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CHAPTER 1

Introduction

The various fields of the *omics life sciences (genomics, transcriptomics, proteomics to name a
few) have shown a very high pace of development in the last decade. New laboratory tech-
nologies like next-gen sequencing or high-throughput GC-MS are able to create a tremendous
amount of data. On the other hand, the cost and availability of compute power has dropped to
an all time low.

Combining life sciences and computer science is the field of bioinformatics, which also has seen
a growth without comparison over the last decade, and many new algorithms and applications
like short read mapping have been enabled by new developments in life sciences.

Keeping pace with the development and data flood from the laboratories imposes a need for
agile and flexible software development approaches. Unfortunately, the conventional software
development is too slow, even with scripting languages like Perl or Python. This is why work-
flow systems have been proposed and emerged. They break down a complex task into smaller
problems, orchestrate solving the sub-problems and merging the solutions, and to some extend
also handle data management.

Conveyor is a workflow engine which uses a novel approach for defining and deploying of
analytical workflows. It is based on a full generic object-oriented data model, and allows a data-
driven, interface based design of workflows. The engine is extensible by plugins, allowing almost
any functionality to be included in a workflow. The applicability of Conveyor to bioinformatics
applications is demonstrated in this thesis by several use cases.

Conveyor has been published in the Oxford Bioinformatics Journal ([LGG11]).
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CHAPTER 2

Analysis

Bioinformatics has been a fast growing field over the last decade, and new developments and
breakthroughs happen almost every year, both on the laboratory side producing data and on
the analytical side processing the data. The ultra-fast sequencing methods introduced in the
last years have created completely new opportunities for conducting experiments and examining
larger genetic samples. One example is metagenomics, the analysis of a complete biotope with-
out sequencing invidual specimen. It has not been feasible beforehand or required extraordinary
efforts. With more and more data available, the demand for data storage and data processing
have changed in a similar radical way. Flexibilty and agility in setting up analysis pipelines have
become an important aspect of modern bioinformatics tools. One way to achieve these goals is
using workflow systems instead of complex, monolithic applications.

2.1 A definition of workflows

The term workflow is used in many different contexts. It always refers to the process of breaking
up a large task into smaller ones, and arranging these smaller units in a logical and temporal
order to replace the large task.

A simple example of a workflow is the receipt for baking a cake. Put butter in a dish, add sugar,
eggs and flour, stir it up, put the dought into a cake tin, and finally put the tin into an oven for a
given time and a given heat.

This example already demonstrates some of the key features of workflows:

• they are built from smaller tasks

• tasks may be arranged in a successive or parallel way (e.g. ingredients may be put into the

3



2 Analysis

dish simultaneously, but the cake tin may only be put into the oven after it was filled)

Another example for workflows are the laboratory protocols used to conduct an experiment.
Figure 2.1 shows an excerpt of such a protocol. It also shows another feature of workflows:

• the same step may show up multiple times with different specifications

The final example for workflows are computer programs. They consist of a sequence of simple,
reusable instructions taken from a predefined set. There is a well defined order of execution, and
multi-threaded programs also parallelize multiple control flows.

While programs itself may be regarded as workflows, the term is used in a different context in
computer applications. The steps are usually higher level tasks, e.g. the various steps of a use
case in a business application.

In the scope of this thesis, only a special kind of workflow is considered:

• data-driven

• non-interactive (no step requires user interaction)

• batch

2.2 Requirements for bioinformatic analysis workflow systems

Modern data processing and analysis in the field of bioinformatics has to cope with a number of
requirements that arise due to the nature of biological data:

Data-driven processing The amount of data being processing in a typical workflow has grow
by several orders of magnitude during the latest developments in laboratory equipment.
A complete run of a Roche 454 Genome Analyzer FLX generates up to one billion bases
per run; an Illumina Genome Analyzer IIx has a yield of up to 70 billion bases. New
developments will push the output size even further to 500 billion bases. While sequencing
is only one aspect of bioinformatics, new developments in proteomics and metabolomics
also have increased the output size by several orders of magnitude.

The different file formats in use complicate the design and implementation of workflows.
Data has to be converted between formats, losing information in almost every case. Thus
a modern workflow system should be based on data instead of file formats, and only do
necessary conversion if interacting with external applications. The data should be defined
independent of concrete formats.

Security and discretion The data processed by bioinformatics workflows has to be handled with
various levels of discretion. In most cases, unpublished or secret data is involved which
should not be accessible for unauthorized third parties. This also includes sending the data
to external web services to perform analysis.

Legacy applications integration The backbone of data processing in bioinformatics are legacy
applications like BLAST, that perform special operations or implement algorithms. De-
pending on the application several options exists for executing such tools during workflow

4



2.2 Requirements for bioinformatic analysis workflow systems

Total Bacterial RNA Labeling with Random Hexamers.
Arkady Khodursky, Ph.D.
Email: khodursk@cmgm.stanford.edu
Updated: 2/10/99

20-25ug of total RNA in 10-14 ul of diH20 should be purified using RNA kit
or hot phenol extraction. After obtaining RNA sample it is important to get
rid of residual DNA with RNase-free DNAse followed by 1x PHOH,
1xPHOH/CHCl3, 2x CHCl3 extraction. Extent of RNA purity achieved by
PHOH-CHCl3 extraction is absolutely critical for successful labeling.

Above indicated amount of RNA should be mixed with 500ng of random pdN6
primer on ice in total volume of 15 ul.

Incubate at 65 C for 10’.

Incubate on ice for 2’.

Add 3 ul of 1 mM FluoroLink Cy3 (orCy5) dUTP (Amersham Cat# PA53022).

Add 11.6 ul an mix everything by pipeting 3-4 times on ice of reverse
transcription mix:
0.1 DTT - 3ul
5x 1st strand buffer - 6 ul
dNTPs (25 mM dATP, 25 mM dCTP, 25 mM dGTP, 10 mMdTTP) - 0.6 ul
SuperscriptII - 2 ul
(All from GibcoBRL Cat.# 18064-014)

Incubate the complete mixture for 10’ at RT.

Transfer to 42 C for 110’.

Stop by adding 1.5 ul of 1n NaOH for 10’ at 65 C.

Neutralize with 1.5 ul of 1M HCL.

Figure 2.1: Laboratory protocol example for bacterial RNA labeling, taken from the Stanford
website. In addition to other steps it contains several incubation steps with varying
time spans and temperatures.
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2 Analysis

processing:

local processing The application is executed on the local host only. This option is
favourable with respect to data security, since no data is passed over a network. Its
drawback is the limited processing power even larger computer system offer today.
On the other hand it allows using special hardware like GPUs oder FPGAs for faster
analysis.

local cluster A local compute cluster can be used for distributing applications over several
compute hosts. In most cases a complex infrastructure is required for local clusters,
starting with the compute hosts, and ending with shared network storage for data
and application. Depending on the application, the performance of the clustered
approach may scale well with the size of the cluster. Since the cluster is part of
the local infrastructure, the security aspect of this solution depends on its setup and
configuration. Special purpose hardware like the aforementioned GPUs and FPGAs
may also be made available in a local cluster.

cloud (remote cluster) The much hyped clouds are compute clusters operated by third
parties. Clients may rent machines in various configuration and sizes, running their
custom software on them. After an initial setup, clouds are easy to use and do not
require maintenance by the clients. While a local cluster requires a regular investiga-
tion of time and money, cloud-based computing is paid by the amount of computing
power actually used.

The drawback of cloud computing is the uncertainty with respect to security aspects.
Hosts in a cloud run outside the control of the client. Depending on the setup, several
different clients may share the same physical machine in case of virtualized instances.
Although communication with and between the cloud hosts may be encrypted, the
security of the host itself cannot be supervised by the client.

(remote) web service Web services offer a standardized way of providing services over
the network. Service discovery, specification, and invocation are defined by standard
bodies to allow interoperability between different platforms and programming lan-
guages. A number of large bioinformatics related institutes offer access to their data
and applications by web services.

Several drawbacks make web services the least favourable solution for executing ap-
plications within workflows. They add a noticable overhead to execution time due
to the time needed for formatting the request, sending it over the network, decod-
ing and processing it, and finally sending a formatted result back to the client. For
bioinformatics applications, several different implementations like BioMoby[WSK+08]
or SoapLap[SRBU09] exist with different data formats and different discovery meth-
ods. Direct interoperability between different service implementations is not possible
in most cases.

Security aspects are the major drawbacks of web services. Some discovery methods
like BioMoby do not even offer to select encrypted services or use trusted services
only. Authentication of the service is optional for most services.
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Extensibility New data formats and new applications are constantly created in the fields of bioin-
formatics, so a workflow system has to be able to adopt to changes.

Integration The workflow system itself is used as a tool for processing data. Data management
and result visualization may not be part of the workflow system and applications that
handle these aspects already exist. The workflow system should be easily integratable into
existing software, being able to access their data and passing the results for storage and
visualization.

The requirements are gathered with a large data amount, fast data processing, security concerns,
and flexibility in mind. The next section presents selected existing systems and evaluates them
with respect to these requirements.

2.3 Existing workflow systems for bioinformatics analysis

A number of workflow based applications and frameworks have already been published and
presented for bioinformatics workflows. These applications offer different approaches, varying
functionality, and multiple solutions to the requirements pointed out in the previous section. The
following subsections describe such applications in order to examine whether they fulfill these
requirements.

2.3.1 Mobyle

Mobyle[NMM+09] is a web based environment for accessing bioinformatics tools and data man-
agement. The software is freely available, and several institutes provide free guest access to their
server.

Data processing is based on files. A tool is described by its input format(s), the output format(s),
and configuration settings. The result of one tool can be directed into another if output and input
formats match. A processing pipeline can thus be built by concatenating a number of tools. In
case of non-matching formats a conversation is necessary (if available).

Many standard bioinformatics tools are already supported by Mobyle. Extending the repository
is a matter of writing an application description and providing a commandline implementation of
the tool.

Since Mobyle is freely available, the security requirements can be easily fulfilled by setting up
a private instance. Execution of external applications is configurable, and compute clusters are
supported as execution backend.

Due to the web based nature of Mobyle, an integration into existing software is not possible.
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2.3.2 Taverna

Taverna[HWS+06] is the workflow solution of the myGrid project1, “a multi-institutional, multi-
disciplinary internationally leading research group focussing on the challenges of eScience”. It
is a freely available, Java-based application. Workflows designed with Taverna can be published
and exchanged using myExperiment[DRGS08], a researcher community being part of myGrid.

Taverna is built around web services, and comes with a number of preconfigured service repos-
itories, for example BioMOBY([WSK+08]) or SoapLap([SRBU09]) based registries. The myGrid
project developed an ontology of data formats and mapped each native service format to that
ontology. This allows for using services from different sources and different registries in the same
workflow, as long as their data formats map to compatible ontology entries. Conversion services
may be used in case of incompatible formats.

The default registries already contain almost all standard bioinformatics tools; in many cases there
are even multiple services providing the same tools, e.g. for BLAST[AMS+97] based services in
BioMOBY. To extend an available services, a new bioinformatic tool can be deployed as a web
service, and registered with Taverna or one of the registries Taverna uses. Functionality may also
be implemented locally as a part of Taverna, to a limited extent.

Since Taverna relies on external web services, creating a secure and discrete environment requires
setting up a local registry and local web services for all necessary functions. Although possible,
this setup requires a huge effort, which may not be feasible under most circumstances.

2.3.3 Pegasus WMS

Pegasus WMS[DSS+05] is a workflow management system designed for distributed comput-
ing. It is freely available, and binary packages for various Linux distributions are offered on the
corresponding website.

Workflows are file based and built on external applications. Instances of files and applications
are defined in an abstract workflow definition, including their relations.

Pegasus itself does not handle applications. The abstract workflow definition refers to application
names, which are either mapped to executable described in the same file, or a site-specific catalog
is used.

To execute a Pegasus workflow, the abstract workflow definition is converted to a physical work-
flow definition, based on the architecture of the execution environment, the availability of the
executable, and other constraints. Pegasus is able to handle local execution, complex grid com-
puting environments, and cloud-based setups. Necessary extensions like file transfer between
compute nodes or cloud-instances are added to the physical workflow definition on demand.
Execution itself is handled by the integrated Condor workload manager[TTL05]. Security and
data discretion aspects depend on the setup of Pegasus and the execution environment, and the
documentation available for Pegasus and Condor describe how to build a secure setup.

1http://www.mygrid.org.uk.
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A number of graphical user interfaces for workflow design and application definition are built on
Pegasus, and libraries for Java and Python are bundled with the Pegasus distribution that allows
creating workflows programmatically.

2.3.4 Kepler

Kepler[ABJ+04] is a generic workflow engine with applications in various different fields of re-
search. It is a freely available standalone java application.

Workflows are built from components called actors and include definitions how their actors in-
teract with each other. The actors in turn are implemented as Java classes and bundled into
libraries. A large collection of predefined actors exists, focussing on many aspects of numerical
data analysis. A small set of actors related to bioinformatics is already implemented but a large
number of standard tools are missing from the available actor collections.

Kepler provides different directors that orchestrate the actors during execution and implement
different ways to execute a workflow. There exists directors for single actor execution, parallel
execution, or time-triggered execution, just to name a few.

A workflow is executed on the local machine as long as no external data source or actors access-
ing external services are involved. Security and discretion aspects are thus reduced to selecting
the right actors and directors for a workflow.

Kepler is based on an underlying framework named Ptolemy II([EJL+03]) for defining actors. This
framework provides a type system for data passed between actors. It includes various numerical
types (integer, float, double etc.), string and derived types like XMLToken2, booleans and opaque
objects. Relations between types express the ability to (losslessly) convert one type to another.
Compound types like arrays or records are also exported.

In addition to data processing actors, Kepler also includes a number of actors executing control
flow tasks like branching or workflow control. Actors may also be composed of nested actors,
allowing workflows to be arbitary complex.

A graphical user interface for designing and executing workflows is part of the Kepler distribution.

2.3.5 Galaxy

Galaxy[GNT+10] is a data management and processing system. It allows both ad-hoc processing
and workflow-based processing. It is a web-based application and freely available.

Data is managed in a file-based way, using file name extensions or file introspection to define
the type of a file. Workflows are built from tools, and files are passed between the various
tool instances of a workflow. Tools are based on external applications and described in an XML
format. A large number of predefined tool definitions are bundled with Galaxy, with a focus on

2a string with restrictions on valid characters
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next generation sequencing data processing. Adding new tools requires providing an external
application or script, and writing a tool definition file.

Since Galaxy is based on local applications, security aspects can be answered by installing a local
instance.

The Galaxy web interface is very intuitive and easy to use, and a lot of documentation exists.

2.3.6 Conclusion

The workflow systems outlined in the previous sections represent the state-of-art in bioinformat-
ics, and are supported by a number of larger international collaborations. Table 2.1 lists the set of
requirements defined in section 2.2 and states which are supported by a given workflow system.
Mobyle is a nice tool for simple processing pipelines, but it uses a file-based data management.
Taverna is an excellent tool for integrating data and processing facilities from various sources, but
it cannot be used with confidential data. Pegasus is probably the most outstanding system with
respect to its distributed processing facilities, but it also offers only file based operations. Kepler is
the most promising tool, but its type system is mainly focussed on primitive values and lacks sup-
port for complex types like classes, and only a small number of bioinformatics tools are already
implemented. Finally, Galaxy is the most user-friendly tool3, and allows users to quickly analyse
their data and design workflows. Again, the file-based concept does not fulfill the requirements.

Requirement Mobyle Taverna Pegasus WMS Kepler Galaxy
Data driven processing - - - +4 -
Security and discretion +5 - +6 + +
Legacy applications
locally + -7 + - +
local cluster + - + - -8

cloud - - + - -
web service - + - - -

Extensibility + + + + +
Integration - +9 +9 - -

Table 2.1: Comparison of the existing workflow systems described in the previous section. Each
row lists one of the requirements defined in section 2.2 and which system fulfills that
requirement.

3personal opinion of the author
4limited with respect to features available
5web interface access only, but designed for running external tools on local infrastructure
6security aspects depend on the method of execution used for Pegasus
7focussed on web services, limited support for local functionality
8tool wrappers in Galaxy may be setup to use a local cluster
9based on command line tools for workflow execution
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As shown in the table, none of the presented workflow-systems fulfill the complete set of require-
ment. While all systems allow to be extended with new functionality, integration into existing
application is only possible by command-line clients for executing a workflow. A direct transfer of
data between an application and the workflow is only possible by the use of files in the Pegasus
case.

One of the most important aspects is data-driven processing. As stated in the introduction, the
amount of data to be processed has grown of the last years, and is expected to further increase
within the future. With file and web interface based setups, attempts to work with large datasets
becomes infeasible.
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CHAPTER 3

Design of the Conveyor workflow system

This chapter describes the design of the Conveyor workflow system based on the requirements
defined in chapter 2:

• data-driven processing

• extensibility

• integration with existing applications

• secure and discrete data handling

• support for legacy applications

Although the design has to take all these requirements into account simultaneously, the different
aspects have a varying degree of influence on it. As pointed out in chapter 2, the way to
execute external applications also defines which security aspects have to be considered. These
are discussed in a separate section of chapter 4.

The following sections describe the user roles involved in Conveyor, the overall system design,
the representation of workflows, and associated components.

3.1 System design

The overall design of Conveyor is split into three parts as shown in figure 3.1:

Plugins The plugins define the workflow steps and data entities available to the workflow sys-
tem.

Definition and Processing This subsystem contains the component for managing the plugins,
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the representation of an actual workflow, and the component for executing a workflow.

Client This component uses the definition and processing subsystem to create workflows and
execute them. It may be outside the scope of Conveyor itself, e.g. a third party application
that uses Conveyor to process data.

This aspect of the design is mainly guided by two requirements defined above for workflows:
extensibility and integration with other applications. Using a component-based approach allows
Conveyor to be embedded into third party applications, either by directly linking the components,
or by encapsulating the Conveyor components into a web service.

The interfaces used for communication between the components also encourage extension of
the Conveyor system. Components may be exchanged with new implementations, or additional
providers may be added for supporting new processing steps and data entities.

Figure 3.1: Design of the Conveyor workflow engine, with different colors depicting different
functional components. Three different components interact: the plugins (red), the
client (blue), and the processing and definition component mediating between them.

3.2 User roles

Within the Conveyor system a suer might fulfill different roles. The following list introduces these
roles and gives a short description of them:

Administrator The administrator’s task is to setup Conveyor and provide all necessary tools and
libraries for running a Conveyor based application. It is also his responsibility to maintain
Conveyor, install updates, etc.

Plugin developer The plugin developer has a background in a specific domain or application and
software development. He creates the plugins that allow Conveyor to handle data of that
domain and application, providing a specific functionality.

Workflow developer The workflow developer is a specialist for a certain domain. He designs
workflows for domain-specific tasks.

Workflow user The workflow user finally applies an already designed workflow to solve a spe-
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cific task.

As an example, we consider a workflow running BLAST for a number of protein sequences.
The administrator has to ensure that the BLAST executables are installed, and corresponding
databases are available. The plugin designer implements the functionality for running BLAST
and analysing the BLAST output. The workflow developer designs the workflow, including the
handling of sequences, passing them to BLAST, and processing the results. The workflow user
defines which sequences and which database should be used.

A user may take any of the roles mentioned, e.g. a workflow developer is also a workflow user
in most cases.

A role not mentioned above is the role of the Conveyor developer. Instead of emphasing on
specific functionality, the Conveyor developer focusses on core components and the internal
mechanics of Conveyor itself.

3.3 Workflow

A workflow contains the complete description of a task, including all processing steps and how
the processing steps are connected to each other. Within Conveyor, a workflow is represented
as a directed graph. Each node in the graph defines a processing step; the edges connecting
the nodes define how data is passed between nodes. Each processing step defines how many
ingoing and outgoing connections are required for each node. An example workflow is shown
in figure 3.2.

The design allows simple processing pipelines, built by concatenating processing steps, or com-
plex workflows with logic control, branches, loops and parallel flow of data. The nodes within a
Conveyor graph act independently of each other. Data objects are passed one by one from node
to node, and each node starts processing when its requirements are fulfilled. This model allows
parallel execution of a workflow, and thus utilizes multiple cores or computers.

3.4 Plugins

A plugin is a collection of node and data types for the Conveyor system. Instead of a list of
contained types maintained by the plugin developer, Conveyor uses reflection and introspection
to scan the plugin and extract all necessary information at runtime. Metadata fields defined in
the source code of the plugin allow the developer to add more information, e.g. a description
of a node type. These metadata fields are usually embedded in the source code of the referring
entity itself, thus encouraging their use already during development.
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Figure 3.2: The image shows an actual Conveyor workflow for creating a reference based
genome annotation (see section 5.1 for more details). The boxes are instances of
various node types, and the arrows connecting the boxes indicate the flow of data
between node instances. Different shades are used for input nodes (blue), processing
nodes (green) and output nodes (red).
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3.5 Type system

Conveyor is all about data and processing nodes of a workflow graph. Both concepts are de-
signed around an object oriented type system providing statically strong types. Many features
of type systems found in modern programming languages are supported by Conveyor:

Inheritance In particular the node types (explained in more detail below) use inheritance to
create a class hierarchy and share many implementation aspects with super-classes.

Interfaces For a data-driven approach to workflows, using interfaces for expressing common
concepts is crucial: Interfaces make certain aspects independent of an explicit implemen-
tation and allow exchanging the implementation without further changes. Interfaces are
important for data types, since they allow using the same node type with different data
types instead of creating a node type for each data type implementation.

Generics Generic types are the basis for complex, type-safe data structures. They implement a
type whose concrete characteristics depend upon one or more type parameters. Instances
of generic types are defined by binding these type parameters to concrete types. Well-
known examples of generic types are generic lists, that abstract from the type of element
they store. Applying generic types reduces the need for type checking and type casting
dramatically.

Type constraints A type constraint defines a minimal requirement for a type parameter in an
instance of a generic type. The constraint usually refers to an interface a type has to
implement, or a base class it has to be derived from.

The combination of last three concepts give a very powerful and expressive type system for
node and data types. Generic node types further encourage flexible usage and independence
of concrete data types, while allowing to narrow acceptable data types e.g. by defining a type
constraint for an interface.

3.6 Data types

Since Conveyor’s design is following a data-driven approach, the data type design is the most
crucial part. It should only inflict as little restrictions as possible to applications. To achieve this
goal, a data type is defined by a class implementing an empty marker interface. No further
restrictions apply, and a plugin developer is free to implement any functionality within the data
type. Using the marker interface for type constraints in generic classes, the resulting type will
work with any data type supported by Conveyor. The marker interface also allows an easy
identification of data types. By scanning all public types for those implementing the interface,
Conveyor can easily build a list of all available data types.
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3.7 Node types

Besides the data types, a plugin may also contain node types that define the processing steps
of a Conveyor workflow. While the data types are defined by an interface, the node types are
derived from abstract base classes. They already contain most of a node type’s logic and default
implementations for many aspects of node types like life cycle and execution control. Similar
to the data types, the available plugins are scanned for classes being derived from the abstract
node types’ base classes, creating a list of node types. Node types may be decorated with certain
meta data attributes, that contain a description of the node type, or define special requirements
for using it. The metadata is also used in the node type information presented to a workflow
designer.

3.7.1 Node fields

The use of reflection to obtain information about plugins also applies to the node types itself.
Almost all important aspects of node types like connections to other nodes or configurations are
expressed by fields of the node type. These fields are scanned and information is extracted that
result in the formal description of a node type. Using typed fields also eliminates a whole class
of programming errors. Instead of evaluating the name of a connection at runtime, its name is
the name of a type field and thus can be checked by the compiler at compile time. Type errors
and casts also are avoided by this practice.

The following types of fields are supported by node types and detected by Conveyor:

Endpoints A node may have severral endpoints, which is a data exchange point either con-
suming or producing data. A Conveyor workflow is build by creating node type instances and
connecting their endpoints thus modelling the data flow in the graph. An endpoint itself is de-
fined as generic data type with the type parameter being the type of data that is exchanged
via the endpoint. As a result, the node class implementation does not need to use type casts
to work with data elements exchanged at an endpoint. The number of endpoints is not limited
by the design, but at least one endpoint is required to make a class usable at all. Similar to the
node class itself, an endpoint may be decorated with a description via attributes that are visible
to the workflow designer. Two types of endpoint fields are available, one for outgoing and one
for incoming data.

Configuration fields These fields define configuration values that may influence the processing
within a node class. Configuration fields are visible to the user and for mandatory ones, the
user is required to enter valid information prior to running the graph. A node class may have
any number of configuration fields and it is the responsibility of the class itself to check that all
fields contain reasonable values. Fields may be decorated with attributes, providing a description
visible to a workflow designer, a default value and a flag to mark them as optional.
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Settings In contrast to configuration fields mentioned before, settings are static objects that
refer to a node class instead of a single node instance. They can be used to define setup and
policy dependent values like the paths to executables or default values. Table 3.1 shows the
various kinds of settings available in node classes. The value of a setting cannot be manipulated
by the user. Instead, settings are configured by the administrator or automatically detected at
runtime. Setting fields are not restricted to node types only. Other types available in a plugin
may also contain settings, e.g. parsers for file formats.

Type Description
Boolean a boolean value
Directory a directory in the file system, with optional check for exis-

tence of the directory and entries in the directory
Double a floating point value
Executable a binary in the file system, with optional scanning of the de-

fault search path for the binary
Integer a 32 bit integer
String a UTF-8 string
StringList a list of UTF-8 strings
Type a class implementing a given interface
TypeList a list of classes implementing an interface

Table 3.1: Setting types available in Conveyor. Static fields using these types allow for an easy
configuration of plugins and the core system by external configuration files.

3.7.2 Generic type support

Node types are ideally suited to be implemented as generic types, propagating the type param-
eters to the endpoint fields. Type constraints associated with the type parameters define the
minimum data type of endpoints, and allows retrieving and sending concrete data objects. In
addition to be independent of concrete data types (as mentioned above), generic node types also
mimic higher order functions known from functional languages. In this connection, functions are
treated as data entities, and higher order functions employ functions given as parameters in their
execution. Generic node types may implement a similar scheme by endpoints that are expected
to form a loop. Instead of the functional programming language case of calling a function, pass-
ing parameter to that function, and retrieving its result, a generic node type simply passes data
to one or more outgoing endpoints, and expects the results at one or more incoming endpoints.
The node library developed for Conveyor already contains a number of node types following
this approach to provide functionality like sorting, mapping elements of a list or searching for
elements in a list.
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3.7.3 Node constraints

While the previously mentioned aspects focus on the definition of a node type itself, node con-
straints define certain aspects of the semantics of a node type.

As an example consider the map functionality found in many functional programming languages.
A list of elements is converted to another list of (maybe different) elements by invoking a given
function for each element of the source list and collecting the function’s results in the target list.
A node type example of the map function is shown in figure 3.3. Node A sends lists to the map
node, the map node passes each element to the loop built by the C and D nodes, the results are
collected in the map node and passed to the B node after a complete list has been processed.

Figure 3.3: Example for node constraints: the Map node requires that a path exists from its
processing output to the processing input (Map − > C − > D − > Map), and no
nodes on that path violate the cardinality and order constraints.

Since map applies a function to each element of a list, the map node has to rely on a number of
semantic requirements. A path has to exist in the direct graph connecting map’s element output
to map’s element input. Furthermore, for each element passed to the processing output, an
element has to be made available on the result input. Finally, the order of elements resp. their
derived elements has to be preserved.

These requirements are expressed by using constraints. A constraint is an attribute used for
decorating a node type class. It usually contains the names of two endpoints the constraint
has to be applied to1. Node types that violate the semantics of a constraint are marked with
corresponding (mostly empty) interfaces.

The following constraint/interface combinations exists:

ConnectedLoop Both given endpoints have to be connected in a way that a path exists from
one endpoint to the other. This constraint relies on analysing the workflow graph itself,
and no interface is accompanied to it.

1At this point the developer has to address the fields by their name, since their content may not be available yet.
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OrderConstraint The order of elements passed along the path between the endpoints may not
change.

CardinalityConstraint The number of elements sent to a loop and the number of elements read
from the loop may not differ. No elements may be removed from or inserted into the data
stream.

FlowConstraint All nodes along the path between the endpoints are expected to process data
immediately, and may not block processing or collect data for batch processing. In contrast
to the other constraints, the corresponding interface defines a method to disable blocking
in affected nodes. in particular node types using batch processing may fall back to process
data immediately, although this may cause a severe performance loss.

The processing component checks all constraints by traversing the referred sub graph, and
searches for nodes that implement the corresponding interface. If a constraint is not fulfilled,
the execution of the workflow is denied.

3.7.4 Life cycle

Figure 3.4 depicts the life cycle of a node in a Conveyor workflow. Transition between the states
of the life cycle is done by invoking one of the methods below:

Figure 3.4: Lifecycle of Conveyor nodes: After creation and configuring the node (e.g. setting
configuration values and links to other nodes), the Verify() method validates the
configuration. Upon successful validation the node enters the VERIFIED state and
is able to process data using the Ready() and Process() methods. The lifecycle is
terminated either by calling Finish() to indicate normal termination and changing to
the FINISHED state, or by calling Error() in case of an exception during processing.

Verify() Checks that a node in a workflow is properly configured and ready for execution.
This includes a) that all endpoints of the node are connected, b) the data types defined for the
endpoints are compatible, and c) all mandatory configuration fields are set. Derived node types
may overwrite and extend this method, e.g. to check their configuration fields for reasonable
values, open files, connect to a database, or to perform any operation necessary to setup a node.

Ready() Checks that the node may process data.
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Process() This method does the actual data processing by reading data from incoming end-
points and writing results to outgoing endpoints.

CanFinish() Checks whether a node should terminate.

Finish()/Error() Being the last steps in the life cycle, these methods are used to release resources
claimed by a node instance.

The abstract base classes for node types already contain a default implementation for all methods
except Process(). The default Verify() method checks that a) all endpoints of the node are
connected, b) the data types defined for the endpoints are compatible, and c) all mandatory
configuration fields are set. In case of Ready(), a node is considered ready for execution if data
is available at all incoming endpoints. In a similar way, CanFinish() terminates the execution of
a node if any of its incoming endpoints will not provide data anymore, or any of its outgoing
endpoints will not consume data anymore. Finish() and Error() only handle the state transistion
and necessary cleanup.

No default implementation of Process() is given in the abstract base classes. A minimal node type
only needs to define its endpoints and implement the Process() method if the default implemen-
tation of the other method fits its semantics.

3.8 Definition component

As described in the previous sections, Conveyor is designed around reflection and introspection
for collecting information about types at runtime. The definition component bundles the func-
tionality used to gather type information, and provides information about available node and
data types.

In addition to descriptions and structural information, the node type representation defined by
the definition component also creates the node instances used in an actual workflow. This allows
a separation between the node type information and the actual class implementing the node
type. An example is shown in chapter 4.

3.9 Processing component

The processing component serves two different tasks:

Setup and information Initializes Conveyor, loads all configured plugins, and provides methods
to retrieve information about available data and node types.

Execution Instantiates workflows, starts their execution, and monitors its progress.
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Clients do not refer to plugins or the definition component directly, but use methods provided
by the processing component. The details about plugin loading are hidden by this component.

To allow Conveyor to adopt to different use cases, another layer hides the details of the workflow
execution from the processing component. An interface defined by this layer is used to exchange
messages. Which implementation is used to execute a workflow is either controlled by a factory
in the processing component, or controlled by the client using it. The design of the node life cycle
described above and the processing component itself enables various processing models to be
used in Conveyor, including simple simple iteration over nodes to multithreaded or cluster-aware
implementations. Details are given in chapter 4.

3.10 Clients

The components described so far implement the workflow engine, encapsulate functionality in
plugins and provide methods to access the Conveyor system. They do not provide workflows
yet, which is the task of the clients. A Conveyor client uses the processing engine to query
information about available data and node types, creates a workflow, and finally uses Conveyor
to execute it. The client itself is outside the scope of the Conveyor workflow engine; the engine
is just used by the client to execute tasks. Several clients have been designed and implemented
for Conveyor, from a simple commandline utility for executing predefined workflows, over a
solution for offering workflow design and execution as a service to complex applications for data
analysis.
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CHAPTER 4

Implementation of Conveyor

The design presented in the previous chapter defines some requirements the implementation
environment has to fulfill:

Object oriented type system At least one object oriented programming language has to be sup-
ported by the environment since Conveyor’s design is based on features like interfaces and
inheritance.

Generics support The programming language should also support generic classes to encourage
node type reuse.

Full reflection support All information about libraries and their contained types has to be avail-
able at runtime, including information about generics and their type constraints.

Easy integration of third-party applications and libraries Third-party applications and libraries
written in a different programming language should be integratable natively.

Of the available environments Microsoft’s .NET runtime1 and Oracle’s Java2 meets these require-
ments best. In the end .NET (resp. Mono, a free UNIX(tm) implementation of .NET) was chosen
based on two criteria:

• Although Java supports reflection, the type parameter information of generics is discarded
by the Java compiler. Thus it is not possible to retrieve type constraints on runtime.

• .NET has native support for a number of different programming languages like Python,
Ruby or Java (via IKVM3). At the time of designing Conveyor, the Java runtime was limited

1http://www.microsoft.com/net/
2http://www.oracle.com/technetwork/java/index.html
3a open-source project for embedding a Java runtime environment into the .NET runtime allowing the execution of

native Java code
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to Java, Scala, and Closure.

The .NET framework comes with its own high-level language called C# which is used to im-
plement Conveyor. This chapter describes the details of the various central Conveyor libraries.
It also contains information about various optimizations for both performance and developing
overhead, and gives an overview of the plugins implemented for bioinformatics data processing.

4.1 Conveyor.Core library

Being the base for all Conveyor plugins, the Conveyor.Core library implements all base node
types and classes needed to define a Conveyor node or data type. It is the only single requirement
a plugin needs.

4.1.1 Conveyor.Core.Data

The interface Conveyor.Core.Data is the marker interface described in chapter 3. All data types
Conveyor is aware of are implementing this interface.

4.1.2 Conveyor.Core.Node

The classes Conveyor.Core.Node, Conveyor.Core.NodeInput, Conveyor.Core.NodeOutput, and
Conveyor.Core.NodeProcessing form a hierarchy of abstract base classes as shown in figure 4.1.
Conveyor.Core.Node contains the default implementation of the node life cycle as depicted in
section 3.7.4. It also provides access to configuration items, the unique identifier of a node within
a workflow, state management, and cleanup methods. A self-written node type must not derive
directly from this class.

The three derived classes Conveyor.Core.NodeInput, Conveyor.Core.NodeInput and Con-
veyor.Core.NodeProcessing act as base classes for input, output and processing node types.
Among differentiation into one of the three sections, they also contain default implementations
of life cycle methods not provided by the base class. Especially the input and output node classes
define additional methods which sub classes have to implement. These methods are either used
to provide more information about the node in question, e.g. the type of output generated by an
output node, or to simplify implementation of derived classes, as in the case of the input node’s
base class.

4.1.3 Conveyor.Core.LinkEndpoint

Endpoints are defined as fields in a node type class. The endpoint classes form the type hierarchy
presented in figure 4.2. The abstract base class Conveyor.Core.LinkEndpoint contains function-
ality shared by all endpoints like state, identifier, containing node, etc. The hierarchy then splits

26



4.2 Conveyor.Definition library

Figure 4.1: Class hierarchy of the Conveyor node base classes, including some examples for de-
rived concrete and abstract classes in the Conveyor.Core component.

into two branches for input and output endpoints. Each branch contains an abstract non-generic
class and a derived generic class. The later ones are the types actually used in a node type
for defining endpoints. The non-generic base classes are helpers for reflection. They allow to
retrieve all endpoints of a node type (fields derived from LinkEndpoint) or, more specifically, all
input or output endpoints (fields derived from InputEndpointBase or OutputEndpointBase resp.).
Endpoints are initialized in the constructor of the Conveyor.Core.Node class, using reflection for
enumerating all endpoint fields in a derived class. It also collects them for later use in the life cy-
cle methods. The single type parameter of the input and output endpoints define the data type
passing an endpoint, and the methods for getting and sending data objects use this parameter
in their signature. Using endpoint fields is thus type safe.

4.1.4 Conveyor.Core.ConfigBaseItem

As described in chapter 3, node instances in a workflow need to be customizable. This is made
possible by defining fields of one of the classes derived from Conveyor.Core.ConfigBaseItem.
Table 4.1 lists the concrete configuration classes and their associated data types.

Similar to endpoints, Conveyor.Core.Node’s constructor takes care for initializing the fields and
sets default values if necessary. It also provides the methods for setting a configuration field’s
value. Node types defining configuration fields should also overwrite the Verify() method of the
node life cycle to check the fields for correct values prior to using them.

4.2 Conveyor.Definition library

As pointed out in chapter 3, the Conveyor.Definition component acts as a connector between
the processing engine and the plugins itself. It decouples both entities, and thus allows Conveyor
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Figure 4.2: The hierarchy of endpoint classes define both generic and non generic classes to both
type safe usage and easy retrieval via reflection.
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Class Description
ConfigBoolean boolean value
ConfigByte 8 bit unsigned integer
ConfigSByte 8 bit signed integer
ConfigInteger 32 bit signed integer
ConfigULong 64 bit unsigned integer
ConfigLong 64 bit signed integer
ConfigDouble IEEE double precision value
ConfigString UTF-8 string
ConfigFile a stream read as file
ConfigEnumeration<T> one of the values of the enumeration type T
ConfigSelection<T,U<T>> one of the values of type T, generated by type U

Table 4.1: Configuration field types available in Conveyor nodes. By convention the class name
is composed of the prefix Config and the data type the class encapsulates, e.g. Byte
or String. The enumeration type uses the values from the enumeration type given as
type parameter, eliminating the need for comparing string values in the node code.
The selection type provides a more generic way to define a selection of values. The
first parameter is the item type, the second parameter a class generating these items.
Selection types are used for example to provide a list of BLAST databases by scanning
certain directories.
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to be extended by new plugins.

The following subsections describes the implementation of the Conveyor.Definition component
for retrieving information about available node types and creating instances of nodes.

4.2.1 Retrieving information

Plugins are implemented as .NET libraries and may contain any number of data type and node
types. In the previous section 4.1 a data type has been defined to be any class that imple-
ments the Conveyor.Core.Data interface, and each node type has to be derived from the Con-
veyor.Core.Node class or one of its subclasses. The reflection mechanism built into .NET allows a
simple retrieval of information about all types defined in a library4, including their visibility, fields,
properties, methods, etc.

The default mechanism for scanning assemblies only takes publically visible types into account.
Each type is checked for its base classes and implemented interfaces and IDataType resp. INode-
Type instances are collected that represent the detected types. IDataType contains information
about a data type, including its name and description. INodeType represents a node type us-
able in Conveyor. It exposes the node type’s name, description, type parameters, endpoints,
configuration items, etc.

Figure 4.3 schematically shows the scanning process and the resulting objects created by the
Conveyor.Definition component. The Plugin objects are exported to the Conveyor.Processing
component and thus available to a client using Conveyor.

4.2.2 Creating node instances

The second crucial task performed by the Conveyor.Definition component is the creation of
node instances during workflow execution. A workflow definition refers to a node type by its
name. Upon setting up a workflow for execution, each node contained in the workflow has to be
instantiated by the processing component. It in turn uses the INodeType instance representing
the node type to create a node instance. INodeType defines two methods for creating node
instance:

Node CreateInstance(long id) Creates a node instance of a non-generic node type.

Node CreateInstance(long id, List<Type> typeParameter) Creates a node instance using the
given list of type parameters.

The way instances of generic types are created at runtime impose a limitation on the way Con-
veyor works. All type parameters have to be known to create a node instance. The Conveyor
Designer presented in section 4.8.1 takes care for resolving all type parameters for a node in-
stance. Instantiation at runtime fails if the given type parameters does not match the type
constraints or the number of parameters is wrong.

4referred to as assembly in .NET
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Figure 4.3: Default processing of a library by the Conveyor.Definition component. A Plugin
instance is created for the library, refering to the library’s name and its description.
For each data type found in the library, an IDataType instance is created containing
information about the data type. In a similar fashion an INodeType instance is setup
for each node type, refering its fully qualified name, description attribute content,
type parameter, link endpoint information, configuration item overview, etc.a b

aSome aspects of node type definitions are not included for the sake of clarity.
bFully qualified type names contain an indicator for the number of type parameter. In the figure, Converter<T> in

library Conveyor.Example has the fully qualified type name Conveyor.Example.Converter‘1
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Although INodeType usually represents a concrete node type, Conveyor.Definition is designed
and implemented with flexibility in mind. Section 4.6.2 describes another approach for defining
node types and their instantiation at runtime.

4.3 Conveyor.Processing

The most important library for applications using Conveyor is Conveyor.Processing as it pro-
vides all necessary functionality for clients to actually use Conveyor. This includes initialization,
loading of plugins, enumeration of plugins and contained node and data type, and finally the
representation and processing of workflows. The Conveyor.Processing.Graph class represents a
workflow by managing a list of node instances. It may either be built programmatically by a
client or by using an instance of the Conveyor.Processing.GraphParser class that parses a work-
flow description from a XML file. Since Conveyor may be used in different environments with
different resources, the actual processing of a graph is decoupled from the Conveyor.Processing
library and abstracted by the Conveyor.Processing.IProcessor interface. It defines the necessary
methods for validating a graph, asynchronous execution and monitoring, and result retrieval.

An overview of the methods is available in appendix A. The actual methods for execution is
not specified, and each implementation may choose to execute a graph depending on available
resources. It only has to adhere to the life cycle of nodes as depicted in section 3.7.4. A client
may select the implementation by itself or use the default configured for a Conveyor installation.
The following section describes the Conveyor.Processing.IProcessor implementations available in
Conveyor.

4.3.1 IProcessor implementations

Since parts of the functionality available in Conveyor.Processing.IProcessor instances is the same
between several instances, the abstract base class Conveyor.Processing.ProcessorBase provides
a default implementation. Among instance construction, graph setup and graph information
retrieval methods, it also contains a default implementation of the validation step, which simply
calls the Verify() method for each node instance and handles exceptions in the correct way. All
execution related methods are marked as abstract and have to be implemented by concrete
implementations. The next sections describe the set of implementations already available in
Conveyor.

SingleNodeProcessor

This is the most straight-forward implementation of a Conveyor processor. To prevent clients
from becoming unresponsible during workflow execution, the processing logic is offloaded to a
worker thread. The thread’s code is shown in listing 4.1. Extra code (e.g. logging and handling
of clients’ abort requests) is removed for the sake of clarity. The processing is implemented by
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iterating over the elements of a queue of nodes until no more nodes are present in the queue.
The queue contains those nodes of a graph that have not finished yet. Initially, the queue is filled
with all nodes of the graph (line 1). Within each loop iteration, one node is taken from the queue
(line 6) and is examined. If the node has finished, the next iteration of the loop is started without
re-adding the node to the queue (line 7-11). Although not explicitly stated in the node’s life
cycle description, a node may also finish during its validation in the Verify() method. By checking
for finished nodes prior to processing them, these nodes are removed from the queue at the next
opportunity. The remainder of the loop handles node processing (line 13-18) and error handling
(21-27). In case of an error during processing, all nodes of the graph are set to the error state
with the current node marked where the exception occured. A client may later on examine the
error state of the nodes and perform appropiate error-handling.

Processing is done by checking whether a node is able to process using the Ready() method (line
13), and invoking the Process() method on a positive response. If the node is indicating its ability
to terminate the processing by returning a true value in the CanFinish() method, the node is shut
down properly using the Finish() method, and the next iteration of the loop starts. Otherwise the
node is put back into the queue for a new processing iteration. Taking the validation phase of the
Conveyor.Processing.ProcessorBase base class into account, the complete life cycle of Conveyor
nodes is implemented in this processing loop, while keeping the processor as simple as possible.

FastSingleNodeProcessor

While designed for simplicity instead of maximum performance, a small number of trivial modi-
fications may be used to improve the overall performance of the SingleNodeProcessor, resulting
in a new processor implementation called FastSingleNodeProcessor. One performance problem
results from the fact that the queue contains all unfinished nodes of the graph at any moment
although only a part of it may be ready for processing at all. In the worst case finding these
nodes requires iterating through the whole queue. As a solution, an optimized implementation
may ensure that only processable nodes are stored in the queue. Instead of adding the current
node back to the queue in the loop, it is only added back if Ready() indicates that further pro-
cessing is possible. In addition, all nodes connected to output endpoints of the current node
need to be checked, too, since their readiness to process data might have been changed during
processing of the current node (e.g. by sending data to the connected node). If the queue is
initially filled with processable nodes only, the number of pending nodes in the queue is reduced.
Nonetheless, it has to be ensured that a given node is added to the queue only once.

Another performance penalty occurs based on the amount of processing done in a single loop
iteration. Process() is only called once, although more than one call might be possible. Using
a while-loop instead of a single check in line 13 removes this bottleneck. Both optimizations
are implemented in the FastSingleNodeProcessor class. Although the performance of this im-
plementation is better than SingleNodeProcessor in most cases, some drawbacks of this attempt
exist:

• Ready() is called more often. Complex implementations of Ready() may thus lead to a
performance decrease.
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1 Queue <Node > nodes = new Queue <Node > (Graph);
2
3 // iterate over the list , execute nodes if possible
4 while (nodes.Count != 0) {
5 // get next node to process
6 Node node = nodes.Dequeue ();
7 if (node.IsFinished ()) {
8 // we need to handle nodes that are already finished
9 // during its Verify() method execution

10 continue;
11 }
12 try {
13 if (node.IsVerified () && node.Ready ())
14 node.Process ();
15 if (node.CanFinish ()) {
16 node.Finish ();
17 continue;
18 }
19 }
20 catch (Exception ex) {
21 node.Error (ex);
22 // mark all other nodes as aborted
23 foreach (Node n in nodes) {
24 n.Error ((Exception)null);
25 }
26 SetState (GraphState.ERROR);
27 return;
28 }
29 // this node is not finished yet, re-add it to the queue
30 nodes.Enqueue (node);
31 }
32 SetState (GraphState.FINISHED);

Listing 4.1: Main processing loop of SingleNodeProcessor
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• Some nodes may process large amounts of input data, and store large amounts of data
passed to another nodes. This may result in increased memory requirements.

• Checking all nodes connected to a given node is tricky since this information is not exposed
by the endpoints, and thus requires code that is hard to maintain.

A client may decide from case to case which processor is better suited for a workflow, or a
Conveyor administrator may choose one of them as default for a Conveyor setup.

ThreadedProcessor

The SingleNode and FastSingleNode processor implementations described above are focussed
on simplicity. However, with the advent of dual, quad and multi-core CPUs in the last decade,
workflows should start to exploit these features and use multiple threads for execution. The
Conveyor.Processing.ThreadedProcessor implementation of the IProcessor interface starts one
thread per node, and takes care for the necessary synchronization between the threads. Syn-
chronization is required if two or more threads interact. Although the nodes itself may work
independently of each other, they have to exchange data with each other and have to react to
state changes of connected nodes. The design of Conveyor as presented in chapter 3 does not
explicitly take multithreading and related topics into account. Nonetheless, nodes are expected
to behave correctly in a multithreaded environment, in particular if several instances of a node
class exist and are executed in parallel. The ThreadedProcessor spawns one thread for each node,
passing the node as thread start argument. In the most simple approach a thread would use the
following loop, assuming the node is already validated using Verify():

while(true) {
// terminate loop if node is finished
if (node.IsFinished())

return;

// process node if possible
if (node.Ready())

Process();

// finish node if necessary
if (node.CanFinish())

Finish();
}

(Error handling and thread terminating are not shown for the sake of simplicity.)

Two problems may occur if this loop is used for multithreaded processing of a workflow:

• Each thread wastes CPU time if nodes are not able to process data at the moment. For
large workflows more CPU time is wasted than actually used for processing due to a large
number of threads running in parallel.

• The state of connected nodes may change between or during calling Ready() and Process().
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This will result in undefined behaviour, e.g. sending data to a finished node.

The following subsections address these problems and describe how the ThreadedProcessor re-
solves them.

Notification vs. polling

The technique of querying a state over and over in a loop is called polling. In a multithreaded
environment polling should be avoided due to the consequences described above. Whether a
node is able to process data or to finish solely depends on the state of its endpoints. Changes to
their state should trigger further processing of the node, or allow it to terminate. This technique
is called event-based processing; an external, asynchronous event is used as trigger. The thread
handling a node may suspend itself until it is triggered.

Two features of the .NET runtime are used to implement an optimized version of ThreadedPro-
cessor:

Event & Delegate A delegate is a definition of a method signature. Each method (either an
instance method or a class method) may be used as a delegate if its signature matches.
An event is a member of a class implementing a collection of delegates with the same
signature. New delegates may be registered by other objects or removed if the object
in question is not active anymore. Events may be raised by the enclosing class, resulting
in each delegate being invoked. Both concepts allow a very loose coupling of classes by
simply connecting delegates to the corresponding events.

WaitHandle A WaitHandle is used to synchronize to external events, either triggered by other
threads or by the operating system itself. A thread waiting for a WaitHandle is suspended
until the handle is triggered.

Using both techniques solves the problem of polling and changes the processing loop to event-
based processing. The endpoint classes are extended by events signaling a state change and data
availability (DataReady and StateChanged in figure 4.2). The processing loop is changed to the
following pseudo code:

WaitHandle handle;
<register callback to trigger handle at endpoints ’ events >
while(true) {

// terminate loop if node is finished
if (node.IsFinished())

return;

// process node if possible
if (node.Ready())

Process();

// finish node if necessary
if (node.CanFinish())

Finish();
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<suspend in wait for waithandle >
}

Enforcing atomicity

Another problem is the lack of atomicity of compound statements. During each single statement
or sub statement the overall environment may change. An atomic operation in contrast is guar-
anteed to be executed without an external changes. Atomicity can be enforced for compound
statements by the introduction of locks. Every operation changing the environment has to ac-
quire all necessary locks prior to execution, and has to release the locks afterwards. A complete
introduction to locking is beyond the scope of this thesis. More Information can be found in e.g.
in [Ste92].

In the case of Conveyor, a node depends on the states of its connected nodes. During calls
to Ready(), Process(), CanFinish(), and Finish() the connected nodes may not alter their state.
The processed node itself may change its state under these circumstances. The definition of
nodes and endpoints do not expose the connected nodes to the ThreadedProcessor since the
corresponding fields are not visible outside the core library. In addition an output endpoint may
be connected to any number of nodes. Thus, instead of locking the nodes itself, the endpoint
classes are extended by a method to return a lockable object. It is shared between an output
endpoint and all of its connected input endpoints. To ensure atomicity, a processing thread has
to acquire all locks of all its node’s endpoints prior to using any of the node’s methods listed
above. The locking code (not shown) has to ensure that no deadlock will occur.

The overall processor loop is thus expanded to:

WaitHandle handle;
<register callback to trigger handle at endpoints ’ events >
while(true) {

// terminate loop if node is finished
if (node.IsFinished())

return;

<get locks >
// process node if possible
if (node.Ready())

Process();

// finish node if necessary
if (node.CanFinish())

Finish();

<release locks >

<suspend in wait for waithandle >
}
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4.4 Plugins

The libraries presented so far only implement the workflow engine and all base definitions needed
for data types and node types. The available node types in the core library only offer fundamental
functionality.

This design makes the Conveyor core and processing components independent of the data do-
main. All specific functionality and specific data types are implemented using Plugins. From the
technical point of view a plugin is a .NET library that is loaded at runtime and contains classes
implementing data and node types. The Conveyor.Definition component described above takes
care of examining each plugin library and extracting all relevant classes.

Table 4.2 lists additional, non-domain-specific plugins that the author has developed for Con-
veyor. They provide wrapper for primitive data types, control flow operations, and generic col-
lection types.

Name Description
Conveyor.Comparison generic results of ordered comparison (larger, equals, less)
Conveyor.Dictionary key-value based generic dictionary type and processing nodes
Conveyor.List generic list type
Conveyor.Logic boolean processing and control flow nodes
Conveyor.Math wrapper for all standard numeric types and operations on them
Conveyor.Pair generic pair composed of two elements
Conveyor.Text strings and string processing

Table 4.2: Default plugins available in Conveyor. These plugins implement a number of primitive
data types, control flow operation and collection types.

4.5 Performance optimizations

The design and implementation of Conveyor focusses on functionality and type safety. The node
classes and processor implementations are clearly designed and offer the flexibility to be used for
almost any functionality. Performance has not been the primary goal goal of this implementation
yet.

To evaluate the performance, a small workflow shown in figure 4.4 has been designed. It reads
a number of lines from a text file and sorts the lines according to their lengths using a node type
implementing the quicksort algorithm. It was chosen for benchmarking since all node instances
of the workflow belong to the Conveyor.Core component.

The benchmark workflow was executed with a limit of 10,000 lines using both the FastSingleN-
odeProcessor and the ThreadedProcessor. Execution time was measured using the UNIX time
command on a host with 4 Intel Xeon E7540 CPUs and 256 GB RAM, running Solaris 10 for x86
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Figure 4.4: Sample workflow used for benchmarking Conveyor and its optimizations. A number
of lines is read from a file and collected in a list of strings (nodes 1 - 3). Afterwards the
list is sorted according to the lengths of the lines (nodes 4 - 7). The number of lines
is finally printed as output of the workflow (node 9 + 10). The read boxes around
nodes 1 and 2 indicate that some configuration values are missing for these nodes:
the input file in the case of node 1, and the number of lines to be processed in case
of node 2. These parameters depend on the benchmark setup and are set prior to
execution.
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and Mono 2.8.1. The results are available in table 4.3.

Processor Number of lines
Execution time [s]

Real User System

FastSingleNodeProcessor
10,000 32.274 30.684 0.238
20,000 121.561 120.096 0.270

ThreadedProcessor
10,000 505.445 864.605 152.091
20,000 1968.219 3352.663 592.521

Table 4.3: Runtime of the benchmark workflow for various number of lines read from a multi
entry GenBank file. The first column shows with processor implementation was used
in a run, the second number contains the number of lines read in that benchmark run.
The other three columns contain the results of the UNIX time command, transformed
to seconds.

The performance of the ThreadedProcessor is seriously degraded compared to the FastSingleN-
odeProcessor. Especially the parallel pathes in the comparison loop of the Sort node should result
in a faster execution time. The ratio of user time to real time indicates that in fact threads are
running parallel. The high amount of processing time spend in system calls gives a first hint on
the cause of the bottleneck.

4.5.1 Beyond time(1): Detection and quantification of bottlenecks

The time command gives useful information about the overall performance of an application.
To actually identify the bottleneck resulting in degraded performance of the ThreadedProcessor,
the information provided by time is not sufficient.

Recent versions of the Solaris operating system used during the development and benchmarking
of Conveyor include a number of tools for monitoring processes and gathering statistics. prstat
is able to collect information about each thread and the states it passed through. A excerpt of
the output taken during running the sample workflow with the ThreadedProcessor is shown in
figure 4.5.

Two of the threads (LWPID 1 + 2) are part of the mono runtime and the application executing
the workflow. The remaining threads refer to the various node instances in the sample workflow.
Since the output was taken some minutes after the process was started, the first nodes in the
sample workflow are already terminated (node 1 - 3). LWPs 3, 7, 8 and 9 are the threads
processing the Sort node and its comparison loop, LWPs 10 + 11 are the pending threads for
the final output node instances (Node 9 + 10 in the sample workflow). These nodes are blocked
while waiting for data to process.

Concerning the active threads, a fair amount of time is spent in the locked state (34% - 54%,
see column LCK in the output), and less than half the time is used for processing and executing
the processing loop (USR column). The threads are blocking each other while competing for the
lock that ensures atomic processing as explained above.
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PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID
13132 blinke 48 10 0.0 0.0 0.0 34 1.5 5.4 .1M 23 .5M 17 mono.bin/3
13132 blinke 47 9.5 0.0 0.0 0.0 36 1.6 5.3 .1M 21 .6M 18 mono.bin/7
13132 blinke 38 6.1 0.0 0.0 0.0 51 1.6 3.5 81K 21 .2M 19 mono.bin/8
13132 blinke 36 4.9 0.0 0.0 0.0 54 1.4 3.8 79K 18 .2M 19 mono.bin/9
13132 blinke 0.4 0.1 0.0 0.0 0.0 97 2.3 0.0 49 0 237 24 mono.bin/1
13132 blinke 0.0 0.0 0.0 0.0 0.0 98 2.0 0.0 25 0 81 25 mono.bin/2
13132 blinke 0.0 0.0 0.0 0.0 0.0 98 2.0 0.0 28 0 124 24 mono.bin/10
13132 blinke 0.0 0.0 0.0 0.0 0.0 98 2.0 0.0 29 0 127 24 mono.bin/11

Figure 4.5: Part of the output of the prstat command for running the sample workflow with the
ThreadedProcessor. One line descrines one thread in the target process. The USR to
LAT columns stand for the various states a thread may take on in the operation sys-
tem. The numbers in that column indicate the percentage of time a thread has spent
in the corresponding state during one sampling interval. A more detailed explanation
can be found in the the prstat man page.

To quantify the lock contention occuring while using the ThreadedProcessor, the so called per-
formance counters available in the Mono runtime are used. A performance counter provides in-
formation about various aspects of a running .NET/Mono process, including memory and thread
management. Figure 4.6 shows a screen shot of the mperfmon tool, which is able to attach to
a running Mono process and reads and visualizes performance counters. The screenshot shows
the counter for the lock contentions per second.

Figure 4.6: The screenshot shows the user interface of the mperfmon tool while monitoring the
execution of the sample workflow using the ThreadedProcessor. The active graph
visualizes the lock contentions per second value as a performance counter.

The GraphRun tool (see section 4.8.2) has been extended to report performance counters upon
completion. In the end, an average value for lock contention can be calculated using the available
counter for the total number of contentions and the runtime of the process. Table 4.4 shows the
lock contention values for the ThreadedProcessor for different input sizes.

Despite all advantages, and As explained in section 4.3.1 describing the ThreadedProcessor,
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Lines processed Processing time
(real, seconds)

Total # of lock
contentions

Contentions /
second

1,000 10.6 456,519.4 43,067.9
2,000 34.3 1,617,366.6 47,153.5
5,000 159.7 9,920,537.8 62,119.8

10,000 572.4 36,326,829.0 63,464.1
20,000 1,918.8 127,884,977.4 66,647.6

Table 4.4: The table shows the average lock contention rate of the default ThreadedProcessor
implementation. The figures are arithmethic averages for 5 independent runs.

locking is necessary to ensure the correct processing of node instances in a multithreaded en-
vironment. The following subsections present various optimization approaches to minimize the
use of locks and lock contention, thus to improve the overall performance of Conveyor.

4.5.2 Immediate processing nodes

As explained in the previous subsection, the necessary locking used to synchronize threads pro-
cessing node instances prevents Conveyor from scaling well with the number of nodes.

A first attempt to reduce the amount of lock contention has been made by simply to reduce the
number of threads. For many nodes, the amount of time spent for actual processing is small com-
pared to the overhead for locking and synchronization. An example is the Conveyor.Logic.Not
node of the Conveyor.Logic plugin. It reads a boolean value from its input, negates it and writes
the result to the output. Both input and output have to be locked during processing, the end-
points have to handle one pull and one push operation, etc. Negating a boolean value in contrast
is a trivial operation.

Solution

The idea of immediate processing nodes is moving the processing step from a node to the
input endpoint of a connected node. Figure 4.7 shows three nodes forming a simple pipeline
with the middle node being an immediate processing node. The following figure 4.8 shows
the same pipeline after transformation. The processing function of the former middle node has
been merged to the input endpoint of the successor node, while maintaining type safety. The
DoProcessing() method of the former middle node is called for every data object being passed
to the input endpoint, processing and transforming it to the correct data type.

Immediate processing nodes are implemented by the abstract class Con-
veyor.Core.ImmediateProcessingNode of the Conveyor.Core component. A concrete im-
plementation has to override the abstract processing method DoProcessing.

Candidates for immediate processing nodes have to fulfill a number of requirements:
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Figure 4.7: Example of an immediate processing node. Three nodes form a simple pipeline, with
the middle node B being an immediate node.

Figure 4.8: The transformation of immediate nodes eliminates node B completely, and its pro-
cessing step implemented in the function DoProcessing becomes part of the node it
was connected to (C).

• a single input endpoint and a single output endpoint

• very low processing requirements

• no life cycle related functionality

Since no thread or other controlling environment is used for an immediate processing node, the
node is terminated using the Finish() method after its DoProcessing() method has been added
to the destination endpoint and links have set up accordingly. Thus, no life cycle management is
possible for immediate processing nodes, and the operation executed by the node may not use
fields of the node class.

Immediate processing nodes have been used in the default Conveyor plugins where applicable.

Performance evaluation

The Conveyor.Text.Length nodes in the sample workflow are implemented as immediate pro-
cessing nodes. Table 4.5 shows the average results for 5 runs of the sample workflow.

With respect to performance, the important nodes in the sample workflow are the sort node and
the nodes belonging to sort’s comparison loop. Since two of these 4 nodes are implemented as
immediate processing nodes, enabling this optimized processing eliminates two of four threads.
It cuts the processing time roughly in half, but contention remains on a high level due to the
shared locks of the Sort and Compare nodes.

Since many low-level nodes in Conveyor are implemented as immediate processing nodes, the
performance impact of this optimization depends on the number of immediate processing nodes
used in a workflow instance.
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Lines processed Processing time
(real, seconds)

Total # of lock
contentions

Contentions /
second

1,000 4.45 195,138.8 43,831.7
2,000 13.61 744,364.2 54,674.8
5,000 66.44 4,387,346.2 66,029.3

10,000 293.73 14,955,705.0 50,917.0
20,000 944.38 65,123,806.8 68,959.1

Table 4.5: The table shows the average lock contention rate of the default ThreadedProcessor
implementation with immediate node processing enabled.

4.5.3 Lockless multithreading

Eliminating threads by using immediate processing nodes reduces lock contention, as shown in
the previous section. But performance still leaves a lot to be desired, and again lock contention
is the reason for it.

As explained in the section about the ThreadedProcessor, locking is needed to ensure that a
node’s methods are executied in a constant environment with respect to its connected nodes.
This allows every node to act and terminate independently of other nodes. A good example for
this is the LimitedPass node class in the Conveyor.Core component. It will pass data elements
from its input to its output endpoint, but terminates after a configurable number of elements
have passed. Figure 4.9 demonstrates the different termination impacts:

(a) all active (b) C terminated (c) B + D terminated (d) A + E terminated

Figure 4.9: The figures show the different terminating orders, after node C has initiated termina-
tion. Nodes B and A are terminated bottom-up, while nodes D and E are terminated
top-down, following the flow of data within the workflow.

top-down (nodes D + E) The nodes connected to input endpoints have terminated and no data
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is available in the endpoints’ queues. The node thus should also terminate, triggering
possible termination of the nodes connected to its output endpoints. As a result, the order
of termination follows the logical flow of data between the nodes, starting at the input
nodes and finishing with the output nodes.

bottom-up (nodes A + B) A node connected to an output endpoint has terminated. Since it will
not accept data anymore on its input endpoint, the node has to terminate. In contrast to
the previous mode, in this case termination goes against the logical flow of data, travelling
from the initiating node to the input nodes.

Each node has to support both termination directions, and the default implementations of Can-
Finish() already takes care of this. To ensure that especially the state of downstream nodes
(nodes connected to output endpoints, thus following the flow of data) does not change during
a processing iteration of the ThreadedProcessor, the processing loop has to use locking.

Solution

If a workflow does not include a node instance that triggers bottom-up termination, the termina-
tion order will follow the flow of data as explained above. Whether an input endpoint is able to
provide data to the node depends on its internal buffer and on the state of the connected node.
Changes to either trigger the next iteration of the processing loop as explained in the section
about the ThreadedProcessor. Since the state of a connected node does not change after its ter-
mination, a node’s processing loop does not require a fixed environment anymore. In the worst
case a connected node changes its state during the checks in CanFinish(), which will trigger the
next iteration of the processing loop. Locking is thus not required for these nodes.

The same assumption also holds for sub workflows. If all nodes downstream of a node may not
terminate in a bottom-up manner, they do not require locking. This also means that as soon as a
bottom-up terminating node is detected, all nodes upstream of it have to use locking.

Detection of bottom-up terminating nodes cannot be done automatically by code inspection or
any other means. The developer has to mark these nodes, using the OutOfOrderTermination
interface of the Conveyor.Core component.

Depending on the position of bottom-up terminating nodes in the workflow, a large part of the
nodes may be operated in a lockless manner, reducing the overall lock contention and improving
performance.

As a drawback of the lockless approach access to an input endpoint’s buffer may happen asyn-
chronously. All methods manipulating or querying the buffer have to ensure atomicity by using
locks (again). Since the amount of code covered by these new locks is smaller than the endpoints
lock’s just eliminated, contention may only happen during a shorter period of time, and thus the
performance impact is comparable lower.
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Performance evaluation

Table 4.6 shows the performance values for the lockless multithreading approach combining with
the immediate node processing approach. Although the amount of contention is still very high
due to the locks introduced for accessing the endpoints’ buffer, the overall processing time is
significantly reduced.

Lines processed Processing time
(real, seconds)

Total # of lock
contentions

Contentions /
second

1,000 3.47 46,035.6 13,276.7
2,000 6.80 157,981.6 23,218.9
5,000 26.63 974,423.4 36,581.3

10,000 70.81 3,319,717.4 46,878.3
20,000 227.25 13,449,593.0 59,185.0

Table 4.6: The table shows the average lock contention rate of the default ThreadedProcessor
implementation. Immediate node processing and lockless node handling threads are
enabled.

4.5.4 Lockless queues

As mentioned in the previous section, access to an endpoint’s buffer has to happen in a synchro-
nized, locked way. Although the amount of code protected by the lock is rather small (and thus
the time the lock is held), it affects the overall performance.

Solution

In the case of an endpoint’s queue, there’s exactly one reader and one writer to the queue. This
scenario allows an easy implementation of a lockless queue, using atomic primitives offered by
.NET (and based on atomic operations of modern CPUs).

Performance evaluation

With most of the locks eliminated, the overall processing time and lock contention is reduced
dramatically as table 4.7 shows. The LimitedPass node still enforces locked operation of itself
and the LineReader node but all other nodes operate in a lockless way. Since a large amount
of processing time is spent in the Sort node and its processing loop, the average contention rate
even drops with growing inputs.
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Lines processed Processing time
(real, seconds)

Total # of lock
contentions

Contentions /
second

1,000 1.4 3,738.6 2,594.8
2,000 2.2 7,622.2 3,414.0
5,000 6.7 19,091.8 2,849.0

10,000 20.7 37,981.6 1,836.2
20,000 69.8 76,830.8 1,101.1

Table 4.7: The table shows the average lock contention rate of the default ThreadedProcessor
implementation. Most locks are eliminated in this setup.

4.5.5 Asynchronous node types

Except for the immediate processing node optimization, all optimizations presented so far affect
the engine itself. But among the single-input-single-output nodes necessary for immediate pro-
cessing nodes, many other nodes also implement simple operations but require a different num-
ber of input or output endpoints. Most mathematical operation nodes for example have two
input endpoints and one output endpoint. Similar to their immediate processing node cousins, a
processing optimization for these nodes will also result in a noticeable speedup.

Solution

The abstract AsynchronousNode class in the Conveyor.Core components provides the base im-
plementation for asynchronous node types. It registers a handler for the endpoints’ data event,
that implements the usual node processing (calling Process() if Ready() returns true). The node
class is accompanied by a special processing class for ThreadedProcessor that implements the
node life cycle logic without using a thread for node processing. If locking is required for a node
instance handled by this class, it falls back to the default processing class based on a thread.

The processing overhead introduced by a processing thread and signaling between threads is
eliminated by the AsynchronousNode class (if no locking is required). Since the processing class
completely implements the node’s life cycle control, a node class may use internal state in contrast
to immediate processing nodes. Nonetheless, the processing method should consume only low
CPU resources since it is executed on another node’s processing thread.

Performance evaluation

The result of this final optimization step is presented in table 4.8. Compared to the previously
run benchmark, the lock contention stays at the same level. Overall processing time is reduced
by about 20%. The introduction of the AsynchronousNode class reduces the number of active
threads during the sorting phase to one, since the comparison node is a prime candidate for an
asynchronous node class.
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Lines processed Processing time
(real, seconds)

Total # of lock
contentions

Contentions /
second

1,000 2.0 3,931.0 1,924.9
2,000 2.4 7,864.8 3,293.2
5,000 5.4 19,779.8 3,668.5

10,000 15.8 39,229.6 2,484.3
20,000 55.3 79,396.4 1,435.4

Table 4.8: The table shows the average lock contention rate of the default ThreadedProcessor
implementation. All optimizations are enabled.

Conclusion

Comparing the FastSingleNodeProcessor results in table 4.3 with the results of the last opti-
mization step, the overall processing time of the fully optimized ThreadedProcessor is reduced
to less than the half. As mentioned in the previous sections, the effect of an optimization may
vary with the workflow in question. Nonetheless, the sample workflow clearly demonstrates the
effectiveness of each optimization.

Since AsynchronousNode is a recent addition to Conveyor, it has only been used for a limited
number of node types in the core component yet. Especially more complex node types like
IfThenElse may benefit from a conversion to asynchronous processing.

4.6 Development optimizations

While the previous section presents a number of performance optimizations for Conveyor, the
following subsections focus on optimizing and simplifying the development process.

4.6.1 Special purpose base classes

A developer benefits from the object oriented nature of node types in Conveyor by using special
purpose base classes. These classes usually implement a part of the node’s life cycle or provide
an easier interface for processing. As a result, the amount of code required for implementing a
node type is reduced to an absolute minimum.

Input base classes

In addition the the default NodeInput class, some derived base classes exist in the Conveyor.Core
component:
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Generator<T> This simplification of the NodeInput class is intented for simple input nodes gen-
erating values of the same kind, e.g. the same string or a node for generating random
numbers. The InputDepleted() method is overwritten to return false for any invocation.

SingleInput<T> Being intended for nodes providing a single value only, this base class imple-
ments the logic for ensuring that only one value is sent to the connected nodes. The value
itself is generated by an abstract method that has to be implemented by derived classes.

SingleLinkInputNode<T> The design of input nodes requires them to wait until the buffer of at
least one connected endpoint has run empty before the node may create the next data ob-
ject. Otherwise, a node based on the Generator class described above will unconditionally
flood its connected nodes with data objects.

To reduce the overhead involved in switching from the connected node(s) to the input
node, the SingleLinkInputNode class offers a different processing mode. If only one node
is connected to its single output endpoint, its input endpoint is modified to directly use
the InputDepleted() and the new abstract GetNext() method of the SingleLinkInputNode
class. Switching the processing task is thus eliminated.

If more than one node is connected to an instance of a node type derived from SingleLink-
InputNode, the node uses the default behaviour without optimization. Developers are thus
encouraged to derive all their input node types if applicable.

Output base classes

The default abstract output base class NodeOutput requires concrete classes to provide the out-
put as a byte array. This allows Conveyor nodes to generate binary formatted results.

Many formats used in bioinformatics are text-based, and thus most output node types gener-
ate text files. The TextNodeOutput class is a specialized abstract output class that provides a
StreamWriter property for writing strings to its output. It also manages the necessary life cycle
actions like flushing the stream on termination and takes care of converting the written content
to a byte array if the output is requested.

Processing base classes

ImmediateProcessingNode and AsyncNode have already been introduced in the previous sec-
tions when discussing performance optimization.

Another base class for processing node types is BinaryOperation. This class already defines two
input endpoints, one output endpoint (with variable types due to type parameters), and the
necessary implementation for Process(), CanFinish() and Ready(). If data is available on both
endpoints, each is passed to the abstract method Operation(), and its return value is pushed to
the output endpoint. Concrete classes thus only have to provide an implementation of Opera-
tion(), reducing the overall amount of code for a node type to one single method.

Most node types of the Conveyor.Math plugin are implemented as concrete sub classes of Bi-
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naryOperation. Since BinaryOperation is in turn derived from AsynchronousNode, they directly
benefit from the optimization described in section 4.5.5.

4.6.2 ITypeProvider and virtual nodes

Certain plugins like Conveyor.EMBL contain a number of node types that perform the same
operation but differ in small aspects like the actual data type created or returned. For example,
there are node types to return all CDS features of a sequence, or all rRNA features, etc.

Writing these node type classes is tedious and tends to introduce subtle errors. Since they only
differ in the exact feature type used, the idea is to create the functionality once and pass infor-
mation about all use cases to Conveyor.

The ITypeProvider interface allows plugins to implement the schema described above. Dur-
ing scanning a plugin, the Conveyor.Definition component detects all classes implementing this
interface and uses them to retrieve information about additional node types not necessarily im-
plemented as public classes5.

In the Conveyor.EMBL plugins, the FeatureScanner class is an implementation of this interface.
It scans the plugin for all feature types defined and creates virtual node types for getting all
instances of a certain feature type from a sequence or creating a new instance. The functionality
itself is implemented as two simple nested inner classes that are not publically visible in the
plugin’s API.

As a result, new node types for handling a certain feature type are automatically created for each
implemented feature type. The amount of necessary code duplication and code maintenance is
significantly reduced.

4.6.3 Automatic nodes

Another often used schema is calling a parameterless method defined in an interface (e.g. get-
ting the length of a sequence) or accessing a property of an interface. To reduce the amount
of necessary code, a ITypeProvider implementation is added to Conveyor that scans interfaces
for matching methods and properties. If these methods/properties are marked with a certain
attribute and have a suitable return type, a virtual node type is created. The implementation
of this node type is based on ImmediateProcessingNode and simply invokes the method or the
property’s getter method. Thus providing a node type to wrap a method or a property defined in
an interface is just a matter of adding an attribute (AutomaticNode) to the method’s definition.
An optional description attribute may be used to add a description to the virtual node, too.

5The actual plugin scanning for node classes is done by the default implementation of ITypeProvider.
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4.7 Bioinformatics analysis plugins

Conveyor as presented so far is a generic workflow engine. Its open and extensible design allows
using Conveyor with almost any kind of data.

Nonetheless, most plugins implemented for Conveyor so far are focussing on bioinformatics
with an emphasis on sequence analysis. The following subsections briefly introduce the various
plugins. A complete overview of all plugins is available in the appendix.

4.7.1 Conveyor.BioinformaticTypes

This plugin provides the base data types for all other bioinformatic plugins. It defines a number
of interfaces and memory based implementations regarding DNA and protein sequences. Figure
4.10 gives an overview of the bioinformatic data types defined in this plugin. For the sake of
completeness it also contain extensions and derived types from other plugins introduced in the
following sections.

Data types are usually split into interface (e.g. DNASequence) and a simple memory based
implementation (e.g. SimpleDNASequence). The interfaces are intended to be used for type
constraints in node types processing corresponding data types.

Most bioinformatics node types are implemented as generic classes. The type parameters define
the type of sequence to be used, usually restricted to DNASequence or AASequence. This allows
result types to use the original sequence’s type.

Among the data types, this plugin also contains a number of node types operating on DNA
sequences, e.g. for creating the reverse complement of a sequence or for splicing out a part of a
sequence.

4.7.2 Conveyor.QualitySequence

A quality sequence is a DNA sequence with associated quality values, e.g. a read from a se-
quencer or the result of an assembly software. This plugin provides the base interface for quality
sequences (IQualitySequence) and an in-memory representation. It also contains a number of
node types operating on quality sequences similar to the operations available for DNA sequences
(reverse complement, splicing, etc.).

4.7.3 Conveyor.Annotation

Sequences are often associated with additional information that describe it. These annotations
may vary depending on the kind of sequence, its source, processings done with the sequence and
so on. A well-known source of annotation information are feature tables available in GenBank
and EMBL formatted sequence entries.
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Figure 4.10: Overview of types defined in the bioinformatics plugins.
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Instead of taking every possible annotation in account (including present and future ones), the
design of Conveyor’s sequence types is based on the Conveyor.Annotation plugin for storing
annotations. It defines a hash-like interface based on the concept of an AnnotationField. An
annotation field defines a possible annotation using a unique name, an optional description,
and the type of data that is stored for that annotation6. A reflection based mechanism collects
all annotation fields defined in the loaded plugins and makes them available to the node type
working with annotations.

Which annotation fields are available thus only depends on the loaded plugins itself. This
allows any plugin to define new annotation fields, resulting in an extensible mechanism for
the annotation of sequences. A number of annotation fields is already defined in the Con-
veyor.BioinformaticTypes plugin.

4.7.4 Conveyor.BioIO

The BioIO plugins define node types for reading and writing bioinformatic file format. The
Conveyor.BioIO plugins supports FASTA, FASTQ and Qual files, while Conveyor.BioIO.Solexa
and Conveoyr.BioIO.SFF handle the formats generated by the Illumina and 454 sequencers.

4.7.5 Conveyor.EMBL

Complex sequence entries with subsequences of different types are made available by the Con-
veyor.EMBL plugins. Among parsing entries of GenBank/EMBL formatted files, it also allows
creating corresponding entries and formats them as workflow output. A number of different
feature types are available as subsequence types according to their specification for the Gen-
Bank/EMBL format. Annotation fields for the various feature qualifiers are also included in the
plugin7.

4.7.6 Conveyor.Taxonomy

Accompanied by the generic Conveyor.Tree plugin, the Conveyor.Taxonomy plugins contains
data and node types for accessing the NCBI taxonomy and working with taxonomy entries.

4.7.7 Conveyor.ComputeCluster

Although not directly related to bioinformatics, this plugin is used in many other bioinformatics
plugins. It provides a base class for all node types that have to execute an external application.
The base class creates an abstraction layer to decouple the actual execution from the processing

6Technically, an AnnotationField is a public static object initialized at plugin loading time.
7Not all feature types contained in the specification are available yet and only a subset of the qualifiers are imple-

mented as annotation fields.
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of an application’s result. Different implementations may be used for execution, e.g. running
applications locally or distributing applications on a DRMAA([TRHD07]) compliant cluster.

4.7.8 Conveyor.Alignment

Alignments in Conveyor are classes implementing the generic Alignment interface provided by
the Conveyor.Alignment plugin. It defines methods for enumeration of involved sequences and
getting some basic information about the alignment. A memory-based implementation and node
types for working with alignments are also available in the plugin.

The Conveyor.Alignment.IO plugin contains nodes for reading alignments from Phylip- and
Stockholm-formatted files. Wrapper for a number of external applications to create mul-
tiple alignments like Muscle([Edg04]) or ClustalW ([THG94]) are available in the Con-
veyor.Alignment.Applications plugins. Simple pairwise alignments can be created by the node
type provided by the Conveyor.Alignment.Pairwise plugin.

4.7.9 Conveyor.Blast

Running BLAST ([AMS+97]) is possible with the Conveyor.Blast plugin. The results are automat-
ically parsed and converted to corresponding Conveyor data types for further processing.

The plugin also handles BLAST databases, including giving access to locally available preformat-
ted databases and creating databases on the fly from a set of sequences.

4.7.10 Conveyor.HMMER3

Similar to the BLAST plugin described above, the Conveyor.HMMER3 handles HMM based
databases and a number of external applications from the HMMER38.

4.7.11 Conveyor.GenePrediction

The Conveyor.GenePrediction plugin wraps a number of applications for predicting genes
on prokaryotic genomes, including Glimmer 3 ([DHK+99]), Critica ([BO99]), and Prodigal
([HCL+10]). Prediction results may later be used to create subsequences or features in Gen-
Bank/EMBL sequences.

4.7.12 Conveyor.Phylogeny

Alignment-based phylogeny applications are handled by the Conveyor.Phylogeny plugin. It de-
fines the necessary data types for storing phylogenetic trees and distance matrices and contains

8http://hmmer.janelia.org/, no publication available yet
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wrapper node types for most applications from the Phylip package ([F+89])9.

4.8 Conveyor clients

A number of different clients has been developed in conjunction with the Conveyor engine and
they allow users to design workflows, execute workflows, and finally bundle workflows into
executables of their own.

4.8.1 Web-Service + Designer

With the ability to create custom workflows, the Conveyor engine offers the opportunity to
utilize available computing resources and provide users a simple way to create and execute their
workflows.

The first clients developed for Conveyor clearly address this agenda. The Conveyor web service
operates on top of the processing component, provides information about plugins and available
node types, and controls the execution of workflows. The Designer is a Java Web Start appli-
cation bundled with the web service and allows the creation of workflows with a graphical user
interface.

The bundle enables sites to provide access to local compute resources using a data processing as
a service approach. Users can download the designer, create a workflow, and use the offered
compute resources to execute the workflow and retrieve the results after execution.

Figure 4.11 shows the workflow designer during the creation of a workflow. The GUI is splitted
into two parts, the main workflow canvas and the node type list on the left. Node types can be
added to a workflow by dragging them from the type list and drop them on an arbitary location
on the canvas. Connections between node instances of a workflow are also created by dragging
the mouse from the source to the target node. Tooltips provide additional information like the
current setup of a node instance or whether some elements of a node instance are not valid.

After the design of a workflow is finished, it can be sent to the service for execution. The
Designer GUI also offers monitoring of workflows during execution as shown in figure 4.12. It
presents an overview of the workflow, and uses different colours to indicate which part of the
workflow has already finished. Detailed information about node instances and connection is
again available as tooltip. The monitoring view also allows to save results after the processing of
a workflow has finished.

The designer does not require an active connection to the service for designing workflows. Upon
connection to a service, the current set of node and data types provides by the service is retrieved
and stored locally.

The following sections describe the format used by the web server and the Designer to exchange

9Instead of using the original applications, the plugin is based on the EMBOSS ([RLB00]) package containing the
Phylip tools.
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information about plugins and node and data types, how the Designer works with the type
system used by Conveyor, and the way the web server executes workflows.

Figure 4.11: The screenshot shows the Conveyor designer GUI during the creation of a workflow.
On the left a list of available node types grouped by plugin and an overview of the
complete workflow is available. The main part on the right consists of the canvas
used to draw the workflow. Dragging a node type’s label from the list to the work
canvas creates a new node instance. Furthermore dragging between two node
instances creates a connection (if possible). The screenshot also shows a tooltip,
which is available for a node instance. It includes information about the type, its
connections, and their validation state.

Plugin information exchange format

One of the methods exposed by the Conveyor web service returns information about the avail-
able plugins and their data and node types. The Designer uses this information to build a list of
available node types and to perform type checks (see the following section for information about
the Designer type system implementation).

The plugin information format is based on XML. Foreach plugin available on the service, it con-
tains a <plugin> element with a list of data types and a list of node types defined in the plugin.
Types are identified by their full qualified name. Figure 4.13 shows an example of a data type def-
inition in the plugin information format. The enclosing <datatype> element defines the unique
name of the data type and contains sub elements for type parameter and super classes. The type
parameter lists contains the position of the type parameter in the type parameter list and a sub
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Figure 4.12: This screenshot shows the Conveyor designer GUI during monitoring the execution
of a workflow. The main area of the window contains an overview of the workflow
using different colors to indicate the state of the various node instances. Finished
nodes are shown as gray boxes and green boxes indicate nodes that are currently
able to process data.
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element that defines the type constraints of the parameter. In this example, the type param-
eter’s value is constrained to types implemented the Conveyor.BioinformaticsTypes.Sequence
interface, the base interface for all sequence related types in Conveyor.

The super classes list contains elements for the base class and all implemented interfaces of a
data type. If either the base class or an interface is a generic type, its type parameters are
also defined as sub elements. In the example, the data type implements the generic Con-
veyor.Alignment.Alignment‘1 interface using its first type parameter. Super class definitions may
be arbitary complex and may contain nested generic types or self references.

<datatype name="Conveyor.Alignment.SimpleAlignment‘1">
<typeParameters>
<type position="0" name="T">
<restrictedTo name="Conveyor.BioinformaticsTypes.Sequence"/>

</type>
</typeParameters>
<superclasses>
<type name="Conveyor.Core.Data"/>
<type name="Conveyor.Alignment.Alignment‘1">
<typeParameters>
<type position="0" name="T">
<restrictedTo name="Conveyor.BioinformaticsTypes.Sequence"/>

</type>
</typeParameters>

</type>
</superclasses>

</datatype>

Figure 4.13: Definition of a data type in the plugin information format. The definition contains
the name of the data type (Conveyor.Alignment.SimpleAlignment‘1), the type pa-
rameters and all super classes and interfaces the data type implements. In this ex-
ample the type is a simple generic type for storing alignments made of sequences.
The type parameter restricts the possible values to those classes that implement the
Conveyor.BioinformaticsTypes.Sequence interface. The same parameter is also re-
ferred to in the super class definition for Conveyor.Alignment.Alignment‘1, which
is the interface for all classes implementing alignments.

An example for a node type definition is shown in figure 4.14. The enclosing <nodetype>
elements contains attributes for the unique class name of the node type, the optional user friendly
display name and a description of the node type’s function10. The section attribute defines
whether the node type is an input, output, or processing node.

Type parameter, configuration items, links, and tags11 are defined by sub elements. Type pa-
rameters of generic node type may contain restrictions similar to data types. In the example a
boolean configuration items is defined for the node type, giving its name, a description, a de-

10Display name and description are usually taken from non mandatory attributes a developer added to a node type’s
class

11Optional classification of node types, by short, hierarchic description. Not used in Conveyor yet.

58



4.8 Conveyor clients

fault value, and a flag to indicate whether this item is optional. Two links are given, one input
and one output link. The output link has a fixed type (Conveyor.Math.Integer) without any
reference to one of the type parameters. The input link in turn uses the type parameter of the
node class to restrict its possible data types. It is defined to be an implementation of the Con-
veyor.Alignment.Alignment‘1 interface, refering to the node type’s first parameter for its type
parameter. This allows the node type to be used with any alignment type (interface) that is
based on DNA sequences (restriction of first parameter). More details on the type system and its
implementation is presented in the next subsection.

Designer type system implementation

Since the Designer does not have access to the node types itself, it has to rebuild the type system
used by Conveyor and implement the necessary logic for working with types, e.g. for checking
whether two endpoint types are compatible.

The plugin information retrieved from a Conveyor web service is transferred to an internal repre-
sentation of its content. Figure 4.15 shows an excerpt of the type system’s API. It can roughly be
splitted into two parts: the definition of data and node types (IPlugin, INodeType, IDataType),
and node instances being part of a workflow (INode, IConnector, ITypeParameter, IDataType).

IDataType is the most important interface in the Designer type system. On the one hand it is used
to represent the data types defined in the plugin information, the type parameters of node types
(described by the INodeType interface), and their link types (as data type of IConnectorType
instances). On the other hand concrete data types in a workflow are also instances of IDataType,
e.g. type parameters of node types, or composed types like generic data types with bound
type parameters. Instances of INode act as container for all information associated with a node
using instances of IConnector and ITypeParameter to store endpoint setup and the current type
parameter set. Both latter interfaces define entities that may change their type during workflow
design. An endpoint’s type may depend on other connected endpoints and a type parameter
in turn depends on the endpoints that refer to this parameter in their definition. This aspect
is handled by the IVariableType interface that allows the Designer to retrieve the orignal type
definition (base type) and the current one.

Among storing information about available types and designed workflows, the type system is
primarily used to validate a workflow during design. The Designer is able to check whether a
connection between two endpoints is valid by invoking the IsAssignableFrom method of the
target endpoint’s current type with the source endpoint’s current type. It refuses a user’s attempt
to create a link if the method returns a negative result. It is also used to determine which endpoint
may be a target of a new connection if several unconnected input endpoints exists in a target
node. Workflow validation also relies on this method.

The implementation of IsAssignableFrom depends on the actual IDataType implementation. The
following ones are used in the Conveyor Designer for different purposes:

Concrete data type In the simpliest case the type parameter is a simple, concrete, non generic
type, e.g. the Conveyor.Math.Integer type shown in the node type example in the previous
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<nodetype classname="Conveyor.Alignment.DifferentSites‘1" displayname="DifferentDNASites"
description="calculates the number of different sites (S) in the alignment"
section="processing">
<typeParameters>
<type position="0" name="T">
<restrictedTo name="Conveyor.BioinformaticsTypes.DNASequence"/>

</type>
</typeParameters>
<configurations>
<config_item name="ignoreUnknown" type="ConfigBoolean" description="ignores columns
with unknown bases" default="True" optional="0"/>

</configurations>
<links>
<link name="alignment" description="alignment to process" is_input="1">
<type name="Conveyor.Alignment.Alignment‘1">
<typeParameters>
<type position="0" name="T">
<restrictedTo name="Conveyor.BioinformaticsTypes.Sequence"/>

</type>
</typeParameters>

</type>
</link>
<link name="sites" description="the number of different sites" is_input="0">
<type name="Conveyor.Math.Integer"/>

</link>
</links>
<tags/>

</nodetype>

Figure 4.14: Definition of a node type in the plugin information format. The type in question
examines a DNA sequence alignment and returns the number of columns that con-
tain different values. The type parameter is restricted to types implementing the
Conveyor.BioinformaticsTypes.DNASequence interface. The node type has two
endpoints, one input for the alignment, and one output for the number of sites.
The aligment is defined by a nested generic type definition: the enclosing <type>
element sets the type to the Conveyor.Alignment.Alignment‘1 interface, and the
nested <type> elements restricts the type parameter of the alignment class to the
type parameter of the node type itself. The output endpoint’s type is a fixed type
(Conveyor.Math.Integer) without any type parameter.
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Figure 4.15: Excerpt of the type system implementation used by the Conveyor Designer. IPlu-
gin, INodeType, IConnectorType and IDataType represent the data and node type
information sent by a Conveyor web service. INode, IConnector, ITypeParameter
and IVariableType are the APIs of classes implementing an actual node instance
in a workflow during design. Certain details like configuration items, description,
validation, etc. are not shown in this figure for the sake of clarity.
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sub section. For concrete types, IsAssignableFrom returns true if the method’s argument
is the same type or it is one of the instance’s base classes. In case of a type parameter as
method argument, a true value is returned if the type parameter’s constraints are met by
the concrete type.

Type parameter According to the specifiction of type parameters, a given type may be used
as type parameter if it mets all type constraints associated with the type parameter. The
implementation of IsAssignableFrom thus checks whether the method’s argument meets
all type constraints by using the constraint’s IsAssignableFrom method.

Generic data type In this case the method’s implementation is more complex due to the nature
of generic types. Inheritance has to be taken into account for the generic type itself but
not for the type parameters.

If the method’s argument is a type parameter, checking whether its constraints are fulfilled
is sufficient. Otherwise the implementation has to check whether the generic type and
the method’s argument refer to the same unbound types (e.g. both are lists), falling back
to delegating the check to the generic type’s super classes. If both types are instances
of the same generic type, their type parameters have to be checked. In case of a type
parameter for one of the type, the check is a recursive call to IsAssignableFrom. Otherwise
the method IsSameType is used, which can be implemented in a straight-forward way.

The Designer also has to keep track of type parameters and update them accordingly. Each
type parameter is bound to all endpoints that refer to it. Upon connecting or disconnecting an
endpoint, the type parameter update is triggered. It collects the current types of all collected end-
points and resolves a single type that is compatible with all endpoint’s type. This type becomes
the new value of the type parameter.

Changing a type parameter in turn updates the endpoints which delegate the type update to
connected endpoints. Creating or deleting a single link between endpoints may thus trigger a
flood of type changes in the whole workflow.

During saving a workflow to a file, the Designer stores all type parameter information in the
workflow file. They are used either for recreating the type setup upon the next loading of the
workflow, or for creating the correct instances of nodes in Conveyor if the workflow is executed.

Web service workflow execution

The Conveyor web service’s main purpose is executing workflow, and thus offers a number of
methods for handling execution:

CreateJob Creates a new job using a given workflow. A job is identified using a GUID12 returned
by this method.

CreateUploadFile Creates a new server-side file that can be used to transfer input data to the
Conveyor server. All input files referred to in workflow nodes have to be transferred to

12globally unique identifier
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the server. Access to local files on the host running the Designer or files stored on the
Conveyor server itself are not accessible in the Conveyor web service.

UploadFileChunk Transfers a part of a input file to the server. Since the size of a web service
request is limited, large file have to be transfered in several chunks.

ValidateGraph Instructs the job to validate the workflow and returns the validation result.

StartGraph Starts a validated job.

AbortGraph Aborts a running job.

GetJobState Returns the overall job state.

GetOutputType Returns the type of data an output node has created.

GetOutput Returns the data of an output node.

DeleteJob Removes a finished or aborted job.

A job acts as a wrapper for an Conveyor.Processing.IProcessor instance that was setup to exeucte
the workflow given during job creation. The web service methods thus mostly resemble the
IProcessor interface.

Jobs and the web service itself are separated as shown in figure 4.16. An intermediate JobMan-
ager is used for managing job instances and reporting the existing instances to the web service.
It can act independently from the web service and can rerun on a different host. Depending on
the job manager, a job may be executed in different ways, e.g. inside the job manager itself, as
separated process, or using distributed computing like a grid or cloud based service. In a produc-
tion setup, it is highly recommended to separate at least the web service and the job manager to
compensate for disruption and outages, e.g. by running them on different hosts. Communica-
tion between all four entities shown in the figure is done by network-aware protocols available
in .NET.

Figure 4.16: Different contexts (e.g. different hosts) can be used for the separation of jobs and
web service during execution.
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4.8.2 GraphRun commandline utility

While the service and designer applications presented in the previous subsection allow the cre-
ation of workflows, their execution is bound to the web service. This shortage is addressed by
the GraphRun utility. It is part of the processing component and allows the execution of a work-
flow on the command line. Configuration parameters like input files or threshold values can be
set as command line option, and output of nodes can be redirected straight into files. GraphRun
also offers to monitor the execution of a workflow and provides statistical information about
nodes and endpoints. It is primarly intented to be used for batch processing of workflows, using
a locally available Conveyor installation.

4.9 Rapid Design and Deployment: Conveyor2Go

While the clients presented in the previous subsections focus on batch execution and offering
workflows as a service, Conveyor2Go has a different goal. It implements the last step of the
Rapid design and deployment process show in figure 4.9: a workflow is designed, tested, and
finally deployed by the users.

Figure 4.17: Software development process from design to deployment. The top row contains
the steps involved in software development, the second row the kind of data pro-
cessing the corresponding step in case of a workflow, and the last row finally shows
the Conveyor tool involved in this step.

Conveyor2Go is able to convert a workflow definition to a standalone executable. It analyses
the workflow and bundles Conveyor and all plugins used in the workflow in a standalone binary.
The binary in turn can be installed on the local computer or sent to other users for installation.

During the bundling process, the workflow developer can manipulate the configuration items of
nodes in the workflow, assign fixed values to them, or rename them to better human readable
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names. The resulting binary provides both a commandline interface (and can thus be used for
batch processing), and a Gtk+ based graphical user interface. Figure 4.18 shows a screenshot
of the Conveyor2Go Creator for creating self-contained executables. Figure 4.19 present a
screenshots of the GUI13 generated by Conveyor2Go after changing the internal names of input
files, configuration items and output files to more user friendly values. An overview of the
corresponding command line usage is given in figure 4.20.

Figure 4.18: The interface of the Conveyor2Go Creator user interface. The tree on the left con-
tains all editable items, including the workflow description itself, input files, config-
uration items, and output file. The workflow in the example contains two nodes
with one input file, one configuration setting, and one output node. Names and
descriptions can be changed to be more user friendly and fixed values may be set
for configuration items

Figure 4.19: Screenshot of the GUI generated for the Conveyor2Go application. It allows set-
ting the input files, redirect output to file, and setup the configuration items for a
workflow execution.

Currently Conveyor2Go creates self-contained .NET executables. For this reason the intended
user requires a .NET environment. In case of UNIX, the mkbundle tool can be used to bundle
the complete Mono runtime with the generated workflow executable, creating a single stan-
dalone, statically linked binary without a dependency to a .NET or Mono runtime. Additional

13preliminary version
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FastQ2SFF Converts FastQ files to SFF files
Usage: FastQ2SFF [options] input

File inputs:
input [primary] FastQ file to convert

Results:
output [primary] name of SFF file to generate

Configurable options:
qualityEncodi[ENUMERATION] Encoding of quality values in FastQ quality line

Default options:
help show this help message
batch enforces command line only usage; all necessary options have to

be given as command line arguments
gui starts the application with the graphical user interface
debug enables debug output in batch mode

Each option may be given on the command line using either ’-’, ’/’ or ’--’,
followed by the option’s name, a delimiter (space, ’=’ or ’:’), and the options
value (if required).

Example: /foo:1 -bar test

The file input input may also be given as additional command line argument. If
’-’ is used as file name in batch mode, the standard input is redirected for
this file input.
Instead of specifying an output file for output, not using the option at all
will redirect the result to standard output in batch mode.
Using the debug mode will disable the redirection of standard input and standard
output. Instead pressing enter during execution prints debug information about
the nodes in the workflow to standard error.

Figure 4.20: The usage message of Conveyor2Go executables. All information shown in the
creator are stored in the resulting executable, and are used for naming command
line options and giving descriptions to the user.
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requirements like libraries or external applications have to be present in the target system.

4.10 MGX: Metagenome analysis enviroment

As a result of the widespread availability of next-gen sequencing technologies, the field of
Metagenomics has been focussed by many researchers. Metagenomics does not address a
single organism but allows to get information about a complete community with different or-
ganisms. Similar to whole genome shutgun, genomic DNA is sequenced. Instead of cultivating
and cloning the same organism, DNA material is directly harvested from a metagenome sample.
This approach allows researchers to sequence organisms that cannot be cultivated. It however
also introduces a number of challenges, but which are beyond the scope of this thesis.

MGX is a new platform for management and processing of metagenome data sets, that is cur-
rently under development as part of a PhD project. It will use Conveyor for data processing
engine, amd features predefined and user-specified workflows. A number of plugins is under
development that contain metagenomic functionality and which will become part of the default
Conveyor distribution.
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CHAPTER 5

Use cases

The following sections present a selection of use cases of Conveyor from the bioinformatics
domain. They have already been either used in production or have acted as templates for pro-
duction usage.

Although these use cases put a focus on bioinformatics, Conveyor is not restricted to that scien-
tific domain. Plugins may extend Conveyor to handle any type of data and perform automated
analyses on them.

5.1 Reference based genome annotation

The workflow presented in this use case study implements a pipeline for annotating a genome
using an already annotated reference genome. The new ultrafast sequencing technologies in-
troduced in recent years, result (among other benefits) in a flood of new draft genomes. Fur-
thermore instead of concentrating on a single organism or a single strain, a complete species
including several subspecies can be sequenced in a single run. Due to the large amount of data
generated in these cases, manually finishing or annotating these genomes is not feasible with
respect to financial or man power constraints. The research objectives thus focus on the identifi-
cation of differences among the draft genomes by mapping them onto a reference genome and
by comparing the results for the different strains. In many cases, manual annotation is only done
for the genes of interest - if done at all.

The overall workflow is built from three different parts: gene prediction on plain genomic DNA
sequences, homology searches for the predicted genes versus an annotated reference genome,
and handling of predicted genes without homologues. The result of the workflow is exported
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as an EMBL-formatted file containing the predicted genes and their functional annotations. The
workflow in this use case includes a BLAST search to map genes to the reference genome. In
addition, it uses another BLAST search against a general purpose database for genes without
mapped reference genes. The workflow as shown in figure 5.1 consists of several parts:

a) The preparation of the reference genome. A BLAST database is built from all CDS features
of the given EMBL or GenBank file.

b) Gene prediction for the novel genomes. Putative coding regions are predicted using the
Glimmer3 ([DHK+99]) prokaryotic gene prediction software with default parameters, and
CDS regions are created.

c) Search for homologues in the reference genome. Using BLAST, all CDSs of the novel
genome are compared to the CDSs of the reference genome. The results are filtered based
on an e-value threshold and a minimal coverage cut-off, and put into a list.

d) Copy of annotation fields from matching CDSs; if a homologous CDS was found during
the BLAST search, its annotation fields like gene product, gene name and function are
transfered to the novel CDS.

e) Search for homologues in a public database: For novel CDSs without known similar genes
in the reference genome, a public database like SwissProt as part of the UniProt database
([Con10]) or the GenBank database ([BKML+10]) can be used with BLAST to search for
homologues.

f) Copy of annotation fields from matching database hits: Similar to d) the content of anno-
tation fields of the best hits against a public database are transferred to the novel CDSs.

g) Mark still unassigned CDS. All CDSs without assigned annotation during steps d) and f) are
marked as being putative.

h) Export of genome: The complete genome including the predicted CDS is exported as an
EMBL or GenBank file.

The main benefits of implementing the above workflow in the Conveyor system are flexibility
and extensibility. The use case only shows an exemplary design of the workflow. Changing
the reference organism or the gene prediction tool is only a matter of changing a node in the
workflow. Thresholds e.g. for the e-value threshold of BLAST results or settings like the database
to use in step e) are configuration fields directly accessible via the designer GUI.

The complete workflow is implemented without writing a single line of code or invoking an
application except Conveyor and the designer GUI. Moreover, the command line execution utility
that comes with Conveyor allows executing the workflow completely without user interaction.
It also offers the ability to change the configuration for individual runs. The BLAST steps used
in this use case are good examples for generic types. The BLAST result data type is a generic
type using a type parameter for the BLAST query and another type parameter for the database
sequence. Retrieving the query or the subject from a BLAST hit, thus results in the original feature
from the EMBL or GenBank file with full access to all feature keys as annotation fields. This also
allows for transfering keys usually not exported to BLAST databases like notes or EC numbers in
a consistent way.
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Figure 5.1: Example workflow for annotating a genome using a reference genome. The markers
refer to certain functionalities explained in the text.
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5.2 Comparative genomics

With several genomes of a selected species available, dividing them into groups according to
their phenotype and determining the specific gene content of these groups is the next important
step in comparative genomics. Conveyor provides all necessary functions for this kind of analysis.
Figure 5.2 shows a workflow to calculate the core genome of a set of given genomes. The core
genome consists of all genes present in all organisms, taking paralogs into account. Based on
annotated genomes, the set of homologue genes for all genes of one organism are computed.
If the list of homologues of a single gene only contains one homologue in each organisms, it is
considered a member of the core genome.

The workflow thus consists of several parts:

a) Import of genomes including their annotation from EMBL or GenBank formatted files.
Sequences shorter than a given length are filtered out, e.g. plasmids.

b) A list of all genome IDs is created.

c) A blastable database is created from the CDSs of all organisms.

d) The genome with the lowest number of coding sequences is selected.

e) A second BLAST-able database containing all coding sequences of the smallest genome is
created.

f) Homologous sequences for all coding sequences of the smallest genome are determined
using BLAST.

g) The list of BLAST hits is reduced to significant hits. Their bit scores have to exceed a certain
ratio if compared to the bit score of the most significant hit (first hit in BLAST result).

h) The set of sequences referred to by the remaining BLAST hits has to contain a single gene
of each organism to be considered a part of the core genome.

i) Each sequence detected as a possible homologue is compared against all coding sequences
of the smallest genome using BLAST. This step filters out possible paralogs in the genome
and ensures that all genes in all candidate sets are indeed homologues.

j) Alignments are created from the sequences of all candidate core gene sets using Muscle
and written as result using the Phylip alignment format.

The workflow is only an example implementation of a core genome calculator. Other restrictions
may also apply, e.g. filtering out genes related to mobile elements. The number of genomes
processed by the workflow is not restricted. Many parameters like thresholds for BLAST results,
the required score ratio in step g), or the required length of the genome sequence used in step a)
can easily be adapted to the input sequences. The workflow may also be extended by additional
processing steps based on the alignment of the core gene sets. Nodes for alignment processing
and phylogenetic analyses are already available for Conveyor.

As a special feature this workflow demonstrates the list processing and branching flow features
of Conveyor.
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Figure 5.2: Example workflow for determining the core genome of a set of genomes. The mark-
ers refer to functionalities described in the text.
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5.3 Next-Gen sequencing data processing

This use case is a real world application of Conveyor to sequence data produced by a Illumina
Solexa GA IIx sequencer. This machine is able to generate a tremendous amount of sequencing
reads but is only capable of producing short read lengths. At the time of writing this thesis, read
lengths up to 150 base pairs are possible with 2 x 150 base pairs for paired end reads. Cer-
tainly, the assembly of genomic reads into a complete genomic sequence would greatly benefit
from larger read lengths. To overcome the limitations of Solexa sequence reads, a non-standard
laboratory protocol is used to generate longer sequence reads at the CeBiTec.

In this approach, shorter templates are used, containing a linker between two flanking parts of
the template to be sequenced. The length of the template is shorter than the sum of the aimed
length of both reads in the paired end read. The template is then sequenced from both sides as
shown in figure 5.3. In an ideal case, both reads overlap and include the linker sequence in their
3’ region.

Figure 5.3: The schema shows the sequence template used for overlapping paired end reads. A
known linker sequence (red) is inserted into the original template and both ends of
the resulting template are sequenced with overlapping reads.

The resulting sequence pairs can be separated into three categories:

no linker: No linker sequence is found in any of the paired sequences.

single linker: The linker sequence is found in one the paired sequences.

both linker: Both paired sequences contain the linker.

Each category requires a different handling. Reads without linker sequence are considered as
single reads and written to the same output file. In case of a single linker, any sequence down-
stream of the linker is discarded and a paired end read pair is written to the output file. If both
sequences contain the linker, a consensus sequence of both reads is created and written to the
output.

Figure 5.4 shows the workflow developed for processing the Illumina data. In this example,
one lane is processed at a time and sequences are selected using an introduced sequence tag1

Afterwards, the linker is searched using approximate matching, the number of overlapping bases
is calculated, and the read pair is assigned to the corresponding category.

Output is written in SFF format to allow an easy processing of the read pairs with a number

1In this example, the seuqence run contains different organisms in the same lane using different sequence tags. A
Genome Analyser sequencer generates a third read containing the sequence tag only. This read is used in the
workflow to filter out non-relevant read pairs.
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Figure 5.4: Workflow for Solexa data preprocessing. Read pairs are read from Solexa lane files,
linker sequence position and read pair overlap are calculated, and the read pairs are
processed and written to the output files depending on the presence of linker se-
quences and overlapping bases. 75
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of established assembly tools. Since SFF is usually generated by Roche’s 454 sequencer, the
linker sequence in the read pairs is replaced with the sequence used by 454 to indicate read pair
extends.

5.4 Results

This section presents the results obtained by the presented use cases. The first subsection intro-
duces the test setups and the following subsections contain the results for the three use cases.

5.4.1 Test setup

During the use case tests, the workflows are executed on a host equipped with 256 GB RAM and
4 Intel Xeon E7540 CPUs running at 2.00 GHz. Each CPU provides 6 cores and hyperthreading
per core, resulting in 24 real cores and 48 virtual cores presented to the operating system2.
Runtime of workflows are measured using the standard UNIX time(1) command which lists the
overall processing time (real), the time spent in the application itself (user), and the time spent in
system calls (sys). Unless mentioned otherwise, the workflows were executed 5 times, and the
average times over those runs are used in the discussion.

Two different setups are used for benchmarking the workflows:

DRMAA cluster All nodes utilizing external tools are submitting their tool invocations to the
CeBiTec compute cluster. Table 5.1 lists the available hosts of the compute clsuter at the time
of writing this thesis. These 236 hosts contain 472 CPUs with a total of 1170 cores, resulting
in about 800 slots in the appropriate cluster queue. The cluster is managed by Oracle Grid
Engine (OGE), which provides both a command line and DRMAA([TRHD07]) compliant API for
submitting and monitoring jobs. Tools are set up to read their input from standard input and
to write results to standard output. Intermediate files are stored on a NFS-based, network-wide
available volume.

For accurate discussion of timing benchmark results, several factors of this setup have to be taken
into account. First of all, due to the nature of the shared filesystem, files created on a host are not
immediately visible to other hosts in the network. Depending on the setup of the NFS caches,
it may take some time until a NFS client refreshes its caches. In the current CeBiTec setup the
refresh interval is set to 30 seconds. Conveyor (resp. the library taking care for running compute
jobs) has to take this into account. A node thus has to sleep for 30 seconds between creating
job input files and submitting the actual job to the scheduler, and again has to wait for up to 30
seconds after a job has terminated to be sure that the output file exist3.

2Conveyor is not able to differentiate between real cores and virtual cores. Scheduling Conveyor threads to certain
cores is operating system dependent and beyond the scope of Conveyor.

330 second timeouts are used at the CeBiTec cluster, the value itself is adjustable for other setups.
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Quantity Machine type No. of CPUs Cores/CPU CPU Freq. RAM
50 SUN V20z 2 1 1.8GHz 4GB
50 SUN V20z 2 1 1.8GHz 8GB
7 SUN V20z 2 1 1.8GHz 16GB

22 SUN X2200 2 2 2.6GHz 16GB
73 SUN X2250 2 4 2.5GHz 32GB
34 FUJ RX200 2 4 2.6GHz 48GB

Table 5.1: Configuration of the CeBiTec compute cluster in August 2011. Each rows lists the
machine type name, its number of CPU, cores, CPU speed, and RAM setup, and the
number of machine of this type available in the cluster.

Since the cluster is a shared resource between several groups at the CeBiTec, exclusive access
to all slots of a queue cannot be guaranteed, and other computations may interfere with a
benchmark run. It should also be noted that scheduling jobs itself does not happen directly at
submission time but within certain intervals defined by the cluster setup4.

These waiting times have to be taken into account when discussing overall execution time of a
workflow. In addition, file I/O (input and output files of compute jobs) happens on a network
volume, resulting in an extra overhead compared to local disk I/O.

Despite of this, the user time reported in the cluster-based benchmark runs gives a good approx-
imation of the time actually used for the processing of a workflow itself including Mono startup
overhead, since it does not include execution time of external tools or file I/O (which is part of
the sys time).

Local execution To rule out cluster-based effects and to demonstrate the scalability of Conveyor
with respect to external tools, a second setup uses only local resources. External tools are started
as processes on the local host and input and output are streamed directly to resp. from the
process. No intermediate files are used.

Depending on the number and kind of available CPU cores and the resources needed by each
instance of an external tool, the number of instances may scale well up to the number of available
cores. To rule out swapping effects, the hosts used for these tests provide a large amount of
RAM, suitable for almost any application available in Conveyor.

It also offers up to 48 virtual cores but since half of them are hyperthreading cores, the perfor-
mance may not scale as expected, e.g. due to shared floating point logic.

Benchmark runs are done with a different number of processes running in parallel, ranging from
a low number of 2 or 4 parallel instances upto the number of (virtual) cores reported by the
operating system.

4Scheduling interval was set to 35 seconds, resulting in a lag of up to 35 seconds between submission of jobs and
transfer of jobs to compute hosts.
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5.4.2 Reference based annotation

The workflow was used to annotate 58 Escherichia coli replicons (GenBank ([BKML+10])
having accession numbers NC_011602, NC_011603, NC_008253, NC_011748, NC_008563,
NC_009837, NC_009838, NC_012947, NC_012759, NC_012967, NC_004431, NC_010468,
NC_009786, NC_009787, NC_009788, NC_009789, NC_009790, NC_009791, NC_009801,
NC_011745, NC_009800, NC_011741, NC_011750, NC_010473, NC_000913, AC_000091,
NC_002127, NC_002128, NC_002695, NC_002655, NC_007414, NC_011350, NC_011351,
NC_011353, NC_013008, NC_013010, NC_011742, NC_011747, NC_011407, NC_011408,
NC_011411, NC_011413, NC_011415, NC_011416, NC_011419, NC_010485, NC_010486,
NC_010487, NC_010488, NC_010498, NC_011739, NC_011749, NC_011751, NC_007941,
NC_007946, NC_011740, NC_011743). The official GenBank annotation of E.coli K-12 DH10B
(NC_010473) was used as the reference genome. For the second BLAST run, the SwissProt
subset of the NCBI non-redundant protein database (nr) was used, dated of Jun. 23, 2011.

Table 5.2 contains the benchmark results of a varying number of local cores and the values for
running the benchmark using the CeBiTec compute cluster. Each row contains the number of
processes spawned in parallel and the result of the UNIX time command. Figure 5.5 shows the
results as a bar chart, and figure 5.6 presents the results as relative values using the case of 4
local cores as reference.

No. of cores Real time [s.] User time [s.] System time [s.]
4 23672.3 88514.8 4855.3
8 11493.9 85415.7 4775.0

16 6878.1 100060.0 6141.8
32 3847.1 108067.0 6587.0
48 3239.9 130318.0 7711.3

Cluster 2379.4 365.5 116.6

Table 5.2: Results of benchmarking the reference annotation use case with a different number
of local cores and using the CeBiTec compute cluster. Each row contains the number
of processes, the mean values of the results of the UNIX time command for overall
execution time (real), time spent in the user process (user), and time spent in system
calls (system).

As expected, in the case of using the compute cluster almost no time is spent for the actual
processing of the workflow compared to the local execution cases, so the values for user and
system time of the cluster benchmark run may act as indicators for the time used for executing
the workflow itself (nonetheless, as explained above, a small overhead also exists in the cluster
case). The overall execution time varies due to different cluster allocation patterns during the
benchmark.

For the local execution benchmarks, the case for eight processes shows the expected results. The
overall time is almost cut in halve while user and system time differ only slightly. For a higher
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5.4 Results

Figure 5.5: Absolute runtime for the reference based annotation use case. Each data set shows
the mean real time, user time, and system time. Error bars indicate the minimum and
maximum time for all 5 iterations.

Figure 5.6: Relative runtime of the reference based annotation use case using the benchmark run
with 4 cores as reference values.

79



5 Use cases

number of processes, the overall time is still significantly reduced but higher amounts of relative
user and system time results in a reduction factor of less than two. The exact reason is unknown
but it is probably related to the high number of parallel execution threads and necessary context
switches. To eliminate the need to disc I/O, two threads are used for each started process to
handle input and output streams. With 16 processes running in parallel, 1*16 (processes itself) +
2*16 (input + output) threads are used which clearly exceeds the number of available real cores
(24 real, 48 virtual) on the benchmark host. The additional context switches, I/O handling, and
thread management probably results in the effects visible in the relative runtime chart.

As a conclusion of this use case, Conveyor’s runtime obviously scales well with the number of
parallel processes as long as enough resources are present for handling the additional threads.

5.4.3 Comparative genomics

Using the same set of genomes as described in the section before, five benchmark runs of the
comparative genomics workflow were carried out for a different number of local cores and the
compute cluster. The average run times are show in table 5.3 and figures 5.7 and 5.8 present
the results as barcharts.

No. cores Real time [s.] User time [s.] System time [s.]
2 4807.7 8526.9 701.9
4 2540.1 8600.1 720.7
8 1402.3 8860.5 778.2

12 1022.0 9019.1 625.2
16 887.1 9235.7 858.7
24 707.6 10178.4 695.0
32 729.1 10668.9 927.0
48 642.6 12586.5 760.7

cluster 686.5 202.5 30.4

Table 5.3: Results of benchmarking the comparative genomics workflow using different number
of local cores and the CeBiTec compute cluster. Each row contains the number of cores,
the mean values of the results of the UNIX time command for overall execution time
(real), time spent in the user process (user), and time spent in system calls (system).

The results in case of cluster usage are similar to the previous use case. The relative amount
of local processing time compared to overall time is larger since less tools and faster running
tools (e.g. BLAST versus smaller databases) are used in this workflow. Again, the error bar
of the overall run time indicates that the cluster processing time varies due to different cluster
allocations during the benchmark runs.

For the local processing cases, the relative numbers again show a slight increase of the relative
user and system time, if more processes are run in parallel. The overall processing time again
scales well with the number of processes. As indicated by the error bars, the system times
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5.4 Results

Figure 5.7: Absolute runtime of the comparative genomics use case. Each data set shows the
mean real time, user time and system time. Error bars indicate the minimum and
maximum time for all five iterations.

fluctuate in higher degree compared to the previous use case. A possible explanation is the
different nature of the processes spawned in this use case. While the reference based annotation
use case involves execution time of tens of seconds or several minutes for external tools, the
BLAST and Muscle processes terminate earlier, often within tens of a second. This puts additional
pressure to the operating system.

After all, again Conveyor scales quite well, until the host is saturated with processes and threads.

5.4.4 NGS data processing

In contrast to the other use cases, this use case has been executed in a different setup. The
amount of data in the corresponding lane exceeds 17 GB, the time needed for transfering the
data over the network would make up a substantial part of the processing time.

Instead, the workflow has been executed on the host storing the data itself (8x Quad-core AMD
8356 running at 2.3 GHz, 256 GB RAM). Since no external tools are involved in the workflow,
its processing time only depends on file IO and the local resources.

Table 5.4 shows the processing time of the NGS data processing workflow. While the over-
all processing time was 435m 46s (26.146 s), the accumulated processing time (user + sys) of
all threads was 1944m 28s (116.668 s). Multithreading thus leads to a reduction of the over-
all processing time by a factor of at most 4.45 (the real speed-up factor may be lower, since
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Figure 5.8: Relative runtime of the comparative genomics use case, using the benchmark run
with 2 cores as reference values.

time results
real user sys

435m 46s 1583m 53s 360m 35s

Table 5.4: Runtime of the NGS data processing workflow, as measured with the UNIX time
command.

multithreading introduces system overhead for synchronization).

To determine whether the overall execution time may be reduced even further, one workflow run
was closer examined. The GraphRun command line utility offers an option that prints statistics
for each node and its endpoints, including the number of elements passed and pending. This
reveals that almost no elements are pending in the input endpoints’ buffers. As a consequence,
the performance-crucial nodes in this workflow are the input nodes that parse the reads from the
Illumina sequence files. Since these nodes are mostly I/O-bound, no further attempt was made
to speed up the workflow execution.
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CHAPTER 6

Discussion

The Conveyor workflow library presented in the previous chapter is a novel approach to work-
flow processing, and adds a viable alternative to the workflow systems presented in chapter
2. Similar to Kepler and Pegasus, Conveyor implements a generic workflow engine that is not
bound to a certain application domain. Although the use cases and example shown in this thesis
are all related to bioinformatics, the core, processing and definition components that make up the
engine are suitable for any kind of data. In contrast to almost all workflow systems mentioned
in chapter 2, Conveyor offers to operate on a finer granularity, and allows manipulation of data
on the level of single integers or boolean values. Kepler is the only noticable exception of the
presented systems, since it is also suitable to work on a similar level. Higher-order functionality
in Conveyor is available by the use of compound node types, that refer to complete workflows
of their own instead of a single processing steps. Many, but not all other workflow engines offer
a similar concept, e.g. nested workflows in Taverna.

The truely unique feature of Conveyor is the type system for data and node types, which allows
working with generic types and greatly improves the reusability of plugins. No other workflow
engine examined during the course of this thesis offers a comparable setup. All requirements
listed in chapter 2 for a modern workflow system are fulfilled by Conveyor:

Data-driven processing is implemented by passing objects between node instances, thus elim-
inating the need to use file-based transfers. The type system used for the object-oriented ap-
proach is also the key for the extensibility of Conveyor. Interfaces, inheritance and the use of
generic types allow developers to decouple their implementations, and bundle them into plugins
for the easy extension of Conveyor. The programming language may be chosen from a large
selection of languages by the use of the .NET environment for Conveyor.

External applications, like many analysis tools for bioinformatics, can be integrated via wrapper

83



6 Discussion

node types into Conveyor. Results of these tools can be parsed and provided for further process-
ing in an object-oriented way. An extensible layer controls how external tools are executed (not
shown in this work), and implementations for local execution or distribution on a DRMAA com-
pliant cluster exist. A system administrator may select an instance of this layer for each external
tool used. Security and discretion of data thus only depend on the setup and the tools used. In
the most secure setup, no data has to leave a local computer, e.g. by calling a web-service.

Finally, Conveyor is designed for integration into other applications due to its component based
architecture. A number of clients have been presented in chapter 4.

The use cases described in chapter 5 demonstrate the suitability of Conveyor for processing
bioinformatics data. Legacy applications can easily be integrated, and execution of external
applications scales well with the number of processors available. Large data volumes, like a lane
of Illumina GA IIx sequence reads (as in the case of the NGS use case with a size of 18 GB of
input data), can easily be processed by Conveyor. Its design does not impose a limit on the
amount of data a workflow can process1.

A number of performance optimizations have been shown in the implementation chapter. Bot-
tlenecks have been identified, and solutions have been proposed and implemented. For each
optimization, its impact on the presented example workflow has been demonstrated.

The presented development optimizations aim at the plugin developer and simplify the task of
implementing new node types. With concepts like immediate processing nodes or simplifications
for input node types, a developer only spends a minimal effort into implementing new node
types.

Summarizing the previous chapters, the desired features and requirements are implemented in
the Conveyor library and its pratical use for solving bioinformatics problems has been illustrated.

1Certain limits for RAM size of a .NET/Mono process exists, e.g. the amount of physical and virtual RAM available
and the amount of RAM the integrated garbage collector can handle.
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CHAPTER 7

Summary & Outlook

The Conveyor workflow library is a mature and highly efficient library for the management and
execution of scientific workflows. It offers unique features like an object-oriented type system,
extensibility by plugins, and easy integration into higher-level applications.

Two different purposes are intended for Conveyor:

De-facto engine for execution of workflows in new CeBiTec applications A number of new
bioinformatics applications are currently under development at the CeBiTec like the al-
ready introduced MGX metagenomics data management tool. To reduce the redundant
development of central features, Conveyor is the designated workflow engine for these
applications. Application developers thus only have to take care for data import, data ex-
port, and specific processing. Existing plugins can be shared between similar applications.

Replacement for Perl-based scripts A significant amount of time has been spent into imple-
menting ad-hoc Perl scripts or similar software for one-time applications. With the available
bioinformatics plugins, at least parts of these scripts can be replaced by workflows. This
allows a more efficient design and execution of one-time tasks.

At the time of writing this thesis, the Conveyor system includes 25 plugins with over 300 node
types. A complete list is available in the appendix.

With the Conveyor library implementation being finished by now, more time can be spent for
implementing new plugins or improving other aspects of Conveyor. The following list gives an
(incomplete) overview of planned features:

Netbeans Platform based workflow designer The current GUI workflow designer is imple-
mented as a Java Web Start application and a number of limitations have inspired its
redesign as a Netbeans Platform application. This more modular approach will improve
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the extensibility of the designer dramatically and allow for an easier distribution and main-
tance of its components. The design for this new application is already finished, and some
core components like the definition of node types are already implemented.

Improved user interfaces for Conveyor2Go The GUI screenshots of Conveyor2Go in section 4.9
show the prelimiminary version of a prove-of-concept implementation. The interfaces will
be redone prior to publishing Conveyor2Go for production usage.

Support for read mapping software used for RNA-Seq and resequencing A lot of sequence
data is generated for RNA sequencing, and sequencing of species closely related to a
species with a known genomic sequence. Both cases require software that is able to map
a sequence read to a given reference genome. Initial support for software has been devel-
oped during a student programming course during the winter term 2010/2011 and it will
become an official Conveyor module in the near future.

Improved handling of primitive data types Primitive types like boolean values, integers, or
floating point values are currently implemented by wrapper data types. The code base for
node types operating on these wrappers contains a large degree of duplicated code and
conversions between types are not always implemented yet. A new library for handling
these primitive types can certainly further improve the overall code quality of Conveyor.

EMBOSS[RLB00] software support EMBOSS is a collection of various bioinformatics tools cov-
ering many different aspects. A unique feature of EMBOSS is a description language
(AJAX/ACD) that is used to explain the parameters and input and output types of these
tools. Based on these description, a Conveyor plugin is planned that parses the description,
detects which tools are available, and creates virtual node types integrating these tool into
a workflow.

Conveyor2Go web resources Using the technology described in section 4.9, a web-based plat-
form is currently developed to allow users to search for existing workflows, upload their
own solutions to bioinformatics tasks, and to execute one of the available workflows on
the CeBiTec compute cluster.

Conveyor is also suitable for student programming courses as mentioned above, and two of these
courses have already been held at the CeBiTec. They emphasized on both aspects of Conveyor:
plugin development and workflow design.

As a conclusion, despite being intended as a tool for end-users in the beginning, Conveyor has
become a powerful tool for bioinformatics developers and will definitely change the way software
is created at the CeBiTec (and hopefully at other places, too).
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APPENDIX A

Conveyor.Processing.IProcessor interface

namespace Conveyor.Processing
{

/// <summary >
/// Defines the common interface of all processor classes that
/// may be used within BioGraph. A processor ’s main purpose is
/// processing a biograph instance , either a complete graph or
/// a part of a biograph forest.
///
/// Since the processor instance may be located on a remote host ,
/// the interface is restricted to classes that are serializable ,
/// e.g. no direct passing of Xml elements.
/// </summary >
public interface IProcessor : IDisposable
{

/// <summary >
/// The graph processed by this processor instance.
///
/// An attempt to set a new graph while another graph is currently
/// processed should result in an InvalidOperationException.
/// </summary >
Graph Graph {get; set;}

/// <summary >
/// Returns the number of nodes added to this processor.
/// </summary >
/// <returns ></returns >
int NumberOfNodes();

/// <summary >
/// Processes the biograph instance until it is either completely
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/// finished
/// </summary >
void StartProcessGraph();

/// <summary >
/// Validates the BioGraph instance set with SetGraph(). If validation
/// fails this methods throws an exception.
/// </summary >
void ValidateGraph();

/// <summary >
/// Returns the current state of the Graph and the processor.
/// </summary >
/// <returns ></returns >
GraphState GetState();

/// <summary >
/// Returns the last exception that occured in the node with the given
/// ID or null if no exception has occured yet.
/// </summary >
/// <returns ></returns >
Exception GetError(long nodeId);

/// <summary >
/// Returns the output type of the given node.
/// </summary >
/// <param name="nodeId"></param >
/// <returns ></returns >
string GetOutputType(long nodeId);

/// <summary >
/// Returns the output of the given node.
/// </summary >
/// <param name="nodeId"></param >
/// <returns ></returns >
/// <exception cref="InvalidNodeIDException">thrown if the given node
/// exists and is not an output node </exception >
byte[] GetOutput(long nodeId);

/// <summary >
/// Sets the stream the output node with the given ID should use for
/// storing its data.
/// </summary >
/// <param name="nodeId"></param >
/// <param name="stream"></param >
void SetOutputStream(long nodeId , Stream stream);

/// <summary >
/// Returns a list the all output nodes ’ ids.
/// </summary >
/// <returns ></returns >
List <long > GetOutputNodes();
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/// <summary >
/// Shutdown the processor.
/// </summary >
void Terminate();

/// <summary >
/// Returns an XML document describing the status of all nodes.
/// </summary >
/// <returns ></returns >
IEnumerable <NodeReport > GetGraphStatus();

/// <summary >
/// Returns the given node if is exists in this processor.
/// </summary >
/// <param name="nodeId">unique identifier of node to search
/// for </param >
/// <returns ></returns >
Node GetNode(long nodeId);

/// <summary >
/// Waits until a processor terminates.
/// </summary >
void WaitForTermination();

/// <summary >
/// Returns an iterator over all nodes in the graph.
/// </summary >
/// <returns ></returns >
IEnumerable <Node > GetNodes();

}
}
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APPENDIX B

Implemented plugins

The following sections lists all plugins implemented for Conveyor at the time of writing this
thesis. The information has been generated by converting the plugin information file descripted
in section 4.8.1 to LATEXusing an XSL-T processor.
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B.1 Conveyor.Alignment

Nodes and data types for generic alignments, mostly produced by external tools

Data types
Conveyor.Alignment.Alignment<T> - no description given -

Conveyor.Alignment.AnnotatableAlignment<T> - no description given -

Conveyor.Alignment.EmptyAlignment<T> - no description given -

Conveyor.Alignment.SimpleAlignment<T> - no description given -

Node types

Conveyor.Alignment.AlignmentMembers<T>
converts an alignment to a list of its member sequences

Endpoints:
← input (Conveyor.Alignment.Alignment<T>) - no description given -
→ output (Conveyor.List.List<T>) - no description given -

Conveyor.Alignment.ConcatAAAlignment<T,U,V,W>
concatenates the sequences of two alignments and returns the resulting alignment

Endpoints:
← first (T) first alignment
← second (V) second alignment
→ result (Conveyor.Alignment.SimpleAlignment<Conveyor.BioinformaticsTypes.SimpleAASequence>)

resulting alignment

Configuration items:
linker (literal string) linker sequence to put into the alignment

Conveyor.Alignment.ConcatDNAAlignment<T,U,V,W>
concatenates the sequences of two alignments and returns the resulting alignment

Endpoints:
← first (T) first alignment
← second (V) second alignment
→ result (Conveyor.Alignment.SimpleAlignment<Conveyor.BioinformaticsTypes.SimpleDNASequence>)

resulting alignment

Configuration items:
linker (literal string) linker sequence to put into the alignment
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Conveyor.Alignment.CreateAlignment<T>
converts a list of sequences to an alignment

Endpoints:
← input (Conveyor.List.List<T>) - no description given -
→ output (Conveyor.Alignment.SimpleAlignment<T>) - no description given -

Conveyor.Alignment.CreateEmptyAAAlignment
creates an empty amino acid alignment

Endpoints:
→ output (Conveyor.Alignment.EmptyAlignment<Conveyor.BioinformaticsTypes.SimpleAASequence>)

- no description given -

Conveyor.Alignment.CreateEmptyDNAAlignment
creates an empty nucleotide alignment

Endpoints:
→ output (Conveyor.Alignment.EmptyAlignment<Conveyor.BioinformaticsTypes.SimpleDNASequence>)

- no description given -

Conveyor.Alignment.DifferentSites<T>
calculates the number of different sites (S) in the alignment

Endpoints:
← alignment (Conveyor.Alignment.Alignment<T>) alignment to process
→ sites (Conveyor.Math.Integer) the number of different sites

Configuration items:
ignoreUnknown (boolean) ignores columns with unknown bases

Conveyor.Alignment.GetNthMember<T>
extracts the Nth member of an alignments

Endpoints:
← input (Conveyor.Alignment.Alignment<T>) - no description given -
→ output (T) - no description given -

Configuration items:
memberIndex (32 bit signed integer) index of the member to extract, e.g. 0 for first sequence, 1 for

second

Conveyor.Alignment.MeanPairWiseDifferenSites<T>
calculates the average number of different sites between to two sequences (Pi)
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Endpoints:
← alignment (Conveyor.Alignment.Alignment<T>) alignment to process
→ pi (Conveyor.Math.Double) the average number of different sites

Configuration items:
ignoreUnknown (boolean) ignore columns with unknown bases

Conveyor.Alignment.OrderAlignment<T>
reorders the sequences of an alignment to have a certain sequences as first

Endpoints:
← alignmentIn (Conveyor.Alignment.Alignment<T>) alignment to process
← sequenceName (Conveyor.Text.String) name of sequence to put as first in the result
→ alignmentOut (Conveyor.Alignment.Alignment<T>) resulting alignment

Configuration items:
checkBlastNames (boolean) also checks additionally for blast-compliant names (lcl|XYZ and XYZ)

Alignment<T>
returns the number of columns of the alignment

Endpoints:
← input (Conveyor.Alignment.Alignment<T>) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

Alignment<T>
returns the number of sequences in the alignment

Endpoints:
← input (Conveyor.Alignment.Alignment<T>) - no description given -
→ output (Conveyor.Math.Integer) - no description given -

B.2 Conveyor.Alignment.Applications

Wrappers for external application for generating sequence alignments

Node types

Conveyor.Alignment.Applications.ClustalWAA<T>
creates a DNA alignment with ClustalW

Endpoints:
← seqList (Conveyor.List.List<T>) sequences to align
→ alignment (Conveyor.Alignment.SimpleAlignment<Conveyor.BioIO.FastaAASequence>) the aligned

sequences
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Conveyor.Alignment.Applications.ClustalWDNA<T>
creates a DNA using ClustalW

Endpoints:
← seqList (Conveyor.List.List<T>) sequences to align
→ alignment (Conveyor.Alignment.SimpleAlignment<Conveyor.BioIO.FastaDNASequence>) the

aligned sequences

Conveyor.Alignment.Applications.GBlocksAA<T>
processes AA alignments with Gblocks

Endpoints:
← alignmentIn (Conveyor.Alignment.Alignment<T>) alignment to process
→ alignmentOut (Conveyor.Alignment.SimpleAlignment<Conveyor.BioIO.FastaAASequence>)

alignment with masked positions

Conveyor.Alignment.Applications.GBlocksDNA<T>
processes DNA alignments with Gblocks

Endpoints:
← alignmentIn (Conveyor.Alignment.Alignment<T>) alignment to process
→ alignmentOut (Conveyor.Alignment.SimpleAlignment<Conveyor.BioIO.FastaDNASequence>)

alignment with masked positions

Conveyor.Alignment.Applications.MuscleAA<T>
calculates a AA alignment based on muscle

Endpoints:
← seqList (Conveyor.List.List<T>) sequences to align
→ alignment (Conveyor.Alignment.SimpleAlignment<Conveyor.BioIO.FastaAASequence>) the gener-

ated alignment

Configuration items:
findDiags (boolean) Optimize speed for similar sequences by finding diagonals
maxIters (32 bit signed integer) Maximum number of iterations

Conveyor.Alignment.Applications.MuscleDNA<T>
calculates a DNA alignment using muscle

Endpoints:
← seqList (Conveyor.List.List<T>) sequences to align
→ alignment (Conveyor.Alignment.SimpleAlignment<Conveyor.BioIO.FastaDNASequence>) the gen-

erated alignment
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Configuration items:
findDiags (boolean) Optimize speed for similar sequences by finding diagonals
maxIters (32 bit signed integer) Maximum number of iterations

Conveyor.Alignment.Applications.RevTrans<T,U>
converts a protein alignment to a codon-based DNA alignment

Endpoints:
← dnaSequences (Conveyor.List.List<T>) the dna sequences used to generate the protein alignments
← proteinAlignment (Conveyor.Alignment.Alignment<U>) the protein alignment
→ dnaAlignment (Conveyor.Alignment.SimpleAlignment<Conveyor.BioIO.FastaDNASequence>) the

resulting codon-based DNA alignment

Conveyor.Alignment.Applications.RevTransDB<T,U>
converts a protein alignment to a codon-based DNA alignment

Endpoints:
← dnaDB (Conveyor.Blast.BlastDB<U>) the dna sequence database
← proteinAlignment (Conveyor.Alignment.Alignment<T>) the protein alignment
→ dnaAlignment (Conveyor.Alignment.SimpleAlignment<U>) the resulting codon-based DNA align-

ment

B.3 Conveyor.Alignment.IO

IO-related classes for alignment file formats

Node types

Conveyor.Alignment.IO.ReadAAPhylipFile
reads AA sequence alignments in phylip format from a file

Endpoints:
→ alignmentOut (Conveyor.Alignment.Alignment<Conveyor.BioinformaticsTypes.AASequence>) the

read alignment

Configuration items:
inputFile (input file) the file to parse

Conveyor.Alignment.IO.ReadDNAPhylipFile
reads DNA sequence alignments in phylip format from a file

Endpoints:
→ alignmentOut (Conveyor.Alignment.Alignment<Conveyor.BioinformaticsTypes.DNASequence>)

the read alignment
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Configuration items:
inputFile (input file) the file to parse

Conveyor.Alignment.IO.WritePhylipFile<T>
creates a phylip formatted file for storing (multiple) alignments

Endpoints:
← alignment (Conveyor.Alignment.Alignment<T>) the alignments to write to the file

Conveyor.Alignment.IO.ReadAAStockholmFile
Reads amino acid alignments from a Stockholm formatted file

Endpoints:
→ alignmentOut (Conveyor.Alignment.AnnotatableAlignment<Conveyor.BioinformaticsTypes.SimpleAASequence>)

the read alignment

Configuration items:
inputFile (input file) the file to parse

B.4 Conveyor.Alignment.Pairwise

Method and data classes for generating pairwise alignments within Conveyor

Data types
Conveyor.Alignment.Pairwise.AlignedAASequence<T> - no description given -

Conveyor.Alignment.Pairwise.AlignedDNASequence<T> - no description given -

Conveyor.Alignment.Pairwise.AlignedSequence<T> - no description given -

Conveyor.Alignment.Pairwise.AlignmentScoring<T> - no description given -

Conveyor.Alignment.Pairwise.PairwiseAAAlignment<S,T> - no description given -

Conveyor.Alignment.Pairwise.PairwiseAlignment<S,T,U> An alignment containing two sequences

Conveyor.Alignment.Pairwise.PairwiseDNAAlignment<S,T> - no description given -

Conveyor.Alignment.Pairwise.UniformScoring<T> An alignment scoring scheme with one uniform score
for matching and mismatching

Node types

Conveyor.Alignment.Pairwise.BlastDNAScoringSchema
BLAST-like scoring schema for DNA sequence: match 1, mismatch -3, gap open -5, gap extend -2

Endpoints:
→ output (Conveyor.Alignment.Pairwise.UniformScoring<Conveyor.BioinformaticsTypes.DNASequence>)

- no description given -
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Conveyor.Alignment.Pairwise.GetMatchingRange<T,U,V,W>

returns the maximum range of matches of a pairwise alignment

Endpoints:

← alignment (V) alignment to process;
→ start (Conveyor.Math.ULong) start position (1-based) of the matching part
→ stop (Conveyor.Math.ULong) stop position (1-based) of the matching part

Conveyor.Alignment.Pairwise.GlobalDNAAlignment<S,T,V>

Creates a global alignment of two sequence

Endpoints:

← first (S) first sequence
← scoring (V) scoring schema for alignment
← second (T) second sequence
→ alignment (Conveyor.Alignment.Pairwise.PairwiseDNAAlignment<S,T>) alignment of both se-

quences

Configuration items:

freeEndGaps (boolean) allows overhanging bases at the ends of the sequence

Conveyor.Alignment.Pairwise.MatchingPositions<T>

calculates the number of matching positions in an alignment

Endpoints:

← alignment (Conveyor.Alignment.Alignment<T>) alignments to process
→ matches (Conveyor.Math.Integer) number of matches

Conveyor.Alignment.Pairwise.NumberOfMatches<S,T,U>

calculates the number of matching positions in the alignment

Endpoints:

← alignment (Conveyor.Alignment.Pairwise.PairwiseAlignment<S,T,U>) alignment to process
→ matchingPositions (Conveyor.Math.ULong) number of matching positions

Conveyor.Alignment.Pairwise.UniformDNAScoringSchema

DNA scoring scheme using uniform scores for matches/mismatches

Endpoints:

→ output (Conveyor.Alignment.Pairwise.UniformScoring<Conveyor.BioinformaticsTypes.DNASequence>)
- no description given -
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Configuration items:
gapExtendScore (IEEE double value) score for extending a gap
gapOpenScore (IEEE double value) score for opening a gap
matchScore (IEEE double value) score for match
mismatchScore (IEEE double value) score for mismatch

B.5 Conveyor.Annotation

Definition of annotatable objects

Data types
Conveyor.Annotation.Annotatable - no description given -

Conveyor.Annotation.AnnotationField a definition of a field of an annotation

Node types

Conveyor.Annotation.CopyAnnotationField<T,U,V>
copies the content of a given annotation field from a template to the input sequence, or the default value
if the field is not set in the template

Endpoints:
← defaultValue (V) the default value if the annotation field is not set in the template
← field (Conveyor.Annotation.AnnotationField) the annotation field to copy
← input (T) the sequence to add the annotation to
← template (U) the template sequence to get the annotation value from
→ output (T) the sequence after adding the annotation

Conveyor.Annotation.DeleteAnnotationField<T>
removes the given annotation field if it exists

Endpoints:
← firstArgument (T) the first argument of the operation
← secondArgument (Conveyor.Annotation.AnnotationField) the second argument of the operation
→ result (T) the result of the operation

Conveyor.Annotation.GetAnnotationField<T>
returns the current value of an annotation field or results in an error if no such field exists

Endpoints:
← annotatable (Conveyor.Annotation.Annotatable) annotatable object to examine
← fieldName (Conveyor.Annotation.AnnotationField) field to retrieve
→ value (T) the value of the field

Conveyor.Annotation.HasAnnotationField
Returns true if the annotatable object contains an annotation with the given name
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Endpoints:
← annotation (Conveyor.Annotation.Annotatable) annotatable object to examine
← fieldName (Conveyor.Annotation.AnnotationField) field to check
→ hasAnnotation (Conveyor.Logic.Boolean) flag to indicate whether the annotation contains the field

Conveyor.Annotation.SelectAnnotationField
selects one of the available annotation fields

Endpoints:
→ output (Conveyor.Annotation.AnnotationField) - no description given -

Configuration items:
field (- unknown type -) the field to use

Conveyor.Annotation.SetAnnotationField<T,U>
sets an annotation field in a annotatable object. Old values are discarded if existing.

Endpoints:
← fieldName (Conveyor.Annotation.AnnotationField) the name of the field to set
← input (T) the annotatable object to add a value to
← value (U) the value to set
→ output (T) the annotatable object after adding the value

B.6 Conveyor.BioIO

IO-related classes for bioinformatics file formats

Data types
Conveyor.BioIO.FastaAASequence - no description given -

Conveyor.BioIO.FastaDNASequence - no description given -

Conveyor.BioIO.FastaSequenceBase<T> - no description given -

Conveyor.BioIO.ParseableSequence - no description given -

Node types

Conveyor.BioIO.FastaWriter
dumps sequences in fasta format

Endpoints:
← input (Conveyor.BioinformaticsTypes.Sequence) - no description given -

Conveyor.BioIO.Fasta.ReadAAFastaFile
reads AA sequences from a given fasta file
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Endpoints:
→ sequenceOut (Conveyor.BioIO.FastaAASequence) the sequences

Configuration items:
inputFile (input file) the file to parse

Conveyor.BioIO.Fasta.ReadDNAFastaFile
reads DNA sequences from the given fasta file

Endpoints:
→ sequenceOut (Conveyor.BioIO.FastaDNASequence) the sequences

Configuration items:
inputFile (input file) the file to parse

Conveyor.BioIO.ReadFastaQualFiles
Reads the fasta and quality file for DNA sequences

Endpoints:
→ seq (Conveyor.QualitySequence.SimpleDNAQSequence) the read sequences

Configuration items:
qualFile (input file) file containing the quality values in fasta format
seqFile (input file) file containing the sequence in fasta format

Conveyor.BioIO.WriteQualFile<T>
exports the quality information of quality sequences to an external file

Endpoints:
← seq (T) Sequence to export

Conveyor.BioIO.FastQ.ReadFastQFile
read the given FastQ file and produces sequences with quality information

Endpoints:
→ sequence (Conveyor.QualitySequence.SimpleDNAQSequence) a read sequence with quality informa-

tion

Configuration items:
inputFile (input file) file to read as input
qualityEncoding (- unknown type -) Encoding of quality values in FastQ quality line

Conveyor.BioIO.FastQ.WriteFastQFile<T>
writes sequences with quality information as FastQ files

101



B Implemented plugins

Endpoints:
← sequence (T) the sequences to be written

Configuration items:
encoding (- unknown type -) the encoding to use for the quality values

B.7 Conveyor.BioIO.SFF

Conveyor plugin for reading and writing SFF files

Data types
Conveyor.BioIO.SFF.ClippedSFFSequence - no description given -

Conveyor.BioIO.SFF.FlowgramSequence - no description given -

Conveyor.BioIO.SFF.SFFSequence - no description given -

Node types

Conveyor.BioIO.SFF.ClipSFFSequence
clips adapter sequences and parts with low quality from an SFF sequence (based on information in se-
quence header

Endpoints:
← input (Conveyor.BioIO.SFF.SFFSequence) - no description given -
→ output (Conveyor.BioIO.SFF.ClippedSFFSequence) - no description given -

Conveyor.BioIO.SFF.ReadSFFFile
parses the given SFF file and iterates over the sequence in that file

Endpoints:
→ sequence (Conveyor.BioIO.SFF.SFFSequence) a sequence read from the SFF file

Configuration items:
sffFile (input file) The SFF file to parse

Conveyor.BioIO.SFF.WriteSFFFile
creates a SFF file from sequences

Endpoints:
← sequence (Conveyor.QualitySequence.IQualitySequence) sequence to write to SFF file

B.8 Conveyor.BioIO.Solexa

Data types
Conveyor.BioIO.Solexa.SolexaRead - no description given -
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Node types

Conveyor.BioIO.Solexa.GetClipPosition
returns the position of the first ’B’ in the quality scores (indicating low quality until end of read

Endpoints:
← input (Conveyor.BioIO.Solexa.SolexaRead) - no description given -
→ output (Conveyor.Math.Integer) - no description given -

Conveyor.BioIO.Solexa.GetQualityCheckFlag
returns the quality check flag parsed from the Solexa read

Endpoints:
← input (Conveyor.BioIO.Solexa.SolexaRead) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.BioIO.Solexa.IndexSequence
Generates string of Solexa default index sequences used for multiplex sequencing

Endpoints:
→ output (Conveyor.Text.String) - no description given -

Configuration items:
index (- unknown type -) Index sequence

Conveyor.BioIO.Solexa.IsUsableRead
checks whether the read is usable (does not contain a stretch of B in the quality values of certain length

Endpoints:
← input (Conveyor.BioIO.Solexa.SolexaRead) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
maxBStretchLength (64 bit unsigned integer) maximum length of B stretch at end of quality values to

accept a read

Conveyor.BioIO.Solexa.PairedEndLinkerSequence
Generates string of Solexa default paired end linker sequence (5’-3’)

Endpoints:
→ output (Conveyor.Text.String) - no description given -

Configuration items:
useLinker1 (boolean) Return linker sequence 1
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Conveyor.BioIO.Solexa.ParseSolexaQSeqFile
Parses the files for all single read of a given lane in a given directory

Endpoints:
→ read (Conveyor.BioIO.Solexa.SolexaRead) A read from the given lane

Configuration items:
basecallDirectory (literal string) Directory containing the Solexa basecalls
lane (32 bit signed integer) Lane (1-8) to read
readIndex (32 bit signed integer) Index of sub read to parse (e.q. 1-3 for indexed paired end reads)

B.9 Conveyor.BioinformaticsTypes

Base type definitions for bioinformatic data objects like sequences etc.

Data types
Conveyor.BioinformaticsTypes.AASequence - no description given -

Conveyor.BioinformaticsTypes.ConcatenatedSequence<T,U> A sequence composed of two sub se-
quence

Conveyor.BioinformaticsTypes.DNASequence - no description given -

Conveyor.BioinformaticsTypes.Homology - no description given -

Conveyor.BioinformaticsTypes.InsertedSequence<T,U> A DNA sequence created by inserting one se-
quence into another at a given position

Conveyor.BioinformaticsTypes.ReadOnlyDerivedSequence<T> - no description given -

Conveyor.BioinformaticsTypes.ReverseComplementedSequence<T> Reverse complement of a DNA se-
quence

Conveyor.BioinformaticsTypes.ReversedSequence<T> Reversed sequence of a given DNA sequence

Conveyor.BioinformaticsTypes.Sequence - no description given -

Conveyor.BioinformaticsTypes.SequenceBase<T> - no description given -

Conveyor.BioinformaticsTypes.SimpleAASequence - no description given -

Conveyor.BioinformaticsTypes.SimpleDNASequence - no description given -

Conveyor.BioinformaticsTypes.SimpleTranslatableSequence<T> - no description given -

Conveyor.BioinformaticsTypes.SplicedSequence<T> DNA sequence with a part spliced out

Conveyor.BioinformaticsTypes.Translatable<T> - no description given -

Conveyor.BioinformaticsTypes.ISubSequenceable<T> - no description given -

Node types

Conveyor.BioinformaticsTypes.ConcatenateSequences<T,U>
creates a new sequence by concatenating two given ones
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Endpoints:
← first (T) first sequence
← name (Conveyor.Text.String) name of the concatenated sequence
← second (U) second sequence
→ concatenated (Conveyor.BioinformaticsTypes.ConcatenatedSequence<T,U>) result of concatenation

Conveyor.BioinformaticsTypes.CreateAASequence
creates a AA sequence data object from a name and a sequence

Endpoints:
← name (Conveyor.Text.String) - no description given -
← seq (Conveyor.Text.String) - no description given -
→ sequence (Conveyor.BioinformaticsTypes.SimpleAASequence) - no description given -

Conveyor.BioinformaticsTypes.CreateDNASequence
creates a DNA sequence data object from a name and a sequence

Endpoints:
← name (Conveyor.Text.String) - no description given -
← seq (Conveyor.Text.String) - no description given -
→ sequence (Conveyor.BioinformaticsTypes.SimpleDNASequence) - no description given -

Conveyor.BioinformaticsTypes.CreateTranslatableSequence
creates a translatable DNA sequence data object from a name and a sequence

Endpoints:
← name (Conveyor.Text.String) - no description given -
← seq (Conveyor.Text.String) - no description given -
→ sequence (Conveyor.BioinformaticsTypes.SimpleTranslatableSequence<Conveyor.BioinformaticsTypes.SimpleDNASequence>)

- no description given -

Conveyor.BioinformaticsTypes.ExtractSequence
returns the plain textual sequence of a sequence data object

Endpoints:
← input (Conveyor.BioinformaticsTypes.Sequence) - no description given -
→ output (Conveyor.Text.String) - no description given -

Conveyor.BioinformaticsTypes.GetSubSequence<T,U>
returns a part of the given sequence

Endpoints:
← from (Conveyor.Math.ULong) - no description given -
← sequence (T) - no description given -
← to (Conveyor.Math.ULong) - no description given -
→ subSequence (U) - no description given -
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Conveyor.BioinformaticsTypes.InsertSequence<T,U>

Inserts a sequence into another sequence at a given position

Endpoints:

← insert (U) sequence to be inserted
← position (Conveyor.Math.ULong) position to insert sequence at
← sequence (T) sequence to insert into
→ result (Conveyor.BioinformaticsTypes.InsertedSequence<T,U>) result of the insert

Conveyor.BioinformaticsTypes.MaskStopCodons

replaces stop codon in the sequence by three ’N’s

Endpoints:

← input (Conveyor.Text.String) - no description given -
→ output (Conveyor.Text.String) - no description given -

Conveyor.BioinformaticsTypes.ReverseComplementSequence<T>

Creates a new DNA sequence using the reversed complemented input sequence

Endpoints:

← input (T) - no description given -
→ output (Conveyor.BioinformaticsTypes.ReverseComplementedSequence<T>) - no description given -

Conveyor.BioinformaticsTypes.ReverseSequence<T>

Creates a new DNA sequence using the reversed input sequence

Endpoints:

← input (T) - no description given -
→ output (Conveyor.BioinformaticsTypes.ReversedSequence<T>) - no description given -

Conveyor.BioinformaticsTypes.SpliceSequence<T>

Returns a DNA sequence with a given parts spliced out

Endpoints:

← from (Conveyor.Math.ULong) start of spliced range
← sequence (T) sequence to process
← to (Conveyor.Math.ULong) end of spliced range
→ splicedSequence (Conveyor.BioinformaticsTypes.SplicedSequence<T>) sequence after splicing

Conveyor.BioinformaticsTypes.TranslateSequence<T>

translates a DNA sequence to amino acids
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Endpoints:

← input (Conveyor.BioinformaticsTypes.Translatable<T>) - no description given -
→ output (T) - no description given -

Homology.GetEValue
returns the expectation value of the homology or NaN if no evalue is available

Endpoints:

← input (Conveyor.BioinformaticsTypes.Homology) - no description given -
→ output (Conveyor.Math.Double) - no description given -

Homology.GetQueryRange
returns the start and stop position the homologue query part, e.g. of the alignment for blast HSPs

Endpoints:

← input (Conveyor.BioinformaticsTypes.Homology) - no description given -
→ output (Conveyor.Pair.Pair<Conveyor.Math.Integer,Conveyor.Math.Integer>) - no description given -

Homology.GetSubjectRange
returns the start and stop position the homologue subject part, e.g. of the alignment for blast HSPs

Endpoints:

← input (Conveyor.BioinformaticsTypes.Homology) - no description given -
→ output (Conveyor.Pair.Pair<Conveyor.Math.Integer,Conveyor.Math.Integer>) - no description given -

Homology.GetIdentical
returns the number of identical residues, e.g. identical bases or amino acids in blast alignments

Endpoints:

← input (Conveyor.BioinformaticsTypes.Homology) - no description given -
→ output (Conveyor.Math.Integer) - no description given -

Homology.GetScore
returns the native score of the homology, e.g. the bit score of blast HSPs

Endpoints:

← input (Conveyor.BioinformaticsTypes.Homology) - no description given -
→ output (Conveyor.Math.Double) - no description given -

Sequence.GetID
returns the identifier of the sequence

107



B Implemented plugins

Endpoints:
← input (Conveyor.BioinformaticsTypes.Sequence) - no description given -
→ output (Conveyor.Text.String) - no description given -

Sequence.GetSequence
returns the text representation of the complete sequence

Endpoints:
← input (Conveyor.BioinformaticsTypes.Sequence) - no description given -
→ output (Conveyor.Text.String) - no description given -

Sequence.GetDescription
returns the description of the sequence (if any)

Endpoints:
← input (Conveyor.BioinformaticsTypes.Sequence) - no description given -
→ output (Conveyor.Text.String) - no description given -

Sequence.GetLength
returns the length of the sequence in bases or amino acids

Endpoints:
← input (Conveyor.BioinformaticsTypes.Sequence) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

B.10 Conveyor.Biotools.Misc

Wrapper for misc binformatics tools

Node types

Conveyor.Biotools.Misc.GeneConv<T,U>

Endpoints:
← inputAlignment (Conveyor.Alignment.Alignment<T>) the alignment that is screened for gene con-

version events
→ alignmentList (Conveyor.List.List<Conveyor.Alignment.Alignment‘1>) a list of sub alignments corre-

sponding to global inner fragments, or a list of the complete alignment if no inner fragment was
found

→ pValue (Conveyor.Math.Double) pValue result of GeneConv run

Configuration items:
minimalFragmentLength (32 bit signed integer) minimal length global inner fragments to creating sub

alignments
pValueCutOff (IEEE double value) cut off for gene conversion probability (p-value cut off for inner frag-

ments)
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Conveyor.Biotools.Misc.PAML<T>
executes PAML with a phylogeny tree and an alignment

Endpoints:
← alignment (Conveyor.Alignment.Alignment<T>) the alignment to process
← tree (Conveyor.Phylogeny.PhylogenyNode) the tree corresponding to the alignment
→ logValue (Conveyor.Math.Double) the log-likelihood of recombination

Configuration items:
hypoType (literal string) hypothesis to test, either M1A, M2A, M3, M7, M8 or BSA

Conveyor.Biotools.Misc.PhiPack<T>
uses PhiPack to check an alignment for recombination

Endpoints:
← input (Conveyor.Alignment.Alignment<T>) the alignment to use as input
→ chiSquareMax (Conveyor.Math.Double) chi square maximum
→ nss (Conveyor.Math.Double) nss result
→ phi (Conveyor.Math.Double) p value of recombination

Configuration items:
numberOfPermutations (32 bit signed integer) number of permutations
windowSize (32 bit signed integer) window size

Conveyor.Biotools.Misc.Reticulate<T>
executes reticulate to predict positive selection

Endpoints:
← alignment (Conveyor.Alignment.Alignment<T>) DNA alignment to examine
→ pValue (Conveyor.Math.Double) p-value from reticulate

Conveyor.Biotools.Misc.Selecton<T>
executes selecton for a codon-based alignment and returns the likelihood for positive selection

Endpoints:
← alignment (Conveyor.Alignment.Alignment<T>) the alignment to use as input
→ likelihood (Conveyor.Math.Double) maximum likelihood of positive selection

Configuration items:
model (literal string) model to use, valid values are ’M8’,’M8a’ and ’M7’

B.11 Conveyor.Blast

Conveyor data and node types related to NCBI Blast
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Data types
Conveyor.Blast.BlastHit<T,U> - no description given -

Conveyor.Blast.BlastResult<T,U> - no description given -

Conveyor.Blast.BlastDB<T> - no description given -

Conveyor.Blast.BlastDBFile<T,U> - no description given -

Conveyor.Blast.GenericSequenceDatabase<T> - no description given -

Node types

Conveyor.Blast.BlastvsDB<T,U>
executes blast vs. a given database

Endpoints:
← database (Conveyor.Blast.BlastDB<U>) database to blast against
← query (T) query sequence to blast vs. the database
→ result (Conveyor.Blast.BlastResult<T,U>) blast result

Configuration items:
blastType (- unknown type -) blast sub type
chunkSize (32 bit signed integer) number of sequences to process in a single blast instance; use 1 for

large databases, and larger values for small databases
iterations (32 bit signed integer) maximum number of iterations (for psiblast)
threads (32 bit signed integer) number of thread per blast instance
useComplexityFilter (boolean) activate the complexity filter (default yes)
wordSize (32 bit signed integer) word size of initial seed kmers (blastp: 3, blastn: 11, megablast: 28)

Conveyor.Blast.FilterBlastHits<T,U>
returns a list of all blast hits of a blast result with an evalue better than a given threshold

Endpoints:
← input (Conveyor.Blast.BlastResult<T,U>) - no description given -
→ output (Conveyor.List.List<Conveyor.Blast.BlastHit‘2>) - no description given -

Configuration items:
evalueCutoff (IEEE double value) evalue cut off
identityCutoff (IEEE double value) identity cut off, in relation to the length of the complete query
lengthCutoff (IEEE double value) lengths cut off, in relation to the length of the complete query

Conveyor.Blast.GetQueryFromBlastHit<T,U>
extracts the query sequence from a blast hit

Endpoints:
← input (Conveyor.Blast.BlastHit<T,U>) - no description given -
→ output (T) - no description given -
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Conveyor.Blast.GetQueryFromBlastResult<T,U>
extracts the query sequence from a blast result

Endpoints:
← input (Conveyor.Blast.BlastResult<T,U>) - no description given -
→ output (T) - no description given -

Conveyor.Blast.GetSubject<T,U>
returns the database entry the blast hit refers to

Endpoints:
← input (Conveyor.Blast.BlastHit<T,U>) blast hit to retrieve subject from
→ output (U) subject sequence

Configuration items:
hitChunkSize (32 bit signed integer) number of hits to put into a single retrieve operation (for faster

retrieval of subjects from ASN1 databases

Conveyor.Blast.CreateBlastDB<T>
collects sequences and creates a temporary blastable sequence database

Endpoints:
← sequence (T) sequence to put into the database
→ db (Conveyor.Blast.BlastDB<T>) collection of all input sequences as blastable database

Conveyor.Blast.GetDBEntry<T>
returns a sequence from a database identified by its name

Endpoints:
← blastDatabase (Conveyor.Blast.BlastDB<T>) blast database to extract sequence from
← seqID (Conveyor.Text.String) name or ID of sequence to be retrieved
→ sequence (T) sequence from database entry

Conveyor.Blast.PublicAADB
Loads public blastable protein sequence databases from configured locations

Endpoints:
→ db (Conveyor.Blast.BlastDBFile<Conveyor.BioIO.FastaAASequence,Conveyor.BioinformaticsTypes.SimpleAASequence>)

the selected database

Configuration items:
database (- unknown type -) nucleotide sequence databases available
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Conveyor.Blast.PublicDNADB
Loads public blastable DNA sequence databases from configured locations

Endpoints:
→ db (Conveyor.Blast.BlastDBFile<Conveyor.BioIO.FastaDNASequence,Conveyor.BioinformaticsTypes.SimpleDNASequence>)

the selected database

Configuration items:
database (- unknown type -) nucleotide sequence databases available

B.12 Conveyor.Comparison

Generic purpose comparison type for Conveyor

Data types
Conveyor.Comparison.ComparisonResult - no description given -

Node types

Conveyor.Comparison.IsEqual
returns true if the comparison result indicates that both elements are equal

Endpoints:
← input (Conveyor.Comparison.ComparisonResult) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.Comparison.IsLarger
returns true if the comparison result indicates that the first element was larger

Endpoints:
← input (Conveyor.Comparison.ComparisonResult) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.Comparison.IsSmaller
returns true if the comparison result indicates that the first element was larger

Endpoints:
← input (Conveyor.Comparison.ComparisonResult) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.Comparison.Reverse
reverses the comparison result
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Endpoints:
← input (Conveyor.Comparison.ComparisonResult) - no description given -
→ output (Conveyor.Comparison.ComparisonResult) - no description given -

B.13 Conveyor.Core

Central library of Conveyor, containing the data and node type definitions.

Data types
Conveyor.Core.Data - no description given -

Node types

Conveyor.Core.TextOutput
simple output note that prints data objects

Endpoints:
← input (Conveyor.Core.Data) - no description given -

Conveyor.Core.Abort
aborts a BioGraph run if a data object reaches the input by throwing an exception that contain the data
as string

Endpoints:
← input (Conveyor.Core.Data) input that triggers aborting the graph

Conveyor.Core.CastData<T,U>
casts the input to the output

Endpoints:
← input (T) - no description given -
→ output (U) - no description given -

Conveyor.Core.ConcatStreams<T>
Concatenates the data elements from the first and the second stream

Endpoints:
← first (T) first stream to use data from
← second (T) second stream to use data from
→ output (T) output of the merged streams

Conveyor.Core.Conditional<T>
processes data based on a configurable switch
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Endpoints:
← input (T) data input
← procIn (T) input of the processing loop
→ output (T) data output, either directly passed from input or after processing on the loop
→ procOut (T) output to the processing loop

Configuration items:
doProcessing (boolean) enables passing of data to the processing loop

Conveyor.Core.Discard
discards all data send in

Endpoints:
← input (Conveyor.Core.Data) data to discard

Conveyor.Core.Duplicate<T>
Duplicates data read from input

Endpoints:
← input (T) - no description given -
→ output1 (T) - no description given -
→ output2 (T) - no description given -

Conveyor.Core.FeedbackProcessing<T,U>
processes all input elements and passes result back into processing

Endpoints:
← input (T) data to be processed
← resultIn (U) processing result that is either passed as input to the next iteration or passed to the output

link as end result
← startValue (U) single input used as start element
→ firstOut (T) loop output value taken from input link
→ output (U) result after processing all inputs
→ secondOut (U) feedback output value, either taken from start value link or from result of the the

former run

Conveyor.Core.LimitedPass<T>
limits the number of passed data objects to a given count

Endpoints:
← input (T) the to be passed input
→ output (T) the passed output

Configuration items:
limit (32 bit signed integer) the number of elements to pass
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Conveyor.Core.Merge<T>
merges two streams of data without predefined order

Endpoints:
← input1 (T) first stream of data to get elements from
← input2 (T) second stream of data to get elements from
→ output (T) merged stream

Conveyor.Core.ParallelLoop<T,U>
Parallization of processing

Endpoints:
← input (T) main input of node
← loopIn (U) input from loop to parallize
→ loopOut (T) output to loop to parallize
→ output (U) main output of node

Configuration items:
numberOfInstances (32 bit signed integer) number of instance to create from loop; 1 for default pro-

cessing, 0 for CPU saturation

Conveyor.Core.Repeat<T>
reads one element at the input link and repeats it at the output link

Endpoints:
← input (T) the element to repeat
→ output (T) repeated copies of the element read on the input link

Conveyor.Core.Replace<T,U>
replaces a data object by another object, e.g. to maintain loops

Endpoints:
← discard (T) dummy input to be replaced and discarded
← replacement (U) new data to be used instead
→ output (U) replaced data

Conveyor.Core.UnzipStream<T>
unzips a stream of data by passing all odd elements to the first and all even elements to the second output

Endpoints:
← input (T) stream to split
→ even (T) even elements from the stream (2, 4., 6., ...)
→ odd (T) odd elements from the stream (1., 3., 5., ...)
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Conveyor.Core.ZipStreams<T>
Zips elements from both streams, alternating selecting elements from the input streams (starting with first
stream)

Endpoints:
← first (T) first stream of elements
← second (T) second stream of elements
→ zipped (T) stream after zipping

Conveyor.Core.Skip<T>
skips a configurable number of elements

Endpoints:
← input (T) - no description given -
→ output (T) - no description given -

Configuration items:
numberOfElements (32 bit signed integer) number of elements to skip

B.14 Conveyor.Dictionary

A dictionary data type for Conveyor

Data types
Conveyor.Dictionary.Dictionary<T,U> A simple dictionary for storing key-value pairs

Node types

Conveyor.Dictionary.AddKeyValue<T,U>
adds the given value to the dictionary using the given key or overwrites an existing value, and passes the
dictionary to the output

Endpoints:
← dictIn (Conveyor.Dictionary.Dictionary<T,U>) dictionary to add key and value to
← key (T) key to use for adding or overwriting
← value (U) value to add to the dictionary
→ dictOut (Conveyor.Dictionary.Dictionary<T,U>) dictionary after adding/overwriting

Conveyor.Dictionary.ContainsKey<T,U>
returns true if the dictionary contains the given key

Endpoints:
← firstArgument (Conveyor.Dictionary.Dictionary<T,U>) the first argument of the operation
← secondArgument (T) the second argument of the operation
→ result (Conveyor.Logic.Boolean) the result of the operation
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Conveyor.Dictionary.CountObjects<T>

Counts the occurence of objects send into this node and creates a dictionary using the objects as key and
their number of occurences as value

Endpoints:

← obj (T) objects to count
→ counts (Conveyor.Dictionary.Dictionary<T,Conveyor.Math.ULong>) dictionary containing objects

and their number of occurences

Conveyor.Dictionary.CreateDictionary<T,U>

creates a dictionary from the key value pairs read on the input endpoints

Endpoints:

← key (T) key of a pair
← value (U) value of a pair
→ dictionary (Conveyor.Dictionary.Dictionary<T,U>) the dictionary after reading all available key value

pair

Conveyor.Dictionary.CreateEmptyDictionary<T,U>

creates empty dictionary instances

Endpoints:

→ output (Conveyor.Dictionary.Dictionary<T,U>) - no description given -

Conveyor.Dictionary.DeleteKey<T,U>

removes the key and its associated value from the dictionary

Endpoints:

← firstArgument (Conveyor.Dictionary.Dictionary<T,U>) the first argument of the operation
← secondArgument (T) the second argument of the operation
→ result (Conveyor.Dictionary.Dictionary<T,U>) the result of the operation

Conveyor.Dictionary.GetKeys<T,U>

Returns a list of all keys in a dictionary

Endpoints:

← input (Conveyor.Dictionary.Dictionary<T,U>) - no description given -
→ output (Conveyor.List.List<T>) - no description given -

Conveyor.Dictionary.GetValue<T,U>

returns the value associated with the given key, or throws an exception if the key does not exists
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Endpoints:
← firstArgument (Conveyor.Dictionary.Dictionary<T,U>) the first argument of the operation
← secondArgument (T) the second argument of the operation
→ result (U) the result of the operation

Conveyor.Dictionary.GetValues<T,U>
Returns a list of all values in a dictionary

Endpoints:
← input (Conveyor.Dictionary.Dictionary<T,U>) - no description given -
→ output (Conveyor.List.List<U>) - no description given -

Conveyor.Dictionary.MatchElements<T,U,V>
Creates pairs of matching elements by synchronising the keys of elements. First input is consumed and
stored until match to second input is found.

Endpoints:
← firstElement (U) first element
← firstKey (T) key of first element
← secondElement (V) second element
← secondKey (T) key of second element
→ match (Conveyor.Pair.Pair<U,V>) pair of matching elements

B.15 Conveyor.EMBL

EMBL/GenBank file access for Conveyor

Data types
Conveyor.EMBL.Feature - no description given -

Conveyor.EMBL.TranslatedCDS the translation of a CDS feature

Conveyor.EMBL.Features.CDS - no description given -

Conveyor.EMBL.Features.Gene - no description given -

Conveyor.EMBL.Features.rRNA - no description given -

Conveyor.EMBL.Features.tRNA - no description given -

Conveyor.EMBL.CreatedMasterSequence - no description given -

Conveyor.EMBL.MasterSequence - no description given -

Conveyor.EMBL.ParsedMasterSequence - no description given -

Node types

Conveyor.EMBL.CreateMasterSequence
converts a DNA sequence into a EMBL/GenBank master sequence
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Endpoints:
← input (Conveyor.BioinformaticsTypes.DNASequence) sequence for creatinga master sequence of
→ output (Conveyor.EMBL.CreatedMasterSequence) generated master sequence

Conveyor.EMBL.GetFeatures
extracts all features of the given type from the master sequence

Endpoints:
← sequence (Conveyor.EMBL.MasterSequence) the master sequence to extract features from
→ features (Conveyor.List.List<Conveyor.EMBL.Feature>) the features of the master sequence

Configuration items:
featureType (- unknown type -) type of features to extract, all features if undefined

Conveyor.EMBL.GetMasterSequence
returns the master sequence a feature is part of

Endpoints:
← input (Conveyor.EMBL.Feature) - no description given -
→ output (Conveyor.EMBL.MasterSequence) - no description given -

Conveyor.EMBL.ReadMasterSequences
reads entries from EMBL or GenBank formatted flat files

Endpoints:
→ entry (Conveyor.EMBL.ParsedMasterSequence) an entry read from the input file

Configuration items:
fileType (- unknown type -) the input file type
inputFile (input file) the file to read from

Conveyor.EMBL.WriteMasterSequences
creates an EMBL or GenBank formatted file from the master sequences

Endpoints:
← sequence (Conveyor.EMBL.MasterSequence) the sequences to write

Configuration items:
fileType (- unknown type -) format of the output file

Conveyor.EMBL.CreateCDSFeature
returns features of class CDS
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Endpoints:
← sequence (Conveyor.EMBL.MasterSequence) the sequence to create the feature on
← start (Conveyor.Math.ULong) 0-based start position of the feature
← stop (Conveyor.Math.ULong) 0-based stop position of the feature
→ feature (Conveyor.EMBL.Features.CDS) the created feature

Conveyor.EMBL.GetCDSFeatures
returns features of class CDS

Endpoints:
← input (Conveyor.EMBL.MasterSequence) master sequence to get features from
→ output (Conveyor.List.List<Conveyor.EMBL.Features.CDS>) list of features

Conveyor.EMBL.CreateGeneFeature
returns features of class Gene

Endpoints:
← sequence (Conveyor.EMBL.MasterSequence) the sequence to create the feature on
← start (Conveyor.Math.ULong) 0-based start position of the feature
← stop (Conveyor.Math.ULong) 0-based stop position of the feature
→ feature (Conveyor.EMBL.Features.Gene) the created feature

Conveyor.EMBL.GetGeneFeatures
returns features of class Gene

Endpoints:
← input (Conveyor.EMBL.MasterSequence) master sequence to get features from
→ output (Conveyor.List.List<Conveyor.EMBL.Features.Gene>) list of features

Conveyor.EMBL.CreaterRNAFeature
returns features of class rRNA

Endpoints:
← sequence (Conveyor.EMBL.MasterSequence) the sequence to create the feature on
← start (Conveyor.Math.ULong) 0-based start position of the feature
← stop (Conveyor.Math.ULong) 0-based stop position of the feature
→ feature (Conveyor.EMBL.Features.rRNA) the created feature

Conveyor.EMBL.GetrRNAFeatures
returns features of class rRNA

Endpoints:
← input (Conveyor.EMBL.MasterSequence) master sequence to get features from
→ output (Conveyor.List.List<Conveyor.EMBL.Features.rRNA>) list of features
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Conveyor.EMBL.CreatetRNAFeature

returns features of class tRNA

Endpoints:

← sequence (Conveyor.EMBL.MasterSequence) the sequence to create the feature on
← start (Conveyor.Math.ULong) 0-based start position of the feature
← stop (Conveyor.Math.ULong) 0-based stop position of the feature
→ feature (Conveyor.EMBL.Features.tRNA) the created feature

Conveyor.EMBL.GettRNAFeatures

returns features of class tRNA

Endpoints:

← input (Conveyor.EMBL.MasterSequence) master sequence to get features from
→ output (Conveyor.List.List<Conveyor.EMBL.Features.tRNA>) list of features

B.16 Conveyor.Geneprediction

Gene prediction and related node and data classes for conveyor

Data types
Conveyor.Geneprediction.PredictedGene<T> - no description given -

Conveyor.Geneprediction.SimplePredictedGene<T> - no description given -

Conveyor.Geneprediction.SimplePredictedrRNA<T> - no description given -

Node types

Conveyor.Geneprediction.Critica<T>

executes the critica gene prediction software and returns a list of predicted genes

Endpoints:

← contig (T) input sequence to predict genes on
→ genes (Conveyor.List.List<Conveyor.Geneprediction.SimplePredictedGene‘1>) list of genes predicted

by Critica

Configuration items:

geneticCode (32 bit signed integer) genetic code to use for gene prediction, default to 11 (bacterial
code)

Conveyor.Geneprediction.Glimmer3<T>

executes the CeBiTec Glimmer 3 wrapper to predict genes on the given contig
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Endpoints:
← contig (T) input sequence to predict genes on
→ genes (Conveyor.List.List<Conveyor.Geneprediction.SimplePredictedGene‘1>) list of genes predicted

by Glimmer3

Configuration items:
scoreThreshold (IEEE double value) score threshold value to discard gene predictions, defaults to 4.0

Conveyor.Geneprediction.RNAMMER<T>
executes the rnammer to predict ribosomal RNA genes

Endpoints:
← contig (T) input sequence to predict genes on
→ rrnas (Conveyor.List.List<Conveyor.Geneprediction.SimplePredictedrRNA‘1>) list of rRNAs predicted

by rnammer

Configuration items:
domain (- unknown type -) domain model to use

Conveyor.Geneprediction.Prodigal<T>
executes Prodigal to predict genes on the given contig

Endpoints:
← contig (T) input sequence to predict genes on
→ genes (Conveyor.List.List<Conveyor.Geneprediction.SimplePredictedGene‘1>) list of genes predicted

by Prodigal

PredictedGene<T>
Returns the sequence this gene was predicted for

Endpoints:
← input (Conveyor.Geneprediction.PredictedGene<T>) - no description given -
→ output (T) - no description given -

PredictedGene<T>
Returns the zero-based start position of this predicted gene

Endpoints:
← input (Conveyor.Geneprediction.PredictedGene<T>) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

PredictedGene<T>
Returns the zero-based stop position of this predicted gene (first base outside the gene)
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Endpoints:
← input (Conveyor.Geneprediction.PredictedGene<T>) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

PredictedGene<T>
Returns the length of the predicted gene (stop - start)

Endpoints:
← input (Conveyor.Geneprediction.PredictedGene<T>) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

PredictedGene<T>
Returns the plain DNA sequence string of the predicted gene

Endpoints:
← input (Conveyor.Geneprediction.PredictedGene<T>) - no description given -
→ output (Conveyor.Text.String) - no description given -

PredictedGene<T>
Translates the predicted gene using the default genetic code and returns the plain AA string

Endpoints:
← input (Conveyor.Geneprediction.PredictedGene<T>) - no description given -
→ output (Conveyor.Text.String) - no description given -

B.17 Conveyor.HMMER3

Conveyor plugin for HMMER3

Data types
Conveyor.HMMER3.HMMER3DomainHit A hit vs. a HMM domain

Conveyor.HMMER3.HMMER3Result<T,U,V,W> The result of a hmmscan run with the given query se-
quence

Conveyor.HMMER3.HMMER3ScanDomainHit<T,U,V,W> A hit vs. a HMM domain

Conveyor.HMMER3.HMMv3 a HMM used with the HMMER3 application suite

Conveyor.HMMER3.HMMv3DB A collection of HMMs

Conveyor.HMMER3.IHMM<T,U> Interface for classes representing HMMs to be used with HMMER3

Conveyor.HMMER3.IHMMDB<T,U,V> - no description given -

Node types

Conveyor.HMMER3.GetHMMFromHMMERHit<T,U,V,W>
Gets the HMM from a HMMER3 hit
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Endpoints:

← input (Conveyor.HMMER3.HMMER3ScanDomainHit<T,U,V,W>) - no description given -
→ output (W) - no description given -

Conveyor.HMMER3.GetQueryFromHMMERHit<T,U,V,W>

Gets the original query sequence from a HMMER3 hit

Endpoints:

← input (Conveyor.HMMER3.HMMER3ScanDomainHit<T,U,V,W>) - no description given -
→ output (T) - no description given -

Conveyor.HMMER3.GetQueryFromHMMERResult<T,U,V,W>

Gets the original query sequence from a HMMER3 result

Endpoints:

← input (Conveyor.HMMER3.HMMER3Result<T,U,V,W>) - no description given -
→ output (T) - no description given -

Conveyor.HMMER3.HMMDatabase

Provides access to a HMM database on the system

Endpoints:

→ db (Conveyor.HMMER3.HMMv3DB) the selected database

Configuration items:

database (- unknown type -) HMM databases available

Conveyor.HMMER3.HMMScanv3<T,U,V,W>

Searches for (protein) domains absed on a HMM database using HMMER3

Endpoints:

← database (Conveyor.HMMER3.IHMMDB<U,V,W>) HMM database for search domains in
← seq (T) Sequence for search domains in
→ result (Conveyor.HMMER3.HMMER3Result<T,U,V,W>) hmmscan result

Configuration items:

chunkSize (32 bit signed integer) number of sequences to process in a single hmmscan instance; use 1
for large databases, and larger values for small databases

Conveyor.HMMER3.HMMSeedAlignment<T,U,V>

Converts a HMM to an alignment via accession
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Endpoints:
← hmm (V) - no description given -
→ output (U) - no description given -

IHMM<T,U>
no description available

Endpoints:
← input (Conveyor.HMMER3.IHMM<T,U>) - no description given -
→ output (Conveyor.Text.String) - no description given -

IHMM<T,U>
no description available

Endpoints:
← input (Conveyor.HMMER3.IHMM<T,U>) - no description given -
→ output (Conveyor.Text.String) - no description given -

IHMM<T,U>
no description available

Endpoints:
← input (Conveyor.HMMER3.IHMM<T,U>) - no description given -
→ output (Conveyor.Text.String) - no description given -

B.18 Conveyor.List

Generic list for Conveyor

Data types
Conveyor.List.List<T> - no description given -

Node types

Conveyor.List.AppendElement<T>
adds an element to the end of a list

Endpoints:
← firstArgument (Conveyor.List.List<T>) the first argument of the operation
← secondArgument (T) the second argument of the operation
→ result (Conveyor.List.List<T>) the result of the operation

Conveyor.List.CastList<T,U>
casts a list of elements to a list of derived elements
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Endpoints:

← input (Conveyor.List.List<T>) - no description given -
→ output (Conveyor.List.List<U>) - no description given -

Conveyor.List.CollectN<T>

creates lists with a defined number of elements

Endpoints:

← input (T) elements to bundle to lists
→ list (Conveyor.List.List<T>) list with the requested number of elements

Configuration items:

numberOfElements (32 bit signed integer) number of elements to put into a list

Conveyor.List.Collector<T>

collects data objects and returns them as list

Endpoints:

← input (T) - no description given -
→ output (Conveyor.List.List<T>) - no description given -

Conveyor.List.CombineElement<T,U>

creates a list of pairs by using all elements of a given list as the first element and the given element as the
second one

Endpoints:

← element (U) the element to combine the list with
← inputList (Conveyor.List.List<T>) the list to process
→ outputList (Conveyor.List.List<Conveyor.Pair.Pair‘2>) the resulting list of pairs

Conveyor.List.Compare<T>

compares two lists by pairwise checking their elements from equality

Endpoints:

← firstArgument (Conveyor.List.List<T>) the first argument of the operation
← secondArgument (Conveyor.List.List<T>) the second argument of the operation
→ result (Conveyor.Logic.Boolean) the result of the operation

Conveyor.List.FilterList<T>

removes all elements from a list not matching a criteria
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Endpoints:
← checkIn (Conveyor.Logic.Boolean) the result of a check
← listIn (Conveyor.List.List<T>) the list to process
→ checkOut (T) a single element of the list to check
→ listOut (Conveyor.List.List<T>) the list with non matching elements removed

Conveyor.List.GetElement<T>
returns the element from the list at the given position, or terminates processing if the index is out of range

Endpoints:
← firstArgument (Conveyor.List.List<T>) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (T) the result of the operation

Conveyor.List.GetEmptyList<T>
generates empty lists

Endpoints:
→ output (Conveyor.List.List<T>) - no description given -

Conveyor.List.HasElements<T>
returns true if the given list contains elements

Endpoints:
← input (Conveyor.List.List<T>) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.List.Iterator<T>
reads list from the input and returns their elements one by one

Endpoints:
← input (Conveyor.List.List<T>) list to iterate over
→ output (T) elements from the list, one by one

Conveyor.List.ListCount<T>
gets the number of elements in a list

Endpoints:
← input (Conveyor.List.List<T>) - no description given -
→ output (Conveyor.Math.Integer) - no description given -

Conveyor.List.Map<T,U>
converts a list of elements to another list of elements
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Endpoints:
← elementIn (U) the element after processing
← listIn (Conveyor.List.List<T>) a list to process
→ elementOut (T) an element from the current list to be processed
→ listOut (Conveyor.List.List<U>) the complete processed list

Conveyor.List.NewList<T>
creates a new list using the input elements as first and single list element

Endpoints:
← input (T) - no description given -
→ output (Conveyor.List.List<T>) - no description given -

Conveyor.List.PrependElement<T>
adds an element in front of a list

Endpoints:
← firstArgument (Conveyor.List.List<T>) the first argument of the operation
← secondArgument (T) the second argument of the operation
→ result (Conveyor.List.List<T>) the result of the operation

Conveyor.List.Select<T>
selects an element from list by comparing the elements

Endpoints:
← listIn (Conveyor.List.List<T>) list to process
← result (Conveyor.Logic.Boolean) result of comparison, true selects first element, false selects second

element
→ firstOut (T) first element of comparison
→ secondOut (T) second element of comparison
→ selected (T) selected element

Conveyor.List.Sort<T>
sorts the elements of a list

Endpoints:
← compareResult (Conveyor.Comparison.ComparisonResult) result of comparison, expressing the order

of the first and the second element in the pair
← unsorted (Conveyor.List.List<T>) list to sort
→ firstCompare (T) first element to compare
→ secondCompare (T) second element to compare
→ sorted (Conveyor.List.List<T>) sorted list

Conveyor.List.SROL<T,U>
structural recursion on lists
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Endpoints:
← input (Conveyor.List.List<T>) list to be processed
← resultIn (U) processing result that is either passed as input to the next iteration or passed to the output

link as end result
← startValue (U) start element for each list iteration
→ firstOut (T) loop value taken from input list
→ output (U) result after processing all inputs
→ secondOut (U) feedback output value, either taken from start value link or from result of the the

former run

B.19 Conveyor.Logic

Definition of a logic (boolean) data type and nodes operating on it.

Data types
Conveyor.Logic.Boolean - no description given -

Node types

Conveyor.Logic.And
logical and of two boolean values

Endpoints:
← firstArgument (Conveyor.Logic.Boolean) the first argument of the operation
← secondArgument (Conveyor.Logic.Boolean) the second argument of the operation
→ result (Conveyor.Logic.Boolean) the result of the operation

Conveyor.Logic.BoolGenerator
generator that produces boolean truee values

Endpoints:
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
value (boolean) boolean value to generate

Conveyor.Logic.Branch<T>
Branches the control flow depending on an external condition

Endpoints:
← conditionIn (Conveyor.Logic.Boolean) result of the condition loop
← input (T) data elements to branch
→ conditionOut (T) start of the condition loop that defines which branch a data element has to take
→ falseOut (T) output of elements with a condition result of false
→ trueOut (T) output of elements with a condition result of true

129



B Implemented plugins

Conveyor.Logic.IfThenElse<T,U>
commonly known two branched flow control node

Endpoints:
← conditionResult (Conveyor.Logic.Boolean) result of condition check
← elseIn (U) result of else branch processing
← input (T) data to pass to then or else branch
← thenIn (U) result of then branch processing
→ conditionOut (T) data passed to condition check
→ elseOut (T) data passed to else branch
→ output (U) returned data of then or else branch
→ thenOut (T) data passed to then branch

Conveyor.Logic.Not
logical inverse of the input value

Endpoints:
← input (Conveyor.Logic.Boolean) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.Logic.Or
logical or of two boolean values

Endpoints:
← firstArgument (Conveyor.Logic.Boolean) the first argument of the operation
← secondArgument (Conveyor.Logic.Boolean) the second argument of the operation
→ result (Conveyor.Logic.Boolean) the result of the operation

Conveyor.Logic.PassCheck<T>
passed stream elements depending on boolean input

Endpoints:
← input (T) - no description given -
← pass (Conveyor.Logic.Boolean) - no description given -
→ output (T) - no description given -

Conveyor.Logic.PassFilter<T>
forwards objects that passes a check loop

Endpoints:
← check_in (Conveyor.Logic.Boolean) - no description given -
← input (T) - no description given -
→ check_out (T) - no description given -
→ output (T) - no description given -
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Conveyor.Logic.Xor
logical xor of two boolean values

Endpoints:
← firstArgument (Conveyor.Logic.Boolean) the first argument of the operation
← secondArgument (Conveyor.Logic.Boolean) the second argument of the operation
→ result (Conveyor.Logic.Boolean) the result of the operation

B.20 Conveyor.Math

Definition of numeric data types within Conveyor

Data types
Conveyor.Math.Byte unsigned 8 bit integer

Conveyor.Math.Double - no description given -

Conveyor.Math.Integer - no description given -

Conveyor.Math.Long signed 64 bit integer

Conveyor.Math.SByte signed 8 bit integer

Conveyor.Math.ULong unsigned 64 bit integer

Node types

Conveyor.Math.ByteOps.Add
returns the sum of both byte values

Endpoints:
← firstArgument (Conveyor.Math.Byte) the first argument of the operation
← secondArgument (Conveyor.Math.Byte) the second argument of the operation
→ result (Conveyor.Math.Byte) the result of the operation

Conveyor.Math.ByteOps.Between
checks whether the value in between the given bounds

Endpoints:
← input (Conveyor.Math.Byte) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
lowerBound (- unknown type -) lower bound
upperBound (- unknown type -) upper bound

Conveyor.Math.LongOps.ByteGenerator
generator that produces long value
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Endpoints:
→ output (Conveyor.Math.Byte) - no description given -

Configuration items:
value (- unknown type -) integer value to generate

Conveyor.Math.ByteOps.Compare
compares two byte values

Endpoints:
← firstArgument (Conveyor.Math.Byte) the first argument of the operation
← secondArgument (Conveyor.Math.Byte) the second argument of the operation
→ result (Conveyor.Comparison.ComparisonResult) the result of the operation

Conveyor.Math.ByteOps.Div
returns the integral part of the quotient of the two operands

Endpoints:
← firstArgument (Conveyor.Math.Byte) the first argument of the operation
← secondArgument (Conveyor.Math.Byte) the second argument of the operation
→ result (Conveyor.Math.Byte) the result of the operation

Conveyor.Math.ByteOps.Equals
checks whether the input is the same as the configured value

Endpoints:
← input (Conveyor.Math.Byte) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
compareValue (- unknown type -) value to compare to

Conveyor.Math.ByteOps.Larger
checks whether the input is larger than the configured value

Endpoints:
← input (Conveyor.Math.Byte) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (- unknown type -) value to compare to

Conveyor.Math.ByteOps.Lower
checks whether the input is lower than the configured value
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Endpoints:

← input (Conveyor.Math.Byte) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:

threshold (- unknown type -) value to compare to

Conveyor.Math.ByteOps.Max

returns the larger of the two values

Endpoints:

← firstArgument (Conveyor.Math.Byte) the first argument of the operation
← secondArgument (Conveyor.Math.Byte) the second argument of the operation
→ result (Conveyor.Math.Byte) the result of the operation

Conveyor.Math.ByteOps.Min

returns the smaller of the two values

Endpoints:

← firstArgument (Conveyor.Math.Byte) the first argument of the operation
← secondArgument (Conveyor.Math.Byte) the second argument of the operation
→ result (Conveyor.Math.Byte) the result of the operation

Conveyor.Math.ByteOps.Mod

returns the integral remainder of the quotient of the two operands

Endpoints:

← firstArgument (Conveyor.Math.Byte) the first argument of the operation
← secondArgument (Conveyor.Math.Byte) the second argument of the operation
→ result (Conveyor.Math.Byte) the result of the operation

Conveyor.Math.ByteOps.Mul

returns the product of the two operands

Endpoints:

← firstArgument (Conveyor.Math.Byte) the first argument of the operation
← secondArgument (Conveyor.Math.Byte) the second argument of the operation
→ result (Conveyor.Math.Byte) the result of the operation

Conveyor.Math.ByteOps.Sub

returns the difference of the two byte values
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Endpoints:
← firstArgument (Conveyor.Math.Byte) the first argument of the operation
← secondArgument (Conveyor.Math.Byte) the second argument of the operation
→ result (Conveyor.Math.Byte) the result of the operation

Conveyor.Math.DoubleOps.Add
returns the sum of the two operands

Endpoints:
← firstArgument (Conveyor.Math.Double) the first argument of the operation
← secondArgument (Conveyor.Math.Double) the second argument of the operation
→ result (Conveyor.Math.Double) the result of the operation

Conveyor.Math.DoubleOps.Between
checks whether the value in between the given bounds

Endpoints:
← input (Conveyor.Math.Double) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
lowerBound (IEEE double value) lower bound
upperBound (IEEE double value) upper bound

Conveyor.Math.DoubleOps.Compare
compares two double values

Endpoints:
← firstArgument (Conveyor.Math.Double) the first argument of the operation
← secondArgument (Conveyor.Math.Double) the second argument of the operation
→ result (Conveyor.Comparison.ComparisonResult) the result of the operation

Conveyor.Math.DoubleOps.Div
returns the quotient of the both operands

Endpoints:
← firstArgument (Conveyor.Math.Double) the first argument of the operation
← secondArgument (Conveyor.Math.Double) the second argument of the operation
→ result (Conveyor.Math.Double) the result of the operation

Conveyor.Math.DoubleOps.Generator
generator that produces floating point values
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Endpoints:
→ output (Conveyor.Math.Double) - no description given -

Configuration items:
value (IEEE double value) double value to generate

Conveyor.Math.DoubleOps.Equals
checks whether the input is the same as the configured value

Endpoints:
← input (Conveyor.Math.Double) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (IEEE double value) value to compare to

Conveyor.Math.DoubleOps.IsInf
returns true if the double value is positive or negative infinity

Endpoints:
← input (Conveyor.Math.Double) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.Math.DoubleOps.IsNaN
returns true if the value is NaN (not a number)

Endpoints:
← input (Conveyor.Math.Double) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.Math.DoubleOps.Larger
checks whether the input is larger than the configured value

Endpoints:
← input (Conveyor.Math.Double) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (IEEE double value) value to compare to

Conveyor.Math.DoubleOps.Lower
checks whether the input is lower than the configured value
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Endpoints:
← input (Conveyor.Math.Double) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (IEEE double value) value to compare to

Conveyor.Math.DoubleOps.Max
returns the larger of the two values

Endpoints:
← firstArgument (Conveyor.Math.Double) the first argument of the operation
← secondArgument (Conveyor.Math.Double) the second argument of the operation
→ result (Conveyor.Math.Double) the result of the operation

Conveyor.Math.DoubleOps.Min
returns the smaller of the two values

Endpoints:
← firstArgument (Conveyor.Math.Double) the first argument of the operation
← secondArgument (Conveyor.Math.Double) the second argument of the operation
→ result (Conveyor.Math.Double) the result of the operation

Conveyor.Math.DoubleOps.Mul
returns the product of the two factors

Endpoints:
← firstArgument (Conveyor.Math.Double) the first argument of the operation
← secondArgument (Conveyor.Math.Double) the second argument of the operation
→ result (Conveyor.Math.Double) the result of the operation

Conveyor.Math.DoubleOps.Random
generates random dboule numbers within a given range

Endpoints:
→ output (Conveyor.Math.Double) - no description given -

Configuration items:
lowerBound (IEEE double value) lower bound of the range
upperBound (IEEE double value) upper bound of the range

Conveyor.Math.DoubleOps.Sub
returns the difference of the two operands

136



B.20 Conveyor.Math

Endpoints:

← firstArgument (Conveyor.Math.Double) the first argument of the operation
← secondArgument (Conveyor.Math.Double) the second argument of the operation
→ result (Conveyor.Math.Double) the result of the operation

Conveyor.Math.IntegerOps.Absolute

returns the absolute value of the integer

Endpoints:

← input (Conveyor.Math.Integer) - no description given -
→ output (Conveyor.Math.Integer) - no description given -

Conveyor.Math.IntegerOps.Add

returns the sum of both integer values

Endpoints:

← firstArgument (Conveyor.Math.Integer) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (Conveyor.Math.Integer) the result of the operation

Conveyor.Math.IntegerOps.BetweenInt

checks whether the value in between the given bounds

Endpoints:

← input (Conveyor.Math.Integer) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:

lowerBound (32 bit signed integer) lower bound
upperBound (32 bit signed integer) upper bound

Conveyor.Math.IntegerOps.Compare

compares two integer values

Endpoints:

← firstArgument (Conveyor.Math.Integer) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (Conveyor.Comparison.ComparisonResult) the result of the operation

Conveyor.Math.IntegerOps.Div

returns the integral part of the quotient of the two operands
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Endpoints:
← firstArgument (Conveyor.Math.Integer) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (Conveyor.Math.Integer) the result of the operation

Conveyor.Math.IntegerOps.Equals
checks whether the input is the same as the configured value

Endpoints:
← input (Conveyor.Math.Integer) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
compareValue (32 bit signed integer) value to compare to

Conveyor.Math.IntegerOps.IntegerGenerator
generator that produces integer value

Endpoints:
→ output (Conveyor.Math.Integer) - no description given -

Configuration items:
value (32 bit signed integer) integer value to generate

Conveyor.Math.IntegerOps.Larger
checks whether the input is larger than the configured value

Endpoints:
← input (Conveyor.Math.Integer) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (32 bit signed integer) value to compare to

Conveyor.Math.IntegerOps.Lower
checks whether the input is lower than the configured value

Endpoints:
← input (Conveyor.Math.Integer) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (32 bit signed integer) value to compare to
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Conveyor.Math.IntegerOps.Max
returns the larger of the two values

Endpoints:
← firstArgument (Conveyor.Math.Integer) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (Conveyor.Math.Integer) the result of the operation

Conveyor.Math.IntegerOps.Min
returns the smaller of the two values

Endpoints:
← firstArgument (Conveyor.Math.Integer) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (Conveyor.Math.Integer) the result of the operation

Conveyor.Math.IntegerOps.Mod
returns the integral remainder of the quotient of the two operands

Endpoints:
← firstArgument (Conveyor.Math.Integer) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (Conveyor.Math.Integer) the result of the operation

Conveyor.Math.IntegerOps.Mul
returns the product of the two operands

Endpoints:
← firstArgument (Conveyor.Math.Integer) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (Conveyor.Math.Integer) the result of the operation

Conveyor.Math.IntegerOps.Neg
negates the given value

Endpoints:
← input (Conveyor.Math.Integer) - no description given -
→ output (Conveyor.Math.Integer) - no description given -

Conveyor.Math.IntegerOps.Random
generates random integer numbers within a given range

Endpoints:
→ output (Conveyor.Math.Integer) - no description given -
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Configuration items:
lowerBound (32 bit signed integer) lower bound of the range
upperBound (32 bit signed integer) upper bound of the range

Conveyor.Math.IntegerOps.Sub
returns the difference of the two integer values

Endpoints:
← firstArgument (Conveyor.Math.Integer) the first argument of the operation
← secondArgument (Conveyor.Math.Integer) the second argument of the operation
→ result (Conveyor.Math.Integer) the result of the operation

Conveyor.Math.LongOps.Absolute
returns the absolute value of the integer

Endpoints:
← input (Conveyor.Math.Long) - no description given -
→ output (Conveyor.Math.Long) - no description given -

Conveyor.Math.LongOps.Add
returns the sum of both integer values

Endpoints:
← firstArgument (Conveyor.Math.Long) the first argument of the operation
← secondArgument (Conveyor.Math.Long) the second argument of the operation
→ result (Conveyor.Math.Long) the result of the operation

Conveyor.Math.LongOps.BetweenInt
checks whether the value in between the given bounds

Endpoints:
← input (Conveyor.Math.Long) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
lowerBound (64 bit signed integer) lower bound
upperBound (64 bit signed integer) upper bound

Conveyor.Math.LongOps.Compare
compares two long values

Endpoints:
← firstArgument (Conveyor.Math.Long) the first argument of the operation
← secondArgument (Conveyor.Math.Long) the second argument of the operation
→ result (Conveyor.Comparison.ComparisonResult) the result of the operation
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Conveyor.Math.LongOps.Div
returns the integral part of the quotient of the two operands

Endpoints:
← firstArgument (Conveyor.Math.Long) the first argument of the operation
← secondArgument (Conveyor.Math.Long) the second argument of the operation
→ result (Conveyor.Math.Long) the result of the operation

Conveyor.Math.LongOps.Equals
checks whether the input is the same as the configured value

Endpoints:
← input (Conveyor.Math.Long) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
compareValue (64 bit signed integer) value to compare to

Conveyor.Math.LongOps.Larger
checks whether the input is larger than the configured value

Endpoints:
← input (Conveyor.Math.Long) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (64 bit signed integer) value to compare to

Conveyor.Math.LongOps.LongGenerator
generator that produces long value

Endpoints:
→ output (Conveyor.Math.Long) - no description given -

Configuration items:
value (64 bit signed integer) integer value to generate

Conveyor.Math.LongOps.Lower
checks whether the input is lower than the configured value

Endpoints:
← input (Conveyor.Math.Long) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -
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Configuration items:
threshold (64 bit signed integer) value to compare to

Conveyor.Math.LongOps.Max
returns the larger of the two values

Endpoints:
← firstArgument (Conveyor.Math.Long) the first argument of the operation
← secondArgument (Conveyor.Math.Long) the second argument of the operation
→ result (Conveyor.Math.Long) the result of the operation

Conveyor.Math.LongOps.Min
returns the smaller of the two values

Endpoints:
← firstArgument (Conveyor.Math.Long) the first argument of the operation
← secondArgument (Conveyor.Math.Long) the second argument of the operation
→ result (Conveyor.Math.Long) the result of the operation

Conveyor.Math.LongOps.Mod
returns the integral remainder of the quotient of the two operands

Endpoints:
← firstArgument (Conveyor.Math.Long) the first argument of the operation
← secondArgument (Conveyor.Math.Long) the second argument of the operation
→ result (Conveyor.Math.Long) the result of the operation

Conveyor.Math.LongOps.Mul
returns the product of the two operands

Endpoints:
← firstArgument (Conveyor.Math.Long) the first argument of the operation
← secondArgument (Conveyor.Math.Long) the second argument of the operation
→ result (Conveyor.Math.Long) the result of the operation

Conveyor.Math.LongOps.Neg
negates the given value

Endpoints:
← input (Conveyor.Math.Long) - no description given -
→ output (Conveyor.Math.Long) - no description given -

Conveyor.Math.LongOps.Sub
returns the difference of the two long values

142



B.20 Conveyor.Math

Endpoints:

← firstArgument (Conveyor.Math.Long) the first argument of the operation
← secondArgument (Conveyor.Math.Long) the second argument of the operation
→ result (Conveyor.Math.Long) the result of the operation

Conveyor.Math.SByteOps.Absolute

returns the absolute value of the signed byte

Endpoints:

← input (Conveyor.Math.SByte) - no description given -
→ output (Conveyor.Math.SByte) - no description given -

Conveyor.Math.SByteOps.Add

returns the sum of both integer values

Endpoints:

← firstArgument (Conveyor.Math.SByte) the first argument of the operation
← secondArgument (Conveyor.Math.SByte) the second argument of the operation
→ result (Conveyor.Math.SByte) the result of the operation

Conveyor.Math.SByteOps.Between

checks whether the value in between the given bounds

Endpoints:

← input (Conveyor.Math.SByte) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:

lowerBound (8 bit signed integer) lower bound
upperBound (8 bit signed integer) upper bound

Conveyor.Math.SByteOps.Compare

compares two signed byte values

Endpoints:

← firstArgument (Conveyor.Math.SByte) the first argument of the operation
← secondArgument (Conveyor.Math.SByte) the second argument of the operation
→ result (Conveyor.Comparison.ComparisonResult) the result of the operation

Conveyor.Math.SByteOps.Div

returns the integral part of the quotient of the two operands

143



B Implemented plugins

Endpoints:
← firstArgument (Conveyor.Math.SByte) the first argument of the operation
← secondArgument (Conveyor.Math.SByte) the second argument of the operation
→ result (Conveyor.Math.SByte) the result of the operation

Conveyor.Math.SByteOps.Equals
checks whether the input is the same as the configured value

Endpoints:
← input (Conveyor.Math.SByte) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
compareValue (8 bit signed integer) value to compare to

Conveyor.Math.SByteOps.Larger
checks whether the input is larger than the configured value

Endpoints:
← input (Conveyor.Math.SByte) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (8 bit signed integer) value to compare to

Conveyor.Math.SByteOps.Lower
checks whether the input is lower than the configured value

Endpoints:
← input (Conveyor.Math.SByte) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (8 bit signed integer) value to compare to

Conveyor.Math.SByteOps.Max
returns the larger of the two values

Endpoints:
← firstArgument (Conveyor.Math.SByte) the first argument of the operation
← secondArgument (Conveyor.Math.SByte) the second argument of the operation
→ result (Conveyor.Math.SByte) the result of the operation
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Conveyor.Math.SByteOps.Min
returns the smaller of the two values

Endpoints:
← firstArgument (Conveyor.Math.SByte) the first argument of the operation
← secondArgument (Conveyor.Math.SByte) the second argument of the operation
→ result (Conveyor.Math.SByte) the result of the operation

Conveyor.Math.SByteOps.Mod
returns the integral remainder of the quotient of the two operands

Endpoints:
← firstArgument (Conveyor.Math.SByte) the first argument of the operation
← secondArgument (Conveyor.Math.SByte) the second argument of the operation
→ result (Conveyor.Math.SByte) the result of the operation

Conveyor.Math.SByteOps.Mul
returns the product of the two operands

Endpoints:
← firstArgument (Conveyor.Math.SByte) the first argument of the operation
← secondArgument (Conveyor.Math.SByte) the second argument of the operation
→ result (Conveyor.Math.SByte) the result of the operation

Conveyor.Math.SByteOps.Neg
negates the given value

Endpoints:
← input (Conveyor.Math.SByte) - no description given -
→ output (Conveyor.Math.SByte) - no description given -

Conveyor.Math.SByteOps.SByteGenerator
generator that produces signed byte value

Endpoints:
→ output (Conveyor.Math.SByte) - no description given -

Configuration items:
value (8 bit signed integer) signed byte value to generate

Conveyor.Math.SByteOps.Sub
returns the difference of the two long values
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Endpoints:

← firstArgument (Conveyor.Math.SByte) the first argument of the operation
← secondArgument (Conveyor.Math.SByte) the second argument of the operation
→ result (Conveyor.Math.SByte) the result of the operation

Conveyor.Math.ULongOps.Add

returns the sum of both integer values

Endpoints:

← firstArgument (Conveyor.Math.ULong) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Math.ULong) the result of the operation

Conveyor.Math.ULongOps.Between

checks whether the value in between the given bounds

Endpoints:

← input (Conveyor.Math.ULong) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:

lowerBound (64 bit unsigned integer) lower bound
upperBound (64 bit unsigned integer) upper bound

Conveyor.Math.ULongOps.ByteToULong

converts an unsigned byte value to an unsigned 64 bit value

Endpoints:

← input (Conveyor.Math.Byte) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

Conveyor.Math.ULongOps.Compare

compares two long values

Endpoints:

← firstArgument (Conveyor.Math.ULong) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Comparison.ComparisonResult) the result of the operation

Conveyor.Math.ULongOps.Div

returns the integral part of the quotient of the two operands
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Endpoints:

← firstArgument (Conveyor.Math.ULong) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Math.ULong) the result of the operation

Conveyor.Math.ULongOps.Equals

checks whether the input is the same as the configured value

Endpoints:

← input (Conveyor.Math.ULong) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:

compareValue (64 bit unsigned integer) value to compare to

Conveyor.Math.ULongOps.IntToULong

converts a signed 32 bit value to an unsigned 64 bit value

Endpoints:

← input (Conveyor.Math.Integer) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

Conveyor.Math.ULongOps.Larger

checks whether the input is larger than the configured value

Endpoints:

← input (Conveyor.Math.ULong) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:

threshold (64 bit unsigned integer) value to compare to

Conveyor.Math.ULongOps.LongToULong

converts a signed 64 bit value to an unsigned 64 bit value

Endpoints:

← input (Conveyor.Math.Long) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

Conveyor.Math.ULongOps.Lower

checks whether the input is lower than the configured value
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Endpoints:
← input (Conveyor.Math.ULong) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
threshold (64 bit unsigned integer) value to compare to

Conveyor.Math.ULongOps.Max
returns the larger of the two values

Endpoints:
← firstArgument (Conveyor.Math.ULong) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Math.ULong) the result of the operation

Conveyor.Math.ULongOps.Min
returns the smaller of the two values

Endpoints:
← firstArgument (Conveyor.Math.ULong) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Math.ULong) the result of the operation

Conveyor.Math.ULongOps.Mod
returns the integral remainder of the quotient of the two operands

Endpoints:
← firstArgument (Conveyor.Math.ULong) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Math.ULong) the result of the operation

Conveyor.Math.ULongOps.Mul
returns the product of the two operands

Endpoints:
← firstArgument (Conveyor.Math.ULong) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Math.ULong) the result of the operation

Conveyor.Math.ULongOps.SByteToULong
converts a signed byte to an unsigned 64 bit value

Endpoints:
← input (Conveyor.Math.SByte) - no description given -
→ output (Conveyor.Math.ULong) - no description given -
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Conveyor.Math.ULongOps.Sub

returns the difference of the two long values

Endpoints:

← firstArgument (Conveyor.Math.ULong) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Math.ULong) the result of the operation

Conveyor.Math.ULongOps.ULongGenerator

generator that produces long value

Endpoints:

→ output (Conveyor.Math.ULong) - no description given -

Configuration items:

value (64 bit unsigned integer) integer value to generate

B.21 Conveyor.Pair

Data types
Conveyor.Pair.Pair<T,U> - no description given -

Node types

Conveyor.Pair.CreatePair<T,U>

Creates a Pair from two input data elements

Endpoints:

← firstArgument (T) the first argument of the operation
← secondArgument (U) the second argument of the operation
→ result (Conveyor.Pair.Pair<T,U>) the result of the operation

Conveyor.Pair.FirstElement<T,U>

Extracts the first element of a pair

Endpoints:

← input (Conveyor.Pair.Pair<T,U>) - no description given -
→ output (T) - no description given -

Conveyor.Pair.PairSplit<T,U>

splits the pair in both elements
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Endpoints:

← pair (Conveyor.Pair.Pair<T,U>) pair to process
→ first (T) first element of pair
→ second (U) second element of pair

Conveyor.Pair.SecondElement<T,U>

Extracts the second element of a pair

Endpoints:

← input (Conveyor.Pair.Pair<T,U>) - no description given -
→ output (U) - no description given -

B.22 Conveyor.Phylogeny

Data types for phylogenic trees

Data types
Conveyor.Phylogeny.DistanceMatrix - no description given -

Conveyor.Phylogeny.EmptyDistanceMatrix - no description given -

Conveyor.Phylogeny.PhylogenyNode - no description given -

Node types

Conveyor.Phylogeny.ClearMarkedSpecies

clones the input tree and removes all group markers from the copy before returning it

Endpoints:

← input (Conveyor.Phylogeny.PhylogenyNode) - no description given -
→ output (Conveyor.Phylogeny.PhylogenyNode) - no description given -

Conveyor.Phylogeny.ContainsLabeledNode

Scans the given tree for nodes with the given label. Returns true if such a node is found.

Endpoints:

← firstArgument (Conveyor.Phylogeny.PhylogenyNode) the first argument of the operation
← secondArgument (Conveyor.Text.String) the second argument of the operation
→ result (Conveyor.Logic.Boolean) the result of the operation

Conveyor.Phylogeny.GetLabeledNode

Scans the given tree for nodes with the given label. Returns the first node found or throws an exception
if no such node is found
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Endpoints:
← firstArgument (Conveyor.Phylogeny.PhylogenyNode) the first argument of the operation
← secondArgument (Conveyor.Text.String) the second argument of the operation
→ result (Conveyor.Phylogeny.PhylogenyNode) the result of the operation

Conveyor.Phylogeny.IsEmptyMatrix
returns true if the given distance matrix is empty

Endpoints:
← input (Conveyor.Phylogeny.DistanceMatrix) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.Phylogeny.MarkedSpecies
returns a list of the names of marked species in a tree

Endpoints:
← input (Conveyor.Phylogeny.PhylogenyNode) - no description given -
→ output (Conveyor.List.List<Conveyor.Text.String>) - no description given -

Configuration items:
marker (32 bit signed integer) the marker to look for

Conveyor.Phylogeny.MarkSpeciesInTree
sets a marker for a species identified by its name, without cloning the tree

Endpoints:
← input (Conveyor.Phylogeny.PhylogenyNode) - no description given -
→ output (Conveyor.Phylogeny.PhylogenyNode) - no description given -

Configuration items:
marker (32 bit signed integer) marker to use, integer value > 0
species (literal string) species to mark

Conveyor.Phylogeny.MarkSpeciesInTreeByName
sets a marker for a species

Endpoints:
← inTree (Conveyor.Phylogeny.PhylogenyNode) tree before marking the species
← species (Conveyor.Text.String) name of species to mark in tree
→ outTree (Conveyor.Phylogeny.PhylogenyNode) clone of the tree with marked species

Configuration items:
marker (32 bit signed integer) marker to use, integer value > 0
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Conveyor.Phylogeny.NewickToTree
converts the input string in newick format to a phylogenetic tree

Endpoints:
← input (Conveyor.Text.String) - no description given -
→ output (Conveyor.Phylogeny.PhylogenyNode) - no description given -

Conveyor.Phylogeny.TreeToNewick
Creates a newick formatted string from the given tree

Endpoints:
← input (Conveyor.Phylogeny.PhylogenyNode) - no description given -
→ output (Conveyor.Text.String) - no description given -

B.23 Conveyor.QualitySequence

Interfaces and processing nodes for sequences with attached quality information

Data types
Conveyor.QualitySequence.ArtificalDNAQSequence<T> A quality sequence created from a plain dna se-

quence

Conveyor.QualitySequence.ConcatenatedQSequence<T,U> a sequence with quality values build from
two other quality sequences

Conveyor.QualitySequence.InsertedQSequence<T,U> a quality sequence created by inserting one q-
sequence into another

Conveyor.QualitySequence.IQualitySequence A set of position based quality information for sequences,
e.g. quality values generated by a sequencer or a base calling application

Conveyor.QualitySequence.ReverseComplementedQSequence<T> Reverse complement of a DNA qual-
ity sequence

Conveyor.QualitySequence.ReversedQSequence<T> the reversed sequence of a given quality sequence

Conveyor.QualitySequence.SimpleDNAQSequence - no description given -

Conveyor.QualitySequence.SplicedQSequence<T> part of a quality sequence

Node types

Conveyor.QualitySequence.AverageQuality<T>
calculates the average sequence quality

Endpoints:
← input (T) - no description given -
→ output (Conveyor.Math.Double) - no description given -
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Conveyor.QualitySequence.ClipQSequence<T>
Strips low quality stretches from the end of a quality sequence

Endpoints:
← input (T) - no description given -
→ output (Conveyor.QualitySequence.SplicedQSequence<T>) - no description given -

Configuration items:
minLowQualityStretch (64 bit unsigned integer) min length of low quality stretches to clip
qualityThreshold (8 bit signed integer) quality value to filter (<=)

Conveyor.QualitySequence.ConcatenateQSequences<T,U>
Concatenates two sequences with quality values

Endpoints:
← first (T) first sequence
← name (Conveyor.Text.String) name of the concatenated sequence
← second (U) second sequence
→ concatenated (Conveyor.QualitySequence.ConcatenatedQSequence<T,U>) result of concatenation

Conveyor.QualitySequence.CreateFromDNASequence<T>
creates a quality sequence from the given DNA sequence, using the configured value as quality value for
all bases

Endpoints:
← input (T) - no description given -
→ output (Conveyor.QualitySequence.ArtificalDNAQSequence<T>) - no description given -

Configuration items:
qualityValue (8 bit signed integer) Quality value to use for all bases

Conveyor.QualitySequence.GetQualityValue
Returns the quality value at the position given as second input to this node

Endpoints:
← firstArgument (Conveyor.QualitySequence.IQualitySequence) the first argument of the operation
← secondArgument (Conveyor.Math.ULong) the second argument of the operation
→ result (Conveyor.Math.Integer) the result of the operation

Conveyor.QualitySequence.InsertQSequence<T,U>
creates a quality sequence by inserting the insert sequence into the template sequence at the given posi-
tion
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Endpoints:
← insert (U) sequence to be inserted
← position (Conveyor.Math.ULong) position to insert sequence at
← sequence (T) sequence to insert into
→ result (Conveyor.QualitySequence.InsertedQSequence<T,U>) result of the insert

Conveyor.QualitySequence.ReverseComplementQSequence<T>
Creates a new DNA quality sequence using the reversed complemented input sequence

Endpoints:
← input (T) - no description given -
→ output (Conveyor.QualitySequence.ReverseComplementedQSequence<T>) - no description given -

Conveyor.QualitySequence.ReverseQSequence<T>
creates a reverse quality sequence from the input

Endpoints:
← input (T) - no description given -
→ output (Conveyor.QualitySequence.ReversedQSequence<T>) - no description given -

Conveyor.QualitySequence.SpliceQSequence<T>
Returns a DNA quality sequence with a given parts spliced out

Endpoints:
← from (Conveyor.Math.ULong) start of spliced range
← sequence (T) sequence to process
← to (Conveyor.Math.ULong) end of spliced range
→ splicedSequence (Conveyor.QualitySequence.SplicedQSequence<T>) sequence after splicing

B.24 Conveyor.SequencePair

Interfaces and processing types for pairs of sequences, e.g. paired end reads from a sequencer

Data types
Conveyor.SequencePair.Orientation orientation of a sequence pair’s sequences

Conveyor.SequencePair.SequencePair<T,U> A pair of sequences, e.g. a paired end read from a next
generation sequencer

Conveyor.SequencePair.SimpleSequencePair<T,U> simple implementation of sequence pairs

Node types

Conveyor.SequencePair.CreateSequencePair<T,U>
creates a sequence pair from the given sequence, using the given orientation
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Endpoints:
← first (T) first sequence of pair
← orientation (Conveyor.SequencePair.Orientation) orientation of sequences
← second (U) second sequence of pair
→ pair (Conveyor.SequencePair.SimpleSequencePair<T,U>) composed sequence pair

Conveyor.SequencePair.IsSameOrientation
Returns true if both orientations are known and are the same.

Endpoints:
← firstArgument (Conveyor.SequencePair.Orientation) the first argument of the operation
← secondArgument (Conveyor.SequencePair.Orientation) the second argument of the operation
→ result (Conveyor.Logic.Boolean) the result of the operation

Conveyor.SequencePair.IsUnknownOrientation
Checks whether the given orientation is an unknown orientation

Endpoints:
← input (Conveyor.SequencePair.Orientation) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.SequencePair.OrientationGenerator
Generates Orientation values for CreateSequencePair and similar node types

Endpoints:
→ output (Conveyor.SequencePair.Orientation) - no description given -

Configuration items:
orientation (- unknown type -) Orientation to use

SequencePair<T,U>
Returns the first sequence of the pair

Endpoints:
← input (Conveyor.SequencePair.SequencePair<T,U>) - no description given -
→ output (T) - no description given -

SequencePair<T,U>
Returns the second sequence of the pair

Endpoints:
← input (Conveyor.SequencePair.SequencePair<T,U>) - no description given -
→ output (U) - no description given -
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SequencePair<T,U>

Returns the orientation of the sequences within the pair

Endpoints:

← input (Conveyor.SequencePair.SequencePair<T,U>) - no description given -
→ output (Conveyor.SequencePair.Orientation) - no description given -

SequencePair<T,U>

Returns the distance between the sequence (including both sequences’ length), or -1 if the distance is
unknown

Endpoints:

← input (Conveyor.SequencePair.SequencePair<T,U>) - no description given -
→ output (Conveyor.Math.Long) - no description given -

B.25 Conveyor.SolexaProcessing

CeBiTec specific tools for processing Solexa sequencer data

Data types

Conveyor.SolexaProcessing.AlignedDNAQSequence<T> A quality sequence being part of an alignment
of two quality sequences

Conveyor.SolexaProcessing.SequenceOverlap<T,U> - no description given -

Node types

Conveyor.SolexaProcessing.CountDistinctElements<T>

counts the occurence of distinct elements and returns a statistic

Endpoints:

← input (T) elements to count

Conveyor.SolexaProcessing.CountElements

reports the number of elements send to this node

Endpoints:

← input (Conveyor.Core.Data) elements to count

Conveyor.SolexaProcessing.CreateConsensus<T,U>

creates the consensus sequence of an overlapping sequence pair, including quality value processing
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Endpoints:
← alignment (Conveyor.Alignment.Pairwise.PairwiseAlignment<T,U,Conveyor.QualitySequence.IQualitySequence>)

pairwise alignment to process
→ consensus (Conveyor.QualitySequence.SimpleDNAQSequence) The calculated consensus sequence

Configuration items:
misMatchResolution (- unknown type -) Resolution of mismatching bases

Conveyor.SolexaProcessing.FuzzyMatchSequence<T,U>
Matches two sequences, allowing a number of mismatches

Endpoints:
← pattern (U) sequence to search for
← sequence (T) sequence to search in
→ position (Conveyor.Math.Integer) start position of the first match, or -1 if no match was found

Configuration items:
maxMismatches (32 bit signed integer) number of mismatches allowed

Conveyor.SolexaProcessing.FuzzyMatchString<T>
Matches a sequence vs. a given string, allowing a number of mismatches

Endpoints:
← pattern (Conveyor.Text.String) string to search for
← sequence (T) sequence to search in
→ position (Conveyor.Math.Integer) start position of the first match, or -1 if no match was found

Configuration items:
maxMismatches (32 bit signed integer) number of mismatches allowed

Conveyor.SolexaProcessing.GetCustomLinkerPosition
Calculates the position of a given linker in a Solexa read

Endpoints:
← read (Conveyor.BioIO.Solexa.SolexaRead) read to analyse
→ position (Conveyor.Math.Integer) position of the linker, or -1 if no linker is found

Configuration items:
linker (literal string) linker sequence to search for
maxMismatches (32 bit signed integer) number of mismatches allowed
searchReverse (boolean) also search for reverse complement

Conveyor.SolexaProcessing.GetLongestHomopolymerStretchSize<T>
returns the length of the longest homopolymer found in the sequence (ignoring ’N’s)
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Endpoints:

← input (T) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

Conveyor.SolexaProcessing.GetNumberOfOverlappingBases<T,U>

Returns the number of overlapping bases

Endpoints:

← input (Conveyor.SolexaProcessing.SequenceOverlap<T,U>) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

Conveyor.SolexaProcessing.GetOverlapSequences<T,U>

Returns the sequence pair involved in the overlap

Endpoints:

← input (Conveyor.SolexaProcessing.SequenceOverlap<T,U>) - no description given -
→ output (Conveyor.SequencePair.SequencePair<T,U>) - no description given -

Conveyor.SolexaProcessing.GetPELinkerPosition

Calculates the position of a PE linker in the Solexa read

Endpoints:

← read (Conveyor.BioIO.Solexa.SolexaRead) read to analyse
→ position (Conveyor.Math.Integer) position of the linker, or -1 if no linker is found

Configuration items:

maxMismatches (32 bit signed integer) number of mismatches allowed

Conveyor.SolexaProcessing.OverlapPairedEndSequences<T,U>

calculates the overlap of CeBiTec style Solexa paired end reads (perfect matching)

Endpoints:

← firstSequence (T) first sequence to overlap
← secondSequence (U) second sequence to overlap
→ overlap (Conveyor.SolexaProcessing.SequenceOverlap<T,U>) the calculated overlap for further pro-

cessing

Configuration items:

gapValue (8 bit signed integer) quality value for gaps at start and end of aligned sequences
maxMismatches (64 bit unsigned integer) number of mismatches allowed
minBases (64 bit unsigned integer) the minimal number of bases to consider the pair overlapping
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Data types
Conveyor.Table.TableHeader - no description given -

Conveyor.Table.TableRow - no description given -

Node types

Conveyor.Table.AddField
adds the content to a table row

Endpoints:
← contentIn (Conveyor.Core.Data) content to be added
← rowIn (Conveyor.Table.TableRow) row to add data to
→ rowOut (Conveyor.Table.TableRow) row after adding data

Configuration items:
tableHeader (literal string) header of this column

Conveyor.Table.AddRow
adds a row to an existing one

Endpoints:
← appendeeRow (Conveyor.Table.TableRow) row to be added
← rowIn (Conveyor.Table.TableRow) row to append row to
→ rowOut (Conveyor.Table.TableRow) row after adding

Conveyor.Table.EmptyRow
creates new, empty rows

Endpoints:
→ output (Conveyor.Table.TableRow) - no description given -

Configuration items:
firstRowIsHeader (boolean) flag to indicate that first row send by this node is a table header

Conveyor.Table.NewRow
creates a new row and put the content in it

Endpoints:
← input (Conveyor.Core.Data) - no description given -
→ output (Conveyor.Table.TableRow) - no description given -
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Configuration items:
tableHeader (literal string) table header of this column

Conveyor.Table.TableCSVWriter
converts table rows to a CSV table

Endpoints:
← input (Conveyor.Table.TableRow) row to be added

Conveyor.Table.TableTSVWriter
converts table rows to a TSV table

Endpoints:
← input (Conveyor.Table.TableRow) row to be added

B.27 Conveyor.Text

String and string manipulation for Conveyor

Data types
Conveyor.Text.String - no description given -

Node types

Conveyor.Text.Concat
concatenates two string with an optional delimiter

Endpoints:
← firstArgument (Conveyor.Text.String) the first argument of the operation
← secondArgument (Conveyor.Text.String) the second argument of the operation
→ result (Conveyor.Text.String) the result of the operation

Configuration items:
delimiter (literal string) optional delimiter

Conveyor.Text.JoinElements
concatenates the string representation of the elements

Endpoints:
← input (Conveyor.List.List<Conveyor.Text.String>) - no description given -
→ output (Conveyor.Text.String) - no description given -

Configuration items:
delimiter (literal string) delimiter for elements
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Conveyor.Text.Length
returns the length of the input string

Endpoints:
← input (Conveyor.Text.String) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

Conveyor.Text.LexicalCompare
compares two strings lexically

Endpoints:
← firstArgument (Conveyor.Text.String) the first argument of the operation
← secondArgument (Conveyor.Text.String) the second argument of the operation
→ result (Conveyor.Comparison.ComparisonResult) the result of the operation

Conveyor.Text.LineReader
reads single lines from a given file

Endpoints:
→ line (Conveyor.Text.String) a single line read from the file

Configuration items:
filterEmptyLines (boolean) flag to indicate whether empty lines should be filtered
inputFile (input file) file to process

Conveyor.Text.LineSplitter
trims a string and splits it at a given regular string

Endpoints:
← input (Conveyor.Text.String) - no description given -
→ output (Conveyor.List.List<Conveyor.Text.String>) - no description given -

Configuration items:
delimiter (literal string) string to use a delimiter

Conveyor.Text.RegExpCut
use a regular expression to process a string and remove matching parts

Endpoints:
← input (Conveyor.Text.String) - no description given -
→ output (Conveyor.Text.String) - no description given -

Configuration items:
regularExpression (literal string) .NET regular expression to use
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Conveyor.Text.RegExpMatch
applies a regular expression to a string and returns a list of matches

Endpoints:
← input (Conveyor.Text.String) - no description given -
→ output (Conveyor.List.List<Conveyor.Text.String>) - no description given -

Configuration items:
regExp (literal string) regular expression to match

Conveyor.Text.StringGenerator
generator that produces a string value

Endpoints:
→ output (Conveyor.Text.String) - no description given -

Configuration items:
value (literal string) string value to generate

Conveyor.Text.StringMatch
returns a bool indicating whether a configured substring is part of the input

Endpoints:
← input (Conveyor.Text.String) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Configuration items:
substring (literal string) substring to search

Conveyor.Text.StringReplace
replaces every occurrence of a given string with a given substitution

Endpoints:
← input (Conveyor.Text.String) - no description given -
→ output (Conveyor.Text.String) - no description given -

Configuration items:
match (literal string) the string to replace
replacement (literal string) the string to use as replacement

Conveyor.Text.SubstringMatch
returns true if hte input string contains the sub string
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Endpoints:
← firstArgument (Conveyor.Text.String) the first argument of the operation
← secondArgument (Conveyor.Text.String) the second argument of the operation
→ result (Conveyor.Logic.Boolean) the result of the operation

B.28 Conveyor.Tree

Generic tree implementation for Conveyor plugins

Data types
Conveyor.Tree.ITreeVertex<T> Common base class of leaves and branches

Node types

Conveyor.Tree.GetChildren<T>
Returns a list containing the child vertices of the given vertex

Endpoints:
← input (T) - no description given -
→ output (Conveyor.List.List<T>) - no description given -

Conveyor.Tree.GetDepth<T>
Returns the depth of a vertex (0 for root vertex, > 0 for nested vertices)

Endpoints:
← input (T) - no description given -
→ output (Conveyor.Math.ULong) - no description given -

Conveyor.Tree.GetLCA<U>
Get the lowest common ancestors to the given tree vertices

Endpoints:
← vertices (Conveyor.List.List<U>) list of vertices to calculate LCA of
→ lca (U) LCA of list of vertices

Conveyor.Tree.GetRoot<T>
Returns the root of the given tree vertex

Endpoints:
← input (T) - no description given -
→ output (T) - no description given -

Conveyor.Tree.IsLeafVertex<T>
Returns true if the vertex is a leaf vertex

163



B Implemented plugins

Endpoints:
← input (Conveyor.Tree.ITreeVertex<T>) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -

Conveyor.Tree.IsRootVertex<T>
Returns true if the given tree vertex is the root vertex of a tree

Endpoints:
← input (Conveyor.Tree.ITreeVertex<T>) - no description given -
→ output (Conveyor.Logic.Boolean) - no description given -
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