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Abstract—The brain combines and integrates multiple cues to
take coherent, context-dependent action using distributed, event-
based computational primitives. Computational models that use
these principles in software simulations of recurrently coupled
spiking neural networks have been demonstrated in the past, but
their implementation in hybrid analog/digital Very Large Scale
Integration (VLSI) spiking neural networks remains challenging.
Here, we demonstrate a distributed spiking neural network
architecture comprising multiple neuromorphic VLSI chips able
to reproduce these types of cue combination and integration
operations. This is achieved by encoding cues as population
activities of input nodes in a network of recurrently coupled
VLSI Integrate-and-Fire (I&F) neurons. The value of the cue is
place-encoded, while its uncertainty is represented by the width
of the population activity profile. Relationships among different
cues are specified through bidirectional connectivity matrices,
shared between the individual input node populations and an
intermediate node population. The resulting network dynamics
bidirectionally relate not only the values of three variables ac-
cording to a specified relation, but also their uncertainties. When
cues on two populations are specified, the standard deviation of
the activity in the unspecified population varies approximately
linearly with the widths of the two input cues, and has less than
6% error in position compared to the value specified by the
inputs. The results suggest a mechanism for recurrently relating
cues such that missing information can both be recovered and
assigned a level of certainty.

I. INTRODUCTION

The combination of sensory input cues and the inference
of missing information from noisy, incomplete sensory cues
are fundamental computations carried out by the brain [1].
The brain performs these prodigious feats using networks of
heterogeneous, spike-communicating neurons, which stand in
stark contrast to the technology and algorithms employed by
digital processors. Recent theoretical studies have demon-
strated with simulations how such computations could be
performed in a biologically plausible manner, using arrays of
ideal neurons with real-valued outputs [2]–[4].

A class of neural networks using probabilistic population
codes are capable of near-optimal manipulation of probabilistic
distributions [2], [3], [5]. One attractive feature of this type
of network is that the uncertainty of the input cues, typi-
cally encoded in the width of a population activity profile,
is propagated in the network [2]. The propagation of cue

uncertainty in neural populations is relevant for many tasks
such as sensorimotor transformations [6], cue integration [2]
and decision making [5].

Our contribution here is to develop an electronic VLSI
emulation of a spiking neural network that communicates by
asynchronous events to infer, in real-time, the value and the
variability of a cue based on the other cues available to the
system. The neural architecture is based on a recently proposed
one [7] consisting of four networks of spiking neurons, three
of which provided sensory input while the fourth encoded
the relation between these inputs. The three input networks
were configured as 1-D arrays of I&F neurons whose lateral
excitatory and global inhibitory couplings implemented a soft
Winner-Take-All (sWTA) network [8]. The recurrent pattern
of connections in the sWTA is consistent with the observed
connectivity of the neocortex [9] and has been proposed as
an important neural computational primitive [10] that can be
combined easily and stably in large networks [11]. These input
sWTA populations provided place-encoded representations of
their sensory variables. The relationship between the variables
was specified by the bidirectional connectivity between the
individual sWTA networks and the central 2-D WTA network.

One shortcoming of this architecture, however, was that it
disregarded the uncertainty of the cues. This was due to the
hard WTA computations taking place in the intermediate node
that caused only a single unit to become active. Here, we
extend this architecture by allowing the intermediate node to
select multiple winners in a sequential manner. The result is
that the network conveys, in addition to the value of a variable,
the information related to the widths of the neural activity
profiles, causing them to be sharpened or broadened according
to the widths of the activity profiles in all other nodes.
As in the previous implementation, the recurrent excitation
developed by the input sWTA networks, constrained by the
patterns embedded in their interconnections with the central
node, provides the gain necessary to recover an unspecified cue
when the two others are specified (function approximation).
Thanks to the bidirectional connections in the network, each
node acts simultaneously as an input and an output node.

The interaction of populations of neurons with various
profiles of activation resembles the interaction of statistical
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distributions used in graphical probabilistic models such as
Bayesian networks [3]. Consequently, the realization of
these computations in distributed electronic hardware is a
step towards a scalable technology for real-time probabilistic
inference in generic probabilistic models.

II. THE MULTI-CHIP SETUP

The neuromorphic network architecture described here is
based on the one described in Corneil et al. [7], and is sum-
marized below. The network is distributed across two different
types of chips: a 2-D Integrate-and-Fire (IF2D) chip, which
implements a 2-D array of I&F neurons, and a 2-D Winner-
Take-All (WTA2D) chip, which implements a current-mode
Winner-Take-All (WTA) network. These are neuromorphic
chips which receive and transmit spikes using the Address
Event Representation (AER) communication protocol [12].
The asynchronous infrastructure used to transmit spikes across
chip boundaries makes use of dedicated AER communication
and mapper FPGA boards, which allow the user to specify
arbitrary network connectivity schemes [13]. This mapper
board also allows the probability that an event is routed or
discarded to be set for each connection.

A. The 2-D Integrate-and-Fire (IF2D) Chip

The IF2D consists of a 2-D sheet of 32×64 neurons, with
three externally addressable AER synapse circuits each (2
excitatory, 1 inhibitory). The synapses are pulse integrators
that can be stimulated by other neurons on the same chip, or by
Address-Events from outside sources to produce biophysically
realistic Excitatory Post-Synaptic Currents (EPSCs). In addi-
tion, there are local hard-wired synapse circuits that integrate
spikes from nearest neighbor neurons on the same chip. There
is no dedicated locally hard-wired inhibitory neuron pool.
Instead, the global inhibition required for sWTA operation can
be provided by making use of the AER inhibitory synapses
of all the neurons in the array, via the AER mapping board.
By activating both local recurrent excitatory connections and
external recurrent inhibitory connections (all-to-all) to provide
global inhibition, it is possible to produce the sWTA function,
in which the winners are a small population of neighboring
neurons that suppress or reduce the activity of all other neurons
in the network. The chip can be configured to provide up to
32 independent sWTA networks consisting each of (up to)
64 neurons. The IF2D was fabricated using a standard AMS
0.35 µm CMOS process, and covers an area of about 15mm2.

B. The 2-D Winner-Take-All (WTA2D) Chip

The WTA2D chip comprises a grid of 32×32 cells. Each
cell contains an AER excitatory input synapse, a current-mode
WTA circuit, an output I&F neuron and an inhibitory synapse
targeting the cell itself [14]. The AER excitatory synapse
integrates the input spikes and produces an output current,
which is proportional to the frequency of the input spike train.

In contrast to the setup used in Corneil et al. [7], we use
local excitation and self-inhibition in the WTA2D to perform
sWTA functionality. Local excitation allows current to diffuse

across neighboring cells, causing the WTA circuit to favor
cells with neighbors that are also stimulated strongly. The
current-mode WTA circuit then selects the cell receiving the
strongest input and activates its corresponding output neuron.
The inhibitory synapse integrates the spikes from the winning
neuron, producing an inhibitory current, which is subtracted
from the excitatory synapse current. This eventually causes
de-selection of the winner, encouraging exploration across the
subset of cells that are strongly stimulated. The number of cells
that can be activated depends on the stimuli, the couplings in
the current-mode WTA and the inhibitory feedback.

Output Address-Events encode the position of the winning
cell. Due to the nature of the current-mode WTA circuit,
only one neuron is active at any given time. However, using
the self-activated inhibitory synapse, the winning neuron can
switch quickly between a subset of strongly activated cells.
Combined with local excitation, this causes the WTA2D to
exhibit characteristics similar to those of the sWTA function.

The WTA2D chip was fabricated using a standard AMS
0.35 µm CMOS process and covers an area of about 10mm2.

C. Network Architecture

The organization of the network is illustrated in Fig. 1. We
selected three distinct arrays of 32 neurons from the IF2D chip.
These arrays formed the populations whose activities represent
three cues, labeled X, Y and Z. Each array was configured
as a sWTA network by activating the local recurrent first-
and second-neighbor excitatory connections and the global
inhibitory ones.

Each population was bidirectionally coupled with the neu-
rons in the WTA2D chip (population R). Specifically, the R
neurons in the WTA2D chip were connected to the X, Y and
Z neurons in the IF2D chip via their first AER excitatory
synapse.

All synapses in this group share the same weight parameter.
However, using a probabilistic AER mapping protocol, a prob-
ability indicating the percentage of spike-events transmitted to
the post-synaptic neuron can be assigned to each mapping. The
connection probability allowed the strength of each coupling
to be separately modulated.

Each neuron in R is tuned according to two Gaussian
functions centered on the neurons with corresponding indices
in X and Y. Likewise, each neuron in X and Y is tuned ac-
cording to a Gaussian function centered on the corresponding
column or row in R (see Fig. 1). The reciprocal connection
matrix between R and Z determines the user-specified rela-
tion. It is possible to implement any linear and non-linear
relation between the variables [1], [2]. To demonstrate the
functionality of our system, we focus here on the relation
Z = (X + Y )modulo(32) (see Fig. 1). Each tuning curve
has a 100% probability of spike transmission at the center,
with the probability decreasing with σ = 1.0 for neighboring
presynaptic neurons.

We generated input signals on a PC and provided them to
the X, Y and Z populations on the IF2D chip by stimulating
the target neurons via their second AER excitatory synapse.
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To reduce the effect of fabrication mismatch, we calibrated
the inputs to neurons in populations X, Y and Z using the
method described in Neftci et al. [15]. A similar method was
used to determine systematic biases in the connections from
the WTA2D chip to the IF2D populations. These biases were
due to variation in the output firing rates from neurons in the
WTA2D chip and in the synaptic efficacy of input synapses
on the IF2D populations. The connection probabilities between
the populations were adjusted in order to decrease this vari-
ation. The neurons in the WTA2D chip did not receive any
external stimulation from the PC.

The combination of global inhibition, local excitation and
self-inhibition of the winning cell on the WTA2D causes it to
sample over a subset of the most strongly stimulated cells. In
general, with the given connection profiles, only cells which
are stimulated by two or more external populations are able
to fire.

When inputs to R are broad, many cells share similar levels
of activation, and the winning cell in R shifts constantly
among a large subset. Conversely, when the inputs to R are
sharp, only a small number of cells are provoked to fire. The
spatial variance of the output from R determines the number
of cells activated in populations X, Y and Z, allowing the three
populations to communicate both the mean and the variance
of cues through the R population.

III. REAL-TIME EXPERIMENTS

Although this network architecture can be used to achieve
several types of computations [1], [2], we focus here on
function approximation: the recovery of an unspecified cue
when other related cues are specified.

We carried out 600 trials using the sum relation

Z = (X +Y )modulo(32) (1)

We applied Poisson-distributed spike trains with Gaussian
spatial distributions to neurons of populations X and Y, cen-
tered at 20 in X and 24 in Y (corresponding to a sum of 12).
In addition, we applied Poisson-distributed spike trains to the
neurons in Z, with uniform mean firing rates equal to the
average of the firing rates across populations X and Y. The
input to Z did not encode the correct value of Z given by
the relation. We applied the external stimulation to all three
populations simultaneously for 5000ms and recorded spike-
events over this interval.

For 200 trials, the width of the Gaussian inputs to X and
Y were sampled evenly over σ = [0.8,3.5], with the inputs
to both populations sharing the same width in each trial. For
another 200 trials, the input to X was sampled evenly over
σ = [0.8,3.5] while the input to Y was held at a constant width
of σ = 0.8. Similarly, for 200 trials, the input to Y was sampled
over σ = [0.8,3.5] while the input to X was held constant at
σ = 0.8. Within each trial, the input width did not change
during the stimulation period. Gaussian inputs to X and Y were
normalized, such that all populations received approximately
the same average level of input stimulation across all trials.

R Z
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0

6

6

0

6

Fig. 1: Illustration of the network architecture. In this example
the user-defined function is Z = (X + Y )modulo(7). Each
neuron in populations X and Y feeds into all neurons in the
associated diagonal row in population R. The intensity of
excitation is indicated by color intensity; neurons in R with
greater excitation fire more frequently. According to the user-
defined relation, each neuron in Z is connected to two vertical
columns in R (except the last neuron, which is connected to
only one column). External input signals are represented by
the left and right black shapes. On the left, Gaussian inputs
are centered around neuron 2 in both X and Y. On the right,
a constant input is applied to Z. The firing activity in X and
Y produces maximum activation at location [2,2] on R, which
is associated with neuron 4 in Z. Neuron 4 in Z is associated
with the two columns outlined in black in R, which receive
recurrent excitation after activity converges in Z.

For each trial, spikes were recorded over the stimulation
period across populations X, Y and Z. The position of max-
imum activity in each population was determined by taking
the circular mean of the spiking activity, obtained by mapping
the neuron positions onto a circle. This corrects for the bias
introduced by the flat stimulation to Z, and was consistent
with the periodic boundary conditions defined by the modulus
operator in the sum function. The neuron with the highest
overall firing rate in each population was also used as a
measure of activity position.

The circular standard deviation of the population activities
was used to measure the degree of spiking activity spread [16].
Specifically, the sample standard deviation was estimated as

σ =
√
−2ln(R̄), (2)

where R̄ is the length of the sample mean resultant vector.
Note that this value varies between zero and infinity, unlike
the square root of the sample circular variance

√
1− R̄, which

varies between zero and one. This provides a better approxi-
mation of the standard deviation of the unwrapped distribution.
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Fig. 2: Normalized activity in Z across 200 trials, with
both inputs increasing in width from σ = 0.8 to σ = 3.5
simultaneously. The activity centers near Neuron 12, consistent
with (20+ 24)modulo(32) = 12. As the inputs to X and Y
increase in width, the activity profile in Z flattens and the
mean firing rate decreases.

IV. EXPERIMENTAL RESULTS

The network accurately computed the value of the unspec-
ified variable given the relation and communicated the uncer-
tainties between the sWTA nodes. In each input condition, the
center of activity in Z averaged over all trials lay between
11 and 12 (Table I). This corresponds to less than 6% error
around the circular array. The neuron at position 12 in Z had
the highest firing rate in 80% of trials.

The standard deviation of activity in Z increased linearly
with the widths of the inputs to X and Y (Fig. 3 (b) and Fig. 4).
The trend held when the inputs were simultaneously widened
and when one width was increased while the other was held
constant. The increase was significantly steeper when the two
inputs were widened simultaneously, reflecting sensitivity to
uncertainty in one or both inputs. The relationships between
the input widths and evoked activity in the three populations
are reported in Table II, using the slopes and the coefficients
of determination of the linear regression fits. All trends were
extremely significant (p< 0.001) using the null hypothesis that
m = 0.

Several factors contributed to the trend of the standard
deviation in Z. There was a nonlinear decrease in firing rates
in Z with increasing input widths (see Fig. 3 (a)), causing
the flat external stimulation to Z to progressively dominate
over the recurrent stimulation. In addition, while the number
of highly active neurons in Z did not increase significantly
with wider inputs (as shown in Fig. 2), the sharpness of the
representation decreased; activity was shared more equally
between the highly active neurons, increasing the spread.

Uncertainty encoding in Z was mediated by stimulation
from R, which encoded variance through the number of

TABLE I: POPULATION ACTIVITY POSITIONS

Input Condition
Population

X Y Z

Varying X and Y 19.70±0.02 23.91±0.02 11.41±0.03
Varying X 19.44±0.03 23.97±0.00 11.12±0.04
Varying Y 19.94±0.00 24.00±0.01 11.90±0.02

TABLE II: FITTED STANDARD DEVIATION GROWTH RATES

Input Condition
Population

X Y Z

Varying X and Y
m = 0.60 m = 0.53 m = 0.96
R2 = 0.96 R2 = 0.94 R2 = 0.82

Varying X
m = 0.60 m =−0.02 m = 0.43
R2 = 0.96 R2 = 0.21 R2 = 0.63

Varying Y
m =−0.02 m = 0.53 m = 0.51
R2 = 0.32 R2 = 0.94 R2 = 0.65

activated neurons. When narrow inputs were used (Fig. 5 (a)
and (b)), activity in R was stable and concentrated among
a small group of neurons, causing activity in Z to quickly
converge to the correct value. The spatially localized activity
evoked in Z fed back to R, increasing the number of active
neurons over time. Recurrent activation produced a diagonal
pattern in R according to the sum relation, as shown in Fig. 5
(b).

When the inputs were broad (Fig. 5 (c) and (d)), activity in
R fluctuated between adjacent clusters of excited cells. This
affected both the level of activity and stability of activity in
Z, and therefore the level of feedback to R.

Both the mean activity position and maximum firing rates
in Y were centered at the position of maximum input; neuron
24 had the highest firing rate in 97% of the trials. In X, the
mean activity position was slightly lower than the input center,
and the highest firing rate was at position 20 in 73% of the
trials.

Activity in both X and Z tended to be centered at a slightly
lower position than the inputs would dictate. As expected,
error in the two populations was correlated (p < 0.001). The
tendency for activity to drift increased as the inputs became
broader (see leftward shift in Fig. 2).

V. DISCUSSION

One remarkable aspect of the brain is its ability to compute
with highly variable cues provided by a variety of sensory
streams and infer missing information. Here, we demonstrate
a multichip system consisting of electronic emulations of
spiking neural networks able to achieve such performance in
a function approximation task. In this task, the network must
recover an unspecified cue when the two others are specified,
according to the relation encoded by the network connectivity
patterns.
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(a) Normalized activity in all nodes
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Fig. 3: Output activity when inputs are increased in width simultaneously. (a) Mean firing rates in X (green), Y (red) and
Z (blue) with increasing input widths. The firing rates in all three populations decrease nonlinearly. (b) Population standard
deviations in X (green), Y (red) and Z (blue) with increasing input widths. The standard deviations in all populations increase
linearly. Due to local sWTA dynamics and recurrent stimulation from R, the widths in X and Y are significantly sharper and
increase at a slower rate than their inputs.
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Fig. 4: Relationship between the standard deviation in Z and
the input standard deviations. The activity standard deviation
in Z as both inputs are widened simultaneously is shown in
blue; the resulting standard deviations when only one of X or
Y is widened are shown in green and red, respectively. The
linear fits reflect a proportional representation of uncertainty.
Activity in Z is determined by the activity evoked in R, which
becomes weaker as the input cues grow wider (see Fig. 5 (b)
and (d)).

In a previous instance of this multichip system [7], the
network was able to compute the value of an unspecified
variable, but could not assign an uncertainty to it given the
uncertainty over the specified variables. Our implementation
extends this system by combining the variabilities of the cues
(encoded in the widths of the activities) with each other.

The novel feature enabling this is the computation of the
sWTA function in the intermediate node, instead of hard
WTA [8]. This is achieved using the same hardware, but
with the intermediate node configured with feedback inhibiting
the winning neuron each time it spikes. As a result, the
intermediate node responds to the subset of winning neurons,
whose spatial extent depends on the input activity profiles. The
results show that the neuromorphic setup allows both mean and
variance information to be bidirectionally transmitted across
the intermediate node. Although the experiments focused on
relating the variables according to the sum relation, the same
architecture can be generalized to compute any linear or non-
linear relation between three variables [1], [2].

Fabrication mismatch can strongly affect the performance
of emulations of spiking neural networks. Here, the effect of
mismatch in neuron firing rates was compensated by using a
probabilistic mapping protocol. This adjustment is particularly
important in recurrent networks, where uneven firing rates
can significantly affect the network behavior. Despite these
corrections, considerably different results were observed based
on the portion of the input space stimulated; therefore, a
single input combination was used to constrain the sources
of variation. These variations are most likely due to mismatch
in the current-mode WTA circuit on the WTA2D chip, causing
systematic biases in the probability of a cell winning the

2994



0 1000 2000 3000 4000 5000
Time [ms]

X

Y

Z

R

P
o
p
u
la

ti
o
n

(a) Raster plot (σ = 0.8)

0 5 10 15 20 25 30
Population X Input

0

5

10

15

20

25

30

P
o
p
u
la

ti
o
n
 Y

 I
n
p
u
t

0

20

40

60

80

100

120

140

160

180

(b) WTA2D activity map (σ = 0.8)
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(d) WTA2D activity map (σ = 3.5)

Fig. 5: Activity comparison between narrow and wide inputs. [Left] Provoked activity in the four populations for (a) identical
sharp inputs (σ = 0.8) and (c) identical wide inputs (σ = 3.5). The two-dimensional Population R is flattened. (a) Concentrated
activation from X and Y produces stable activity over a small subset of neurons in R; this subset expands over time with greater
recurrent activation from Z. Activity in Z is strong and peaked. (c) Diffuse activation from X and Y produces fluctuations in
R, resulting in weak, flat activity in Z. [Right] Mean firing rates in Hz in Population R for (b) identical sharp inputs (σ = 0.8)
and (d) identical wide inputs (σ = 3.5). Dotted white lines indicate the standard deviations of the inputs to Population X
and Population Y. Concentrated inputs produce greater recurrent activation from Z, resulting in a diagonal pattern (due to the
connection profile of the sum relation).

competition at any point in time. This input-side WTA2D
variation may also have caused the leftward bias in activity
convergence observed in X and Z (see Fig. 2).

The bidirectional connections between nodes in the network
allow each layer to act as an input or an output node. However,
such recurrent excitatory connections between sWTA networks
can lead to instabilities [11]. To avoid this problem in this
network, it is sufficient to verify that each node is stable
in isolation. This is because the WTA2D chip, which is the
only link between the nodes, does not respond to its input in
a linear fashion, but rather reaches a saturation value. This
greatly helps in maintaining the stability of this recurrent

network. Therefore, several instances of this network can be
stably combined to build relationships among a larger number
of variables and perform generic processing in neuromorphic
systems. The system presented here can offer an efficient
technology for building probabilistic models, such as Bayesian
networks or Factor Graphs.
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