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Abstract

In this thesis, we study multivalued stochastic differential equations on a
Gelfand triple (V,H, V ∗) of the following type:{

dX(t) ∈ b(t,X(t)) dt−A(t,X(t)) dt+ σ(t,X(t)) dL(t),

X(0) = X0.

The drift operator is divided into a single-valued Lipschitz part b and a
multivalued random, time–dependent, maximal monotone part A with full
domain V and image sets in the dual space V ∗. The Banach space V as well
as its dual space V ∗ are assumed to be uniformly convex.

The results of the thesis consist of two main parts. In the first part, we
prove the existence and uniqueness of solutions to the multivalued stochas-
tic differential equations with multiplicative Wiener noise where the multi-
valued maximal monotone operator A admits an additional coercivity and
boundedness assumption. The proof is based on the Yosida approximation
approach. We establish L2-convergence of solutions for the stochastic partial
differential equations

dXλ(t) = (b(t,Xλ(t))−Aλ(t,Xλ(t))) dt+ σ(t,Xλ(t)) dN(t)

as λ↘ 0, where Aλ is the Yosida approximation of the maximal monotone
operator A.

In the second part, we extend the framework of the first part by adding
Poisson noise and replacing the differential dt of the drift by a more general
measure dN(t) induced by a non-decreasing cádlág process N(t). Using the
Yosida approximation approach, we obtain analogous existence and unique-
ness results to the Wiener case.

As examples of multivalued maximal monotone operators, we discuss the
subdifferential of a lowersemicontinuous, convex proper function as well as
the multivalued porous media operator.
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Chapter 0

Introduction

Multivalued Stochastic Differential Equations

There are several reasons to examine a special kind of dynamical systems,
namely those that have velocities not uniquely determined by the state of the
system, but depending loosely upon it. Those equations can be generalized
by replacing their discontinuous drift operator with their so-called essential
extension. This is achieved by, roughly speaking, filling the gaps of the
graph at points of discontinuity (cf. Section 3.4). The essential extension
is multivalued, i.e. it is a map that associates to any point in its domain a
set. As a consequence, one obtains a (deterministic) multivalued differential
equation of the type

dX(t) ∈ A(t,X(t))dt,

considered on a Hilbert space H, where A is a multivalued operator.

Examples of dynamical systems with random phenomena in Physics, Eco-
nomics and Biology give rise to the consideration of differential equations
perturbed by random noise. Taking into account such random phenom-
ena, one arrives at multivalued stochastic differential equations on H of the
following type:

dX(t) ∈ A(t,X(t)) dt+ σ(t,X(t)) dL(t). (0.1)

Here, the stochastic process L(t) may be a Wiener process, a Lévy process or
a fractional Brownian motion. One concrete example of such a multivalued
equation is given by the multivalued stochastic porous media equation (cf.
Section 6.3).

Substantial research on the theory of deterministic multivalued differential
equations has already been done. The monographs [Bré73], [AC84], [Sho97]
and [Zei90a]/[Zei90b] should be mentioned as especially significant works.

1



P. Krée was the first to introduce the stochastic notion of multivalued dif-
ferential equations in finite dimensions, i.e. H = Rd, of the following type:{

dX(t) ∈ b(t,X(t)) dt−A(X(t)) dt+ σ(t,X(t)) dW (t),

X(0) = X0.
(0.2)

(cf. [Kré82] and [KS86, Chapter XIV]). Here, X0 is the initial condition
and the drift coefficient is separated into a Lipschitz part b and a time–
independent, deterministic (multivalued) maximal monotone part A. The
diffusion coefficient σ is assumed to be Lipschitz. In [Kré82], P. Krée showed
pathwise uniqueness and uniqueness in a product situation. The work of E.
Cépa on this subject should also be mentioned (cf. [Cép95] and [Cép98]).
In [Cép98], he investigated the deterministic Skorohod problem with a mul-
tivalued maximal monotone operator in the finite dimensional case H = Rd.
The deterministic result is used to give a new proof of existence and unique-
ness for the stochastic case. The core element of the proof is a contraction
argument (cf. [Cép98, Théorème 5.1]).

Yosida Approximation Approach

One possible strategy of solving multivalued differential equations of type
(0.2) is based upon the Yosida approximation approach. In his work [Pet95],
R. Petterson proved the existence of multivalued stochastic differential equa-
tions of type (0.2) in the finite dimensional case H = Rd with a time–
independent, deterministic maximal monotone operator A via the Yosida
approximation method for the first time. The basic idea of the Yosida ap-
proximation approach can be summarized as follows:

Let H be a Hilbert space and assume that the multivalued operator A : H →
2H is maximal monotone. Then on the basis of the deterministic theory (cf.
[Bar93], [Sho97]), it is known that one can define the Yosida approximation
Aλ, λ > 0, of A by

Aλx :=
1

λ
(x− Jλx), x ∈ H, (0.3)

where the resolvent Jλ of A is defined by

Jλx := (I + λA)−1x, x ∈ H. (0.4)

The main advantage of the Yosida approximation Aλ is that it is single-
valued and (at least in the Hilbert space case) Lipschitz continuous. Now
one can consider the family of stochastic differential equations

dXλ(t) = b(t,Xλ(t)) dt−Aλ(Xλ(t)) dt+ σ(t,Xλ(t)) dW (t), λ > 0,
(0.5)
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which arise from replacing the multivalued maximal monotone operator A
in (0.2) by its (single-valued) Yosida approximation Aλ. By the Lipschitz
continuity of Aλ, the differential equation (0.5) becomes solvable by means
of standard Picard–Lindelöf iteration methods. Therefore, the problem of
finding solutions to (0.2) is reduced to the study of convergence of the ap-
proximating equations to the initial multivalued differential equations. In
this respect, the Yosida approximation turns out to be useful because of its
convergence to the minimal selection A0 of A.

In a nutshell: By use of the Yosida approximation approach one can extend
the existence result of a given single-valued framework to the multivalued
case, provided a solution to the single-valued case exists.

Variational Framework

In [Pet95] as well as in [Cép98], the framework is restricted to the finite–
dimensional case. An interesting question is whether the arguments hold in
the case of infinite dimensions as well. There are various applications justi-
fying this generalization. An example of a multivalued differential equation
in infinite dimensions is the multivalued stochastic porous media equation,
which is a stochastic partial differential equation (cf. Section 6.3).

Multivalued stochastic differential equations with Wiener noise of type (0.1)
in infinite dimensions have been examined in [Ras96], [BR97] and [Zha07]
where the multivalued operator A acts on a Hilbert space H. In [Ras96], the
existence and uniqueness of equations of type (0.1) have been proved for an
α-maximal monotone A : H → 2H that satisfies a certain growth condition
(cf. [Ras96, Condition H1]).

However, some monotone operators on function spaces do not leave the
underlying Hilbert space invariant. Consider e.g. the monotone operator
Au := u3 on L2. Indeed, Au 6∈ L2 for some u ∈ L2. This problem leads
to the so called variational framework. In this framework, one defines the
Gelfand triple

V ⊂ H ⊂ V ∗,

where V is a separable Banach space with its dual space V ∗. A separable
Hilbert space H, identified with its dual space H∗ via the Riesz isomorphism,
is continuously and densely embedded between these two Banach spaces.

In this thesis, we consider multivalued stochastic differential equations on a
Gelfand triple, i.e. as in (0.2), with a drift that is split up into a multivalued
maximal monotone operator A and a single-valued Lipschitz continuous op-
erator b taking values in H. The operator A is maximal monotone, random
and time–dependent and is defined on the whole space V , but takes values
in the larger space V ∗.
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The variational approach was first used by Pardoux (cf. [Par75], [Par72])
to study stochastic partial differential equations, then this technique was
further developed by Krylov and Rozovoskii [KR79]. In the monograph
[PR07], a new presentation of a general existence and uniqueness result un-
der certain monotonicity– and coercivity– assumptions based upon [KR79]
was developed.

A general question the variational approach encounters is why one does
not redefine the operator A by restricting its domain in a way such that
the image sets of A are, once again, in H, i.e. one considers the operator
AH : H → H, AH := A|D(AH), where

D(AH) :=
{
x ∈ V

∣∣ A(x) ⊂ H
}
.

In the multivalued case, this would lead back to the framework of [Ras96].
However, since the initial value X0 always requires to be contained in the
closure of the domain of A, X0 ∈ D(AH), and since it is not at all clear
whether the restricted domain D(AH) is dense in H, this method would
imply that one cannot consider differential equations starting at an arbitrary
vector X0 in H. This is a quite notable restriction. Furthermore, if one
considers a time–dependent, random operator A, the domain D(AH) also
becomes time–dependent and random, which is by no means desirable. This
motivates and justifies the extended variational framework with the operator
A acting from V to the larger space V ∗ used in this thesis.

Diffusion with Jumps

The research community is currently developing an increasing interest in
stochastic partial differential equations that are driven by noise which is
discontinuous in time. In finance, for example, cases in which the noise
may have jumps play an increasingly important role in the modelling of
risk factors. Conclusions based on such models have a higher degree of
congruence with empirical data than those based on the traditional model
of a Brownian motion (cf. e.g. [App04], [IP06]).

In order to meet these concerns in the context of a multivalued drift, one may
consider multivalued stochastic differential equations of type (0.1), where the
diffusion dL(t) is induced by a Lévy process. Thanks to the Lévy–Itô de-
composition (cf. Theorem D.4), the class of stochastic differential equations
with Hilbert space–valued Lévy-noise may be reduced to differential equa-
tions where the stochastic diffusion term is the sum of a Wiener process and
a compensated Poisson measure. More precisely, one considers multivalued
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differential equations of the type
dX(t) ∈ b(t,X(t)) dt−A(X(t)) dt+ σ(t,X(t)) dW (t),

+

∫
Z
G(t,X(t), z)µ̄(dt, dz),

X(0) = X0,

(0.6)

where W is a Wiener process and µ̄ is a compensated Poisson measure on
some measure space (Z,Z, µ).

There is a lot of recent progress in this field for the existence and unique-
ness of single-valued stochastic differential equations with jumps (0.6) (See
e.g. [LR04], [Kno05], [BH09], [BM09], [Pré10], [MZ10], [MPR10], [MR10a],
[MR10b], [Mar10] as well as the monographs [PZ07] and [App09]). In the
single-valued case, the variational framework with respect to continuous
martingales as integrators in [KR79] has been extended to general discontin-
uous martingales by I. Gyöngy and N. Krylov (cf. [GK81], [GK82], [Gyö82]).
In finite dimensions, the multivalued case with jumps (0.6) has been studied
in [RWZ10] and [Wu11].

Main Results and Structure of this Thesis

To keep this work reasonably self-contained, we recall some necessary funda-
mentals in the theory of stochastic processes in Chapter 1. We collect some
well-known facts on stochastic processes and define martingales on general
Banach spaces. We introduce the Q-Wiener process as well as the Poisson
random measure.

Chapter 2 is devoted to the stochastic integral on general Hilbert spaces.
We introduce the stochastic integral with respect to general (discontinuous)
square integrable martingales as integrators and deduce, as a special case,
stochastic integration with respect to cylindrical Wiener processes. Fur-
thermore, we construct the stochastic integral with respect to compensated
Poisson random measures and identify this Poisson integral as a stochastic
integral with respect to a square integrable martingale.

In Chapter 3, we introduce the general analytic concepts needed to study
multivalued differential equations with maximal monotone drift. We define
maximal monotone operators on Banach spaces, introduce their Yosida ap-
proximation and state some of its important properties. Furthermore, we
define the measurability of a multivalued operator and prove the measura-
bility of the Yosida approximation.

Chapter 4 contains one of the two main results of this thesis. We consider
multivalued stochastic differential equations on a Gelfand triple (V,H, V ∗)
perturbed by multiplicative Wiener noise of the type (0.2). The drift oper-
ator is divided into a Lipschitz part b and a random and time–dependent
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(multivalued) maximal monotone part A with full domain V and image sets
in the dual space V ∗. Here, the Banach space V as well as its dual space
V ∗ are assumed to be uniformly convex. Based on some additional coerciv-
ity assumptions (cf. Hypotheses (H1) - (H5)) we prove the existence and
uniqueness for multivalued stochastic partial differential equations of the
type (0.2). The central result of this chapter is stated in Theorem 4.5. Its
proof is based on the Yosida approximation approach.

The second main result is proved in Chapter 5. We extend the results de-
veloped in Chapter 4 by adding Poisson noise to the multivalued stochastic
differential equation as in (0.6) and replacing the differential dt of the drift
with a more general measure dN(t) induced by a non-decreasing cádlág pro-
cess N(t). Under conditions (H1)-(H5), we prove the existence and unique-
ness of multivalued stochastic differential equations on a Gelfand triple of
the following type:

dX(t) ∈ [B(t,X(t))−A(t,X(t))] dN(t) +D(t,X(t−)) dW (t)

+

∫
Z
G(t,X(t−), z)µ̄(dt, dz)

X(0) = X0.

(0.7)

The main existence result is stated in Theorem 5.5.

In Chapter 6, we discuss some applications of the results of Chapters 4 and 5.
In particular, we compare them to the single-valued case. Furthermore, we
consider the subdifferential of a lowersemicontinuous, convex proper func-
tion as an example of a maximal monotone operator. Finally, we examine
the multivalued stochastic porous media equation and generalize the results
in [BDPR09b]. In [BDPR09b], weak solutions of stochastic porous media
equations are considered, whereas in this thesis we obtain strong solutions
(cf. Remark 6.6).

Further Concepts and Problem Discussion

The Wiener Case

The existence proofs in the Wiener case (cf. Chapter 4) as well as in the
Poisson case (cf. Chapter 5) are based upon the Yosida approximation
approach. The first step of this method is devoted to the proof of the
existence and uniqueness of the approximating equations (0.5). In the case
of a Hilbert space, the Yosida approximation is Lipschitz continuous and
consequently sufficiently regular to obtain the existence of a solution via
standard methods.

Since in this thesis, the multivalued maximal monotone operator A is defined
on a Banach space V with set values in its dual space V ∗, a more general
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definition of the Yosida approximation is needed than the one for Hilbert
spaces. In Banach spaces, the Yosida approximation Aλ : V → V ∗ of A is
defined by

Aλx :=
1

λ
J(x− Jλx), λ > 0, x ∈ V,

where J : V → V ∗ is the duality mapping and the resolvent Jλx := xλ is
defined to be the (unique) solution to the resolvent equation

0 ∈ J(xλ − x) + λAxλ (0.8)

(cf. Section 3.2). In the resolvent equation (0.8), the duality map J takes
over the role of the Riesz-isomorphism for the Hilbert space case (cf. (0.4)).
The duality map J is homogeneous, but in general not linear. Hence, one
cannot separate the terms inside J in (0.8) in order to obtain an explicit
definition as in (0.4). This is, however, necessary to derive the Lipschitz
continuity of Jλ and Aλ. Therefore, the Lipschitz continuity property of
the Yosida approximation does not necessarily hold in this more general
setting (for a counter example see Example 3.22). In order to overcome this
difficulty, additional regularizing assumptions on A are needed to obtain the
existence and uniqueness for the approximating equations.

Since Aλ is not Lipschitz, standard fix point arguments do not apply to
solve the approximating equation (0.5). To overcome this difficulty, the
central idea is to apply the main result in [PR07] that yields the existence
and uniqueness for (single-valued) stochastic differential equations driven by
Wiener noise in the variational framework to (0.5). To this end, the follow-
ing type of boundedness– and coercivity– assumptions on the multivalued
operator A is needed (cf. Hypotheses (H4) and (H5) in Chapter 4):

There exist α ∈]1,∞[, C ∈]0,∞[ such that

V ∗〈v, x〉V ≥ C (‖x‖αV + 1) (0.9)

and ∥∥A0(x)
∥∥
V ∗
≤ C

(
‖x‖α−1

V + 1
)

(0.10)

for all x ∈ V and all v ∈ A(x), where A0 denotes the minimal selection of A
(cf. Definition 3.8).

A central question is whether these conditions are carried forward to the
Yosida approximation Aλ so that [PR07] is applicable yielding the exis-
tence and uniqueness for the approximating solutions for (0.5). Since the
Yosida approximation Aλ is bounded by the minimal selection A0 of A (cf.
Proposition 3.19.ii)), this question is easily answered for the boundedness
condition. The answer for the coercivity condition turns out to be more
difficult. Lemma 3.21 assures that this is the case, but only for the expo-
nent α ∈]1, 2] in (0.9). This is the main reason why we have to restrict the
exponent α to the interval ]1, 2[ in Chapter 4.

7



The drift operator in (0.2) also has a Lipschitz continuous component b.
However, the boundedness condition in [PR07] of the form (0.10) is not
satisfied for b with α ∈]1, 2]. That is the reason why [LR10, Theorem 1.1]
(generalizing [PR07, Theorem 4.2.4]) is used in Chapter 4. In [LR10], arbi-
trary exponents of the H-norm on the right-hand side of (0.10) are admitted
as well (cf. Remark 4.8). Accordingly, the proof of the a priori estimate (cf.
Proposition 4.9) uses techniques similar to the proof of [LR10, Lemma 2.2].

A further, more technical question that has to be answered as part of the
proof is that of the measurability of the Yosida approximation. Since the
multivalued drift operator A is assumed to be time–dependent and random,
measurability of the Yosida approximation is not a trivial question. Indeed,
the definition of the Yosida approximation involves the resolvent which is
only implicitly defined by (0.8). The search of measurable solutions to equa-
tions of the type (0.8), where the operator A is time–dependent and random,
leads to the theory of random inclusions (cf. Section 3.3.1 as well as [Han57],
[BR72], [Ito78], [Kra86]). Proposition 3.25 ensures the measurability of the
Yosida approximation.

The a priori estimate (Proposition 4.9) permits a weak compactness argu-
ment to obtain weak convergence of the approximating solution Xλ. In the
final step, the limit is identified as a solution to the originating equation
(0.2) (cf. Proof of Theorem 4.5). Some aspects of this proof are inspired by
the proof of [PR07, Theorem 4.2.4].

Another central problem in the theory of multivalued differential equations
that the proof of Theorem 4.5 encounters is the following: One has to make
sure that the weak limit η of the Yosida approximation Aλ applied to the
approximating solution Xλ is contained in the image of A applied to the
weak limit X of the sequence (Xλ)λ>0, i.e. for Aλ(Xλ) ⇀ η one has to
prove that

η ∈ A(X). (0.11)

Every maximal monotone operator is weakly-strongly closed (cf. Proposi-
tion 3.2.i)). Under certain circumstances, a maximal monotone operator is
even weakly-weakly closed (cf. Proposition 3.3). In Step 3 of the proof of
Theorem 4.5, we apply this weakly–weakly–closedness result to the multi-
valued operator

A : Lα([0, T ]× Ω, V )→ 2L
α
α−1 ([0,T ]×Ω,V ∗)

defined by x 7→ A(·, x) in order to prove (0.11).

The Poisson Case

The basis of the considerations in Chapter 5 is taken from [Gyö82]. Its
main result [Gyö82, Theorem 2.10] provides the existence and uniqueness for

8



single-valued stochastic differential equations for general square integrable
martingales. Following the Yosida approximation approach, replacing the
result from [PR07] in the Wiener case, this result is used to prove the ex-
istence and uniqueness of the approximating equations. This is possible
because the compensated Poisson random measure can be identified with a
square integrable martingale (cf. Theorem 2.24).

However, since the result in [Gyö82] only covers the case where the exponent
α in Hypotheses (H4) and (H5) of Chapter 4 equals 2, the setting of Chapter
5 is reduced to the case α = 2. Therefore, in this respect, the result in
Chapter 5 does not fully generalize the one in Chapter 4.

Furthermore, the result in [Gyö82] requires the condition ∆N ·C < 1 in (H2)
of Chapter 5 for the non-decreasing cádlág process N . As a consequence,
the jumps of N are bounded.

For the identification of weak limits in the proof of Theorem 4.5, we used the
integration by parts–formula applied to the product of the exponential and
the square of the H-norm of the limit X of the approximating solutions Xλ

(cf. (4.16)). In the discontinuous case, the Dolean exponential takes over
the role of the conventional exponential (cf. Lemma 5.16). Accordingly, we
apply the integration by parts–formula for (discontinuous) semimartingales
(cf. Theorem D.16) in the discontinuous case (cf. (5.34)).
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Chapter 1

Fundamentals on Stochastic
Analysis

In this chapter, we recall the necessary fundamentals in the theory of stochas-
tic processes. We gather some well-known facts on stochastic processes and
define the martingale on general Banach spaces. These statements are valid
for cádlág processes. Of course, this covers the special case of continuous
processes. Furthermore, we introduce the Q-Wiener process as well as the
Poisson random measure. In Chapters 4 and 5, these processes will serve
as integrators for the stochastic integral. For more details on the theory of
stochastic processes, we refer to [Kno05], [IW81], [Pro05], [PR07], [App09].

1.1 Stochastic Processes

Let (E, ‖·‖) be a separable Banach space and B(E) its Borel σ-algebra and
let (Ω,F , P ) be a complete probability space with normal filtration Ft, t ≥ 0,
i.e. it is right-continuous and F0 contains all P -null-sets of F . A process X
on (Ω,F , P ) is adapted to the filtration Ft if Xt is Ft-measurable for each
t ∈ [0, T ]. X is called progressively measurable with respect to filtration Ft
if, for every t ∈ [0, T ], the map (s, ω) 7→ Xs(ω) from [0, t]×Ω into (E,B(E))
is B([0, t]) ⊗ Ft-measurable. Clearly, a progressively measurable process is
adapted. Conversely, any adapted process with right- or left-continuous
paths is progressively measurable. If X is progressively measurable and τ
is a stopping time (with respect to the same filtration (Ft)), then Xτ is
Fτ -measurable on the set {τ <∞}.

An E-valued right-continuous process X(t), t ≥ 0, with paths having left
limits is called cádlág. Accordingly, an E-valued left-continuous process
X(t), t ≥ 0, with paths having right limits is called cáglád. For an E-
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valued process X(t), t ≥ 0, with paths having left limits we define

X(t−) :=

{
lims↗t,s<tX(s) t > 0

0 t = 0

and

∆X(t) :=

{
X(t)−X(t−) t > 0

X(0) t = 0.

An real-valued process N(t), t ≥ 0, is called non-decreasing process if it is
(Ft)-adapted and has P -a.s. positive, non-decreasing, finite paths.

Let us gather some facts about cádlág processes which can be proved anal-
ogously to the case of continuous processes.

Proposition 1.1. Let Xt, t ≥ 0 be an E-valued cádlág process. Fix some
ω ∈ Ω and let 0 ≤ a < b <∞. Then,

i. t 7→ Xt(ω) is bounded in [a, b] and attains its bounds there.

ii. Let (Xn)n∈N be a sequence of E-valued cádlág processes such that it
converges uniformly to some X. Then X is cádlág.

iii. supt∈[a,b] ‖Xt(t−)‖ ≤ supt∈[a,b] ‖Xt(ω)‖ .

Analogous statements are valid for cáglád processes.

1.2 Martingales in General Banach Spaces

Let Lp(Ω,F , P ;E), 1 ≤ p < ∞, be the space of all E-valued Bochner p-
integrable functions on (Ω,F , P ) as introduced in Section C.1.

Definition 1.2. Let M(t), t ≥ 0, be an E-valued stochastic process on
(Ω,F , P ).

i. The process M is called an Ft-martingale if:

• E [‖M(t)‖] <∞ for all t ≥ 0,

• M(t) is Ft-measurable for all t ≥ 0,

• E
[
M(t)

∣∣ Fs] = M(s) P -a.s. for all 0 ≤ s ≤ t <∞.

ii. The process M is called local martingale (up to T ) if there exists a
localizing sequence {τn}n∈N, of (Ft)-stopping times such that

• (Mt∧τn)t∈[0,T ] is a martingale for all n ∈ N,

• supn∈N τn = T P -a.s..
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Remark 1.3. For the existence and uniqueness of the conditional expecta-
tion, we refer to [PR07, Proposition 2.2.1].

Definition 1.4. A real-valued process M(t), t ≥ 0, is called (Ft)–submar-
tingale if it is an integrable (Ft)-adapted process such that for all 0 ≤ s ≤
t <∞

M(s) ≤ E
[
M(t)

∣∣ Fs] P -a.s..

For right-continuous E-valued Ft-martingales, the following theorem pro-
vides the equivalence of the standard norms on Lp(Ω,F , P ;C([0, T ];E)) and
C([0, T ];Lp(Ω,F , P ;E)).

Theorem 1.5 (Maximal inequality). Let p > 1 and let E be a separa-
ble Banach space. If M(t), t ∈ [0, T ], is a right-continuous E-valued Ft-
martingale, then(

E

[
sup
t∈[0,T ]

‖M(t)‖p
]) 1

p

≤ p

p− 1
sup
t∈[0,T ]

(E [‖M(t)‖p])
1
p

=
p

p− 1
(E [‖M(T )‖p])

1
p .

Proof. See [PR07, Theorem 2.2.7, p.20].

Definition 1.6. By M2
T (E), we denote the space of all E-valued, square

integrable, cádlág martingales M(t)t∈[0,T ] with the norm

‖M‖M2
T

:= sup
t∈[0,T ]

(
E
[
‖M(t)‖2

]) 1
2

=
(
E
[
‖M(T )‖2

]) 1
2

≤

(
E

[
sup
t∈[0,T ]

‖M(t)‖2
]) 1

2

≤ 2 ·
(
E
[
‖M(T )‖2

]) 1
2
.

Proposition 1.7. The space
(
M2

T (E), ‖·‖M2
T

)
is a Banach space.

Proof. See [Kno05, Proposition 1.13, p.10].

1.3 The Wiener Process

Definition 1.8 (Q-Wiener process). A U -valued stochastic process W (t),
t ∈ [0, T ], on (Ω,F , P ) starting in 0 is called a (standard) Q-Wiener process
if:

• W has P -a.s. continuous trajectories,
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• the increments of W are independent, i.e. the random variables

W (t1), W (t2)−W (t1), . . . , W (tn)−W (tn−1)

are independent for all 0 ≤ t1 < · · · < tn ≤ T , n ∈ N,

• the increments have Gaussian laws, i.e.

P ◦
(
W (t)−W (s)

)−1
= N

(
0, (t− s)Q

)
for all 0 ≤ s ≤ t ≤ T ,

where Q ∈ L(U) is non-negative and symmetric.

The process Q is called the covariance of the Wiener process.

Definition 1.9. A Q-Wiener process W (t), t ∈ [0, T ], is called a Q-Wiener
process with respect to a filtration Ft, t ∈ [0, T ], if:

• W (t), t ∈ [0, T ], is adapted to Ft, t ∈ [0, T ], and

• W (t)−W (s) is independent of Fs for all 0 ≤ s ≤ t ≤ T .

Note that, in fact, any U -valued Q-Wiener process W (t) on (Ω,F , P ) may
be regarded as a Q-Wiener process with respect to a normal filtration (see
[PR07, Proposition 2.1.13, p.16]).

Proposition 1.10. A U -valued Q-Wiener process W (t) with respect to a
normal filtration Ft, t ∈ [0, T ] is a square integrable Ft-martingale, i.e.
W ∈M2

T (U).

Proof. See [PR07, Proposition 2.2.10, p.21].

1.4 Poisson Random Measures and Poisson Point
Processes

Let (Ω,F , P ) be a complete probability space and (S,S) a measurable space.
Let M be the space of Z+ ∪ {+∞}-valued measures on (S,S) and

BM := σ(M 3 µ 7→ µ(B) | B ∈ S).

Definition 1.11 (Poisson random measure). A random variable
µ : (Ω,F) → (M,BM) is called Poisson random measure if the following
conditions hold:

i. For all B ∈ S, µ(B) : Ω → Z+ ∪ {+∞} is Poisson distributed with
parameter E[µ(B)], i.e.

P (µ(B) = n) = e−E[µ(B)] (E[µ(B)])n

n!
, n ∈ N ∪ {0}.

If E[µ(B)] =∞, then µ(B) =∞ P -a.s..
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ii. If B1, . . . , Bm ∈ S are pairwise disjoint, then µ(B1), . . . , µ(Bm) are
independent.

Let (Z,Z) be another measurable space and set

(S,S) := ([0,∞[×Z,B([0,∞[)⊗Z).

Definition 1.12. A point function p on Z is a mapping p : Dp ⊂]0,∞[→ Z
where the domain Dp of p is countable.

Remark 1.13. The point function p induces a measure µ(dt, dy) on
([0,∞[×Z,B([0,∞[)⊗Z) in the following way:

Define p̃ : Dp →]0,∞[×Z, t 7→ (t, p(t)) and denote by c the counting measure
on (Dp,P(Dp)), i.e. c(A) := #A for all A ∈ P(Dp). Here, P(Dp) denotes
the power set of Dp. For (A×B) ∈ B([0,∞[)⊗Z, define the measure

µ(A×B) := c(p̃−1(A×B)).

Then, in particular, for all A ∈ B([0,∞[) and B ∈ Z we obtain

µ(A×B) = #{t ∈ Dp | t ∈ A, p(t) ∈ B}.

For t ≥ 0, B ∈ Z we write

µ(t, B) := µ(]0, t]×B).

Let PZ be the space of all point functions on Z and

BPZ := σ(PZ 3 p 7→ µ(t, B)|t > 0, B ∈ Z).

Definition 1.14. i. A point process on Z and (Ω,F , P ) is a random
variable p : (Ω,F)→ (PZ ,BPZ ).

ii. A point process p is called stationary if for every t > 0, p and θtp have
the same probability law. Here, θt is given by θt :]0,∞[→]0,∞[, s 7→
s+ t.

iii. A point process p is called σ-finite if there exists (Bn)n∈N ⊂ Z such
that Bn ↗ Z as n→∞ and E[µ(t, Bn)] <∞ for all t > 0 and n ∈ N.

iv. A point process p on Z is called Poisson point process if there exists
a Poisson random measure µ̃ on (]0,∞[×Z,B(]0,∞[) ⊗ Z) such that
there exists a P -zero set N ∈ F such that for all ω ∈ N c and all
(A×B) ∈ B(]0,∞[)⊗Z

µ(ω)(A×B) = µ̃(ω)(A×B).
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Proposition 1.15. Let p be a σ-finite Poisson point process on Z and
(Ω,F , P ). Then, p is stationary if and only if there exists a σ-finite measure
m on (Z,Z) such that

E[µ(dt, dy)] = dt⊗m(dz),

where dt denotes the Lebesgue-measure on ]0,∞[. In that case, the measure
m is uniquely determined.

Proof. See [Kno05, Proposition 2.10, p.24].

The measure m in Proposition 1.15 is called the characteristic measure of
µ.

Definition 1.16. Let Ft, t ≥ 0, be a filtration on (Ω,F , P ) and p a point
process on Z and (Ω,F , P ).

i. The process p is called (Ft)-adapted if for every t ≥ 0 and B ∈ Z
µ(t, B) is (Ft)-measurable.

ii. The process p is called an (Ft)-Poisson point process if it is an (Ft)-
adapted, σ-finite Poisson point process such that {µ(]t, t+h]×B)|h >
0, B ∈ Z} is independent of Ft for all t ≥ 0.

We define the set Γµ := {B ∈ Z
∣∣ E[µ(t, B)] <∞ ∀t > 0}.

Definition 1.17. Let Ft be a right-continuous filtration on (Ω,F , P ) and p
a point process on Z. The process p is said to be of class (QL) with respect to
Ft if it is (Ft)-adapted and σ-finite and for all B ∈ Z there exists a process
µ̂(t, B), t ≥ 0, such that

i. for B ∈ Γµ, µ̂(t, B), t ≥ 0, is a continuous (Ft)-adapted increasing
process with µ̂(0, B) = 0 P -a.s.,

ii. for all t ≥ 0 and P -a.e. ω ∈ Ω, µ̂(ω)(t, ·) is a σ-finite measure on
(Z,Z).

iii. for B ∈ Γµ,
µ̄(t, B) := µ(t, B)− µ̂(t, B), t ≥ 0,

is an (Ft)-martingale.

µ̂ is called compensator of µ and µ̄ is called compensated Poisson random
measure of µ.

Proposition 1.18. Let Ft, t ≥ 0, be a right-continuous filtration on
(Ω,F , P ) and let m be a σ-finite measure on (Z,Z) and p a stationary
(Ft)-Poisson point process on Z with characteristic measure m. Then p is
quasi-left-continuous with respect to Ft with compensator µ̂(t, B) = t ·m(B),
t ≥ 0, B ∈ Z.

Proof. See [Kno05, Corollary 2.18, p.31].
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Chapter 2

Stochastic Integration

In this chapter, we will introduce the stochastic integral on general Hilbert
spaces needed to define the stochastic partial differential equations occurring
in Chapters 4 and 5. First, we construct the stochastic integral with respect
to general (discontinuous) square integrable martingales as integrators and
give a characterization of the space of integrands. From this general theory
we deduce the stochastic integration with respect to cylindrical Wiener pro-
cesses and gather some important properties of this type of the stochastic
integral.

Secondly, we construct the stochastic integral with respect to compensated
Poisson random measures where the random measure is induced by a sta-
tionary Poisson point process. Finally, we identify the Poisson integral as a
stochastic integral with respect to a square integrable martingale. This is
due to the fact that a Poisson random measure can be treated as a square
integrable Levy martingale (cf. Theorem 2.24).

For all notions in the operator theory of Hilbert spaces that are used but
not explained here, we refer to Appendix B.

2.1 The Stochastic Integral with respect to a (Dis-
continuous) Martingale

The main reference of this section is [PZ07].

Let U be a separable Hilbert space with inner product 〈·, ·〉U , let (Ω,F , P )
be a complete probability space with normal filtration Ft, t ∈ [0,∞[, and let
M2

T (U) be the space of all cádlág square integrable martingales in U with
respect to (Ft).

2.1.1 The Operator-valued Angle Bracket Process

Let 〈M〉t be the angle bracket of M as defined in Proposition D.9. Let L1(U)
denote the space of all nuclear operators on U equipped with the nuclear
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norm. Let L+
1 (U) ⊂ L1(U) be the space of symmetric non-negative nuclear

operators. Let x ⊗ y be the tensor product on U defined by

x⊗ y(z) := 〈y, z〉Ux ∀ x, y, z ∈ U.

Recall that x ⊗ y ∈ L1(U) and ‖x⊗ y‖L1(U) = ‖x‖U ‖y‖U (cf. Section

B.3.4). Consequently, for M ∈ M2
T (U) the process (M(t)⊗M(t))t≥0 is an

L1(U)-valued right-continuous process such that

E
[
‖M(t)⊗M(t)‖L1(U)

]
= E

[
‖M(t)‖2U

]
<∞, t ≥ 0.

Theorem 2.1. Let M ∈ M2
T (U). Then there exists a unique right–contin-

uous L+
1 (U)-valued increasing predictable process (〈〈M,M〉〉t)t≥0 such that

〈〈M,M〉〉0 = 0 and the process (M(t) ⊗M(t) − 〈〈M,M〉〉t)t≥0 is an L1(U)-
valued martingale. Moreover, there exists a predictable L+

1 (U)-valued process
(Qt)t≥0 such that

〈〈M,M〉〉t =

∫ t

0
Qs d〈M,M〉s, ∀ t ≥ 0. (2.1)

Proof. See [PZ07, Theorem 8.2, p.109].

Definition 2.2. We call the L+
1 (U)-valued process Qt satisfying (2.1) the

martingale covariance of M .

Note that in this general framework, the martingale covariance Qt could in
fact depend on ω and t.

2.1.2 Construction of the Stochastic Integral

Definition 2.3. Let L(U,H) be the Banach space of continuous linear op-
erators from U into H. An L(U,H)-valued stochastic process Ψ is said to
be elementary if there exists a sequence of non-negative numbers 0 = t0 <
t1 < . . . < tm, a sequence of operators Ψj ∈ L(U,H), j = 1, . . . ,m, and a
sequence of events Aj ∈ Ftj , j = 0, . . . ,m− 1, such that

Ψ(s) =
m−1∑
j=0

IAj I]tj ,tj+1](s)Ψj , s ≥ 0.

We shall denote by E := E(U,H) the class of all elementary processes with
values in L(U,H). For an elementary process Ψ, we set∫ t

0
Ψ(s) dMs :=

m−1∑
j=0

IAjΨj(M(tj+1 ∧ t)−M(tj ∧ t)), t ≥ 0.

Let L2(U,H) be the space of all Hilbert-Schmidt operators from U into H
equipped with the Hilbert-Schmidt norm ‖·‖L2(U,H).
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Proposition 2.4. For any Ψ ∈ E(U,H),

E

[∥∥∥∥∫ t

0
Ψ(s) dMs

∥∥∥∥2

H

]
= E

[∫ t

0

∥∥∥Ψ(s)Q1/2
s

∥∥∥2

L2(U,H)
d〈M,M〉s

]
, t ≥ 0.

(2.2)

Proof. See [PZ07, Proposition 8.6, p.112]

Let T < ∞. Equip the class of all elementary processes E with the semi-
norm

‖Ψ‖2M,T := E

[∫ T

0

∥∥∥Ψ(s)Q1/2
s

∥∥∥2

L2(U,H)
d〈M,M〉s

]
, Ψ ∈ E . (2.3)

For Φ, Ψ ∈ E , we identify Ψ with Φ if ‖Ψ− Φ‖M,T = 0. Let L2
M,T (H) be

the completion of (E , ‖·‖M,T ) with respect to ‖·‖M,T . Let L2
M,T,U (H) be the

class of all L(U,H)-valued processes belonging to L2
M,T (H). Note that for

Ψ ∈ L2
M,T,U (H), the L2

M,T (H)-norm is given by (2.3).

Theorem 2.5. i. For any t ∈ [0, T ], there is a unique extension of∫ t
0 Ψ(s) dMs to a continuous linear operator, also denoted by∫ t
0 Ψ(s) dMs, from (L2

M,T (H), ‖·‖M,T ) into L2(Ω,F , P ;H). Moreover,

for any Ψ ∈ L2
M,T (H),

E

[∥∥∥∥∫ T

0
Ψ(s) dMs

∥∥∥∥2

H

]
= ‖Ψ‖2M,T .

ii. For all Ψ ∈ L2
M,T (H) and 0 ≤ s ≤ t ≤ T , we have I]s,t]Ψ ∈ L2

M,T (H)
and

E

[∥∥∥∥∫ t

0
Ψ(s) dMs −

∫ s

0
Ψ(s) dMs

∥∥∥∥2

H

]
=
∥∥I]s,t]Ψ∥∥2

M,T
≤ ‖Ψ‖2M,T .

iii. For any Ψ ∈ L2
M,T (H),

(∫ t
0 Ψ(s) dMs

)
t∈[0,T ]

is an H-valued martin-

gale. It is square integrable and mean-square continuous.

iv. For any Φ,Ψ ∈ L2
M,T,U (H) and any t ∈ [0, T ],〈∫ ·
0

Ψ(s) dMs,

∫ ·
0

Φ(s) dMs

〉
t

=

∫ t

0
〈Ψ(s)Q1/2

s ,Φ(s)Q1/2
s 〉L2(U,H) d〈M,M〉s.
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v. Let H̃ be another Hilbert space and L ∈ L(H, H̃). Then, for every
Ψ ∈ L2

M,T (H), L(Ψ) ∈ L2
M,T (H) and

L

(∫ t

0
Ψ(s) dMs

)
=

∫ t

0
L(Ψ(s)) dMs, t ≥ 0.

Proof. See [PZ07, Theorem 8.7, p.113].

2.1.3 Space of Integrands

Let M be a U -valued right-continuous square integrable martingale with
martingale covariance Q being independent of t and ω and let 〈M,M〉t = ct
for some c ≥ 0.

Remark 2.6. If M is a Lévy process, then 〈M,M〉t = t·TrQ and 〈〈M,M〉〉t =
t ·Q (see [PZ07, Theorem 4.49]), where Q is the covariance operator of M
(cf. Definition D.3). Hence, by Theorem 2.1 for the martingale covariance
of M we have

t ·Q = TrQ

∫ t

0
Qsds,

yielding Q = Q
TrQ . Thus, in case of M being a Lévy process, Q is independent

of t and ω.

Let Q
1
2 be the square root of Q (cf. Proposition B.21) and Q−

1
2 be its pseudo

inverse (cf. Chapter B.3.3). Then, the space U0 := Q−
1
2 (U) with the inner

product defined by

〈x, y〉U0 := 〈Q−
1
2x,Q−

1
2 y〉U , ∀x, y ∈ Q

1
2 (U),

is a Hilbert space (cf. Proposition B.23). Furthermore, let L2(U0, H) be
the space of Hilbert-Schmidt operators from U0 to H which is a separable
Hilbert space (cf. Proposition B.20).

We define the σ-field of predictable sets.

Definition 2.7. The predictable σ-field is defined by

PT :=σ
({

]s, t]× Fs
∣∣ 0 ≤ s < t ≤ T, Fs ∈ Fs

}
∪
{
{0} × F0

∣∣ F0 ∈ F0

})
=σ
(
g : [0, T ]× Ω→ R

∣∣ g is (Ft)-adapted and left-continuous
)
.

A process X : [0, T ] × Ω → R is called predictable if is measurable with
respect to PT .

Clearly, every (Ft)-adapted, left-continuous process is predictable.

Now, we are able to identify L2
M,T (H).
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Theorem 2.8. Let M be a U -valued right-continuous square integrable mar-
tingale with martingale covariance Q independent of t and ω. Then

L2
M,T (H) =L2(Ω× [0, T ],PT , P ⊗ dt;L2(U0, H))

=

{
Ψ : [0, T ]× Ω→ L2(U0, H)

∣∣ Ψ is predictable and

‖Ψ‖2M,T = E

[∫ T

0
‖Ψ(s)‖2L2(U0,H) ds

]
<∞

}

and for Ψ ∈ L2
M,T (H), the stochastic integral is a square integrable martin-

gale with

E

[∥∥∥∥∫ T

0
Ψ(s) dMs

∥∥∥∥2

H

]
= E

[∫ T

0
‖Ψ(s)‖2L2(U0,H) ds

]
and

〈∫ ·
0

Ψ(s) dMs,

∫ ·
0

Ψ(s) dMs

〉
t

=

∫ t

0
‖Ψ(s)‖2L2(U0,H) ds, t ∈ [0, T ].

Proof. See [PZ07, Corollary 8.17].

2.2 Stochastic Integration with respect to a Cylin-
drical Wiener Process

As a reference, we cite [PR07].

Let W (t) be a Q-Wiener process on U with respect to Ft, t ∈ [0, T ] with
covariance Q ∈ L(U) being a non-negative, symmetric operator with finite
trace. By Proposition 1.10, W (t) is a square integrable Ft-martingale and
since W (t) is a Lévy process (cf. Theorem D.4), its martingale covariance
Q is independent of t and ω (cf. Remark 2.6). Hence, Theorem 2.8 directly
provides the stochastic integral with respect to a standardQ-Wiener process.
Define N 2

W := L2
W,T (H).

Via localization, we can extend the definition of the stochastic integral to
the linear space of stochastically integrable processes on [0, T ] with respect
to a Q-Wiener process given by

NW ([0, T ];H) :=

{
Φ : [0, T ]× Ω→ L2(U0, H)

∣∣∣∣∣ Φ is predictable

and P

(∫ T

0
‖Φ(s)‖2L0

2
ds <∞

)
= 1

}
.
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By the following lemma, we conclude that the stochastic integral on NW is
a continuous H-valued local martingale.

Lemma 2.9. Let Φ ∈ N 2
W and τ be a Ft-stopping time such that P (τ ≤

T ) = 1. Then there exists a set N ∈ F , independent of t ∈ [0, T ], such that
P (N) = 0 and∫ t

0
1]0,τ ](s)Φ(s) dW (s) =

∫ τ∧t

0
Φ(s) dW (s) on Ω\N, ∀t ∈ [0, T ].

Proof. See [PR07, Lemma 2.3.9, p.31].

Let us extend the definition of the stochastic integral to the case where Q
is not necessarily of finite trace. To this end, let Q ∈ L(U) be non-negative
and symmetric, but not necessarily with finite trace. We need a further
Hilbert space (U1, 〈 , 〉) and a Hilbert–Schmidt embedding

J : (U0, 〈 , 〉)→ (U1, 〈 , 〉).

Note that (U1, 〈 , 〉) and J as above always exists (see [PR07, Remark 2.5.1]).
Then the process given by the following proposition is called a cylindrical
Q-Wiener process in U .

Proposition 2.10. Let ek, k ∈ N, be an orthonormal basis of U0 = Q
1
2 (U)

and βk, k ∈ N, a family of independent real-valued Brownian motions.
Define Q1 := JJ∗, where J∗ denotes the adjoint operator of J . Then
Q1 ∈ L(U1) is a non-negative and symmetric operator with finite trace.
The series

W (t) =
∞∑
k=1

βk(t)Jek, t ∈ [0, T ], (2.4)

converges in M2
T (U1) and defines a Q1-Wiener process on U1. Moreover, it

satisfies Q
1
2
1 (U1) = J(U0) and for all u0 ∈ U0

‖u0‖0 =

∥∥∥∥Q− 1
2

1 Ju0

∥∥∥∥
1

= ‖Ju0‖
Q

1
2
1 U1

,

i.e. J : U0 → Q
1
2
1 U1 is an isometry.

Proof. See [PR07, Proposition 2.5.2, p.40].

In this case we have Φ ∈ L2(Q
1
2 (U), H) if and only if Φ◦J−1 ∈ L2(Q

1
2
1 (U1), H).

Furthermore,

‖Φ‖2
L2(Q

1
2 (U),H)

= ‖Φ ◦ J−1‖2
L2(Q

1
2
1 (U1),H)

.
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We define ∫ t

0
Φ(s) dW (s) :=

∫ t

0
Φ(s) ◦ J−1 dW (s), t ∈ [0, T ]. (2.5)

Then, the class of all integrable processes is given by{
Φ : ΩT → L2(Q

1
2 (U), H) | Φ is predictable

and P
(∫ T

0
‖Φ(s)‖2

L2(Q
1
2 (U),H)

ds <∞
)

= 1
}
,

as in the case where W (t), t ∈ [0, T ], is a standard Q-Wiener process in U .

If Q ∈ L(U) is non-negative, symmetric and with finite trace, the standard
Q-Wiener process may also be considered as a cylindrical Q-Wiener process
by setting J = I : U0 → U where I is the identity map. In this case, both
definitions of the stochastic integral coincide.

2.2.1 Properties of the Wiener Integral

Lemma 2.11. Let Φ ∈ NW (0, T ; H̃) and let (H̃, ‖·‖H̃) be another separable

Hilbert space and L ∈ L(H, H̃). Then L (Φ(t)), t ∈ [0, T ] ∈ NW (0, T ; H̃)
and

L

(∫ T

0
Φ(t) dW (t)

)
=

∫ T

0
L
(
Φ(t)

)
dW (t) P -a.s..

Proof. See [PR07, Lemma 2.4.1, p.35].

Lemma 2.12. Let Φ ∈ NW (0, T ) and let f be an (Ft)-adapted cáglád process
with values in H. Set∫ T

0
〈f(t),Φ(t) dW (t)〉 :=

∫ T

0
Φ̃f (t) dW (t) (2.6)

with Φ̃f (t)(u) := 〈f(t),Φ(t)u〉, u ∈ U0. Then the stochastic integral in (2.6)
is well-defined as a continuous real-valued local martingale.

Proof. (cf. [PR07, Lemma 2.4.2, p.36]) Since f as an (Ft)-adapted cáglád
process is predictable and Φ ∈ NW (0, T ), Φ̃f : [0, T ] × Ω → L2(U0,R)
is predictable. Let (en)n∈N be an orthonormal basis of U0. Then, for all
(t, ω) ∈ [0, T ]× Ω
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∥∥∥Φ̃f (t, ω)
∥∥∥2

L2(U0,R)
=
∞∑
k=1

〈f(t, ω),Φ(t, ω)ek〉2

=
∞∑
k=1

〈Φ∗(t, ω)f(t, ω), ek〉2U0

= ‖Φ∗(t, ω)f(t, ω)‖2U0

≤ ‖Φ∗(t, ω)‖2L(H,U0) ‖f(t, ω)‖2H
≤ ‖Φ∗(t, ω)‖2L2(H,U0) ‖f(t, ω)‖2H
= ‖Φ(t, ω)‖2L2(U0,H) ‖f(t, ω)‖2H ,

where we used Remark B.19(i) in the last step. Since f is cáglád,
supt∈[0,T ] ‖f(t)‖H <∞. Hence,∫ T

0

∥∥∥Φ̃f (t)
∥∥∥2

L2(U0,R)
dt ≤ sup

t∈[0,T ]
‖f(t)‖H

∫ T

0
‖Φ(t)‖2L2(U0,H) dt <∞ P-a.e..

The following lemma provides the existence of the quadratic variation of the
stochastic integral.

Lemma 2.13. Let Φ ∈ NW ([0, T ]) and M(t) :=
∫ t

0 Φ(s) dW (s), t ∈ [0, T ].
Define

〈M〉t :=

∫ t

0
‖Φ(s)‖2L2(U0,H) ds, t ∈ [0, T ].

Then 〈M〉 is the quadratic variation of M . If Φ ∈ N 2
W (0, T ), then for any

sequence Il := {0 = tl0 < tl1 < . . . < tlkl = T}, l ∈ N, of partitions with

maxi(t
l
i − tli−1)→ 0 as l→∞

lim
l→∞

E

(∣∣∣∣ ∑
tlj+1≤t

∥∥∥M(tlj+1)−M(tlj)
∥∥∥2
− 〈M〉t

∣∣∣∣) = 0.

Proof. See [PR07, Lemma 2.4.3, p.37].

2.3 Stochastic Integration with respect to a Pois-
son Point Process

In this section, we are going to construct the stochastic integral with respect
to the compensated Poisson measure induced by a Poisson point process.
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The main reference is [Kno05]. For the stochastic integral with respect to
compensated Poisson measures on Banach spaces, we refer to [AR05].

Let (H, 〈·, ·〉) be a separable Hilbert space, (Ω,F , P ) be a complete proba-
bility space with normal filtration Ft, t ≥ 0, and (Z,Z) be a measure space
with a σ-finite measure m. Furthermore, let p be a stationary (Ft)-Poisson
point process Z with characteristic measure m. For a detailed definition,
see Section 1.4.

The Poisson point process p induces a Poisson random measure µ on [0, T ]×
Z (cf. Remark 1.13) and by Proposition 1.18, the compensator of µ is given
by dt⊗m. The measure µ̄ := µ− dt⊗m is called the compensated Poisson
measure of µ.

Remark 2.14. The integration theory in [Kno05] is developed with respect
to an (Ft)-Poisson point process of class (QL) (cf. Definition 1.17). How-
ever, by Proposition 1.18, a stationary process is automatically of class (QL)
and therefore, all results of [Kno05] apply to this special case. Throughout
this thesis, we always assume p being a stationary (Ft)-Poisson point pro-
cess.

Set

Γ :={B ∈ Z
∣∣ m(B) <∞}

and define the predictable σ-field

PT (Z) :=σ(g : [0, T ]× Ω× Z → R
∣∣ g is (Ft ⊗Z)-adapted

and left–continuous)

=σ
(
{]s, t]× Fs ×B

∣∣ 0 ≤ s ≤ t ≤ T, Fs ∈ Fs, B ∈ Z}
∪ {{0} × F0 ×B

∣∣ F0 ∈ F0, B ∈ Z}
)
.

In the first step, we define the stochastic integral with respect to µ̄ for
elementary processes.

Definition 2.15. i. An H-valued process Φ(t) : Ω× Z → H, t ∈ [0, T ],
is said to be elementary if there exists a partition 0 = t0 < t1 <
. . . < tk = T and for m ∈ {0, . . . , k − 1} there exist Bm

1 , . . . , B
m
n ∈ Γ,

pairwise disjoint, such that

Φ =

k−1∑
m=0

n∑
i=1

Φm
i 1]tm,tm+1]×Bmi ,

where Φm
i ∈ L2(Ω,Ftm , P ;H), 1 ≤ i ≤ n, 0 ≤ m ≤ k − 1.

ii. The linear space of all elementary processes is denoted by E.
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For Φ ∈ E and t ∈ [0, T ], we define the stochastic integral by

Int(Φ)(t) :=

∫
]0,t]

∫
Z

Φ(s, z) µ̄(ds, dz)

:=

k−1∑
m=0

n∑
i=1

Φm
i (µ̄(tm+1 ∧ t, Bm

i )− µ̄(tm ∧ t, Bm
i )).

(2.7)

Then Int(Φ) is P -a.s. well-defined and Int is linear in Φ ∈ E . For Φ ∈ E , we
define

‖Φ‖2T := E

[∫
]0,T ]

∫
Z
‖Φ(s, z)‖2H m(dz) ds

]
.

Proposition 2.16. If Φ ∈ E then Int(Φ) ∈ M2
T (H), Int(Φ)(0) = 0 P -a.s.

and for all t ∈ [0, T ]

E
[
‖Int(Φ)(t)‖2H

]
= E

[∫
]0,t]

∫
Z
‖Φ(s, z)‖2H m(dz) ds

]
.

In particular, Int : (E , ‖·‖2T )→ (M2
T (H), ‖·‖M2

T
) is an isometry,

‖Int(Φ)‖M2
T

= ‖Φ‖2T .

Proof. See [Kno05, Proposition 2.22, p.33].

In order to get a norm on E one has to consider equivalence classes of elemen-
tary processes with respect to ‖·‖T . For simplicity, the space of equivalence
classes is again denoted by E . Since E is dense in the abstract completion

E‖·‖T of E with respect to ‖·‖T , there exists a unique isometric extension of

Int to E‖·‖T . In particular, the isometric formula in Proposition 2.16 does

also hold for every process in E‖·‖T .

The completion of E with respect to ‖·‖T can be characterized as follows:

Proposition 2.17. Let PT (Z) be the predictable σ-field on [0, T ] × Ω × Z
and

N 2
µ̄(T,Z;H) :=

{
Φ : [0, T ]× Ω× Z → H

∣∣ Φ is PT (Z)/B(H)-measurable

and ‖Φ‖T = E

[ ∫
]0,T ]

∫
Z
‖Φ(s, z)‖2H m(dz)ds

]1/2

<∞
}

=L2([0, T ]× Ω× Z,PT (Z), dt⊗ P ⊗m;H).

Then
E‖·‖T = N 2

µ̄(T,Z;H).

Proof. See [Kno05, Proposition 2.24, p.39].
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2.3.1 Properties of the Poisson Integral

Let us gather some important properties of the stochastic integral with re-
spect to a compensated Poisson measure.

Proposition 2.18. Assume that Φ ∈ N 2
µ̄(T,Z,H) and that τ is an

(Ft)-stopping time such that P (τ ≤ T ) = 1. Then 1]0,τ ]Φ ∈ N 2
µ̄(T,Z,H)

and∫
]0,t]

∫
Z

1]0,τ ](s)Φ(s, z) µ̄(ds, dz) =

∫
]0,t∧τ ]

∫
Z

Φ(s, z) µ̄(ds, dz) P -a.s.

for all t ∈ [0, T ].

Proof. See [Kno05, Proposition 3.5, p.47].

Proposition 2.19. Let Φ ∈ N 2
µ̄(T,Z,R) and define

IntΦ(t) :=

∫
]0,t]

∫
U

Φ(s, z) µ̄(ds, dz), t ∈ [0, T ].

Then IntΦ is cádlág and IntΦ(t) = IntΦ(t−) P -a.s. for all t ∈ [0, T ].

Proof. See [Kno05, Proposition 3.6, p.49].

Proposition 2.20. Let Φ ∈ N 2
µ̄(T,Z,H), H̃ be a further Hilbert space and

L ∈ L(H, H̃). Then L(Φ) ∈ N 2
µ̄(T,Z, H̃) and

L

(∫
]0,t]

∫
Z

Φ(s, z) µ̄(ds, dz)

)
=

∫
]0,t]

∫
Z
L(Φ(s, z)) µ̄(ds, dz) P -a.s.

for all t ∈ [0, T ].

Proof. See [Kno05, Proposition 3.7, p.50].

Proposition 2.21. Let Φ ∈ N 2
µ̄(T,Z,H). Then for all t ∈ [0, T ]

E

[∫
]0,t]

∫
Z

Φ(s, z) µ(ds, dz)

]
= E

[∫
]0,t]

∫
Z

Φ(s, z) m(dz)ds

]
,
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Proof. For Φ ∈ E , we deduce

E

[∫
]0,t]

∫
Z

Φ(s, z) µ(ds, dz)

]

=E

[
k−1∑
m=0

n∑
i=1

Φm
i (µ̄(tm+1 ∧ t, Bm

i )− µ̄(tm ∧ t, Bm
i ))

]

=
k−1∑
m=0

n∑
i=1

E [Φm
i ]E [µ̄(tm+1 ∧ t, Bm

i )− µ̄(tm ∧ t, Bm
i )]

=

k−1∑
m=0

n∑
i=1

E [Φm
i ]m(Bm

i ) (tm+1 ∧ t− tm ∧ t)

=E

[∫
]0,t]

∫
Z

Φ(s, z) m(dz)ds

]
.

(2.8)

By a monotone class argument, (2.8) is also valid for every Φ ∈ N 2
µ̄(T,Z,H)

(cf. [Kno05, Proposition 3.1, p.43]).

Let us denote the square bracket of an H-valued process X(t) by [X]t (cf.
Definition D.11).

Proposition 2.22. Let Φ ∈ N 2
µ̄(T,Z,R). Then

(IΦ(t))t≥0 :=

(∫
]0,t]

∫
Z

Φ(s, z) µ̄(ds, dz)

)
t≥0

∈M2
T (R)

and

[IΦ]t =

∫
]0,t]

∫
Z
|Φ(s, z)|2 µ(ds, dz).

Proof. See [Kno05, Proposition 3.9, p.52] or [PZ07, Theorem 8.23.iv)].

Proposition 2.22 can be generalized to the case where Φ is an H-valued
process, as the following corollary shows.

Corollary 2.23. Let Φ ∈ N 2
µ̄(T,Z,H) and define

IΦ(t) :=

∫
]0,t]

∫
Z

Φ(s, z) µ̄(ds, dz), t ≥ 0.

Then

[IΦ]t =

∫
]0,t]

∫
Z
‖Φ(s, z)‖2H µ(ds, dz).
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Proof. Let (en)n∈N be an orthonormal basis of H and τn be a partition as in
Proposition D.10. Then, by the Parseval equality, the linearity of the Poisson
integral (cf. Proposition 2.20) and the dominated convergence theorem, we
obtain

[IΦ]t = lim
n→∞

kn−1∑
i=1

∥∥∥∥∥
∫

]tni ∧t,tni+1∧t]

∫
Z

Φ(s, z) µ̄(ds, dz)

∥∥∥∥∥
2

H

= lim
n→∞

kn−1∑
i=1

∥∥∥∥∥∑
m

(∫
]tni ∧t,tni+1∧t]

∫
Z
〈Φ(s, z), em〉H µ̄(ds, dz)

)
em

∥∥∥∥∥
2

H

= lim
n→∞

kn−1∑
i=1

∑
m

∣∣∣∣∣
∫

]tni ∧t,tni+1∧t]

∫
Z
〈Φ(s, z), em〉H µ̄(ds, dz)

∣∣∣∣∣
2

where we have used the Pythagoras theorem in the last step. Hence,

[IΦ]t =
∑
m

[∫
]0,t]

∫
Z
〈Φ(s, z), em〉H µ̄(ds, dz)

]

and we can apply Proposition 2.22 to obtain

[IΦ]t =
∑
m

∫
]0,t]

∫
Z
|〈Φ(s, z), em〉H |2 µ(ds, dz)

=

∫
]0,t]

∫
Z
‖Φ(s, z)‖2H µ(ds, dz).

by the dominated convergence theorem.

2.4 Comparison of Integrals

Let µ̄ be a compensated Poisson measure on [0, T ] × Z and define U0 :=
L2(Z,Z,m). Let U be a separable Hilbert space such that the embedding
U0 ↪→ U is dense and Hilbert-Schmidt.

Theorem 2.24. The compensated Poisson random measure µ̄ on [0, T ]×Z
can be identified with a square integrable martingale Mµ̄ on U such that

U0 = Q
1
2
Mµ̄

(U), where QMµ̄ is the covariance operator of Mµ̄. Furthermore,
Mµ̄ is a Lévy process.

Proof. See [PZ07, Theorem 7.28].

The following Proposition identifies the Poisson integral as a stochastic in-
tegral with respect to a square integrable martingale .
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Proposition 2.25. Let Φ ∈ N 2
µ̄(T,Z;H) and Int(Φ)(t), t ∈ [0, T ], be the

stochastic integral in (2.7). Define

IHΦ (t)(ϕ) :=

∫
Z

Φ(t, z)ϕ(z) m(dz), ϕ ∈ L2(Z,Z,m).

Then IHΦ ∈ L2
µ̄,T (H) (cf. Definition in Theorem 2.8) and

Int(Φ)(t) =

∫ t

0
IHΦ (s) dMµ̄(s), t ∈ [0, T ].

Proposition 2.25 can be deduced from the real-valued case:

Proposition 2.26. Let Φ ∈ N 2
µ̄(T,Z;R). Then IRΦ ∈ L2

µ̄,T (R) (where IRΦ is
defined in Proposition 2.25) and

Int(Φ)(t) =

∫ t

0
IRΦ(s) dMµ̄(s), t ∈ [0, T ].

Proof. See [PZ07, Proposition 8.24].

Proof of Proposition 2.25. Let {en}n∈N be a orthonormal basis of U0 =
L2(Z,Z,m). Then, by the Parseval equality

∥∥IHΦ ∥∥L2(U0,H)
=
∞∑
n=1

∥∥IHΦ (en))
∥∥2

H

=
∞∑
n=1

∥∥∥∥∫
Z

Φ(·, z)en(z)m(dz)

∥∥∥∥2

H

≤
∞∑
n=1

∫
Z
‖Φ(·, z)‖H |en(z)| m(dz)

=
∞∑
n=1

〈‖Φ‖H , en〉L2(Z,Z,m)

= ‖Φ‖2L2(Z,Z,m;H) <∞ P ⊗ dt-a.s..

(2.9)

Furthermore, from (2.9) it follows that

E

[∫ T

0

∥∥IHΦ (s)
∥∥
L2(U0,H)

ds

]
≤ E

[∫ T

0

∫
Z
‖Φ(s, z)‖2H m(dz) ds

]
<∞,

since Φ ∈ N 2
µ̄(T,Z,H). Since IHΦ is predictable, we have proved that

IHΦ ∈ L2
µ̄,T (H).

Now, let {en}n∈N be an orthonormal basis of H. Then for Φ ∈ N 2
µ̄(T,Z,H),

we have 〈Φ, en〉H ∈ N 2
µ̄(T,Z;R) for all n ∈ N. Thus, by Proposition 2.26,

Int(〈Φ, en〉H)(t) =

∫ t

0
IR〈Φ,en〉H (s) dq̃(s), t ∈ [0, T ].
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Using this together with Proposition 2.5(v), Proposition 2.20 and the dom-
inated convergence theorem, we deduce

Int(Φ)(t) =

∫ t

0

∫
Z

Φ(s, z) µ̄(ds, dz)

=

∫ t

0

∫
Z

∞∑
n=1

〈Φ(s, z), en〉Hen µ̄(ds, dz)

=

( ∞∑
n=1

∫ t

0

∫
Z
〈Φ(s, z), en〉H µ̄(ds, dz)

)
en

=

( ∞∑
n=1

∫ t

0
IR〈Φ,en〉H (s) dMµ̄(s)

)
en

=

( ∞∑
n=1

∫
Z

∫ t

0
〈Φ(s, z), en〉H(s) dMµ̄(s) m(dz)

)
en

=

∫
Z

∫ t

0
Φ(s, z) dMµ̄(s) m(dz)

=

∫ t

0
IHΦ (s) dMµ̄(s).
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Chapter 3

Maximal Monotone
Operators on Banach Spaces

In this chapter, we introduce the general analytic framework needed to study
multivalued differential equations with maximal monotone drift. We are go-
ing to define maximal monotone operators on Banach spaces, introduce its
Yosida approximation and prove some necessary properties. Furthermore,
we consider the measurability of a multivalued operator and the measura-
bility of the Yosida approximation of a maximal monotone operator. This
chapter is mainly based upon [Bar93] and [Bar10].

General notions for multivalued maps are gathered in Appendix A. For all
unexplained concepts in the theory of nonlinear operators on Banach spaces,
we refer to Appendix B. Throughout this chapter, let X be a Banach space
and X∗ its dual space. Let G(A) denote the graph of the operator A.

Definition 3.1. i. A multivalued operator A : X → 2X
∗

is said to be
monotone if

X∗〈y1 − y2, x1 − x2〉X ≥ 0, ∀[xi, yi] ∈ G(A), i = 1, 2. (3.1)

ii. A monotone operator A : X → 2X
∗

is said to be maximal monotone
if there exists no other proper monotone extension Ã of A, i.e.

G(A) ( G(Ã).

Proposition 3.2. Let A be maximal monotone. Then:

i. A is weakly-strongly closed in X ×X∗, i.e. if [xn, yn] ∈ G(A), xn → x
weakly in X and yn → y strongly in X∗, then [x, y] ∈ G(A).

ii. A−1 is maximal monotone in X∗ ×X.

iii. For each x ∈ D(A), A(x) is a closed, convex subset of X∗.
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Proof. See [Bar93, Section 2.1, Proposition 1.1] .

Under certain circumstances, a maximal monotone operator is even weakly-
weakly closed as the following proposition shows.

Proposition 3.3. Let X be a reflexive Banach space and let A : X → 2X
∗

be a maximal monotone operator. Let [un, vn] ∈ G(A), n ∈ N, be such that
un ⇀ u, vn ⇀ v, and either

lim sup
n,m→∞ X∗〈vn − vm, un − um〉X ≤ 0

or
lim sup
n→∞ X∗〈vn, un〉X ≤ X∗〈v, u〉X .

Then [u, v] ∈ G(A).

Proof. See [Bar10, Lemma 2.3, p.38] and [Bar10, Corollary 2.4, p.41].

We will make use of the following characterizations of maximal monotonicity.

Theorem 3.4. Let X be a reflexive Banach space and let A : X → X∗ be
a (single-valued) monotone hemicontinuous operator. Then A is maximal
monotone in X ×X∗.

Proof. See [Bar93, Section 2.1, Theorem 1.3].

Theorem 3.5. Let X be a reflexive Banach space and let A and B be
maximal monotone operators from X to 2X

∗
such that

(int D(A)) ∩D(B) 6= ∅.

Then A+B is maximal monotone in X ×X∗.

Proof. See [Bar93, Section 2.1, Theorem 1.5].

Corollary 3.6. Let X be a reflexive Banach space, B be a monotone hemi-
continuous operator from X to X∗ and A : X → 2X

∗
be a maximal monotone

operator. Then A+B is maximal monotone.

Proof. Apply Theorem 3.4 and Theorem 3.5.

Proposition 3.7. Let X be a reflexive Banach space and let A be a coer-
cive, maximal monotone operator from X to X∗. Then A is surjective, i.e.
R(A) = X∗.

Proof. See [Bar93, Section 2.1, Corollary 1.2].

We are especially interested in the selection of a maximal monotone operator
with respect to its minimal norm:
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Definition 3.8. The minimal selection A0 : D(A) ⊂ X → 2X
∗

of a maximal
monotone operator A is defined by

A0(x) :=

{
y ∈ A(x)

∣∣∣ ‖y‖ = min
z∈A(x)

‖z‖
}
, x ∈ D(A).

Remark 3.9. If X is strictly convex, then A0 is single-valued.

Proof. Let x ∈ D(A). Assume that y1, y2 ∈ A0(x), y1 6= y2. Define δ :=∥∥A0(x)
∥∥. If δ = 0, then y1 = y2 = 0. Thus, δ > 0. By Proposition

3.2.iii), A(x) is a closed, convex set. Hence, 1
2(y1 +y2) ∈ A(x) which implies∥∥1

2(y1 + y2)
∥∥ ≥ δ. On the other hand, for ỹ1 := 1

δy1 and 1
δy2, we have

‖ỹ1‖ = ‖ỹ2‖ = 1. SinceX is strictly convex, it follows that 1 > 1
2 ‖ỹ1 + ỹ2‖ =

1
2δ ‖y1 + y2‖ , which is a contradiction. Hence, y1 = y2.

3.1 The Duality Mapping

The duality mapping as a map from X to X∗ represents an important aux-
iliary tool in the theory of maximal monotone operators on Banach spaces.

Definition 3.10. The duality mapping J : X → 2X
∗

is defined by

J(x) := {x∗ ∈ X∗|X∗〈x
∗, x〉X = ‖x‖2 = ‖x∗‖2} ∀x ∈ X.

Remark 3.11. By the Hahn-Banach theorem, for every x ∈ X there exists
x∗0 ∈ X∗ such that ‖x∗0‖ = 1 and X∗〈x

∗
0, x〉X = ‖x‖. Setting u := ‖x‖x∗0,

it follows that X∗〈u, x〉X = ‖x‖2 = ‖x∗0‖ ‖x‖ = ‖u‖2 . Therefore, u ∈ J(x)
and, indeed, D(J) = X.

The properties of the duality mapping are closely related to the convexity of
the underlying space. In general, the duality mapping is multivalued. But
the following theorem is valid:

Theorem 3.12. Let X be a Banach space. If X∗ is strictly convex, then
the duality mapping J : X → X∗ is single-valued.

Proof. See [Bar93, Chapter 1, Theorem 1.2].

Now, we want to state some features of the duality mapping.

Proposition 3.13. Let X and X∗ be uniformly convex. Then:

i. The duality map J : X → X∗ is linearly bounded, 2-coercive, continu-
ous and odd.

ii. The operator J is bijective and if we identify X∗∗ with X, the inverse
operator

J−1 : X∗ → X

is equal to the duality map of the dual space X∗ and single-valued.
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iii. J is strictly monotone, i.e. it is monotone and

X∗〈Ju− Jv, u− v〉X = 0 ⇒ u = v.

Proof. See [Zei90b, Proposition 32.22].

The following fundamental result in the theory of maximal monotone opera-
tors due to G. Minty and F. Browder provides a very useful characterization
of maximal monotonicity.

Theorem 3.14. Let X and X∗ be reflexive and strictly convex. Let A : X →
2X
∗

be a monotone operator and let J : X → X∗ be the duality mapping of
X. Then A is maximal monotone if and only if, for any λ > 0 (equivalently,
for some λ > 0),

R(A+ λJ) = X∗.

Proof. See [Bar93, Section 2.1, Theorem 1.2].

Corollary 3.15. If A is maximal monotone, then µA is maximal monotone
for all µ > 0.

Proof. For a fixed µ > 0, we set Aµ := µA and take x, y ∈ D(A). For vµ ∈
Aµ(x), there exists v ∈ A(x) such that µv = vµ. Since A is monotone, for
x, y ∈ D(A) and vµ ∈ Aµ(x), wµ = Aµ(y) we have X∗〈v

µ − wµ, x− y〉X =
µ2

X∗〈v − w, x− y〉X ≥ 0. By the maximal monotonicity of A and Theorem
3.14 with λ := 1, we conclude that R(µA+ µJ) = µR(A+ J) = X∗.

Remark 3.16. Let us emphasize that every uniformly convex Banach space
is automatically strictly convex and reflexive (cf. Remark B.8 and Proposi-
tion B.9). Consequently, all results above do also hold for uniformly convex
Banach spaces.

3.2 Yosida Approximation on Banach Spaces

We are now going to introduce the Yosida approximation of a maximal
monotone operator on Banach spaces. Subsequently, let us assume that X
is uniformly convex with uniformly convex dual X∗. Hence, the dualization
mapping J is single-valued.

For every x ∈ X and λ > 0 we consider the following resolvent equation:

0 ∈ J(xλ − x) + λAxλ. (3.2)

Proposition 3.17. For all x ∈ X there exists a unique solution xλ to (3.2).
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Proof. By Corollary 3.15, λA is maximal monotone. By Proposition 3.13.i),
J is monotone and demicontinuous, in particular hemicontinuous. Further-
more, let {xn}n∈N be a sequence such that lim

n→∞
‖xn‖ =∞. Since

X∗〈J(x− y), x− y〉X = ‖x− y‖2 ∀x, y ∈ X,

we have

lim
n→∞

X∗〈J(xn − x̃), xn − x̃〉X
‖xn‖

= lim
n→∞

‖xn − x̃‖2

‖xn‖
=∞.

Therefore, the map y 7→ J(y− x̃) is coercive. Hence, applying Corollary 3.6
we conclude that the mapping Ā : X → 2X

∗
defined by xλ 7→ J(xλ − x) +

λAxλ is maximal monotone.

Claim. For x0 ∈ D(A) the mapping Ā : xλ 7→ J(xλ−x0)+λAxλ is coercive.

Proof. Take a sequence {xn}n∈N ⊂ D(A) such that lim
n→∞

‖xn‖ = ∞ and fix

yn ∈ Ā(xn), i.e. yn = J(xn − x0) + λvn for some vn ∈ A(xn). Then

X∗〈yn, xn − x0〉X
‖xn‖

= X∗〈J(xn − x0), xn − x0〉X
‖xn‖

+ λ X∗〈vn, xn − x0〉X
‖xn‖

=
‖xn − x0‖2

‖xn‖
+ λ X∗〈vn − w, xn − x0〉X

‖xn‖
+ X∗〈w, xn − x0〉X

‖xn‖
,

for w ∈ A(x0).

Obviously, ‖xn−x0‖2
‖xn‖

n→∞−→ ∞. By the monotonicity of A we have

λ X∗〈vn − w, xn − x0〉X
‖xn‖

≥ 0.

Furthermore, the third summand is bounded:

|X∗〈w, xn − x0〉X |
‖xn‖

≤ ‖w‖ ‖xn − x0‖
‖xn‖

<∞.

Hence, lim
n→∞ X∗〈yn, xn − x0〉X ‖xn‖

−1 =∞.

By Proposition 3.7, we obtain surjectivity of the map xλ 7→ J(xλ−x̃)+λAxλ.
Thus, there exists a solution xλ to (3.2).

Now we want to show the uniqueness of the solution. To this end, let x1, x2

be two solutions of (3.2), i.e. 0 = J(xi − x̃) + λvi, for some vi ∈ A(xi), i =
1, 2. Setting x̃i := xi − x̃, i = 1, 2, by monotonicity of A and J we obtain

0 = X∗〈J(x̃1)− J(x̃2), x̃1 − x̃2〉X +λX∗〈v1 − v2, x1 − x2〉X
≥ X∗〈J(x̃1)− J(x̃2), x̃1 − x̃2〉X ≥ 0,
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thus X∗〈J(x̃1)− J(x̃2), x̃1 − x̃2〉X = 0. Since J is strictly monotone (cf.
Proposition 3.13.iii)), we conclude that x̃1 = x̃2 or equivalently, x1 = x2.

Proposition 3.17 justifies the following definition.

Definition 3.18. i. The resolvent Jλ : X → X of a maximal monotone
operator A is defined by Jλx := xλ, where xλ is the unique solution to
(3.2).

ii. The Yosida approximation Aλ : X → 2X
∗

is given by

Aλx :=
1

λ
J(x− Jλx), λ > 0, x ∈ X.

The following properties of the resolvent and the Yosida approximation are
valid:

Proposition 3.19.

i. Aλ is single-valued, maximal monotone, bounded on bounded subsets
and demicontinuous from X to X∗.

ii. ‖Aλx‖ ≤
∥∥A0x

∥∥ for every x ∈ D(A), λ > 0.

iii. Jλ is bounded on bounded subsets, demicontinuous and

lim
λ→0

Jλx = x, ∀x ∈ co {D(A)},

where co {·} denotes the closed convex hull of {·}.

iv. For λ→ 0, Aλx→ A0x for all x ∈ D(A).

v. For all x ∈ X, we have

Aλ(x) ∈ A(Jλ(x)).

vi. If λn → 0, xn ⇀ x, Aλnxn ⇀ y and

lim sup
n,m→∞ X∗〈Aλnxn −Aλmxm, xn − xm〉X ≤ 0,

then [x, y] ∈ G(A) and

lim
n,m→∞ X∗〈Aλnxn −Aλmxm, xn − xm〉X = 0.

Proof. (i). According to [Bar93, Section 2.1, Proposition 1.3], Aλ is single-
valued, monotone, bounded on bounded subsets and demicontinuous.
Applying Theorem 3.4, it follows that Aλ is maximal monotone.
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(ii)-(iv), (vi). See [Bar93, Proposition 1.3].

(v). From (3.2) and the definition of Jλ, we conclude that

−J(Jλ(x)− x) ∈ λA(Jλ(x)) ∀x ∈ X.

Since J is odd, by the definition of Aλ we obtain

Aλ(x) =
1

λ
J(x− Jλ(x)) = − 1

λ
J(Jλ(x)− x) ∈ A(Jλ(x)) ∀x ∈ X.

Instead of the implicit definition of the Yosida approximation as an opera-
tor depending on the resolvent which is implicitly defined via the resolvent
equation (3.2), one can explicitly express the Yosida approximation in the
following way.

Lemma 3.20. Let Aλ be the Yosida approximation of A. Then

Aλ(x) =
(
A−1 + λJ−1

)−1
x, x ∈ X.

Proof. Fix x ∈ X and let Jλ(x) be the resolvent of A defined by (3.2). Then,
by the definition of the Yosida approximation and the homogeneity of the
duality mapping J−1, we have Jλ(x) = x−λJ−1(Aλ(x)). Inserting this into
the resolvent equation (3.2), we obtain Aλ(x) ∈ A(x − λJ−1(Aλ(x))) or
equivalently,

x ∈
(
A−1 + λJ−1

)
(Aλ(x)).

Since Aλ is single-valued, we conclude that Aλ(x) =
(
A−1 + λJ−1

)−1
x.

The following lemma plays a fundamental role in the proof of existence and
uniqueness of multivalued stochastic differential equations. It states that the
coercivity of a maximal monotone operator is carried forward to its Yosida
approximation:

Lemma 3.21. Let α ∈]1, 2], A : X → 2X
∗

be a maximal monotone operator
and Aλ its Yosida approximation. If for some constants C1 > 0 and C2 ∈ R

X∗〈v, x〉X ≥ C1 ‖x‖α + C2 ∀x ∈ D(A), ∀v ∈ A(x),

then there exist λ0 > 0 and C > 0 such that for all 0 < λ < λ0

X∗〈Aλx, x〉X ≥ C12−α ‖x‖α + C ∀x ∈ X.
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Proof. Fix x ∈ X. By the definition of Aλ and the property of J we have

X∗〈Aλx, x− Jλx〉X

=
1

λ X∗〈J(x− Jλx), x− Jλx〉X

=
1

λ
‖x− Jλx‖2 .

Hence, since Aλ(x) ∈ A(Jλx) (cf. Proposition 3.19.v)) and since A is coer-
cive, we deduce

X∗〈Aλx, x〉X = X∗〈Aλx, Jλx〉X +
1

λ
‖x− Jλx‖2

≥ C1 ‖Jλx‖α +
1

λ
‖x− Jλx‖2 + C2

≥ C1 ‖Jλx‖α +
1

λ
‖x− Jλx‖α + C

for some C > 0, since α ∈]1, 2]. Furthermore, for λ0 := 1
C1

we have ( 1
λ −

C1) ≥ 0 for all 0 < λ < λ0. Hence, we obtain

X∗〈Aλx, x〉X = C1 ‖Jλx‖α +

(
1

λ
− C1

)
‖x− Jλx‖α + C1 ‖x− Jλx‖α + C

≥ C1 (‖Jλx‖α + ‖x− Jλx‖α) + C

≥ C12−α+1 ‖x‖α + C, ∀λ < λ0.

In the last step, we have used 2α−1(aα+bα) ≥ (a+b)α for α > 1, a, b ≥ 0.

Let us note that in the Hilbert space case, the Yosida approximation is Lip-
schitz continuous. However, in the Banach space case this is not necessarily
true as the following example shows:

Example 3.22. Let A := J . Using Lemma 3.20, we derive its Yosida
approximation:

Aλ(x) = (J−1 + λJ−1)−1x

=
{
y ∈ X∗

∣∣ y =
(
(1 + λ)J−1

)−1
x
}

=
{
y ∈ X∗

∣∣ (1 + λ)J−1y = x
}

=

{
y ∈ X∗

∣∣ y = J

(
x

1 + λ

)}
=

1

1 + λ
J(x).

Since the duality map J is generally not Lipschitz continuous (consider e.g.

J on X = Lp and X∗ = L
p
p−1 ), p ∈]1, 2[), so is its Yosida approximation.
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3.3 Random Multivalued Operators

Let us introduce the following notion of measurability for multivalued oper-
ators taken from [CV77].

Definition 3.23. Let (S,S) be a measurable space and (E, E) be a Polish
space. A multivalued operator A : S → 2E is called Effros-measurable if

{x ∈ S|A(x) ∩G 6= ∅} ∈ S

for each open set G ⊂ E.

Every multivalued Effros-measurable operator A can be characterized as the
closure of a countable set of measurable selections, as the next proposition
shows.

Proposition 3.24. Let A be a multivalued operator. Then the following
statements are equivalent:

i. The operator A is Effros-measurable.

ii. There exists a sequence ξn of measurable selections of A such that

A = {ξn, n ∈ N}.

Proof. See [CV77, Chapter III] or [Mol05, Theorem 2.3].

In the theory of stochastic differential equations with a time-dependent ran-
dom drift operator, the question of measurability of the resolvent as well as
the Yosida approximation is of particular importance. The following propo-
sition generalizes the proof of measurability of the Yosida approximation in
[KK92, Theorem 3.2] to the multivalued case.

Proposition 3.25. Let (Ω,F , µ) be a complete, σ-finite measure space, X
be a separable uniformly convex Banach space with its dual X∗ and D ⊂ X.
Let A : Ω ×D → 2X

∗
be an F ⊗ B(X)/B(X∗)-Effros-measurable, maximal

monotone operator. Then, the resolvent Jλ : Ω × X → X and the Yosida
approximation Aλ : Ω×X → X∗ of A are F ⊗B(X)/B(X)-measurable and
F ⊗ B(X)/B(X∗)-measurable, respectively.

For the proof, we need the following result.

Proposition 3.26. Let (Ω,F , µ) be a complete measure space, X be a sepa-
rable Banach space, and F : Ω→ X a mapping such that G(F ) ∈ F ×B(X).
Then F is F/B(X)-measurable.

Proof. See [Him75, Theorem 3.4].
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Proof of Proposition 3.25. Let us write A(ω)(·) = A(ω, ·), ω ∈ Ω and fix
x ∈ X. By Lemma 3.20, we obtain

G(Aλ(·, x)) =
{

(ω, y) ∈ Ω×X∗
∣∣ y =

(
A(ω)−1 + λJ−1

)−1
x
}

=
{

(ω, y) ∈ Ω×X∗
∣∣ x ∈ A(ω)−1y + λJ−1y

}
=
{

(ω, y) ∈ Ω×X∗
∣∣ (x− λJ−1y

)
∈ A(ω)−1y

}
=
{

(ω, y) ∈ Ω×X∗
∣∣ y ∈ A(ω)

(
x− λJ−1y

)}
=
{

(ω, y) ∈ Ω×X∗
∣∣ 0 ∈ A(ω)

(
x− λJ−1y

)
− y
}

Since X is reflexive, J−1 is the duality mapping from X∗ to X. Since then,
J−1 is demicontinuous and X is separable, Pettis Theorem implies that J−1

is B(X∗)/B(X)-measurable. Consequently, the mapping y 7→ x − λJ−1y
is B(X∗)/B(X)-measurable. Hence, the mapping (ω, y) → (ω, x − λJ−1y)
is F ⊗ B(X∗)/B(X)-measurable. Composing this and A, it follows that
(ω, y)→ A(ω)(ω, x− λJ−1y)− y is F ⊗B(X)/B(X)-Effros-measurable. By
the definition of Effros-measurability we obtain G(Aλ(·, x)) ∈ F ⊗ B(X∗).
Now, Proposition 3.26 implies that Aλ(·, x) is F/B(X∗)-measurable. Demi-
continuitity of Aλ in x yields that Aλ is F ⊗B(X)/B(X∗)-measurable. The
second assertion follows directly by noting that Jλ(ω, x) = x−λJ−1(Aλ(ω, x))
for (ω, x) ∈ Ω×X.

3.3.1 Random Inclusions

Let X be a separable Banach space. The existence of solutions y(x) for
inclusions of the form

y(x) ∈ A(x), x ∈ X, (3.3)

where A is a multivalued operator, has been extensively studied for the deter-
ministic case. (See for example Proposition 3.7.) However, it is a non-trivial
generalization to consider inclusions of type (3.3), where the multivalued op-
erator does depend on an additional variable ω in a measurable space Ω. The
solution x of

y(ω, x(ω)) ∈ A(ω, x(ω)), x ∈ X, ω ∈ Ω,

does not necessarily need to be measurable even if there exists an ω-wise solu-
tion (See eg. [BR72, Chapter 3], [Han57], [Ito78], [Kra86]). The following re-
sult generalizes [Kra86, Theorem 3.2] by dropping the lower-semicontinuity-
assumption.

Proposition 3.27. Let (Ω,F , µ) be a complete measure space, X be a sep-
arable uniformly convex Banach space and D ⊂ X. Let A : Ω×D → 2X

∗
be

an operator such that A(ω, ·) is maximal monotone for every ω ∈ Ω, A(·, x)
is F-Effros-measurable for every x ∈ D and 0 ∈ A(ω, 0) for all ω ∈ Ω. Let
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L : Ω × X → X∗ be a single-valued bounded, coercive and maximal mono-
tone operator such that L(·, x) is F-Effros-measurable for every x ∈ X.
Then for each F-measurable, bounded operator y(·) ∈ X∗, there exists an
F-measurable, bounded operator x(·) ∈ X, such that

y(ω) ∈ A(ω, x(ω)) + L(ω, x(ω)) ∀ ω ∈ Ω.

Proof. W.l.o.g. we assume y(ω) = 0 for all ω ∈ Ω. (Otherwise consider
Ã(ω, ·) := A(ω, ·) − y(ω). Again, Ã is maximal monotone and Effros-
measurable.) We consider the equation

Aλ(ω, xλ(ω)) + L(ω, xλ(ω)) = 0, ∀ω ∈ Ω, (3.4)

where Aλ is the Yosida approximation of A. By Proposition 3.25, Aλ is
F-measurable. Since Aλ is demicontinuous and maximal monotone, the
operator Aλ + L satisfies the assumptions of [Ito78, Theorem 6.2]. Hence,
there exists an F-measurable bounded operator xλ(·) ∈ X that solves (3.4).
The rest of the proof is analogous to [Kra86, Theorem 3.2].

Remark 3.28. Note that in the proof of [Kra86, Theorem 3.2], the operator
A is assumed to be lower-semicontinuous to be able to prove the measurability
of the Yosida approximation. However, the lower-semicontinuity of A is
obsolete, as Proposition 3.25 shows.

3.4 Extension of Maximal Monotone Operators

In some cases, it may be convenient to replace a monotone operator by its
maximal monotone extension. The following general lemma assures that
such an extension can always be found.

Lemma 3.29. The graph of any monotone multivalued map A is contained
in the graph of a maximal monotone multivalued map.

Proof. Consider the set of all monotone maps denoted by MA which extend
A. We introduce an order on MA by

B ≤ C :
Def.⇔ G(B) ⊂ G(C), B,C ∈MA.

Thus, MA is partially ordered. Take a chain K in MA, i.e. B ≤ C or C ≤ B
for all B,C ∈ K. The set

F :=
⋃
B∈K

G(B)

is obviously the graph of a monotone multivalued map Ã. Clearly, G(A) ⊂
F = G(Ã). Hence, Ã ∈ MA. Consequently, we have found an upper bound
for all elements in K which belongs to K. According to Zorn’s lemma, MA

has maximal elements.
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Now, let X = Rd and let us assume that A : Rd → Rd is a single-valued
monotone operator defined on all of Rd. If A is continuous, then Theorem
3.4 implies that A is maximal monotone.

In case of A being discontinuous, it can be extended to a (multivalued)
maximal monotone operator, as motivated by the following proposition.

Proposition 3.30. Let A be a (multivalued) monotone operator defined on
all of Rd such that its graph is closed in Rd × Rd and the set Ax is convex
for every x ∈ Rd. Then A is maximal monotone in Rd × Rd.

Proof. See [Bar10, Proposition 2.4, p.45].

The explicit construction of such an extension performs as follows.

Definition 3.31. Let A : Rd → Rd be a monotone operator. The essential
extension Ā of A is defined by

Ā(x) :=
⋂
δ>0

Aδ(x),

where

Aδ(x) :=
⋂

m(N)=0

co {A(y) : ‖y − x‖ ≤ δ, y 6∈ N}. (3.5)

Here, co {·} denotes the closed convex hull of {·} and m(N) is the d–
dimensional Lebesgue-measure of N ⊂ Rd.

The essential extension plays an important role in many applications (cf.
e.g. Section 6.3). In the case of d = 1, the essential extension Ā can be
obtained, roughly speaking, via “filling the gaps” of the graph at points of
discontinuity, i.e.

Ā(x) = [A(x−), A(x+)], ∀x ∈ ∆(A),

where A(x−) := limy↗xA(y) and A(x+) := limy↘xA(y).

Proposition 3.32. The essential extension Ā is maximal monotone in Rd×
Rd.

Proof. At first, let us show that Ā is monotone. To this end, fix x, y ∈ Rd
and let v ∈ A(x) and w ∈ A(y). Note that Ā(x) ⊂ Aδ(x) for all δ > 0, where
Aδ is as in (3.5). Thus, we can find λ1, λ2 ∈ [0, 1] and x1, x2, y1, y2 ∈ Rd
satisfying ‖x1 − x‖ ∧ ‖x2 − x‖ ∧ ‖y1 − y‖ ∧ ‖y2 − y‖ ≤ δ, such that

v = λ1A(x1) + (1− λ1)A(x2) and w = λ2A(y1) + (1− λ2)A(y2).
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A short calculation yields

〈v − w, x− y〉 = λ1λ2〈A(x1)−A(y1), x− y〉
+ λ1(1− λ2)〈A(x1)−A(y2), x− y〉
+ (1− λ1)λ2〈A(x2)−A(y1), x− y〉
+ (1− λ1)(1− λ2)〈A(x2)−A(y2), x− y〉.

(3.6)

Let us estimate the first summand. By the monotonicity of A and Cauchy-
Schwarz inequality, we have

λ1λ2〈A(x1)−A(y1), x− y〉
=λ1λ2〈A(x1)−A(y1), x1 − y1〉

+ λ1λ2〈A(x1)−A(y1), x− x1〉+ λ1λ2〈A(x1)−A(y1), y1 − y〉
≥λ1λ2〈a(x1)− a(y1), x− x1〉+ λ1λ2〈A(x1)−A(y1), y1 − y〉
≥ − λ1λ2 ‖A(y1)−A(x1)‖ (‖x− x1‖+ ‖y1 − y‖)↗ 0,

as δ → 0. Estimating the other summands in (3.6) in a similar way, we
arrive at 〈v − w, x− y〉 ≥ 0, i.e. Ā is monotone.

Furthermore, the graph of Ā is closed and convex as an intersection of the
closed convex sets Aδ. Thus, Proposition 3.30 applies and ensures that Ā is
maximal monotone.
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Chapter 4

Multivalued Stochastic
Partial Differential Equations
with Wiener Noise

In this chapter, we consider multivalued stochastic differential equations on
a Gelfand triple (V,H, V ∗) perturbed by multiplicative Wiener noise. The
drift operator is divided into a Lipschitz part b and a random and time-
dependent (multivalued) maximal monotone part A with full domain V and
image sets in the dual space V ∗. The proof of the existence of a solution
is based on the Yosida approximation approach as presented in Chapter
3. The corresponding framework for the single-valued case is presented in
[PR07]. The main result therein is used in order to obtain the existence and
uniqueness of the occurring approximating solutions.

4.1 Variational Framework

Let H be a separable real Hilbert space with inner product 〈 , 〉H . We
identify H with its dual space H∗ via the Riesz isomorphism R. Let V
be a uniformly convex Banach space with a uniformly convex dual space
V ∗ such that V ⊂ H continuously and densely. We obtain the Gelfand
triple (V,H, V ∗) (cf. Definition B.10). As usual, the Borel σ-algebra B(V )
is generated by V ∗ and B(H) by H∗.

Furthermore, let (Ω,F , P ) be a complete probability space with normal
filtration Ft, t ∈ [0,∞[. Fix some T ∈ [0,∞[ and α ∈]1, 2]. Throughout this
chapter, let C > 0 be a universal constant which may vary from line to line.

We consider multivalued stochastic partial differential equations of the fol-
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lowing type:{
dX(t) ∈ (b(t,X(t))−A(t,X(t))) dt+ σ(t,X(t)) dW (t),

X(0) = X0.
(4.1)

Here, X0 is an F0-measurable random variable with X0 ∈ L
α
α−1 (Ω,F0, P ;H)

and W (t) is a cylindrical Q-Wiener process with covariance Q = I on an
additional separable Hilbert space (U, 〈 , 〉U ).

We consider operators

A :[0, T ]× V × Ω→ 2V
∗
,

b :[0, T ]× V × Ω→ H,

σ :[0, T ]× V × Ω→ L2(U,H),

i.e. we assume A being multivalued with domain D(A) = V and (multival-
ued) image sets in V ∗. Here, L2(U,H) denotes the space of Hilbert-Schmidt
operators from U to H. For shorthand, by b(t, x) we mean the mapping
ω 7→ b(t, x, ω) and analogously for σ(t, x) and A(t, x). The operators b and
σ are assumed to be progressively measurable, i.e. for every t ∈ [0, T ], these
maps, restricted to [0, t]×V ×Ω, are B([0, t])⊗B(V )⊗Ft-measurable. The
multivalued operator A is assumed to be progressively Effros-measurable,
i.e. for every t ∈ [0, T ], A is B([0, t])⊗B(V )⊗Ft/B(V ∗)-Effros-measurable.

Definition 4.1. A solution to (4.1) on the interval [0, T ] is a couple (X, η)
of processes such that X ∈ Lα([0, T ]×Ω, V ) and η ∈ L1([0, T ]×Ω, V ∗) and
for P -a.e. ω ∈ Ω

i. Xt is continuous,

ii. the processes Xt and
∫ t

0 η(s) ds are (Ft)-adapted,

iii. for almost all t ∈ [0, T ]

η(t) ∈ A(t,X(t)),

iv. for all t ∈ [0, T ], the following equation holds:

X(t) = X0 +

∫ t

0
b(s,X(s)) ds−

∫ t

0
η(s) ds+

∫ t

0
σ(s,X(s)) dW (s),

X(0) = X0.

(4.2)

Remark 4.2. The notion of the solution in Definition 4.1 refers to dt⊗P -
equivalence classes. More exactly, for the equivalence class X̂ of X as in
Definition 4.1, we have X̂ ∈ Lα([0, T ]× Ω, V ) and P -a.s.

X(t) = X0 +

∫ t

0
b(s, X̄(s)) ds−

∫ t

0
η(s) ds+

∫ t

0
σ(s, X̄(s)) dW (s)
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holds, where X̄ is any V -valued, progressively measurable dt ⊗ P -version
of X̂. Accordingly, we will always consider our notion of the solution with
respect to dt⊗P -equivalence classes, but will henceforth use our usual notion
without mentioning this explicitly.

The existence and uniqueness of a solution in terms of Definition 4.1 holds,
supposed that the following conditions on b, σ and A are valid:

Let f be an (Ft)-adapted process with f ∈ L
α
α−1 ([0, T ]×Ω) and recall that

α ∈]1, 2].

(H1) (Maximal monotonicity) For all x, y ∈ V and for all (t, ω) ∈ [0, T ]×
Ω we have

V ∗〈v − w, x− y〉V ≥ 0 ∀v ∈ A(t, x), ∀w ∈ A(t, y) (4.3)

and x 7→ A(t, x) is maximal.

(H2) (Lipschitz continuity) There exists CL ∈ [0,∞[ such that

‖b(t, x)− b(t, y)‖H + ‖σ(t, x)− σ(t, y)‖L2(U,H) ≤ CL ‖x− y‖H on Ω

for all t ∈ [0, T ] and x, y ∈ V .

(H3) (Boundedness in 0)

‖b(t, 0)‖H + ‖σ(t, 0)‖L2(U,H) ≤ f(t) on Ω,

for all t ∈ [0, T ].

(H4) (Coercivity) There exists CC ∈]0,∞[ such that

V ∗〈v, x〉V ≥ CC ‖x‖
α
V + f(t)

for all (t, ω) ∈ [0, T ]× Ω, x ∈ V and v ∈ A(t, x).

(H5) (Boundedness) There exists CB ∈]0,∞[ such that∥∥A0(t, x)
∥∥
V ∗
≤ CB ‖x‖α−1

V + f(t)

for all x ∈ V, t ∈ [0, T ] on Ω.

Remark 4.3. i. Since V is a dense subset of H and since b is uniformly
continuous by (H2), the domain of b may be directly extended to H.

ii. Conditions (H2) and (H3) imply linear growth of b and σ, i.e.

‖b(t, x)‖2H + ‖σ(t, x)‖2L2(U,H) ≤ C ‖x‖
2
H + f2

for all x ∈ H and (t, ω) ∈ [0, T ]× Ω.
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iii. Instead of assuming that A is monotone and that it satisfies (H4) and
b satisfies (H2) and (H3), it is easy to show that one may consider the
stochastic partial differential equation

dX(t) ∈ Ã(t,X(t)) dt+ σ(t,X(t)) dW (t), (4.4)

where the multivalued operator Ã satisfies a one-sided Lipschitz con-
dition as well as a coercivity condition. More precisely, for all x, y ∈
V, ṽ ∈ Ã(·, x) and w̃ ∈ Ã(·, y) there exist C̃1, C̃2 ∈ [0,∞[, C̃3 ∈]0,∞[
and an (Ft)-adapted process f̃ ∈ L1([0, T ]× Ω) such that

V ∗〈ṽ − w̃, x− y〉V ≤ C̃1 ‖x− y‖2H on [0, T ]× Ω (A1)

and

V ∗〈ṽ, x〉V ≤ C̃2 ‖x‖2H − C̃3 ‖x‖αV + f̃(t) on [0, T ]× Ω. (A2)

4.2 The Yosida Approximation Approach

Now, we want to apply the Yosida approximation approach to the multival-
ued stochastic differential equation (4.1). Since the multivalued operator A
is maximal monotone, we can define the resolvent Jλ and the Yosida approx-
imation Aλ as in Section 3. Note that in the variational framework both Jλ
andAλ are time-dependent and random. However, for fixed (t, ω) ∈ [0, T ]×Ω
all results of Section 3 are applicable.

Let us consider the family of approximating equations

{
dXλ(t) = (b(t,Xλ(t))−Aλ(t,Xλ(t))) dt+ σ(t,Xλ(t)) dW (t),

Xλ(0) = X0.
(4.5)

which arise from replacing the multivalued maximal monotone operator A
in (4.1) by its (single-valued) Yosida approximation Aλ.

Remark 4.4. Proposition 3.25 ensures that the resolvent Jλ as well as the
Yosida approximation Aλ are progressively measurable.

Now we turn to the main theorem of this chapter:

Theorem 4.5. Let A, b and σ satisfy Conditions (H1)-(H5). Then, there
exists a solution to Problem (4.1) in the sense of Definition 4.1 being the
weak limit of {Xλ}λ>0 in Lα([0, T ]× Ω;V ).

The proof of Theorem 4.5 is divided into several steps. At first, we will
prove that the approximating equations (4.5) are uniquely solvable for every
λ > 0 (cf. Proposition 4.7). Knowing about the existence of solutions to the
approximating equations, we will then verify that the sequence of solutions
satisfies an a priori estimate (cf. Proposition 4.9 below). Finally, it will be
proved that the weak limit is, in fact, a solution to problem (4.1).
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4.2.1 Existence and Uniqueness of the Approximating Solu-
tion

The main result in [PR07, Chapter 4.2] ensures the existence and unique-
ness of the approximating solutions to (4.5). However, the growth condition
[PR07, H4] is not sufficient for our framework (cf. Remark 4.8 below).
Therefore, we need to apply the result [LR10, Theorem 1.1], which corre-
sponds to the existence and uniqueness result in [PR07, Theorem 4.2.4], but
its growth condition [PR07, H4] has been generalized in a way that suits
our framework. Let us state the main result in [LR10]:

Theorem 4.6. Let T ∈ [0,∞[ be fixed, (Ω,F , P ) be a complete probability
space with normal filtration Ft, W (t) a cylindrical Q-Wiener process with

Q = I, X0 ∈ L
α
α−1 (Ω,F0, P ;H) and A : [0, T ] × V × Ω → V ∗ as well as

B : [0, T ] × V × Ω → L2(U,H) be progressively measurable. Furthermore,
assume that A,B satisfy the following conditions:

(LR1) For all u, v, x ∈ V, ω ∈ Ω and t ∈ [0, T ], the map

R 3 λ 7→ V ∗〈A(t, u+ λv, ω), x〉V

is continuous.

(LR2) There exist α ∈ ]1,∞[, β ∈ [0,∞[ and c ∈ R such that for all u, v ∈ V ,

2 V ∗〈A(·, u)−A(·, v), u− v〉V + ‖B(·, u)−B(·, v)‖2L2(U,H)

≤ (c+ %(v))‖u− v‖2H

on [0, T ]×Ω, where % : V → [0,∞[ is a measurable function and locally
bounded in V such that

%(v) ≤ C(1 + ‖v‖αV )(1 + ‖v‖βH), v ∈ V.

(LR3) There exist c1 ∈ R, c2 ∈ ]0,∞[ and an (Ft)-adapted process f ∈ L1([0, T ]×
Ω, dt⊗ P ) such that for all v ∈ V, t ∈ [0, T ],

2 V ∗〈A(t, v), v〉V +‖B(t, v)‖2L2(U,H) ≤ c1‖v‖2H − c2‖v‖αV + f(t) on Ω,

where α and β are as in (LR2).

(LR4) There exist c3 ∈ [0,∞[ and an (Ft)-adapted process g ∈ L
α
α−1 ([0, T ]×

Ω, dt⊗ P ) such that for all, v ∈ V, t ∈ [0, T ]

‖A(t, v)‖
α
α−1

V ∗ ≤ (g(t) + c3‖v‖αV )
(

1 + ‖v‖βH
)

on Ω,

where α and β are as in (LR2).
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Then, there exists a process X ∈ Lα([0, T ] × Ω, dt ⊗ P ;V ) ∩ L2([0, T ] ×
Ω, dt⊗ P ;H) such that P -a.s.

X(t) = X(0) +

∫ t

0
A(s,X(s)) ds+

∫ t

0
B(s,X(s)) dW (s), t ∈ [0, T ],

in the sense of dt⊗ P -equivalence classes (cf. Remark 4.2). Additionally,

E

[
sup
t∈[0,T ]

‖X(t)‖2H

]
<∞.

Proof. See [LR10, Theorem 1.1].

This theorem will provide us with the existence and uniqueness of the ap-
proximating equation:

Proposition 4.7. Suppose assumptions (H1) - (H5) hold, then there exists
a unique process Xλ ∈ Lα([0, T ]× Ω, V ) such that P -a.s. for all t ∈ [0, T ]

Xλ(t) = Xλ(0)+

∫ t

0
(b(s,Xλ(s))−Aλ(s,Xλ(s))) ds+

∫ t

0
σ(s,Xλ(s)) dW (s)

(4.6)
in the sense of dt ⊗ P -equivalence classes (cf. Remark 4.2). Furthermore,
for all λ > 0

E

[
sup
t∈[0,T ]

‖Xλ(t)‖2H

]
<∞. (4.7)

Proof. Taking A := b−Aλ and B := σ, [PR07, Problem (4.2.1)] corresponds
to Problem (4.5) (cf. Remark 4.3.iii)). In order to apply Theorem 4.6, we
have to check that Conditions (LR1) - (LR4) are valid:

i. By the demicontinuity of Aλ (cf. Proposition 3.19.i)) and by (H2),
b−Aλ is hemicontinuous. Hence, (LR1) holds.

ii. By the monotonicity of Aλ (cf. Proposition 3.19.i)) and by (H2), (LR2)
is satisfied (for the non-local case ρ = 0).

iii. By (H4) and Lemma 3.21, the Yosida approximation Aλ, λ < λ0, is
coercive with constant α as in (H4). Thus, by Conditions (H2) and
(H3) we deduce

2 V ∗〈b(·, v)−Aλ(·, v), v〉V + ‖σ(·, v)‖2L2(U,H)

≤C
(
‖v‖2H + f2

)
− CC ‖v‖αV

on [0, T ]× Ω. Hence, we obtain (LR3).
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iv. Furthermore, since D(A) = V and ‖Aλ(·, x)‖V ∗ ≤
∥∥A0(·, x)

∥∥
V ∗

x ∈
D(A) on [0, T ] (cf. Proposition 3.19.ii)), (H2), (H3) and (H5) imply

‖b(·, v)−Aλ(·, v)‖
α
α−1

V ∗ ≤ C
(
‖v‖αV + ‖v‖

α
α−1

H + f
α
α−1

)
. (4.8)

Thus, (LR4) holds with β := α
α−1 .

Consequently, we can apply Theorem 4.6 and obtain a solution to (4.5).
Additionally, (4.7) holds.

Remark 4.8. In (4.8), the exponent of the H-norm of v is given by α
α−1 ,

which is bigger than 2 since α ∈]1, 2[. Therefore, the growth condition
[PR07, H4] (where the exponent of the V -norm is equal to α < 2) is not
satisfied. That is the reason why [LR10, Theorem 1.1] with the generalized
growth condition is used.

4.2.2 A Priori Estimate

We want to apply a weak compactness argument to the approximating so-
lution Xλ. To this end, we need the following a priori estimate.

Proposition 4.9. Let p ∈ [2, α
α−1 ]. Assuming (H1) - (H5), then

E

[
sup
t∈[0,T ]

‖Xλ(t)‖pH

]
+ E

[∫ T

0
‖Xλ(t)‖p−2

H ‖Xλ(t)‖αV dt

]
≤C

(
E
[
‖X0‖pH

]
+ E

[∫ T

0
f
p
2 (s) ds

]) (4.9)

for all λ > 0. In particular, for p = 2

E

[
sup
t∈[0,T ]

‖Xλ(t)‖2H

]
+

∫ T

0
E [‖Xλ(t)‖αV ] dt ≤ C. (4.10)

Some preparations leading up to the proof have to be made. Subsequently,
the following Itô formula will be crucial.

Theorem 4.10. Let α ∈]1, 2], X0 ∈ L2(Ω,F0, P ;H) and Y ∈ L
α
α−1 ([0, T ]×

Ω, V ∗), Z ∈ L2([0, T ] × Ω, L2(U,H)), both progressively measurable. Define
the continuous V ∗-valued process

X(t) := X0 +

∫ t

0
Y (s) ds+

∫ t

0
Z(s) dW (s), t ∈ [0, T ].

If X ∈ Lα([0, T ] × Ω, V ), then X is an H-valued continuous (Ft)-adapted
process,

E

[
sup
t∈[0,T ]

‖X(t)‖2H

]
<∞
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and the following Itô-formula holds for the square of its H-norm P -a.s.

‖X(t)‖2H = ‖X0‖2H +

∫ t

0

(
2 V ∗〈Y (s), X(s)〉V + ‖Z(s)‖2L2(U,H)

)
ds

+ 2

∫ t

0
〈X(s), Z(s) dW (s)〉H for all t ∈ [0, T ]

(4.11)

in the sense of dt⊗ P -equivalence classes (cf. Remark 4.2).

Proof. See [PR07, Theorem 4.2.5].

Remark 4.11. i. Though it is not explicitly mentioned in [PR07, The-
orem 4.2.5], in the case α ∈]1, 2] the following additional conditition
has to be satisfied:

E[‖X(t)‖2H ] <∞ for dt-a.e. t ∈ [0, T ].

However, in our situation this is automatically the case due to Propo-
sition 4.7.

ii. By the proof of [PR07, Theorem 4.2.4] (as a special case of [LR10,
Theorem 1.1]) it follows that in our situation Theorem 4.10 is appli-
cable.

Corollary 4.12. In the situation of Theorem 4.10, for all t ∈ [0, T ] we have

E[‖X(t)‖2H ] = E[‖X0‖2H ] +

∫ t

0
E
[
2
V ∗

〈
Y (s), X̄(s)

〉
V

+ ‖Z(s)‖2L2(U,H)

]
ds.

Proof. See [PR07, Remark 4.2.8].

Proof of Proposition 4.9. For fixed λ > 0, we apply Theorem 4.10 to the
continuous unique solution Xλ of Proposition 4.7 with Y := b(·, Xλ) −
Aλ(·, Xλ) and Z := σ(·, Xλ).

In particular, it follows that ‖Xλ(t)‖2H is a real-valued semi-martingale.
Consequently, we can apply the one-dimensional Itô-formula with the C2-
function F (r) := (r + ε)

p
2 , p ≥ 2, ε > 0, to ‖Xλ(t)‖2H and obtain

(
‖Xλ(t)‖2H + ε

) p
2 −

(
‖Xλ(0)‖2H + ε

) p
2

=
p(p− 2)

4

∫ t

0

(
‖Xλ(s)‖2H + ε

) p−4
2 ‖σ(s,Xλ(s))∗Xλ(s)‖2U ds

+
p

2

∫ t

0

(
‖Xλ(s)‖2H + ε

) p−2
2

[
2 V ∗〈b(s,Xλ(s))−Aλ(s,Xλ(s)), Xλ(s)〉V

+ ‖σ(s,Xλ(s))‖2L2(U,H)

]
ds

+ p

∫ t

0

(
‖Xλ(s)‖2H + ε

) p−2
2 〈X(s), σ(s,Xλ(s)) dW (s)〉H ,
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where σ∗ is the adjoint operator of σ. Using ‖σ∗‖L2(H,U) = ‖σ‖L2(U,H),
estimating the first and the second summand by use of (H2), (H3) and (H4)
and letting ε→ 0, we obtain

‖Xλ(t)‖pH

≤‖X0‖pH +
p

2

∫ t

0
‖X(s)‖p−2

H

[
−C2 ‖Xλ(s)‖αV + C ‖Xλ(s)‖2H + f(s)

]
ds

+ p

∫ t

0
‖Xλ(s)‖p−2

H 〈X(s), σ(s,Xλ(s)) dW (s)〉H

≤‖X0‖pH −
p

2
C2

∫ t

0
‖X(s)‖p−2

H ‖Xλ(s)‖αV ds

+ C

∫ t

0

(
‖Xλ(s)‖pH + f

p
2 (s)

)
ds

+ p

∫ t

0
‖Xλ(s)‖p−2

H 〈X(s), σ(s,Xλ(s)) dW (s)〉H , t ∈ [0, T ].

In the last step, we have used ab ≤ a
p
2 + b

p
p−2 , a, b ≥ 0.

We introduce the localizing sequence τN by

τN := inf
{
t ∈ [0, T ]

∣∣ ‖Xλ(t)‖H > N
}
∧ T ∀N ∈ N. (4.12)

Note that limN→∞ τN = T P -a.s. for all N ∈ N. By the Burkholder–Davis–
Gundy inequality (cf. Theorem D.14) and Young’s inequality, we obtain

p E

[
sup

r∈[0,τN ]

∣∣∣∣∫ r

0
‖Xλ(s)‖p−2

H 〈Xλ(s), σ(s,Xλ(s)) dW (s)〉H
∣∣∣∣
]

≤3p E

[(∫ τN

0
‖Xλ(s)‖2(p−2)+2

H ‖σ(s,Xλ(s))‖2L2(U,H) ds

) 1
2

]

≤C E

[
sup

s∈[0,τN ]
‖Xλ(s)‖p−1

H

(∫ τN

0

(
‖Xλ(s)‖2H + f(s)

)
ds

) 1
2

]

≤E

[
1

2
sup

s∈[0,τN ]
‖Xλ(s)‖pH + C

(∫ τN

0

(
‖Xλ(s)‖2H + f(s)

)
ds

) p
2

]

≤1

2
E

[
sup

s∈[0,τN ]
‖Xλ(s)‖pH

]
+ C

∫ τN

0

(
E
[
‖Xλ(s)‖pH

]
+ f

p
2 (s)

)
ds.
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Altogether, we obtain

E

[
sup

s∈[0,τN ]
‖Xλ(s)‖pH

]

≤2 E
[
‖X0‖pH

]
− pC2 E

[∫ τN

0
‖Xλ(s)‖p−2

H ‖Xλ(s)‖αV ds

]
+ C

(∫ τN

0
sup
r∈[0,s]

E
[
‖Xλ(r)‖pH

]
ds+ E

[∫ T

0
f
p
2 (s) ds

])
.

Note that the subtracted term 1
2E
[
sups∈[0,τN ] ‖Xλ(s)‖pH

]
is finite by the

choice of τN . Applying the Bellman-Gronwall inequality and Lebesgue’s
dominated convergence theorem (C is independent of λ), we finally arrive
at (4.10).

Corollary 4.13. In the situation of Proposition 4.7, we have

lim sup
λ→0

∫ T

0
E

[
‖Aλ(s,Xλ(s))‖

α
α−1

V ∗ + ‖b(s,Xλ(s))‖
α
α−1

V ∗

+ ‖σ(s,Xλ(s))‖2L2(U,H)

]
ds <∞.

(4.13)

Proof. Because the operator A has full domain, D(A) = V , and by Propo-
sition 3.19.ii), ‖Aλ(·, x)‖V ∗ ≤

∥∥A0(·, x)
∥∥
V ∗

for all x ∈ D(A) on [0, T ], Con-
ditions (H2), (H3) and (H5) imply that

‖Aλ(s,Xλ(s))‖
α
α−1

V ∗ + ‖b(s,Xλ(s))‖
α
α−1

V ∗ + ‖σ(s,Xλ(s))‖2L2(U,H)

≤C
(
‖Xλ(s)‖αV + ‖Xλ(s)‖

α
α−1

H + f
α
α−1 (s)

)
.

Applying Proposition 4.9 for p := α
α−1 , we obtain (4.13).

4.3 Existence and Uniqueness

Proof of Theorem 4.5. By Proposition 4.9, we have

lim sup
λ→0

(
‖Xλ‖Lα([0,T ]×Ω;V ) + sup

t∈[0,T ]
‖Xλ‖L2(Ω;H)

)
<∞.

Furthermore, by Corollary 4.13 we have

lim sup
λ→0

(
‖Aλ(·, Xλ)‖

L
α
α−1 ([0,T ]×Ω;V ∗)

+ ‖b(·, Xλ)‖
L

α
α−1 ([0,T ]×Ω;V ∗)

+ ‖σ(·, Xλ)‖L2([0,T ]×Ω;L2(U,H))

)
<∞.
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Since by Corollary C.8, the spaces L2([0, T ] × Ω;L2(U,H)), Lα([0, T ] ×
Ω;V ), L

α
α−1 ([0, T ]×Ω;V ∗) are reflexive, the Banach-Alaoglu-Theorem yields

the following convergences along some subsequence:

i. Xλ → X weakly in Lα([0, T ] × Ω;V ) and weakly star in
L2(Ω, L∞([0, T ], H)),

ii. b(·, Xλ)→ b̄ weakly in L
α
α−1 ([0, T ]× Ω;V ∗),

iii. Aλ(·, Xλ) → η weakly in L
α
α−1 ([0, T ] × Ω;V ∗), in particular, η ∈

L
α
α−1 ([0, T ], V ∗) P -a.s.,

iv. σ(·, Xλ)→ σ̄ weakly in L2([0, T ]× Ω;L2(U,H)) and therefore,∫ ·
0
σ(s,Xλ(s)) dW (s)→

∫ ·
0
σ̄(s) dW (s)

weakly in L∞([0, T ], L2(Ω;H)), since the stochastic integral is a con-
tinuous linear operator, hence weakly continuous.

Step 1.
∫ t

0 η(s) ds is an (Ft)-adapted process.

Let ϕ ∈ L∞(Ω, V ). Since Aλ(·, Xλ) converges weakly in L
α
α−1 ([0, T ]×Ω, V ∗)

and, since ϕ(·)1[0,t](·) ∈ L∞([0, T ]× Ω, V ∗), we have

L
α
α−1 (Ω,V ∗)

〈∫ t

0
Aλ(s,Xλ(s)) ds, ϕ

〉
Lα(Ω,V )

=

∫
[0,T ]×Ω

1[0,t](s) V ∗〈Aλ(s,Xλ(s), ω), ϕ(ω)〉V ds⊗ P (dω)

λn→0−→
∫

[0,T ]×Ω
1[0,t](s) V ∗〈η(s, ω), ϕ(ω)〉V ds⊗ P (dω)

=
L

α
α−1 (Ω,V ∗)

〈∫ t

0
η(s) ds, ϕ

〉
Lα(Ω,V )

(4.14)

Since L∞(Ω, V ∗) is dense in L
α
α−1 (Ω, V ∗) and since by (4.13), the integral∫ t

0 Aλ(s,Xλ(s)) ds is bounded in L
α
α−1 (Ω, V ∗) uniformly in λ, we conclude

that
∫ t

0 η(s) ds is the weak limit of
∫ t

0 Aλ(s,Xλ(s)) ds in L
α
α−1 (Ω, V ∗)

(cf. [Zei90a, Proposition 21.23(g)]). Hence, by the Theorem of Mazur
(cf. [Zei90a, Proposition 21.23(e)]), for some {λn}n∈N there exists a se-
quence {vn}n∈N such that vn ∈ co {

∫ t
0 Aλn(s,Xλn(s)) ds}, where co de-

notes the closed convex hull, and vn
n→∞−→

∫ t
0 η(s) ds in L

α
α−1 (Ω, V ∗). Since∫ t

0 Aλn(s,Xλn(s)) ds is (Ft)-adapted and, consequently, vn is a linear com-

bination of (Ft)-adapted processes, the limit point
∫ t

0 η(s) ds is also Ft-
adapted.
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Note that by an analogous argumentation, b̄ and σ̄ are progressively mea-
surable since the approximants are progressively measurable.

Step 2. (X, η) satisfy (4.2) P -a.s..

Following [PR07, Proof of Theorem 4.2.4], we define ϕ ∈ L∞([0, T ]×Ω) and
v ∈ V . By (4.5), using (i)-(iv) and Fubini’s theorem, along some subsequence
we obtain

E

[∫ T

0
V ∗〈X(t), ϕ(t)v〉V dt

]
= lim
λ→0

E

[∫ T

0
V ∗〈Xλ(t), ϕ(t)v〉V dt

]
= lim
λ→0

E

[ ∫ T

0
V ∗〈X0, ϕ(t)v〉V dt

+

∫ T

0

∫ t

0
V ∗〈b(s,Xλ(s))−Aλ(s,Xλ(s)), ϕ(t)v〉V ds dt

+

∫ T

0

〈∫ t

0
σ(s,Xλ(s)) dW (s), ϕ(t)v

〉
H

dt

]
= lim
λ→0

(
E

[∫ T

0
V ∗〈X0, ϕ(t)v〉V dt

]
+ E

[∫ T

0 V ∗

〈
b(s,Xλ(s))−Aλ(s,Xλ(s)),

∫ T

s
ϕ(t) dt v

〉
V

ds

]
+

∫ T

0
E

[
ϕ(t)

V ∗

〈∫ t

0
σ(s,Xλ(s)) dW (s), v

〉
V

]
dt

)
=E

[∫ T

0 V ∗

〈
X0 +

∫ t

0

(
b̄(s)− η(s)

)
ds+

∫ t

0
σ̄(s) dW (s), ϕ(t)v

〉
V

dt

]
.

(4.15)

Since ϕ ∈ L∞(Ω) and v ∈ V are arbitrary, defining

X̄(t) := X0 +

∫ t

0

(
b̄(s)− η(s)

)
ds+

∫ t

0
σ̄(s) dW (s), t ∈ [0, T ],

we obtain

X̄ = X dt⊗ P -a.e..

In the next step, we show that

b̄ = b(·, X) and σ̄ = σ(·, X) dt⊗ P -a.e.

To this end, we first observe that by Corollary 4.12 and the product rule
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applied to ‖X(t)‖2H , we obtain

E
[
e−βt ‖X(t)‖2H

]
− E

[
‖X0‖2H

]
=

∫ t

0
E
[
‖X(s)‖2H

]
d
(
e−βs

)
+

∫ t

0
e−βs d

(
E
[
‖X(s)‖2H

])
=E

[∫ t

0
e−βs

(
2
V ∗

〈
b̄(s)− η(s), X(s)

〉
V

+ ‖ σ̄(s)‖2L2(U,H) − β ‖X(s)‖2H
)
ds

]
.

(4.16)

Note that by i)-iv), we are meeting the conditions of Theorem 4.10 and thus,
Corollary 4.12 is applicable.

On the other hand, we apply Corollary 4.12 and the product rule to ‖Xλ(t)‖2H
and obtain

E
[
e−βt ‖Xλ(t)‖2H

]
− E

[
‖X0‖2H

]
=E

[∫ t

0
e−βs (2 V ∗〈b(s,Xλ(s))−Aλ(s,Xλ(s)), Xλ(s)〉V

+ ‖σ(s,Xλ(s))‖2L2(U,H) − β ‖Xλ(s)‖2H
)
ds
]

=E

[∫ t

0
e−βs (2 V ∗〈b(s,Xλ(s))− b(s, φ(s)), Xλ(s)− φ(s)〉V

+ ‖σ(s,Xλ(s))− σ(s, φ(s))‖2L2(U,H) − β ‖Xλ(s)− φ(s)‖2H
)
ds
]

+ E

[∫ t

0
e−βs (2 V ∗〈b(s, φ(s)), Xλ(s)〉V + V ∗〈b(s,Xλ(s))− b(s, φ(s)), φ(s)〉V

− ‖σ(s, φ(s))‖2L2(U,H) + 2〈σ(s,Xλ(s)), σ(s, φ(s))〉L2(U,H)

− 2β〈Xλ(s), φ(s)〉H + β ‖φ(s)‖2H
)
ds
]

− E
[∫ t

0
e−βs (2 V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V ) ds

]
(4.17)

where we have used a2 = (a− b)2 − b2 + 2ab in the last step. By (H2), the
first summand of the right-hand side in (4.17) is negative for β := 2CL+C2

L.
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Letting λ→ 0 and using (i)-(iv), (4.17) turns into

lim inf
λ→0

E
[
e−βt ‖Xλ(t)‖2H

]
− E

[
‖X0‖2H

]
+ lim sup

λ→0
2E

[∫ t

0
e−βs V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V ds

]
≤E

[∫ t

0
e−βs

(
2 V ∗〈b(s, φ(s)), X(s)〉V +

V ∗

〈
b̄(s)− b(s, φ(s)), φ(s)

〉
V

+ ‖σ(s, φ(s))‖2L2(U,H) + 2〈σ̄(s), σ(s, φ(s))〉L2(U,H)

− 2β〈X(s), φ(s)〉H + β ‖φ(s)‖2H
)
ds

]
.

(4.18)

Note that for any non-negative ψ ∈ L∞([0, T ], dt) it follows from (i) that

E

(∫ T

0
ψ(t)‖X(t)‖2H dt

)
= lim
λ→0

E

(∫ T

0
〈ψ(t)X(t), X

λ
(t)〉H dt

)
≤
(
E

∫ T

0
ψ(t)‖X(t)‖2H dt

)1/2

lim inf
λ→0

(
E

∫ T

0
ψ(t)‖Xλ(t)‖2H dt

)1/2

<∞.

This implies

E

(∫ T

0
ψ(t)‖X(t)‖2H dt

)
≤ lim inf

λ→0
E

(∫ T

0
ψ(t)‖Xλ(t)‖2H dt

)
. (4.19)

Hence, combining (4.16), (4.18) and (4.19) we arrive at

lim sup
λ→0

2E

[ ∫ T

0
ψ(t)

(∫ t

0
e−βs V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V

− V ∗〈η(s), X(s)〉V ds

)
dt

]
≤E

[∫ T

0
ψ(t)

(∫ t

0
e−βs

(
−2

V ∗

〈
b̄(s)− b(s, φ(s)), X(s)− φ(s)

〉
V

− ‖σ(s, φ(s))− σ̄(s)‖2L2(U,H) + β ‖X(s)− φ(s)‖2H
)
ds
)
dt
]

(4.20)

Since η(s) is the weak limit of Aλ(s,Xλ(s)), by the monotonicity of Aλ we
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obtain

lim inf
λ→0

E

[∫ t

0
e−βs V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V − V ∗〈η(s), X(s)〉V ds

]
= lim inf

λ→0
E

[∫ t

0
e−βs V ∗〈Aλ(s,Xλ(s)), Xλ(s)−X(s)〉V ds

]
≥ lim inf

λ→0
E

[∫ t

0
e−βs V ∗〈Aλ(s,Xλ(s))−Aλ(s,X(s)), Xλ(s)−X(s)〉V ds

]
+ lim inf

λ→0
E

[∫ t

0
e−βs V ∗〈Aλ(s,X(s)), Xλ(s)−X(s)〉V ds

]
≥ lim inf

λ→0
E

[∫ t

0
e−βs V ∗〈Aλ(s,X(s)), Xλ(s)−X(s)〉V ds

]
.

(4.21)

Recall that Aλ(x) → A0(x) (strongly) ∀x ∈ D(A) where A0 denotes the
minimal selection of A (cf. Proposition 3.19.iv)). Since D(A) = V and
Xλ → X weakly in Lα([0, T ]×Ω;V ), the right-hand side of (4.21) converges
to 0 as λ→ 0 (cf. [Zei90a, Proposition 21.23(j)]). Hence, (4.20) turns into

0 ≥E
[∫ T

0
ψ(t)

(∫ t

0
e−βs

(
2
V ∗

〈
b̄(s)− b(s, φ(s)), X(s)− φ(s)

〉
V

+ ‖σ(s, φ(s))− σ̄(s)‖2L2(U,H) − β ‖X(s)− φ(s)‖2H
)
ds
)
dt
] (4.22)

Taking φ = X, we conclude that σ̄(s) = σ(s,X(s)). Inserting φ = X − εφ̃,
ε > 0, φ̃ ∈ L∞([0, T ]×Ω;V ) into (4.22), dropping the second integrand and
dividing both sides by ε, we obtain

0 ≥E
[ ∫ T

0
ψ(t)

(∫ t

0
e−βs2

(
V ∗

〈
b̄(s)− b(s,X(s)− εφ̃(s)), φ̃(s)

〉
V

− βε
∥∥∥φ̃(s)

∥∥∥2

H

)
ds

)
dt

]
.

By (H2) and Lebesgue’s convergence theorem, letting ε→ 0 yields

0 ≥ E
[∫ T

0
ψ(t)

(∫ t

0
e−βs

(
V ∗

〈
b̄(s)− b(s,X(s)), φ̃(s)

〉
V

)
ds

)
dt

]
.

Since φ̃ and ψ have been chosen arbitrarily, we conclude b̄ = b(·, X).

Now we are able to apply Theorem 4.10 and conclude that X is an (Ft)-
adapted process, continuous in H.

Step 3. η(t) ∈ A(t,X(t)) for almost all t ∈ [0, T ] and ω ∈ Ω.

We want to apply Proposition 3.3.
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Claim 1. The (multivalued) operator

A : Lα([0, T ]× Ω, V )→ 2L
α
α−1 ([0,T ]×Ω,V ∗)

defined by
x 7→ A(·, x)

is maximal monotone.

Proof. Let x1, x2 ∈ Lα([0, T ] × Ω, V ) and vi ∈ A(·, xi), i = 1, 2. Then, by
the monotonicity of A we have

L
α
α−1 ([0,T ]×Ω,V ∗)

〈v1 − v2, x1 − x2〉Lα([0,T ]×Ω,V )

=E

[∫ T

0
V ∗〈v1(t)− v2(t), x1(t)− x2(t)〉V dt

]
≥ 0.

Hence A is monotone.

Since for every (t, ω) ∈ [0, T ]×Ω the operator A(t, ·, ω) is maximal monotone
and J is coercive and maximal monotone, Proposition 3.27 implies that for
any y ∈ L

α
α−1 ([0, T ]×Ω, V ∗) there exists a progressively measurable process

x(t) ∈ V such that
y(t) ∈ A(t, x(t)) + λJ(x(t)),

on Ω for all t ∈ [0, T ] and λ > 0. Let v(·) ∈ A(·, x) such that

y = v + λJ(x) (4.23)

on [0, T ] × Ω. Taking the dualization product with x(·) in (4.23), by (H4)
we obtain

V ∗〈y, x〉V = V ∗〈v, x〉V +λ V ∗〈J(x), x〉V
≥ CC ‖x‖αV + λ ‖x‖2V + f

≥ CC ‖x‖αV + f

on [0, T ] × Ω for some f ∈ L1([0, T ] × Ω). Thus, by Young’s inequality,

x ∈ Lα([0, T ] × Ω, V ) since y ∈ L
α
α−1 ([0, T ] × Ω, V ∗). Now, Theorem 3.14

applies and we conclude that A is maximal monotone.

Claim 2. Jλ(Xλ) converges weakly along some sequence λ → 0 to X in
Lα([0, T ]× Ω, V ).

Proof. Since by the definition of the Yosida approximation, λAλ(Xλ) =
J(Xλ − Jλ(Xλ)), it follows that

‖Jλ(Xλ)−Xλ‖V = λ ‖Aλ(Xλ)‖V ∗ .
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Hence, by (4.13)

E

[∫ T

0
‖Jλ(Xλ)−Xλ‖

α
α−1

V ds

]
≤λ

α
α−1 lim sup

λ→0

∫ T

0
E
[
‖Aλ(s,Xλ(s))‖

α
α−1

V ∗

]
ds

λ→0−→ 0.

Since α ≤ α
α−1 , we conclude

lim
λ→0
‖Jλ(Xλ)−Xλ‖Lα([0,T ]×Ω;V ) = 0. (4.24)

In particular, for ϕ ∈ L
α
α−1 ([0, T ] × Ω, V ∗), we have

E
[∫ T

0 V ∗〈ϕ, Jλ(Xλ)−Xλ〉V ds
]
λ→0−→ 0. SinceXλ → X weakly in Lα([0, T ]×

Ω, V ), we deduce

E

[∫ T

0
V ∗〈ϕ, Jλ(Xλ)−X〉V ds

]
=E

[∫ T

0
V ∗〈ϕ, Jλ(Xλ)−Xλ〉V ds

]
+ E

[∫ T

0
V ∗〈ϕ,Xλ −X〉V ds

]
λ→0−→ 0.

Claim 3.

lim sup
λ→0

E

[∫ T

0
V ∗〈Aλ(s,Xλ(s)), Jλ(Xλ(s))〉V ds

]
≤E

[∫ T

0
V ∗〈η(s), X(s)〉V ds

]
.

Proof. In (4.20), taking φ = X and recalling that b̄ = b(·, X) and σ̄ =
σ(·, X), we obtain

lim sup
λ→0

E

[∫ T

0
V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V ds

]
≤E

[∫ T

0
V ∗〈η(s), X(s)〉V ds

]
.

(4.25)

Thus, by Hölder’s inequality, (4.24) and (4.25) we conclude

lim sup
λ→0

E

[∫ T

0
V ∗〈Aλ(s,Xλ(s)), Jλ(Xλ(s))〉V ds

]
≤ lim sup

λ→0

(∫ T

0
E
[
‖Aλ(s,Xλ(s))‖

α
α−1

V ∗

]
ds · ‖Jλ(Xλ)−Xλ‖Lα([0,T ]×Ω;V )

)
+ lim sup

λ→0
E

[∫ T

0
V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V ds

]
≤E

[∫ T

0
V ∗〈η(s), X(s)〉V ds

]
.
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By (iii), Aλ(Xλ) converges weakly to η in L
α
α−1 ([0, T ] × Ω, V ∗). Therefore,

due to Claim 1, Claim 2, Claim 3 and the fact thatAλ(s, x) ∈ A(Jλ(s, x)) ∀x ∈
V on [0, T ] × Ω (cf. Proposition 3.19.v)), all conditions of Proposition 3.3
are fulfilled and we can conclude that η ∈ A(X) dt ⊗ P -a.e., especially
η(t, ω) ∈ A(t,X(t, ω), ω) for almost all (t, ω) ∈ [0, T ]× Ω.

On account of the Itô-formula, we have the following uniqueness result.

Proposition 4.14. The solution of (4.1) is path-wise unique in the follow-
ing sense: For every two solutions X1 and X2 of (4.1) and some constant
C > 0 we have

E
[
‖X1(t)−X2(t)‖2H

]
≤ eCtE

[
‖X1(0)−X2(0)‖2H

]
∀t ∈ [0, T ].

Proof. Let (X1, η1), (X2, η2) be two solutions of (4.1). We apply Corollary
4.12 to X1 −X2 and obtain

E
[
‖X1(t)−X2(t)‖2H

]
=E

[
‖X1(0)−X2(0)‖2H

]
+ 2

∫ t

0
E [ V ∗〈b(s,X1(s))− b(s,X2(s)), X1(s)−X2(s)〉V ] ds

− 2

∫ t

0
E [ V ∗〈η1(s)− η2(s), X1(s)−X2(s)〉V ] ds

+

∫ t

0
E
[
‖σ(s,X1(s))− σ(s,X2(s))‖2L2(U,H)

]
ds.

Since ηi(t) ∈ Ai(t,X(t)), i ∈ {1, 2}, by the monotonicity of A we obtain

−2

∫ t

0
E [ V ∗〈η1(s)− η2(s), X1(s)−X2(s)〉V ] ds ≤ 0.

Now, (H2) and (H3) yields

E
[
‖X1(t)−X2(t)‖2H

]
≤E

[
‖X1(0)−X2(0)‖2H

]
+ C

∫ t

0
E
[
‖X1(s)−X2(s)‖2H

]
ds.

Hence, applying Bellman-Gronwall inequality, we obtain the assertion.

L2-Convergence

Proposition 4.15. Suppose that conditions (H1)-(H5) hold, then for any
sequences (λ), (µ) such that λ, µ→ 0 and for some C > 0, we have

E

[
sup
s∈[0,T ]

‖Xλ(s)−Xµ(s)‖2H

]
≤ C · (λ+ µ).
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Proof. Let C > 0 be a universal constant. Applying Theorem 4.10 toXλ(t)−
Xµ(t), we obtain

‖Xλ(t)−Xµ(t)‖2H
= ‖X0 −X0‖2H

+ 2

∫ t

0
V ∗〈b(s,Xλ(s))− b(s,Xµ(s)), Xλ(s)−Xµ(s)〉V ds

− 2

∫ t

0
V ∗〈Aλ(s,Xλ(s))−Aµ(s,Xµ(s)), Xλ(s)−Xµ(s)〉V ds

+ 2

∫ t

0
〈Xλ(s)−Xµ(s), (σ(s,Xλ(s))− σ(s,Xµ(s))) dW (s)〉H

+

∫ t

0
‖σ(s,Xλ(s))− σ(s,Xµ(s))‖2L2(U,H) ds.

(4.26)

By (H2) and (H3) we obtain

V ∗〈b(s,Xλ(s))− b(s,Xµ(s)), Xλ(s)−Xµ(s)〉V
+ ‖σ(s,Xλ(s))− σ(s,Xµ(s))‖2L2(U,H)

=〈b(s,Xλ(s))− b(s,Xµ(s)), Xλ(s)−Xµ(s)〉H
+ ‖σ(s,Xλ(s))− σ(s,Xµ(s))‖2L2(U,H)

≤C ‖Xλ(s)−Xµ(s)‖2H .

By the definition of Aλ and the bijectivity of J we have I = J−1(λAλ) +Jλ.
Hence,

− V ∗〈Aλ(s,Xλ(s))−Aµ(s,Xµ(s)), Xλ(s)−Xµ(s)〉V
=− V ∗〈Aλ(s,Xλ(s))−Aµ(s,Xµ(s)), JλXλ(s)− JµXµ(s)〉V
−

V ∗

〈
Aλ(s,Xλ(s))−Aµ(s,Xµ(s)), J−1(λAλ(s,Xλ(s)))

〉
V
.

+
V ∗

〈
Aλ(s,Xλ(s))−Aµ(s,Xµ(s)), J−1(µAµ(s,Xµ(s)))

〉
V
.

(4.27)

By Proposition 3.19.v), we have Aλ(s,Xλ(s)) ∈ A(Jλ(s,Xλ(s))) and
Aµ(s,Xµ(s)) ∈ A(Jµ(s,Xµ(s))). Using the monotonicity of A and the fact
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that J−1 is the dualization map from V ∗ to V ∗∗ = V , (4.27) yields

− V ∗〈Aλ(s,Xλ(s))−Aµ(s,Xµ(s)), Xλ(s)−Xµ(s)〉V

≤− 1

λ V ∗

〈
λAλ(s,Xλ(s)), J−1(λAλ(s,Xλ(s)))

〉
V

+
∣∣
V ∗

〈
Aλ(s,Xλ(s)), J−1(µAµ(s,Xµ(s)))

〉
V

∣∣
− 1

µ V ∗

〈
µAµ(s,Xµ(s)), J−1(µAµ(s,Xµ(s)))

〉
V

+
∣∣
V ∗

〈
Aµ(s,Xµ(s)), J−1(λAλ(s,Xλ(s)))

〉
V

∣∣
≤− λ ‖Aλ(s,Xλ(s))‖2V ∗ + µ ‖Aλ(s,Xλ(s))‖V ∗ ‖Aµ(s,Xµ(s))‖V ∗
− µ ‖Aµ(s,Xµ(s))‖2V ∗ + λ ‖Aλ(s,Xλ(s))‖V ∗ ‖Aµ(s,Xµ(s))‖V ∗

≤λ
4
‖Aµ(s,Xµ(s))‖2V ∗ +

µ

4
‖Aλ(s,Xλ(s))‖2V ∗

(4.28)

where we have used the elementary inequality ab ≤ 1
4a

2 + b2 in the last step.
Again, we localize the Itô-integral and estimate it by the Burkholder–Davis–
Gundy inequality similarly to the proof of Proposition 4.15. After taking
the supremum over [0, T ] and the expectation in (4.26), we finally arrive at

E

[
sup
s∈[0,T ]

∥∥XN
λ (s)−XN

µ (s)
∥∥2

H

]
≤ C

∫ T

0
E

[
sup
r∈[0,s]

∥∥XN
λ (r)−XN

µ (r)
∥∥2

H

]
ds

+ µCH

∫ T

0
E
[
‖Aλ(s,Xλ(s))‖2V ∗

]
ds

+ λCH

∫ T

0
E
[
‖Aµ(s,Xµ(s))‖2V ∗

]
ds.

Since α
α−1 ≥ 2, by Corollary 4.13 we have

lim sup
λ→0

∫ T

0
E
[
‖Aλ(s,Xλ(s))‖2V ∗

]
ds <∞.

Hence, Bellman-Gronwall inequality implies that

E

[
sup
s∈[0,T ]

∥∥XN
λ (s)−XN

µ (s)
∥∥2

H

]
≤ C · (λ+ µ). (4.29)

Note that the constant C in (4.29) is independent of N,λ and µ. Now let
N →∞ to get (4.29) without N .

As a direct consequence of Proposition 4.15, the following convergence result
holds:

Corollary 4.16. There exists a process X ∈ L2([0, T ]×Ω;H)), being P -a.s.
continuous in H, such that

lim
λ→0

E

[
sup
t∈[0,T ]

‖Xλ(t)−X(t)‖2H

]
= 0. (4.30)
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Chapter 5

Multivalued Stochastic
Partial Differential Equations
Driven by Poisson Noise

In this chapter, we extend the results developed in Chapter 4 by adding
Poisson noise to the multivalued stochastic differential equation. Thanks
to the Lévy–Itô decomposition (cf. Theorem D.4), this covers a large class
of equations driven by Hilbert space-valued Lévy noise. Furthermore, we
replace the differential dt of the drift with a more general measure dN(t)
induced by a non-decreasing cádlág process N(t).

Again, existence and uniqueness are established via the Yosida approxima-
tion approach. The single-valued counterpart in [Gyö82] will provide us with
the existence and uniqueness of the solution to the approximating equations.

5.1 Variational Framework

Let (Ω,F , P ) be a complete probability space with normal filtration Ft, t ∈
[0,∞[. Let (V,H, V ∗) be a Gelfand triple (cf. Definition B.10) where
(H, 〈·, ·〉H) is a separable Hilbert space and V is a uniformly convex Ba-
nach space with a uniformly convex dual space V ∗. Let (U, 〈·, ·〉U ) be an
additional separable Hilbert space. L2(U,H) denotes the space of Hilbert-
Schmidt operators from U to H.

In addition, let (Z,Z,m) be a measure space with a σ-finite measure m, p be
a stationary (Ft)-Poisson point process Z with the characteristic measure
m and let µ be the Poisson random measure on [0, T ] × Z induced by p
with compensator dt ⊗ m (cf. Section 1.4). Let µ̄ := µ − dt ⊗ m denote
the compensated Poisson measure of µ. Here and in the following, we shall
denote the Lebesgue measure on R by dt.

Furthermore, let W (t) be a cylindrical Q-Wiener process on U with the
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covariance Q = I and let N(t) and V (t) be predictable non-decreasing real-
valued cádlág processes such that dV (t) ≥ dN(t) and dV (t) ≥ dt. (For
example, the process V (t) := N(t) + t satisfies these conditions.) Fix some
T ∈ [0,∞[. Throughout this chapter, let C > 0 be a universal constant
which may vary from line to line.

We consider multivalued stochastic partial differential equations of the fol-
lowing type:

dX(t) ∈ [B(t,X(t))−A(t,X(t))] dN(t) +D(t,X(t−)) dW (t)

+

∫
Z
G(t,X(t−), z)µ̄(dt, dz)

X(0) = X0.

(5.1)

Here, X0 is an F0-measurable random variable with X0 ∈ L2(Ω,F0, P ;H).

Remark 5.1. Setting G ≡ 0 and N(t) := t, we return to the situation in
Chapter 4.

We consider operators

A :[0, T ]× V × Ω→ 2V
∗
,

B :[0, T ]× V × Ω→ H,

D :[0, T ]× V × Ω→ L2(U,H),

G :[0, T ]× V × Z × Ω→ H,

such that B, D and G are progressively measurable. The multivalued op-
erator A is assumed to be progressively Effros-measurable, i.e. for every
t ∈ [0, T ], A is B([0, t])⊗ B(V )⊗Ft/B(V ∗)-Effros-measurable.

Definition 5.2. A solution to (5.1) on the interval [0, T ] is a couple (X, η)
of processes such that X ∈ L2([0, T ] × Ω, dV ⊗ P ;V ) and η ∈ L1([0, T ] ×
Ω, dN ⊗ P ;V ∗) and for P -a.e. ω ∈ Ω

i. X is cádlág,

ii. the processes X and
∫

]0,T ] η(s) dN(s) are (Ft)-adapted,

iii. for almost all t ∈ [0, T ]

η(t) ∈ A(t,X(t)),
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iv. for all t ∈ [0, T ], the following equation holds:

X(t) =X0 +

∫
]0,t]

(B(s,X(s))− η(s)) dN(s)

+

∫
]0,t]

D(s,X(s−)) dW (s)

+

∫
]0,t]

∫
Z
G(s,X(s−), z)µ̄(ds, dz),

X(0) =X0.

(5.2)

We define

%N (t) :=
dN(t)

dV (t)
and %t(t) :=

dt

dV (t)
.

Remark 5.3. Note that by Theorem D.7, %N and %t are well-defined as the
Radon-Nikodym derivatives satisfying

N(t)−N(0) =

∫
]0,t]

%N (s) dV (s) and t =

∫
]0,t]

%t(s) dV (s)

and %t, %N ∈ [0, 1] dV -a.s.. Furthermore, the predictable processes N and
V induce the measures dN and dV on ([0, T ]× Ω,PT ) (cf. Definition 2.7).
Therefore, the Radon-Nikodym Theorem implies that %N and %t are pre-
dictable.

Set

A := %NA, B := %NB, D := %
1/2
t D, and G := %

1/2
t G.

Let f be an (Ft)-adapted process with f ∈ L2([0, T ] × Ω, dV ⊗ P ). We
impose the following conditions:

(H1) (Maximal monotonicity) For all x, y ∈ V and all (t, ω) ∈ [0, T ]×Ω
we have

V ∗〈v − w, x− y〉V ≥ 0 ∀v ∈ A(t, x), ∀w ∈ A(t, y) (5.3)

and x 7→ A(t, x) is maximal.

(H2) (Lipschitz continuity) There exists CL ∈ [0,∞[ such that ∆V ·CL <
1 and

‖B(t, x)− B(t, y)‖H + ‖D(t, x)− D(t, y)‖L2(U,H)

+

(∫
Z
‖G(t, x, z)−G(t, y, z)‖2H m(dz)

)1/2

≤ CL ‖x− y‖H on Ω

for all t ∈ [0, T ] and x, y ∈ V .
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(H3) (Boundedness in 0)

‖B(t, 0)‖H + ‖D(t, 0)‖L2(U,H) +

(∫
Z
‖G(t, 0, z)‖2H m(dz)

)1/2

≤ f(t)

on Ω for all t ∈ [0, T ].

(H4) (Coercivity) There exists CC ∈]0,∞[ such that

V ∗〈v, x〉V ≥ CC ‖x‖
2
V + f(t)

for all (t, ω) ∈ [0, T ]× Ω, x ∈ V and v ∈ A(t, x).

(H5) (Boundedness) There exists CB ∈]0,∞[ such that∥∥A0(t, x)
∥∥
V ∗
≤ CB ‖x‖V + f(t)

on Ω for all x ∈ V, t ∈ [0, T ].

Remark 5.4. i. Conditions (H2) and (H3) imply a linear growth con-
dition on B, D and G, i.e.

‖B(t, x)‖2H + ‖D(t, x)‖2L2(U,H) +

∫
Z
‖G(t, x, z)‖2H m(dz) ≤ C ‖x‖2H + f2

for all x ∈ V on [0, T ]× Ω.

ii. We want to emphasize that the condition ∆V ·CL < 1 in (H2) implies
that the jumps of V and consequently the jumps of N are bounded.
This restriction is necessary in order to satisfy Conditions (G2) and
(G3) in Theorem 5.7 below.

5.2 The Yosida Approximation Approach

As in Chapter 4, we consider the family of approximating equations
dXλ(t) = [B(t,Xλ(t))− Aλ(t,Xλ(t))] dV (t) +D(t,Xλ(t−)) dW (t)

+

∫
Z
G(t,Xλ(t−), z)µ̄(dt, dz)

Xλ(0) = X0

(5.4)
with corresponding solutions {Xλ}λ>0, where Aλ is the Yosida approxima-
tion of A.

The main result of this chapter is stated in the following theorem.

Theorem 5.5. Let A, B, D and G satisfy Conditions (H1)-(H5). Then,
there exists a solution to Problem (5.1) in the sense of Definition 5.2 being
the weak limit of {Xλ}λ>0 in L2([0, T ]× Ω, dV ⊗ P ;V ).
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Again, we begin with the proof of the existence and uniqueness of the solu-
tion to the approximating equation (5.4).

Proposition 5.6. Suppose assumptions (H1) - (H5) hold, then there exists
a unique solution Xλ ∈ L2([0, T ]×Ω, dV ⊗P ;V ) to Problem (5.4) such that
t 7→ Xλ(t) is cádlág in H and

E

[
sup
t∈[0,T ]

‖Xλ(t)‖2H

]
<∞

for every λ > 0.

In order to prove this proposition, we will apply the main result in [Gyö82]:

Theorem 5.7. Let V ⊂ H ⊂ V ∗ be a Gelfand triple and U be a further
separable Hilbert space. Let M be a quasi-left-continuous square integrable
martingale taking values in U . Furthermore, let N and V be adapted non-
decreasing real-valued cádlág processes such that dV (t) ≥ dN(t) and dV (t) ≥
d〈M〉t. Define Qt := Q̃t

d〈M〉t
dV (t) where Q̃t is the martingale covariance of M .

Let

A : [0, T ]× Ω× V → V ∗,

B : [0, T ]× Ω,×V → L2(Q
1
2
t (U), H),

such that the operators A := AdN
dV and B := BQ

1
2
t are progressively measur-

able and for L, R, ε > 0 and g ∈ L1([0, T ]×Ω, dV ⊗ P ), X0 ∈ L2(Ω, P ;H)
such that ∆V L < 1 (for every ω ∈ Ω, t ∈ [0, T ]), the following assumptions
are satisfied P ⊗ dt-a.s.:

(G1) A is demicontinuous,

(G2) For every v1, v2 ∈ V

V ∗〈A(v1)−A(v2), v1 − v2〉V + ‖B(v1)− B(v2)‖2L2(U,H)

≤2L ‖v1 − v2‖2H ,

(G3) For every v ∈ V

2 V ∗〈A(v), v〉V + ‖B(v)‖2L2(U,H) ≤ g + 2L ‖v‖2H − ε ‖v‖
2
V ,

(G4) For every v ∈ V
‖A(v)‖2V ∗ ≤ g +R ‖v‖2V .
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Then, the equation for all t ∈ [0, T ]

X(t) = X0 +

∫
]0,t]

A(s,X(s)) dN(s) +

∫
]0,t]

B(s,X(s)) dM(s) P -a.s.

admits a unique strong solution X ∈ L2([0, T ] × Ω, dV ⊗ P ;V ) such that
t 7→ X(t) is (F)t-adapted, cádlág in H.

Proof. The uniqueness is given by [Gyö82, Theorem 2.9]. The existence
follows by [Gyö82, Theorem 2.10].

Remark 5.8. The existence and uniqueness result in [Gyö82] only covers
the case where the exponent α in Hypotheses (H4) and (H5) of Chapter 4
equals to 2. As a consequence, in this chapter we are restricted to examina-
tion of the case α = 2.

Proof of Proposition 5.6. By Theorem 2.24, the compensated Poisson ran-
dom measure µ̄ can be identified with a square integrable martingale Mµ̄

on a separable Hilbert space Ũ such that Ũ0 = Q
1
2 (Ũ), where Q is the

covariance operator of Mµ̄. By Theorem 2.24, Mµ̄ is also a Lévy process.
Thus, by Proposition D.6, Mµ̄ is quasi-left-continuous. Since by Proposition
1.10, W ∈ M2

T (U), it follows that the process M := W + Mµ̄ is a square
integrable martingale.

Furthermore, we define A := B− Aλ and B := D + IHG , where

IHG (t, x, ω)(ϕ) :=

∫
Z
G(t, x, z, ω)ϕ(z) m(dz), ϕ ∈ L2(Z,Z,m)

(cf. Proposition 2.25). In analogy to Proposition 4.7, it follows that as-
sumptions (H1) – (H5) imply (G1) – (G4) of Theorem 5.7. Hence, Theorem
5.7 is applicable and (5.4) admits a unique solution such that t 7→ Xλ(t) is
cádlág in H.

For the calculation of an a priori estimate, we will need the following Itô-
formula based upon [GK82].

Theorem 5.9. Let V be an adapted non-decreasing real-valued cádlág pro-
cess, α ∈]1,∞[, X0 ∈ L2(Ω,F0, P ;H) and let A ∈ L

α
α−1 ([0, T ] × Ω, dV ⊗

P ;V ∗), D ∈ L2([0, T ]×Ω, dt⊗P ;L2(U,H)) and G ∈ L2([0, T ]×Ω×Z, dt⊗
P ⊗m;H) all be progressively measurable. Define

X(t) := X0 +

∫
]0,t]

A(s) dV (s) +

∫
]0,t]

D(s) dW (s) +

∫
]0,t]

∫
Z
G(s, z)µ̄(ds, dz)

such that for a dV (t)⊗P -version we have X ∈ Lα([0, T ]×Ω, dV (t)⊗P ;V ).
Then X is an H-valued cádlág (Ft)-adapted process,

E

[
sup
t∈]0,T ]

‖X(t)‖2H

]
<∞
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and P -a.s., the following Itô-formula holds:

‖X(t)‖2H = ‖X0‖2H +

∫
]0,t]

(
2 V ∗〈A(s), X(s)〉V −∆V (s) ‖A(s)‖2H

)
dV (s)

+

∫
]0,t]
‖D(s)‖2L2(U,H) ds+

∫
]0,t]

∫
Z
‖G(s, z)‖2H µ(ds, dz) + 2M(t),

(5.5)

where

M(t) :=

∫
]0,t]
〈X(s−), D(s) dW (s)〉H +

∫
]0,t]

∫
Z
〈X(s−), G(s, z)〉H µ̄(ds, dz)

is a cádlág real-valued local martingale.

Proof. We apply [GK82, Theorem 2] with

h(s) :=

∫
]0,t]

D(s) dW (s) +

∫
]0,t]

∫
Z
G(s, z)µ̄(ds, dz).

and obtain that X is an H-valued cádlág process and P -a.s. the following
Itô formula holds:

‖X(t)‖2H = ‖X0‖2H +

∫
]0,t]

(
2 V ∗〈A(s), X(s)〉V −∆V (s) ‖A(s)‖2H

)
dV (s)

+

∫
]0,t]
〈X(s−), dh(s)〉H + [h]t,

where [h]t is the square bracket of h (cf. Definition D.11). Since D ∈
NW (0, T ) and X(t−) as an (Ft)-adapted cádlág process is predictable, it fol-
lows from Lemma 2.12 that the stochastic integral

∫
]0,t]〈X(s−), D(s) dW (s)〉H

is well-defined as a continuous real-valued local martingale. Furthermore,
since G ∈ N 2

µ̄(T,Z;H), the process ΦG : t 7→ 〈X(t−), G(t, ·)〉H is predictable
and

E

[∫
]0,T ]

∫
Z
|〈X(s−), G(s, z)〉H |2 m(dz)ds

]

≤ sup
t∈[0,T ]

‖X(t)‖2H E

[∫
]0,T ]

∫
Z
‖G(s, z)‖2H m(dz)ds

]
<∞.

Hence, ΦG ∈ N 2
µ̄(T,Z;R). By Proposition 2.20, we obtain that the integral∫

]0,t]
〈X(s−), dh(s)〉H

=

∫
]0,t]
〈X(s−), D(s) dW (s)〉H +

∫
]0,t]

∫
Z
〈X(s−), G(s, z)〉H µ̄(ds, dz),
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is well-defined and, by Proposition 2.16 and Proposition 2.19, is a real-valued
square integrable cádlág martingale.

Furthermore, since the stochastic integral ID(t) :=
∫

]0,t]D(s) dW (s) is con-
tinuous, from Lemma 2.13 we deduce

[ID(t)] = 〈ID(t)〉 =

∫
]0,t]
‖D(s)‖2L2(U,H) ds.

Therefore, by Corollary 2.23 we obtain

[h] =

∫
]0,t]
‖D(s)‖2L2(U,H) ds+

∫
]0,t]

∫
Z
‖G(s, z)‖2H µ(ds, dz).

Thus, (5.5) is valid.

It remains to prove that

E

[
sup
t∈]0,T ]

‖X(t)‖2H

]
<∞.

To this end, we observe that since ∆V (s) ≥ 0, using Hölder’s inequality
from (5.5) we infer that

‖X(t)‖2H

≤‖X0‖2H + 2

(∫
]0,T ]
‖A(s)‖

α
α−1

V ∗ dV (s)

)α−1
α
(∫

]0,T ]
‖X(s)‖αV dV (s)

) 1
α

+ 2

∫
]0,t]
〈X(s−), D(s) dW (s)〉H + 2

∫
]0,t]

∫
Z
〈X(s−), G(s, z)〉H µ̄(ds, dz)

+

∫
]0,T ]
‖D(s)‖2L2(U,H) ds+

∫
]0,T ]

∫
Z
‖G(s, z)‖2H µ(ds, dz).

(5.6)

Defining

τn := inf
{
t ∈ [0, T ]

∣∣ ‖X(t)‖H > n
}
∧ T ∀n ∈ N,

Theorem D.13 implies that τn is a stopping time. Note that τn → T for
n → ∞ P -a.s.. By the Burkholder–Davis–Gundy inequality (cf. Theorem
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D.14), Lemma 2.13 and Young’s inequality, we obtain

2 E

[
sup

t∈[0,τn]

∣∣∣∣∣
∫

]0,t]
〈X(s−), D(s) dW (s)〉H

∣∣∣∣∣
]

≤C E

[∫
]0,t]
〈X(s−), D(s) dW (s)〉H

]1/2

τn


≤C E

(∫
]0,τn]

‖X(s−)‖2H ‖D(s)‖2L2(U,H) ds

)1/2


≤1

4
E

[
sup

s∈[0,τn]
‖X(s)‖2H

]
+ CE

[∫
]0,T ]
‖D(s)‖2L2(U,H) ds

]
,

(5.7)

where we have used sups∈[0,t] ‖X(s−)‖2H ≤ sups∈[0,t] ‖X(s)‖2H , t ∈ [0, T ], in
the last step.

By Theorem D.14, Young’s inequality, Corollary 2.23 and Proposition 2.21,
we deduce

2E

[
sup

t∈[0,τn]

∣∣∣∣∣
∫

]0,t]

∫
Z
〈X(s−), G(s, z)〉H µ̄(ds, dz)

∣∣∣∣∣
]

≤CE

[∫
]0,·]

∫
Z
〈X(s−), G(s, z)〉H µ̄(ds, dz)

] 1
2

τn


≤CE

 sup
s∈[0,τn]

‖X(s)‖H

[∫
]0,·]

∫
Z
‖G(s, z)‖H µ̄(ds, dz)

] 1
2

τn


≤1

4
E

[
sup

s∈[0,τn]
‖X(s)‖2H

]
+ CE

[[∫
]0,·]

∫
Z
‖G(s, z)‖H µ̄(ds, dz)

]
τn

]

=
1

4
E

[
sup

s∈[0,τn]
‖X(s)‖2H

]
+ CE

[∫
]0,τn]

∫
Z
‖G(s, z)‖2H µ(dz, ds)

]

≤1

4
E

[
sup

s∈[0,τn]
‖X(s)‖2H

]
+ CE

[∫
]0,T ]

∫
Z
‖G(s, z)‖2H m(dz) ds

]
.

(5.8)

Furthermore, by Proposition 2.21 we have

E

[∫
]0,T ]

∫
Z
‖G(s, z)‖2H µ(ds, dz)

]
= E

[∫
]0,T ]

∫
Z
‖G(s, z)‖2H m(dz)ds

]
.

(5.9)
In (5.6), we take the supremum over [0, τn] and then apply the expectation.
After using (5.7), (5.8) and (5.9), and the integrability assumptions of A,
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D, G and X, we finally arrive at

E

[
sup

s∈[0,τn]
‖X(s)‖2H

]
≤ C,

where C is independent of τn. Letting n→∞, we conclude the proof.

Corollary 5.10. In the situation of Theorem 5.9, we have

E
[
‖X(t)‖2H

]
− E

[
‖X0‖2H

]
=

∫
]0,t]

E

[
2 V ∗〈A(s), X(s)〉V −∆V (s) ‖A(s)‖2H

]
dV (s)

+

∫
]0,t]

E

[
‖D(s)‖2L2(U,H) +

∫
Z
‖G(s,X(s), z)‖2H m(dz)

]
ds, t ∈]0, T ].

Proof. At first, we note that by Lemma 2.12 and Proposition 2.16 the process

M(t) :=

∫
]0,t]
〈X(s−), D(s) dW (s)〉H +

∫
]0,t]

∫
Z
〈X(s−), G(s, z)〉H µ̄(ds, dz)

is a real-valued local martingale. Let (τn)n∈N be a localizing sequence of M .
Then for all n ∈ N and t ∈ [0, T ], by Theorem 5.9 we have

E
[
‖X(t ∧ τn)‖2H

]
− E

[
‖X0‖2H

]
=

∫
]0,t]

E

[
1]0,τn](s)

(
2 V ∗〈A(s), X(s)〉V −∆V (s) ‖A(s)‖2H

)]
dV (s)

+

∫
]0,t]

E

[
1]0,τn](s)

(
‖D(s)‖2L2(U,H) +

∫
Z
‖G(s,X(s), z)‖2H m(dz)

)]
ds.

(5.10)

Since by Theorem 5.9, E
[
supt∈]0,T ] ‖X(t)‖2H

]
< ∞, and since the inte-

grands on the right-hand side of (5.10) are dt⊗ P -integrable, we can apply
Lebesgue’s dominated convergence theorem to obtain the assertion.

Applying Theorem 5.9 to the unique solution Xλ of the approximating equa-
tion, we obtain the following corollary:

Corollary 5.11. For every λ > 0, we have

E

[
sup
t∈[0,T ]

‖Xλ(t)‖2H

]
<∞.
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Now, we turn to the calculation of an a priori estimate. In the following, let
us abbreviate ζλ := B− Aλ.

Proposition 5.12. Assuming (H1) - (H5), then there exists a constant
C > 0 (independent of λ) such that

E

[
sup
t∈[0,T ]

‖Xλ(t)‖2H

]
+

∫
]0,T ]

E

[
‖Xλ(t)‖2V

+ ∆V (t) ‖ζλ(t,Xλ(t))‖2H
]
dV (t) < C

(5.11)

for all λ > 0.

Proof. Let Xλ be the unique solution of Problem (5.4). From Theorem 5.9
we deduce

‖Xλ(t)‖2H = ‖X0‖2H +

∫
]0,t]

2 V ∗〈B(s,Xλ(s))− Aλ(s,Xλ(s)), Xλ(s)〉V dV (s)

−
∫

]0,t]
∆V (s) ‖ζλ(s,Xλ(s))‖2H dV (s)

+ 2

∫
]0,t]
〈Xλ(s), D(s,Xλ(s)) dW (s)〉H

+ 2

∫
]0,t]

∫
Z
〈Xλ(s−), G(s,Xλ(s), z)〉H µ̄(ds, dz)

+

∫
]0,t]
‖D(s,Xλ(s))‖2L2(U,H) ds

+

∫
]0,t]

∫
Z
‖G(s,Xλ(s), z)‖2H µ(ds, dz).

(5.12)

Let
τn := inf

{
t ∈ [0, T ]

∣∣ ‖Xλ(t)‖H > n
}
∧ T, ∀n ∈ N,

be a stopping time (cf. Theorem D.13) such that limn→∞ τn = T P -a.s.
for all n ∈ N. In analogy to (5.7), by Theorem D.14, Lemma 2.13, Young’s
inequality and Remark 5.4, we obtain

2 E

[
sup

r∈[0,τn]

∣∣∣∣∣
∫

]0,r]
〈Xλ(s−), D(s,Xλ(s)) dW (s)〉H

∣∣∣∣∣
]

≤1

4
E

[
sup

s∈[0,τn]
‖Xλ(s)‖2H

]
+ C

∫
]0,τn]

E
[
‖D(s,Xλ(s))‖2L2(U,H)

]
dV (s)

≤1

4
E

[
sup

s∈[0,τn]
‖Xλ(s)‖2H

]
+ C

∫
]0,τn]

E
[
‖Xλ(s)‖2H + f2(s)

]
dV (s),

(5.13)
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where f ∈ L2([0, T ], dV ).

In analogy to (5.8), by Theorem D.14, Young’s inequality, Corollary 2.23,
Proposition 2.21 and Remark 5.4, we deduce

2E

[
sup

t∈[0,τn]

∣∣∣∣∣
∫

]0,t]

∫
Z
〈Xλ(s−), G(s,Xλ(s), z)〉H µ̄(ds, dz)

∣∣∣∣∣
]

≤1

4
E

[
sup

s∈[0,τn]
‖Xλ(s)‖2H

]
+ C

∫
]0,τn]

∫
Z
E
[
‖G(s,Xλ(s), z)‖2H

]
m(dz) ds

≤1

4
E

[
sup

s∈[0,τn]
‖Xλ(s)‖2H

]
+ C

∫
]0,τn]

E
[
‖Xλ(s)‖2H + f2(s)

]
dV (s).

(5.14)

Furthermore, by Proposition 2.21 and Remark 5.4 we have

E

[∫
]0,τn]

∫
Z
‖G(s,Xλ(s), z)‖2H µ(ds, dz) +

∫
]0,τn]

‖D(s,Xλ(s))‖2L2(U,H) ds

]

=E

[∫
]0,τn]

∫
Z
‖G(s,Xλ(s), z)‖2H m(dz) ds+

∫
]0,τn]

‖D(s,Xλ(s))‖2L2(U,H) ds

]

=E

[∫
]0,τn]

(∫
Z
‖G(s,Xλ(s), z)‖2H m(dz) + ‖D(s,Xλ(s))‖2L2(U,H)

)
dV (s)

]

≤C
∫

]0,τn]
E
[
‖Xλ(s)‖2H + f2(s)

]
dV (s).

(5.15)

By (H3) and Remark 5.4, we infer that

V ∗〈B(s,Xλ(s))− A(s,Xλ(s)), Xλ(s)〉V
≤− CC ‖Xλ(s)‖2V + C ‖Xλ(s)‖2H + f2(s)

(5.16)

for a.e. (ω, t) ∈ Ω× [0, T ]. Applying (5.13)-(5.16) to (5.12), we finally arrive
at

E

[
sup

s∈[0,τn]
‖Xλ(s)‖2H

]
+ CC E

[∫
]0,τn]

‖Xλ(s)‖2V dV (s)

]

≤2 E
[
‖X0‖2H

]
−
∫

]0,τn]
E
[
∆V (s) ‖ζλ(s,Xλ(s))‖2H

]
dV (s)

+ C

(∫
]0,τn]

sup
r∈[0,s]

E
[
‖Xλ(r)‖2H

]
dV (s) +

∫
]0,T ]

E
[
f2(s)

]
dV (s)

)
.
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Note that the subtracted term 1
2E
[
sups∈[0,τn] ‖Xλ(s)‖2H

]
is finite by the

choice of τn. Applying the Bellman-Gronwall inequality and Lebesgue’s
dominated convergence theorem for n→∞, we finish the proof.

Corollary 5.13.

lim sup
λ→0

∫
]0,T ]

E

[
‖Aλ(s,Xλ(s))‖2V ∗ + ‖B(s,Xλ(s))‖2V ∗

+ ‖D(s,Xλ(s))‖2L2(U,H) +

∫
Z
‖G(s,Xλ(s), z)‖2H m(dz)

]
dV (s) <∞.

Proof. Because D(A) = V and ‖Aλ(·, x)‖V ∗ ≤
∥∥A0(·, x)

∥∥
V ∗

for all x ∈ D(A)
on [0, T ], by (H5) and Remark 5.4 we have

‖Aλ(s,Xλ(s))‖2V ∗ + ‖B(s,Xλ(s))‖2V ∗ + ‖D(s,Xλ(s))‖2L2(U,H)

+

∫
Z
‖G(s,Xλ(s), z)‖2H m(dz) ≤ C

(
‖Xλ(s)‖2V + f2(s)

)
.

Hence, Proposition 5.12 implies the assertion.

5.3 Existence, Uniqueness and Convergence

In the existence proof, we are going to use the integration by parts–formula
for (discontinuous) semimartingales (see Step 2 in the proof of Theorem 5.5
below). In order to control the jump part of the solution, which occurs in
(5.36) below, we need the following strong convergence result.

Proposition 5.14. Suppose conditions (H1)-(H5) hold, then for any se-
quences (λ), (µ) such that λ, µ→ 0 there exists C > 0 such that

E

[
sup
s∈[0,T ]

‖Xλ(s)−Xµ(s)‖2H

]
≤ C · (λ+ µ).
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Proof. Applying Theorem 5.9 to Xλ(t)−Xµ(t) yields

‖Xλ(t)−Xµ(t)‖2H − ‖X0 −X0‖2H

=2

∫
]0,t]

V ∗〈B(s,Xλ(s))− B(s,Xµ(s)), Xλ(s)−Xµ(s)〉V dV (s)

− 2

∫
]0,t]

V ∗〈Aλ(s,Xλ(s))− Aµ(s,Xµ(s)), Xλ(s)−Xµ(s)〉V dV (s)

− 2

∫
]0,t]

∆V (s) ‖ζλ(s,Xλ(s))− ζµ(s,Xµ(s))‖2H dV (s)

+

∫
]0,t]
‖D(s,Xλ(s))− D(s,Xµ(s))‖2L2(U,H) dV (s)

+

∫
]0,t]

∫
Z
‖G(s,Xλ(s), z)−G(s,Xµ(s), z)‖2H m(dz) dV (s) +M(t),

(5.17)

where

M(t) :=

∫
]0,t]
〈Xλ(s−)−Xµ(s−),D(s,Xλ(s))− D(s,Xµ(s)) dW (s)〉H

+

∫
]0,t]

∫
Z
〈Xλ(s−)−Xµ(s−),G(s,Xλ(s))−G(s,Xµ(s))〉H µ̄(ds, dz).

By Remark 5.4, we have

V ∗〈B(s,Xλ(s))− B(s,Xµ(s)), Xλ(s)−Xµ(s)〉V
+ ‖D(s,Xλ(s))− D(s,Xµ(s))‖2L2(U,H)

+

∫
Z
‖G(s,Xλ(s), z)−G(s,Xµ(s), z)‖2H m(dz)

≤C ‖Xλ(s)−Xµ(s)‖2H .

Furthermore, by (4.28) we have

− V ∗〈Aλ(s,Xλ(s))− Aµ(s,Xµ(s)), Xλ(s)−Xµ(s)〉V

≤λ
4
‖Aµ(s,Xµ(s))‖2V ∗ +

µ

4
‖Aλ(s,Xλ(s))‖2V ∗ .

Again, we localize M(t) with the stopping time

τn := inf
{
t ∈ [0, T ]

∣∣ ‖X(t)‖H > n
}
∧ T, n ∈ N,

and estimate it by the Burkholder–Davis–Gundy inequality in a similar way
as we did in the proof of Proposition 5.12 and obtain

2E

[
sup

t∈]0,τn]
|M(t)|

]
≤1

2
E

[
sup

s∈]0,τn]
‖Xλ(s)−Xµ(s)‖2H

]

+ C

∫
]0,τn]

E
[
‖Xλ(s)−Xµ(s)‖2H + f2(s)

]
dV (s)
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for some f ∈ L2([0, T ] × Ω, dV ⊗ P ). Let Xn(t) := X(τn ∧ t), t ∈ [0, T ].
Since

∆V (s) ‖ζλ(s,Xλ(s))− ζµ(s,Xµ(s))‖2H ≥ 0,

after taking the supremum over [0, T ] and expectation in (5.17), we finally
arrive at

E

[
sup
s∈[0,T ]

∥∥Xn
λ (s)−Xn

µ (s)
∥∥2

H

]

≤C
(∫

]0,T ]
E

[
sup
r∈[0,s]

∥∥Xn
λ (r)−Xn

µ (r)
∥∥2

H

]
dV (s)

+ µ

∫
]0,T ]

E
[
‖Aλ(s,Xλ(s))‖2V ∗

]
dV (s)

+ λ

∫
]0,T ]

E
[
‖Aµ(s,Xµ(s))‖2V ∗

]
dV (s)

)
.

By Corollary 5.13, we have

lim sup
λ→0

∫ T

0
E
[
‖Aλ(s,Xλ(s))‖2V ∗

]
dV (s) <∞.

Consequently, Bellman-Gronwall inequality implies that

E

[
sup
s∈[0,T ]

∥∥Xn
λ (s)−Xn

µ (s)
∥∥2

H

]
≤ C · (λ+ µ). (5.18)

Note that the constant C in (5.18) is independent of n, λ and µ. Now let
n→∞ to get (5.18) without n.

Corollary 5.15. There exists a process X ∈ L2([0, T ]× Ω;H) such that

lim
λ→0

E

[
sup
t∈[0,T ]

‖Xλ(t)−X(t)‖2H

]
= 0. (5.19)

For the proof of Theorem 5.5, we also need the following lemma:

Lemma 5.16. Let β ∈ [0, CL] with CL as defined in (H2). Then, there
exists a unique non-increasing process θ such that

dθ(t) = −βθ(t−) dV (t), θ(0) = 1,

i.e.

θ(t) = 1− β
∫

]0,t]
θ(s−) dV (s). (5.20)

Furthermore, θ(t) ∈ [0, 1] for all t ∈ [0, T ].
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Proof. Let X := −βV . Since V is an increasing process, the process X :=
−βV is clearly a semimartingale. Thus, Theorem D.15 implies that its
Dolean exponential defined by

θ(t) := exp(X(t)− 1

2
[X](t))

∏
s≤t

(1 + ∆X(s))e−∆X(s)+ 1
2

(∆X(s))2
(5.21)

satisfies

θ(t) = 1 +

∫
]0,t]

θ(s−) dX(s).

Furthermore, since X is decreasing, (5.21) implies that θ is also decreasing.
Since θ(0) = 1, we conclude that θ ≤ 1 ∀t ≥ 0. Since CL∆V < 1, from
(5.21), we infer that θ ≥ 0 ∀t ≥ 0.

Proof of Theorem 5.5

We divide the proof into several steps.

Step 1 (Weak convergence).

By Corollary C.8, the spaces L2([0, T ]× Ω, dV ⊗ P ;L2(U,H)), L2([0, T ]×
Ω, dV ⊗ P ;V ), L2([0, T ]× Ω, dV ⊗ P ;V ∗) are reflexive. Hence, by Propo-
sition 5.12, Corollary 5.13 and the Banach-Alaoglu-Theorem, yields the fol-
lowing convergences along some subsequence:

Xλ → X weakly in L2([0, T ]× Ω, dV ⊗ P ;V )

and weakly star in L2(Ω, P ;L∞([0, T ], dV ;H)),
(5.22)

Aλ(·, Xλ)→ η∗ weakly in L2([0, T ]× Ω, dV ⊗ P ;V ∗), (5.23)

B(·, Xλ)→ B̄ weakly in L2([0, T ]× Ω, dV ⊗ P ;V ∗), (5.24)

D(·, Xλ)→ D̄ weakly in L2([0, T ]× Ω, dV ⊗ P ;L2(U,H)), (5.25)

G(·, Xλ, ·)→ Ḡ weakly in L2([0, T ]× Ω× Z, dV ⊗ P ⊗m;H),
(5.26)

∆V ζλ(·, Xλ)→ ∆V ζ̄ weakly in L2([0, T ]× Ω, dV ⊗ P ;H). (5.27)

Claim 1.

ζ̄ = B̄− η∗ dV ⊗ P -a.e..
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Proof. By the convergences (5.23), (5.24) and (5.27), for any ϕ ∈ L∞([0, T ]×
Ω, V ) and some subsequence λ we have

E

[∫
]0,T ]

V ∗

〈
∆V (t)

(
ζ̄(t)− (B̄(t)− η∗(t))

)
, ϕ(t)

〉
V
dV (t)

]

= lim
λ→0

E

[∫
]0,T ]
〈∆V (t)ζλ(t,Xλ(t)), ϕ(t)〉H dV (t)

]

− lim
λ→0

E

[∫
]0,T ]

∆V (t) V ∗〈B(t,Xλ(t))− Aλ(t,Xλ(t), ϕ(t)〉V dV (t)

]
=0.

Claim 2. There exist processes D̄ ∈ L2([0, T ] × Ω, dt ⊗ P ;L2(U,H)), Ḡ ∈
L2([0, T ]×Ω×V, dt⊗P ⊗m;H) and B̄, η ∈ L2([0, T ]×Ω, dN ⊗P, V ∗) such

that D̄%
1
2
t = D̄, Ḡ = %

1
2
t Ḡ, B̄ = %N B̄ and η∗ = %Nη dV ⊗ P -a.s..

Proof. Let ϕ ∈ L∞([0, T ]× Ω, dV (t)⊗ P, V ). By (5.24), we have

E

[∫
]0,T ]

V ∗

〈
B̄(t), ϕ(t)

〉
V
dV (t)

]

= lim
λ→0

E

[∫
]0,T ]

V ∗〈%N (t)B(t,Xλ(t)), ϕ(t)〉V dV (t)

]

= lim
λ→0

E

[∫
]0,T ]

V ∗〈B(t,Xλ(t)), ϕ(t)〉V dN(t)

]
.

(5.28)

Since the left-hand side of (5.28) is finite, there exists some B̄ ∈ L2([0, T ]×
Ω, dN(t) ⊗ P,H) such that B(·, Xλ) ⇀ B̄ along some subsequence in
L2([0, T ]× Ω, dN(t)⊗ P, V ). Therefore, using (5.28), it follows that

E

[∫
]0,T ]

V ∗

〈
B̄(t), ϕ(t)

〉
V
dV (t)

]
=E

[∫
]0,T ]

V ∗

〈
B̄(t), ϕ(t)

〉
V
dN(t)

]

=E

[∫
]0,T ]

V ∗

〈
%N (t)B̄(t), ϕ(t)

〉
V
dV (t)

]
.

Hence, B̄ = %N B̄ dV ⊗ P -a.s..
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Similarly, by (5.26), for ϕ ∈ L2([0, T ]× Ω× Z, dV (t)⊗ P ⊗m;H) we have

E

[∫
]0,T ]

∫
Z
〈Ḡ(t), ϕ(t)〉H m(dz)dV (t)

]

= lim
λ→0

E

[∫
]0,T ]

∫
Z
〈G(t,Xλ(t)), ϕ(t)〉H%t(t)

1
2 m(dz)dV (t)

]

≥ lim
λ→0

E

[∫
]0,T ]

∫
Z
〈G(t,Xλ(t)), ϕ(t)〉H%t(t) m(dz)dV (t)

]

= lim
λ→0

E

[∫
]0,T ]

∫
Z
〈G(t,Xλ(t)), ϕ(t)〉H m(dz) dt

]
,

where the inequality is valid since %t(t) ∈ [0, 1], t ∈ [0, T ]. Therefore, there
exists some Ḡ ∈ L2([0, T ] × Ω × Z, dt ⊗ P ⊗ m;H) such that along some
subsequence

G(·, Xλ)→ Ḡ weakly in L2([0, T ]× Ω× Z, dt⊗ P ⊗m;H) (5.29)

and

E

[∫
]0,T ]

∫
Z
〈Ḡ(t), ϕ(t)〉H%t(t)dV (t)

]

= lim
λ→0

E

[∫
]0,T ]

∫
Z
〈G(t,Xλ(t)), ϕ(t)〉H%t(t)dV (t)

]

= lim
λ→0

E

[∫
]0,T ]

∫
Z
〈G(t,Xλ(t)), ϕ(t)〉H%t(t)

1
2dV (t)

]

=E

[∫
]0,T ]

∫
Z
〈Ḡ(t)%t(t)

1
2 , ϕ(t)〉HdV (t)

]
.

Hence Ḡ%t = Ḡ%
1
2
t dV (t) ⊗ P -a.s.. Since %t 6= 0 dt-a.s., it follows that

Ḡ%
1
2
t = G dV (t)⊗ P -a.s.. The rest of the claim can be proved analogously.

Claim 3.∫
]0,·]

∫
Z
G(s,Xλ(s), z)µ̄(ds, dz)→

∫
]0,·]

∫
Z
Ḡ(s, z)µ̄(ds, dz) (5.30)

and ∫
]0,·]

D(s,Xλ(s)) dW (s)→
∫

]0,·]
D̄(s) dW (s), (5.31)

both weakly in L∞([0, T ], dt;L2(Ω, P ;H)).
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Proof. Defining

Φ(g)(t) :=

∫
]0,t]

∫
Z
g(s, z)µ̄(ds, dz),

for any g ∈ L2([0, T ]×Ω×Z, dV ⊗P ⊗m;H), by the isometric property of
the Poisson integral (cf. Proposition 2.16) it follows that

‖Φ(g)‖2L∞([0,T ],dt;L2(Ω,P ;H)) = sup
t∈[0,T ]

E

∥∥∥∥∥
∫

]0,t]

∫
Z
g(s, z)µ̄(ds, dz)

∥∥∥∥∥
2

H


=E

[∫
]0,T ]

∫
Z
‖g(s, z)‖2H m(dz)ds

]
= ‖g‖2L2([0,T ]×Ω×Z,dt⊗P⊗m;H) .

Hence Φ is continuous from L∞([0, T ], dt;L2(Ω, P ;H)) to L2([0, T ] × Ω ×
Z, dt⊗P ⊗m;H). In particular, it is weakly continuous, since it is linear (cf.
Proposition 2.20). Consequently, from (5.29) it follows that Φ(G(·, Xλ))→
Φ(Ḡ) weakly in L∞([0, T ], dt;L2(Ω, P ;H)). Using the isometric property of
the Wiener integral (cf. Theorem 2.8) and its linearity (cf. Lemma 2.11),
we obtain the second assertion.

Note that the (Ft)-adaptedness of
∫ t

0 η(s) ds is obtained in the same way as
in the proof of Theorem 4.5.

Step 2. (X, η) satisfy (5.2) P -a.s..

Take ϕ ∈ L∞([0, T ] × Ω) and v ∈ V . Using (5.4), (5.22) - (5.26), (5.30),

85



(5.31), Claim 2 and Fubini’s theorem, we obtain

E

[∫
]0,T ]

V ∗〈X(t), ϕ(t)v〉V dV (t)

]

= lim
λ→0

E

[∫
]0,T ]

V ∗〈Xλ(t), ϕ(t)v〉V dV (t)

]

= lim
λ→0

E

[ ∫
]0,T ]

V ∗〈X0, ϕ(t)v〉V dV (t)

+

∫
]0,T ]

∫
]0,t]

V ∗〈B(s,Xλ(s))− Aλ(s,Xλn(s)), ϕ(t)v〉V dV (s)dV (t)

+

∫
]0,T ]

〈∫
]0,t]

D(s,Xλ(s)) dW (s), ϕ(t)v

〉
H

dV (t)

+

∫
]0,T ]

〈∫
]0,t]

∫
Z
G(s,Xλ(s), z)µ̄(ds, dz), ϕ(t)v

〉
H

dV (t)

]
=E

[ ∫
]0,T ] V ∗

〈
X0 +

∫
]0,t]

(
B̄(s)− η(s)

)
dN(s)

+

∫
]0,t]

D̄(s) dW (s) +

∫
]0,t]

∫
Z
Ḡ(s, z)µ̄(ds, dz), ϕ(t)v

〉
V

dV (t)

]
.

(5.32)

Consequently,

X(t) = X0 +

∫
]0,t]

(
B̄(s)− η(s)

)
dN(s) +

∫
]0,t]

D̄(s) dW (s)

+

∫
]0,t]

∫
Z
Ḡ(s, z)µ̄(ds, dz) P − a.s..

(5.33)

Now, Theorem 5.9 applies and we obtain that Xt is an H-valued, (Ft)-
adapted cádlág process.

It remains to show that

B̄ = B(·, X), D̄ = D(·, X) and Ḡ(·, z) = G(·, X, z) ∀z ∈ Z, dV (t)⊗P −a.e..
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To this end we first observe that by Corollary 5.10, we have

E
[
‖X(t)‖2H

]
− E

[
‖X0‖2H

]
=E

[ ∫
]0,t]

(
2
V ∗

〈
B̄(s)− η∗(s), X(s)

〉
V
−∆V (s)

∥∥B̄(s)− η∗(s)
∥∥2

H

)
dV (s)

+

∫
]0,t]

(∥∥D̄(s)
∥∥2

L2(U,H)
+

∫
Z

∥∥Ḡ(s, z)
∥∥2

H
m(dz)

)
ds

]
=E

[ ∫
]0,t]

2
V ∗

〈
B̄(s)− η∗(s), X(s)

〉
V
−∆V (s)

∥∥B̄(s)− η∗(s)
∥∥2

H

+
∥∥D̄(s)

∥∥2

L2(U,H)
+

∫
Z

∥∥Ḡ(s, z)
∥∥2

H
m(dz)dV (s)

]

Let θ be the solution of the equation dθ(t) = −βθ(t−)dV (t) with θ(0) = 1
(cf. Lemma 5.16) such that θ(t) ∈ [0, 1] for all t ∈ [0, T ]. By (5.33), ‖X(t)‖2H
is a semimartingale. Furthermore, θ is a process of finite variation. Thus,
we can apply the integration by parts–formula for discontinuous processes
(cf. Proposition D.16) for M := ‖X‖2H and A := θ and obtain

E
[
θ(t) ‖X(t)‖2H − ‖X0‖2H

]
=E

[∫
]0,t]
‖X(s−)‖2H dθ(s) +

∫
]0,t]

θ(s) d
(
‖X(s)‖2H

)]

=E

[ ∫
]0,t]

(
− βθ(s−) ‖X(s−)‖2H

+ θ(s)
(

2
V ∗

〈
B̄(s)− η∗(s), X(s)

〉
V
−∆V (s)

∥∥B̄(s)− η∗(s)
∥∥2

H

+
∥∥D̄(s)

∥∥2

L2(U,H)
+

∫
Z

∥∥Ḡ(s, z)
∥∥2

H
m(dz)

))
dV (s)

]
=E

[ ∫
]0,t]

θ(s)
(

2
V ∗

〈
B̄(s)− η∗(s), X(s)

〉
V
−∆V (s)

∥∥B̄(s)− η∗(s)
∥∥2

H

+
∥∥D̄(s)

∥∥2

L2(U,H)
+

∫
Z

∥∥Ḡ(s, z)
∥∥2

H
m(dz)− β ‖X(s−)‖2H

)
+ ∆θ(s)β ‖X(s−)‖2H dV (s)

]
,

(5.34)

where we have used θ(t−) = θ(t)−∆θ(t) in the last step. Analogously, we
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obtain

E
[
θ(t) ‖Xλ(t)‖2H

]
− E

[
‖X0‖2H

]
=E

[ ∫
]0,t]

(
θ(s)

(
2 V ∗〈B(s,Xλ(s))− Aλ(s,Xλ(s)), Xλ(s)〉V

−∆V (s) ‖B(s,Xλ(s))− Aλ(s,Xλ(s))‖2H + ‖D(s,Xλ(s))‖2L2(U,H)

+

∫
Z
‖G(s,Xλ(s), z)‖2H m(dz)− β ‖Xλ(s−)‖2H

)
+ ∆θ(s)β ‖Xλ(s−)‖2H

)
dV (s)

]
.

Let φ ∈ L2([0, T ]×Ω, dV ⊗P ;V ). Using a2 = (a−b)2−b2 +2ab, we deduce

E
[
θ(t) ‖Xλ(t)‖2H

]
− E

[
‖X0‖2H

]
+ 2E

[ ∫
]0,t]

θ(s) V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V dV (s)

]
=I1 + I2 + I3 + I4,

(5.35)

where

I1 :=E

[ ∫
]0,t]

θ(s)
(

2 V ∗〈B(s,Xλ(s))− B(s, φ(s)), Xλ(s)− φ(s)〉V

+ ‖D(s,Xλ(s))− D(s, φ(s))‖2L2(U,H)

+

∫
Z
‖G(s,Xλ(s), z)−G(s, φ(s), z)‖2H m(dz)

− β ‖Xλ(s−)− φ(s−)‖2H
)
dV (s)

]
,

I2 :=E

[ ∫
]0,t]

θ(s)
(

2 V ∗〈B(s, φ(s)), Xλ(s)〉V

+ V ∗〈B(s,Xλ(s))− B(s, φ(s)), φ(s)〉V −‖D(s, φ(s))‖2L2(U,H)

+ 2〈D(s,Xλ(s)),D(s, φ(s))〉L2(U,H)

−
∫
Z
‖G(s, φ(s), z)‖2H + 2〈G(s,Xλ(s), z),G(s, φ(s), z)〉H m(dz)

− 2β〈Xλ(s−), φ(s−)〉H + β ‖φ(s−)‖2H
)
dV (s)

]
,

I3 :=− E
[ ∫

]0,t]
θ(s)∆V (s) ‖B(s,Xλ(s))− Aλ(s,Xλ(s))‖2H dV (s)

]
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and

I4 :=E

[ ∫
]0,t]

∆θ(s)β ‖Xλ(s−)‖2H dV (s)

]
.

Since

−β ‖Xλ(s−)− φ(s−)‖2H ≤ −β ‖Xλ(s)− φ(s)‖2H + β ‖∆Xλ(s)−∆φ(s)‖2H ,

Remark 5.4 implies that

I1 ≤ E

[∫
]0,t]

θ(s)β ‖∆Xλ(s)−∆φ(s)‖2H dV (s)

]
. (5.36)

By the L2-convergence of Xλ (cf. Corollary 5.15), it follows that

lim inf
λ→0

I1 ≤E

[∫
]0,t]

θ(s)β ‖∆X(s)−∆φ(s)‖2H dV (s)

]
.

Using the convergence properties (5.22) - (5.26), we deduce

lim inf
λ→0

I2

≤E
[ ∫

]0,t]
θ(s)

(
2 V ∗〈B(s, φ(s)), X(s)〉V +

V ∗

〈
B̄(s)− B(s, φ(s)), φ(s)

〉
V

− ‖D(s, φ(s))‖2L2(U,H) + 2〈D̄(s),D(s, φ(s))〉L2(U,H)

−
∫
Z
‖G(s, φ(s), z)‖2H + 2〈Ḡ(s, z),G(s, φ(s), z)〉H m(dz)

− 2β〈X(s−), φ(s−)〉H + β ‖φ(s−)‖2H
)
dV (s)

]
,

Furthermore, (5.27) and The Banach-Steinhaus theorem imply that

lim inf
λ→0

I3 ≤ −E
[ ∫

]0,t]
θ(s)∆V (s) ‖B(s)− η∗(s)‖2H dV (s)

]
.

Since θ(s) is an non-increasing process, we have ∆θ(s) ≤ 0. Thus, (5.22)
and the Banach-Steinhaus theorem imply that

lim inf
λ→0

I4 ≤ E
[ ∫

]0,t]
∆θ(s)β ‖X(s−)‖2H dV (s)

]
.
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Altogether, we arrive at

lim inf
λ→0

E
[
θ(t) ‖Xλ(t)‖2H

]
− E

[
‖X0‖2H

]
+ lim sup

λ→0
E

[ ∫
]0,t]

θ(s)
(

2 V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V
)
dV (s)

]
≤E
[ ∫

]0,t]
θ(s)

(
2 V ∗〈B(s, φ(s)), X(s)〉V +

V ∗

〈
B̄(s)− B(s, φ(s)), φ(s)

〉
V

− ‖D(s, φ(s))‖2L2(U,H) + 2〈D̄(s),D(s, φ(s))〉L2(U,H)

−
∫
Z
‖G(s, φ(s), z)‖2H + 2〈Ḡ(s, z),G(s, φ(s), z)〉H m(dz)

− 2β〈X(s−), φ(s−)〉H + β ‖φ(s−)‖2H
−∆V (s)

∥∥B̄(s)− η∗(s)
∥∥2

H

)
+ θ(s)β ‖∆X(s)−∆φ(s)‖2H + ∆θ(s)β ‖X(s−)‖2H dV (s)

]
.

(5.37)

In analogy to the derivation of (4.19), for ψ ∈ L∞([0, T ], dV (t)) we obtain

E

[∫
]0,T ]

ψ(t) ‖X(t)‖2H dV (t)

]
≤ lim inf

λ→0
E

[∫
]0,T ]

ψ(t) ‖Xλ(t)‖2H dV (t)

]
.

(5.38)
Combining (5.34) and (5.37) with (5.38), we deduce

lim sup
λ→0

2E

[ ∫
]0,T ]

ψ(t)

(∫
]0,t]

θ(s) V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V

− V ∗〈η(s), X(s)〉V dV (s)

)
dV (t)

]
≤E
[ ∫

]0,T ]
ψ(t)

(∫
]0,t]

θ(s)

(
− 2

V ∗

〈
B̄(s)− B(s, φ(s)), X(s)− φ(s)

〉
V

−
∥∥D(s, φ(s))− D̄(s)

∥∥2

L2(U,H)
+ β ‖X(s)− φ(s)‖2H

−
∫
Z

∥∥G(s, φ(s), z)− Ḡ(s, z)
∥∥2

H
m(dz)

+ β ‖∆X(s)−∆φ(s)‖2H
)
dV (s)

)
dV (t)

]
.

(5.39)

Following the argumentation towards (4.22), we see that the left-hand side
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of (5.39) is greater or equal to 0. Hence, we arrive at

0 ≥E

[∫
]0,T ]

ψ(t)

(∫
]0,t]

θ(s)

(
2
V ∗

〈
B̄(s)− B(s, φ(s)), X(s)− φ(s)

〉
V
.

+
∥∥D(s, φ(s))− D̄(s)

∥∥2

L2(U,H)
− β ‖X(s)− φ(s)‖2H

+

∫
Z

∥∥G(s, φ(s), z)− Ḡ(s, z)
∥∥2

H
m(dz)

− β ‖∆X(s)−∆φ(s)‖2H
)
dV (s)

)
dV (t)

]
(5.40)

Setting φ = X, we conclude that D̄(s) = D(s,X(s)) and
Ḡ(s, z) = G(s,X(s), z). Setting φ = X − εφ̃, ε > 0, φ̃ ∈ L∞([0, T ] ×
Ω, dV ⊗ P, V ), by Lebesgue’s dominated convergence theorem, we deduce
that B̄ = B(·, X) (cf. Step 2 of the proof of Theorem 4.5).

Step 3.
η ∈ A(·, X) dV ⊗ P -a.s..

Proof. The proof that η∗ ∈ A(·, X) is analogous to Step 3 of the proof of
Theorem 4.5. Note that setting φ = X in (5.39), we have that

lim sup
λ→0

E

[∫ T

0
V ∗〈Aλ(s,Xλ(s)), Xλ(s)〉V dV (s)

]
≤E

[∫ T

0
V ∗〈η(s), X(s)〉V dV (s)

]
.

(5.41)

Thus, by Hölder’s inequality, Claim 3 of Step 3 in the proof of Theorem 4.5
follows.

We have finally proved Theorem 5.5. �

Analogously to Proposition 4.14, we obtain the following uniqueness result.

Proposition 5.17. The solution of (5.1) is path-wise unique in the follow-
ing way: For every two solutions X1 and X2 of (5.1) and some constant
C > 0 we have

E
[
‖X1(t)−X2(t)‖2H

]
≤ eCtE

[
‖X1(0)−X2(0)‖2H

]
∀t ∈ [0, T ].

91



92



Chapter 6

Applications

We present some applications to the existence and uniqueness results of the
solution to multivalued stochastic differential equations discussed in Chapter
4 and Chapter 5.

6.1 Single-valued Case

The case of single-valued stochastic differential equations is covered by the
multivalued framework: Let (V,H, V ∗) be a Gelfand triple and A be a single-
valued hemicontinuous monotone operator defined on the whole domain V .
Then (5.1) turns into the following equation:

dX(t) = [B(t,X(t))−A(t,X(t))] dN(t) +D(t,X(t−)) dW (t)

+

∫
Z
G(t,X(t−), z)µ̄(dt, dz)

X(0) = X0.

By Corollary 3.6, the hemicontinuity and monotonicity assumptions of the
single-valued operator A imply that A is maximal monotone. Consequently,
we are in the framework of Chapters 4 and 5.

Let us compare the framework for the Wiener case developed in Chapter
4 with the results in [PR07] in more detail. Suppose [PR07, Hypothe-
ses (H1)-(H4)] are valid for an appropriate exponent α ∈]1, 2], the diffu-
sion operator σ obeys a Lipschitz condition and additionally ‖b(·, x)‖V ∗ ≤
C
(
‖x‖α−1

V + 1
)
, C > 0, is valid. Then, conditions (H1)-(H5) are satisfied.

In particular, all examples of the single-valued case in [PR07, Section 4.1],
such as the stochastic reaction diffusion equation and the (single-valued)
stochastic porous media equation, are covered by the multivalued frame-
work. However, in this framework we are only able to treat the case in
which the exponent is α ∈]1, 2] in (H4), (H5) compared to the single-valued
case [PR07] where α ∈]1,∞[.
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6.2 The Subdifferential Operator

Let (V,H, V ∗) be a Gelfand triple. A function ϕ : V → R̄ :=] −∞,∞] is
called proper and convex on V if it is not identically +∞ and satisfies the
inequality

ϕ((1− λ)v + λw) ≤ (1− λ)ϕ(v) + λϕ(w) ∀v, w ∈ V, ∀λ ∈ [0, 1].

The function ϕ : V → R̄ is said to be lower semicontinuous on V if

lim inf
u→v

ϕ(u) ≥ ϕ(v), ∀v ∈ V.

For a lower semicontinuous, convex, proper function ϕ : V → R̄, the map-
ping ∂ϕ : V → 2V

∗
defined by

∂ϕ(v) = {v∗ ∈ V ∗|ϕ(v) ≤ ϕ(w) + V ∗〈v
∗, v − w〉V , ∀w ∈ X}

is called the subdifferential of ϕ.

Proposition 6.1. For a lower semicontinuous, convex, proper function ϕ
the subdifferential ∂ϕ : V → 2V

∗
is maximal monotone.

Proof. See [Bar10], Theorem 2.8].

Consequently, assuming appropriate boundedness and coercivity conditions
(H4) and (H5) for ∂ϕ, the main results in Chapters 4 and 5 yield the exis-
tence and uniqueness of the solution to the following equation:

dX(t) ∈ (b(t,X(t))− ∂ϕ(X(t))) dt+ σ(t,X(t)) dW (t)

+

∫
Z
G(t,X(t−), z)µ̄(dt, dz),

X(0) = X0.

.

If ϕ is Gâtaux differentiable on V with the Gâtaux differential ∇ϕ, then
∂ϕ = ∇ϕ (see [Bar10, Section 1.2, Example 3]). In this case, (H4) and (H5)
turn into

V ∗〈∇ϕ(x), x〉V ≥ c1 ‖x‖αV + c2 c1 ∈]0,∞[, c2 ∈ [0,∞[, ∀x ∈ V

and

‖∇ϕ(x)‖V ∗ ≤ c3 ‖x‖α−1
V + c4 c3 ∈]0,∞[, c4 ∈ [0,∞[, ∀x ∈ V,

where α ∈]1, 2] (α = 2 for Chapter 5 respectively).
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Remark 6.2. The reflection case where the drift is only of bounded varia-
tion (see eg. [Cép98], [Zha07]) is not covered by the developed framework.
The reason is that for a reflection on a closed convex subset K ( V , the
corresponding subdifferential of the indicator function IK defined by

IK(x) :=

{
0, x ∈ K,
+∞, x 6∈ K,

is only defined on K (cf. [Bar10, Section 1.2 Example 2]) and not on the
whole space V . However, this assumption is explicitly needed in the frame-
work of Chapters 4 and 5.

6.3 Multivalued Stochastic Porous Media Equa-
tion

Finally, we want to examine the multivalued stochastic porous media equa-
tion as an explicit example of a multivalued stochastic partial differential
equation. First, we motivate the stochastic porous media equation from
a physical point of view. Then, we introduce the necessary mathematical
framework and particularly define an appropriate Gelfand triple and finally
apply the existence and uniqueness result of Chapters 4 and 5.

6.3.1 Motivation

The porous media equation originally describes the flow of an ideal gas in
a homogeneous porous medium (cf. [Aro86], [Váz07]). In a macroscopic
model, this flow can be formulated in terms of the density %(x, t), the pres-
sure p(x, t) and velocity ~v(x, t). The quantities are related by the following
three laws:

i. The law of mass balance relates the change of density in time to the
velocity,

ε
∂%

∂t
+ div (%~v) = 0,

where ε ∈]0, 1[ is the porosity of the medium, i.e. the volume fraction
available to the gas.

ii. Darcy’s law describes the dynamics of flows through porous media

~v = −k
µ
∇p,

where k is the permeability of the medium and µ is the dynamic vis-
cosity.
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iii. The state equation of an ideal gas describes the relation between the
pressure p and the density %,

p =
R

M
T%γ .

Here, T is the temperature, R is the ideal gas constant, M the molar
mass and γ ≥ 1 the so-called polytropic exponent. (One assumes γ = 1
for isotermal processes and γ > 1 for adiabatic ones.)

Combining these three laws, we arrive at the classical porous media equation

∂%

∂t
= C∆(%m) (6.1)

with exponent m := γ + 1, where C is a constant independent of x and t.

Scaling out the constant by defining a new time t′ = Ct and taking into
account certain random phenomena, we arrive at the following prototype of
the stochastic porous media equation:

dX(t) = ∆(|X(t)|m−1X(t)) dt+ σ(t,X(t)) dN(t). (6.2)

Here, the random forcing term σ(t,X(t)) dN(t) can be Wiener noise or more
generally have certain jumps (cf. [BM09]).

Extension of the Stochastic Porous Media Equation

The stochastic porous media equation (6.2) can be generalized in several
reasonable ways:

i. In the above model, the exponent m is always equal to or larger than
2. However, from a mathematical point of view, the difference to
considering equations of type (6.1) with m ≥ 1 is very small. One
hase to consider, though, that if m ∈]0, 1[, the diffusion coefficient
D(x) = |x|m−1 becomes singular at the point x = 0. The so-called fast
diffusion equation owes its name to its behavior in the neighborhood
of 0 (cf. [BDPR09a]).

ii. A further extension is established by the so called generalized stochastic
porous media equation:

dX(t) = ∆(Ψ(X(t))) dt+ σ(t,X(t)) dN(t).

Here, the growth behavior of the drift is enveloped by an arbitrary
continuous and increasing function Ψ : R→ R.
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iii. In some cases, the growth function Ψ reveals certain discontinuities,
as occurring in the case of self-organized criticality (cf. [BDPR09b]).
In order to overcome such a difficulty, one can “fill the gaps” of the
graph of the growth function at points of discontinuity. The rigorous
method is to replace the growth function Ψ by its essential extension
Ψ̄ : R → 2R (cf. Section 3.4). We finally arrive at the following
multivalued stochastic differential equation:

dX(t) ∈ ∆(Ψ(X(t))) dt+ σ(t,X(t)) dN(t).

6.3.2 Mathematical Background

As the main reference, we cite [PR07].

Let n ∈ N, n ≥ 3, Λ ⊂ Rn be open, let dξ be the Lebesgue measure on Λ

and let p ∈
[

2n
n+2 , 2

]
. We assume that

|Λ| :=
∫
Rn

IΛ(ξ) dξ <∞.

Let C∞0 (Λ) denote the set of all infinitely differentiable real-valued functions
on Λ with compact support. We define the Sobolev space H1,p

0 (Λ) of order
1 in Lp(Λ) with Dirichlet boundary conditions by the completion of C∞0 (Λ)
with respect to the norm

‖u‖1,p :=

(∫
Λ

(|u(ξ)|p + |∇u(ξ)|p) dξ
) 1
p

, ∀u ∈ C∞0 (ξ).

We set H1
0 (Λ) := H1,2

0 (Λ) and denote the dual space of H1
0 (Λ) by H−1.

By the Sobolev embedding theorem (cf. [Eva10, Chapter 5.6, Theorem 2]),
we have

H1,2
0 (Λ) ⊂ L

2n
n−2 (Λ)

continuously and densely and, since p
p−1 ∈

[
2, 2n

n−2

]
, we obtain

Lp(Λ) ≡
(
L

p
p−1 (Λ)

)∗
⊂ H−1(Λ)

continuously and densely.

We define the Laplace operator ∆ : H1
0 (Λ)→ H−1(Λ) by

∆ =

n∑
i=1

∂2

∂ξ2
i

.

Lemma 6.3. The map (−∆)−1 : H−1 → H1
0 (Λ) is the Riesz isomorphism

for H−1, i.e. for every x ∈ H−1

〈x, ·〉H−1 =
H1

0

〈
(−∆)−1x, ·

〉
H−1 . (6.3)
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Proof. See [PR07, Lemma 4.1.12].

Therefore, we can identify H−1(Λ) with its dual (H−1(Λ))∗ = H1
0 (Λ) via

the Riesz map (−∆)−1 : H−1 → H1
0 , hence defining

V := Lp(Λ), H := H−1(Λ) and V ∗ := (Lp(Λ))∗
(

= ∆(L
p
p−1 )

)
we obtain

V ⊂ H ⊂ V ∗ (6.4)

continuously and densely. Note that for n = 1, 2, even stronger Sobolev
embeddings hold and, therefore, we obtain the above triple directly. (In
that case p ∈]1, 2].)

In fact, the domain of ∆ can be extended to L
p
p−1 (Λ), as the next proposition

shows.

Lemma 6.4. The map

∆ : H1
0 (Λ)→ (Lp(Λ))∗

extends to a linear isometry

∆ : L
p
p−1 (Λ)→ (Lp(Λ))∗ = V ∗

and for all u ∈ L
p
p−1 (Λ), v ∈ Lp(Λ)

V ∗〈−∆u, v〉V =
L

p
p−1
〈u, v〉Lp =

∫
Λ
u(ξ)v(ξ) dξ. (6.5)

Proof. See [PR07, Lemma 4.1.13].

6.3.3 Existence of the Solution

Let Ψ : R→ 2R be a function having the following properties:

(Ψ1) Ψ is maximal monotone, i.e. for all s, t ∈ R

(s− t)(x− y) ≥ 0 ∀x ∈ Ψ(s), y ∈ Ψ(t)

and Ψ is maximal (in the sense of Definition 3.1.ii).

(Ψ2) There exist c1 ∈]0,∞[, c2 ∈ [0,∞[ such that

s · x ≥ c1|s|p − c2 ∀s ∈ R, ∀x ∈ Ψ(s).

(Ψ3) There exist c3, c4 ∈]0,∞[ such that

|x| ≤ c3 + c4|s|p−1 ∀s ∈ R, ∀x ∈ Ψ(s).
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Then, the (multivalued) porous media operator A : V (= Lp(Λ)) → 2V
∗

is
defined by

A(u) := −∆Ψ(u), u ∈ Lp(Λ).

Note that (Ψ3) implies that

Ψ(v) ⊂ L
p
p−1 (Λ) for all v ∈ Lp(Λ). (6.6)

Hence, by Lemma 6.4 the operator A is well-defined.

Example 6.5. For Ψ(s) := sign (s)(% + |s|p−1), % > 0, (Ψ1) – (Ψ3) are
satisfied.

Now let us check whether Conditions (H1), (H4) and (H5) are valid:

(H4): Let x ∈ Lp(Λ), ṽ ∈ Ψ(x) and v := −∆ṽ. Then, by (6.5),

V ∗〈v, x〉V =

∫
Λ
ṽ(ξ)x(ξ) dξ ≥

∫
Λ

(c1|x|p − c2) dξ.

Hence, (H4) holds with C2 := c1, α = p and g := −c2|Λ|.

(H5): Let x ∈ Lp(Λ) and ṽ ∈ Ψ(x) such that −∆ṽ = A0(x). Then, by the
isometry property of ∆ (see Lemma 6.4) and (Ψ3),∥∥A0(x)

∥∥
V ∗

= ‖∆ṽ‖V ∗ = ‖ṽ‖
L

p
p−1

≤ c3

(∫
|x(ξ)|p dξ

) p−1
p

+ c4|Λ|
p−1
p

= c3 ‖x‖p−1
V + c4|Λ|

p−1
p ,

so (H5) is satisfied with C3 := c3, α = p and h := c4|Λ|
p−1
p .

(H1): Let x, y ∈ Lp(Λ), ṽ ∈ Ψ(x), w̃ ∈ Ψ(y) and v := −∆ṽ, w := −∆w̃.
Then by (6.5)

V ∗〈v − w, x− y〉V = V ∗〈−∆(ṽ − w̃), u− v〉V

=

∫
(ṽ(ξ)− w̃(ξ))(x(ξ)− y(ξ)) dξ ≥ 0

where we have used (Ψ1) in the last step.

Claim. −∆Ψ is maximal monotone.

Proof. By Theorem 3.14, we have to show that for arbitrary but fixed
y ∈ V ∗ there exists x ∈ V such that

J(x)−∆v = y on Λ, (6.7)
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where v ∈ Ψ(x) and J is the duality mapping from V to V ∗. To this
end, we consider the approximating equation

J(x)−∆Ψλ(x) = y, (6.8)

where Ψλ : R→ R is the Yosida approximation of Ψ. Since

V ∗〈−∆Ψλ(x) + ∆Ψλ(y), x− y〉V

=

∫
Λ

(Ψλ(x(ξ))−Ψλ(y(ξ))(x(ξ)− y(ξ)) dξ ≥ 0,

the operator−∆Ψλ is monotone. Furthermore, it is continuous. Hence,
by Theorem 3.4 it is maximal monotone. Since J is maximal mono-
tone, by Theorem 3.5 the operator x 7→ J(x) − ∆Ψλ(x) is maximal
monotone.

By Lemma 3.21, we have s · Ψλ(s) ≥ c1|s|p − c2, for some c1 ∈
]0,∞[, c2 ∈ [0,∞[. Thus,

V ∗〈−∆Ψλ(x), x〉V ≥ C(‖x‖pV − 1). (6.9)

It follows that

lim
n→∞

V ∗〈J(xn)−∆Ψλ(xn), xn〉V
‖xn‖V

≥ lim
n→∞

‖xn‖2V + C(‖xn‖pV − 1)

‖xn‖V
=∞

for arbitrary {xn}n ⊂ V such that ‖xn‖V →∞. Now, Proposition 3.7
implies that there exists a solution xλ of (6.8).

Let Aλ := −∆Ψλ. By (6.9) and (6.7), we obtain

C ‖xλ‖pV ≤ V ∗〈Aλ(xλ), xλ〉V +C

= V ∗〈y − J(xλ), xλ〉V +C

≤ V ∗〈y, xλ〉V +C

≤ C

2
‖xλ‖pV + C̃

(
‖y‖

p
p−1

V ∗ + 1

)
.

Therefore, supλ>0 ‖xλ‖V < C. Consequently, by the definition of J ,
Proposition 3.19.iv) and (H5) we obtain

sup
λ>0

(‖Aλ(xλ)‖V ∗ + ‖J(xλ)‖V ∗)

≤ sup
λ>0

(∥∥A0(xλ)
∥∥
V ∗

+ ‖xλ‖V
)

≤C · sup
λ>0

(
‖xλ‖p−1

V + ‖Λ‖
p−1
p + ‖xλ‖V

)
<∞.
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Hence, xλ → x weakly in V and Aλ(xλ)→ xA and J(xλ)→ xJ weakly
in V ∗, along some subsequence. Now, we have to show that xA ∈ A(x)
and xJ = J(x). To this end, by (6.8), we deduce

V ∗〈J(xλ1)− J(xλ2), xλ1 − xλ2〉V
+ V ∗〈Aλ1(xλ1)−Aλ2(xλ2), xλ1 − xλ2〉V

= V ∗〈y − y, xλ1 − xλ2〉V
=0.

(6.10)

Since J is monotone, (6.10) implies that

lim sup
λ1,λ2>0

V ∗〈Aλ1(xλ1)−Aλ2(xλ2), xλ1 − xλ2〉V ≤ 0.

Hence, by Proposition 3.19.vi), we obtain xA ∈ A(x) and

lim
λ1,λ2→0 V ∗〈Aλ1(xλ1)−Aλ2(xλ2), xλ1 − xλ2〉V = 0.

Combining this and 6.10, it follows that

lim sup
λ1,λ2>0

V ∗〈J(xλ1)− J(xλ2), xλ1 − xλ2〉V ≤ 0.

Thus, xJ = J(x). Hence, x ∈ V solves problem (6.7) and Theorem
3.14 applies. Thus, −∆Ψ is maximal monotone.

Summing up, we can establish the existence and uniqueness for the following
multivalued stochastic porous media equation:

dX(t) ∈ ∆Ψ(X(t)) dt+ σ(t,X(t)) dW (t)

+

∫
Z
G(t,X(t−), z)µ̄(dt, dz),

X(0) = X0,

(6.11)

with σ and G satisfying (H2) and (H3).

Remark 6.6. Assuming Ψ ∈ C1(R\{0}) and for some δ > 0

Ψ′(r) ≥ δ · |r|p−2, p ≥ 2, ∀r ∈ R\{0}

condition (Ψ2) is readily satisfied. Indeed,

Ψ(r)−Ψ(1) =

∫ r

1
Ψ′(s) ds ≥ δ 1

p− 1

(
|r|p−1 − 1

)
,

hence r ·Ψ(r) ≥ c1|r|p + c2 for c1 ∈]0,∞[ and c2 ∈ R.
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Comparing the existence result for the Wiener case (Theorem 4.5) with
[BDPR09b, Theorem 2.2], in case p = 2 we obtain a strong notion of the
solution (cf. Definition 4.1) instead of the weak notion in [BDPR09b, Equa-
tion (2.1)]. Indeed, [BDPR09b, Hypothesis (i) and (ii)] directly imply (Ψ1)
and (Ψ3). For p = 2, by Remark 6.6, [BDPR09b, Hypothesis (iv)] imply
(Ψ2).

In [BDPR09a], the (single-valued) porous media operator ∆Ψ with

Ψ(s) := % · sign (s)|s|α + Ψ̃(s),

% > 0, α ∈]0, 1[, where Ψ̃ is a continuous monotonically non-decreasing
function of linear growth, was investigated. Additionally assuming that ψ̃
satisfies the coercivity assumption (Ψ3), Theorem 4.5 yields the existence of
the solution for this type of fast diffusion equation.
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Appendix A

Multivalued Maps

In this appendix, we clarify some elementary notions on multivalued maps.
For a detailed overview over this topic, we refer to [AC84].

Let X and Y be two general sets. We denote the power set of Y by 2Y . A
multivalued map F from X to Y is a map that associates to any x ∈ X a
(not necessarily non-empty) subset F (x) ⊂ Y . The subset

D(F ) := {x ∈ X|F (x) 6= ∅}

is called the domain of F . Unless otherwise noted the domain of F is
assumed to be non-empty. We write F : D(F ) ⊂ X → 2Y and say F is a
multivalued map on X if Y = X. For a multivalued map we can define the
graph by

G(F ) := {[x, y] ∈ X × Y |y ∈ F (x)}.
The graph of F provides a convenient characterization of a multivalued map.
Conversely, a non-empty set G ⊂ X × Y defines a multivalued map by

F (x) := {y ∈ Y |[x, y] ∈ G}.

In that case, G is the graph of F . As usual, the range R(F ) ⊂ Y is defined
by

R(F ) :=
⋃
x∈X

F (x).

Every multivalued map has an inverse F−1. In general, it is again a multi-
valued map with the domain D(F−1) := R(F ) ⊂ Y and values

F−1(y) := {x ∈ X| y ∈ F (x)}, ∀y ∈ D(F−1).

The map B : D(B) ⊂ X → 2Y is called extension of A : D(A) ⊂ X → 2Y

if G(A) ⊂ G(B). A single-valued function f : X → Y is called a selection
of the set-valued map F : X → 2Y if for all x ∈ X, f(x) ∈ F (x). We define
the scalar multiplication for a multivalued map by

(λA)(x) := {λv|v ∈ A(x)}, ∀x ∈ D(λA) := D(A), λ ∈ R,
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and the sum of two multivalued maps A and B by

(A+B)(x) = {v + w|v ∈ A(x), w ∈ B(x)}

for all x ∈ D(A+B) := D(A) ∩ D(B).
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Appendix B

Basic Concepts on
Infinite–dimensional Spaces

In this appendix, we present some basic concepts on Banach spaces and in
particular Hilbert spaces. For a detailed survey of this topic, we refer to
[Bar93], [Bar10], [PR07].

Let
(
X, ‖·‖

)
be a real Banach space and (X∗, ‖·‖X∗) be its dual space.

We define the dualization X∗〈 , 〉X between X and X∗ by

X∗〈x
∗, x〉X := x∗(x) for x∗ ∈ X∗, x ∈ X.

Definition B.1. Let A be a single-valued operator from X to X∗ with
D(A) = X.

i. The operator A is said to be hemicontinuous if, for all x, u, v ∈ X,

lim
λ→0

X∗〈A(u+ λv), x〉X = X∗〈A(u), x〉X .

ii. A is said to be demicontinuous if, for xn → x ∈ X

lim
xn→x X∗〈A(xn), y〉X = X∗〈A(x), y〉X ∀y ∈ X.

Remark B.2. Demicontinuity obviously implies hemicontinuity. Moreover,
if a single-valued operator is hemicontinuous and monotone, then it is demi-
continuous (cf. [PR07, Remark 4.1.1.ii)]). Hence, for a single-valued mono-
tone operator, these two notions of continuity coincide.

Definition B.3. Let A : X → 2X
∗

be a multivalued operator.

i. A is said to be coercive if

X∗〈yn, xn − x0〉X
‖xn‖

n→∞−→ ∞

for some x0 ∈ X and for all [xn, yn] ∈ G(A) such that lim
n→∞

‖xn‖ =∞.
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ii. A is called coercive with constant α ∈]1,∞[ if there exists a constant
c > 0 such that

X∗〈y, x〉X ≥ c ‖x‖
α

for all [x, y] ∈ G(A).

Remark B.4. The notion of coercivity in Definition B.3.i) is weaker than
coercivity with constant α, because choosing x0 = 0, by Definition B.3.ii) we
find that

lim
n→∞

X∗〈yn, xn〉X
‖xn‖

≥ lim
n→∞

c ‖xn‖α−1 =∞,

for α > 0.

Definition B.5. i. A multivalued operator A is said to be bounded on
bounded subsets if it maps bounded sets into bounded sets.

ii. A multivalued operator A is said to be linearly bounded if there exists
a constant C > 0 such that for all [x, y] ∈ A

‖y‖ ≤ C ‖x‖ .

Obviously, linear boundedness implies local boundedness.

B.1 Geometry of Banach Spaces

Definition B.6. Let iX : X → X∗∗ be the isometric map defined by

X∗∗〈iX(x), x∗〉X∗ := X∗〈x
∗, x〉X , for x ∈ X,x∗ ∈ X∗.

The Banach space X is called reflexive if iX is surjective.

Definition B.7. i. X is called strictly convex if the unit sphere

S := {x ∈ X| ‖x‖ = 1}

contains no line segments, i.e. for all x, y ∈ S, x 6= y

x+ y

2
6∈ S. (B.1)

ii. X is said to be uniformly convex if for each 0 < ε < 2, there exists
δ > 0 such that for all x, y ∈ S satisfying ‖x− y‖ ≥ ε,

‖x+ y‖ ≤ 2(1− δ).

Remark B.8. Every uniformly convex space is strict-convex:
Indeed, let x, y ∈ S, such that x+y

2 ∈ S, i.e. ‖x+ y‖ = 2. Assume that
x 6= y. Note that then ‖x+ y‖ > 2(1− δ) holds for arbitrary δ > 0. Setting

ε := ‖x−y‖
2 > 0, by uniform convexity we conclude that ‖x− y‖ < ‖x−y‖

2 for
arbitrary ε > 0, which is a contradiction. Thus, x = y and we obtain strict
convexity.
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Proposition B.9. Every uniformly convex space is reflexive.

Proof. See [Wer00, Proposition IV.7.8].

Typical examples of uniformly convex Banach spaces are Hilbert spaces and
Lp-spaces with p > 1 (cf. Theorem C.6).

B.2 The Gelfand Triple

Definition B.10. Let (H, 〈·, ·〉H) be a separable real Hilbert space identified
with its dual space H∗ via the Riesz isomorphism R. Let V be a Banach
space with dual space V ∗ such that the embedding V ⊂ H is continuous, i.e.

‖v‖H ≤ C ‖v‖V for all v ∈ V (B.2)

and V is dense in H. (V,H, V ∗) is called the Gelfand triple.

It follows that H∗ ⊂ V ∗ continuously and densely (cf. [Zei90b, Proposition
23.13]). Consequently,

V ⊂ H R≡ H∗ ⊂ V ∗. (B.3)

continuously and densely and

V ∗〈z, v〉V = 〈z, v〉H for all z ∈ H, v ∈ V. (B.4)

Note that V ∗ is separable since H ⊂ V ∗ continuously and densely, hence
this is true for V as well.

B.3 Operators on Hilbert spaces

Let
(
U, 〈·, ·〉U

)
and

(
H, 〈 , 〉H

)
be two separable Hilbert spaces.

Proposition B.11. Let S be an orthonormal basis of H. Then

i.
x =

∑
e∈S
〈x, e〉He ∀x ∈ H,

ii. The Parseval equality holds:

‖x‖2H =
∑
e∈S
|〈x, e〉H |2 ∀x ∈ H.

Proof. See [Wer00, Satz V.4.9, p.230].

Definition B.12. i. The space of all bounded linear operators from U
to H is denoted by L(U,H). For simplicity, we write L(U) instead of
L(U,U).
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ii. By L∗ ∈ L(H,U) we denote the adjoint operator of L ∈ L(U,H).

iii. An operator L ∈ L(U) is called symmetric if 〈Lu, v〉U = 〈u, Lv〉U for
all u, v ∈ U .

iv. An operator L ∈ L(U) is called non-negative if 〈Lu, u〉 ≥ 0 for all
u ∈ U .

B.3.1 Trace Class Operators

Definition B.13 (Nuclear operator). An operator T ∈ L(U,H) is said to
be nuclear if it can be represented by

Tx =
∑
j∈N

aj〈bj , x〉U for all x ∈ U

where (aj)j∈N ⊂ H and (bj)j∈N ⊂ U are such that
∑

j∈N ‖aj‖H · ‖bj‖U <∞.
The space of all nuclear operators from U to H is denoted by L1(U,H).

Proposition B.14. The space L1(U,H) equipped with the norm

‖T‖L1(U,H) := inf
{∑
j∈N
‖aj‖H · ‖bj‖U

∣∣∣ Tx =
∑
j∈N

aj〈bj , x〉U , x ∈ U
}

is a Banach space.

Proof. See [PR07, Proposition B.0.2].

Definition B.15. Let T ∈ L(U) and let ek, k ∈ N, be an orthonormal basis
of U . Then we define

TrT :=
∑
k∈N
〈Tek, ek〉U

if the series is convergent.

One has to notice that this definition could depend on the choice of the
orthonormal basis. However, note the following result concerning nuclear
operators.

Remark B.16. If T ∈ L1(U) then TrT is well-defined independently of the
choice of the orthonormal basis ek, k ∈ N. Moreover, we have that

|TrT | ≤ ‖T‖L1(U) .

Proof. See [PR07, Remark B.0.4].

Definition B.17. By L+
1 (U) we denote the subspace of L1(U) consisting of

all symmetric non-negative nuclear operators.
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B.3.2 Hilbert-Schmidt Operators

Definition B.18 (Hilbert-Schmidt operator). A bounded linear operator
T : U → H is called Hilbert-Schmidt if∑

k∈N
‖Tek‖2 <∞

where ek, k ∈ N, is an orthonormal basis of U . The space of all Hilbert-
Schmidt operators from U to H is denoted by L2(U,H).

Remark B.19. i. The definition of the Hilbert-Schmidt operator and
the number

‖T‖2L2(U,H) :=
∑
k∈N
‖Tek‖2

does not depend on the choice of the orthonormal basis ek, k ∈ N,
and we know that ‖T‖L2(U,H) = ‖T ∗‖L2(H,U). For simplicity we write
‖T‖L2

instead of ‖T‖L2(U,H).

ii. ‖T‖L(U,H) ≤ ‖T‖L2(U,H).

Proof. See [PR07, Remark B.0.6].

Proposition B.20. Let S, T ∈ L2(U,H) and let ek, k ∈ N, be an orthonor-
mal basis of U . If we define

〈T, S〉L2 :=
∑
k∈N
〈Sek, T ek〉H

we obtain that
(
L2(U,H), 〈 , 〉L2

)
is a separable Hilbert space.

If fk, k ∈ N, is an orthonormal basis of H we get that fj ⊗ ek := fj〈ek, · 〉U ,
j, k ∈ N, is an orthonormal basis of L2(U,H).

Proof. See [PR07, Proposition B.0.7].

Proposition B.21 (Square root). Let T ∈ L(U) be a non-negative and

symmetric operator. Then, there exists exactly one element T
1
2 ∈ L(U) that

is non-negative and symmetric such that

T
1
2 ◦ T

1
2 = T.

If TrT < ∞, then we have that T
1
2 ∈ L2(U) where

∥∥∥T 1
2

∥∥∥2

L2(U)
= TrT and

L ◦ T
1
2 ∈ L2(U,H) for all L ∈ L(U,H).

Proof. See [PR07, Proposition 2.3.4].
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B.3.3 Pseudo Inverse of Linear Operators

Definition B.22. Let T ∈ L(U,H) and Ker(T ) := {x ∈ U | Tx = 0}. The
pseudo inverse of T is defined by

T−1 :=
(
T |Ker(T )⊥

)−1
: T
(
Ker(T )⊥

)
= T (U)→ Ker(T )⊥ .

Proposition B.23. Let T ∈ L(U) and T−1 the pseudo inverse of T .

i. If we define an inner product on T (U) by

〈x, y〉T (U) := 〈T−1x, T−1y〉U for all x, y ∈ T (U),

then
(
T (U), 〈·, ·〉T (U)

)
is a Hilbert space.

ii. Let ek, k ∈ N, be an orthonormal basis of (KerT )⊥. Then Tek, k ∈ N,
is an orthonormal basis of

(
T (U), 〈·, ·〉T (U)

)
.

Proof. See [PR07, Proposition C.0.3].

Proposition B.24. Let T ∈ L(U,H) and set Q := TT ∗ ∈ L(H). Then we
have

Q
1
2 (U) = T (U) and

∥∥∥Q− 1
2x
∥∥∥
H

=
∥∥T−1x

∥∥
U

for all x ∈ T (U),

where Q−
1
2 is the pseudo inverse of Q

1
2 .

Proof. See [PR07, Corollary C.0.6].

B.3.4 The Tensor Product

Let (U, 〈·, ·〉U be a separable Hilbert space.

Definition B.25. The tensor product on U × U is defined by

x⊗ y(z) := 〈y, z〉Ux ∀x, y, z ∈ U.

Remark B.26. For x, y ∈ U we have x⊗ y ∈ L1(U) and

‖x⊗ y‖L1(U) = ‖x‖U ‖y‖U .
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Appendix C

Lp-Spaces

In this appendix, we introduce the Bochner integral and prove that the Lp-
space is convex. Furthermore, we describe the duality of Lp-spaces. As
references, we cite [DU77] and [Wer00].

C.1 The Bochner Integral

Let
(
X, ‖ ‖

)
be a real separable Banach space, B(X) the Borel σ-field of X

and (Ω,F , µ) a measure space with the finite measure µ.

Definition C.1. i. The set of simple functions is defined by

E :=
{
f : Ω→ X

∣∣∣ f =
n∑
k=1

xk1Ak , xk ∈ X, Ak ∈ F , 1 ≤ k ≤ n, n ∈ N
}

ii. A µ-measurable function f : Ω → X is called Bochner integrable if
there exists a sequence {fn}n∈N ⊂ E such that

lim
n→∞

∫
Ω
‖fn − f‖ dµ = 0.

Theorem C.2. A µ-measurable function f : Ω → X is Bochner integrable
if and only if ∫

Ω
‖f‖ dµ <∞.

Proof. See [DU77, Chapter II, Theorem 2].

Theorem C.3. Let {fn}n∈N be a sequence of Bochner integrable X-valued
functions on Ω. If lim

n→∞
fn = f in µ-measure, i.e.

lim
n→∞

µ({ω ∈ Ω| ‖fn − f‖ ≥ ε}) = 0 ∀ε > 0,
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and if there exists a real-valued Lebesgue integrable function g on Ω with
‖fn‖ ≤ g µ-a.s., then f is Bochner integrable and

lim
n→∞

∫
Ω
‖f − fn‖ dµ = 0.

Proof. See [DU77, Chapter II, Theorem 3].

We summarize some important properties of the Bochner integral:

Proposition C.4. Let f, g ∈ L1(Ω,F , µ;X). Then

i. (cf. [DU77, Chapter II, Theorem 4])∥∥∥∥∫
Ω
f dµ

∥∥∥∥ ≤ ∫
Ω
‖f‖ dµ.

ii. (cf. [DU77, Chapter II, Corollary 5]) If
∫
A f dµ =

∫
A g dµ for each

A ∈ F , then f = g µ-a.s..

iii. (cf. [DU77, Chapter II, Theorem 6])∫
Ω
L ◦ f dµ = L

(∫
Ω
f dµ

)
for all L ∈ L(X,Y ) where Y is another Banach space.

Definition C.5. Let 1 ≤ p <∞. Then we define

Lp(Ω,F , µ;X) := Lp(µ;X)

:=

{
f : Ω→ X

∣∣∣∣ f is F-measurable and

∫
‖f‖p dµ <∞

}
and the semi-norm

‖f‖Lp :=

(∫
‖f‖p dµ

) 1
p

, f ∈ Lp(Ω,F , µ;X).

The space of all equivalence classes in Lp(Ω,F , µ;X) with respect to ‖·‖Lp
is denoted by Lp(Ω,F , µ;X) := Lp(µ;X).

The space Lp(Ω,F , µ;X) is a Banach space.
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C.2 Convexity of Lp(Ω,F , µ;X)

Theorem C.6. Let
(
X, ‖·‖

)
be a uniformly convex Banach space and

(Ω,F , µ) a measure space with finite measure µ. Let p ∈]1,∞[. Then, the
space (Lp(Ω,F , µ;X), ‖·‖Lp) is uniformly convex.

For the proof of Theorem C.6, we need the following lemma.

Lemma C.7. Let (X, ‖·‖) be a uniformly convex Banach space and let p ∈
]1,∞[. Then, for every ε > 0 there exists a constant Cp(ε) > 0 such that∥∥∥∥x+ y

2

∥∥∥∥p ≤ (1− Cp(ε))
‖x‖p + ‖y‖p

2
(C.1)

for all x, y ∈ X such that max{‖x‖ , ‖y‖} ≤ 1 and ‖x− y‖ ≥ ε.

Proof. First, assume that ‖y‖ = 1.

Case ‖x‖ = 1: Since X is uniformly convex, for some δ > 0 we have∥∥∥∥x+ y

2

∥∥∥∥p ≤ (1− δ)p < 1 =
‖x‖p + ‖y‖p

2
.

Case ‖x‖ < 1: By use of the elementary inequality(
a+ 1

2

)p
<
ap + 1

2
, ∀a ∈]0, 1[,

we obtain ∥∥∥∥x+ y

2

∥∥∥∥p ≤ (‖x‖+ 1

2

)p
<
‖x‖p + ‖y‖p

2
.

Consequently, ∥∥∥∥x+ y

2

∥∥∥∥p · (‖x‖p + ‖y‖p

2

)−1

< 1 (C.2)

on K := {x, y ∈ X| ‖x‖ ≤ 1, ‖y‖ = 1, ‖x− y‖ ≥ ε}. Since the left-hand
side in (C.2) is continuous in x and y and since K is closed, there exists
Cp(ε) > 0 such that∥∥∥∥x+ y

2

∥∥∥∥p · (‖x‖p + ‖y‖p

2

)−1

≤ 1− Cp(ε) < 1.

Now, let ‖y‖ ≤ 1, y 6= 0. W.l.o.g. ‖x‖ ≤ ‖y‖ 6= 0. Thus, for x̃ := x
‖y‖ and

ỹ := y
‖y‖ we have ‖x̃‖ ≤ 1 and ‖ỹ‖ = 1. Therefore, we can apply the result

above and obtain

1

‖y‖p
∥∥∥∥x+ y

2

∥∥∥∥p =

∥∥∥∥ x̃+ ỹ

2

∥∥∥∥p ≤(1− Cp(ε))
‖x̃‖p + ‖ỹ‖p

2

=(1− Cp(ε))
‖x‖p + ‖y‖p

2 ‖y‖p
.

Multiplying with ‖y‖p concludes the proof.
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Proof of Theorem C.6. (cf. [Wer00, Satz I.V.7.7, p.169] for the real case.)
Let f, g ∈ Lp(Ω,F , µ;X) such that ‖f‖Lp = ‖g‖Lp = 1 and ‖f − g‖Lp ≥ ε.
Set

Ω0 :=

{
ω ∈ Ω

∣∣ ‖f − g‖p ≥ εp

4
(‖f‖p + ‖g‖p)

}
and Ω1 := Ω\Ω0. For

f̃(ω) :=
f(ω)

(‖f(ω)‖p + ‖g(ω)‖p)1/p
and g̃(ω) :=

g(ω)

(‖f(ω)‖p + ‖g(ω)‖p)1/p

we have
∥∥∥f̃(ω)

∥∥∥ ≤ 1 and ‖g̃(ω)‖ ≤ 1 and by the definition of Ω0, for ω ∈ Ω0,

∥∥∥f̃(ω)− g̃(ω)
∥∥∥ ≥ ε

41/p
.

Hence, we can apply Lemma C.7 and obtain∥∥∥∥f(ω) + g(ω)

2

∥∥∥∥p ≤ (1− Cp
( ε

41/p

)) ‖f(ω)‖p + ‖g(ω)‖p

2
(C.3)

for every ω ∈ Ω0. Furthermore, we have∫
Ω1

‖f − g‖p dµ ≤
∫

Ω1

εp

4
(‖f‖p + ‖g‖p) dµ

≤
∫

Ω

εp

4
(‖f‖p + ‖g‖p) dµ

=
εp

4

(
‖f‖pLp + ‖g‖pLp

)
=
εp

2
.

Since ‖f − g‖Lp ≥ ε, we obtain

εp ≤
∫

Ω
‖f − g‖p dµ

=

∫
Ω0

‖f − g‖p dµ+

∫
Ω1

‖f − g‖p dµ

≤
∫

Ω0

‖f − g‖p dµ+
εp

2
.

Hence,
ε

21/p
≤ ‖1Ω0(f − g)‖Lp ≤ ‖1Ω0f‖Lp + ‖1Ω0g‖Lp .
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Using this as well as (C.3), we deduce

1−
∥∥∥∥f + g

2

∥∥∥∥p
Lp

=

∫
Ω

(
‖f‖p + ‖g‖p

2
−
∥∥∥∥f + g

2

∥∥∥∥p) dµ

≥
∫

Ω0

(
‖f‖p + ‖g‖p

2
−
∥∥∥∥f + g

2

∥∥∥∥p) dµ

≥ Cp
( ε

41/p

)∫
Ω0

‖f‖p + ‖g‖p

2
dµ

≥ Cp
( ε

41/p

) εp

2p+1
.

Corollary C.8. For a uniformly convex Banach space X, the space
(Lp(Ω,F , µ;X), ‖·‖Lp) is reflexive.

Proof. Apply Proposition B.9.

C.3 Duality of Lp(Ω,F , µ;X)

Let
(
X, ‖ ‖

)
be a real Banach space and (X∗, ‖·‖X∗) be its dual space.

Definition C.9. A Banach space X has the Radon-Nikodym property with
respect to (Ω,F , µ) if for each µ-continuous vector measure G : F → X of
bounded variation there exists g ∈ L1(Ω,F , µ;X) such that

G(E) =

∫
E
g dµ

for all E ∈ F .

Proposition C.10. Every reflexive Banach space has the Radon-Nikodym
property.

Proof. See [DU77, Chapter III, Corollary 13].

Theorem C.11. Let (Ω,F , µ) be a measure space with finite measure µ,
1 ≤ p <∞, and X be a Banach space. Then

Lp(Ω,F , µ;X)∗ = Lq(Ω,F , µ;X∗),

where 1
p + 1

q = 1 if and only if X∗ has the Radon-Nikodym property with
respect to µ.

Proof. See [DU77, Chapter IV, Theorem 1].
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Consequently, the dualization between Lp(Ω,F , µ;X) and Lq(Ω,F , µ;X∗)
is defined by

Lq〈f, g〉Lp :=

∫
Ω
X∗〈g, f〉X dµ

for f ∈ Lp(Ω,F , µ;X), g ∈ Lq(Ω,F , µ;X∗). In particular, for a Hilbert
space (H, 〈·, ·〉H) the space L2(Ω,F , µ;H) is a Hilbert space with the inner
product 〈f, g〉L2 :=

∫
Ω〈g, f〉H dµ for f, g ∈ L2(Ω,F , µ;H).
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Appendix D

Addendum to Stochastic
Analysis

In this appendix, we collect some necessary results in the theory of stochastic
processes.

Let (U, 〈·, ·〉U ) be a separable Hilbert space.

D.1 Lévy Processes

Definition D.1. Let X be a stochastic process with values in U .

i. The process X is said to be stochastically continuous if for every t ≥ 0
and ε > 0

lim
s→t

P (‖X(s)−X(t)‖U > ε) = 0.

ii. The process X has independent increments if X(t)−X(s) is indepen-
dent of Fs for all 0 ≤ s < t <∞.

iii. If the distribution of X(t)−X(s) depends only on the difference t− s,
we say that X has stationary increments.

iv. The process X is called Lévy process, if it has stationary, independent
increments and is stochastically continuous and X(0) = 0.

Theorem D.2 (Lévy-Khinchine formula). Let X be a cádlág Lévy process
on U and let µt be the law of X(t). Then, there exists a unique triple (γ,Q, ν)
where γ ∈ U , Q ⊂ L+

1 (U) (cf. Definition B.17), ν is a non-negative measure
satisfying ν({0}) = 0 and∫

H
(‖y‖2U ∧ 1) ν(dy) <∞,

117



such that ∫
U
ei〈x,y〉U µt(dy) = e−tΨ(x),

where

Ψ(x) := −i〈γ, x〉U +
1

2
〈Qx, x〉U

+

∫
U

(
1− ei〈x,y〉U + 1{‖y‖<1}(y)i〈x, y〉U

)
ν(dy).

Proof. See [PZ07, Theorem 4.24, p.56].

Definition D.3. We call the operator Q appearing in Theorem D.2 the
covariance of X, the measure µ the jump intensity measure of X and the
triple (γ,Q, ν) the characteristics of X.

Defining

N(t, A) := #{s ∈]0, t]
∣∣ ∆X(s) ∈ A} A ∈ B(H\{0}),

the Lévy process X induces a Poisson random measure (cf. Remark 1.13).
We define the corresponding compensated Poisson random measure
N̄(t, A) := N(t, A)− tν(A), A ∈ B(U\{0}), where ν is the intensity measure
of X.

Theorem D.4 (Lévy-Itô decomposition). Let X be a Lévy process on U
with the characteristics (γ,Q, ν). Then, for every t ≥ 0,

X(t) = tγ +BQ(t) +

∫
{‖x‖U<1}

x N̄(t, dx) +

∫
{‖x‖U≥1}

x N(t, dx),

where BQ is a Brownian motion with covariance Q independent of N(·, A)
for all A ∈ B(U\{0}).

Proof. See [AR05, Theorem 4.1].

Definition D.5. A U -valued cádlág process X is called quasi-left-continuous
if for every increasing sequence of stopping times (τn)n∈N

lim
n→∞

X(τn) = X
(

lim
n→∞

τn

)
on

{
lim
n→∞

τn <∞
}
.

Proposition D.6. Every Lévy process is quasi-left-continuous.

Proof. See [Bic02, Lemma 4.6.7, p.258].
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D.2 One-dimensional Integration Theory

Let A be an non-decreasing process. For fixed ω ∈ Ω the function t 7→ At(ω)
is right-continuous and non-decreasing. This function induces a measure
µA(ω, ds) on R+. For some bounded and jointly measurable F (s, ω), we can
define the integral ω-wise as

I(t, ω) =

∫ t

0
F (s, ω) dAs(ω).

Then, I is continuous in t and jointly measurable.

Theorem D.7. Let A,C be adapted, non-decreasing processes such that
dC ≥ dA. Then there exists a jointly measurable, adapted process H such
that H(t) ∈ [0, 1], t ≥ 0 and

At −A0 =

∫ t

0
Hs dCs.

Proof. See [Pro05, Chapter 1, Theorem 52, p.40].

More generally, we can consider integration with respect to a semimartin-
gale.

Definition D.8. A semimartingale is defined as a right-continuous, adapted
process X admitting a decomposition M +A where M is a local martingale
and A is a process of finite variation starting at 0.

For any semimartingales X and Y , the integral∫
]0,t]

X(s−) dY (s)

is well-defined (See eg. [Kal02, Chapter 26]).

D.3 Bracket Processes

Proposition D.9. Let M ∈M2
T (U). Then there exists a unique predictable

process 〈M〉 of bounded variation such that

‖M(t)‖2U − 〈M〉t, t ≥ 0,

is a martingale.

Proof. See [PZ07, Remark 3.46, p.36].
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Proposition D.10. Let M be a U -valued cádlág local (Ft)-martingale and
let τn be a sequence of partitions {0 ≤ tn1 < tn2 < . . . tnkn} where tni , 1 ≤ i ≤
kn, are (Ft)-stopping times such that lim

n→∞
tnkn =∞ and lim

n→∞
sup1≤i≤kn−1 |tni+1−

tni | = 0. Then, the process

An :=

kn−1∑
i=1

∥∥∥Mtni+1∧t −Mtni ∧t

∥∥∥2

U

converges in L1(Ω,Ft, P ) to an increasing process At.

Proof. See [Mét77, Section 31.4].

Definition D.11. The limiting process At in Proposition D.10 is called
square bracket and is denoted by [M ]t.

Remark D.12. i. In the real case, for two cádlág local martingales M,N ,
we have

[M,N ]t = M(t)N(t)−
∫

]0,t]
M(s−) dN(s)−

∫
]0,t]

N(s−) dM(s)

ii. For a continuous processes Xt, we have 〈X〉t = [X]t.

D.4 Some Important Tools

The next theorem assures that hitting times of cádlág processes are in fact
stopping times.

Theorem D.13. Let X be an (Ft)-adapted right-continuous process with
values in U . Then

τC = inf{t ≥ 0
∣∣ ‖X(t)‖ > C}, C > 0,

is a stopping time.

Proof. See [Kal02, Theorem 7.7, p.124].

Theorem D.14 (Burkholder–Davis–Gundy inequality). Let p ≥ 1 and
(Mt)t≥0 be a real-valued cádlág local martingale with M0 = 0. Then, for
every stopping time τ , there exist constants cp, Cp > 0 such that

cpE [M ]
p
2
τ ≤ E

[
sup
t∈[0,τ ]

|Mt|p
]
≤ CpE [M ]

p
2
τ ,

where [M ]t is the square bracket of M .
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Proof. Apply [Kal02, Theorem 26.12, p.524] to the stopped process
(Mτ∧t)t≥0.

Theorem D.15 (Dolean exponential). Let X be a semimartingale such that
X0 = 0. Then the equation

Z(t) = 1 +

∫
]0,t]

Z(s−) dX(s)

has the a.s. unique solution

Z(t) = exp

(
X(t)− 1

2
[X]t

)∏
s≤t

(1 + ∆X(s))e−∆X(s)+ 1
2

(∆X(s))2
, t ≥ 0,

where the infinite product converges.

Proof. See [Pro05, Chapter 2, Theorem 37, p.84].

Theorem D.16 (Integration by parts). Let M be a semimartingale and A
a predictable process of finite variation. Then,

At ·Mt =

∫
]0,t]

A(s) dM(s) +

∫
]0,t]

M(s−) dA(s), P -a.s..

Proof. See [Kal02, Lemma 26.10, p.523].
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