
RAPTOR – A Scalable Platform for
Rapid Prototyping and FPGA-based

Cluster Computing

Mario PORRMANN, Jens HAGEMEYER, Johannes ROMOTH,
Manuel STRUGHOLTZ, and Christopher POHL 1

Heinz Nixdorf Institute, University of Paderborn, Germany

Abstract. A number of FPGA-based rapid prototyping systems for ASIC emula-
tion and hardware acceleration have been developed in recent years. In this paper
we present a prototyping system with distinct flexibility and scalability. The designs
will be described from an architectural view and measurements of the communica-
tion infrastructure will be presented. Additionally, the properties of the system will
be shown using examples, that can be scaled from a single-FPGA-implementation
to a multi-FPGA, cluster based implementation.

Introduction

In the process of developing microelectronic systems, a fast and reliable methodology
for the realization of new architectural concepts is of vital importance. Prototypical im-
plementations help to convert new ideas into products quickly and efficiently. Further-
more, they allow for the development of hardware and software for a given applica-
tion in parallel, thus shortening time to market. FPGA-based hardware emulation can
be used for functional verification of new MPSoC architectures as well as for HW/SW
co-verification and for design-space exploration [1,2,3]. The rapid prototyping systems
of the RAPTOR family that have been developed in the System and Circuit Technology
group in Paderborn during the last ten years, provide the user with a complete hardware
and software infrastructure for ASIC and MPSoC prototyping. A distinctive feature of
the RAPTOR systems is that the platform can be easily scaled from the emulation of
small embedded systems to the emulation of large MPSoCs with hundreds of processors.

1. RAPTOR-X64 – A Platform for Rapid Prototyping of Embedded Systems

The rapid prototyping system RAPTOR-X64, successor of RAPTOR2000 [4], integrates
all key components to realize circuit and system designs with a complexity of up to 200
million transistors. Along with rapid prototyping, the system can be used to accelerate

1This work was partly supported by the Collaborative Research Center 614 – Self-Optimizing Concepts and
Structures in Mechanical Engineering – University of Paderborn.



computationally intensive applications and to perform partial dynamic reconfiguration
of Xilinx FPGAs.

RAPTOR-X64 is designed as a modular rapid-prototyping system: the base sys-
tem offers communication and management facilities, which are used by a variety of
extension modules, realizing application-specific functionality. For hardware emulation,
FPGA modules equipped with the latest Xilinx FPGAs and dedicated memory are used.
Prototyping of complete SoCs is enabled by various additional modules providing, e.g.,
communication interfaces (Ethernet, USB, FireWire, etc.) as well as analog and digital
I/Os. The local bus and the broadcast bus, both embedded in the baseboard architecture,
add up to a powerful communication infrastructure that guarantees high speed commu-
nication with the host system and between individual modules, as depicted in figure 1.
Furthermore, direct links between neighboring modules can be used to exchange data
with a bandwidth of more than 20 GBit/s.

For communication with the host system, either a PCI-X interface or an integrated
USB-2.0 interface can be used. Both interfaces are directly connected to the local bus,
thus creating both a closely coupled, high speed, PCI-X based communication, or a
loosely coupled, USB based communication. As configuration and application data can
either be supplied directly from the host system or stored on a compact flash card, stand-
alone operation is also supported. Therefore, the system is especially suitable for infield
evaluation and test of embedded applications. In addition to these features, RAPTOR-
X64 offers several diagnostic functions: besides monitoring of the digital system envi-
ronment (e.g., status of the communication system), relevant environmental information
like voltages and temperatures are recorded. All system clocks are fine-grain adjustable
over the whole working range, allowing for running hardware applications at ideal speed.

The latest FPGA module that is currently available for RAPTOR-X64 (called
DB-V4) hosts a Xilinx Virtex-4 FX100 FPGA and 4 GByte DDR2 RAM (see fig-
ure 1). The FPGAs include two embedded PowerPC processors and 20 serial high-
speed transceivers, each capable of transceiving 6.5 GBit/s in full duplex. Utilizing these
transceivers, four copper-based data links with a throughput of up to 32.5 GBit/s each
are realized on the DB-V4 module. By adapting the cabling between the modules, the
communication topology can be changed without affecting the communication via the
RAPTOR base system. Serial data transmission at data rates of up to 6.5 GBit/s necessi-
tates techniques to maintain signal integrity between the FPGAs. Utilizing all integrated
signal integrity features of the FPGA and providing a sophisticated PCB environment

SelectMAP, 
CFG-JTAG

SelectMAP, 
CFG-JTAG

SelectMAP, 
CFG-JTAG

CTRL+Config Logic
Arbiter, MMU

Diagnostics, CLK, 
Configuration, etc.

PC
I-X

-B
us

PCI-Bus-
Bridge

Master, Slave, 
DMA

Local-Bus (32Bit Data / 32Bit Address)

Dual-Port
SRAM

85

CTRL, 
SMB 85

CTRL, 
SMB85

CTRL, 
SMB

128

M
od

ul
e 

6

M
od

ul
e 

4

Module 1

128

Module 2

128

Module 3

128

75 75 75

Broadcast-Bus

USB Logic
Local-Bus Master
Local-Bus Slave

OTG-Control

USB Controller
USB 2.0-High-Speed

USB-OTG
USB 2.0

Xilinx 
SystemACE CF

CF Access, 
JTAG Control

CF

TST-JTAG

CFG-JTAG

System Monitor
Voltage, Tempature, 

Analog Inputs

Clock
Sythesis, 

Distribution

Ex
te

rn
al

 C
on

ne
ct

or
s

Local Bus

5

5

5

5

128

22

85

DB-V4

Configuration, 
JTAG

CTRL / 
I²C 75

Broadcast Bus

Xilinx Virtex-4 FX
XC4FX40/60/100 [448/576/768 IOs]

Replaceable
DDR2-SODIMM-

Module
200Pin SODIMM Socket

85

104

104

75

DDR2
SDRAM 

Controller

5

JTAG

3x external 
Clock

5 x 5 LED 
Matrix

Trace & 
Debug 

(2x38 IOs)
76

4

3

25

5

13
0

128

Hi
gh

-S
pe

ed
-

Se
ria

l-I
O

 
C

on
tr

ol
le

r

22

20 Lanes
(622 Mbs – 6.5 Gbs 

per Lane)

External 
Power 
Supply

Figure 1. Architecture of the RAPTOR-X64 prototyping system and the FPGA based module DB-V4



Figure 2. Data-packet format used for communication between the FPGAs.

together with high-end cables and connectors, wire-based communication between the
RAPTOR boards is possible up to a distance of two meters at full data-rate.

For easy usage of the high-speed, low-latency communication between the FPGAs, a
five-port Rocket-IO switch has been developed and is available as an IP-core. The switch
supports non-blocking cut-through operation between Rocket-IO ports, and handles all
details of the Rocket-IO based communication such as initialization, channel-bonding,
flow-control, error detection, etc. This functionality is built on top of the Xilinx Aurora-
protocol. Aurora inherits low-level tasks like bonding multiple Rocket-IOs to a single
lane, clock and data recovery, and error detection via 8B/10B encoding mechanisms. It
implements an easy to use data and control interface that can be interfaced by the higher
layers of the user-protocol.

A generic on-chip interface allows for easy integration of the switch into ev-
ery design. Futhermore, for integration in a processor-centric design, the switch uti-
lizes a scatter-gather-DMA (SG-DMA) based interface. This implementation enables
sending/receiving of packets directly from the processor’s main memory (e.g., DDR2-
SDRAM), where the processor is only involved in the initialization of the process. The
switch implementation is available as an IP-core integrated into the Xilinx EDK. The
software libraries allow to access the serial high-speed links similar to other packet-based
protocols, e.g., Ethernet, and can easily be integrated into embedded operating systems
like Linux.

A custom communication protocol has been developed, which is especially suitable
for MPSoC emulation. The protocol is implemented in hardware in the switching fab-
ric, and allows routing of data in up to four dimensions. Switching together with data
transmission or reception is executed in parallel to achieve maximum throughput and
minimal latency. Besides efficient routing algorithms, a custom data-packet format has
been defined for the new protocol, including information about target, source and length
of the data packets (see figure 2). Target and source fields in the packet header represent
the coordinates of the FPGA-module in the global structure, thus enabling fast routing
mechanisms for the desired infrastructure. A mask-field, which extends the target infor-
mation can be used for addressing multiple FPGA-boards, therefore enabling the use of
multicasts or broadcasts.



2. RAPTOR-XPress – A Highly Scalable Rapid Prototyping Platform

RAPTOR-X64 together with the proposed Virtex-4 modules can be used to set up FPGA-
based systems with dozens of high-end FPGAs and a high-speed communication in-
frastructure between the FPGAs. With an increasing number of FPGAs however, the
requirements on monitoring and debugging steadily increase, requiring high-bandwidth
communication between each individual FPGA and the host computers. Furthermore,
in the RAPTOR-X64-based environment, the topology between the FPGAs can only be
changed by adapting the cabling. Therefore, the next generation of RAPTOR systems
has been developed – RAPTOR-XPress, which will facilitate FPGA-based cluster com-
puting with hundreds of FPGAs connected by a very flexible communication infrastruc-
ture. The RAPTOR-XPress base board (see figure 3) can be equipped with up to four
daughterboards and provides extensive capabilities for system management and commu-
nication. The host connection is realized using eight PCI Express 2.0 channels. Using
a dedicated PCI Express switch on the base board, each daughterboard can access the
full bandwidth of 32 GBit/s to the host, allowing for a fast, low-latency access of the
host CPU to each FPGA in the system. A PCIe to local-bus bridge allows for simple bus
access to ease porting legacy FPGA designs and to reuse older modules of the RAPTOR
family that do not offer PCIe links. Furthermore, interfaces for USB 2.0 high-speed and
Gigabit Ethernet are available.

For communication between FPGA modules, the RAPTOR-XPress base board of-
fers direct connections between adjacent modules. This facilitates a ring topology be-
tween all modules on one base board with a bandwidth of 80 GBit/s and a latency of less

JT
A

GPC
Ie

 2
.0

-B
us

 (H
os

ts
ys

te
m

) (
8 

La
ne

s)

PCIe 2.0 Switch
(48 Lanes)

C
TR

L-
I2

C
P

W
R

-I2
C

13
2

Module 3

M
od

ul
e 

2
12

8

USB Controller
USB 2.0-High-Speed
USB-Host, USB-OTG

CTRL Logic
Power, I2C, USB, Ethernet, Operating System, etc.

System 
Monitoring

Voltage, 
Tempature

Clock
Sythesis, 

Distribution

13
2

Module 4

M
od

ul
e 

1
13

2

B
ro

ad
ca

st
/C

on
fig

 [1
]

13
2

Module 1

M
od

ul
e 

4
12

8
13

2
M

od
ul

e 
3

13
2

B
ro

ad
ca

st
/C

on
fig

 [2
]

B
ro

ad
ca

st
/C

on
fig

 [3
]

B
ro

ad
ca

st
/C

on
fig

 [4
]

Module 2

PCIe 8x [4]

PCIe 8x [3]

19
2x

19
2 

(2
4x

 8
x8

) C
ro

ss
po

in
t S

w
itc

h

21 x 11 Gbit/s

21 x 11 Gbit/s

21 x 11 Gbit/s

21 x 11 Gbit/s

O
th

er
 

R
A

PT
O

R
-X

Pr
es

s 

Broadcast/Config [1]

Broadcast/Config [2]

Broadcast/Config [4]

Broadcast/Config [3]

JT
A

G

JT
A

G
JT

A
G

PCIe 8x [1]

PCIe 8x [2]

PC
Ie

 8
x 

[1
]

PC
Ie

 8
x 

[2
]

PC
Ie

 8
x 

[3
]

PC
Ie

 8
x 

[4
]

Config+Broadcast Logic
Broadcast-Switch, Configuration, etc.

Inter 
FPGA

PCIe to Localbus 
BridgePCIe 1x

Lo
ca

lb
us

 (3
2B

it 
D

at
a 

/ 3
2B

it 
A

dd
re

ss
)

24 x 11 Gbit/s

C
TR

L-
I2

C
P

W
R

-I2
C

C
TR

L-
I2

C
P

W
R

-I2
C

C
TR

L-
I2

C
P

W
R

-I2
C

JTAG
JTAG-

Multiplexer

CTRL-I2C
PWR-I2C

JT
A

G

24 x 11 Gbit/s

24 x 11 Gbit/s 24 x 11 Gbit/s

Gigabit Ethernet 
PHY

Localbus Logic
Arbiter, MMU, Diagnostics, CLK, etc.

In
te

r 
FP

G
A

Flash 
Memory

DDR2 
SDRAM 
Memory

Hotplug + Config

Crosspoint-Config

Power Subsystem
µC-Based Power Sequencing, Control, 

Monitoring, System StartupGB Ethernet

USB

SD-Card

Figure 3. Architecture of the RAPTOR-XPress Baseboard.



Local Bus

132

85

PCIe 8x

24x11Gbit/s

78
Broadcast/Config Bus

LX50T, LX85T, LX110T, LX155T
SX50T, SX95T
FX70T, FX100T

Replaceable
DDR3-SODIMM-

Module
204Pin SODIMM Socket

132 132

78

DDR3
SDRAM 

Controller

JTAG Managment

5 x 5 LED 
Matrix

GPIO 
(2x38 IOs)

25

132

H
ig

h-
Sp

ee
d-

Se
ria

l-I
O

 
C

on
tr

ol
le

r

Xilinx 
Virtex-5 
LX30T

PCIe 8x
Endpoint 76

16x6.5 Gbit/s

PCIe µController

CTRL + Power Subsystem
Voltage Monitoring 

and Control

µController

JTAG

Power/CTRL I2CI2C

72
85

JTAG

130

Figure 4. Architecture of the Xilinx Virtex-5-FX-based module DB-V5.

than 10 ns. Furthermore, a central switch, implemented in a dedicated FPGA on the base
board, provides the modules with an additional bandwidth of 10 GBit/s in any topology.

For the communication between multiple RAPTOR-XPress base boards four serial
high-speed connections are used. The technology is basically the same as for the DB-V4,
enabling reuse of the developed protocols and of the switch IPs. The RAPTOR-XPress
base board realizes 24 serial high-speed (full duplex) lanes to each module. Each of the
four connectors to other RAPTOR-XPress base boards is connected to 21 serial high-
speed (full duplex) lanes. Each of these 180 full-duplex lanes offers a bandwidth of
11 GBit/s. The topology of these connections can be changed at runtime using a 180x180
crosspoint switch (1980 GBit/s aggregate bandwidth) on the base board. The first module
that realizes the new concepts integrates a Xilinx Virtex-5 FX100T and up to 4 GByte
DDR3 memory (see figure 4). The PCIe interface is realized by a dedicated Virtex-5
FX30T on this module.

In addition to the management features of RAPTOR-X64, RAPTOR-XPress inte-
grates advanced temperature monitoring and power management. Supply voltages can
be adapted at runtime and power-up sequences for the whole system are controlled by a
microcontroller. Voltages are automatically limited to applicable values, to provide max-
imum compatibility with all existing modules.

Based on the new RAPTOR-XPress system we are currently setting up an FPGA
cluster, which will be especially suited for the emulation of large MPSoCs and for high-
performance computing since it offers a unique communication infrastructure between
the FPGAs and between the FPGAs and the host computers. As depicted in figure 5, the
cluster will combine RAPTOR-XPress systems and special FPGA modules with direct
connection to the frontside bus (FSB) of the host processor, provided by Nallatech [5].
These FPGA modules can be attached to a socket 604 type CPU socket on an Intel Xeon-
based mainboard. This allows to combine the FPGA-module with a normal 7300 (Tiger-
ton) or 7400-series (Dunnington) Intel Xeon CPU on a multi-CPU mainboard. The direct
connection to the FSB offers 8.5 GByte/s sustained peak write bandwidth, 5.6 GByte/s
sustained peak read bandwidth, and 105 ns latency. Beside the direct connection to the
FSB, the FPGAs can communicate with any other FPGA in the cluster using the same
serial high-speed links that are used for the connections between multiple Raptor-XPress
boards.



 

Figure 5. Architecture of the RAPTOR-Xpress-based FPGA cluster, comprising 72 Xilinx Virtex 5 FPGAs

The starting configuration of the cluster consists of 64 Virtex-5 FX100T-2 FPGAs
on 16 RAPTOR-XPress systems and 8 Virtex-5 FX200T-2 with FSB-connection. All
FPGAs are closely coupled using the proposed high speed serial interfaces, offering a
point-to-point bandwidth of 26 GBit/s in a matrix configuration of the crosspoint switch.
In total, about 1.3 Million Virtex-5 FPGA slices, 19500 DSP-blocks, 256 GByte DDR3
RAM, 80 MByte BRAM, 12 MByte distributed RAM, 144 integrated PowerPC proces-
sors, and 256 GByte of embedded memory are available to the user.

3. Software Environment

For easy and comfortable use of the RAPTOR systems, the software environment Raptor-
Suite has been developed, consisting of three layers. The bottom layer, called RaptorLIB,
offers a direct interface to the hardware, which is nearly the same for all supported inter-
faces (USB, PCI, PCI-X, and PCIe, Ethernet), such that an application can easily switch
between these protocols. By using the RaptorAPI, remote usage capabilities are added,
enabling remote access to the RAPTOR systems using a client/server infrastructure via
the local network or the Internet. The graphical user interface RaptorGUI implements
comfortable management functionalities and allows basic tests of an application without
the need to develop a specific software application based on RaptorLIB/API. Hardware-
Software co-verification is further facilitated by a hardware-in-the-loop environment, en-
abling, e.g., a direct connection between RAPTOR systems and simulators or graphical
environments, e.g., Modelsim, Simulink or System Generator [6].

The design-flow for this FPGA based cluster deviates from standard FPGA flows,
as an additional partitioning step has to be performed. There are tools available (e.g.,
Synopsys Certify [7]), which allow for the partitioning of designs for multi-FPGA pro-
totyping environments with a fixed communication infrastructure. For the FPGA cluster,
however, this cannot be applied, especially as Certify currently does not support Rock-
etIOs as communication channels. Apart from that, the partitioning algorithm is opti-
mized for prototyping large irregular structures (e.g., singular processors) rather than for



regular structures as required by the typical application scenarios sketched in section 4.
Therefore, our design-flow relies on a tool-supported rather than an automatic approach.
Basically, the partitioning step is done manually, but the user is supported by a graphical
IDE that allows for easy partitioning of FPGA code and, by utilizing standard synthesis
tools, for easy assessment of the required FPGA resources. The IDE and all associated
tools use vMAGIC, a library for reading, manipulating and writing VHDL code [8].

4. Application Examples

In this section we describe two applications mapped to our FPGA cluster. The emula-
tion of large Multiprocessor Systems-on-Chip (MPSoCs) was one of the most important
reasons to set up the FPGA cluster. As a first example of a scalable, network on-chip
(NoC) based MPSoC architecture, the GigaNetIC architecture [1] has been implemented
on the RAPTOR systems. An MPSoC consisting of four 32-bit N-Core RISC proces-
sors [1], embedded program and data memory, and the switch box of the NoC can be em-
ulated on the DB-V4. Therefore, GigaNetIC systems with up to 24 embedded processors
can be emulated on a single RAPTOR-X64 system. Using simpler NOCs and smaller
processors (or processors that are optimized for FPGA implementation like the Xilinx
MicroBlaze [2]) the number of processors can easily exceed a hundred.

The second application is an implementation of a neural network based algorithm for
hardware accelerated data analysis: Kohonen’s self-organizing map (SOM) [9]. SOMs
use an unsupervised learning algorithm to form a nonlinear mapping from a given high-
dimensional input space to a lower-dimensional (in most cases 2-D) map of neurons.
Here, the neurons are emulated by processing elements (PEs), operating in a SIMD (sin-
gle instruction, multiple data) manner most of the time. The algorithm works as follows:

1. Initialization: The weight vectors mi of all neurons Ni need to be initialised, this
is often done by assigning random values:

∀i,j mi,j = rand[0...1], (1)

where j denotes the components of the vector mi.
2. Search bestmatch: A vector x(t) is randomly selected from X and the distance

between x(t) and all mi is calculated. The neuron with the smallest distance to
the input is called bestmatch (BM).

∥x−mbm∥ = min
∀i

∥x−mi∥ (2)

3. Adaptation: The weight vectors mi are adjusted to the input mi according to
their distance to the bestmatch in the grid.

∀i mi(t+ 1) = mi(t)− ∣mi(t)− x(t)∣ ⋅ ℎci, (3)

where ℎci = ℎci(t, ∥Ni −NBM∥) (4)

The so called neighborhood function ℎci is a function that decreases in space and
time, often a Gauss-kernel is chosen.



For an optimal resource utilization on different systems, two different versions of
the algorithm have been implemented on the RAPTOR systems. The algorithm itself
reveals two inherent degrees of parallelism: all neurons perform the same operations
on the same data vectors (neuron-parallel), and all vector components are processed in
parallel (component parallel), respectively. For the neuron-parallel approach, up to 512
processing elements can be realized on RAPTOR-X64. The rather more complex and
slightly less resource efficient neuron- and component-parallel approach is used on the
RAPTOR-XPress cluster, mainly for one reason: utilizing all 64 compute FPGAs of the
cluster, a total of 128× 64 = 8192 PEs may be instantiated using the cluster. The largest
maps currently in use at our department consist of 1600 neurons; therefore, approx. 80%
of the cluster could not be utilized using this architecture. The neuron- and component-
parallel approach, however, can utilize the complete processing power, because several
processing elements can be assigned to the emulation of one neuron. Measurements in
comparison with an Intel Core2 Duo processor running at 2.5 GHz show a speed-up of
about 10 for RAPTOR-X64 and a speed-up of more than 80 for the RAPTOR-XPress
cluster.

5. Conclusion

FPGA-based prototyping systems have been proposed, which offer emulation capacities
ranging from typical embedded processor architectures to next-generation high-end MP-
SoCs. A tightly integrated cluster of FPGAs, together with a software environment for
architecture mapping, monitoring, and debugging enables the fast analysis of MPSoCs
with hundreds or even thousands of processors. Furthermore, the close coupling of the
cluster to the host PCs via PCIe and especially via the frontside bus of the processors
enables the development of powerful hardware accelerators, e.g., to speed-up large sci-
entific simulations.

References

[1] J.-C. Niemann, C. Puttmann, M. Porrmann, and U. Rückert. Resource Efficiency of the GigaNetIC Chip
Multiprocessor Architecture. Journal of Systems Architecture (JSA), 53:285–299, 2007.

[2] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz. RAMP Blue: A Message-Passing
Manycore System in FPGAs. In Proc. of FPL2007, pages 54–61, 2007.

[3] Annapolis Micro Systems, Inc. Heterogeneous Processing Platform – FPGA Solutions for the IBM Blade
Center, White Paper: 200905.01, 20 May 2009.

[4] Heiko Kalte, Mario Porrmann, and Ulrich Rückert. A Prototyping Platform for Dynamically Reconfig-
urable System on Chip Designs. In Proc. of the IEEE Workshop Heterogeneous Reconfigurable Systems
on Chip (SoC), 2002.

[5] C. Petrie. A review of the FPGA high performance computing industry and the future role of FPGAs
within data-centric processing architectures. In Proc. of the Many-core and Reconfigurable Supercom-
puting Conference, 2008.

[6] C. Paiz, C. Pohl, and M. Porrmann. Hardware-in-the-Loop Simulations for FPGA-Based Digital Control
Design. Informatics in Control, Automation and Robotics, 3:355–372, 2008.

[7] Synplicity. Certify ASIC prototyping solution. online.
[8] Christopher Pohl, Carlos Paiz, and Mario Porrmann. vMAGIC - Automatic Code Generation for VHDL.

International Journal of Reconfigurable Computing, Special Issue ReCoSoC:7, 2009.
[9] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer,

Berlin, Heidelberg, second edition, 1997.


