemplary table for the optimization results for the tracker without
the use of ego motion information, where the maximum prediction
area σM was varied, while the other parameters were set to minimum
prediction area σm = 15, maximum detection misses λ = 1, and
tracker constant α = 0.85. The number of labelled tracks N is 664
tracks belonging to tra�c signs, as shown in table 6.2. This is a one
dimensional view of the results of the grid search.

un+1 is owed to the fact that in the real world coordinate system left is positive
while in image coordinates right is de�ned positive.
From the distance to the sign and the movement of the camera the next image

position of the sign can be predicted. There are imprecisions in detection of the
centre of the circle, the ego motion estimation, the real world position of the
sign relative to the camera and the unknown pitch angle between the frames the
sign was detected in. To allow for these imprecisions, the image region where
the current track can be continued by a new circle in the next frame is a rect-
angle enclosing the estimated next position of the track. The parameters to be
optimized involved in the ego motion tracking are explained in 6.6 and de�ned
below:

� The base size of the rectangle enclosing the estimated position in horizontal
direction in pixels ϑu.

� The base size of the rectangle enclosing the estimated position in vertical
direction in pixels ϑv.

� The maximum number of frames to predict the position of a following object
before ending a track (λ).

The ranges of parameters are given in the table 6.14. This leads to 80 tests to
be run for the optimization of the tracker.
The result of the optimisation is the parameter set ϑu = 7, ϑv = 10 and λ = 1.

The resulting score is slightly higher than the one for the tracker without the use
of ego motion information. This mainly due to the lower number of broken tracks
and less non-tra�c-sign tracks. The result is shown in table 6.15 the row with
the parameter setting 7 for ϑu. The 3887 tracks formed of non sign circles consist
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Figure 6.7: Explanation for the variables used in equation 6.14. Camera at posi-
tion cn with the vector to the sign (xn, yn), camera at position cn+1,
being d metres from cn in the direction αn+1, with the vector to the
sign (xn+1, yn+1)

of 38953 of the non tra�c sign circles, most of the circles belonging to real world
circular objects. 7193 circles were singular objects not connected to tracks.

6.4.3 Three Dimensional Pose Estimation

The three dimensional pose estimation is not only used for the prediction of the
next sign position in the tracking process, but is also important for the validation
of the tra�c sign by checking the plausibility of the size and world position of
the sign relative to the vehicle. The position of the sign is also important for the
determination of the valid velocity on the given lane or road if there are parallel
lanes with di�erent maximum speed allowances.
The �rst experiments for the evaluation of the accuracy of the three dimensional

pose estimation were based on placing four signs in de�ned relative positions, a
rectangle of 10 m length of edge at a height of 2m above ground. The vehicle
was then driven between these signs in di�erent driving manoeuvres. The recon-
struction of the rectangle succeeded with an error of less than ±0.4m in mean
edge length of the rectangle and less than 0.2m in height.
Further test using a ground truth sensor of very high precision performed to

verify the results reached by the usage of the new sensor. The results of the tests
have been published in [Lindner, 2010]. The sensor used is the multi-row laser
scanner from Velodyne ([Glennie and Lichti, 2010]). The scanner has 64 vertical
scan lines and yields 5 pixel per degree, leading to 12.8 degrees opening angle
in vertical direction. The horizontal resolution depend upon the rotation rate of
the scanner. The selected speed of 10 rotations per second leads to a horizontal
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Parameter Symbol Range Step Num. of Tests
Min. horiz. size of pred. area [pix.] ϑu 5-11 2 4
Min. vert. size of pred. area [pix.] ϑv 5-25 5 5
Max. prediction number λ 0-3 1 4

Table 6.14: Parameter ranges to be tested in the optimization of the tracker with
the use of ego motion information. The Range gives the minimum and
maximum value to be checked for this parameter. The Step de�nes
the step width from the minimum value to the maximum value in
the Range. The Num. of Tests is derived by counting how many
steps have to be made from the minimum to the maximum Range.
The number of tests necessary for the complete optimization, 80, is
derived by multiplying the single numbers of tests necessary.

resolution of 5.5 pixels per degree. The distance accuracy is given as 0.02m,
which is adequate for the evaluation of the three dimensional positioning module
having shown the accuracy to be of the order of ≥ 0.2m in the previous tests.
The position of the scanner relative to the camera position was calibrated using
the algorithm presented in [Krueger et al., 2011].
As can be seen in �gure 6.8 the scanner delivers ambiguous data on the retro-

re�ective surface of the tra�c sign. To avoid this problem the position of the sign
was determined by measuring the position of the pole holding the sign and adapt
the vertical position by adding half the diameter of the sign, thus retrieving the
centre position of the sign.
Four values are determined for the evaluation:

� Di�erence between the ground truth longitudinal distance and the measured
distance ∆x = xGT − xM .

� The condition of the determining matrix k as shown in equation 2.25, re-
spectively the inverse k′ = 1/k

� The mean Euclidean distance between the lines of sight from the camera to
the measured three dimensional position of the sign, the residuum ∆d.

� The standard deviation of the measured three dimensional position when
applying noise on the ego motion data and the detected sign positions in
the image σ.

The lateral and vertical errors are dependant of the longitudinal error and smaller
than the ∆x value due to the camera setup and thus not further evaluated.
As shown in �gure 6.9 there are 20 ground truth sequences. In the real world

scenario quite often the tra�c sign track ends before reaching the border of the
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Figure 6.8: Image showing the laser scanner result, depth coded in grey value,
and the according video image of the sign in question. On the left
is the depth image taken by the laser scanner. In the middle is the
zoomed section of the scanner image showing the tra�c sign. On the
right is the according section of the camera image.
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Figure 6.9: The graph shows the ground truth set used for the three dimensional
positioning system. On the left are sketches of the 20 manoeuvres
driven in the ground truth sequences. In the table on the right
are the according sign positions relative to the camera position at
the �rst positive classi�cation of the tra�c sign (X,Y,Z). The labels
straight, left, right and snake are rough categorizations of the tra-
jectories driven, with snake being a curve with a double bend. The
velocity during the manoeuvres is between 25 and 40 km/h and the
direction change during one trajectory is up to ±15degrees. Of each
manoeuvre the last 50 image frames were analysed, resulting in 1000
analysed frames showing 20 tra�c signs. 1306 circles were detected
and tracked belonging to 807 frame sign objects, the additional circle
being the inner contour of the detected signs.
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ϑu [pixel] DT n0 n1 n2 n3 n4

5 0.676 645 4 7 1 3850
7 0.676 646 2 6 2 3887
9 0.677 646 2 6 2 3905
11 0.668 645 1 5 4 3978

Table 6.15: Exemplary table for the optimization results for the tracker with the
use of ego motion information, where the horizontal prediction er-
ror expectancy ϑu was varied, while the parameter for the vertical
prediction error expectancy was set to ϑv = 10 and the number of
detection misses to be accepted was set to λ = 1. The number of
labelled tracks N is 664 tracks belonging to tra�c signs, as shown in
table 6.2. This is a one dimensional view of the results of the grid
search.

image due to occlusions by infrastructure or other tra�c participants. To simulate
this behaviour the results on the ground truth tracks were computed on the full
tracks as well as on truncated tracks, removing the nearest or farthest elements
of the track. Thus the number of evaluated tracks is higher than the number of
ground truth tracks.
To compute the value for σ as introduced in the above list, the computation

of the three dimensional position of the sign is executed for the complete and
the truncated tracks with a Gaussian noise applied on the measuring data of
the signs position in the image, the vehicle yaw rate and velocity. The standard
deviation for the noise on detected position was chosen as 10% of the detected
circle diameter, 10% of the yaw rate and 5% of the velocity.
The mean error over the 8 ground truth sequences where the vehicle was going

straight ahead is ∆x < 0.01m with a standard deviation of 0.20m. The mean
error for all 20 sequences is 0.16m with a standard deviation of 0.32m. The
inverse condition for all the complete tracks is in the order of 10−2 as can be seen
in �gure 6.10.
In �gure 6.11 the connection between the condition and the accuracy of the

three dimensional measurement can be seen. The squares are the median values
of the errors |∆x| and the triangles the 90% quantiles, meaning 90% of the error
values were beneath this value. The line is derived by taking the logarithmic
value of |∆x| and k′ and �tting a straight line into these values. The line is then
transformed back into the linear plot. In the tra�c sign recognition system the
median and the 90% quantile value for a given k′ can be used as expected error
and upper bound error. This correlation between the accuracy of the algorithm
and a value k′ allows the indication of the expected position error for result three
dimensional positioning system for a tra�c sign track without a ground truth
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Figure 6.10: This �gure shows the three dimensional positioning systems error
for each of the 20 manoeuvres of the ground truth set introduced in
�gure 6.9. The value of the longitudinal distance error ∆x of the
measured sign position compared to ground truth position obtained
by the use of the laser scanner is plotted over the inverse condition
of the determining matrix k′, see equation 2.25, for the complete
tracks. k′ gives a rough estimate for the expected accuracy of the
positioning systems result since it measures the circularity of the
problem. The higher the condition k, thus the lower the inverse
k′, the more elliptical the problem, thus the more inaccurate the
result given noisy input data. When for each of the 20 sequences
all detected sign circles are used in the computation the condition is
generally good and the error below 1 metre in longitudinal direction,
which is more than adequate for the tra�c sign recognition systems
requirements.
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sensor being installed.
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Figure 6.11: The value of the absolute longitudinal distance error |∆x| over the
inverse condition of the determining matrix k′ for complete and trun-
cated tracks. The distribution over the condition value k′ shows a
correlation between the distance error and the inverse condition k′,
with k′ being de�ned in equation 2.25 and giving a measure for the
circularity of the problem and thus the expected accuracy of the
result. The twenty tracks recorded with ground truth information
had a mean number of 40 tracked circles. The results when using
the complete tracks are shown in �gure 6.10. When not using all el-
ements of the track, but truncating them by removing the last 1..N
elements shorter tracks with worse condition values were simulated.
As can be seen in the graph the error rises exponentially with ris-
ing condition value k, thus decreasing k′. The black line shows the
median error, the triangles show the 90% quantile.

The correctness and accuracy of the three dimensional positioning algorithm
was proven by the use of the laser scanner sensor. To achieve a fast and inexpen-
sive sample set a second way of evaluating larger sets of sequences was developed.
The application of Gaussian noise on the input data of the algorithm as stated
above could be used to produce a similar behaviour in the standard deviation
of the result over k′ as the absolute longitudinal distance error, showing that
the error model of 10% error on the circle centre positions, relative to the signs
diameter, and yaw rate as well as 5% on the vehicles velocity value are adequate
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assumptions. With these assumptions sequences recorded without the laser scan-
ner can be used to evaluate the accuracy of the sign position and the correlation
of k′ and the expected error, too.

Self Calibration Using the Three Dimensional Positioning System

The camera should have been installed horizontally with the point of expansion
u0, v0 being in the centre of the image and the position relative to the turning
centre of the vehicle according to the Ackermann model lx, ly being known. Of
course these values are not perfect. For re-adjusting these four values in the
system the three dimensional positioning algorithm is used. The vertical position
of the camera relative to the vehicle can not be observed in this system due to
the unknown pitch rate of the vehicle. The self calibration of the system can
be solved by using the mean distance of the lines of sight to the estimated sign
position |∆d|. When the system is perfectly calibrated and all measured input
values for a track are correct all lines will intersect in a point. When the values
for the point of expansion are incorrect the lines will not intersect, but be skewed
and have a distance to the closest point for the signs that grows with the error
of the point of expansion.
For the tracks to be used in the self calibration the resulting position has to

be trustworthy, inducing a high value of k′. Tracks showing a low reliability of
the three dimensional position due to being short or belonging to far o� signs
are not considered. For tracks driven straight ahead, meaning a low yaw rate
(|yaw − rate| < 0.04rad/s) while the sign is detected, the input values for the
three dimensional positioning system are recorded. For the calibration the point
of expansion u0 is varied and the |∆d| is stored for the di�erent values of u0.
This is done for a number of sequences, here for all eight straight tracks. The
mean |∆d| can be plotted over the point of expansion, the minimum showing the
correct value. The plot is shown in �gure 6.13. In addition the curve showing
the mean absolute error over the point of expansion is shown and has the same
minimum, thus proving the algorithm to be viable. The same algorithm is used
for the vertical position of the point of expansion v0.
For the measurement of the longitudinal distance of the camera to the turning

centre of the vehicle (lx), as explained in section 2.5.5, the sequences with a high
mean yaw-rate and a high inverse condition E (k) > 0.1 are used. Once a stable
point of expansion is established by the use of the above algorithm, the value for
lx is computed by varying lx and �nding the point of lowest mean value for the
according residual ∆d. The plot for the determination of lx is shown in �gure
6.14.
The experiments above prove the viability of the three dimensional positioning

algorithm, showing an adequate standard deviation of the absolute error of far
less than 0.5 m in the lateral direction and thus an even smaller error in the
lateral direction due to the geometry of the sensor. The use of the condition
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Figure 6.12: Results when Gaussian noise is added to the input values of circle
centre position, yaw rate and position of the twenty ground truth
tracks. 100 random tests were made and the value of the longitudi-
nal distance standard deviation σ over the inverse condition of the
determining matrix k′ for complete and truncated tracks. Truncated
track means a track of which the last 1..N Elements were removed
to simulate a shorter track and thus a track with worse condition k.
The errors made by varying the input variables of the algorithm pro-
duce a similar error expectancy as shown in �gure 6.11 for the error
of the algorithms measurement result distance against the ground
truth distance. Thus should the camera geometry, like pixel per de-
gree or opening angle, be changed, the distance error measured to
be expected can be predicted without the use of the ground truth
laser scanner.
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Figure 6.13: Determination of the point of expansion via minimization of the
mean ∆d residual value. The optimization curve is the dotted black
line (Distance to ground truth in grey). The �gure shows the validity
of the self calibration algorithm, since the distance error produced
by the three dimensional positioning system is lowest at the point of
the best point of expansion determined by the self calibration.
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Figure 6.14: Determination of the lateral distance from the camera to the vehicle
turning centre lx via minimization of the mean residual ∆d value.
The optimization curve is the dotted black line (Distance to ground
truth in grey). The �gure shows the validity of the self calibration
algorithm, since the distance error produced by the three dimen-
sional positioning system is lowest at the point of the best distance
to the vehicles turning point determined by the self calibration.
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6.4 Tracker

of the determining matrix as parameter indicating the expected error has been
shown. The feasibility of the self calibration of the important parameters for the
three dimensional measurement algorithm has been demonstrated.

The horizontal position of the point of expansion u0 can be measured with an
accuracy of ±5 pixels, the vertical position v0 with an accuracy of ±10 pixels and
the longitudinal distance to the turning centre of the vehicle lx with an accuracy
of ±0.20 m. The lateral position relative to the turning point ly has a very small
in�uence on the distance measurement and is thus not important for the three
dimensional positioning system. The accuracy for ly is very low with ±3 m and
thus far lower than simple visual judgement when installing the camera. The
vertical camera position is not observable with the system at hand.

Results and Use of the Three Dimensional Position

In table 6.16 the typical longitudinal measurement errors for a tra�c sign on rural
roads, meaning a lateral o�set of about 3 meters is shown. Without occlusions
the sign will leave the visible area at about 10 meters longitudinal distance. On
highways the signs have a lateral distance of up to 3 lanes width amounting to
about 12 meters and the sign leaving the image at about 30 meters longitudinal
distance.

Longitudinal distance at last detection [m] 50 40 30 20 10
Longitudinal measurement error [m] > 10 6 2.5 0.8 0.3

Table 6.16: Table for the mean longitudinal measurement error of tracks with a
lateral distance of 3m measured, using a set of 100 sequences specially
recorded and distance measured from this purpose.

The three dimensional position is used for the understanding of the tra�c
scene. In �gure 6.15 an example where the three dimensional positioning system
helps rejecting a sign is shown. The sign showing a 70 is mounted on the back
on a lorry. By producing a very high distance and diameter value as well as a
high residual ∆d value it points to an object that does not �t to the model of
being motionless, besides being in the same scene as two signs having plausible
values for sizes, distances and the residual value ∆d. Especially for signs mounted
on the back of other vehicles and for signs situated on parallel roads the three
dimensional positioning system is valuable for the interpretation of the tra�c
scene.
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Figure 6.15: Example where the three dimensional position of the signs helps to
reject a 70km/h sign attached to the back of a lorry. The values in
the table are the measured relative position to the sign when �rst
detected (X,Y), the measured diameter (�), the inverse condition
of the track (k') and the mean distance of the lines of sight to the
measured sign position (|∆d|). Due to the very high computed sign
diameter and the comparatively high |∆d| value the 70 km/h sign is
rejected.
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6.5 Over all Performance of the Detector and Tracker

6.4.4 Summary of the Three Dimensional Positioning Systems

Evaluation

The three dimensional positioning algorithm has su�cient accuracy for recon-
structing a tra�c sign scene on a strip of road, allowing the assessment of the
currently valid speed limit. It also allows the rejection of most signs mounted on
the back of lorries. In addition it can be used for self calibration of the parame-
ters necessary for its operation like position of the camera relative to the vehicle
turning centre and its rotation relative to the longitudinal axis of the vehicle.

6.5 Over all Performance of the Detector and Tracker

In this section statistics of the detector and tracker are presented. The table 6.17
shows the selection capabilities of the detector and tracker necessary for the tra�c
sign recognition system. The sequence is the same used for the tracker veri�cation
evaluation, see section 5.4.

Number of Mean number of image
image objects objects per frame

Possible circle objects 4.10 · 1011 4.49 · 106

Detected coarse circles 483229 5.31
Veri�ed circles 59227 0.64
Tracks of circles 4533 0.05
Non sign circles tracked 38953 0.43
Tra�c sign cir. tracked 13081 0.14
Veri�ed circles not tracked 7193 0.08

Table 6.17: Table showing the reduction of sign candidates from the possible cir-
cle objects in the recorded frames to the number of tracks further
inspected by the classi�er. The number of tracked circles shows the
processing load on the tra�c sign classi�er system. The base set con-
sists of 91146 frames showing 13487 tra�c sign circles in 664 tra�c
sign tracks. The left column showing the sum of objects in all frames,
thus the number in the right column multiplied by the number of
frames. The number of possible circle objects equals the number of
tests necessary if a brute force correlation for circular shapes was used
for the radius values from 15 to 59 for every second image pixel, thus
the proposed coarse detector reduces the number by roughly 6 orders
of magnitude and the veri�cation by another order of magnitude, thus
reducing the computational load for the classi�cation process to three
non-sign circle objects for every sign circle object.

123
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Tra�c signs rel. Non sign tracks rel. to signs
Tracked 646 97.3 % 3887 585.4 %
Mean track length 20.2 100.0 % 10.0 49.5 %

Table 6.18: Table showing the tracking results of sign and non sign objects side
by side in absolute and relative values. The number of all sign tracks
is 664, the evaluation set is given in table 6.2.

From the 664 real world tra�c signs 646 (97.3%) were detected, tracked and
handed for recognition to the classi�cation system. The remaining 2.7% were
not detected or detected just once and thus not tracked. The tracker did not
loose any sign object of which at least two circles were detected. From the 59277
veri�ed circles 7193 were singular objects not building a track, since no continuing
circle object could be found in the following frames. The mean number of circle
objects in tracks not belonging to a tra�c sign is 10.0, while the mean number
in a track formed by a tra�c sign object is 20.2 circle objects.

The two tables 6.17 and 6.18 show that over 97% of the tra�c signs are detected
and tracked. The numbers also show, that even with the huge reduction of
possible circles in the images possibly showing tra�c signs by a factor of about
107, the main workload for the following classi�cation system consists of cutouts
and tracks not belonging to tra�c signs. This means six times more tracks
detected belong to non-sign objects than to tra�c sign tracks. For the cutouts
the relative workload is only three to one higher for non-sign objects since the
tracks of tra�c signs are twice as long as the ones belonging to non-sign objects
in the mean.

6.6 Classi�er

In the following the experiments and evaluations concerning the classi�er are
elaborated. The �rst step in the classi�cation process is the normalization of the
cutouts, meaning the extracted raster image regions, see section 2.6.1. Then the
performance of the Stage I classi�er and the Stage II classi�ers, as explained in
section 2.6.2, are presented. Then the combination of the classi�cation results
gained from the single cutouts to the result for a complete track are evaluated.
The following sections show the results on the e�orts to internationalize the

tra�c sign recognition system. Parts of this system being the creation of syn-
thetic classi�cation samples as explained in section 4.2.2 and the combination of
classi�ers and their assignment to di�erent country classi�ers.
The �nal part of the experiments on the classi�cation system is the presentation

of the over all systems classi�cation results.
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6.6 Classi�er

6.6.1 Normalization

The normalization algorithm was optimized with the goal of producing images
of a uniform size and brightness of the cutouts, thus simplifying the classi�cation
task. For the evaluation of the quality of the normalization process the �rst step
was the readability for a human observer.
When the size of the output image is too small, even a human is no longer able

to classify the depicted sign. Should the size be chosen too large, the computation
time and requirements for the number of necessary training samples rise. The
minimum size where humans were able to decipher the numbers on the speed
limits was 15 pixels diameter, thus this was used as the minimum size reviewed.
For signs with a diameter of 19 pixels the number of necessary parameters for
the PCA is already 60% higher than for 15 pixels, thus this size was selected as
maximum size to be reviewed. By the use of exemplary classi�ers the �nal size
was set to 17 pixels diameter since it produced a better recognition rate than the
classi�er for 15 pixel diameter while being close to equal to the 19 pixel diameter
classi�ers and less computational intensive.
The second part of the normalization process has to remove the di�erences in

appearance introduced by di�erent lighting conditions and has to remove even-
tual sensor artefacts, like those introduced by the Bayer-Pattern, as shown in
section A.6. Since the classi�er should be usable for di�erent types of cameras
and to allow the use of synthetic samples as introduced in section 4.2.2 for clas-
si�er training, the goal is to reach as uniform as possible an appearance of the
normalized cutout, as independent as possible of the sensor or lighting.
The approach for optimizing the normalization is as follows. Using di�erent

types of cameras, e.g. high dynamic range CMOS, CCD, Webcam, mobile phone
cameras images from di�erent distances from a tra�c sign, thus di�erent sizes in
the image, were taken under di�erent lighting conditions. The tra�c sign cutouts
were extracted and di�erent normalization algorithms and parameter settings
were tried. To evaluate the e�ectiveness of the used algorithm the resulting
normalized cutouts were correlated with the size normalized image of an ideal
tra�c sign pattern digitized from the rule book. The signs from the rule book
are ideal patterns drawn in a vector graphics program using the font and relative
sizes as described in the rule book and rechecking against scanned images from the
book itself and re�ning the vector graphic if necessary. The higher the correlation
coe�cient of the normalized images of real world signs against the rastered vector,
the better the normalization scheme was rated. The algorithm performing best
is explained in section 2.6.1.

6.6.2 Single Pattern Classi�er

The single pattern classi�er consists, as described in section 2.6, of a pattern
cluster classi�er (stage I, see �gure 2.13) and a pictogram classi�er layer consisting
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of six sub classi�ers in the stage II. In both stages the classi�ers are pairs of a
principal component analyses and a following polynomial classi�er, adapted in
the mean square sense, of the second degree on the dimensionally reduced feature
space. Thus for one complete set of classi�ers seven principal component analyses
and seven polynomial classi�ers have to be trained.

Principal Component Analysis

The free parameter to be adapted in the principal component analysis is the
number of output dimensions M . For the determination of the number of output
dimensions in the principal component analysis, the number necessary for a mean
reconstruction error R

2 ≈ 0.1 (10%) is selected as stated in section 4.1.1. The
result for one of the stage II classi�ers, see �gure 2.13, is shown in �gure 6.16.
The synthetic signs, see section 4.2.2, are reconstructed less adequate than the
real cutouts in the test sample set. The mean error for all speed limit classes for
M = 48 is close to the target value of 10%.

Stage I Containing the Cluster Classi�er

In �gure 6.17 the rejection capabilities of the stage I classi�er are presented.
The stage I classi�er has two main tasks. The �rst is to reject the bulk of the
garbage patterns presented to the classi�er. The second task is the distribution
of the presented cutout samples to the speci�c stage II sub classi�er. The six,
see �gure 2.13, di�erent appearance types are called cluster of sign types. Due
to this separation capabilitiy the stage I classi�er is further on also called Cluster
Classi�er.
The rejection capabilities are shown in table 6.19. Of the 968 515 garbage

patterns 150 110 and thus just 15.5% are not rejected and thus are passed to the
stage II classi�er as false positives. The distribution of the remaining garbage
patterns on the stage II classi�ers is shown in table 6.19. The table shows that
the number of garbage signs accepted as inner part of a tra�c sign, meaning
the digit pattern of a speed limit without the red rim, is two to three times
higher than the number of patterns accepted as end of limit or an outer coutout
including the red ring. This behaviour is due to end and outer signs having the
clear rejection features of the diagonal stripe or the broad outer ring respectively.
The inner cutouts have just the digit patterns which are di�erent for all the 15
subclasses to be separated by the inner classi�ers, these being the digits 10 to
130 plus the two types of non overtaking signs.
Even after the rejection of roughly �ve sixths of the garbage patterns the rate

of garbage patterns presented to the respective stage II classi�er is high. Still
one quarter of the patterns are garbage patterns. For active end of speed limits
the rate is even 45%, due to the low a priori probability of those type of signs.
The tra�c sign patterns are accepted with probability of 90%. There are
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Figure 6.16: Exemplary mean reconstruction error R
2

M , with M = 48, as ex-
plained in equation 4.9 over a sample set. The test sample set in
this example is the set for testing the pictogram classi�er for the
inner circles of passive speed limits in Germany, see table 6.4. The
results for training the PCA with 1000 samples of synthetic signs are
shown as dotted line, the curve for training the PCA with the real
cutouts from table 6.4 is the solid line. The x-axis is labelled with
the classes of the reconstructed samples, see HAV labels in section
A.1. It can be seen, that the target of 10% reconstruction error R

2

M

is nearly reached for the real signs and slightly worse reconstruction
occurs when training with synthetic signs only.
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Figure 6.17: Rejection capability of the stage I classi�er applied on garbage sam-
ples. Green shows the patterns classi�ed as garbage, blue are the
number of false positives handed over to the stage II. The high num-
ber of samples for the largest diameter of circles 59 derives from even
larger circles, diameters up to 63 pixels, being detected and obtain-
ing the largest detection diameter. The classi�er is the PCA/PC
combination explained in section 2.6.2, the training and testing set
are given in table 6.3
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extremely few, less than 0.01%, errors in the assignment between active and pas-
sive or speed limit or end of limit. Those errors occur only in cases of inaccurate
detections of the signs centre position or occlusions on the signs surface. The dif-
ferentiation between inner and outer speed limit cutouts is di�cult to evaluate.
The transition between a circle still being labelled as inner and a circle deemed
to be outer is �uent and thus the decision for either inner or outer is not counted
as an error at this point of the algorithm.

Active Passive all
False Positive Res. End Inner Outer End Inner Outer 968515
Num. of elements 11382 30644 10793 16567 56785 23939 150110

Fpos/sign sample 0.442 0.344 0.180 0.328 0.232 0.126 0.227

Table 6.19: Table showing the distribution of the false positives, meaning garbage
patterns being classi�ed as sign candidates, on the stage II classi�ers.
The second row shows the relation of garbage patterns to sign pat-
terns at the input of the stage II classi�ers. The majority of the
968515 garbage patterns classi�ed was classi�ed as garbage or re-
jected, thus 818504 or 84.5%. These rejected patterns are not part
of the above table. The classi�er used is the PCA/PC combination
explained in section 2.6.2, the training and testing set are given in
table 6.3

Stage II Containing the Pictogram Classi�er

In this stage of the single pattern classi�er, the decision for the valid speed limit
or end of speed limit is realized. The stage II classi�er is further on also called
pictogram classi�er. This stage consists of six classi�ers, each consisting of a
coupled pair of a principal component analysis and a polynomial classi�er. The
six types are the three types end of limit, inner and outer speed limit for both
active and passive signs, see �gure 1.2. Inner and outer refer to the to the two
concentric circles of a peed limits rim. The classi�cation results for the German
classi�er set applied on the German sign patterns are shown in table 6.20 and
depicted in the �gures 6.18 and 6.19 in di�erent views of the results.
The table 6.20 shows that the precision, meaning the probability of not rejected

classi�cation results being correct, is higher than 90% for all six subclasses, see
�gure 2.13. The number of tra�c sign cutouts being classi�ed correctly is higher
than 85% for all subclasses. The outer cutouts of active signs show comparatively
high rejection rates, especially in small cutouts, see �gure 6.19(c). This is due to
the blurring of the digits in the image and thus the lessened discriminability of
the di�erent sign classes. The high rejection rate for passive end of limit signs
derives from the comparatively high a priori probability of a pattern presented
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to this classi�er being a garbage cutout. Since a typical tra�c sign track consists
of about 20 cutouts as shown in section 6.18 this classi�cation result for single
patterns allows for an even better classi�cation rate when the whole track is used
as decision base for the type of tra�c sign encountered as is shown in the following
section 6.6.3.

Active Passive all
End Inner Outer End Inner Outer

Correctly class. 13701 54884 43561 31043 183361 157005 483555
Rejected signs 574 2787 3555 1662 2206 4938 15722
Misclassi�ed 122 771 2132 1286 2935 4714 11960
False Positives 668 2286 992 1887 8133 3625 17591

Correctly class. 0.909 0.904 0.867 0.865 0.932 0.922 0.914
Rejected signs 0.038 0.046 0.071 0.046 0.011 0.029 0.030
Misclassi�ed 0.008 0.013 0.042 0.036 0.015 0.028 0.023
False Positive 0.044 0.038 0.020 0.053 0.041 0.021 0.033

Precision 0.945 0.947 0.933 0.907 0.943 0.950 0.942

Table 6.20: Result table of the German stage II classi�ers. First part the sample
numbers, second part the relative numbers. The column all shows the
accumulated result for all classes. The third part shows the precision
of the results computed by dividing the number of correct classi�-
cations by the number of samples not being rejected, thus the relia-
bility of the result. The classi�er used is the PCA/PC combination
explained in section 2.6.2, the training and testing set are given in
table 6.4

6.6.3 Track Classi�er

For the classi�cation of a real world tra�c sign the results of the single pattern
classi�er belonging to the track have to be combined to a �nal decision. For
this objective the results of the single pattern classi�er are added to a weighted
sum. The weights are chosen according to the precision, thus the reliability, of
the classi�cation result in relation to the signs diameter in the respective cutout.
These precisions or reliabilities can be derived from the values in the six sub
�gures in 6.19 by dividing the number of correctly classi�ed samples by the sum
of all samples not being rejected. The results for cutouts being rejected via the
RAD criterion, see equation 4.17, are not accumulated in the weighted sum,
since they are not trustworthy. The polynomial output values are truncated to
the values between 0 and 1. After the cropping the values are weighted with
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Figure 6.18: Figures showing the performance of the German stage II classi�ers.
The bright green on the bottom of the columns denoting the cor-
rectly classi�ed samples, dark green, second from the bottom, the
rejected samples, the magenta showing the misclassi�cations (con-
fusion between two classes) and blue on top the false positives. On
top showing the absolute numbers, the lower graph the relative per-
centages. The seemingly di�erent percentages derive from the lower
graphic starting at 85% level for visibility purposes. The classi�er
used is the PCA/PC combination explained in section 2.6.2, the
training and testing set are given in table 6.4
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Figure 6.19: Figures showing the performance of the German stage II classi�ers.
The bright green on the bottom of the columns denoting the cor-
rectly classi�ed samples, dark green, second from the bottom, the
rejected samples, the magenta showing the misclassi�cations (con-
fusion between two classes) and blue on top the false positives. The
classi�er used is the PCA/PC combination explained in section 2.6.2,
the training and testing set are given in table 6.4

132



6.7 Classi�er Internationalization

the determined precision value according to the size of the cutout and then the
values added to a class wise result histogram. The results of inner and outer
speed limits are accumulated in the same class slots in the histogram. When the
track is completed the histogram with one entry per tra�c sign class is analysed.
The entry with the highest resulting value is selected as the winning class. For
this result to be accepted the value in the histogram has to exceed an absolute and
a relative threshold. The relative value is computed by dividing the histogram
value for the winning class by the sum of all histogram entries, see equation 6.15.

h : Histogram of the accumulated classifier output neurons for all classes.
vabs, vrel : Result values to be matched against a decision threshold.

vabs = hwinner

vrel = vabs/
∑NumClasses

1 hi
accept if

{
vabs > ρ
vrel > ϑ

(6.15)
The criterion validating the minimum absolute histogram value is used to reject

results from very short tracks, since without this threshold a single accepted result
for a cutout could result in a positive track result. Since the precision of the
classi�ers lies between 90% and 95%, see table 6.20, this would unduly increase
the number of false positive track results. The thresholds ρ and ϑ were adapted
using the above sample set.

Absolute track classi�er threshold ρ 1.10
Relative track classi�er threshold ϑ 0.70

Table 6.21: Thresholds for the track classi�er.

6.6.4 Summary of the Classi�er Evaluation

The classi�er for single cutouts as described in section 2.6 consists of a hierar-
chical two stage approach each stage consisting of principal component analysis
/ polynomial classi�er pairs on normalized grey value pixel features. The results
as shown in table 6.20 show the high classi�cation performance of the algorithm.
The precision being over 95% for most classes and the recall being above 90%.
The usually high number of single cutout elements in one track belonging to a
real world tra�c sign lead to even better classi�cation results.

6.7 Classi�er Internationalization

One of the main purposes of this thesis is the development and demonstration of
ways to adapt a complex classi�cation system to the variations encountered when
the system is used in di�ering environments from the one it was �rst developed
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in. In the case of the tra�c sign recognition system this means generalizing the
classi�cation system from a purely German tra�c sign classi�cation system to a
system operating in a variety of countries. The algorithms used to approach this
challenge are explained in section 4.2. The results of the experiments performed
on these algorithms are presented in the following sections. The �rst section
6.7.1 shown the advanced generation of samples for countries for which no or
insu�cient training sets exist for training a classi�er. The next section 6.7.2
shows the results of the attempt to automatically label samples by observing the
reaction of the driver on the tra�c signs. The third section concerned with the
internationalization task 6.7.3 shows the results of the algorithm determining the
necessary number and composition of classi�ers to cover the classi�cation task
in ten European countries with adequate performance. The fourth section 6.7.4
shows the resulting performance of the tra�c sign classi�er in several European
countries.

6.7.1 Synthetic Generated Sign Samples

The introduction of synthetic signs is necessary to allow the start of a bootstrap-
ping process for classi�ers for a country, class or appearance type of signs, where
no su�cient number of samples have been recorded. The process of creating a
sample set consisting of synthetic signs begins with the learning of the transforma-
tion parameters to be used to transform an ideal sign candidate into realistically
modulated cutouts. These transformation parameters have to be learned only
once, since they represent the transformations undergone by the images of real
world signs when recorded by the camera system from a moving vehicle. The
distributions of parameters are stored as histograms of quantized transformation
parameters, where the magnitudes of the histogram entries indicate the proba-
bility for the respective histogram slot. When the distribution of transformation
parameters is learned, large numbers of synthetic signs can be produced by draw-
ing parameter sets from the probability distributions learned and modifying the
ideal sample cutout accordingly. The ideal sample images are drawn in a vector
graphics program using, if possible, the font and relative sizes as described in the
rule book and rechecking against scanned images from the book itself or pictures
taken of the signs and re�ning the vector graphic if necessary. The algorithm was
presented in [Hoessler et al., 2007].
In this section the validation of the parameter learning and the results of the

transformation parameter learning is explained. In addition the superiority of the
presented algorithm compared to the conventional random choice of transforma-
tion parameters is shown. The transformations consist of a geometric part, the
rotation of the pattern in the image plane, the translation horizontally and ver-
tically and the scaling horizontally and vertically. As well as the transformations
consist of a photometric parameter part, the brightness representing the mean
grey value and the gain representing the contrast. The parameters are explained
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tV

SVSU

tU

Figure 6.20: Distributions of the transformation parameters for the synthetic sign
types 274-56 (black) and 274-58 (white). As shown by a Kolmogorov
Smirnov test both distributions are similar. This shows the correct-
ness of the assumption of the generalizability of the transformation
for di�erent sign classes and thus allows the use of the parameter
sets for the creation of sample sets for newly encountered sign types
and appearance types of tra�c signs. The transformation param-
eters are α the centred rotation of the image in the image plane.
tu, tv are the translations in u and v direction, su, sv, are the scaling
values, a is the mean brightness and b the gain, see section 4.2.2.
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at length in section 4.2.2.

In �gure 6.20 the trained distributions of transformation parameters for the
signs speed limit 60 (274-56) and speed limit 80 (274-58) are shown. The dis-
tributions are derived by learning the transformations of 5489 samples of class
274-56 and 4277 samples of type 274-58 taken from the stage II pictogram clas-
si�ers training set. The alikeness of the distributions for the two classes has been
tested with a Kolmogorov Smirnov test. The test revealed the distributions to
be similar with a probability of 60% to 84%. This shows that the distribution
of the transformation parameters is independant from the class of the sign and
thus signs of other classes and appearance types can be created using the distri-
butions of parameters gained by computing the parameters for just one class and
appearance type. Using the Kolmogorov Smirnov test it can also be shown with
a probability of over 90% that the distributions are not Gaussian.

Using correlation tests on the parameter histograms plotted in �gure 6.20 yields
the result that the two scaling parameters are interdependent as well as the pa-
rameters for brightness and gain. The other parameters yield correlation values
of less than 0.01 and are thus considered independent. These dependencies have
to be regarded when randomly drawing a parameter set from the learned distri-
butions, see [Hoessler et al., 2007].

As a test proving the advantages of the new algorithm for creating synthetic
samples three classi�ers of stage II in the tra�c sign classi�er hierarchy are trained
twice. The ideal samples are of the type most frequently used in Germany. The
test set is German as well.

For the �rst set of three classi�ers 1000 samples were created from one ideal
sample per class, drawing the transformation parameters from a uniform distribu-
tion between the minimum and the maximum values of the distributions learned
by the use of the new algorithm. The correlations between the scaling factors
and the brightness and gain parameters was respected as well. The classi�cation
results are shown in table 6.22.

For the training of the second set of three classi�ers 1000 samples per class are
created using the proposed algorithm. The result is displayed in table 6.23.

The classi�ers trained with the samples created using the new algorithm show
a much better performance. The rejection rate for both sets of classi�ers is com-
paratively high. This is due to some older types of German signs not being
covered by the use of just one ideal sample. For a better performance of the
classi�ers further templates for ideal samples should be added to allow for dif-
ferent appearance types of German tra�c signs. For the comparison of the two
types of sample generation this �rst step is su�cient. The classi�ers trained with
the bene�t of the use of the new algorithm especially exceed the others in the
numbers of false positives occurring and thus have a much higher precision, thus
proving the superiority of the newly developed scheme.
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Univariate Distr. Correct Rejected Misclass. False Pos. Precision
Passive End 17292 14273 2426 2405
Passive Inner 136933 46456 82997 3499
Passive Outer 80130 82997 3530 2008

Passive End 50.9% 42.0% 7.1% 15.7% 78.2%
Passive Inner 72.6% 24.6% 2.7% 10.3% 94.1%
Passive Outer 48.1% 49.8% 2.1% 9.8% 93.5%

Table 6.22: Table showing the results for three stage II polynomial classi�ers, as
explained in section 2.6, trained with samples generated from a thou-
sand samples per class, generated from one ideal sample per class
and transformed using the equations 4.18, 4.20 and parameters drawn
from an uniform distribution between the minimum and maximum
value of the distributions in �gure 6.20 tested on real German sam-
ples. Table 6.4 shows the composition of the testing set.

6.7.2 Sample collection by use of the driver behaviour

This section shows the results of the experiments performed on the sample gener-
ation from driver behaviour. The idea behind this scheme is to use an imperfect
classi�er and the driver behaviour to generate preliminary labels for sign detected
and classi�ed with a high uncertainty. For example if the classi�cation system
detects a tra�c sign, veri�es the existence of the sign like real world object via
three dimensional measuring size and position and the stage I classi�er accepts
the tracked patterns as possibly being tra�c signs, this object is more likely than
not a tra�c sign. This is true, even if the stage II classi�er is not able to discern
the exact type of sign encountered. Currently the images showing these objects
are recorded and the tracks of the objects in the image are presented to a human
labeller to decide to which class the track of samples belongs. The new algorithm
supports the labeller or even labels the samples autonomously by evaluating the
behaviour of the driver while passing the sign, see section 4.2.3.
The �gures in 6.21 show the allowed maximum speed over the velocity of the

vehicle. The upper �gure shows a swift driver in dense tra�c, while the lower
�gure shows a moderately travelling driver in light tra�c. The swift driver moves
long parts of the route unin�uenced by the speed limits, sometimes the driver
exceeds the allowed maximum speed by up to 80 km/h. The moderate driver
abides to the speed limits most of the time and, if not, exceeds the limit by
no more than 20 km/h. The second information necessary for autonomously
labelling a tra�c sign is the advance or delay time or distance with which the
driver reacts to a change in the allowed maximum speed. This number is highly
variable. The reaction occurs from 50 meters before the sign to up to 500 meters
after the limiting sign. This is true for both types of drivers. Especially a very
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Figure 6.21: Both �gures above show the allowed maximum speed over the ve-
locity of the vehicle. The upper �gure shows a sequence driven in
partly heavy tra�c by a speeding driver, who drives 40% of the time
faster than the allowed speed limit. The lower �gure shows the ve-
locity of a driver keeping the speed limits in over 90% of the time
and not speeding over 20 km/h over the allowed limit at any time.
The data is sampled once a second, the higher the density of crosses,
the more often the car was driving this speed. The black bar marks
the mandatory speed.
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Proposed Algo. Correct Rejected Misclass. False Pos. Precision
Passive End 17890 14878 1223 683
Passive Inner 149762 36162 2578 1508
Passive Outer 102865 60102 3690 1009

Passive End 52.6% 43.8% 3.6% 4.5% 90.4%
Passive Inner 79.4% 19.2% 1.4% 4.4% 97.3%
Passive Outer 61.7% 36.1% 2.2% 4.9% 95.6%

Table 6.23: Table showing the results for three stage II polynomial classi�ers,
as explained in section 2.6, trained with samples generated from a
thousand samples per class, generated from one ideal sample per class
and transformed using the equations 4.18, 4.20 and parameters drawn
from the distributions shown in �gure 6.20 tested on real German
samples. The number of false positives being more than halved and
the precision being enhanced compared to the classi�er trained using
samples generated without the use of the new algorithm, see table
6.22. Table 6.4 shows the composition of the testing set, the same set
was used fro the data in table 6.22.

delayed reaction makes the assignment of the reaction to a sign di�cult, since
sometimes the reaction takes place after the encounter of the next sign showing
the same or a di�erent limit.
The �gures show that the type of driver has a strong in�uence on his behaviour

when a speed limit is encountered. The second factor is the tra�c density. In
dense tra�c the driver most of the time is reacting on the behaviour of other
tra�c participants and not on speed limits.
The samples extracted by the use of this scheme were only 10% correct, even

when respecting the mean reaction time and mean speeding o�set of the respective
driver. The unknown tra�c density and high error rate made the yield of this
scheme too meagre to be followed further without additional sensors or algorithms
giving additional information on the driving situation like leading vehicles or
weather conditions in�uencing the driver.

6.7.3 Management of Multiple Sub-Classi�ers for Internationalization

The results presented in this section were published in the diploma thesis of Mr
Denis Koch [Koch, 2007]. As explained in section 4.4 instead of adapting one
classi�er per country in which the system should be operable, the training sets
of countries having signs with similar appearances are joined and the generated
classi�ers be used in all of these countries.
The evaluation was made for ten European countries, see A.1. The number of

countries was chosen for being large enough for a meaningful evaluation while
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being manageable from the number of samples to be accumulated and labelled.
For the creation of the classi�ers for the ten European countries, the �rst step is
to determine the classi�ers for which countries can be combined and what the
loss of classi�cation capabilities is. For ten countries one could argue to keep
ten classi�er sets for maximum classi�cation capabilities, When expanding the
number of countries, for instance to the 27 states in the European Union or the
46 European states, this leads to a very high number of classi�ers and memory
use. Thus a balance between reduction of the number of classi�ers and loss of
classi�er performance has to be found.
To �nd the best classi�er setup, all possible combinations of samples from

di�erent countries were tried for training classi�er sets. The evaluation results
were compared, see �gures 6.22. There are only nine �gures since there were only
few samples recorded in Luxembourg and those are very similar to signs from
France. Thus the combination of French and was prede�ned. The combination
of samples from countries having similar appearances leads to better classi�cation
results than when samples from countries with very di�erent appearances were
mixed. For the example of Belgian samples the classi�cation results when mixing
in the samples from all countries in the training process yields better results
than mixing just two very di�erent ones, here Belgian and Swiss. The solution
of having one dedicated classi�er set per country performs best, as was to be
expected. When adding samples from other countries to the training set the
error rate rises, depending on the compatibility of the two countries sets.
As an example the curve where the German test set (DE) was used is examined.

When using samples from three di�erent countries the error rate, meaning 1 −
precision can be as low as 1% or as high a 2.5% for a unfavourable choice of
countries used for samples in the trainig set. In the nine �gures by means of the
choice of the acceptable error rate the minimum number of necessary classi�ers
can be determined.
In �gure 6.23 the result for passive limits is displayed. There are two possible

proceedings. Either the maximum error is given and the minimum number of
necessary classi�ers in the set is determined, or the maximum number of classi-
�er sets is given and the best possible error rate is searched for. For example at
a maximum allowed error rate of 2.5% per country three classi�ers are necessary.
The combination of samples in the training sets is as follows: BE,DK,FR,IT
/ AT,CH,DE / NL,ES. Should we accept an error rate of 4% per country
two classi�ers su�ce and are composed of samples from BE,DK,ES,FR,NL and
AT,CH,DE,IT respectively.
Reviewing the over all result of the system given the precision values reachable

with the di�erent combinations of classi�ers the classi�er sets were composed as
shown in table 6.24. The active signs are very similar in the di�erent countries,
so only one classi�er for the whole of the ten countries was created. For the
passive signs the combinations shown in the table 6.24 are used. The precision
for the selected combinations for passive limits shows a slightly higher error rate
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Figure 6.22: The nine �gures show the error rate for samples from a given country
when the classi�er is generated from the samples from N di�erent
countries. On top of each graph is the country of origin of the test
set. The ordinate of each graph shows the error rate, 1− precision.
The abscissa shows the number of country sample sets that were
used in the training of the classi�ers. The classi�cation results for
the di�erent training set combinations are shown as blue crosses
and the enveloping curve showing the best and worst combinations
in red. The lowest error rate is measured when the training set
consists of samples of the country only of which the test set is used,
thus number of countries 1, as was to be expected. The classi�cation
algorithm is the PCA/PC pair explained in section 2.6.2, the training
and testing set is shown in section A.8. For further explanations see
section 6.7.3.
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Figure 6.23: The �gure shows the mean error rate, 1 − precision, over all sam-
ples from all countries given a maximum number of classi�ers used,
see section 2.6.2. The classi�cation algorithm is the PCA/PC pair
explained in section 2.6.2, the training and testing set is shown in
section A.8. For further explanations see section 6.7.3. The classi�-
cation results for di�erent combinations of country sample sets used
in the generation of the classi�ers are shown as blue crosses. The
enveloping curve shows the best and worst combinations in red. By
using this �gure the number of classi�ers necessary to stay below a
maximum error can be determined, as well as the minimum error
rate reachable for a given number of classi�ers. The countries writ-
ten at the best performance line show the combinations necessary to
reach this lowest error rate.
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than the best combination for maximum three classi�ers, but the rejection rate
is considerably lower, thus the recall is higher for the selected combination of
countries. The passive end of limits have the particularity, that the Italian signs
have a nearly vertical stripe instead of the approximately 45◦ stripe in the other
nine European countries regarded, thus the classi�er for Italian end of limit signs
was trained with samples from Italy alone, see �gure 1.7.

Stage II Classi�er Classi�er I Class. II Class. III
Act. End/Inn./Out. All
Passive End AT BE DK FR(LU) ES NL IT CH DE
Passive Inner AT FR(LU) ES IT NL BE DK CH DE
Passive Outer AT FR(LU) ES IT NL BE DK CH DE

Table 6.24: Table showing the �nal composition for the stage II classi�ers, see
�gure 2.13. Here three classi�ers are trained for the ten European
countries considered. The samples for training were taken from the
corresponding countries sample sets.
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6.7.4 Results of the complete classi�cation system

This section presents the results of the classi�cation process on the base of tra�c
sign tracks for the ten selected European countries on the base of the classi�ers
trained with the sample combinations presented in table 6.24. The results are
shown in table 6.25. The precision of the classi�er is well above 90% for all
countries in the set. The recall, with the exception of Luxembourg, is 85% or
higher. The signs in Luxembourg are a very special case, since in the already
small country only very few samples could be gathered for a meaningful sample
set. In addition only about 80% of the signs in Luxembourg are of the French
type. Close to the borders of Belgium or Germany sign appearances resemble the
ones of the respective country so that the switching of classi�er to the one used
in France fails for these signs.
Many of the errors of the classi�er derive from systematic errors. The most

prominent of these errors is called on Vehicle and describes the maximum speed
allowances of lorries that are mounted on the back of the vehicles. These signs
are comparatively small and thus often not detected by the system, but they
look exactly like tra�c signs and are thus, when detected, often classi�ed as false
positive tra�c signs.
To reduce the impact of these systematic errors the three dimensional position-

ing system is used. As shown in section 6.4.3 the characteristics of signs mounted
on moving vehicles can be separated from signs mounted at the side of the road.
This can be done via rejecting signs if the measured real world size is higher or
lower than the sizes of signs installed in the given country according to the rule
books. Another feature allowing the rejection of signs mounted on a lorry is the
value of ∆d, as explained in section 6.4.3. This residuum value is close to zero if
the algorithm succeeded. If this value is high this means that the condition that
the object tracked, here the sign, was not moving is broken. This is the case for
signs on Vehicle, thus a high ∆d is used as a rejection criterion.
Some systematic errors are country speci�c. One example is the class of min-

imum speed sign and the exit signs in Germany as explained in section 2.8.2.
These signs look exactly like speed limits with only the colours di�ering. These
signs have a white rim, blue inlay and white digits. In the grey value image used
these signs are very hard to separate from the active signs, especially after the
brightness normalization explained in section 2.6.1, as shown in �gure 2.18. To
reduce the number of errors introduced by these signs an additional algorithm is
run on the un-normalized cutouts of tracks classi�ed as active speed limits. The
results of the algorithm are explained in section 6.9.
By the use of the three dimensional positioning system for the rejection of signs

being n vehicle the number of false positives could be reduced by about 82%. In
Germany the additional use of the rejection algorithm for minimum speed and
exit signs together reduced the number of false positives by 88%. Of course
the additional rejection steps themselves have false positives, thus rejecting some
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CC FC MC FP Rej. Miss CC % FP % Prc.% Rec.%

AT 6159 35 73 377 632 100 97.73 5.98 92.70 88.00

BE 1889 6 25 116 218 12 98.08 6.02 92.78 87.86

CH 2910 6 23 100 379 20 98.81 3.40 95.76 87.18

DE 69408 537 422 4971 4948 1376 97.89 7.01 92.13 90.50

DK 1125 3 8 32 62 0 98.77 2.81 96.32 93.91

ES 10655 79 170 320 1228 135 97.01 2.91 94.93 86.86

FR 6897 39 67 511 505 110 97.94 7.26 91.79 90.54

IT 10847 197 98 689 1041 251 95.66 6.08 91.68 87.24

LU 562 0 3 12 133 13 99.47 2.12 97.40 79.04

NL 3926 21 52 156 486 53 97.66 3.88 94.49 86.51

All 114378 923 941 7284 9632 2070 97.62 6.22 92.59 89.40

Table 6.25: Table showing the results of the detection and classi�cation system
based on single real world signs. The column labels are as follows:
CC: correctly classi�ed / FC: false category in stage I, mostly ac-
tive signs rejected as directional arrow / MC: misclassi�ed, mean-
ing wrong speed / FP: false positive / Rej: detected, but rejected
sign / Miss: sign not detected / CC%: CC/(CC+FC+MC) / FP%:
FP//(CC+FC+MC) / Prc: Precision CC/(CC+FC+MC+FP) /
Rec.: Recall CC/(CC+RC+MC+Rej+Miss). The classi�ers used
were trained with samples assembled as shown in table 6.24, thus
only three classi�ers per passive pictogram type (end, inner, outer)
were used and one per active type. The samples themselves were
composed as given in table 6.5. The classi�cation scheme is the hier-
archical PCA/PC algorithm explained in chapter 2.6

valid signs as well. This leads to the number of correctly classi�ed signs to be
sinking by 0.7%, 0.8% in Germany, and the number of rejected signs rising by
the same amount of signs. The results are displayed in table 6.26.

6.7.5 Summary of the Internationalized Classi�cation System

The results in table 6.26 show that a very high precision of well over 97% is
reached for the over all detection and classi�cation system, thus the number of
misclassi�cations or false positives is very low. On the other hand the recall
is comparatively lower at about 83%. This number is explained by the typical
placement on both sides of the street on higher order roads like highways. Thus
one of the signs always has a high lateral o�set to the camera, leaves the cameras
�eld of view at a high longitudinal distance and therefore while still being small
in the image. For the understanding of the scene the correct detection and clas-
si�cation of the other sign, being passed at a smaller lateral o�set, su�ces, thus
the lower value in recall is acceptable.
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Correct Classi�ed % False Positives % Precision % Recall %

All 97.53 % 1.09 % 97.26 % 83.30 %

Germany 97.83 % 0.81 % 97.80 % 83.07 %

Table 6.26: Table showing the results of the detection and classi�cation system
based on single real world signs, after rejecting signs using the re-
sults of the three dimensional position and the exit sign suppression
module. The columns are labelled according the the columns in table
6.25, training sets, testing sets and composition are the same as in
this previous table.

6.8 Supplementary Sign Detection and Recognition

In this section the experiments and evaluations done on behalf of the detec-
tion and classi�cation of supplementary signs as explained in section 2.7.1, are
presented. The algorithm consists of three parts, �rst the detector, second the
veri�cation, third the classi�cation.
The following experiments concerning the supplementary sign detection and

classi�cation are presented:

� Determination of the cluster positions in the detection step.

� Veri�cation of the detection and ranking of multiple possible cutout candi-
dates based on histogram of oriented gradient (HoG) features.

� Classi�cation of the veri�ed candidates for supplementary signs and com-
bination of the results for single cutouts to the �nal classi�cation decision
for all detected supplementary signs of a tra�c sign.

As training set for the determination of the necessary parameter settings of the
algorithms a set consisting of 2441 German supplementary signs is used.
For the clustering of the sign positions the �rst step is to determine which

distance measure to use. The parameters to be clustered are the top left and
bottom right corner of the supplementary sign relative to the speed limits sign
centre position and normed by the radius of the speed limit sign. The following
metrics were considered, as explained in section 2.7.1: Euklidean, Chebyshev,
Manhattan City Block. For checking which metric to use, classi�ers were trained
and tested. The samples for training and testing were created from the correct
samples by varying the top left and bottom right corner coordinates for the cre-
ation of the sample cutouts. The metric correlating best with the classi�cation
results is the Chebyshev metric. The errors of the classi�ers rise with the varia-
tions introduced by the translations. The classi�er performs without visible losses
up to box di�ering 0.1 in Chebyshev norm to ideal box, relative to the size of the
corresponding speed limit. Minor losses occur when the corner coordinates are
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changed up to 0.15 times the radius. Above this value the error rises, see table
6.27.

Translation values: 0.00 0.05 0.10 0.15 0.20 0.25
Correctly classi�ed 85.6% 85.4% 84.6% 82.5% 75.4% 65.3%
Misclassi�ed 3.7% 3.7% 4.1% 4.3% 5.9% 8.4%
Rejected 10.7% 10.9% 11.3% 13.2% 18.7% 26.3%

Table 6.27: Classi�cation results for the supplementary sign pictogram classi�er
on German samples given samples translated in position in learn and
test set, the sets being given in table 6.6 and the PCA/PC combina-
tion described in section 2.7 being used as classi�er. The translation
is given relative to the radius of the corresponding speed limit sign
and is applied to the upper left and/or lower right corner coordinates
(∆u0,∆v0,∆u1,∆v1). Thus the position and scaling of the box is af-
fected by the variations. The translation value corresponds with the
Chebyshev distance of the original box to the translated box normed
by the speed limits radius. It can be seen, that translations up to
0.15 result in minor reductions in classi�er performance, only. Thus
a positioning error of 0.15 is acceptable. This value is used for deter-
mining the parameters for the position clustering process.

For the choice of one of the clustering algorithms introduced in section 2.7.1
the number of clusters necessary is to be optimized. The number is de�ned as the
one necessary to reach the targeted 90% of the samples being closer than the 0.15
radii from a cluster centre position in Chebyshev metric, as introduced above and
in table 6.27. The aglomerative scheme performs slightly better than the divisive
algorithm in this respect. The aglomerative algorithm needs 16 cluster centres
to reach this target, while the divisive algorithm used 18 clusters for the same
result. In the following the aglomerative algorithm is used.
In �gure 6.24 the results of the clustering process are shown. The colours of

the elements in the top left corner graphic correspond to the di�erent classes of
supplementary signs, see �gure A.10, the black circles are the cluster centres.
The bi-modality of the distribution is due to the two types of supplementary
signs, half height and full height. Certain classes of supplementary signs are
present in certain groups of clusters, only. This leads to a rule introduced in the
supplementary classi�er which rejects classi�cation results for signs where this
type of sign does not �t to the detected cluster.
After the candidate boxes are determined via the clustering process those box

regions are passed to a veri�cation and ranking classi�er for each detected and
positively classi�ed speed limit sign. The veri�cation classi�er is based on his-
togram of oriented gradient (HoG) features. Due to the high variability of the
pictograms shown on supplementary signs the regions where the HoG features
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Two dimensions of the rotated cluster space

Figure 6.24: Diagrams showing the generation of the position clusters for the de-
tection of supplementary signs.
Top left: two dimensional rotated (PCA) view of the four dimen-
sional feature space (∆u0,∆v0,∆u1,∆v1) for clustering. Top right:
Number of samples closer to a cluster centre than a certain distance,
the example is for 16 clusters, agglomerative clustering. Bottom:
Cluster centres of possible supplementary sign positions sorted by
number of elements in the cluster. The sample set is taken from
German supplementary sign positions only and is given in table 6.6.
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are extracted were pre de�ned as depicted in �gure 6.25 and thus concentrate
on the border edges of the expected supplementary sign as well as the centre
region to use the in-existence of the vertical edges belonging to the pole on which
the speed limit is mounted. The classi�er is a complete polynomial classi�er of
second degree. The features are the number of vertical and horizontal edges in
the �ve feature boxes, see �gure 6.25.
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Figure 6.25: Regions of feature extraction for the HoG-Polynomial veri�cation
and ranking classi�er for supplementary signs.

The classi�cation result of the ranking classi�er is shown in the confusion ma-
trix in table 6.28. The test set consists of the rectangles belonging to the clusters
being closest to the real supplementary sign position as positive samples. The
negative samples are taken from speed limit signs without supplementary signs
and are taken from all 16 clusters. The high number of negative samples respects
the much higher a-priori probability for a sign without supplementary sign mul-
tiplied by the number of clusters.

Veri�ed as supplementary sign Rejected
Has supplementary sign 2157 284
No supplementary sign 2235 225413
Precision 49.1%
Recall 88.4%

Table 6.28: Confusion table of supplementary sign veri�cation classi�er for Ger-
many. The algorithm is a complete polynomial classi�er of the 2nd
degree based on the 20 HOG features introduced above. The veri�ca-
tion classi�er reduces the number of cutouts passed to the following
pictogram classi�er by two orders of magnitude. The number of false
candidates is that high, since for each sign many possible supplemen-
tary sign positions, in this case 16, have to be tested. The training
and testing sets are given in table 6.6
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6 Experimental Investigations and Evaluation

The boxes detected and veri�ed in the previous two steps are normalized with
the same algorithm used for the speed limit signs, see section 2.6.1. The normal-
ized cutouts are classi�ed using the same type of classi�cation consisting of PCA
and polynomial classi�er as the speed limits. If there are more than one detection
for a supplementary sign corresponding to one speed limit sign, all candidates are
classi�ed. Of all candidates' classi�cation results only the one having the highest
output value for a supplementary sign class is accumulated in a histogram. The
reasoning is, that the candidate having the highest classi�cation result is most
likely the one �tting best to the real sign position. The highest accumulated re-
sult for a track has to be higher than a threshold (η) and the highest accumulated
value relative to the sum of accumulated values has to exceed a second threshold
(λ), see table 6.29.

Absolute track classi�er threshold η 1.30
Relative track classi�er threshold λ 0.50

Table 6.29: Thresholds for the supplementary sign track classi�er.

The �nal classi�cation results for supplementary signs are shown in table 6.30.
Conclusion: The results for the detection and classi�cation of supplementary

signs in table 6.30 show the high precision, with the exception of the signs in
Belgium. The Belgian signs are comparatively small and the only ones in western
Europe being printed white on blue, yielding a lower contrast for the pictogram.
The recall for the detection is close to 90% as shown in table 6.28. Combined with
the recall rate of about 90% for the pictogram classi�er this yields a summarized
recall rate of about 80%. This su�ces since at higher order roads the signs are
placed at both sides of the road allowing the correct interpretation of the tra�c
scene if just one of the supplementary signs is detected and correctly classi�ed.

6.9 Separation of Active and Exit Signs

As an example for necessary extension modules the classi�cation module for the
separation of active speed limit signs from minimum speed and exit signs in
Germany is presented. The necessity of this module is motivated in section 2.8.2
and is based on the inseparability of the two classes after the cutout normalization.
The algorithm is used for each cutout classi�ed as being an active speed limit

in the stage I of the speed limit classi�er. As features the mean grey value and
the standard deviation of the signs in the centre region of the cutouts are used.
In the ROC curve in �gure 6.26, the lower right in the set, the acceptable per-

formance of the polynomial classi�er trained with these features can be perceived.
In case the exposure time of the camera for the current frame is known this addi-
tional feature boosts the performance of the classi�er even more. The polynomial
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6.9 Separation of Active and Exit Signs

Country Correct Miscl. False Pos. Rejected Precision
AT 524 30 2 154
BE 379 11 46 46
DE 2332 25 19 217
FR 1439 8 6 135
ES 1110 1 0 32
LU 97 1 7 11
PT 316 0 2 30

AT 74.01% 4.24% 0.28% 21.75% 94.24%
BE 86.93% 2.52% 10.55% 10.55% 86.93%
DE 90.60% 0.97% 0.74% 8.43% 98.15%
FR 90.96% 0.51% 0.38% 8.53% 99.04%
ES 97.11% 0.09% 0.00% 2.80% 99.91%
LU 88.99% 0.92% 6.42% 10.09% 92.38%
PT 91.33% 0.00% 0.58% 8.67% 99.37%

Table 6.30: Classi�cation results for the supplementary sign classi�er. First the
number of samples and below the percentages are shown. For each
country one classi�er is trained and tested on samples of this country
only, the sample sets being given in table 6.6. The di�erent types
of results are correctly classi�ed supplementary signs, supplementary
signs mistaken for belonging to another supplementary sign class,
false positives being non-sign areas being classi�ed as a supplemen-
tary sign and rejected being supplementary signs classi�ed as garbage
or the classi�cation result of which were rejected, see equation 4.17.

classi�er is of order three on the two features introduced above, which is accept-
able for just having two input features and two output classes. The classi�er was
trained with the features generated from the set shown in table 6.31.

Active Exit
Training Set 5000 1000
Test Set 209448 33277

Table 6.31: Training and testing sample set number of cutouts for the active
versus exit sign classi�er.

In �gure 6.26 the testing set in the two dimensional feature space is displayed.
In addition the black decision border between minimum speed/exit signs and
active signs at the operating point, as selected in the ROC curve in the lower
right part of the �gure is depicted.
The errors introduced by this additional classi�cation module are compara-
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6 Experimental Investigations and Evaluation

tively minor, since in this case the results are accumulated over the whole track
of a sign as well, thus the wrong classi�cation of one active limits cutout as exit
sign does not mean that the real world sign associated with the track is rejected.
A geometric hint as for the validity of an active sign is the usual placement

of more than one speed limit on one sign gantry. Should one or more of those
be rejected, the consideration of the tra�c scene will overrule this classi�cation
result. On the other hand many exit signs can be rejected due to their small size
compared to an active sign.
The combination of this information leads to the scene wise result as shown in

table 6.32.

Class. as Active Class. as Exit Error in % Sample N.
Active cutouts 201049 8399 4.01% 209448
Exit cutouts 3497 29780 10.51% 33277
Active tracks 19748 289 1.44% 20037
Exit tracks 181 4036 4.29% 4217
Active scene 8793 21 0.24% 8814
Exit scene 98 4119 2.32% 4217

Table 6.32: Classi�cation results for the classi�er Active - Exit on the base of
cutouts and based on tracks, the accumulated results of tracked real
world signs. The �nal two rows show the result on scene base. The
results on scene base show the very low number of a quarter percent of
scenes showing active tra�c signs being rejected due to this module,
while over 97% of the exit signs could be classi�ed as such and thus
be rejected.

Conclusion: The separation of active speed limits from exit signs shows a very
good performance. Over 97% of the exit signs could be classi�ed as such and thus
be rejected. Based on the evaluation of tra�c sign scenes the rejection of actually
valid active signs, leading to wrong scene interpretations is lower than 1/4% and
thus deemed acceptable given the high rejection rate of the exit signs. The input
features just being the mean grey value and the standard deviation in the cutouts
makes the retraining of this classi�er easy, should the sensor characteristic be
changed.

6.10 Over all Results of the Tra�c Sign Recognition

System

This section reveals the over all classi�cation results when taking all results pre-
sented in the previous chapters into account. For Germany the values are broken
down in more detail, see table 6.33. The interpretation the tra�c scenes is done
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Figure 6.26: The top two graphs show the active, respectively the exit signs in
the feature space used: standard deviation of the grey values over
the mean grey value of the cutout. The lower left graph shows the
classi�cation errors at the chosen operating point and the line show-
ing the separation done by the classi�er. The lower right graph is
the Receiver Operator Curve (ROC ) of the classi�er with a marker
at the point of the chosen operating point. The solid line in the two
top and the lower left graph is the decision border of the classi�er.
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6 Experimental Investigations and Evaluation

using the rules stated in section 5.7. This means taking the results for all signs
encountered on a certain strip of road into account when deciding for the cor-
rect speed limit, as well as regarding the results of the auxiliary algorithms like
the three dimensional positioning system when reconstructing the current tra�c
scene.

Distance travelled [km] 12230
Amount of data [GB] 1587
Number of frames 3441982
Number of limit signs 17753
Number of end of and speed limit signs 14654
Number of speed limits with suppl. signs 2043
Number of scenes 8186
Number of complex scenes 3
Number of detected/recognized scenes 7972
Percentage of detected/recognized scenes 97.4%
Number of complex detected scenes 132
Distance travelled with correct scene interpretation [km] 11859
Percentage of correct distance travelled 97%

Table 6.33: Table showing the results for the tra�c sign recognition system in
Germany. The higher number of complex scenes in the actual detec-
tion system compared with the ground truth is explained by classi�-
cation errors making an otherwise uncomplicated scene complex, for
an example see �gure 6.15.

The evaluation of the tra�c sign recognition system including the scene inter-
pretation is based on a per kilometre base, since it represents the felt performance
for a driver better than an evaluation based on classi�cation events. Table 6.34
shows the results on a distance base for the ten European countries. In addition
Portugal was evaluated, where the Spanish classi�ers were used, since the signs
resemble one another in those two countries.
The table 6.34 shows that in most countries the tra�c sign recognition system

performs correctly in 93% to 95% of the distance travelled. The exceptions are
Austria, Italy, Luxembourg and France. In Austria and Italy the comparatively
high number of errors derives from the higher number of signs mounted on the
back of lorries. Even after the reduction of this problem via the three dimen-
sional positioning system these signs produce a high number of wrongly decided
stretches of road due to the long stretch of road travelled until a correctly rec-
ognized tra�c sign cancels the wrong speed limit. Using additional algorithms
for the detection of other vehicles on the road or additional sensors like lidar or
radar would solve this problem more conveniently.
In Luxembourg the variety of tra�c sign appearances leads to a higher number
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Cntr. Dist. [km] Wrong res. [km] % Wrong res. [km] %
AT 3928 581.158 14.80% 426.088 10.85%
BE 1756 262.633 14.96% 123.372 7.03%
CH 2085 233.107 11.18% 126.891 6.09%
DE 12230 571.872 4.68% 353.447 2.89%
DK 1106 34.419 3.11% 30.611 2.77%
ES 6087 1006.196 16.53% 213.607 3.51%
FR 6412 1272.234 19.84% 467.048 7.28%
IT 7014 1852.126 26.41% 1041.011 14.84%
LU 498 83.265 16.72% 54.3674 10.92%
NL 6140 605.994 9.87% 462.180 7.53%
PT 2103 332.868 15.83% 107.678 5.12%

All 49359 6835.872 13.85% 3406.304 6.90%

Table 6.34: Result of the tra�c sign recognition system. Country-wise and dis-
tance based. On the left the results without the use of the three
dimensional information and without the use of the active vs. exit
sign module, on the right the results with the use of these systems.

of errors. The use of all stage II classi�er types instead of just the one used for
France could help. This scheme would slow down processing time, but would
boost the classi�cation results. This scheme was not tested up to now.
In France a special e�ect of the realization of the tra�c sign rule book leads to

the comparatively high error rate. In France the exits of higher level roads like
highways have a certain type of signposting. First a 110 sign with a supplemen-
tary sign showing that the sign is valid for the exit only, then a 90 speed limit
having the same supplementary sign and then a 70 sign without a supplementary
sign. Using the simple logic for scene interpretation introduced in section 5.7 this
leads to the system showing 70 as valid velocity on the highway, since the �nal
70 sign has no supplementary sign and thus is deemed valid for the current road.
With an additional rule for French tra�c sign scenes this problem can be solved
by rejecting the 70 sign if the other signs belonging to this assembly of tra�c
sign scenes have been recognized. This rule cuts the distance travelled with the
wrong speed limit to one third, thus about 5%, since these situations lead to
errors lasting long stretches of travelled distance.
The system presented in this dissertation relies on monocular images, ego mo-

tion information and the knowledge of the country currently travelled in alone.
The use of other sources of information can help to reduce the number of errors
even more. Examples for such information sources are:

� Navigation systems having knowledge of speed limits, city limits and road
categories as well as the information when the vehicle left the current road
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6 Experimental Investigations and Evaluation

for invalidation of the speed limit last encountered.

� The detection of the number and geometry of lanes of the road. This helps
validating the real world positions of the recognized signs and allows a
better interpretation of tra�c sign scenes.

� The detection of other road users via lidar, radar, optical �ow, stereo vision
or other means. This would help rejecting signs on the back of lorries.
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7 Summary and Outlook

The objective of this thesis is to present a feasible chain of algorithms to realize a
vehicle mounted tra�c sign recognition system for the detection and veri�cation
of speed limit and end of speed limit signs. The system is based on the sensor
input of a monocular grey value video camera. If available the system uses the
ego motion of the vehicle, and thus the camera, as an additional input. For the
determination of the country the vehicle is currently travelling in a GPS sensor
is used.
To allow the use of the system in a multitude of countries algorithms and

tools were developed, allowing the adaption of the system to the peculiarities of
di�erent countries with a minimum of human e�ort necessary.
In this thesis a new hough-like detection algorithm is presented. It is optimized

for computational speed and detection capabilities as presented in section 6.3.2,
allowing a detection rate of tra�c signs being equal and higher than the ones
presented in the literature. Compare to the literature a considerable speed up
was achieved, allowing a computation time of less than 30 milliseconds on a 500
MHz CPU, DSP and IPhone 4. Since the detection is by far, over 90%, the
most computational intensive part of the tra�c sign detection and classi�cation
system, the complete detection and recognition system runs on the mentioned
hardwares in about 30ms per frame for a 752x320 pixel image.
All free parameters in the detection and tracking system were adapted by opti-

mizing the result on evaluation sets. The system was optimized to operate under
all weather and lighting conditions. The evaluation sets re�ect this requirement.
For the classi�cation module large sets of tra�c sign images were gathered and
labelled by a human operator using the powerful support of newly developed
labelling tools. The number of labelled images showing tra�c signs exceeds 3
million samples, roughly one quarter used as training set and three quarters for
testing purposes. The samples were gathered in ten European countries, again
respecting all weather and lighting conditions. The large number of samples is
necessary for developing, training and evaluating the complex classi�cation sys-
tem.
The detector performance is high, 90% of the tra�c signs circles, in an eval-

uation set consisting of 5000 circles, are detected and positioned to less than 2
pixels error in centre position and radius. Over 95% of the circles are found when
allowing for 3 pixels position error. Only 0.5 non-sign circles per image, thus one
circle in two frames, are detected in an evaluation set of 91146 images, reducing
the number of possible circle position candidates of the sizes searched for in an
image by a factor of 107, thus reducing the computational load of the following
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tracking and classi�cation steps.
The tracking algorithm can be used with and without knowledge about the

ego motion of the vehicle. If the ego motion is known the performance is slightly
higher, but the main advantage is the capability of measuring the three dimen-
sional position of the sign relative to the vehicle. The measurement of the position
allows a more accurate interpretation of the road scenery. Additionally the algo-
rithm used for measuring the position allows the rejection of tra�c signs mounted
on the back of lorries. The algorithm is capable of self calibrating the important
angles and position values of the camera relative to the vehicle.
In this thesis emphasis is laid on the process of adapting the hierarchical classi-

�cation system used for categorising the detected circular real world objects into
non-sign objects and tra�c signs and for the signs the separation into the di�erent
speed limits. The chosen classi�cation algorithm is a complete quadratic polyno-
mial classi�er optimized in the mean square sense. The features are normalized
grey values with a feature reduction via a principal component analysis.
Special attention was paid to the internationalisation of the system. This

means the adaptation of the system to the local appearances of the tra�c signs in
di�erent countries. The classi�cation system is designed to be adaptable to these
di�erences in tra�c sign appearances with a minimum of human intervention
being required. One important module is the acquisition and selection of training
samples. A novel approach for the creation of realistic synthetic sample images
of tra�c signs was developed and evaluated. A framework for the fast labelling
of large sample sets via bootstrapping and classi�ers in the loop was developed
and applied for the labelling of millions of samples from recordings of about 50
thousand kilometres of road, allowing the adaptation of the multiple classi�ers
in the hierarchical classi�cation system.
To reach the classi�cation performance necessary for implementing an Euro-

pean tra�c sign recognition system covering all di�erent sign appearances one
classi�er is not su�cient. Having one class or classi�er for each country is not
feasible when considering the large number of countries. For the EU alone 27
classi�ers would be necessary, or 46 for the whole of Europe, when expecting one
appearance type per country. This leads to the task of clustering the classi�ers
for di�erent countries by appearance types of the signs used in these countries. In
this thesis this process was developed and shown for ten European countries. The
results show, that the number of classifers can be reduced to three, still allowing
for adequate classi�er performance in each country. The developed algorithm
allows the extension of the functionality to further countries with a minimum of
human work required.
A detail disregarded in all but a very few publications is the recognition of

supplementary signs. A large sample set from Germany showed that about 10%
of the speed limit signs are explained or constrained by a supplementary sign.
To allow for an adequate functionality of the tra�c sign recognition system these
signs have to be observed. The algorithm developed consists a detector, a ver-
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i�cation and ranking step as well as a classi�er for the decision which type of
supplementary sign was detected. The detection step creates hypotheses for the
possible position of supplementary signs relative to the speed limit sign positions
based on the clustering of previously observed positions. The veri�cation and
ranking step classi�es the selected positions using histograms of oriented gradi-
ents features and sorts the results by their plausibility. At the location of best
results, if indicating the existance of a supplementary sign, a classi�er based on
grey value features discerns which type of sign was detected. The type of classi�er
used is the same as the one used for the speed limit signs as explained above, a
complete quadratic polynomial classi�er optimized in the mean square sense.
For optimal performance some specialities in di�erent countries have to be con-

sidered. One example elaborated in this thesis is the rejection of exit indications
in Germany. These signs are exact lookalikes to active speed limits in brightness
normalized images. An additional classi�er working on alternative features allows
the rejection of the exit signs with a minimal loss of falsely rejected active speed
limits.
For the realistic measurement of the over all system performance a tra�c scene

interpretation based on all the clues gathered by the system was developed. In
this algorithm the decision for the currently valid speed limit based the detected
tra�c signs, supplementary signs and their positions relative to the vehicle along
a stretch of road, their probability to be lookalikes or being mounted on the
back of lorries is done. This functionality allows the assessment of the complete
tra�c sign recognition system on the base of kilometres driven with the correct
speed limit being displayed. The resulting tables show that in Germany, where
the tra�c scene interpretation was based on a very large number of scenes, the
system displays the correct speed limit for 97% of the driven kilometres, 11650 km
of 12200 km. In some of the other ten evaluated Euopean countries the qualitiy
of the scene interpretation is less well adapted, but still the mean distance driven
with a correct speed limit display is above 93%.
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7.1 Future Work and Outlook

Future work will be the improvement of the scene logic and the inclusion of more
countries. A helpful step will be the enhancement of the sensor resolution allowing
the better interpretation of the supplementary signs, maybe even using OCR for
reading the writing on them. Further work will be done for the detection of signs
in countries not following the Vienna convention from 1968, namely the USA
and Canada. The tracking and classi�cation system will work in these countries
similar as in all other countries.
Further improvements of the system can be achieved by the use of additional

environment perception modules. Especially the detection of Lorries, allowing the
better rejection of the signs mounted on the back of these vehicles is helpful. The
detection of lorries can be solved by using radar, lidar or optical stereo sensors.
Another helpful module would be the complete integration of a lane detection
system allowing a better scene interpretation. The use of a navigation system
would be helpful as well, especially the knowledge about multiple lanes, crossings,
exit roads and parallel roads as well as city limits.
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A Appendix

A.1 De�nitions and Acronyms

AdaBoost Adaptive Boosting Classi�er
Bayer-Pattern See section A.6
CCD Charge Coupled Device
Chamfer Matching Image matching algorithm, see A.3
CMOS Complementary Metal Oxide Semiconductor
Cutout Rectangular part of the input raster image holding

A detected object
Ground Truth Elements labelled by a human operator.

The elements are circles in the image,
Image cutouts labelled for their sign class,
Image objects tracked in an image sequence
belonging to a single real world object and
Tra�c scenes holding one or more real world signs and

HAV Labels The class labels for the classi�ed signs are taken
from the HAV [Bald and Giesa, 2002].
The class pre�x 274 stands for a speed limit,
276 is a non-overtaking sign for passenger cars,
277 is a non-overtaking sign for lorries.
278 is an end of speed limit, 280
is an end of non-overtaking for passenger cars,
281 is an end of non-overtaking for lorries and a
282 is a general end of limits.
The number after the dash for speed limits and
end of speed limits refers to the speed digits.
51 to 59 are the digits 10 to 90.
60 to 63 are the digits 100 to 130.
An additional �i� at the end is a �ag showing that
it is an inverse sign with white digits on a black
background, usually an active sign.
See �gure A.3.

HOG Histogram of Oriented Gradients
Internationalization Adaptation to the di�erences between the

signs used in di�erent countries which has to be
addressed.
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LDA Linear Discriminant Analysis [Fisher, 1936]
LVDS Low Voltage Di�erential Signaling
Manhattan metrics d (a,b) =

∑
|ai − bi|

On Vehicle This describes signs a�xed on the back of other
vehicles, mainly lorries ant their trailers. These
signs indicate the maximum speed this vehicle is
allowed to drive. Since these signs look exactly
like normal signs they often lead to
mistakes in the tra�c sign recognition system.

PC Polynomial Classi�er
PCA Principal Axis Transform
PROMETHEUS: PrograMme for a European Tra�c System of
Precision Rate of positive samples classi�ed correctly

relative to the number of all positive samples.
Highest E�ciency and Unprecedented Safety

Reliability Rate of positive samples classi�ed correctly
relative to all samples classi�ed positively.

RGB Colour scheme Red Green Blue
Scene Road scenario consisting of all tra�c signs

situated locally on a short way of road
Ten European Countries Austria (AT), Belgium (BE), Denmark (DK),

France (FR), Germany (DE), Italy (IT),
Luxembourg (LU), Netherlands (NE),
Portugal (PT), Spain (ES), Switzerland (CH)

USB Universal Serial Bus
YIQ Colour scheme with Y being the luminance,

I and Q being colour di�erence signals.

A.2 AdaBoost

AdaBoost is the abbreviation of Adaptive Boosting. It is a machine learning
algorithm proposed in [Freund and Schapire, 1996] by Yoav Freund and Robert
Schapire. The boosting itself is the cascaded call of weak classi�ers to create a
strong classi�er. The adaptive part of the boosting algorithm is the reweight-
ing of input sample based on their being successfully recognised in a previous
classi�cation step. In the AdaBoost algorithm a weak classi�er, usually is a sim-
ple thresholding on a single feature, is used to part the samples into object and
non-object. Based on the success of this �rst classi�er the weight of the training
samples is adapted to give the samples classi�ed wrongly a higher weight. This
is repeated until a maximum number of weak classi�ers is reached or the clas-
si�cation results are su�cing. This type of classi�er is often used in a cascade,
meaning that the following steps in the cascade see only the samples the previous
classi�er labelled as not belonging to the garbage class, thus focussing on the
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more subtle di�erences than the previous steps.
In the classi�er introduced by Viola and Jones [Viola and Jones, 2001] the

algorithm was used on Haar wavelet [Haar, 1910] features, using thresholding as
weak learner and linear mappings of those as strong learner. The main e�ect
is �nding the right wavelets from a huge number of possible candidates, thus
allowing a fast computation of a single classi�cation.

A.3 Chamfer Matching

A well known method for object detection in images is the chamfer matching algo-
rithm. The algorithm was �rst proposed 1977 in the paper [Barrow et al., 1977].
For a speed-up of the algorithm in the year 1988 the use of a detection hierarchy
was proposed in [Borgefors, 1988]. The use for the detection of speed limit signs
based on this algorithm was proposed by Gavrila in his papers [Gavrila, 1998],
[Gavrila and Philomin, 1998] and [Gavrila, 1999]. The three main steps as de-
picted in �gure A.1 are the following:

1. The computation of an edge image which is binarized using an appropriate
threshold.

2. The computation of the chamfer distance transform image. Ideally in this
transformed image each pixel value corresponds to the Euclidean distance
of this pixel to the next set value in the binarized edge image. With respect
to computational speed usually the Manhattan city block metrics is used
instead of the Euclidean, allowing the pixel values to stay in the integer
domain and allowing the computation of the distance transform image in
just two passes over the image.

3. The template matching of the binarized edge image of the template in the
distance transformed chamfer image. The lower the score of the correlation
of the two images at a given point, the closer the edges of the two input
images are to each other, thus the better the localization of the object.

To add robustness to the system the edge direction of the template can be used
as well. Instead of using one binarized edge image the edge image is split into
multiple images, each holding edges with similar direction only from these images,
usually four to eight, the distance transformed chamfer images are computed. The
templates edge image is split in the same way and the matching result is the sum
of the single template matching steps in the separated directional images. To
speed up the algorithm hierarchical approaches are used. Templates having a
small chamfer distance between themselves are combined in the �rst detection
steps, thus decreasing the number of passes over the chamfer images to be made.
If there were low return values for the match, meaning the template was �tting
well, the original templates are used to check which of them �ts best at the

163



A Appendix

detected position. Another speed-up is reached by using a coarse to �ne search.
Since the chamfer matching returns a value correlated to the distance of the
template to its position in the image, the image can be scanned in multiple pixel
steps �rst and only at positions not too far away from a possible detection the
image is scanned again in smaller steps.

Figure A.1: The three chamfer matching steps: Edge image/�ltered edge image,
chamfer image, circle detection result

A.4 Camera Model

The camera model used is the Tsai model as proposed by R.Y. Tsai in [Tsai, 1986].
This model takes into account eleven parameters. The �rst is the focal length f
of the camera as derived from the pinhole camera model where this parameter
and the two coordinates of the principal point (pu, pv) describe the whole model.
In addition to these three parameters there are another 2 intrinsic parameters,
namely κ1, the 1st order radial lens distortion coe�cient and s the scaling factor
of the pixels in the digital sensor. The extrinsic parameters are the three trans-
lational parameters (tx, ty, tz) and the three rotational parameters (rx, ry, rz)
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The reduced model used in this thesis considers the focal length and the po-
sition of the principal point only, since the cameras were adjusted to have a
rotation relative to the outer camera coordinates low enough to be neglected and
the lens had a very low radial distortion. This leads to the projection function
as in equation A.3.

 Xf

Yf
NA

 ≈ f

z

 1 0 Cx
0 1 Cy
0 0 1

 1 0 0 tx
0 1 0 ty
0 0 1 tz



Xw

Yw
Zw
1


with Cx and Cy in pixel coordinates as CU and CV[

U
V

]
≈ f

Zw

[
Xw

Yw

]
+

[
CU
CV

]
(A.3)
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A.5 List of References For Colour as Primary Detector

Before and during the PROMETHEUS project all research and development
groups working in the subject of tra�c sign detection and recognition were using
colour as primary detection step due to the limitations of computational power
available and the indisputably important information to be gained from the ex-
ploitation of colour information. Tra�c sign recognition apers connected with
the PROMETHEUS project are:
[Akatsuka and Imai, 1987], [Ritter, 1992], [Kehtarnavaz et al., 1993],
[Piccioli et al., 1994], [Wei, 1994], [Zheng et al., 1994], [Ritter et al., 1995a],
[Ritter et al., 1995b], [Murino et al., 1995]. Numerous authors and groups are
using colour as a primary detector even after more powerful computers were
available, disregarding the drawbacks stated in the section 1.4. In the fol-
lowing the main publications with the subject of colour detectors for traf-
�c signs following the PROMETHEUS project are cited: [Zadeh et al., 1997,
de la Escalera and Moreno, 1997, Somol et al., 1999]
[Miura et al., 2000, Fang et al., 2001, Lauziere et al., 2001, Vitabile et al., 2001]
[Miura et al., 2002, Shaposhnikov et al., 2002, Sekanina and Torresen, 2002]
[Fang et al., 2003, Fang et al., 2004, Paclik et al., 2004, Torresen et al., 2004]
[de la Escalera et al., 2003, Lombardi et al., 2005, Wu and Tsai, 2005]
[Silapachote et al., 2005, Shneier, 2005, Reina et al., 2006, Paclik et al., 2006a]
[Paclik et al., 2006b, Gao et al., 2006, Torresen et al., 2006, Zhu and Liu, 2006]
[Lopez and Fuentes, 2007, Ruta et al., 2007, Ruta et al., 2007, Tsai et al., 2007]
[Liu et al., 2007, Bascon et al., 2007, Gao et al., 2008, Zhang et al., 2008].

A.6 Bayer-Pattern

The Bayer-Pattern is an additional coating on the sensitive part of the imager.
To each pixel one of three colour �lters is applied, either red or green or blue.
Via demosaicing [Lukin and Kubasov, 2004] a colour image with a slightly wider
point spread function can be computed. In a two by two pixel sensor area two
green, one red and one blue �lter is used. There are two green �lters since green
is closest to the maximum of the human grey perception. Figure A.2 depicts
the general setup. For displaying the input images a simple nearest neighbour
demosaicing was applied, e.g. composing the colour value from the mean of the
respectively coloured pixels in the 3x3 vicinity of the output pixel. This algorithm
uses the mean of all pixels touching the current pixel for each colour channel to
retrieve the R G and B values of the pixel. For the normalization of the region
of interest this scheme is not feasible due to the implicit smoothing e�ect of the
demosaicing.
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Figure A.2: The Bayer-Pattern on a sensor chip

A.7 Camera and Sensor Speci�cs

The sensor used, unless otherwise noted, is a MT9V029 CMOS sensor from Mi-
cron Technology, today renamed to Aptina Imaging. This sensor has 752x480 pix-
els, each of 6µm square size. The maximum frame rate is 60 Hz, but the used
frame rate is 16 Hz. The camera has a global shutter and allows shutter times
from 10µs up to 40 ms. The analogue-to-digital converter yields 10-bit images
of a dynamic range up to 100 dB. The �lters applied to the sensor limit the
bandwidth to the wavelength range of 450 nm to 1050 nm. In addition to the
band-pass a RGB Bayer-Pattern �lter was added to allow the implementation of
additional applications not being connected with tra�c sign recognition on the
same hardware platform.
The lens used has a focal length of 7mm and a lens aperture of 2.0 while having
very low radial distortions.
The data transition is realized via an LVDS to USB connector.

A.8 Composition of the Classi�er Training Set

The sizes and composition of the �rst two sample sets are given in section 6.2.
For the two following sets this information is placed in the appendix due to the
size of the necessary explanation. The third set was collected and assembled
for a diploma thesis written by Denis Koch [Koch, 2007], which was supervised
by the author of this dissertation. The class labels are taken from the German
[Bald and Giesa, 2002] and explained in section A.1 and shown in �gure A.3.
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 274-51    274-52     274-53    274-54     274-55    274-56    274-57    274-58     274-59    274-60     274-61    274-62     274-63       276        277

 278-51    278-52     278-53    278-54     278-55    278-56    278-57    278-58     278-59    278-60     278-61     278-62     278-63      280         281          282

274-51i   274-52i    274-53i   274-54i    274-55i   274-56i   274-57i    274-58i    274-59i   274-60i    274-61i   274-62i    274-63i      276i         277i

278-51i   278-52i    278-53i    278-54i   278-55i   278-56i    278-57i    278-58i    278-59i   278-60i   278-61i    278-62i   278-63i      280i        281i          282i

Figure A.3: Sign types and names taken from the German advice book for the
placement of tra�c signalisation [Bald and Giesa, 2002]

A.9 Composition of the System Evaluation Set

The set labelled based on the driven distance consists of ten di�erent sets, one
for each of ten European countries. The length of the labelled sequences in
kilometres, the size in gigabytes, the number of images in the set, the number of
signs and supplementary signs is given in the table A.1. The di�erence in the size
of the sets in di�erent countries is owed to the accessibility of the given country
when starting in southern Germany and to the size of the given country itself.
The sum of kilometres driven in all ten countries is 109192, or 11511 gigabytes.
In total 25.912.000 images are in the set and 124373 speed limit or end of limit
signs with an additional 13711 supplementary sign objects were labelled in those
images.

Austria Belgium Switzerl. Germany Denmark Total

Abbreviation AT BE CH DE DK

Kilometres 5917 3171 4582 55856 2236

GBytes of Data 658 404 495 5418 188

Images (x1000) 1469 879 1043 12184 443

Sign No. 6999 2150 3338 76691 1198

Suppl. Signs 1069 663 382 3997 21

Spain France Italy Luxemb. Netherl.

Abbreviation ES FR IT LU NL

Kilometres 7752 10580 10397 994 7707 109192

GBytes of Data 874 1045 1258 158 1013 11511

Images (x1000) 1989 2300 2898 358 2349 25912

Sign No. 12267 7618 12434 711 4538 127944

Suppl. Signs 1682 3723 1988 144 42 13711

Table A.1: System evaluation set
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A.9 Composition of the System Evaluation Set

Figure A.4: Size and composition of sample set for inner circles of speed limits,
see [Koch, 2007]. The ordinate axis shows the number of samples for
each class, the abscissa is divided into the di�erent classes and in the
classes colour coded for country type.
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Figure A.5: Size and composition of sample set for outer circles of speed limits,
see [Koch, 2007]. The ordinate axis shows the number of samples for
each class, the abscissa is divided into the di�erent classes and in the
classes colour coded for country type.
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A.9 Composition of the System Evaluation Set

Figure A.6: Size and composition of sample set for circles of end of speed limits,
see [Koch, 2007]. The ordinate axis shows the number of samples for
each class, the abscissa is divided into the di�erent classes and in the
classes colour coded for country type.
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Figure A.7: Map showing the recorded streets travelled while recording the eval-
uation set. Some sections are missing due to drop-outs of the GPS
recording.

A.10 Implementation on Mobile Devices

The system developed in this thesis has been ported to several mobile devices, one
being a Basler Excite exA1390-19m camera having 1392 x 1040 Pixel resolution,
12 bit grey value depth and an internal 1 GHz Processor running the Linux
operating system. The system performed even better than with the standard
camera described in chapter 2.3 and reached a frame rate of 18 Hz, the maximum
frame rate of the camera hardware. The time necessary to port the system from
a desktop computer to the camera was less than 30 minutes due to the complete
implementation of the software in ANSI C.
A second implementation on a portable device was implemented on the Apple

IPhone 3G where the system was running at 12 Hz on the internal 400x304 Pixel
preview image. The full capabilities of the imaging sensor or the mobile phone
could not be used due to the restrictive software interface available to applications
on this hardware. The results were promising even when the resolution of the
images was low compared to the reference system and the capabilities of the
sensor at night were not su�cient to allow for high vehicle speeds. Figure A.8
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shows the mounting of the IPhone and the system at work.

Figure A.8: Prototypical interface of tra�c sign recognition ported to IPhone 3G

A.11 Generalization of the Coarse Detector

The detector can be used for all convex forms allowing the use of the same
algorithm as explained in 2.4.1 for detecting the triangular, rectangular and oc-
tagonal signs. The segmented line increments in the accumulator are replaced
by the incrementation of an area in trapezoid shape as depicted in �gure A.9.
The edge detection, maximum extraction, and candidate creation stay the same.
In the veri�cation step the template searched for has to be replaced by the �t-
ting shape. The detection algorithm has been tested on Right of Way, Yield,
Stop and the various Danger signs. The additional computation time necessary
for incrementing a trapezoid instead of just a line is balanced by the fact that
only few edge directions necessitate the incrementing at all. This algorithm has
been presented in the diploma thesis of Samuel Dirska [Dirska, 2005], which was
tutored by the author of this thesis.
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X

Figure A.9: Accumulator �ll algorithm for a triangular tra�c sign shape. Left
three exemplary trapezoids for a horizontal edge, in the middle for a
60 edge and to the right for all edge directions.

A.12 Derivation of Equations in the Three-Dimensional

Measurement

In the following the derivation of the equation 2.31 is explained.

Sv = xv0 + u

(
cos (β0)
sin (β0)

)
!

= xv1 + rV

(
cos (α + β1)
sin (α + β1)

)
(A.4)

Substituting to remove the auxiliary variable u leads to:

u =
sin (α) + r sin (α + β1)

sin (β0)
(A.5)

cos (β0)

sin (β0)
(d sin (α) + r sin (α + β1)) = d cos (α) + r cos (α + β1) (A.6)

Reorganizing the equation for rV yields:

rV

(
cos (α + β1)− cos (β0)

sin (β0)
sin (α + β1)

)
= d

(
cos (β0)

sin (β0)
sin (α)− cos (α)

)
(A.7)

Solving for rV leads to the result shown in 2.31:

rV = d
cos (α) sin (β0)− sin (α) cos (β0)

sin (β1 + α) cos (β0)− cos (β1 + α) sin (β0)
(A.8)

For the equation showing the result when observing the di�erent positions of
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turning centre and camera:

SC =

(
lx
ly

)
+ u

(
cos (β0)
sin (β0)

)
=

d

(
cos (α)
sin (α)

)
+ lx

(
cos (α)
sin (α)

)
+ ly

(
− sin (α)
cos (α)

)
+ rC

(
cos (α + β1)
sin (α + β1)

)
(A.9)

Substituting to remove the auxiliary variable u leads to:

u =
d sin (α) + lx sin (α) + ly cos (α) + rC sin (α + β1)− ly

sin (β0)
(A.10)

lx + cos(β0)
sin(β0)

(d sin (α) + lx sin (α) + ly cos (α) + rC sin (α + β1)− ly) =

d cos (α) + lx cos (α)− ly sin (α) + rC cos (α + β1)
(A.11)

Reorganizing the equation for rC yields:

rC(cos (β0) sin (α + β1) − sin (β0) cos (α + β1)) =
d (sin (β0) cos (α)) +
lx (sin (β0) cos (α)− sin (β0) + cos (β0) sin (α)) +
ly (− sin (β0) sin (α) + cos (β0) + cos (β0) cos (α))

(A.12)
Solving for rC leads to the result shown in 2.31:

rC = d
cos (α) sin (β0)− sin (α) cos (β0)

sin (β1 + α) cos (β0)− cos (β1 + α) sin (β0)
+

lx
(cos (α)− 1) sin (β0)− lx sin (α) cos (β0)

sin (β1 + α) cos (β0)− cos (β1 + α) sin (β0)
+

ly
− sin (α) sin (β0)− (cos (α)− 1) cos (β0)

sin (β1 + α) cos (β0)− cos (β1 + α) sin (β0)
(A.13)

A.13 Types of Supplementary Signs

In �gure A.10 the supplementary signs being most important for the speed limit
recognition system in Europe are depicted.

A.14 Active Versus Blue Exit Signs Utilizing Colour

Information

Should, as in the present setup, the sensor deliver colour information this is the
main clue to separate the two types of sign. Since the colour information is far
from perfect, especially when the size of the object is close to the lower limit of the

175



A Appendix

detector. The Bayer-Pattern delivers reliable colour information on areas when
the area underneath the four colour �lters have a near similar brightness and the
white balance for the current lighting is known. For small cutouts this is not to be
taken for granted. Because of this additional information can be gathered from
the gain in the cutout, since the blue exit and minimum speed signs are passive
the variance in relation to the mean value tends to be considerably lower than
for the actively powered signs. This feature is available for grey value sensors as
well and allows a high discriminatory power for those as well.
The features gathered from colour, mean brightness and brightness variance

depend highly on the sensor and thus cannot be used for training a general
classi�er as it is possible for the normalized cutouts from the main tra�c sign
classi�er. The four features given to the decision unit are:

- The mean brightness of the cutout

- The brightness variance in the cutout

- The mean of the red values compared to the green and blue values in the
rim area of the sign

- The mean of the blue values compared to the red and green values in the
centre area

The �rst two measurements are used as input features for a polynomial classi-
�er and the threshold on the output of the classi�er is adapted as explained in
chapter 2.8.2. On some of the devices the system was tested on, see section A.10,
colour information was available and the last two measurements were used in
addition to the �rst two.

A.15 Screen shot of the Evaluation Tool

In �gure A.11 the evaluation tool used for developing the scene evaluation and
enhancing the over all performance of the tra�c sign recognition. Explanation
of the displayed information top to bottom:

� Blue: Yaw-Rate

� Green - �at: Ground truth allowed speed

� Red Line: Tra�c sign recognition system output - behind the ground truth
when correct, error when visible

� Green: travelled speed

� Red dots: Speed limit signs
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A.15 Screen shot of the Evaluation Tool

� Bottom half: type of regulation or sign encountered

� Type of supplementary sign (weather, time, lorry, direction)

� Type of tra�c sign (active sign, existing sign not valid for current lane or
on a vehicle)

� The last four rows describe errors made by the system

� General: all errors generate a signal here

� false alarm

� not classi�ed (classi�er rejection or not detected)

� misclassi�ed

The tool allows to create statistics on the error rate and types of errors encoun-
tered as well as direct access to the scenes in which the error occurred.
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Austria
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Figure A.10: European supplementary signs clustered for classi�cation by mean-
ing and appearance
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A.15 Screen shot of the Evaluation Tool

Figure A.11: Display of the evaluation tool for a 147 km long sequence. For
Explanations see section A.15

179



Bibliography

Bibliography

[Akatsuka and Imai, 1987] Akatsuka, H. and Imai, S. (1987). Road signpost
recognition system. In SAE vehicle highway infrastructure safety comptatil-
bility, pages 189�196.

[Bahlmann et al., 2005] Bahlmann, C., Zhu, Y., Ramesh, V., Pellkofer, M., and
Koehler, T. (2005). A system for tra�c sign detection, tracking, and recogni-
tion using color, shape, and motion information. In Intelligent Vehicles Sym-
posium, pages 255�260.

[Bald and Giesa, 2002] Bald, S. and Giesa, S. (2002). HAV. Hinweise fuer das
Anbringen von Verkehrszeichen und Verkehrseinrichtungen. Kirschbaum Ver-
lag.

[Barnes and Zelinsky, 2004] Barnes, N. and Zelinsky, A. (2004). Real-time radial
symmetry for speed sign detection. In IVS04, pages 566�571.

[Barrow et al., 1977] Barrow, H., Tenenbaum, J., Bolles, R., and Wolf, H. (1977).
Parametric correspondence and chamfer matching, two new techniques for im-
age matching. In IJCAI77, pages 659�663.

[Bartneck and Ritter, 1992] Bartneck, N. and Ritter, W. (1992). Colour segmen-
tation with polynomial classi�cation. In ICPR92, pages II:635�638.

[Bascon et al., 2007] Bascon, M., Arroyo, L., Jimenez, G., Moreno, G., and Fer-
reras, L. (2007). Road-sign detection and recognition based on support vector
machines. ITS, 8(2):264�278.

[Borgefors, 1988] Borgefors, G. (1988). Hierarchical chamfer matching: A para-
metric edge matching algorithm. PAMI, 10(6):849�865.

[Bresenham, 1965] Bresenham, J. (1965). Algorithm for computer control of a
digital plotter. IBM Systems Journal, 4(1):25�30.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In IEEE Conference on Computer Vision and
Pattern Recognition, pages Vol. II, pp. 886�893.

[de la Escalera et al., 2003] de la Escalera, A., Armingol, J. M., and Mata, M.
(2003). Tra�c sign recognition and analysis for intelligent vehicles. IVC,
21(3):247�258.

180



Bibliography

[de la Escalera and Moreno, 1997] de la Escalera, A. and Moreno, L. (1997).
Road tra�c sign detection and classi�cation. IndEle, 44:848�859.

[Dirska, 2005] Dirska, S. (2005). Detektion und Klassi�kation von dreieckigen
Verkehrszeichen. Master's thesis, Technische Universitaet Ilmenau.

[Duda et al., 2000] Duda, R., Hart, P., and Stork, D. (2000). Pattern Classi�ca-
tion (2nd ed.). Wiley Interscience.

[Duda and Hart, 1972] Duda, R. O. and Hart, P. E. (1972). Use of the Hough
transformation to detect lines and curves in pictures. Communications of the
Association for Computing Machinery, 15:11�15.

[Eder, 1999] Eder, S. (1999). Entwurf und Implementierung eines Verfahrens zur
Erkennung von Verkehrszeichen durch Auswertung von Bildfolgen. Master's
thesis, Universitaet Ulm.

[Escalera and Radeva, 2004] Escalera, S. and Radeva, P. (2004). Fast greyscale
road sign model matching and recognition. In Recent Advances in Arti�cial
Intelligence Research and Development, pages 69�77.

[Estable, 1996] Estable, S. (1996). Reconnaissance d'Objets en Environnement
Exterieur Dynamique - Application a la Reconnaissance de Panneaux Routiers.
PhD thesis, Universite Blaise Pascal - Clermont II.

[Estable et al., 1994] Estable, S., Schick, J., Stein, F., Janssen, R., Ott, R., Rit-
ter, W., and Zheng, J. (1994). A real-time tra�c sign recognition system. In
Proceedings of the Intelligent Vehicles '94 Symposium, pages 213�218.

[Fang et al., 2001] Fang, C. Y., Fuh, C. S., and Chen, S. W. (2001). Detection
and tracking of road signs. PRIA, 11:304�308.

[Fang et al., 2003] Fang, C. Y., Fuh, C. S., Chen, S. W., and Yen, P. S. (2003).
A road sign recognition system based on dynamic visual model. In CVPR03,
pages I: 750�755.

[Fang et al., 2004] Fang, C. Y., Fuh, C. S., Yen, P. S., Cherng, S., and Chen,
S. W. (2004). An automatic road sign recognition system based on a compu-
tational model of human recognition processing. CVIU, 96(2):237�268.

[Fisher, 1936] Fisher, R. A. (1936). The use of multiple measurements in taxo-
nomic problems. In Annals of Eugenics, 7, pages 179�188.

[Freund and Schapire, 1996] Freund, Y. and Schapire, R. E. (1996). Experiments
with a new boosting algorithm. In Machine Learning: Proceedings of the Thir-
teenth International Conference, pages 148�156.

181



Bibliography

[Gao et al., 2008] Gao, X. H., Hong, K., Passmore, P., Podladchikova, L., and
Shaposhnikov, D. (2008). Colour vision model-based approach for segmenta-
tion of tra�c signs. JIVP, 2008.

[Gao et al., 2006] Gao, X. W., Podladchikova, L., Shaposhnikov, D., Hong, K.,
and Shevtsova, N. (2006). Recognition of tra�c signs based on their colour and
shape features extracted using human vision models. JVCIR, 17(4):675�685.

[Gavrila, 1998] Gavrila, D. M. (1998). Multi-feature hierarchical template match-
ing using distance transforms. In ICPR, pages 439�444.

[Gavrila, 1999] Gavrila, D. M. (1999). Tra�c sign recognition revisited. In 21st
DAGM Symposium fuer Mustererkennung, pages 86�93. Springer Verlag, Bonn,
Germany.

[Gavrila and Philomin, 1998] Gavrila, D. M. and Philomin, V. (1998). Real-
time object detection using distance transforms. In IEEE Intelligent Vehicles
Symposium, pages 274�279.

[Glennie and Lichti, 2010] Glennie, C. and Lichti, D. D. (2010). Static calibration
and analysis of the velodyne hdl-64e s2 for high accuracy mobile scanning.
Remote Sensing, 2(6):1610�1624.

[Haar, 1910] Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme.
In Mathematische Annalen Vol. 69, pages 331�371.

[Hoehmann and Kummert, 2010] Hoehmann, L. and Kummert, A. (2010). Car2x
- communication for vision-based object detection. In International Conference
on Software, Telecommunications and Computer Networks (SoftCOM), pages
290 � 294.

[Hoessler, 2007] Hoessler, H. (2007). Generation d'echantillons virtuells pour la
classi�cation selon des distribution reelles. Master's thesis, Ecole Superieure
De Physique De Strassbourg.

[Hoessler et al., 2007] Hoessler, H., Woehler, C., Lindner, F., and Kressel, U.
(2007). Classi�er training based on synthetically generated samples. The 5th
International Conference on Computer Vision Systems, 2007.

[Illingworth and Kittler, 1987] Illingworth, J. and Kittler, J. (1987). The adap-
tive hough transform. IEEE Transactions PAMI-9 (5), pages 690�698.

[Ishida et al., 2007] Ishida, H., Takahashi, T., Ide, I., Mekada, Y., and Murase,
H. (2007). Generation of training data by degradation models for tra�c sign
symbol recognition. IEICE, E90-D(8):1134�1141.

182



Bibliography

[Kalata, 1984] Kalata, P. (1984). The tracking index: A generalized parame-
ter for a αβ and αβγ target trackers. IEEE Transactions on Aerospace and
Electronic Systems, pages 174�182.

[Kalman, 1960] Kalman, R. E. (1960). A new approach to linear �ltering and
prediction problems. Transactions of the ASME�Journal of Basic Engineering,
82(Series D):35�45.

[Kehtarnavaz and Ahmad, 1995] Kehtarnavaz, N. and Ahmad, A. (1995). Traf-
�c sign recognition in noisy outdoor scenes. In Proceedings of the Intelligent
Vehicles 95 Symposium, pages 460 � 465.

[Kehtarnavaz et al., 1993] Kehtarnavaz, N., Griswold, N. C., and Kang, D. S.
(1993). Stop-sign recognition based on color-shape processing. MVA, 6:206�
208.

[Keller et al., 2008] Keller, C. G., Sprunk, C., Bahlmann, C., Giebel, J., and
Barato�, G. (2008). Real-time recognition of u.s. speed signs. In Proceedings
of IEEE Intelligent Vehicles Symposium.

[Koch, 2007] Koch, D. (2007). Klassi�kation von Geschwindigkeitsbegrenzun-
gen fuer Westeuropa. Master's thesis, Hochschule Aalen fuer Technik und
Wirtschaft.

[Kressel et al., 1999] Kressel, U., Lindner, F., Woehler, C., and Linz, A. (1999).
Hypothesis veri�cation based on classi�cation at unequal errorrates. In Ninth
International Conference on Arti�cial Neural Networks, pages 874 � 879 vol.2.

[Krueger et al., 2011] Krueger, J., Emmert, V., Feldmann, A., and Lindner, F.
(2011). Evaluating the accuracy of calibration for driver assistance systems.
In Photogrammetrie Laser Scanning Optische 3D Messtechnik Oldenburger 3D
Tage 2011, pages 329�337.

[Kuhn, 1955] Kuhn, H. (1955). The hungarian method for the assignment prob-
lem. In Naval Research Logistic Quarterly, 2, pages 83�97.

[Lauziere et al., 2001] Lauziere, Y. B., Gingras, D., and Ferrie, F. P. (2001). A
model-based road sign identi�cation system. In CVPR01, pages I:1163�1170.

[Li et al., 1986] Li, H., Lavin, M. A., and Master, R. J. L. (1986). Fast hough
transform: A hierarchical approach. Computer Vision Graph. Image Process-
ing, 36(2-3):139�161.

[Lindner, 2010] Lindner, F. (2010). Ground Truthing von monokularen Entfer-
nungsschaetzungen mittels eines Mehrzeilen-Laserscanners. In Oldenburger 3D
Tage 2010, pages 210�220.

183



Bibliography

[Lindner et al., 2004] Lindner, F., Kressel, U., and Kaelberer, S. (2004). Robust
recognition of tra�c signals. In IVS04, pages 49�53.

[Liu et al., 2007] Liu, Y. S., Duh, D. J., Chen, S. Y., Liu, R. S., and Hsieh, J. W.
(2007). Scale and skew-invariant road sign recognition. IJIST, 17(1):28�39.

[Lombardi et al., 2005] Lombardi, L., Marmo, R., and Toccalini, A. (2005). Au-
tomatic recognition of road sign passo-carrabile. In CIAP05, pages 1059�1067.

[Lopez and Fuentes, 2007] Lopez, L. D. and Fuentes, O. (2007). Color-based
road sign detection and tracking. In ICIAR07, pages 1138�1147.

[Loy and Barnes, 2004] Loy, G. and Barnes, N. (2004). Fast shape-based road
sign detection for a driver assistance system. In Intelligent Robots and Systems,
pages 70�75 vol.1.

[Loy and Zelinsky, 2002] Loy, G. and Zelinsky, A. (2002). A fast radial symmetry
transform for detecting points of interest. In ECCV (1), pages 358�368.

[Loy and Zelinsky, 2003] Loy, G. and Zelinsky, A. (2003). Fast radial symmetry
for detecting points of interest. PAMI, pages 959�973.

[Lukin and Kubasov, 2004] Lukin, A. and Kubasov, D. (2004). High-quality al-
gorithm for Bayer pattern interpolation. Program. Comput. Softw., 30(6):347�
358.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classi�cation and
analysis of multivariate observations. In Proceedings Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1, pages 281�297. University
of California Press.

[Mandler and Oberlaender, 1990] Mandler, E. and Oberlaender, M. (1990). One-
pass encoding of connected components in multivalued images. In 10th ICPR,
Atlantic City, New Jersey, pages 66�69, Vol 2.

[Miura et al., 2002] Miura, J., Kanda, T., Nakatani, S., and Shirai, Y. (2002).
An active vision system for on-line tra�c sign recognition. IEICE, E85-
D(11):1784�1792.

[Miura et al., 2000] Miura, J., Kanda, T., and Shirai, Y. (2000). An active vision
system for real-time tra�c sign recogntition. In ITS00, pages 52�57.

[Moutarde et al., 2007] Moutarde, F., Bargeton, A., Herbin, A., and Chanussot,
L. (2007). Robust on-vehicle real-time visual detection of american and eu-
ropean speed limit signs, with a modular tra�c signs recognition system. In
Intelligent Vehicles Symposium, 2007 IEEE, pages 1122 � 1126.

184



Bibliography

[Murino et al., 1995] Murino, V., Regazzoni, C. S., Foresti, G. L., and Vernazza,
G. (1995). A multilevel fusion approach to object identi�cation in outdoor
road scenes. PRAI, 9:23�65.

[Ott, 1977] Ott, R. (1977). Ueber zweistu�ge quadratische Klassi�katoren. PhD
thesis, Erlangen-Nuernberg, University.

[Paclik et al., 2006a] Paclik, P., Novovicova, J., and Duin, R. P. W. (2006a).
Building road-sign classi�ers using a trainable similarity measure. ITS,
7(3):309�321.

[Paclik et al., 2006b] Paclik, P., Novovicova, J., and Duin, R. P. W. (2006b). A
trainable similarity measure for image classi�cation. In ICPR06, pages III:
391�394.

[Paclik et al., 2004] Paclik, P., Verzakov, S., and Duin, R. P. W. (2004). Multi-
class extensions of the gldb feature extraction algorithm for spectral data. In
ICPR04, pages IV: 629�632.

[Pearson, 1901] Pearson, K. (1901). On lines and planes of closest �t to a sys-
tem of points in space. In The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science. Series 6, 2, page 559�572.

[Piccioli et al., 1994] Piccioli, G., de Micheli, E., and Campani, M. (1994). A
robust method for road sign detection and recognition. In ECCV94, pages
A:493�500.

[Powell, 1992] Powell, M. J. D. (1992). The theory of radial basis function ap-
proximation in 1990. Advances in Numerical Analysis II: Wavelets, Subdivision,
Algorithms, and Radial Basis Functions, pages 105�210.

[Priese et al., 1994] Priese, L., Klieber, J., Lakmann, R., Rehrmann, V., and
Schian, R. (1994). New results on tra�c sign recognition. In Proceedings
"Intelligent Vehicles Symposium '94", Paris, 14-16th October 1994, pages 249�
254.

[Priese et al., 1993] Priese, L., Rehrmann, V., Schian, R., and Lakmann, R.
(1993). Tra�c sign recognition based on color image evaluation. In Proceed-
ings "Intelligent Vehicles Symposium '93", Tokyo, 14-16th July, 1993, pages
95�100.

[Radon, 1917] Radon, J. (1917). Ueber die Bestimmung von Funktionen durch
ihre Integralwerte laengs gewisser Mannigfaltigkeiten. In Berichte Saechische
Akadademie der Wissenschaften, Mathematisch Physikalisches Institut, Vol.
69, pages 262�277.

185



Bibliography

[Rehrmann et al., 1995] Rehrmann, V., Lakmann, R., and Priese, L. (1995). A
parallel system for realtime tra�c sign recognition. In Proceedings "Interna-
tional Workshop on Advanced Parallel Processing Technologies '95 (APPT)",
Peking, 26-27th September, 1995., pages 72�78. Publishing House of Electron-
ics Industry.

[Reina et al., 2006] Reina, A. V., Sastre, R. J. L., Siegmann, P., Arroyo, S. L.,
and Moreno, H. G. (2006). An approach to the recognition of informational
tra�c signs based on 2-d homography and svms. In ACIVS06, pages 1163�
1173.

[Ritter, 1992] Ritter, W. (1992). Tra�c sign recognition in color image se-
quences. In Proceedings of the Intelligent Vehicles Symposium 1992;92 Sympo-
sium, pages 12�17.

[Ritter, 1996] Ritter, W. (1996). Automatische Verkehrszeichenerkennung. PhD
thesis, Universitaet Koblenz Landau.

[Ritter et al., 1995a] Ritter, W., Stein, F., and Janssen, R. (1995a). Tra�c sign
recognition using colour information. MathMod, 22:149�161.

[Ritter et al., 1995b] Ritter, W., Stein, F., and Janssen, R. (1995b). Tra�c sign
recognition using colour information. In Mathematical and Computer Mod-
elling, Volume 22, pages 149�161.

[Ruta et al., 2007] Ruta, A., Li, Y., and Liu, X. (2007). Towards real-time tra�c
sign recognition by class-speci�c discriminative features. In BMVC07.

[Schuermann, 1977] Schuermann, J. (1977). Polynomklassi�katoren fuer die Zei-
chenerkennung. Oldenbourg Verlag.

[Schuermann, 1996a] Schuermann, J. (1996a). Pattern Classi�cation, pages 244�
248. John Wiley & Sons.

[Schuermann, 1996b] Schuermann, J. (1996b). Pattern Classi�cation, pages 102�
186. John Wiley & Sons.

[Sekanina and Torresen, 2002] Sekanina, L. and Torresen, J. (2002). Detection
of norwegian speed limit signs. In Proceedings of 16th European Simulation
Multiconference, pages 337�340.

[Shaposhnikov et al., 2002] Shaposhnikov, G. D., Lubov, N., Golovan, E. V., and
Shevtsova, A. (2002). Road sign recognition by single positioning of space-
variant sensor window. In Proceedings 15th International Conference on Vision
Interface.

186



Bibliography

[Shneier, 2005] Shneier, M. (2005). Road sign detection and recognition. In
Unmanned Systems Technology VIII. Proceedings of the SPIE, pages 6230, pp.

[Silapachote et al., 2005] Silapachote, P., Hanson, A. R., and Weiss, R. (2005).
A hierarchical approach to sign recognition. In WACV05, pages I: 22�28.

[Somol et al., 1999] Somol, P., Pudil, P., Novoviova, J., and Paclik, P. (1999).
Road sign classi�cation using laplace kernel classi�er. In SCIA99, pages 275�
282.

[Tarajan, 2004] Tarajan, E. (2004). Ortsbasierte Automatisierte Erfassung von
Verkehrszeichen. Master's thesis, Technische Universitaet Ilmenau.

[Torresen et al., 2004] Torresen, J., Bakke, J. W., and Sekanina, L. (2004). Ef-
�cient recognition of speed limit signs. In Intelligent Transportation Systems,
pages 652�656.

[Torresen et al., 2006] Torresen, J., Bakke, J. W., and Yang, Y. (2006). A camera
based speed limit sign recognition system. In Proceedings of 13th ITS World
Congress and Exhibition.

[Tsai et al., 2007] Tsai, L. W., Tseng, Y. J., Hsieh, J. W., Fan, K. C., and Li,
J. J. (2007). Road sign detection using eigen color. In ACCV07, pages 169�179.

[Tsai, 1986] Tsai, R. (1986). An e�cient and accurate camera calibration tech-
nique for 3d machine vision. Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 364�374.

[United Nations Economic and Social Council, 1968] United Nations Economic
and Social Council (1968). Vienna Convention on Road Signs and Signals.
UNESC.

[Viola and Jones, 2001] Viola, P. and Jones, M. J. (2001). Robust real-time ob-
ject detection. In Technical Report CRL 2001/01. Cambridge Research Labo-
ratory.

[Vitabile et al., 2001] Vitabile, S., Pollaccia, G., Pilato, G., and Sorbello, E.
(2001). Road signs recognition using a dynamic pixel aggregation technique in
the hsv color space. In CIAP01, pages 572�577.

[Wei, 1994] Wei, L. S. (1994). Recognition of tra�c signs using a multilayer neu-
ral network. In Canadian Conference on Electrical and Computer Engineering.

[Woehler and Anlauf, 1999] Woehler, C. and Anlauf, J. K. (1999). A time delay
neural network algorithm for estimating image-pattern shape and motion. In
IVC, pages 281�294.

187



Bibliography

[Wu and Tsai, 2005] Wu, J. P. and Tsai, Y. C. (2005). Real-time speed limit
sign recognition based on locally adaptive thresholding and depth-�rst-search.
PhEngRS, 71(4):405�414.

[Zadeh et al., 1997] Zadeh, M., Kasvand, T., and Suen, C. Y. (1997). Localiza-
tion and recognition of tra�c signs for automated vehicle control systems. In
Proceedings SPIE Vol. 3207 Intelligent Transportation Systems, pages 272�282.

[Zhang et al., 2008] Zhang, K., Sheng, Y., Wang, P., Luo, L., Ye, C., and Gong,
Z. (2008). Automatic recognition of tra�c signs in natural scene image based
on central projection transformation. In ISPRS08, pages 627�.

[Zheng et al., 1994] Zheng, Y.-J., Ritter, W., and Janssen, R. (1994). An adap-
tive system for tra�c sign recognition. In Intelligent Vehicles '94 Symposium,
pages 165�170.

[Zhu and Liu, 2006] Zhu, S. and Liu, L. (2006). Tra�c sign recognition based on
color standardization. In International Conference on Information Acquisition,
pages 951 � 955.

[Zuniga et al., 1982] Zuniga, O., Shapiro, L., and Lumia, R. (1982). A new con-
nected components algorithm for virtual memory computers. In PRIP82, pages
560�565.

188


	Introduction and State of the Art
	Introduction
	Characterization of Speed Limit Signs in Europe
	State of the Art
	Traffic Sign Recognition Research Groups
	Scope of the Thesis
	Thesis Overview

	Runtime System Design - and Implementation
	General Requirements
	System Overview
	Camera Requirements
	Traffic Sign Detector
	Traffic Sign Tracker
	Classifier
	Supplementary Sign Detection and Recognition
	Extension Modules for Improving Traffic Scene Interpretation

	General Classifier Adaptation Approach
	Classifier setup
	Obtaining Sample Sets
	Training of the Classifier for a New Country
	Training of Classifiers for Country Sets

	Offline System and Classifier Training
	Classifier Design
	Classifier Internationalization
	Design and Implementation of a System for the Automation of Sample Collection
	Combination of Classifiers of Different Countries

	Design of the Evaluation System
	Evaluation of the Camera Control
	Creation of the Training and Testing Set
	Evaluating the Detector
	Tracker
	Single Sign Classification
	Track Classification
	Traffic Scene Interpretation

	Experimental Investigations and Evaluation
	Examining Camera Exposure Time
	Training and Testing Sets
	Traffic Sign Detector
	Tracker
	Over all Performance of the Detector and Tracker
	Classifier
	Classifier Internationalization
	Supplementary Sign Detection and Recognition
	Separation of Active and Exit Signs
	Over all Results of the Traffic Sign Recognition System

	Summary and Outlook
	Future Work and Outlook

	Appendix
	Definitions and Acronyms
	AdaBoost
	Chamfer Matching
	Camera Model
	List of References For Colour as Primary Detector
	Bayer-Pattern
	Camera and Sensor Specifics
	Composition of the Classifier Training Set
	Composition of the System Evaluation Set
	Implementation on Mobile Devices
	Generalization of the Coarse Detector
	Derivation of Equations in the Three-Dimensional Measurement
	Types of Supplementary Signs
	Active Versus Blue Exit Signs Utilizing Colour Information
	Screen shot of the Evaluation Tool

	Bibliography

