
Real-time inference in a VLSI spiking neural
network

Dane Corneil∗, Daniel Sonnleithner∗, Emre Neftci∗, Elisabetta Chicca†, Matthew Cook∗,
Giacomo Indiveri∗, Rodney Douglas∗

∗Institute of Neuroinformatics
University of Zurich and ETH Zurich

Email: emre@ini.phys.ethz.ch
† Cognitive Interaction Technology - Center of Excellence

Bielefeld University, Germany

Abstract—The ongoing motor output of the brain depends on
its remarkable ability to rapidly transform and fuse a variety of
sensory streams in real-time. The brain processes these data using
networks of neurons that communicate by asynchronous spikes,
a technology that is dramatically different from conventional
electronic systems. We report here a step towards constructing
electronic systems with analogous performance to the brain. Our
VLSI spiking neural network combines in real-time three distinct
sources of input data; each is place-encoded on an individual
neuronal population that expresses soft Winner-Take-All dynam-
ics. These arrays are combined according to a user-specified
function that is embedded in the reciprocal connections between
the soft Winner-Take-All populations and an intermediate shared
population. The overall network is able to perform function
approximation (missing data can be inferred from the available
streams) and cue integration (when all input streams are present
they enhance one another synergistically). The network performs
these tasks with about 80% and 90% reliability, respectively. Our
results suggest that with further technical improvement, it may
be possible to implement more complex probabilistic models such
as Bayesian networks in neuromorphic electronic systems.

I. INTRODUCTION

The combination of sensory input cues and the inference of
missing information from noisy, incomplete sensory cues are
fundamental computations carried out by the brain [1]. The
brain performs these prodigious feats using networks of slow,
spike-communicating neurons, which stand in stark contrast to
the technology and algorithms employed by digital processors.
Recent theoretical studies have demonstrated with simulations
how such computations could be performed in a biologically
plausible manner, using arrays of ideal neurons with real-
valued outputs [2]–[4].

Our contribution here is to demonstrate that this biological
style of sensory processing can be emulated physically and
in real-time using networks of neuromorphic Very Large
Scale Integration (VLSI) [5] neurons that communicate by
asynchronous events (spikes). Our neuromorphic network is
able to combine and transform sensory input cues into outputs
according to an arbitrary user-specified function. It consists
of four networks of spiking neurons, three of which provide
sensory input while the fourth combines these inputs. The
three input networks are configured as 1-D arrays of Integrate-
and-Fire (I&F) neurons whose lateral excitatory and global in-

hibitory couplings implement a soft Winner-Take-All (sWTA)
network [6]. These input sWTA populations provide place-
encoded representations of their sensory variables. The rela-
tionship between the variables is specified by the bi-directional
connectivity between the individual sWTA networks and a
shared intermediate 2-D WTA network.

The recurrent excitation developed by these networks, con-
strained by the patterns embedded in their interconnections,
provides the gain necessary to recover an unspecified cue when
the two others are specified (function approximation), or to
sharpen the response profile of each variable by integrating the
information between the specified cues (cue integration) [7].
The recurrent pattern of connections in our network is con-
sistent with the observed connectivity of the neocortex [8]
and has been proposed as an important neural computational
primitive [9] that can be combined easily and stably in large
networks [10].

Our demonstration is of interest for three reasons. The
network is a step towards configuring neuromorphic asyn-
chronous spiking systems to perform generic processing. As
well, the interaction of populations of neurons with various
profiles of activation resembles the interaction of statistical
distributions used in graphical probabilistic models such as
Bayesian networks. Finally, the realization in distributed elec-
tronic hardware may offer a scalable technology for real-time
data integration and inference.

II. THE MULTI-CHIP SETUP

The network is distributed across two different types of
chips: a 2-D Integrate-and-Fire (IF2D) chip, which imple-
ments a 2-D array of I&F neurons, and a 2-D Winner-
Take-All (WTA2D) chip, which implements a current-mode
Winner-Take-All (WTA) network. These are neuromorphic
chips which receive and transmit spikes using the Address
Event Representation (AER) communication protocol [11].
The asynchronous infrastructure used to transmit spikes across
chip boundaries makes use of dedicated AER communication
and mapper FPGA boards, which allow the user to specify
arbitrary network connectivity schemes [12].



A. The 2-D Integrate-and-Fire (IF2D) Chip

The IF2D consists of a 2-D sheet of 32×64 neurons, with
three externally addressable AER synapse circuits each (2
excitatory, 1 inhibitory). The synapses are pulse integrators
that can be stimulated by other neurons on the same chip, or by
Address-Events from outside sources to produce biophysically
realistic Excitatory Post-Synaptic Currents (EPSCs). In addi-
tion, there are local hard-wired synapse circuits that integrate
spikes from nearest neighbor neurons on the same chip. There
is no dedicated locally hardwired inhibitory neuron pool. In-
stead, the global inhibition required for sWTA operation can be
provided by making use of the AER inhibitory synapses of all
the neurons in the array, via the AER mapping infrastructure.
By activating both local recurrent excitatory connections and
external recurrent inhibitory connections (all-to-all) to provide
global inhibition, it is possible to produce the sWTA function,
in which the winners are a small population of neighboring
neurons that suppress or reduce the activity of all other neurons
in the network. The chip can be configured to provide up to
32 independent sWTA networks consisting each of (up to)
64 neurons. The IF2D was fabricated using a standard AMS
0.35 µm CMOS process, and covers an area of about 15mm2.

B. The 2-D Winner-Take-All (WTA2D) Chip

The WTA2D chip comprises a grid of 32×32 cells. Each
cell contains an AER excitatory input synapse, a current-
mode WTA circuit, and an output I&F neuron [13]. The AER
excitatory synapses integrate the input spikes and produce
an output current which is proportional to the frequency of
the input spike train. The current-mode WTA circuit then
selects the cell receiving the strongest input and activates its
corresponding output neuron. Output Address-Events therefore
encode the position of the winning cell. Due to the nature of
the current-mode WTA circuit, only one neuron is active at any
given time. The WTA2D chip was fabricated using a standard
AMS 0.35 µm CMOS process and covers an area of about
10mm2.

C. Network Architecture

The organization of the network is illustrated in Fig. 1. We
selected three distinct arrays of 32 neurons from the IF2D chip.
These arrays formed the populations whose activities represent
three cues: X, Y and Z. We configured each array as a sWTA
network, by activating the local recurrent first- and second-
neighbor excitatory connections and the global inhibitory ones.

We then established bidirectional excitatory connections
between each of the three populations X, Y and Z and the
neurons in the WTA2D chip (population R). Specifically, the
R neurons in the WTA2D chip were connected to the X, Y
and Z neurons in the IF2D chip via their first AER excitatory
synapse. Each neuron in X was connected to every neuron
in the corresponding column on R; the neurons in Y were
connected to the rows of R. The connection matrix from
R to Z determines the user-specified function to implement.
In the case of Fig. 1 the relational function is the mean
(Z = floor[(X +Y )/2]). For instance, cell [2,4] on R was
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Fig. 1: Illustration of the network architecture applied to a
function approximation experiment. In this example the user-
defined function is Z = floor[(X + Y )/2]. Each neuron in
populations X and Y feeds into all neurons in the associated di-
agonal row on population R. Neural firing activity is indicated
by color intensity. According to the user-defined relation, each
neuron in Z is connected to two adjacent vertical columns on
R. External input signals are represented by the left and right
black shapes. On the left, Gaussian inputs centered around
neuron 2 and 4 are applied to X and Y respectively. A constant
input is applied to Z. The firing activity in X and Y produces
maximum activity at location [2,4] on R; this cell is in a
vertical column connected to neuron 3 on Z.

connected to neuron 3 on Z. All connections between R and
X, Y, and Z, also involved the neuron’s nearest neighbors. For
instance, neuron 4 on X was also connected to columns 3 and
5 on R.

We generated input signals on a PC and provided them to
the X, Y and Z populations on the IF2D chip by stimulating
the target neurons via their second AER excitatory synapse.
To reduce the effect of fabrication mismatch, we calibrated the
inputs to neurons in populations X, Y and Z using the method
described by Neftci et al. [14]. The neurons in the WTA2D
chip did not receive any external stimulation from the PC.

III. REAL-TIME EXPERIMENTS

There are at least two types of computations that such
network architectures can achieve [2]. The first is the recovery
of an unspecified cue when the other two cues are specified
(function approximation); the second is the sharpening of the
response profiles of the variables by integrating the informa-
tion between the specified cues (cue integration). The two ex-
periments performed demonstrate both of these computations.

For both experiments, we carried out 30 trials using the ar-
bitrarily chosen function Z = floor[(X +Y )/2]. To evaluate the
sWTA network effects we also carried out trials with identical
inputs, but with only feed-forward connections active and all
local WTA connections inactive (feed-forward condition), as
well as trials in which only the connections to the intermediate
WTA2D layer were inactive (sWTA only condition).

A. Function Approximation

We applied regular spike trains with Gaussian spatial distri-
butions (75Hz maximum firing rate, σ = 1.75) to neurons of
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Fig. 2: Function Approximation (a) and Cue Integration (b) experimental results. I. Normalized firing rates of populations X, Y
and Z measured from 700ms to 1000ms (green traces for real output, red traces for sWTA only condition, and blue traces for
feed-forward condition). II. Map of the reciprocal synaptic connections between R and X, Y and Z, forming the mean function
Z = floor[(X +Y )/2]. The IF2D chip output (winning neuron) is highlighted in red.

populations X and Y, centered at positions chosen at random,
with a distance of at least 3 neurons from the edges in order
to avoid boundary effects. In addition, we applied Poisson
distributed spike trains to the neurons in Z, with uniform mean
firing rates equal to the average firing rates of neurons in the
base populations X and Y. Note that the input to Z did not
encode the expected result. We applied the external stimulation
to all three populations simultaneously for 1000ms; spike
events were recorded from the stimulus onset to 400ms after
the end of external stimulus.

B. Cue Integration

We applied a wide input Gaussian profile of firing rates
(75Hz maximum firing rate, σ = 3.5) to all three populations
X, Y and Z, centered around random positions, chosen at least
6 neurons away from the edges, to avoid boundary effects.
We applied the external stimulus to the three populations
simultaneously for 1000ms, and recorded their activities for
1400ms. As expected, the network sWTA properties sharpened
the activity profiles. To quantify the sharpening effect, we used
the data collected from 700ms to 1000ms after the stimulus
onset, ensuring adequate time for R to choose a winner.

IV. EXPERIMENTAL RESULTS

A. Function Approximation

The network was able to correctly calculate the mean of the
two inputs in most of the trials. The activity on Z converged
to within two positions of the correct neuron in 77% of trials.
The network converged to within three positions in 83% of
trials. The final position was read out after removing the input
stimulus, from the location of the most active neuron; if several
neurons shared the highest firing rate, their positions were av-
eraged. These results are summarized in Table I. The activities
measured from all three populations in a single trial are shown
in Fig. 2a. In addition to the fully connected network output,
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Fig. 3: Spiking activity of population Z during a function
approximation trial. External input spikes are plotted in blue
while the output firing activity is plotted in red. Maximum
inputs to X and Y were at positions 4 and 13. Population R
chose a winner at position [3,13] (corresponding to a mean
of 8) at 117ms, indicated by the arrow. Maximum activity in
Z occurred at position 9. Activity continued after the end of
external stimulus on positions 8 and 9.

we plot the neuron activities in the feed-forward and sWTA
only conditions, for comparison. The raw data showing the
spiking activity on population Z for a different trial is shown
in Fig. 3. The most common source of error is due to R failing
to activate the cell with the highest input. This is the case in
almost all of the trials where activity on Z differed by more
than 2 positions from the mean. When an incorrect solution
was chosen on R, it tended to impose that solution on the base
variables X and Y. Thus the error in Z was highly correlated
with error in populations X and Y (ρ = 0.96).

B. Cue Integration

The inclusion of the intermediate population R in the net-
work significantly sharpened the activity profiles, as predicted



TABLE I: TRIALS ENDING IN CORRECT POSITION

Distance from
Correct Position

Function
Approximation

Cue
Integration

X,Y Z X,Y Z

≤ 1 75% 63% 58% 87%
≤ 2 83% 77% 87% 100%
≤ 3 90% 83% 97% 100%

TABLE II: INPUT AND NETWORK RESPONSE WIDTHS

Network
Function Approximation Cue Integration

X,Y X,Y,Z

Input 1.75 3.50
Feed-forward 1.48±0.01 2.92±0.01

sWTA only 0.97±0.02 1.60±0.03
Relational 1.03±0.10 1.17±0.04

by theory [2]. We measured a 27% increase in sharpening by
comparing the full versus the sWTA only conditions, based
on the standard deviation of the spiking rates across the
population. These results are summarized in Table II; a single
trial is shown in Fig. 2b. In particular, sharpening occurred in
92% of the 90 results collected (30 trials, 3 populations).

Overall, the positions of convergence were also accurate.
Activity on X and Y converged to within two positions of
the correct neuron in 87% of the results, and activity on Z
converged to within two positions in all trials (see Table I).

In the 8% of results where the activity profile was not
sharpened by the addition of R, the activity also tended to
converge to the wrong position. These results were all from
populations X and Y. Analysis of the associated trials showed
that, in most cases, R chose a suboptimal solution that was
close to being consistent with Z and one of X or Y, but was
less consistent with the other base variable. The activity on
the inconsistent variable was then pulled towards the solution
chosen by R, producing a wide response in the time window.
This contributed both to increased distance error and decreased
sharpening in X and Y.

V. DISCUSSION

Our results demonstrate that neuromorphic WTA networks
can be used to implement neural systems that constrain the
values of multiple cues based on user-defined relationships. In
the system we developed, spiking inputs to two neural popula-
tions shaped the activity of a third population according to the
function defining their relationship (function approximation).
We also presented cue integration experiments where broad
input profiles to three populations recurrently sharpened each
other to produce a consistent output determined by a user-
specified relation. Unlike previous software implementations
with similar capabilities, our network used a 2-D neural array
that allowed only one active neuron at any point in time (hard
WTA behaviour).

These promising results demonstrate that it is possible
to construct a complex network with many variables and

relations, by expanding the setup with additional 1-D and 2-D
populations of VLSI spiking neurons. Such networks could
implement more complex relationships between cues. The
computations our network can achieve can be used to carry
out a variety of tasks, such as sensorimotor transformation,
multimodal sensory integration and feature extraction, and is
therefore a step towards the configuration of generic process-
ing in neuromorphic systems. This class of neural architectures
and the computations they can achieve are optimal in the
Bayesian sense [3], suggesting that the system presented here
can offer an efficient technology for building probabilistic
models, such as Bayesian networks or Factor Graphs. Such
systems can have practical applicability in robotic systems
which make use of event-based neuromorphic sensors [15].
By combining the input from several sensors, beliefs about the
environment can be integrated and refined, providing a general
framework for multimodal cue combination in neuromorphic
systems.
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