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Introduction

This thesis studies so called market games. Ideas from two important fields

of economic theory are combined: General Equilibrium Theory and

Game Theory.

Several types of economies are considered in general equilibrium theory.

Of particular interest for this thesis are pure exchange economies, exchange

economies with production and finite as well as infinite horizon exchange

economies combined with financial markets. In the basic set up, the eco-

nomic agents exchange their initially owned endowments and possibly trade

financial assets. Moreover, firms, if there are some, are allowed to produce

within a given production possibility set. A widely used solution concept

is the notion of a competitive equilibrium defined for example in Debreu

(1959). The basic idea is the following: Given a price system the agents of

an economy maximize their utility taking their individual budget constraint

into consideration while at the same time firms maximize their profits from

production and a market clearing condition is satisfied.

Game theory is divided into two main branches, non-cooperative and

cooperative game theory. A non-cooperative game is usually described by

a set of players, a set of strategies or actions of each player and payoff or

utility functions, that map strategy or action profiles into payoffs or utili-

ties. In non-cooperative game theory the players individually choose their

strategies and cooperation is not allowed or differently even if cooperation

might be profitable, it cannot be enforced. Some well known solution con-

cepts for non-cooperative games are the Nash equilibrium (for normalform

games, Nash 1951) or its refinement the subgame perfect Nash equilibrium

(for extensive form games, Selten 1965). For games with incomplete infor-

1



INTRODUCTION 2

mation the perfect Bayesian equilibrium is a widely used concept. In a Nash

equilibrium for each player the action he chooses individually maximizes his

payoff considering the actions of the other players as given. Differently from

non-cooperative game theory, in a cooperative game the players are allowed

to form coalitions and to choose joint actions. In general, a cooperative

game is described by a set of players, from which the set of possible coali-

tions is derived as its power set, and a coalitional function, that defines the

worth a coalition of players can achieve through cooperation (without giving

specific shares to each player). One solution concept for cooperative games

is the core (due to Gillies 1953). The idea of the core is the following: A

utility allocation is in the core, if it is affordable by the grand coalition, con-

sisting of all players, and if there is no coalition that can improve upon this

allocation. Other solution concepts used in this thesis are a refinement of

the core, namely the inner core (for example Shubik 1984, p.681–682), or for

bargaining games, a special class of cooperative games, the Nash bargaining

solution (Nash 1950, 1953).

My thesis includes different types of economies and non-cooperative

games as well as cooperative games. As already mentioned, I look at a

special class of games, so called market games. There is a non-cooperative

version usually referred to as strategic market games introduced by Shapley

and Shubik (1977). Furthermore, there are cooperative or coalitional market

games, often just called market games, that go back to Shapley and Shubik

(1969). The idea behind strategic market games is to model the price for-

mation in an economy as a non-cooperative game and to abstain from the

usual assumption of price taking behavior in general equilibrium models.

Whereas in coalitional market games the relationship between cooperative

games and markets, as a special kind of economies, and their solution con-

cepts are investigated. My thesis consists of two main parts: The first one is

on coalitional market games whereas the second one is on strategic market

games. The goal of this introduction is to give a short overview on the main

literature and the research questions investigated in this thesis including a

short description of the formal results. Each of the different chapters of

the two parts can be read independently. The different chapters are self-

containing and include a more detailed introduction into the subject and its
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underlying literature as well as a complete description of the model.

Part I: Coalitional Market Games

In coalitional market games the relationship between cooperative games

and markets or economies is investigated. From the cooperative point of

view market games are cooperative games, with transferable (TU) or non-

transferable utility (NTU), that generate or induce markets in a certain

sense. Shapley and Shubik (1969) consider TU market games. They prove

that every totally balanced TU game is a market game. Furthermore, Shap-

ley and Shubik (1975) show that starting with a TU game every payoff vector

in the core of that game is competitive in its direct market and that for any

given point in the core there exists at least one market that has this payoff

vector as its unique competitive payoff vector. The idea of market games

was applied to NTU games by Billera and Bixby (1974). Analogously to the

result of Shapley and Shubik (1969) they show that every totally balanced

game, that is compactly convexly generated, is a market game. Qin (1993)

compares the inner core of NTU market games with the competitive pay-

off vectors of markets that represent this game. He obtains the analogous

results for NTU games as Shapley and Shubik (1975) conjectured.

Part I on coalitional market games is divided into three independent chap-

ters, that were established in joint work with Jan-Philip Gamp.

First, we study TU market games in chapter 1. Based on Shapley and

Shubik (1975) we investigate the relationship between certain subsets of the

core for TU market games and competitive payoff vectors of certain markets

linked to that game. This can be considered as the case in between the two

extreme cases of Shapley and Shubik (1975). They already remark that

their results can be extended to any closed convex subset of the core, but

they omit the details of the proof which we present here. This more general

case is in particular interesting, as the two theorems of Shapley and Shubik

(1975) are included as special cases.

More precisely, let N = {1, 2..., n} be a set of players. The set of all non-

empty coalitions is given by N = {S ⊆ N |S 6= ∅}. A cooperative game with
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transferable utility (TU) is given by the pair (N, v) where N is the player

set and v : N → R is the characteristic or coalitional function. A market is

given by E = (X i, ωi, ui)i∈N where for every individual i ∈ N

- X i ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set,

where ℓ ≥ 1, ℓ ∈ N is the number of commodities,

- ωi ∈ X i is the initial endowment vector,

- ui : X i → R is a continuous and concave function, the utility function.

Combining these two concepts in a certain sense we obtain TU market

games, meaning that for a TU market game there exists a market such

that the value a coalition S can reach according to the coalitional function

coincides with the joint utility that is generated by feasible S-allocations in

the market, resulting from redistributions of the initial endowment vectors

within the coalition S. Having established the link between TU games and

markets we look at the relationship between their solution concepts. Here,

we elaborate on the details to prove the following theorem:

Theorem. Let (N, v) be a TU market game and let A be a

closed, convex subset of the core. Then there exists a market

such that this market represents the game (N, v) and such that

the set of competitive payoff vectors of this market is the set A.

Second, in chapter 2 we consider NTU market games. The extension

of the results of Qin (1993) to subsets of the inner core remained so far an

open problem. We extend his results to a large class of closed subsets of the

inner core: Given an NTU market game we construct a market depending

on a given closed subset of the inner core. This market represents the game

and further has the given set as the set of payoffs of competitive equilibria.

It turns out that this market is not determined uniquely and thus we obtain

a class of markets with the desired property. We have some freedom in

different aspects of our construction. First, to define our market we use

an auxiliary NTU game where we enlarge the given NTU game. For this

enlargement we use for every inner core point one of its normal vectors.
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This normal vector is not always unique. Second, for the auxiliary game

we define a mapping using a ‘projection’. This projection can be chosen in

different ways. Third, we add to the utility function an ε-term, that needs

to be between certain bounds and hence is not defined uniquely. Thus, we

do not obtain a single market but a whole class of markets.

Formally, again let N = {1, 2..., n} be a set of players. The set of all

non-empty coalitions is given by N = {S ⊆ N |S 6= ∅}. An NTU (non-

transferable utility) game is a pair (N, V ), that consists of a player set N

and a coalitional function V , which defines for every coalition the utility

allocations this coalition can reach, regardless of what the other players

outside this coalition do. Hence, define the coalitional function V from the

set of coalitions, N , to the set of non-empty subsets of Rn, such that for

every coalition S ∈ N we have V (S) ⊆ RS, V (S) is non-empty and V (S) is

S-comprehensive, meaning V (S) ⊇ V (S)−RS
+. A market (with production)

is given by E = (X i, Y i, ωi, ui)i∈N where for every individual i ∈ N

- X i ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set,

where ℓ ≥ 1, ℓ ∈ N is the number of commodities,

- Y i ⊆ Rℓ is a non-empty, closed and convex set, the production set,

such that Y i ∩ Rℓ
+ = {0},

- ωi ∈ X i − Y i, the initial endowment vector,

- and ui : X i → R is a continuous and concave function, the utility

function.

Combining these two concepts, in a similar as in the TU case, we obtain NTU

market games. For an NTU market game there exists a market such that the

set of utility allocations a coalition S can reach according to the coalitional

function coincides with the set of utility allocations that is generated by

feasible S-allocations in the market, resulting from redistributions of the

initial endowment vectors within the coalition S and production plans in a

joint production set of the coalition S. Having established the link between

NTU games and markets we look at the relationship between their solution

concepts. Let A be a closed subset of the inner core of a given compactly
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convexly generated NTU market game (N, V ) such that (N, V ) together

with the set A satisfy a certain property, called strict positive separability.

We establish the following result:

Theorem. Let [(N, V ), A] satisfy strict positive separability. Then

there exists a market such that this market represents the game

(N, V ) and such that the set of competitive payoff vectors of this

market is the set A.

Third, in Chapter 3 we investigate the relationship between the inner

core and asymmetric Nash bargaining solutions for n-person bargaining

games with complete information. We show that the set of asymmetric

Nash bargaining solutions for different strictly positive vectors of weights

coincides with the inner core if all points in the underlying bargaining set

are strictly positive. Furthermore, we prove that every bargaining game is a

market game. By using the results of Qin (1993) we conclude that for every

possible vector of weights of the asymmetric Nash bargaining solution there

exists an economy that has this asymmetric Nash bargaining solution as its

unique competitive payoff vector. We relate the literature of Trockel (1996,

2005) with the ideas of Qin (1993). Our result can be seen as a market

foundation for every asymmetric Nash bargaining solution in analogy to the

results on non-cooperative foundations of cooperative games.

More detailed, we consider NTU bargaining games as a special class of NTU

games where smaller coalitions than the grand coalition do not gain from

cooperation. They cannot reach higher utility levels as the singleton coali-

tions for all its members simultaneously. Only in the grand coalition every

individual can be made better off. The asymmetric Nash bargaining solution

with a vector of weights θ = (θ1, ..., θn) ∈ ∆n
++, for short θ-asymmetric, for

a n-person NTU bargaining game (N, V ) with disagreement point 0 is de-

fined as the maximizer of the θ-asymmetric Nash product given by
∏n

i=1 u
θi
i

over the set V (N). To obtain a market foundation for the asymmetric Nash

bargaining solutions we establish first the following Proposition:

Proposition. Let (N, V ) be a n-person NTU bargaining game

with disagreement point 0 and underlying bargaining set from

Rn
+.
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• Suppose we have given a vector of weights θ = (θ1, .., θn) ∈

∆n
++. Then the asymmetric Nash bargaining solution aθ for

θ is in the inner core of (N, V ).

Second after having argued that NTU bargaining games are market games

we show:

Proposition. Given a n-person NTU bargaining game (N, V )

(with disagreement point 0 and generating set from Rn
+) and a

vector of weights θ ∈ ∆n
++, there is market that represents (N, V )

and where additionally the unique competitive payoff vector of

this market coincides with the θ-asymmetric Nash bargaining so-

lution aθ of the NTU bargaining game (N, V ).

Part II: Strategic Market Games

The idea of strategic market games goes back to Shapley and Shubik (1977).

They use a non-cooperative game to describe the price formation in an

exchange economy. Every player is asked to place a bid and an offer for

every commodity. Afterwards the price of the commodity is computed as

the ratio of the total bid to the total offer of that commodity. Strategic

market games enable to study the feedback effect of trading strategies in

illiquid markets when individual trades may have an impact on prices. An

overview about strategic market games and related contributions can be

found in Giraud (2003). In this thesis the departing point is the model in

Giraud and Weyers (2004). They consider a strategic market game with

finite horizon and (possibly) incomplete asset markets. Their main result is

that generically every sequentially strictly individually rational and default-

free stream of allocations can be approximated by a full subgame-perfect

equilibrium.

Part II on strategic market games is divided into two independent chapters,

where the second one was established in joint work with Gaël Giraud and

presents a work that is still ongoing.

First, in chapter 4, I study a strategic market game with finite horizon,

incomplete markets and the possibility of default. This is modeled by using
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collaterals. The model of a strategic market game with finite horizon and

incomplete markets of Giraud and Weyers (2004) is extended by introducing

the possibility of default. In order to avoid bankruptcy a collateral require-

ment for financial assets similarly as in Araujo et al. (2002) is introduced. I

show that a given allocation that clears the markets and satisfies the budget

constraints can be induced by defining appropriate, almost full strategies.

Furthermore, I look at the set of sequentially strictly individually rational

allocations and study the existence of approximately subgame perfect Nash

equilibria. It turns out that the analogue of a perfect folk theorem similarly

to the one in Giraud and Weyers (2004) holds. Hence, even with collateral

requirements almost everything is possible as soon as people are sufficiently

patient, since almost every feasible, affordable, sequentially strictly individ-

ually rational consumption stream can be obtained by means of some almost

full approximate subgame perfect Nash equilibrium.

Formally, the following theorem is established:

Theorem. For any N , there exists an open and dense subset

Ω∗(N) of initial endowments and an integer T 0(N) and R such

that for every finite horizon T ≥ T 0(N) ≥ R: if the initial

endowments belong to Ω∗
T (N) and if the issuing nodes of all fi-

nancial assets are in the first T − R − 1 periods, then every

consumption stream (x̄i)i∈N , that is feasible, affordable and se-

quentially strictly individually rational in the first T − T 0(N)

periods, is an approximate subgame perfect Nash equilibrium of

the strategic market game with finite horizon T .

In a second contribution, chapter 5, coauthored by Gaël Giraud, we

study a strategic market game with finitely many traders, infinite horizon

and real assets. To this standard framework (see, e.g. Giraud and Weyers,

2004) we add two key ingredients: First, default is allowed at equilibrium

by means of some collateral requirement for financial assets; second, infor-

mation among players about the structure of uncertainty is incomplete. We

focus on learning equilibria, at the end of which no player shares incorrect

beliefs — not because those players with heterogeneous beliefs were elim-

inated from the market (although default is possible at equilibrium) but
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because they have taken time to update their prior belief. We then prove

a partial Folk theorem à la Wiseman (2011) of the following form: For any

function that maps each state of the world to a sequence of feasible and

sequentially strictly individually rational allocations (for short ssirf), and

for any degree of precision, there is a perfect Bayesian equilibrium (pbe) in

which patient players learn the realized state with this degree of precision

and achieve a payoff close to the one specified for each state.

More precisely, the uncertain state of the world is a transition matrix that

gives the probabilities with which a succeeding node in a tree-like time struc-

ture is reached. The sets of players and actions are common knowledge, but

the distribution of initial endowments and one-period utility levels condi-

tional on action profiles is chosen randomly in each period, and the players

do not observe nature’s choice. Neither do they observe each player’s ac-

tion. The probability distribution according to which uncertainty realizes in

each period is a (stationary) Markov chain. This Markov distribution itself

is chosen at random once and for all at the start of play, and, again, the

investors do not observe nature’s choice. The players have a common prior

over the finite set of possible Markov chains (states of the world), and they

have various ways of learning the state of the world over time. We make

the following assumptions:

• Assumption G:

The set of consumption goods is partitioned into two distinct subsets.

Only commodities in the one set can be used as collateral, and assets’

promises deliver only in commodities that belong to the other subset.

• Informativeness Assumption (IA):

(1) For any pair of nodes (t, st−1, s) = ξ 6= ξ′ = (t, st−1, s
′), any player

i, and any strategy profile, σ, that induces an ssirf allocation at

both states, the vectors of signals,

(ui
ξ(x

i
ξ(σ)), x

i
ξ(σ), w

i
ξ, Aj(ξ))

and

(ui
ξ′(x

i
ξ′(σ)), x

i
ξ′(σ), w

i
ξ′ , Aj(ξ

′))
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differ.

(2) Every ω is irreducible, aperiodic and admits an invariant mea-

sure, µω. Moreover, for any pair ω, ω′, if µω and µω′ are two

corresponding invariant measures, then µω = µω′ ⇒ ω 6= ω′.

Additionally, we introduce in the strategic market games the restriction that

collaterals need to be established from the initial endowments of that period

and we impose a condition avoiding self-trades on the asset markets. We

show:

Theorem. Under (G) and (IA), let ε > 0 and (x∗i[ω])i∈N ,ω∈Ω

be a ssirf allocation in consumption goods, and let P be a prior

belief that assigns strictly positive probability to each state of

the world. Then there exists λ(P) < 1 such that for all λ >

λ(P), there is a pbe that with probability at least 1 − ε, con-

ditional on any state ω being realized, yields a payoff vector

within ε of
(

U i
D(ξ0)

(x∗i, σ, ω)
)

i
. In equilibrium, conditional on

ω, each player i’s interim private belief converges to the truth:

limt→∞ Pi
ξ=(t,st−1,s)

(hi
ξ)[ω] = 1 with probability 1.



Introduction en Français

Nous nous intéressons dans cette thèse de doctorat aux jeux de marchés. Des

idées de deux domaines importants de la théorie économique y sont com-

binés : celles de la théorie de l’équilibre général et celles de la théorie

des jeux.

Plusieurs modèles économiques sont considérés dans la théorie de l’équili-

bre général. Dans cette thèse on s’intéresse surtout aux économies d’échange

pures, aux économies d’échange avec production et aux économies d’échange

combinées à des marchés financiers à horizon fini ou infini. Dans le modèle

de base les agents économiques échangent les dotations dont ils disposent au

départ et peuvent également agir sur les marchés financiers lorsque ceux-ci

existent. De plus, les entreprises, s’il en existe, peuvent produire des biens

dans un ensemble de production donné. Un concept de solution largement

répandu est la notion d’équilibre compétitif définie dans Debreu (1959) par

exemple. L’idée principale est la suivante : étant donné un système de prix,

les agents économiques maximisent leurs utilités tout en satisfaisant leurs

contraintes budgétaires respectives, tandis que les entreprises maximisent

leurs profits et une condition de liquidation du marché est satisfaite.

La théorie des jeux comporte deux domaines principaux, celui des jeux

non-coopératifs et celui des jeux coopératifs. Un jeu non-coopératif peut

être caractérisé par un ensemble de joueurs, un ensemble de stratégies ou

d’actions possibles pour chacun des joueurs et chaque joueur est doté d’une

fonction de paiement ou d’utilité. Chaque fonction associe à un profil de

stratégies un paiement ou une utilité pour le joueur auquel elle correspond.

Dans un jeu non-coopératif les joueurs choisissent leurs stratégies indivi-

duellement et la coopération est interdite (même si la coopération pourrait

11
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être rentable, on suppose qu’il n’y a pas de mécanisme permettant qu’elle ait

lieu). Les concepts de solution les plus connus pour les jeux non-coopératifs

sont l’équilibre de Nash (pour les jeux sous forme normale, Nash 1951) et un

raffinement de cet équilibre, à savoir, l’équilibre de Nash parfait en sous-jeux

(pour les jeux dynamiques, Selten 1965). Dans le cas de jeux à information

incomplète un des concepts les plus utilisés est celui d’équilibre Bayésien

parfait. Dans l’équilibre de Nash chaque joueur choisit ses actions indivi-

duellement afin de maximiser son paiement en considérant les actions des

autres joueurs comme étant données. A l’opposé des jeux non-coopératifs,

les joueurs peuvent former des coalitions et choisir des actions collective-

ment dans les jeux coopératifs. En général un jeu coopératif est décrit par

un ensemble de joueurs et une fonction caractéristique, qui associe à chaque

coalition une valeur. Cette valeur correspond à ce que les joueurs de la coa-

lition peuvent obtenir par coopération (sans spécifier les gains de chaque

joueur dans la coalition). Un concept de solution pour les jeux coopératifs

est celui de cœur (voir Gillies 1953). L’idée sous-jacente est la suivante :

une allocation est dans le cœur du jeu si la grande coalition formée par l’en-

semble de tous les joueurs peut obtenir cette allocation et si aucune autre

coalition ne peut améliorer le gain de ses membres en quittant la grande coa-

lition. Les autres concepts de solution utilisés dans cette thèse sont ceux du

cœur interne, qui correspond à une amélioration du cœur (voir par exemple

Shubik 1984, p.681-682) et, pour les jeux de négociation (qui constituent

une classe particulière de jeux coopératifs), la solution de négociation de

Nash (Nash 1950, 1953).

Ma thèse traite de différents types d’économies et de jeux non-coopératifs

ainsi que de jeux coopératifs. J’étudie une classe particulière de jeux, ap-

pelés jeux de marchés. Lorsqu’ils sont non-coopératifs, ces jeux introduits

par Shapley et Shubik (1977) sont généralement dénommés jeux de marchés

stratégiques. Il existe également des jeux de marchés coopératifs, souvent

appelés jeux de marchés, introduits par Shapley et Shubik (1969). L’idée

des jeux de marchés stratégiques est d’utiliser un jeu non-coopératif afin

de décrire la formation des prix dans une économie d’échange où l’indi-

vidu a une influence stratégique sur le prix. Alors que dans le cas des jeux

de marchés coopératifs, le lien entre jeux coopératifs et marchés (des types
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particuliers d’économies) et les concepts de solution associés sont étudiés.

Ma thèse comporte deux parties : La première partie porte sur les jeux de

marchés coopératifs et la deuxième sur les jeux de marchés stratégiques.

L’objectif de cette introduction est de présenter les problèmes étudiés, la

littérature associée ainsi que les principaux résultats obtenus. Chaque cha-

pitre de la thèse inclut une description plus détaillée du problème traité et

de la littérature associée ainsi qu’une description complète des modèles et

des preuves.

Partie I : Les Jeux de Marchés Coopératifs

Dans les jeux de marchés coopératifs la relation entre jeux coopératifs et

marchés ou économies est étudiée. Du point de vue coopératif, les jeux de

marchés sont des jeux coopératifs (à utilité transférable (TU) ou utilité non-

transférable (NTU)) qui peuvent, dans un certain sens, être représentés par

des marchés. Shapley et Shubik (1969, 1975) considèrent des jeux de marchés

coopératifs TU. Ils montrent que chaque jeu totalement équilibré est un jeu

de marché. De plus, ces auteurs prouvent que chaque vecteur dans le cœur

du jeu est un vecteur de paiement compétitif dans son marché direct et que

pour chaque vecteur dans le cœur, il existe au moins un marché ayant ce

vecteur comme unique vecteur de paiement compétitif. L’idée des jeux de

marchés a été appliquée aux jeux de marchés coopératifs NTU par Billera et

Bixby (1974). Analogiquement au résultat de Shapley et Shubik (1969), ils

montrent que les jeux totalement équilibrés, qui sont générés compactement

et convexement, sont des jeux de marchés. Qin (1993) compare le cœur

interne des jeux de marchés NTU avec des vecteurs de paiement compétitifs

de marchés représentant des jeux de marchés NTU. Il obtient un résultat

analogue pour les jeux de marchés NTU comme conjecturé par Shapley et

Shubik (1975).

La partie I sur les jeux de marchés coopératifs est subdivisée en trois

chapitres indépendants dont les résultats ont été établis en commun avec

Jan-Philip Gamp.

Tout d’abord, nous étudions les jeux de marchés coopératifs TU dans

le chapitre 1. Partant de Shapley et Shubik (1975), nous examinons les
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relations entre certains sous-ensembles du cœur des jeux de marchés TU

et les vecteurs de paiement compétitif des marchés associés à ces jeux.

On peut considérer que ce type de relation a déjà été étudié dans les ap-

proches de Shapley et Shubik (1975). Leurs approches constituent en fait

des cas extrêmes de notre approche. Ces auteurs ont déjà remarqué que

leurs résultats peuvent être généralisés à des sous-ensembles convexes et

fermés du coeur, mais ils n’en ont pas donné de preuves détaillées. Nous

présentons ici une preuve dans un cadre plus général et obtenons ainsi un

résultat plus fort dont les deux résultats de Shapley et Shubik (1975) sont

des cas particuliers.

Plus précisément, soit N = {1, 2..., n} un ensemble de joueurs. Soit

N = {S ⊆ N |S 6= ∅} l’ensemble des coalitions non vides. Un jeu coopératif

avec utilité transférable (TU) est défini par une paire (N, v) où N est l’en-

semble des joueurs et v : N → R est une fonction de coalition, ou fonc-

tion caractéristique. Un marché est défini par E = (X i, ωi, ui)i∈N avec pour

chaque individu i ∈ N :

- X i ⊆ Rℓ
+ est un ensemble non vide, convexe et fermé, l’ensemble de

la consommation, où ℓ ≥ 1, ℓ ∈ N est le nombre de biens,

- ωi ∈ X i est le vecteur des dotations initiales,

- ui : X i → R est une fonction continue et concave, la fonction d’utilité.

En combinant ces deux concepts d’une certaine manière, nous obtenons

des jeux de marchés coopératifs TU. Dans un jeux de marché coopératif TU

il existe un marché tel que la valeur v(S) d’une coalition S cöıncide avec

l’utilité commune générée par les allocations réalisables pour S résultant

d’une redistribution des dotations initiales au sein de la coalition S. Après

avoir établi ce lien entre les jeux coopératifs TU et les marchés nous étudions

les relations entre leurs différents concepts de solution. Dans ce chapitre 1,

nous présenterons les détails nécessaires à la preuve du théorème suivant :

Théorème. Soit (N, v) un jeu de marché coopératif et soit A

un sous-ensemble convexe et fermé du cœur. Alors il existe un

marché qui représente le jeu (N, v) tel que l’ensemble des vec-

teurs de paiement compétitif de ce marché est l’ensemble A.
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Ensuite, dans le chapitre 2, nous considérons des jeux de marchés coopé-

ratifs NTU. L’extension des résultats de Qin (1993) était restée jusqu’à

maintenant un problème ouvert. Nous étendons ses résultats à une large

classe de sous-ensembles fermés du cœur interne : étant donné un jeu de

marchés coopératifs NTU, nous construisons un marché qui dépend d’un

ensemble fermé donné du cœur interne. Ce marché représente le jeu et de

plus l’ensemble fermé correspond à l’ensemble des paiements des équilibres

compétitifs du marché. Il se trouve que ce marché n’est pas déterminé de

manière unique et nous obtenons ainsi une classe des marchés avec les

propriétés voulues. Nous disposons d’une marge de liberté par rapport à

certains aspects de notre construction. Premièrement, pour définir notre

marché nous utilisons un jeu NTU auxiliaire dans lequel nous étendons le

jeu NTU considéré. Pour cette extension, nous prenons pour chaque point

dans le cœur interne un de ses vecteurs normaux. Ce vecteur normal n’est

donc pas toujours unique. Deuxièmement, en ce qui concerne le jeu auxi-

liaire nous définissons une ‘projection’. Cette projection peut être choisie de

différentes manières. Troisièmement, nous ajoutons à la fonction d’utilité un

terme ε qui est compris entre deux valeurs et qui n’est par conséquent pas

défini de manière unique. Pour ces raisons, nous n’obtenons pas un seule

marché mais une classe entière de marchés.

D’un point de vue formel, soit N = {1, 2..., n} l’ensemble des joueurs.

L’ensemble des coalitions non vides est donné par N = {S ⊆ N |S 6= ∅}. Un

jeu coopératif avec utilité non-transférable (NTU) est défini par un couple

(N, V ), où N est l’ensemble des joueurs et V : N → R est une fonction

de coalition, ou fonction caractéristique définissant les allocations d’utilité

possibles pour les coalitions. La fonction caractéristique est définie de l’en-

semble des coalitions N vers l’ensemble des ensembles non vides de Rn, et

est telle que pour chaque coalition S ∈ N nous avons V (S) ⊆ RS, V (S)

non vide et V (S) est S-compréhensif, c’est-à-dire V (S) ⊇ V (S) − RS
+. Un

marché (avec production) est défini par E = (X i, Y i, ωi, ui)i∈N avec pour

chaque individu i ∈ N :

- X i ⊆ Rℓ
+ est un ensemble non vide, convexe et fermé, l’ensemble de

la consommation, où ℓ ≥ 1, ℓ ∈ N est le nombre de biens,
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- Y i ⊆ Rℓ est un ensemble non vide, convexe et fermé, l’ensemble de la

production, tel que Y i ∩ Rℓ
+ = {0},

- ωi ∈ X i est le vecteur des dotations initiales,

- ui : X i → R est une fonction continue et concave, la fonction d’utilité.

De manière similaire au cas des jeux coopératifs TU, la combinaison des

deux concepts nous donne des jeux de marchés coopératifs NTU. Dans un

jeux de marchés coopératifs NTU il existe un marché tel que l’ensemble des

allocations d’utilité V (S) d’une coalition S cöıncide avec l’ensemble des allo-

cations d’utilité générée par les allocations réalisables pour S, qui résultent

d’une redistribution des dotations initiales et des plans de production dans

l’ensemble de production de la coalition S. Après avoir établi un lien entre

les jeux coopératifs NTU et les marchés, nous étudions les liens entre leurs

concepts de solutions. Soit A un sous-ensemble fermé du cœur interne d’un

jeu de marché coopératif NTU (N, V ) à génération convexe et compacte,

tel que (N, V ) et le sous-ensemble A vérifient une propriété de séparabilité

strictement positive. Nous établissons le résultat suivant :

Théorème. Soit [(N, V ), A] tel que la séparabilité strictement

positive soit satisfaite. Alors il existe un marché qui représente

le jeu (N, V ) et tel que l’ensemble des vecteurs de paiement

compétitif de ce marché soit l’ensemble A.

Dans le chapitre 3 nous étudions la relation entre le cœur interne et les

solutions de négociation asymétriques de Nash pour les jeux de négociation

à n personnes avec information complète. Nous prouvons que l’ensemble

des solutions de négociation asymétriques de Nash relatives pour différents

vecteurs de poids strictement positifs cöıncide avec le cœur interne si tous les

points de l’ensemble de négociation sont strictement positifs. De plus, nous

montrons que les jeux de négociation sont des jeux de marchés. En utilisant

les résultats de Qin (1993) nous concluons que, pour chaque vecteur de poids

possible de la solution de négociation asymétrique de Nash, il existe une

économie ayant cette solution de négociation asymétrique comme unique

vecteur de paiement compétitif. Nous établissons également des liens entre
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les travaux de Trockel (1996, 2005) et de Qin (1993). Notre résultat montre

que la théorie des marchés peut être perçu comme un fondement de la

solution de négociation asymétrique de Nash, par analogie avec les résultats

concernant les fondements non-coopératifs des jeux coopératifs.

Plus précisément, nous considérons les jeux de négociation NTU comme

une sous-classe des jeux coopératifs NTU dans lesquels les coalitions différen-

tes de la grande coalition ne gagnent rien en coopérant. Elles ne peuvent pas

obtenir plus que la somme des utilités des coalitions singletons correspon-

dant à leurs membres. En revanche, dans la grande coalition, chaque individu

peut obtenir plus que ce qu’il obtiendrait seul. La solution de négociation

asymétrique de Nash, pour un vecteur de poids θ = (θ1, ..., θn) ∈ ∆n
++ (i.e.

θ-asymétrique) et pour un jeu de négociation à n personnes (N, V ) ayant

pour point de désaccord 0, est définie comme le maximiseur du produit θ-

asymétrique de Nash donné par
∏n

i=1 u
θi
i sur l’ensemble V (N). Pour faire

le lien entre la théorie des jeux de marché et la solution de négociation

asymétrique de Nash, nous établissons d’abord la proposition suivante :

Proposition. Soit (N, V ) un jeu de négociation à n-personnes

ayant pour point de désaccord 0 et avec un ensemble de négociation

fondamental dans Rn
+.

• Etant donné un vecteur de poids θ = (θ1, .., θn) ∈ ∆n
++,

alors la solution de négociation asymétrique de Nash aθ

pour θ est dans le cœur interne de (N, V ).

Ensuite, après avoir établi que les jeux de négociation sont des jeux de

marchés NTU, nous prouvons :

Proposition. Etant donné un jeu de négociation à n-personnes

(ayant pour point de désaccord 0 et un ensemble de négociation

fondamental dans Rn
+), il existe un marché qui représente le jeu

(N, V ), de plus, l’unique vecteur de paiement compétitif de ce

marché est la solution de négociation θ-asymétrique de Nash du

jeu (N, V ).
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Partie II : Les Jeux de Marchés Stratégiques

L’idée de jeux de marché stratégiques remonte à Shapley et Shubik (1977).

Ils utilisent un jeu non-coopératif afin de décrire la formation des prix dans

une économie d’échange. On demande à chaque joueur de faire une demande

et une offre pour chaque bien. Ensuite, le prix du bien est calculé comme

étant le rapport entre la demande totale et l’offre totale de ce bien. Les

jeux de marchés stratégiques permettent d’étudier les effets des stratégies

individuelles sur les prix lorsque les marchés sont illiquides. Une introduc-

tion aux jeux de marchés stratégiques ainsi qu’un résumé de la littérature

existante peuvent être trouvés dans Giraud (2003). Dans cette thèse le

point de départ est le modèle de Giraud et Weyers (2004). Ils étudient

un jeu de marché stratégique à horizon fini en présence de marchés finan-

ciers (qui peuvent être) incomplets. Leur résultat principal est que chaque

allocation séquentiellement strictement individuellement rationnelle et sans

défaut peut être approximée par un équilibre de Nash parfait de sous-jeux

à stratégies complètes.

La partie II se compose de deux chapitres indépendants. Les résultats du

deuxième chapitre correspondent à un travail commun avec Gaël Giraud.

Tout d’abord, dans le chapitre 4, j’étudie un jeu de marchés stratégiques

à horizon fini, en présence de marchés financiers incomplets et j’introduis

la possibilité de défaut utilisant des collatéraux. Le modèle de Giraud et

Weyers (2004) présentant un jeu de marchés stratégique à horizon fini avec

marchés financiers incomplets est enrichi par la prise en compte de la possi-

bilité de défaut. Pour éviter la faillite, une obligation de collatéral pour les

actifs financiers est introduite comme dans Araujo et al. (2002). Je montre

qu’une allocation donnée des biens qui équilibre les marchés et satisfait les

contraintes budgétaires peut être induite avec des stratégies appropriées,

qui sont presque complètes. Ensuite, je regarde l’ensemble des allocations

séquentiellement strictement individuellement rationnelles et j’étudie l’exis-

tence des équilibres de Nash parfaits en sous-jeux dans un sens approximatif.

Comme dans Giraud et Weyers (2004), il est alors possible de prouver un

théorème analogue à un théorème de folk. Ainsi, même en présence d’obli-

gation de collatéral, presque tout est possible tant que les joueurs sont as-
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sez patients, puisque presque toutes les allocations réalisables, abordable

et séquentiellement strictement individuellement rationnelle, peuvent être

obtenues approximativement par un équilibre de Nash parfait en sous-jeux

presque complet.

Formellement le théorème suivant est établi :

Théorème. Pour chaque N , il existe un sous-ensemble ouvert et

dense Ω∗(N) des dotations initiales, et T 0(N) et R tel que, pour

tout horizon fini T ≥ T 0(N) ≥ R, si les dotations initiales sont

dans Ω∗
T (N) et si les nœuds d’émission des actifs financiers sont

dans les premières T−R−1 périodes, alors chaque allocation des

biens (x̄i)i∈N réalisable, abordable et séquentiellement stricte-

ment individuellement rationnelle dans les premières T −T 0(N)

périodes est une approximation de l’ équilibre de Nash parfait

en sous-jeux presque complet de jeu de marchés stratégique à

horizon fini T .

Dans une deuxième contribution, co–écrite avec Gaël Giraud, nous étu-

dions un jeu de marché stratégique avec un nombre fini de joueurs, à ho-

rizon fini et avec de l’incertitude. Nous ajoutons dans le modèle standard

(par exemple Giraud et Weyers 2004) les ingrédients principaux suivants :

Premièrement, le défaut est possible dans l’équilibre avec exigence de col-

latéral pour les actifs financiers ; deuxièmement, l’information entre les joueurs

à propos de la structure de l’incertitude est incomplète. Nous nous concen-

trons sur les équilibres avec apprentissage à l’issue desquels aucun des joueurs

n’a de convictions incorrectes — non pas parce que les joueurs ayant des

convictions hétérogènes ont été éliminés (quoique le défaut est possible dans

l’équilibre) mais parce qu’ils ont pris du temps pour ajuster leurs convic-

tions initiales. Nous prouvons alors un thèoreme de folk partiel à la Wiseman

(2011) de la manière suivante : Pour chaque fonction associant à chaque état

du monde une suite d’allocations admissibles et séquentiellement strictement

individuellement rationnelles (ssirf), et pour chaque degré de précision ar-

bitraire, il existe un équilibre Bayésien parfait (pbe) dans lequel les joueurs
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apprennent l’état du monde avec ce degré de précision et ils obtiennent un

paiement proche du paiement spécifié pour chaque état.

Plus précisément, l’état incertain du monde est une matrice de transi-

tion qui donne les probabilités avec lesquelles les nœuds suivants d’un arbre

sont réalisés. L’ensemble des joueurs et des actions sont connus, mais les

distributions des dotations initiales et les niveaux d’utilités conditionnels

aux actions sont choisis de façon aléatoire à chaque période, et les joueurs

n’observent pas le choix de la nature. Il n’ont pas non plus la possibilité d’ob-

server les actions des autres joueurs. La distribution des probabilités avec

laquelle l’incertitude se réalise à chaque période est une chaine de Markov

stationnaire. Cette chaine de Markov est choisie au hasard une fois au début

du jeu, et les investisseurs ne l’observent pas. Les joueurs commencent avec

la même probabilité de départ sur l’ensemble fini des matrices de Markov

(les états du monde) possibles, et ont plusieurs possibilités de découvrir le

vrai état du monde. Nous faisons les hypothèses suivantes :

• Hypothèse G :

L’ensemble des biens est partitionné en deux sous-ensembles distincts.

Seuls les biens dans un sous-ensemble donné peuvent être utilisés

comme collatéral et les promesses d’actifs se font en termes de biens

appartenant à l’autre sous-ensemble.

• Hypothèse sur les informations (IA) :

(1) Pour toute paire de nœuds (t, st−1, s) = ξ 6= ξ′ = (t, st−1, s
′),

chaque joueur i et chaque profil de stratégies, σ, qui induit une

allocation ssirf dans les deux états, les vecteurs de signaux,

(ui
ξ(x

i
ξ(σ)), x

i
ξ(σ), w

i
ξ, Aj(ξ))

et

(ui
ξ′(x

i
ξ′(σ)), x

i
ξ′(σ), w

i
ξ′ , Aj(ξ

′))

sont différents.

(2) Chaque ω est irréductible, apériodique et admet une mesure in-

variante, µω. En plus, pour chaque paire ω, ω′, si µω et µω′ sont
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deux mesures invariantes, alors µω = µω′ ⇒ ω 6= ω′.

En plus, nous introduisons dans les jeux de marchés stratégiques la res-

triction que les collatéraux doivent être établis en utilisant les dotations

initiales à chaque période, et nous imposons aussi une condition pour éviter

les ventes à soi-même sur les marchés d’actifs. Nous montrons :

Théorème. Sous (G) et (IA), soit ε > 0 et soit (x∗i[ω])i∈N ,ω∈Ω

une allocation ssirf des biens de consommation, et soit P une

conviction a priori assignant une probabilité strictement positive

à chaque état du monde. Alors il existe λ(P) < 1 tel que, pour

tout λ > λ(P), il y a un pbe ayant une probabilité supérieure ou

égale à 1− ε conditionnelle à chaque état ω réalisé, permettant

d’obtenir un vecteur de paiement dans ε de
(

U i
D(ξ0)

(x∗i, σ, ω)
)

i
.

A l’équilibre, conditionnel à ω, la conviction interim privée de

chaque joueur i converge vers la verité

lim
t→∞

Pi
ξ=(t,st−1,s)

(hi
ξ)[ω] = 1

avec une probabilité égale à 1.
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1.1 Introduction

The idea to consider cooperative games as economies or markets goes back

to Shapley and Shubik (1969). They look at TU market games. These are

cooperative games with transferable utility (TU) that are in a certain sense

linked to economies or markets. More precisely, a market is said to represent

a game if the set of utility allocations a coalition can reach in the market

coincides with the set of utility allocations a coalition obtains according to

the coalitional function of the game. If there exists a market that represents

a game, then this game is called a market game. Shapley and Shubik (1969)

prove the identity of the class of totally balanced TU games with the class

of TU market games. Furthermore, Shapley and Shubik (1975) show that

starting with a TU market game every payoff vector in the core of that game

is competitive in a certain market, called direct market, and that for any

given point in the core there exists at least one market that has this payoff

vector as its unique competitive payoff vector. Moreover, they claim that an

analogous result holds also for closed convex subsets of the core. Shapley

and Shubik (1975) give a hint how this can be shown but they omit the

details of the proof. By following this remark of Shapley and Shubik (1975)

we give a detailed proof how their two main results can be extended to any

closed convex subset of the core. This more general case is in particular

interesting, as the two theorems of Shapley and Shubik (1975) are included

as special cases.

Similarly to the approach of Shapley and Shubik (1969, 1975), Inoue

(2010c) uses coalition production economies as in Sun et al. (2008) instead

of markets. Inoue (2010c) shows that every TU game can be represented

by a coalition production economy. Moreover, he proves that there exists a

coalition production economy whose set of competitive payoff vectors coin-

cides with the core of the balanced cover of the original TU game.

A different extension of Shapley and Shubik (1969, 1975) is Garratt and

Qin (2000). They consider time-constrained market games, where the agents

are supposed to supply one unit of time to the market. Their main result

is that a TU game is a time-constrained market game if and only if it is

superadditive. This result of Garratt and Qin (2000) was again extended by
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Bejan and Gómez (2011) introducing additionally location and free disposal

constraints. They show that in this sense the entire class of TU games can

be considered as market games.

For NTU market games Brangewitz and Gamp (2011a) extend the NTU

analogue to Shapley and Shubik (1975), namely Qin (1993), to closed subsets

of the inner core. Hereby, the techniques used to show the results in the TU

and the NTU case are notably different.

1.2 TU market games

In this section we state the main definitions and results on TU market

games. The following introduction for TU market games is mainly based on

Shapley and Shubik (1969) and Shapley and Shubik (1975).

Let N = {1, 2..., n} be a set of players. The set of all non-empty coali-

tions is given byN = {S ⊆ N |S 6= ∅}. Thus, a coalition is a non-empty sub-

set of players. A cooperative game with transferable utility (TU) is given by

the pair (N, v) where N is the player set and v : N → R is the characteristic

or coalitional function.1 A subgame (T, vT ) of a TU game (N, v) is a subset

of players T ∈ N and the characteristic function vT with vT (S) = v(S) for

S ⊆ T , S 6= ∅. A payoff vector for a TU game (N, v) is a vector x ∈ Rn.

The payoff of a coalition S ∈ N is given by x(S) =
∑

i∈S xi. The core C(v)

of a TU game (N, v) is the set of payoff vectors where the value v(N), the

grand coalition N can achieve, is distributed and no coalition can improve

upon,

C(v) = {x ∈ Rn| x(N) = v(N), x(S) ≥ v(S) ∀S ∈ N}.

Given a set of players N = {1, 2..., n}, a family B ⊆ N is a balanced

family if there exist weights {γS}S∈B, with γS ≥ 0, such that for all i ∈ N

we have
∑

S∈B, S∋i

γS = 1.

1Shapley and Shubik (1969) define the characteristic function as well for the empty set
with v(∅) = 0. Others, for example Billera and Bixby (1974), exclude the empty set
from this definition.
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The weights γS do not depend on the individual players but on the coalition

S ∈ N . The above condition can be as well written as

∑

S∈N

γSe
S = eN

where eS ∈ Rn is the vector with eSi = 1 if i ∈ S and eSi = 0 if i /∈ S.

Let the set of weights be denoted by Γ(eN). The balancing weights can be

interpreted as the intensity with which player i participates in a coalition

or the fraction of time he spends to be in this coalition.

A TU game (N, v) is balanced if for every balanced family B with weights

{γS}S∈B we have
∑

S∈B

γSv(S) ≤ v(N).

A TU game (N, v) is totally balanced if all its subgames are balanced.

The totally balanced cover of a TU game (N, v) is the smallest TU game

(N, v̄) that is totally balanced and contains the game (N, v).

Shapley and Shubik (1969) recall the following result of Shapley (1965):

Theorem 1.1 (Shapley and Shubik (1969)). A game has a non-empty core

if and only if it is balanced.

In oder to define a TU market game we first need to introduce the notion

of a market. For the TU case it is sufficient to consider markets without

production.

Definition 1.1 (market). Let N = {1, 2..., n} be the set of agents (or

players). A market is given by E = (X i, ωi, ui)i∈N where for every individual

i ∈ N

- X i ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set,

where ℓ ≥ 1, ℓ ∈ N is the number of commodities,

- ωi ∈ X i is the initial endowment vector,

- ui : X i → R is a continuous and concave function, the utility function.
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Note that in the case with non-transferable utility (NTU) usually mar-

kets with production are considered, see for example Billera and Bixby

(1974) or Qin (1993).

Let S ∈ N be a coalition. The set of feasible S-allocations is given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

∣

xi ∈ X i for all i ∈ S,
∑

i∈S

xi =
∑

i∈S

ωi

}

.

Elements of F (S) are often denoted for short by xS. The feasible S-

allocations are those allocations the coalition S can achieve by redistributing

their initial endowments within the coalition.

Now we define a TU market game in the following way:

Definition 1.2 (TU market game). A TU game (N, v) that is representable

by a market is a TU market game. This means there exists a market E such

that (N, vE) = (N, v) with

vE(S) = max
xS∈F (S)

∑

i∈S

ui(xi) for all S ∈ N .

For a TU market game there exists a market such that the value a

coalition S can reach according to the coalitional function coincides with

the joint utility that is generated by feasible S-allocations in the market.

Given a TU game we can generate a market from this game in a “natural”

way. Shapley and Shubik (1969) call this market a direct market.

Definition 1.3 (direct market). A TU game (N, v) generates a direct mar-

ket Dv = (X i, ωi, ui)i∈N with for each individual i ∈ N

- the consumption set X i = Rn
+,

- the initial endowment ωi = e{i} with e
{i}
i = 1 and e

{i}
j = 0 for j 6= i,

- the utility function ui(x) = max

{

∑

S∈N

γSv(S)

∣

∣

∣

∣

γS ≥ 0 ∀S ∈ N ,
∑

S∈N

γSe
S = x

}

.
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The utility function ui(·) of the direct market Dv is identical for every

individual i ∈ N and is homogeneous of degree 1, concave and continu-

ous. Note that in a direct market every consumer owns initially his own

(private) good or interpreted differently every player “is” himself a good.

Using the direct market Dv, Shapley and Shubik (1969) obtain the following

characterization of TU market games.

Theorem 1.2 (Shapley and Shubik (1969)). A game is a market game if

and only if it is totally balanced.

This means that in order to consider TU market games it is sufficient

to consider just those TU games that are totally balanced. To obtain the

above result Shapley and Shubik (1969) start by looking at an arbitrary TU

game and its direct market. Hereafter, they consider the TU game of the

direct market and show that it is equal to the totally balanced cover of the

TU game they started with.

In a second paper Shapley and Shubik (1975) investigate the relationship

between competitive payoffs, that arise from a competitive solution in the

market, and the core of TU market games.

Definition 1.4 (competitive solution). A competitive solution is an ordered

pair (p∗, (x∗i)i∈N), where p∗ is an arbitrary n-vector of prices and x∗N is a

feasible N -allocation, such that

ui(x∗i)− p∗ · x∗i = max
xi∈Rl

+

[ui(xi)− p · xi] for all i ∈ N.

We are in a setting with transferable utility. Thus, there is implicitly

the additional commodity money, that makes the transfer of utility possi-

ble. Suppose ξi0 are the initial money holdings of agent i. Then his “true”

maximization problem is

max
xi∈Rl

+

[ui(xi) + ξi0 − p ·
(

xi − ωi
)

].

Since the solution of the maximization problem is independent of the initial

money holdings and the initial endowment, it is equivalent to solve the in

the definition above stated maximization problem.
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Definition 1.5 (competitive payoff vector). A vector α∗ is a competitive

payoff vector if it arises from a competitive solution (p∗, (x∗i)i∈N) such that

α∗i = ui(x∗i)− p∗ · (x∗i − ωi).

Shapley and Shubik (1975) show the following two relationships between

the core and competitive payoff vectors.

Theorem 1.3 (1, Shapley and Shubik (1975)). Every payoff vector in the

core of a TU market game is competitive in the direct market of that game.

Theorem 1.4 (2, Shapley and Shubik (1975)). Among the markets that

generate a given totally balanced TU game, there exists a market having any

given core point as its unique competitive payoff vector.

These two theorems represent the two extreme cases where on the one

hand the whole core equals the set of competitive payoff vectors of the

direct market and one the other hand a given core point is the unique

competitive payoff vector of a certain other market. The main ideas to

prove the above two theorems are the following: For the first result Shapley

and Shubik (1975) use the direct market to show that its competitive payoff

vectors coincide with the core of the TU market game. To prove the second

theorem they introduce a second game with a modified coalitional function

for the grand coalition N . Afterwards they look at the direct market of the

original game with a modified utility function depending on a given core

point. Finally they show that this market represents the original TU game

and has a given core point as its unique competitive payoff vector.

1.3 Results on TU market games

Shapley and Shubik (1975) already remark that for TU market games a

extension of their proof for their second theorem leads to the following

result.

Theorem 1.5. Let (N, v) be a totally balanced TU game and let A be a

closed, convex subset of the core. Then there exists a market such that this
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market represents the game (N, v) and such that the set of competitive payoff

vectors of this market is the set A.

Shapley and Shubik (1975) omit the details of the proof. We elaborate

on them here. They remark that it is enough to change the definition of the

utility function.

In the following we first define the according market and show afterwards

in two steps that this market satisfies the properties we require.

Let (N, v) be a totally balanced TU game with N = {1, ..., n} the set

of players and the coalitional function v. Let Dv be its direct market as

defined before. For d ∈ R++ define the TU game (N, vd) by

vd(S) = v(S) for all S ⊂ N

and

vd(N) = v(N) + d.

Since d > 0 the game (N, vd) is totally balanced. Analogously let Dvd be

the direct market of (N, vd). Let (u
i
d)i∈N denote the utility functions of Dvd ,

i.e.

ui
d(x) = max

{

∑

S∈N

γSvd(S)

∣

∣

∣

∣

γS ≥ 0 ∀S ∈ N ,
∑

S∈N

γSe
S = x

}

.

As the utility functions ui
d in the direct market Dvd are identical for every

individual i ∈ N , we write for short ud.

Let A be a any non-empty closed convex subset of the core. For α ∈ A

let ud,α be defined as

ud,α(x) = min(ud(x), α · x).

Then define the function ud,A by

ud,A(x) = min
α∈A

ud,α(x).
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Since ud,A is continuous and concave we can define a market by

Evd =
(

Rn
+, e

{i}, ui
d,A

)

i∈N
.

with ui
d,A = ud,A for all i ∈ N . It is easy to see that ud,A is homogeneous of

degree 1.

Next, we show first that the market game of this market is (N, v) and

second that the set of competitive payoff vectors of the market Evd is exactly

the set A.

Proposition 1.1. The market Evd represents the game (N, v).

Proof. Recall that for the market Evd the set

F (S) =

{

xS ∈ Rn·S
+ |
∑

i∈S

xi =
∑

i∈S

e{i}

}

is the set of feasible allocations for a coalition S ∈ N .

Looking at the market game generated by the market Evd we obtain

vEvd (S) = max
xS∈F (S)

∑

i∈S

ui
d,A(x

i)

= |S| max
xS∈F (S)

∑

i∈S

1

|S|
ud,A(x

i)

(1)
= |S| max

xS∈F (S)
ud,A

(

eS

|S|

)

= |S|ud,A

(

eS

|S|

)

(2)
= ud,A(e

S)

= min
α∈A

ud,α(e
S)

= min
α∈A

(min(ud(e
S), α · eS))

(3)
= min

α∈A
(min(vd(S), α · eS))

= min
α∈A

(vd(S), α · eS)
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(4)
= v(S)

The detailed arguments are the following:

(1) First observe that
∑

i∈S
1
|S|
ud,A(x

i) ≤ ud,A

(

∑

i∈S
xi

|S|

)

= ud,A

(

eS

|S|

)

from the concavity of ud,A and the market clearing condition. We take

the maximum on both sides over the feasible S-allocations F (S) and

we observe that x̄i = 1
|S|
eS for all i ∈ S is a feasible S-allocation.

Therefore, we obtain that setting (x̄i)i∈S maximizes the expression on

the left side and hence we get equality.

(2) The equality follows from the homogeneity of degree 1 of ud,A.

(3) Using the totally balancedness of the game (N, vd) we obtain

ud(e
S) = max

{

∑

T∈N

γTvd(T )

∣

∣

∣

∣

(γT ) ≥ 0,
∑

T∈N

γT e
T = eS

}

= vd(S).

(4) For S ⊂ N this minimum is equal to v(S), since α is in the core of the

TU game (N, v) and therefore α · eS ≥ v(S) = vd(S). For S = N the

minimum is equal to α′ · eN for some α′ ∈ A and since α′ is in the core

of (N, v) we have α′ · eN = v(N). As d > 0 we have v(N) < vd(N).

Thus vEvd = v and hence the market Evd generates the game (N, v).

Proposition 1.2. The set of competitive payoff vectors of the market Evd
are coincides with the set A.

Proof. The proof is divided into five parts:

1. First, suppose ((x∗i)i∈N , p
∗) is a competitive solution in the market

Evd , then competitive payoffs are of the form
(

p∗ · e{i}
)

i∈N
.

From the definition of a competitive solution it follows that (x∗i)i∈N

clears the markets,

n
∑

i=1

x∗i =
n
∑

i=1

e{i} = eN
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and maximizes for each trader i his trading profit given by

ud,A(x
i)− p · xi.

Moreover, we have from the existence of a maximum and the fact

that the trading profit as a function of the consumption bundle is

homogeneous of degree 1 that

ud,A

(

x∗i
)

− p∗ · x∗i = 0.

Looking at the competitive payoffs of competitive solutions we observe

ud,A

(

x∗i
)

− p∗ · x∗i + p∗ · e{i} = p∗ · e{i}.

2. Second, suppose ((x∗i)i∈N , p
∗) is a competitive solution in the mar-

ket Evd , then
(

(

1
n
eN
)

i∈N
, p∗
)

is as well a competitive solution in the

market Evd . In addition the competitive payoffs coincide.

From the fact that the trading profit equals zero we obtain

ud,A

(

1

n
eN
)

− p∗ ·
1

n
eN = ud,A

(

1

n

n
∑

i=1

x∗i

)

− p∗ ·
1

n

n
∑

i=1

x∗i

(1)
=

1

n

n
∑

i=1

ud,A

(

x∗i
)

− p∗ ·
1

n

n
∑

i=1

x∗i

=
1

n

(

n
∑

i=1

ud,A

(

x∗i
)

− p∗ ·
n
∑

i=1

x∗i

)

=
1

n

(

n
∑

i=1

(

ud,A

(

x∗i
)

− p∗ · x∗i
)

)

= 0.

The detailed argument is the following:

(1) Using the concavity of ud,A gives us “≥” and from maximality of

x∗i we obtain the equality.

As already seen in 1., looking at the competitive payoffs of these com-
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petitive solutions we observe

ud,A

(

x∗i
)

−p∗·x∗i+p∗·e{i} = ud,A

(

1

N
eN
)

−p∗·

(

1

N
eN
)

+p∗·e{i} = p∗·e{i}.

To summarize these results mean that looking for competitive solu-

tions and their competitive payoffs we can focus on possible equi-

librium prices of the allocation
(

1
N
eN
)

i∈N
. Then those competitive

solutions give us all possible competitive payoffs.

3. Third, as in the proof of Proposition 1.1, equality (3)

ud

(

1

N
eN
)

=
1

N
vd(N) >

1

N
v(N) = ud,A

(

1

N
eN
)

and furthermore

ud,A

(

1

N
eN
)

= α′ ·

(

1

N
eN
)

for all α′ ∈ A. Because of the continuity of ud(·) it follows for all

α′ ∈ A that ud(x) > α′ · x for x in a small neighborhood of 1
N
eN .

Thus, in a neighborhood of 1
N
eN , ud,A(x) = minα′∈A (α′ · x).

4. Forth, it remains to check for which prices p∗ the pair
(

(

1
N
eN
)

i∈N
, p∗
)

is a competitive solution. In a first step we show that each p∗ ∈ A

can be chosen as an equilibrium price vector, in a second step we show

that any p∗ /∈ A cannot be an equilibrium price vector. For the second

step it is enough to concentrate on p∗ ∈ C(v) \ A as we have seen in

1. that the equilibrium price vector determines the competitive payoff

vector, which are necessarily in the core.

Step 1: Suppose p∗ ∈ A. Then for all xi ∈ Rn
+ we have

min
α′∈A

(

α′ · xi
)

− p∗ · xi ≤ p∗ · xi − p∗ · xi = 0
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and furthermore

min
α′∈A

(

α′ ·

(

1

N
eN
))

− p∗ ·

(

1

N
eN
)

= 0.

Hence, xi = 1
N
eN maximizes the trading profit of agent i. Fur-

thermore, the markets clear, as
∑

i∈N

1
N
eN = eN .

So, the pair
(

(

1
N
eN
)

i∈N
, p∗
)

is a competitive solution.

Step 2: Suppose p∗ ∈ C(v) \ A. Recall that the set A is com-

pact and convex. Hence, we can apply the separating hyperplane

theorem2 and obtain that there exists x̄ ∈ Rn
+ such that for all

α ∈ A

α · x̄− p∗ · x̄ > 0.

Therefore we conclude that

min
α′∈A

α′ · x̄− p∗ · x̄ > 0.

Now, for sufficiently small ε > 0 we have that 1
N
eN + εx̄ is in a

neighborhood of 1
N
eN where we have ud,A(x) = minα′∈A (α′ · x).

But

min
α′∈A

(

α′ ·

(

1

N
eN + εx̄

))

− p∗ ·

(

1

N
eN + εx̄

)

= ε

(

min
α′∈A

α′ · x̄− p∗ · x̄

)

> 0.

This implies that 1
N
eN does not maximize agent i’s trading profit

for p∗ /∈ A.

5. To summarize the line of argument:

If ((x∗i)i∈N , p
∗) is a competitive solution in the market Evd , then by

2. we have that
(

(

1
n
eN
)

i∈N
, p∗
)

is a competitive solution. By 4. we

show that p∗ ∈ A and by 1. we know that its competitive payoff vector

2See for example Mas-Colell et al. (1995, Theorem M.G.2, p.948).
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is equal to p∗.

On the other hand if p∗ ∈ A then by 4. we have that
(

(

1
n
eN
)

i∈N
, p∗
)

is a competitive solution. The competitive payoff vector is equal to

p∗.

1.4 Concluding Remarks

Shapley and Shubik (1975) investigate the relationship between competitive

payoffs of markets that represent a cooperative game and their relation to

solution concepts for cooperative games. We presented the details of the

proof of Shapley and Shubik (1975), that extends their two main results

to closed, convex subsets of the core. This shows also the two theorems

of Shapley and Shubik (1975). In a further contribution (Brangewitz and

Gamp, 2011a) we establish an analogue result for NTU market games.
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2.1 Introduction

The idea to consider cooperative games as economies or markets goes back

to Shapley and Shubik (1969). They look at TU market games. These are

cooperative games with transferable utility (TU) that are in a certain sense

linked to economies or markets. More precisely, a market is said to represent

a game if the set of utility allocations a coalition can reach in the market

coincides with the set of utility allocations a coalition obtains according to

the coalitional function of the game. If there exists a market that represents

a game, then this game is called a market game. Shapley and Shubik (1969)

prove the identity of the class of totally balanced TU games with the class

of TU market games. Furthermore, Shapley and Shubik (1975) show that

starting with a TU market game every payoff vector in the core of that game

is competitive in a certain market, called direct market, and that for any

given point in the core there exists at least one market that has this payoff

vector as its unique competitive payoff vector.

Cooperative games with non-transferable utility (NTU) can be consid-

ered as a generalization of TU games, where the transfer of the utility within

a coalition does not take place at a fixed rate. In this paper we consider

NTU market games. After Shapley and Shubik (1969), Billera and Bixby

(1974) investigated the NTU case and obtained similar results for compactly

convexly generated NTU games. Analogously to the result of Shapley and

Shubik (1969) they show that every totally balanced NTU game, that is

compactly convexly generated, is a market game. The inner core is a re-

finement of the core for NTU games. A point is in the inner core if there

exists a transfer rate vector, such that - given this transfer rate vector - no

coalition can improve even if utility can be transferred within a coalition

according to this vector. So, an inner core point is in the core of an associ-

ated hyperplane game where the utility can be transferred according to the

transfer rate vector. Qin (1993) shows, verifying a conjecture of Shapley

and Shubik (1975), that the inner core of a market game coincides with the

set of competitive payoff vectors of the induced market of that game. More-

over, he shows that for every NTU market game and for any given point

in its inner core there exists a market that represents the game and further
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has this given inner core point as its unique competitive payoff vector.

Similarly to the approach of Billera and Bixby (1974), Inoue (2010b) uses

coalition production economies as in Sun et al. (2008) instead of markets.

Inoue (2010b) shows that every compactly generated NTU game can be

represented by a coalition production economy. Moreover, he proves that

there exists a coalition production economy whose set of competitive payoff

vectors coincides with the inner core of the balanced cover of the original

NTU game.

Here we consider the classical approach using markets. We investigate

the case in between the two extreme cases of Qin (1993), where on the one

hand there exists a market that has the complete inner core as its set of

competitive payoff vectors and on the other hand there is a market that has

a given inner core point as its unique competitive payoff vector. We extend

the results of Qin (1993) to closed subsets of the inner core: Given an NTU

market game we construct a market depending on a given closed subset of

the inner core. This market represents the game and further has the given

set as the set of payoffs of competitive equilibria. It turns out that this

market is not determined uniquely. Several parameters in our construction

can be chosen in different ways. Thus, we obtain a class of markets with

the desired property.

Shapley and Shubik (1975) remark that in the TU case their result can

be extended to any closed and convex subset of the core. Whether a similar

result analogously to the one of Shapley and Shubik (1975) holds for NTU

market games, was up to now not clear. Our result shows, that in the NTU

case it is even possible to focus on closed, typically non-convex, subsets of

the inner core.

The inner is one solution concept for NTU games. Extending the results

of Qin (1993) to closed subsets of the inner core means in particular to show

such a result for all solution concepts selecting closed subsets of the inner

core.



CHAPTER 2. NTU MARKET GAMES - INNER CORE 40

2.2 NTU market games

Let N = {1, ..., n} with n ∈ N and n ≥ 2 be a set of players. Let N =

{S ⊆ N |S 6= ∅} be the set of coalitions. Define for a coalition S ∈ N the

following sets RS = {x ∈ Rn|xi = 0 if i /∈ S} ⊆ Rn, RS
+ = {x ∈ RS|xi ≥

0 for all i ∈ S} ⊆ Rn
+, R

S
++ = {x ∈ RS|xi > 0 for all i ∈ S} ⊆ Rn

++. For

a vector a ∈ Rn and a coalition S ∈ N let aS denote the vector, where for

i ∈ S we have aSi = ai and aSj = 0 for j /∈ S. Moreover, for a ∈ Rn and

b ∈ Rn denote the inner product by a · b =
∑n

i=1 aibi and the Hadamard

product by a ◦ b = (a1b1, ..., anbn).

An NTU (non-transferable utility) game is a pair (N, V ), that consists

of a player set N = {1, ..., n} and a coalitional function V , which defines for

every coalition the utility allocations this coalition can reach, regardless of

what the other players outside this coalition do. Hence, define the coalitional

function V from the set of coalitions, N , to the set of non-empty subsets

of Rn, such that for every coalition S ∈ N we have V (S) ⊆ RS, V (S) is

non-empty and V (S) is S-comprehensive, meaning V (S) ⊇ V (S)− RS
+.

The literature on NTU market games, as for example Billera and Bixby

(1974) and Qin (1993), considers NTU games that are compactly and con-

vexly generated. An NTU game (N, V ) is compactly (convexly) generated if

for all coalitions S ∈ N there exists a compact (convex) set CS ⊆ RS such

that the coalitional function has the form V (S) = CS − RS
+.

Given a player set N = {1, ..., n} the set of balancing weights is defined

by Γ(eN) =
{

(γS)S⊆N |γS ≥ 0 ∀ S ⊆ N,
∑

S⊆N γSe
S = eN

}

. The balancing

weights can be interpreted in the following way: Every player i has one unit

of time that he can split over all the coalitions, he is a member of, with the

constraint that a coalition has to agree on a common weight. Thereby, each

player has to spend all his time. The weight γS can be seen as well as the in-

tensity with which each player participates in the coalition S ∈ N . In partic-

ular, if we have a partition of the player set into a coalition S and its comple-

ment N \S a balancing weight can be defined by γS = γN\S = 1 and γT = 0

for all other coalitions T except for S and N\S. An NTU game (N, V ) is bal-

anced if for all balancing weights γ ∈ Γ(eN) we have
∑

S⊆N γSV (S) ⊆ V (N).

Moreover, an NTU game (N, V ) is totally balanced if it is balanced in
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all subgames. This means for all coalitions T ∈ N and for all balancing

weights γ ∈ Γ(eT ) =
{

(γS)S⊆T |γS ≥ 0 ∀ S ⊆ T,
∑

S⊆T γSe
S = eT

}

we have
∑

S⊆T γSV (S) ⊆ V (T ).

In order to define an NTU market game we first consider the notion of a

market which is less general than the notion of an economy according to for

example Arrow and Debreu (1954). In a market the number of consumers

coincides with the number of producers. Each consumer has his own private

production set. In contrast to the usual notion of an economy a market is

assumed to have concave and not just quasi concave utility functions.

Definition 2.1 (market). A market is given by E = (X i, Y i, ωi, ui)i∈N
where for every individual i ∈ N

- X i ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set,

where ℓ ≥ 1, ℓ ∈ N is the number of commodities,

- Y i ⊆ Rℓ is a non-empty, closed and convex set, the production set,

such that Y i ∩ Rℓ
+ = {0},

- ωi ∈ X i − Y i, the initial endowment vector,

- and ui : X i → R is a continuous and concave function, the utility

function.

As pointed out before in a market each consumer is assumed have his own

private production set. This assumption is not as restrictive as it appears to

be. A given private ownership economy can be transformed into an economy

with the same number of consumers and producers without changing the

set of competitive equilibria or possible utility allocations, see for example

Qin and Shubik (2009, section 4).

In the following, we often consider markets where X i ⊆ Rkn
+ with k, n ∈

N. Then, consumption vectors are usually written as xi =
(

x(1)i, ..., x(k)i
)

∈

X i where x(m)i ∈ Rn
+ for m = 1, ..., k. In a sense, we divide the kn con-

sumption goods in k consecutive groups of n goods. The vector x(m)i is the

mth group of n consumption goods of the consumption vector xi. We use

an analogous notation for the production goods and price vectors.
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Given a market we define which allocations are considered as feasible for

some coalition S ∈ N . An S-allocation is a tuple (xi)i∈S such that xi ∈ X i

for each i ∈ S. The set of feasible S-allocations is given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

xi ∈ X i for all i ∈ S,
∑

i∈S

(xi − ωi) ∈
∑

i∈S

Y i

}

.

Hence, an S-allocation is feasible if there exist for all i ∈ S production

plans yi ∈ Y i such that
∑

i∈S(x
i − ωi) =

∑

i∈S y
i. We refer to a feasible

S-allocation in the following together with suitable production plans as a

feasible S-allocation (xi)i∈S with (yi)i∈S.

In the definition of feasibility it is implicitly assumed that by forming

a coalition the available production plans are the sum of the individually

available production plans. This approach is different from the idea to use

coalition production economies, where every coalition has already in the

definition of the economy its own production possibility set. Nevertheless, a

market can be “formally” transformed into a coalition production economy

by defining the production possibility set of a coalition as the sum of the

individual production possibility sets.

Given the notion of a market and of feasible allocations for coalitions

S ∈ N we define an NTU market game in the following way:

Definition 2.2 (NTU market game). An NTU game (N, V ) that is repre-

sentable by a market is an NTU market game. This means there exists a

market E such that (N, VE) = (N, V ) with

VE(S) =
{

u ∈ RS| ∃ (xi)i∈S ∈ F (S), ui ≤ ui(xi), ∀ i ∈ S
}

.

For an NTU market game there exists a market such that the set of

utility allocations a coalition can reach according to the coalitional function

coincides with the set of utility allocations that are generated by feasible

S-allocations in the market or that give less utility than some feasible S-

allocation.

One of the main results on NTU market games in Billera and Bixby

(1974) is the following:
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Theorem 2.1 (2.1, Billera and Bixby (1974)). An NTU game (N, V ) is an

NTU market game if and only if it is totally balanced and compactly convexly

generated.

Hence, in order to study NTU market games, it is sufficient to look at

those NTU games that are totally balanced and compactly convexly gener-

ated.

For the succeeding analysis, it will be useful to shift a given NTU

game in the following way (compare Billera and Bixby (1973b, Proposi-

tion 2.2)): Given a vector c ∈ Rn define the coalitional function (V + c)

via (V + c) (S) = V (S) +
∑

i∈S ci. To represent a shifted game by a market

we have to shift the utility function of agent i by ci. Hence, the shifted

game with coalitional function (V + c) is again a market game. Further-

more, shifting the utility functions of the agents does not change the set of

competitive equilibria. Having this idea of shifting in mind we will focus in

some proofs on games where for every coalition S ∈ N we have CS ⊆ RS
++.

To prove the above result Billera and Bixby (1974) introduce the notion

of an induced market that arises from a compactly convexly generated NTU

game.

Definition 2.3 (induced market). Let (N, V ) be a compactly convexly gen-

erated NTU game. The induced market of the game (N, V ) is defined by

EV = (X i, Y i, ui, ωi)i∈N

with for each individual i ∈ N

- the consumption set X i = Rn
+ × {0} ⊆ R2n,

- the production set Y i = convexcone
[
⋃

S∈N

(

CS × {−eS}
)]

⊆ R2n,

- the initial endowment vector ωi =
(

0, e{i}
)

,

- and the utility function ui : X i → R with ui(xi) = x
(1)i
i .
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It can easily be seen that this is a market according to the previous def-

inition. Note that in an induced market we have input and output goods.

Initially every consumer owns one unit of his personal input good that can

only be used for the production process. By using his input good the con-

sumer can get utility just from his personal output good. The consumption

and production set are the same for every player. Just the utility functions

and the initial endowments are dependent on the player.

The individual production sets in an induced market are convex cones

and identical for all agents. In this situation taking the sum over production

sets of some agents leads to the same production set. Setting Y =
∑

i∈N Y i

the condition for feasibility of S-allocations reduces to
∑

i∈S(x
i − ωi) ∈ Y .

Furthermore, for convex-cone technologies the competitive equilibrium prof-

its are equal to 0. This means that in equilibrium we do not have to specify

shares of the production as it usually done in private ownership economies.

Thus, as long as the individual production sets are convex cones and identi-

cal for all agents, we could alternatively consider a model for the production

where we have only one production set for all agents and possible coalitions

without specifying the shares. This model could be used instead of the

production setup in the definition of a market.

In the definition of the induced market it is assumed that every individ-

ual has already the production possibilities, that become available if coali-

tions form, included in his personal production set. This means he already

knows everything that can be produced in the different coalitions, even if

he does not possess the necessary input commodities himself. Starting with

an NTU game the utility allocations a coalition can reach in the derived

induced market are not described by defining production sets individually

for every coalition but by using input and output commodities. A utility al-

location, that is reachable in the NTU game by a coalition S, is reachable in

the induced market by the same coalition if the individuals pool their initial

endowments using “one general” production possibility set. Utility alloca-

tions that require the cooperation of individuals outside the coalition S are

technologically possible but can actually not be produced as the input com-

modities of these individuals are needed. In contrast to this interpretation
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in coalition production economies every coalition has its own production

set.

The main proof of the above theorem from Billera and Bixby (1974)

relies on Billera (1974). In a similar manner as Shapley and Shubik (1969),

he starts with an NTU game, (N, V ), and looks at the induced market of

that game, EV , and afterwards at the NTU game that is induced by the

induced market, VEV . He shows that this game coincides with the totally

balanced cover of the game (N, V ).

The next step is to investigate the existing literature on and to study

the relationship between solution concepts in cooperative game theory, as

the inner core, and those in general equilibrium theory, as the notion of

a competitive equilibrium. Analogously to the TU case of Shapley and

Shubik (1975), Qin (1993) shows that the inner core of an NTU market

game coincides with the set of competitive payoff vectors of the induced

market of that game. Moreover, he shows that for every NTU market game

and for any given point in its inner core, there is a market that represents the

game and further has the given inner core point as its unique competitive

payoff vector. Before we extend the results of Qin (1993) we recall the basic

definitions and state his main results. We start with the definition of the

inner core and the notion of competitive payoff vectors in the context of

NTU market games. Afterwards, we state the main results of Qin (1993)

and comment on the ideas he uses to prove them.

In order to define the inner core we first consider a game that is related

to a compactly generated NTU game, called the λ-transfer game. Fix a

transfer rate vector λ ∈ Rn
+. Define vλ(S) = max{λ · u|u ∈ V (S)} as the

maximal sum of weighted utilities that coalition S can achieve given the

transfer rate vector λ. The λ-transfer game, denoted as (N, Vλ), of (N, V )

is defined by taking the same player set N and the coalitional function

Vλ(S) = {u ∈ RS|λ · u ≤ vλ(S)}. Qin (1994, p.433) gives the following

interpretation of the λ-transfer game: “The idea of the λ-transfer game may

be captured by thinking of each player as representing a different country.

The utilities are measured in different currencies, and the ratios λi/λj are
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the exchange rates between the currencies of i and j.” As for the λ-transfer

game only proportions matter we can assume without loss of generality that

λ is normalized, i.e. λ ∈ ∆ =
{

λ ∈ Rn
+|
∑n

i=1 λi = 1
}

. Define the positive

unit simplex by ∆++ =

{

λ ∈ Rn
++

∣

∣

∣

∣

∑n

i=1 λi = 1

}

.

The inner core is a refinement of the core. The core C(V ) of an NTU

game (N, V ) is defined as the set of utility allocations that are achievable

by the grand coalition N such that no coalition S can improve upon this

allocation. Thus,

C(V ) = {u ∈ V (N)| ∀S ⊆ N ∀u′ ∈ V (S) ∃ i ∈ S such that u′
i ≤ ui}.

A utility allocation is in the inner core IC(V ) of a compactly generated

game (N, V ) if it is achievable by the grand coalition N and if additionally

there exists a transfer rate vector λ ∈ ∆ such that this utility allocation is

in the core of the λ-transfer game. More precisely:

Definition 2.4 (inner core). The inner core of a compactly generated NTU

game (N, V ) is given by

IC(V ) = {u ∈ V (N)| ∃λ ∈ ∆ such that u ∈ C(Vλ)}.

Qin (1993, Remark 1, p. 337) remarks that if the NTU game is compactly

convexly generated the vectors of supporting weights for a utility vector in

the inner core must all be strictly positive. This can be seen by the following

argument: If for one player i ∈ N λi is equal to 0, then the core of the λ-

transfer game is empty, because player i can improve upon any u ∈ Vλ(N)

by forming the singleton coalition {i}.

Qin (1994) considers sufficient conditions for the inner core to be non-

empty. In particular he shows that a compactly generated NTU game

(N, V ), where V (N) is convex, has a non-empty inner core if it is balanced

with slack, meaning that for balancing weights (γS)S⊆N with γN = 0 we

have
∑

S⊂N

γSV (S) ⊂ intRn V (N) where intRn V (N) is the interior of V (N)

relative to Rn. Other contributions related to the non-emptiness of the inner

core can be found for example in Iehlé (2004), Bonnisseau and Iehlé (2007)

or Inoue (2010a).
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We now define a competitive equilibrium for a market E .

Definition 2.5 (competitive equilibrium). A competitive equilibrium for a

market E is a tuple

(

(x̂i)i∈N , (ŷ
i)i∈N , p̂

)

∈ Rℓn
+ × Rℓn

+ × Rℓ
+

such that

(i)
∑

i∈N x̂i =
∑

i∈N(ŷ
i + ωi) (market clearing),

(ii) for all i ∈ N , ŷi solves maxyi∈Y i p̂ · yi (profit maximization),

(iii) and for all i ∈ N , x̂i is maximal with respect to the utility function ui

in the budget set {xi ∈ X i|p̂ ·xi ≤ p̂ · (ωi+ ŷi)} (utility maximization).

Given a competitive equilibrium its competitive payoff vector is defined

as (ui (x̂i))i∈N .

Qin (1993) investigates the relationship between the inner core of an

NTU market game and the set of competitive payoff vectors of a market

that represents this game. He establishes, following a conjecture of Shapley

and Shubik (1975), the two theorems below analogously to the TU-case of

Shapley and Shubik (1975).

Theorem 2.2 (1, Qin (1993)). The inner core of an NTU market game

coincides with the set of competitive payoff vectors of the induced market by

that game.

Theorem 2.3 (3, Qin (1993)). For every NTU market game and for any

given point in its inner core, there is a market that represents the game and

further has the given inner core point as its unique competitive payoff vector.

To show his first result Qin (1993) uses the notion of the induced mar-

ket of a compactly convexly generated NTU game as it was already used

by Billera and Bixby (1974). It turns out that the set of competitive equi-

librium payoff vectors of the induced market coincides with the inner core.
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For his second result Qin (1993) fixes an inner core point, denoted by u∗ 1,

and chooses one transfer rate vector λ∗
u∗ from an associated λ-transfer game.

He modifies the given NTU game by applying a suitable strictly monotonic

transformation on the utility allocations a coalition can reach. In this mod-

ified game the given inner core point u∗ can be strictly separated from the

set of utility allocations the grand coalition can reach (excluding u∗). De-

note the modified game by (N, V̄ ) and the convex compact sets generating

this game by (C̄S)S∈N . A market to prove Theorem 3 of Qin (1993) can be

defined as follows:

Define for all coalitions S ∈ N

A1
S =

{(

uS,−eS,−eS,−eS, 0
)

|uS ∈ C̄S
}

⊆ R5n,

A2
S =

{(

uS, 0,−eS, 0,−eS
)

|uS ∈ C̄S
}

⊆ R5n,

A3
S =

{(

uS, 0, 0,−eS,−eS
)

|uS ∈ C̄S
}

⊆ R5n.

Let EV̄ ,u∗ = (X i, Y i, ωi, ui)i∈N be the market with for every individual

i ∈ N

- the consumption set X i = X = Rn
+ × {(0, 0, 0)} × Rn

+ ⊆ R5n
+ ,

- the production set Y i = Y = convexcone
[
⋃

S⊆N (A1
S ∪ A2

S ∪ A3
S)
]

⊆

R5n,

- the initial endowment vector ωi =
(

0, e{i}, e{i}, e{i}, e{i}
)

∈ R5n
+ ,

- the utility function ui(xi) = min
{

x
(1)i
i ,

(λ∗
u∗

◦u∗)·x(5)i

λ∗
u∗i

}

with xi = (x(1)i, 0, 0, 0, x(5)i) ∈ X i and x
(1)i
k is the kth entry of x(1)i.

Note that, similarly to the induced market, all individuals have the same

consumption sets and the same production sets. The individuals differ in

their initial endowment vectors and their utility functions. Qin (1993) intro-

duces the sets A1
S, A

2
S, A

3
S in order to be able to show that the equilibrium

price vector for the 5th group of n goods, p̂(5), is strictly positive. The ith

consumer obtains utility from the ith component of the vector of the 1st

1Qin (1993) considers only NTU games where for all coalitions S ∈ N the generating
sets satisfy CS ⊆ RS

+ and CS ∩ RS
++ 6= ∅ and hence has u∗ ≫ 0.
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group of n goods and from all the 5th n goods. The dependence of the util-

ity function on all components of the 5th group of n goods is crucial to show

the positiveness of p̂(5). To prove his result Qin (1993) shows that the mar-

ket EV̄ ,u∗ represents the modified game and that the given inner core point

is the unique competitive payoff vector of this economy. By applying the

inverse strictly monotonic transformation to the utility functions he obtains

his result.

In order to extend the results of Qin (1993) to a large class of closed

subsets of the inner core we make use of the fact that for compactly convexly

generated NTU games competitive payoff vectors need necessarily to be in

the inner core. To see this we use a modified version of Proposition 1 from

de Clippel and Minelli (2005).

Let N = {1, ..., n} be the set of agents and {1, .., ℓ} be the set of com-

modities. Let X i ⊆ Rℓ
+ be a convex set containing 0, the consumption set of

agent i. Each individual has a continuous, concave, (weakly) increasing and

locally non-satiated utility function ui : Rℓ
+ → R and an initial endowment

vector ωi ∈ Rℓ
+ \ {0}. Let Y i ⊆ Rℓ be a non-empty and closed convex cone,

the production set of agent i’s firm.

Lemma 2.1. Let
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

be a competitive equilibrium such that

p̂ ·ωi > 0 for all individuals i ∈ N . Then (ui (x̂i))i∈N is in the inner core of

the game induced by the economy.

The proof of Lemma 2.1 can be found in Appendix 2.5.1.

2.3 An extension of the Results of Qin (1993)

In the above two theorems Qin (1993) considers on the one hand the whole

inner core and on the other hand a single point in the inner core. In this

section we extend the results of Qin (1993) by showing a similar result for

closed subsets of the inner core. In the following we consider NTU market

games and closed subsets of the inner core with certain properties. We

want to ensure that for every point in a subset of the inner core, denoted
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by A, of a given NTU market game (N, V ) we can find a normal vector

such that this point is strictly separated from the set V (N) without the

point by the hyperplane using this normal vector. If we assume that the

individual rational part of V (N) is strictly convex, then this property is

satisfied. Moreover, we want to assume that this set of normal vectors,

where each normal vector corresponds to one point of the set A, is bounded

below by a strictly positive vector. This means that the exchange rates,

represented by the normal vectors, within the set A cannot be too extreme.

We make the following definition:

Definition 2.6 (strict positive separability). A pair [(N, V ), A] consisting

of a compactly, convexly generated and totally balanced NTU game (N, V )

and a closed subset A of its inner core satisfies strict positive separability

[SPS] if the following condition holds:

There exists an ε > 0 and a mapping λ : A → ∆++, that associates

to every point x ∈ A a normal vector λ(x) = λx, such that

– every point x ∈ A can be strictly separated from the set V (N) \

{x} using this normal vector λx, i.e.

λx · x > λx · y for all y ∈ V (N) \ {x},

– for all x ∈ A every coordinate of the normal vector λx is strictly

greater than ε, i.e.

λx
i > ε for all i ∈ N.

For a pair [(N, V ), A] satisfying strict positive separability there might

exist more than on mapping λ and more than one ε. In the following we

always consider one fixed mapping λ together with one fixed ε satisfying the

conditions. Whenever λ or ε appear we mean the ones we fixed knowing

that we might have chosen different ones.

The assumption of strict positive separability is not as restrictive as it

might appear. It is satisfied for example if the individual rational part of
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V (N) is strictly convex and A is a closed subset of the interior of the inner

core.

Note that from ε < λx
i =

λx
i

1
≤

λx
i

λx
j
it follows that

ε < min
i,j∈N

λx
i

λx
j

for all λx, x ∈ A.

Figure 2.1 illustrates the idea of strict positive separability with some

examples. Assume that we have always two players and that the coalitional

function is given by V ({1}) = V ({2}) = {0}−R+ and V ({1, 2}) is given as

indicated in Figure 2.1.

V ({1, 2})

u2

u1

A
b

0

V ({1, 2})

u2

u1

A
b

b

0

V ({1, 2})

u2

u1

A
b

b

b

b

0

Example 1 Example 2 Example 3

V ({1, 2})

u2

u1

A
b

b

0

V ({1, 2})

A
u2

u1

b

0

V ({1, 2})

A

u2

u1

b

b

0

Example 4 Example 5 Example 6

Figure 2.1: Examples where SPS is satisfied.
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In Examples 1, 2, 3 and 4 the set V ({1, 2}) is strictly convex. Here the

inner core is given by all points on the efficient boundary without the two

points on the axes. Thus, the NTU game together with every closed subset

of its inner core satisfies SPS. This holds in particular for single points, finite

sets, closed and connected sets or finite unions of closed sets.

Example 5 illustrates the case where the set V ({1, 2}) is generated by

a square and thus the inner core consists only of the corner point. In this

case all the vectors in the strictly positive two-dimensional simplex support

this inner core point. In order to establish SPS we just take one of these

supporting vectors.

In Example 6 the set V ({1, 2}) is generated by a polyhedron. The set A

is a finite set, consisting of some corner points of the polyhedron. For each

of these corner points there exists a strictly positive normal vector that

strictly separates it from V ({1, 2}) without this corner point. The NTU

game (N, V ) and this choice of the set A satisfy SPS.

Figure 2.2 shows some examples that do not satisfy strict positive sep-

arability. As before assume that we have always two players and that the

coalitional function is given by V ({1}) = V ({2}) = {0}−R+ and V ({1, 2})

is given as indicated in Figure 2.2.

V ({1, 2})

A

u2

u1

b

b

0

V ({1, 2})

u2

u1

A
b

b

0

Example 7 Example 8

Figure 2.2: Examples where SPS is not satisfied.
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In contrast to Example 6, in Example 7 the set A is chosen to be the line

segment connecting two neighboring corner points of a polyhedron. Hence,

all points in the set A have a common normal vector. Thus, each of this

points cannot be strictly separated from the polyhedron without this point.

Therefore, SPS is not satisfied. In Example 8 each point in the set A can

be strictly separated from V ({1, 2}) without the point. Nevertheless SPS is

not satisfied, as the set A is not closed.

The properties, that we require at this point by considering only [(N, V ), A]

satisfying SPS, are stronger than the properties, that we really need. For

example it is sufficient if we can strictly separate each point in the bound-

ary of A from A without it. Nevertheless, we choose to consider [(N, V ), A]

which satisfy SPS, because they allow for an easy interpretation. After the

presentation of the main results we discuss the question, how this can be

weakened such that cases as in Example 6 are included in our results.

Now we prove the following result:

Theorem 2.4. Let [(N, V ), A] satisfy strict positive separability. Then there

exists a market such that this market represents the game (N, V ) and such

that the set of competitive payoff vectors of this market is the set A.

We show this result for NTU games where for every coalition S ∈ N we

have CS ⊆ RS
++. Due to the remark on page 43 this is not a restriction as we

can shift an arbitrary given NTU game such that this condition is satisfied.

After having applied our results we shift back the obtained economies such

that they represent the original game. Hence, in the following if we consider

an NTU game, we always assume for every coalition S ∈ N that we have

CS ⊆ RS
++.

Before beginning with the construction of a market satisfying the prop-

erties mentioned above, we introduce an auxiliary game and some notation.

Let [(N, V ), A] satisfy SPS. Let (N, Ṽ ) be the NTU-game defined by

Ṽ (S) =







V (S) if S ⊂ N
⋂

a∈A

{z ∈ Rn|λa · z ≤ λa · a} if S = N
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where λa is as in the definition of SPS.

Note that to define the game (N, Ṽ ) we use for every point of the set a ∈

A just one normal vector that strictly separates this point from V (N)\{a}.

The games (N, V ) and (N, Ṽ ) are equal except for the grand coalition N .

For the coalition N we extend the set V (N) depending on the normal vectors

of the set A. For illustration purposes figure 2.3 shows as an example for

two players the sets V ({1, 2}) and Ṽ ({1, 2}).

b

b

b

b

Ṽ ({1, 2})

V ({1, 2})

u2

u1

A

0

Figure 2.3: Example: The sets V ({1, 2}) and Ṽ ({1, 2}) for N = {1, 2}.

To describe the relation between (N, Ṽ ) and (N, V ) we introduce the

following notation: Let z ∈ Ṽ (N) and

t̄z = min
{

t ∈ R+|z − teN ∈ V (N)
}

.

Define

C̃N =
{

z ∈ Ṽ (N)
∣

∣∃t ∈ R+ such that z − teN ∈ CN
}

.

Then we also have C̃N =
{

z ∈ Ṽ (N)
∣

∣z − t̄zeN ∈ CN
}

.
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The following remark is easy to verify:

Remark.

1. The game (N, V ) is contained in the game (N, Ṽ ). This means we

have V (S) ⊆ Ṽ (S) for all S ⊆ N .

2. The set C̃N is convex and furthermore, CN ⊆ C̃N .

3. The game (N, Ṽ ) is a convexly generated and totally balanced NTU-

game, but it is not compactly generated. In particular we have Ṽ (N) 6=

C̃N − Rn
+.

4. SPS ensures in particular: If we take x in V (N) outside from A, then

x is in the interior of Ṽ (N),

x ∈ V (N) \ A ⇒ x ∈ int
(

Ṽ (N)
)

.

The second point of the remark can be seen as follows: Take z1, z2 ∈ C̃N

and α ∈ [0, 1]. Then there exist tz1 and tz2 such that z1 − tz1eN ∈ CN and

z2 − tz2eN ∈ CN . As CN is per assumption convex α
(

z1 − tz1eN
)

+ (1 −

α)
(

z2 − tz2eN
)

∈ CN . As well the set Ṽ (N), as an intersection of halfspaces,

is convex and hence αz1 + (1 − α)z2 ∈ Ṽ (N). Thus taking tαz1+(1−α)z2 =

αtz1+(1−α)tz2 shows that (αz1 + (1− α)z2)−tαz1+(1−α)z2eN = α
(

z1 − tz1eN
)

+

(1−α)
(

z2 − tz2eN
)

∈ CN . Therefore, we have αz1+(1−α)z2 ∈ C̃N . Hence,

C̃N is convex.

Definition 2.7. Define the mapping PA : Ṽ (N) −→ V (N) via

PA (x) = x− t̄xeN .

The following figure illustrates the mapping PA for the example from

figure 2.3.

Note, that if x ∈ V (N) then t̄x = 0 and PA (x) = x.

Remark.

1. The mapping PA is continuous and its image is V (N).
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b
A

u1

b

b

b

b

b

b

b

Figure 2.4: Illustration of the mapping PA for the example from figure 2.3.

2. The set C̃N can be written as

C̃N =
{

z ∈ Ṽ (N)
∣

∣PA (z) ∈ CN
}

= P−1
A

(

CN
)

,

thus we have PA

(

C̃N
)

= CN .

2.3.1 The basic idea

First, we present an intermediate result, which is interesting in itself. For

[(N, V ), A] satisfying SPS we construct a market such that this market rep-

resents the given game and such that the set of payoff vectors of competitive

equilibria with strictly positive price vectors coincides with the given set A.

In the last chapter we show, how we deal with the case, when the equilibrium

price vectors are not necessarily strictly positive, using a more complicated

market with a similar structure.

Definition 2.8. Let [(N, V ), A] satisfy SPS. Then the market E0
V,A is defined

by

E0
V,A =

(

X i, Y i, ui, ωi
)

i∈N

with for every individual i ∈ N

- the consumption set X i = Rn
+ × {0} × Rn

+ × {0} ⊆ R4n,
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- the production set

Y i = convexcone









⋃

S∈N\{N}, cS∈CS

(

cS,−eS, cS,−eS
)





∪





⋃

c̃N∈C̃N

(

PA

(

c̃N
)

,−eN , c̃N ,−eN
)







 ⊆ R4n,

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}
)

,

- and the utility function ui : X i → R

with ui
(

(x(1), 0, x(3), 0)
)

= min
(

x
(1)
i , x

(3)
i

)

.

Note that this market has the same consumption and production set for

every individual i ∈ N . The individuals differ in their initial endowment

vectors and their utility functions. There are input and output commodities.

The 2nd group and the 4th group of n commodities are the input commodities

and every individual i ∈ N owns one unit of his personal input commodity

in the ith component of the 2nd and the 4th group of n goods. The 1st

and the 3rd group of n goods are the output commodities, from whose ith

component player i ∈ N obtains utility. The construction of this market is

based on the idea of the induced market in Billera and Bixby (1974) or Qin

(1993).

We now need to establish first that the market E0
V,A is indeed a market

for the NTU market game (N, V ).

Lemma 2.2. The market E0
V,A represents the game (N, V ).

The proof of Lemma 2.2 is inspired by Billera (1974).

Proof.

• As V (S) = CS−RS
+ it is enough to show, that for all S ∈ N the payoff

vectors in the set CS can be achieved by coalition S in the market E0
V,A.

Let z ∈ CS. We show, that there exists a feasible S-allocation (xi)i∈S
with (yi)i∈S such that ui (xi) = zi for all i ∈ S.
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Define for i ∈ S the consumption plan

xi =
(

z{i}, 0, z{i}, 0
)

and let

yi =
1

|S|

(

z,−eS, z,−eS
)

be the production plan for all i ∈ S. By the definition of the con-

sumption sets we observe xi ∈ X i for all i ∈ S. With regard to the

production sets for S 6= N we have immediately yi ∈ Y i for all i ∈ S.

For S = N note that z ∈ V (N) ⊆ Ṽ (N) and thus PA(z) = z. Hence,

we have yi ∈ Y i for all i ∈ N . Observe that

∑

i∈S

(

xi − ωi
)

=
∑

i∈S

yi.

Hence, (xi)i∈S is a feasible S-allocation and

ui
(

xi
)

= zi for all i ∈ S.

• Let
(

x̄(1)i, 0, x̄(3)i, 0
)

i∈S
be a feasible S-allocation with

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i
)

i∈S

in the market E0
V,A.

The feasibility implies

(

∑

i∈S

x̄(1)i,−eS,
∑

i∈S

x̄(3)i,−eS

)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i
)

.

Each production set is a convex cone of a union of convex sets. Hence,

an arbitrary production plan can be written in the following way:

Choose one suitable element from each of the convex sets and build a

linear combination (with non-negative coefficients) of these elements.

For the 1st and the 2nd group of n commodities we obtain, that there

exist αi
R ∈ R+ for all R ∈ N , ziR ∈ CR for all R ∈ N \ {N} and
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z̃iN ∈ C̃N , such that

(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N\{N}

αi
R

(

ziR,−eR
)

+ αi
N

(

PA

(

z̃iN
)

,−eN
)

.

As PA

(

C̃N
)

= CN there exists ziN ∈ CN such that PA (z̃iN) = ziN and

hence we have

(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N

αi
R

(

ziR,−eR
)

.

As feasibility implies

(

∑

i∈S

x̄(1)i,−eS
)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i
)

, for the 2nd

group of n coordinates we have that

eS =
∑

i∈S

∑

R∈N

αi
Re

R

=
∑

R∈N

(

∑

i∈S

αi
R

)

eR.

Thus αi
R > 0 implies R ⊆ S and if we define α (R) =

∑

i∈S

αi
R, then

(α (R))R⊆S is a balanced family for the coalition S. Looking at the 1st

group of n coordinates we have

∑

i∈S

x̄(1)i =
∑

R⊆S

∑

i∈S

αi
Rz

i
R

=
∑

{R⊆S|α(R)>0}

α(R)

(

1

α (R)

∑

i∈S

αi
Rz

i
R

)

.

Since CR is convex we have

1

α (R)

∑

i∈S

αi
RzR ∈ CR
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and hence, using totally balancedness,
∑

i∈S

x̄(1)i ∈ V (S).

From the definition of the utility function we obtain ui
(

x̄(1)i, 0, x̄(3)i, 0
)

≤

x̄
(1)i
i . Since

(

x̄
(1)i
i

)

i∈S
≤
∑

i∈S

x̄(1)i ∈ V (S) we have by the S-comprehensiveness

of V (S) that
(

ui
(

x̄(1)i, 0, x̄(3)i, 0
))

i∈S
∈ V (S).

We verify that the payoff vectors in the set A are indeed competitive

payoff vectors of the market E0
V,A:

Proposition 2.1. Every point in the set A is equilibrium payoff vector of

the market E0
V,A.

Proof. Let a ∈ A and λa ∈ ∆ be a normal vector such that a is in the core

of the λa-transfer game. We know that λa is strictly positive (compare the

remark on page 46). By the assumption that CN ⊆ RN
++ we know that a is

strictly positive. To prove the proposition, we show that the consumption

and production plans

(

x̂i
)

i∈N
=
((

a{i}, 0, a{i}, 0
))

i∈N

and
(

ŷi
)

i∈N
=

((

1

n

(

a,−eN , a,−eN
)

))

i∈N

together with the price system

p̂ = (λa, λa ◦ a, λa, λa ◦ a)

constitute a competitive equilibrium in the market E0
V,A.

First note that as PA(a) = a we have ŷi ∈ Y i for all i ∈ N . According

to the remark above, the price system p̂ is strictly positive. As we have a

convex-cone-technology maximum profits are zero. We observe

p̂ · ŷi =
1

n

(

λa · a− (λa ◦ a) · eN + λa · a− (λa ◦ a) · eN
)

= 0.

Hence, the production plan ŷi is profit maximizing.
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As we have a min-type or Leontief utility function, it is optimal for each

agent i to spend his budget in a way such that x̂
(1)i
i = x̂

(3)i
i and that he does

not consume anything of the other commodities. Furthermore, he has to

spend all his budget, because the preferences are locally non-satiated and

continuous. The budget constraint is satisfied with equality,

p̂ · x̂i = λa ·
(

a{i} + a{i}
)

= (λa ◦ a) ·
(

e{i} + e{i}
)

= p̂ · ωi

and

x̂(1)i = a{i} = x̂(3)i.

Hence, the consumption vector x̂i is utility maximizing on the budget set of

agent i.

Furthermore, the market clearing condition

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi

is satisfied.

Thus, we have found a competitive equilibrium with equilibrium payoff vec-

tor
(

ui
(

x̂i
))

i∈N
= a.

Looking again at the competitive equilibrium price vectors in the proof

of Proposition 2.1 note: For a competitive equilibrium with payoff vector

a ∈ A the equilibrium price vector for the 1st (respectively 3rd) group of

n goods, the output goods, is the normal vector λa separating the point a

from V (N). The transfer rate vectors coincide with the equilibrium prices

for the output goods of the market. The input goods are priced by λa ◦

a. This is the transfer rate vector weighted by the according point of the

set A. Interpreted differently: The input goods are first weighted by the

point a of the set A and afterwards they are priced by the transfer rate

vector λa. The relationship of the transfer rate vectors and the prices of

competitive equilibria was observed in several publications discussing the

relation between NTU games and economies. Examples are Shubik (1985),
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Shapley (1987), Trockel (1996) and Qin (1993). Shapley (1987, p. 192)

states: “There is a strong analogy though no formal equivalence that we

know of between the comparison weights that we must introduce in order

to obtain a feasible transfer value and the prices in a competitive market.”

Here we obtain a formal equivalence for the prices of the output goods and

an indirect link for the prices of the input goods. Trockel (1996) investigated

this equivalence for NTU bargaining games and Qin (1993) obtained very

similar equilibrium prices as we have here.

Next, we consider the utility allocations outside the set A. Using Lemma

2.1 it is sufficient to consider those vectors in the inner core.

Proposition 2.2. Any payoff vector of a competitive equilibrium of the

market E0
V,A with a strictly positive equilibrium price vector is an element of

the set A.

Proof. Lemma 2.1 ensures that every competitive equilibrium payoff vector

is in the inner core. Assume that there exists a competitive equilibrium

((xi)i∈N , (y
i)i∈N , p) such that its payoff vector (ui(xi))i∈N is in the inner

core but not in the set A and such that the equilibrium price vector is

strictly positive, p ≫ 0.

Then, there exists an element cN in the inner core outside A such that

ui(xi) = cNi for all player i = 1, ..., n. Let xi = (x(1)i, x(2)i, x(3)i, x(4)i). By

the definition of the consumption set we know x(2)i = x(4)i = 0 and by the

definition of the utility function we obtain x
(1)i
i ≥ cNi and x

(3)i
i ≥ cNi for all

i = 1, ..., n.

Claim 1: From the utility maximization and the strict positivity of the price

vector it follows that we need to have

x
(1)i
i = cNi = x

(3)i
i .

The proof of Claim 1 can be found in Appendix 2.5.2.
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We get by the market clearing condition:

y =
∑

i∈N

(

xi − ωi
)

=
(

cN ,−eN , cN ,−eN
)

.

But the production plan y = (cN ,−eN , cN ,−eN ) is not profit maximizing.2

To see this notice the following: As cN is in the inner core but outside

the set A there exists a c̃N with PA

(

c̃N
)

= cN and c̃N ≫ cN . Consider the

production plan
(

PA

(

c̃N
)

,−eN , c̃N ,−eN
)

. Looking at the profits and using

the strict positivity of the price vector we observe

p · y = p(1) · cN − p(2) · eN + p(3) · cN − p(4) · eN

< p(1) · cN − p(2) · eN + p(3) · c̃N − p(4) · eN

= p(1) · PA

(

c̃N
)

− p(2) · eN + p(3) · c̃N − p(4) · eN

≤ 0.

Thus, we have found a production plan that has strictly higher profits than

y. This is a contradiction, since y needs to be profit maximizing.

It follows that with strictly positive price vectors the allocations outside

the set A but in the inner core cannot be competitive equilibrium payoff

vectors.

Combining the two propositions above we obtain the following theorem:

Theorem 2.5. Let [(N, V ), A] satisfy strict positive separability. The set

of payoff vectors of competitive equilibria with a strictly positive equilibrium

price vector of the market E0
V,A coincides with the set A.

Positive equilibrium price vectors are required to obtain the above

results

Up to now we always considered competitive equilibria with only strictly

positive equilibrium price vectors. This was indeed necessary. If we also

2Since the individual production sets are convex cones, to check profit maximization it is
sufficient to consider the joint production plans. We have

∑n

i=1 Y
i = Y j for any j ∈ N .
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allow for price vectors that are not strictly positive, then we can construct

a competitive equilibrium with competitive payoff vectors outside the given

set A. To see this fix a /∈ A but in the inner core. Then there exists ã ∈ C̃N

such that PA (ã) = a and ã ≫ a. Consider

x̂i =
(

(PA (ã)){i} , 0, ã{i}, 0
)

=
(

a{i}, 0, ã{i}, 0
)

for all i ∈ N,

ŷi =

(

1

n

(

PA (ã) ,−eN , ã,−eN
)

)

=

(

1

n

(

a,−eN , ã,−eN
)

)

for all i ∈ N,

p̂ = (λa, λa ◦ a, 0, 0)

where λa is one normal vector from a λa-transfer game and (PA (ã)){i}

is the vector that has as its ith coordinate the ith coordinate of PA (ã) and

zero coordinates otherwise. Analogously define ã{i}.

We show that ((x̂i)i∈N , (ŷ
i)i∈N , p̂) constitutes a competitive equilibrium

with the payoff vector a /∈ A.

• First note that ui(x̂i) = min {ai, ãi} = ai, since we have ã ≫ a.

• For the profit maximization we obtain

p̂ · ŷi =
1

n

(

λa · a− (λa ◦ a) · eN
)

= 0.

Since the maximum profits are zero, ŷi is profit maximizing.

• For the utility maximization we obtain that the budget constraint is

satisfied with equality,

p̂ · x̂i = λa · a{i} = (λa ◦ a) · e{i} = p̂ · ωi,

and furthermore individual i spends all his budget for the ith commod-

ity in the 1st group of n goods. Since the prices are equal to zero for

the 3rd and 4th group of n goods he can consume x̂
(3)i
i = ãi without

using any of his budget. Thus, x̂i is utility maximizing.
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• Moreover, the market clearing condition is satisfied

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi.

Thus, we have found a competitive equilibrium with equilibrium payoff

vector
(

ui
(

x̂i
))

i∈N
= a /∈ A.

2.3.2 The main results

In order to deal with the general case without assuming the strict positiv-

ity of price vectors, we modify the market from the previous section in an

appropriate way. This modification allows us to show, that the prices of

the 3rd group of n commodities are strictly positive, p(3) ≫ 0. For the rest

of this section let [(N, V ), A] satisfy SPS. To simplify the notation of the

market, we introduce some sets before:

For the definition of the production sets define for all coalitions S ∈

N \ {N}

A1
S =

{(

cS,−eS, cS,−eS,−eS
)

|cS ∈ CS
}

,

A2
S =

{(

cS, 0, cS,−eS, 0
)

|cS ∈ CS
}

,

A3
S =

{(

cS, 0, cS, 0,−eS
)

|cS ∈ CS
}

and for the grand coalition N define

A1
N =

{

(

PA

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

|c̃N ∈ C̃N
}

,

A2
N =

{

(

PA

(

c̃N
)

, 0, c̃N ,−eN , 0
)

|c̃N ∈ C̃N
}

,

A3
N =

{

(

PA

(

c̃N
)

, 0, c̃N , 0,−eN
)

|c̃N ∈ C̃N
}

.

In order to obtain the result without the assumption of strictly positive

price vectors, we modify the utility functions, the production and consump-



CHAPTER 2. NTU MARKET GAMES - INNER CORE 66

tion sets. The utility functions do not depend anymore only on the two

personal output commodities but also on the whole second group of output

commodities. For that we add ‘a little bit’ of utility from the other players

output goods. This ‘little bit’ is described by using the ε > 0 from the

definition of SPS.

Definition 2.9 (induced A-market). Let [(N, V ), A] satisfy strict positive

separability. Let ε > 0 such that ε < mini,j∈N
λa
i

λa
j
for all a ∈ A. The induced

A-market of the game (N, V ) and the set A is defined by

EV,A,ε = (X i, Y i, ui, ωi)i∈N

with for every individual i ∈ N

- the consumption set X i = Rn
+ × {0} × Rn

+ × {0} × {0} ⊆ R5n,

- the production set Y i = convexcone
[
⋃

S∈N (A1
S ∪ A2

S ∪ A3
S)
]

⊆ R5n

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}, e{i}
)

,

- and the utility function ui : X i → R with

ui
(

x(1), 0, x(3), 0, 0
)

= min

(

x
(1)
i , x

(3)
i + ε

∑

j 6=i

x
(3)
j

)

.

Note that this market is very similar to the market we defined in the

previous section. We change the definition of the production and consump-

tion sets slightly by introducing a further input commodity. Moreover, the

utility functions here depend on all coordinates of the 3rd group of n goods.

Having defined the induced A-market we prove the following theorem,

which is the main result of this paper:

Theorem 2.6. Let [(N, V ), A] satisfy strict positive separability. Then there

exists a market such that this market represents the game (N, V ) and such

that the set of competitive payoff vectors of this market is the set A.

To prove the above theorem we use the induced A-market EV,A,ε as de-

fined before. We divide the proof of this Theorem into 3 parts: First we
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show, that EV,A,ε represents the game (N, V ), in the second part we prove,

that every vector in the set A is a competitive payoff vector, and in the

third part we show that competitive payoff vectors always belong to the set

A.

Lemma 2.3. The induced A-market EV,A,ε represents the game (N, V ).

The proof of Lemma 2.3 is inspired by Billera (1974).

Proof.

• As V (S) = CS − RS
+ it is enough to show, that the payoffs in the set

CS can be achieved by coalition S in the market EV,A,ε. Let z ∈ CS.

We show, that there exists a feasible S-allocation (xi)i∈S with (yi)i∈S
such that ui (xi) = zi for all i ∈ S.

Define for i ∈ S the consumption plan

xi =
(

z{i}, 0, z{i}, 0, 0
)

and let

yi =
1

|S|

(

z,−eS, z,−eS,−eS
)

be the production plan for all i ∈ S. By the definition of the con-

sumption sets we observe xi ∈ X i for all i ∈ S. With regard to the

production sets for S 6= N we have immediately yi ∈ Y i for all i ∈ S.

For S = N note that z ∈ V (N) ⊆ Ṽ (N) and thus PA(z) = z. Hence,

we have yi ∈ Y i for all i ∈ N . Observe that

∑

i∈S

(

xi − ωi
)

=
∑

i∈S

yi.

Hence, (xi)i∈S is a feasible S-allocation and

ui
(

xi
)

= zi for all i ∈ S.

• Let
(

x̄(1)i, 0, x̄(3)i, 0, 0
)

i∈S
be a feasible S-allocation with

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i, ȳ(5)i
)

i∈S

in the market EV,A,ε.
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The feasibility implies

(

∑

i∈S

x̄(1)i,−eS,
∑

i∈S

x̄(3)i,−eS,−eS

)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i, ȳ(5)i
)

.

Each production set is a convex cone of a union of convex sets. Hence,

an arbitrary production plan can be written in the following way:

Choose one suitable element from each of the convex sets and build a

linear combination (with non-negative coefficients) of these elements.

For the 1st and the 2nd group of n commodities we obtain, that there

exist αi
R ∈ R+ for all R ∈ N , ziR ∈ CR for all R ∈ N \ {N} and

z̃iN ∈ C̃N , such that

(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N\{N}

αi
R

(

ziR,−eR
)

+ αi
N

(

PA

(

z̃iN
)

,−eN
)

.

As PA

(

C̃N
)

= CN there exists ziN ∈ CN such that PA (z̃iN) = ziN and

hence we have

(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N

αi
R

(

ziR,−eR
)

.

As feasibility implies

(

∑

i∈S

x̄(1)i,−eS
)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i
)

, for the 2nd

group of n coordinates we have that

eS =
∑

i∈S

∑

R∈N

αi
Re

R

=
∑

R∈N

(

∑

i∈S

αi
R

)

eR.

Thus αi
R > 0 implies R ⊆ S and if we define α (R) =

∑

i∈S

αi
R, then

(α (R))R⊆S is a balanced family for the coalition S. Looking at the 1st

group of n coordinates we have
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∑

i∈S

x̄(1)i =
∑

R⊆S

∑

i∈S

αi
Rz

i
R

=
∑

{R⊆S|α(R)>0}

α(R)

(

1

α (R)

∑

i∈S

αi
Rz

i
R

)

.

Since CR is convex we have

1

α (R)

∑

i∈S

αi
RzR ∈ CR

and hence, using totally balancedness,
∑

i∈S

x̄(1)i ∈ V (S).

From the definition of the utility function we obtain ui
(

x̄(1)i, 0, x̄(3)i, 0, 0
)

≤

x̄
(1)i
i . Since

(

x̄
(1)i
i

)

i∈S
≤
∑

i∈S

x̄(1)i ∈ V (S) we have by the S-comprehensiveness

of V (S) that
(

ui
(

x̄(1)i, 0, x̄(3)i, 0, 0
))

i∈S
∈ V (S).

Proposition 2.3. Every point in A is an equilibrium payoff vector of the

market EV,A,ε.

Proof. The above proposition holds by an argument similar to the one used

in the proof of Proposition 2.1. Let a ∈ A and λa ∈ ∆ an associated normal

vector. We know that λa is strictly positive (compare the remark on page

46). Note that the consumption and production plans

(

x̂i
)

i∈N
=
((

a{i}, 0, a{i}, 0, 0
))

i∈N

and
(

ŷi
)

i∈N
=

((

1

n

(

a,−eN , a,−eN ,−eN
)

))

i∈N

together with the price system

p̂ =

(

λa,
2

3
(λa ◦ a) , λa,

2

3
(λa ◦ a) ,

2

3
(λa ◦ a)

)
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constitute a competitive equilibrium in the market EV,A,ε. The equilibrium

price vector is strictly positive since a and λa are strictly positive.

As we have a convex-cone-technology maximum profits are zero. We

observe

p̂·ŷi =
1

n

(

λa · a−
2

3
(λa ◦ a) · eN + λa · a−

2

3
(λa ◦ a) · eN −

2

3
(λa ◦ a) · eN

)

= 0.

Hence, the production plan ŷi is profit maximizing.

Next we show that the consumption vector xi is utility maximizing on

the budget set of agent i.

• First notice that the budget constraint is satisfied with equality,

p̂ · x̂i = λa ·
(

a{i} + a{i}
)

=
2

3
(λa ◦ a) ·

(

e{i} + e{i} + e{i}
)

= p̂ · ωi.

• Second the consumption vector of agent i satisfies

x̂
(1)i
i = x̂

(3)i
i + ε

∑

j 6=i

x̂
(3)i
j .

This means agent i consumes in a way such that he receives the “same

amount of utility” from the 1st group of n goods and the 3rd group of

n goods. For an agent with a min-type or Leontief utility function it

is a necessary condition for utility maximization to consume in such

a way (as long as we have strictly positive prices). This can be seen

by similar arguments like in the proof of Claim 1.

• Third, it remains to check that x̂i is indeed utility maximizing for

agent i on his budget set. Hereby, the crucial point to see is, that

agent i only consumes his personal output goods, and not the output

goods of the other agents. In particular, this means for the 3rd group

of n commodities x̂
(3)i
j = 0 for j 6= i.

First look at the consumption of the 3rd group of n goods when half

of the wealth, λa · a{i}, is used for these goods.

If agent i spends the wealth only for his personal output commodity,

he consumes x̂(3)i = a{i}. Then we have p̂(3) · x̂(3)i = λa · a{i}. Suppose
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now agent i changes his consumption plan for the 3rd group of n com-

modities to a plan x̃(3)i, where he consumes as well one of the other

agents output goods, meaning x̃
(3)i
j > 0 for one j 6= i. To do this agent

i needs to decrease the consumption in his personal output good and

hence x̂
(3)i
i > x̃

(3)i
i . Set δ = x̂

(3)i
i − x̃

(3)i
i . Then this δ he consumes less

gives him an available budget of λa
i δ, that he can now use to spend

for the other agents commodity j. If agent i now spends λa
i δ for good

j, he can purchase
λa
i

λa
j
δ units of good j which gives him an additional

level of “utility” in good j of the 3rd group of n goods.

Look at

x̂
(3)i
i + ε

∑

j 6=i

x̂
(3)i
j −

(

x̃
(3)i
i + ε

∑

j 6=i

x̃
(3)i
j

)

= x̂
(3)i
i −

(

x̂
(3)i
i − δ + ε

λa
i

λa
j

· δ

)

= δ − ε
λa
i

λa
j

· δ

= δ

(

1− ε
λa
i

λa
j

)

.

The above expression is positive since ε <
λa
j

λa
i
for all i, j ∈ N and hence

ε
λa
i

λa
j
<

λa
j

λa
i

λa
i

λa
j
= 1. Thus we have

x̂
(3)i
i + ε

∑

j 6=i

x̂
(3)i
j > x̃

(3)i
i + ε

∑

j 6=i

x̃
(3)i
j .

The potential loss of utility from consuming less of his personal output

commodity is higher than the potential gain from consuming agent j’s

output commodity given a fixed wealth.

A similar argument also holds true, when agent i changes the con-

sumption in a way such that he consumes output goods of several

other agents.

Thus agent i cannot increase his utility by changing his consumption

plan for the 3rd group of n commodities from x̂(3)i to x̃(3)i and con-
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suming output commodities of the other agents j 6= i instead of his

own output commodities.

Now it is easy to see, that spending half of the total wealth for each

of the two groups of output commodities leads to the same amount of

utility in both arguments of the min-type utility function and is hence

utility maximizing.

Furthermore, the market clearing condition

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi

is satisfied.

Thus, we have found a competitive equilibrium with equilibrium payoff vec-

tor
(

ui
(

x̂i
))

i∈N
= a.

In the above proof the competitive equilibrium price vectors are linked

to the transfer rate vectors of points in the set A similarly as in the proof of

Proposition 2.1. The output goods are directly priced by the transfer rate

vectors and the input goods are priced by the transfer rate vectors weighted

by the according point of the set A (multiplied by 2
3
).

It remains to show, that vectors not belonging to the set A cannot be

competitive payoff vectors. The crucial point is to show, that p(3) is strictly

positive.

Lemma 2.4. Let ((xi)i∈N , (y
i)i∈N , p) be any competitive equilibrium for the

induced A-market. Then p(3) is strictly positive.

Proof. Let ((xi)i∈N , (y
i)i∈N , p) be a competitive equilibrium for the induced

A-market. By the market clearing condition we have

∑

i∈N

xi =
∑

i∈N

yi +
(

0, eN , 0, eN , eN
)
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and by profit maximization p · yi = 0 for all i ∈ N . By the definition of the

production set for each i ∈ N there exist γi1
S , γi2

S , γi3
S ≥ 0 for all S ∈ N ,

ui1
S , ui2

S , ui3
S ∈ CS for all S ∈ N \ {N} and ũi1

N , ũi2
N , ũi3

N ∈ C̃N such that

yi =
∑

S∈N\{N}

(

3
∑

j=1

γij
S u

ij
S , −γi1

S e
S,

3
∑

j=1

γij
S u

ij
S , −

(

γi1
S + γi2

S

)

eS, −
(

γi1
S + γi3

S

)

eS

)

+

(

3
∑

j=1

γij
NPA

(

ũij
N

)

, −γi1
Ne

N ,
3
∑

j=1

γij
N ũ

ij
N , −

(

γi1
N + γi2

N

)

eN , −
(

γi1
N + γi3

N

)

eN

)

.

As PA

(

C̃N
)

= CN there exist uij
N ∈ CN such that PA

(

ũij
N

)

= uij
N for

j = 1, 2, 3. Thus, we have for all i ∈ N

yi =
∑

S∈N\{N}

(

3
∑

j=1

γij
S u

ij
S , −γi1

S e
S,

3
∑

j=1

γij
S u

ij
S , −

(

γi1
S + γi2

S

)

eS, −
(

γi1
S + γi3

S

)

eS

)

+

(

3
∑

j=1

γij
Nu

ij
N , −γi1

Ne
N ,

3
∑

j=1

γij
N ũ

ij
N , −

(

γi1
N + γi2

N

)

eN , −
(

γi1
N + γi3

N

)

eN

)

.

By the definition of the consumption set we need to have x(2)i = x(4)i =

x(5)i = 0 for all i ∈ N . Hence, for all i ∈ N , we obtain, using the market

clearing condition and the definition of the production sets, for all coalitions

S ∈ N

∑

T⊆N

γi1
T e

T = eS,

∑

T⊆N

(

γi1
T + γi2

T

)

eT = eS,

∑

T⊆N

(

γi1
T + γi3

T

)

eT = eS.

It follows that γi2
S = γi3

S = 0 for all i ∈ N and for all S ∈ N and that for

some i ∈ N and some S ∈ N we have γi1
S > 0.

Suppose now, that p
(3)
i = 0 for at least one i ∈ N . We show, that this leads

to a contradiction.
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First observe: If p
(3)
i = 0 for one i ∈ N , then p

(3)
k = 0 for all k ∈ N .

To see this suppose p
(3)
k > 0 for some k ∈ N . For every individual

j ∈ N the consumption bundle xj maximizes his utility function over

his budget set {x̂j ∈ Xj|p · x̂j ≤ p · ωj}. This implies, if p
(3)
i = 0 that

agent j does not consume any good that has a positive price. If he did

so, this would decrease his available budget whereas he can reach the

same utility from consuming good i that is for free. Precisely p
(3)
i = 0

implies x
(3)j
k = 0 for all j ∈ N and for all k ∈ N such that k 6= i and

p
(3)
k > 0.

However, the market clearing condition and the definition of the pro-

duction set require

∑

j∈N

x(3)j =
∑

S∈N\{N}

γi1
S u

i1
S + γi1

N ũ
i1
N ≫ 0,

since ui1
S ∈ CS ⊆ RS

++ and ũi1
N ≥ ui1

N ∈ CN ⊆ RN
++. Hence, we obtain

a contradiction and thus p(3) = 0.

Since uj(x̌j) > uj(x̄j) whenever x̌
(1)j
j > x̄

(1)j
j and x̌(3)j > x̄(3)j, it follows

from p(3) = 0 that p
(1)
j must be positive. This holds for all j ∈ N , thus

p(1) ≫ 0.

Since CS ⊆ RS
++, it follows that p

(1) · ui1
S > 0. Since the maximal profits are

equal to zero because of the convex-cone-technology, it must be true that

p(1) · ui1
S − p(2) · eS − p(4) · eS − p(5) · eS = 0. (⋆)

For any j ∈ N choose u ∈ C{j} ∩ R
{j}
++ and γ > 0. Then

(

γu, 0, γu,−γe{j}, 0
)

∈ Y j

and

p ·
(

γu, 0, γu,−γe{j}, 0
)

= γ
(

p
(1)
j u− p

(4)
j

)

.

Since p(1) ≫ 0, p
(4)
j must be positive, because otherwise this would contradict

the fact, that maximal profits are 0. Thus, p(4) ≫ 0. Similarly p(5) ≫ 0.

Therefore, from the equation (⋆) above we obtain using −p(5) · eS < 0 and
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−p(2) · eS ≤ 0

p(1) · ui1
S − p(4) · eS > 0.

Hence, we have

p ·
(

ui1
S , 0, u

i1
S ,−eS, 0

)

= p(1) ·ui1
S +p(3) ·ui1

S −p(4) ·eS = p(1) ·ui1
S −p(4) ·eS > 0.

But
(

ui1
S , 0, u

i1
S ,−eS, 0

)

∈ Y i as it is of the form as points in the set A2
S.

This is a contradiction to the fact, that the maximal profits are zero. Thus

p(3) ≫ 0.

We use this result to show the remaining Proposition that completes the

proof of the theorem:

Proposition 2.4. Any payoff vector of a competitive equilibrium of the

market EV,A,ε is an element of the set A.

Proof. Suppose there exists a competitive equilibrium
(

(xi)i∈N (yi)i∈N , p
)

,

such that (ui (xi))i∈N = cN with cN /∈ A.

From Lemma 2.1 we know that cN is in the inner core.

That Lemma 2.1 is applicable can be seen as follows: We know that

p ·ωi > 0. Otherwise agent i would have a budget of 0 and we needed

to have p
(2)
i = p

(4)
i = p

(5)
i = 0. This would mean that the production

plan
(

c{i},−e{i}, c{i},−e{i},−e{i}
)

with c{i} ∈ C{i} has strictly positive

profits. This would be a contradiction. Thus, for all individuals i ∈ N

we have p · ωi > 0.

By Lemma 2.4 we know p(3) ≫ 0. Furthermore we know

y =
∑

i∈N

yi =
(

PA

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

for some c̃N ∈ C̃N satisfying PA

(

c̃N
)

= cN as any other production would

contradict the market clearing condition in the 1st group of n coordinates.

From the profit maximization we know that c̃N has to be chosen on the

boundary of C̃(N) and hence, since cN /∈ A, we have c̃N ≫ cN . By the



CHAPTER 2. NTU MARKET GAMES - INNER CORE 76

market clearing condition (for the 3rd group of n coordinates) we have

∑

i∈N

x(3)i = c̃N . (⋆⋆)

Furthermore, by utility maximization we obtain

cNi = x
(3)i
i + ε

∑

j 6=i

x
(3)i
j . (⋆ ⋆ ⋆)

As cN ≪ c̃N , equation (⋆ ⋆ ⋆) implies, that we have x
(3)i
i < c̃Ni for all i ∈ N .

Hence, for every i ∈ N we have
∑

j 6=i x
(3)j
i > 0. Thus, for every i ∈ N

there exists j 6= i satisfying x
(3)j
i > 0. Define a mapping M : N −→ N in

the following way: Every i ∈ N is mapped to one j 6= i satisfying x
(3)j
i > 0.

Then, we can find k ∈ N and t ∈ N such that M t(k) = k.

We use these results to show some constraints on the equilibrium prices:

As x
(3)M(k)
k > 0, the utility maximization of agent M(k) implies, that we

have p
(3)
k ≤ εp

(3)
M(k). Otherwise, agent M(k) would not consume good k, but

instead more of good M(k). In the same way, we can show similar equations

for other prices and obtain

p
(3)
k ≤ εp

(3)
M(k) ≤ ε2p

(3)

M2(k) ≤ ... ≤ εtp
(3)
Mt(k) = εtp

(3)
k .

But εt < 1. This is a contradiction.

As already mentioned before, assuming SPS is more restrictive than

actually needed. Requiring the strict separation property for all points in

the set A can be weakened to requiring it only for the boundary points

of the set A. In fact, we need for the construction of the auxiliary game

(N, Ṽ ) that outside the set A the efficient boundary is strictly enlarged.

This means the property that if we take x ∈ V (N) \ A, then x being in
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the interior of Ṽ (N) is the crucial property to eliminate equilibria with a

payoff vector outside the set A. Using this weaker assumption allows a

choice of the set A as in Example 7. An example, where even this weaker

version of the strict positive separability property is violated, and where our

approach cannot be applied can be found in Figure 2.5. Assume as before

that we have always two players and that the coalitional function is given by

V ({1}) = V ({2}) = {0} −R+ and V ({1, 2}) is given as indicated in Figure

2.5.

V ({1, 2})

A

u2

u1

b

b

0

V ({1, 2})

A

u2

u1

b

b

b

b

0

Example 7 Example 9

Figure 2.5: Examples where SPS is not satisfied.

In contrast to Example 7, in Example 8 the set A is chosen in such a

way that it is a closed interval of a line segment connecting two neighboring

corner points, but not the whole line segment. Because of the polyhedral

structure none of the points in the set A can be strictly separated from the

set V ({1, 2}) without the point.

Another important aspect of our result is the fact that the induced A-

market is not determined uniquely. We have some freedom in different

aspects of our construction and obtain a whole class of markets, that can

be used to prove our main theorem:

• First, to define the induced A-market we use the auxiliary NTU game

(N, Ṽ ) where we enlarge the given NTU game (N, V ). For this en-

largement we use for every inner core point one of its normal vectors.

This normal vector is not always unique.
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• Second, for the auxiliary game (N, Ṽ ) we define the mapping PA which

can be chosen in different ways. The important property is that for

the points outside the given subset of the inner core, A, we have

PA(z) ≫ z for all z ∈ IC(A) \ A. Moreover, for points in the given

set A we require PA(z) = z for all z ∈ A.

• Third, we add to the utility function of the induced A-market an

ε-term, that needs to be between certain bounds and hence is not

determined uniquely. Moreover, we can choose different ε for different

players.

2.4 Concluding Remarks

In this paper we have continued the work of Shapley and Shubik (1975)

and Qin (1993) to investigate competitive payoff vectors of markets that

represent a cooperative game and their relation to solution concepts for

cooperative games.

We extend the results of Qin (1993) to a large class of closed subsets

of the inner core: Given an NTU market game we construct the induced

A-market depending on a given closed subset of its inner core. This market

represents the game and further has the given set as the set of payoff vectors

of competitive equilibria. More precisely, inspired by the construction of

the induced market of Billera and Bixby (1974) and by the markets that

Qin (1993) uses to prove his two main results, we define a market in an

appropriate way to generalize the results of Qin (1993) to a large class

of closed subsets of the inner core. It turns out that this market is not

determined uniquely and thus we obtain a whole class of markets that has

the given closed subset of the inner core as the set of payoff vectors of

competitive equilibria.

In the literature it was already known that one game can be represented

by several markets, see Billera and Bixby (1974) or Qin (1993). Our work

confirms that going from NTU games to markets some structural informa-

tion is added that is not present in the NTU game. To a given NTU market

game we can associate a huge class of markets that represents the NTU
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game. In particular, by choosing the structure, that we add, we can control

the set of payoffs of competitive equilibria.

Another point of view on our results is to analyze situations where we

start with given markets and consider the induced games. Looking at com-

petitive equilibria and how they appear in the game, we observe that almost

everything is possible. Depending on the specific market the set of compet-

itive equilibrium payoff vectors might fill up the whole inner core or be

almost any closed subset, in particular any single point. Hence, our result

demonstrates that we can not expect to observe more game theoretic prop-

erties of competitive equilibria than knowing that competitive payoffs are

in the inner core. Only by imposing additional structural assumptions on

the markets, for example restricting the class of utility functions, we may

observe additional game theoretic properties.

We establish a link between closed subsets of the inner core and compet-

itive payoffs of certain economies. Extending the results of Qin (1993) to

closed subsets of the inner core means in particular to establish a link for all

solution concepts selecting closed subsets of the inner core. Therefore, our

results can be seen as a market foundation of game theoretic solution con-

cepts that select closed subsets of the inner core. For the particular class

of bargaining games a more precise presentation of the idea of a market

foundation can be found in Trockel (1996, 2005) and Brangewitz and Gamp

(2011b).

The result presented here includes the result of Qin (1993) for a single

point in the inner core. This holds also in a very general setup by using

monotone transformations of utilities in the same way as it was done in Qin

(1993). Nevertheless, if we consider closed subsets of the inner core that

contain more than a single point, the idea to transform the utilities seems

not to work. Due to this fact we assume some separation properties on the

game and the given closed subset of its inner core.

Furthermore, by investigating the NTU case we realized that a simple

generalization of the approach of Shapley and Shubik (1975) in the frame-

work of Qin (1993) does not work and we need to stay closer to the results

on NTU games. More precisely, changing the utility function in the market,

that Qin (1993) uses to prove his second result, in analogy to the TU case
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of Shapley and Shubik (1975) to

ui(xi) = min

{

x
(1)i
i ,min

u∗∈A

{

(

λu∗

◦ u∗
)

· x(5)i

λu∗

i

}}

does not lead to markets with the desired properties.

Having our result in mind there remains the open question if we can fur-

ther weaken our assumptions such that the results can be proved for more

general cases. Another interesting related line of research is to continue to

look at the class of games that are linked to coalition production economies

as analyzed by Inoue (2010b). Given a balanced NTU game Inoue (2010b)

defines a coalition production economy such that this economy represents

the game and has moreover the whole inner core as the set of competitive

equilibrium payoff vectors. It remains an open question if one can find anal-

ogously to Qin (1993) and to this work a coalition production economy such

that one inner core point or a certain subset of the inner core are competitive

equilibrium payoff vectors in this coalition production economy. Moreover,

it is interesting to compare the set of competitive equilibrium allocations

of different market representations of a given NTU market game. Does

there exist a general and more simple method to obtain desired competitive

payoffs? Can we characterize a class of NTU games where this is possible?

What happens if we restrict our attention for example to bargaining games?
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2.5 Appendix

2.5.1 Proof of Lemma 2.1

For the proof of Lemma 2.1 we follow the idea of de Clippel and Minelli

(2005).

Proof. Let (x̂i)i∈N and (ŷi)i∈N be a competitive equilibrium allocation at a

price p̂ ∈ Rℓ
+ \ {0}. For each individual i ∈ N define the set

C i =
{

(u,m) ∈ R2|∃zi ∈ X i : u ≤ ui
(

zi
)

− ui
(

x̂i
)

,m ≤ p̂ ·
(

ωi + ŷi − zi
)}

.

By the concavity of ui, this set is convex. On the other hand, C i∩R2
++ =

∅, as x̂i is optimal for individual i in his budget set.

Suppose (u,m) ∈ C i and (u,m) ≫ 0, then there exists zi ∈ X i with

u(x̂i) < u(zi) and p̂ ·zi < p̂ · (ωi+ ŷi) which means zi gives individual i

a higher utility as x̂i and is affordable under the price system p̂. This

is in contradiction to the optimality of x̂i.

By the separating hyperplane theorem there exists a non-zero, non-negative

vector (αi, βi) ∈ R2
+ such that we can separate 0 from C i and obtain

αiui
(

x̂i
)

≥ αiui
(

zi
)

− βip̂ ·
(

zi − ωi − ŷi
)

for all zi ∈ X i.

As p̂ · ωi > 0, it follows from the above inequality that we have αi > 0.

To see this suppose αi = 0 (βi > 0). Then, as in equilibrium p̂ · ŷi = 0,

we obtain from the above inequality

0 ≤ p̂ ·
(

zi − ωi − ŷi
)

for all zi ∈ X i,

which is not true, as 0 ∈ X i and p̂ · ŷi = 0. Thus αi > 0.

We can assume αi = 1 without the loss of generality. Moreover, monotonic-

ity and locally non-satiation of the utility function imply that βi > 0. Let
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λi = 1
βi . Summing up over all i ∈ S we obtain

∑

i∈S

λiui
(

x̂i
)

≥
∑

i∈S

λiui
(

zi
)

− p̂ ·
∑

i∈S

(

zi − ωi − ŷi
)

for all S ⊆ N and for all zi ∈ Rℓ
+ with i ∈ S.

If a coalition S could λ-improve on x with (x̄i)i∈S (with the production

plan ȳi ∈ Y i), then the previous inequality would be violated, because we

have, due to feasibility,

∑

i∈S

(

x̄i − ωi − ȳi
)

≤ 0

and thus we obtain a contradiction by

∑

i∈S

λiui
(

x̄i
)

>
∑

i∈S

λiui
(

x̂i
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

(

x̄i − ωi − ŷi
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

(

x̄i − ωi
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

ȳi

≥
∑

i∈S

λiui
(

x̄i
)

.
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2.5.2 Proof of Claim 1

Proof. We show

x
(1)i
i = x

(3)i
i

by contradiction. Then it immediately follows from ui(xi) = cNi that

x
(1)i
i = x

(3)i
i = cNi .

Suppose x
(3)i
i > x

(1)i
i . This cannot be utility maximizing in the presence

of strictly positive prices. If player i consumes a little bit less of the ith good

of the 3rd group of n goods and invests the - not anymore used - additional

budget in the ith good of the 1st group of n goods, then he can strictly

increase his utility.

Precisely, from the assumption ui(xi) = cNi and x
(3)i
i > x

(1)i
i it follows that

x
(1)i
i = cNi . For δ sufficiently small, i.e. 0 < δ < x

(3)i
i − x

(1)i
i , player i can

increase his utility by consuming δ less of the ith good of the 3rd group of

n goods and increasing the consumption in the ith good of the 1st group

of n goods by
p
(3)
i

p
(1)
i

δ. To consume

(

x(1)i +
p
(3)
i

p
(1)
i

δe{i}, 0, x(3)i − δe{i}, 0

)

is still

budget feasible for player i, because

p(1)

(

x(1)i +
p
(3)
i

p
(1)
i

δe{i}

)

+ p(3)
(

x(3)i − δe{i}
)

= p(1)x(1)i + p(3)x(3)i ≤ p · ωi.

Hereby, the last inequality follows from the budget feasibility of xi. More-

over, the utility of consumer i strictly increases, since

ui

(

x(1)i +
p
(3)
i

p
(1)
i

δ, 0, x(3)i − δ, 0

)

> x
(1)i
i = ui

(

x(1)i, 0, x(3)i, 0
)

by the choice of δ. This is a contradiction to the assumption that xi is

utility maximizing. Hence, we have x
(3)i
i ≤ x

(1)i
i .

By exchanging the roles of x
(1)i
i and x

(3)i
i we can analogously show x

(3)i
i ≥

x
(1)i
i . Therefore, we have x

(3)i
i = x

(1)i
i .
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3.1 Introduction

The inner core and asymmetric Nash bargaining solutions represent solution

concepts for cooperative games. The inner core is defined for cooperative

games whereas asymmetric Nash bargaining solutions are usually only ap-

plied to a subclass of cooperative games, namely bargaining games. A recent

contribution of Compte and Jehiel (2010) generalizes the symmetric Nash

bargaining solution to other cooperative games (with transferable utility).

In this paper we consider the relationship between the inner core and asym-

metric Nash bargaining solutions for bargaining games. Moreover, as an

application of these results we show how asymmetric Nash bargaining solu-

tions can be justified in a general equilibrium framework as a competitive

payoff vector of a certain economy.

In the first section we give a literature overview to motivate our ideas.

In the second section we recall the definitions of the inner core, a bargaining

game and asymmetric Nash bargaining solutions. Afterwards, we investigate

for bargaining games the relationship between the inner core and the set of

asymmetric Nash bargaining solutions. Finally, we apply these results to

market games and obtain by this a market foundation of asymmetric Nash

bargaining solutions.

3.2 Motivation and Background

The inner core is a refinement of the core for cooperative games with non-

transferable utility (NTU). For cooperative games with transferable utility

(TU) the inner core coincides with the core. A point is in the inner core

if there exists a transfer rate vector, such that - given this transfer rate

vector - no coalition can improve even if utility can be transferred within a

coalition according to this vector. So, an inner core point is in the core of an

associated hyperplane game where the utility can be transferred according

to the transfer rate vector. Qin (1993) shows, verifying a conjecture of

Shapley and Shubik (1975), that the inner core of a market game coincides

with the set of competitive payoff vectors of the induced market of that



CHAPTER 3. NTU BARGAINING GAMES 86

game. Moreover, he shows that for every NTU market game and for any

given point in its inner core there exists a market that represents the game

and further has this given inner core point as its unique competitive payoff

vector.

The Nash bargaining solution for bargaining games, a special class of co-

operative games, where just the singleton and the grand coalition are allowed

to form, goes back to Nash (1950, 1953). The (symmetric) Nash bargaining

solution is defined as the maximizer of the product of the utilities over the

individual rational bargaining set or as the unique solution that satisfies

the following axioms: Invariance to affine linear Transformations, Pareto

Optimality, Symmetry and Independence of Irrelevant Alternatives. If the

bargaining power of the players is different an asymmetric Nash bargaining

solution can be defined as the maximizer of an accordingly weighted Nash

product. Concerning the axiomatization this means that the Symmetry ax-

iom is replaced by an appropriate Asymmetry axiom, see Roth (1979). In

addition to the axiomatic approach the literature studies non-cooperative

foundations to justify cooperative solutions like the (asymmetric) Nash bar-

gaining solution. The idea is to find an appropriate non-cooperative game

whose equilibrium outcomes coincide with a given cooperative solution (see

for example Bergin and Duggan (1999), Trockel (2000)). Here, we study the

foundation of the asymmetric Nash bargaining solution by having this so-

lution as a payoff vector of a competitive equilibrium in a certain economy.

There are different approaches to consider the relationship between co-

operative games and economies or markets. On the one hand for example

Shapley (1955), Shubik (1959) Debreu and Scarf (1963) and Aumann (1964)

consider economies as games. On the other hand there is the approach to

start with a cooperative game and to consider related economies as it was

introduced by Shapley and Shubik (1969, 1975).

Starting with a market Shapley (1955) considers markets as cooperative

games with two kinds of players, seller and buyer. He introduces in this

context the general notion of an ‘abstract market game’. This is a cooper-

ative game with certain conditions on the characteristic function. Shubik
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(1959) extends the ideas of Edgeworth (from 1881) and studies ‘Edgeworth

market games’. In particular he shows that if the number of players of

both sides in an Edgeworth market game is the same, then the set of im-

putations coincides with the contract curve of Edgeworth. Furthermore, he

considers non-emptiness conditions for the core of this class of games. De-

breu and Scarf (1963) show that under certain assumptions a competitive

allocation is in the core. Aumann (1964) investigates, based among others

on the oceanic games from Milnor and Shapley (1978)1, economies with a

continuum of traders and obtains that in this case the core equals the set

of equilibrium allocations.

Starting with a cooperative game Shapley and Shubik (1969) look at

these problems from a different viewpoint and study which class of cooper-

ative games can be represented by a market. A market represents a game

if the set of utility allocations a coalition can reach in the market coincides

with the set of utility allocations a coalition obtains according to the coali-

tional function of the game. Shapley and Shubik (1969) call any game that

can be represented by a market a ‘market game’. In the TU-case it turns

out that every totally balanced TU game is a market game. Furthermore,

Shapley and Shubik (1975) start with a TU game and show that every payoff

vector in the core of that game is competitive in a certain market, the direct

market. The direct market has a nice structure: Besides a numeraire com-

modity there are as many goods as players and initially every player owns

one unit of ‘his personal commodity’. Moreover, Shapley and Shubik (1975)

show that for a given point in the core there exists at least one market that

has this payoff vector as its unique competitive payoff vector.

The idea of market games was applied to NTU games by Billera and

Bixby (1974). Analogously to the result of Shapley and Shubik (1969) they

show that every totally balanced game, that is compactly convexly gener-

ated, is an NTU market game. Qin (1993) compares the inner core of NTU

market games with the competitive payoff vectors of markets that repre-

sent this game. He shows that for a given NTU market game there exists

a market such that the set of equilibrium payoff vectors coincides with the

1The reference Milnor and Shapley (1978) is based on the Rand research memoranda
from the early 1960’s.
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inner core of the game. In a second result, he shows that given an inner core

point there exists a market, which represents the game and has this given

inner core point as its unique competitive equilibrium payoff. Brangewitz

and Gamp (2011a) extend the results of Qin (1993) to a large class of closed

subsets of the inner core.

Apart from this literature Trockel (1996, 2005) considers bargaining

games directly as Arrow-Debreu or coalition production economies. One

difference to other literature is that he allows to obtain output in the pro-

duction without requiring input. In contrast to Shapley and Shubik (1969,

1975), Trockel (1996, 2005) considers NTU games rather than TU games.

Motivated by the approach of Sun et al. (2008) and the approach of Billera

and Bixby (1974), Inoue (2010b) uses coalition production economies in-

stead of markets. Inoue (2010b) shows that every compactly generated

NTU game can be represented by a coalition production economy. More-

over, he proves that there exists a coalition production economy such that

its set of competitive payoff vectors coincides with the inner core of the

balanced cover of the original NTU game.

Here, we show that we can apply the main results of Qin (1993) to a

special class of NTU games, namely bargaining games. By that we obtain a

market foundation of the asymmetric Nash bargaining solution. In contrast

to Trockel (1996, 2005) we do not use Arrow-Debreu or coalition production

economies directly but we consider bargaining games as market games by

using the economies of Qin (1993). By this we relate the approach of Trockel

(1996, 2005) on the one hand with the ideas of Qin (1993) on the other hand.

Our result, similar to Trockel (1996), can be seen as a market foundation

of asymmetric Nash bargaining solutions in analogy to the results on non-

cooperative foundations of cooperative games (see Trockel (2000), Bergin

and Duggan (1999)).
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3.3 Inner Core and Asymmetric Nash Bar-

gaining Solution

3.3.1 NTU Games and the Inner Core

Let N = {1, ..., n} with n ∈ N and n ≥ 2 be the set of players. Let N =

{S ⊆ N |S 6= ∅} be the set of non-empty coalitions and P(Rn) = {A|A ⊆

Rn} be the set of all subsets of Rn. Define RS
+ =

{

x ∈ Rn
+|xi = 0, ∀i /∈ S

}

.

Definition 3.1 (NTU game). An NTU game is a pair (N, V ), where the

coalitional function is defined as

V : N → P(Rn)

such that for all non-empty coalitions S ⊆ N we have V (S) ⊆ RS, V (S) 6= ∅

and V (S) is S-comprehensive.

Definition 3.2 (compactly (convexly) generated). An NTU game (N, V )

is compactly (convexly) generated if for all S ∈ N there exists a compact

(convex) CS ⊆ RS such that the coalitional function can be written as

V (S) = CS − RS
+.

In order to define the inner core we first consider a game that is related

to a compactly generated NTU game. Given a compactly generated NTU

game we define for a given transfer rate vector λ ∈ RN
+ the λ-transfer game.

Definition 3.3 (λ-transfer game). Let (N, V ) be a compactly generated

NTU game and let λ ∈ RN
+ . Define the λ-transfer game of (N, V ) by

(N, Vλ) with

Vλ(S) = {u ∈ RS|λ · u ≤ vλ(S)}

where vλ(S) = max{λ · u|u ∈ V (S)}.

Qin (1994, p.433) gives the following interpretation of the λ-transfer

game: “The idea of the λ-transfer game may be captured by thinking of

each player as representing a different country. The utilities are measured

in different currencies, and the ratios λi/λj are the exchange rates between
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the currencies of i and j.” As for the λ-transfer game only proportions

matter we can assume without loss of generality that λ is normalized, i.e.

λ ∈ ∆n =
{

λ ∈ Rn
+|
∑n

i=1 λi = 1
}

. Define the positive unit simplex by

∆n
++ =

{

λ ∈ Rn
++

∣

∣

∣

∣

∑n

i=1 λi = 1

}

.

The inner core is a refinement of the core. The core C(V ) of an NTU

game (N, V ) is defined as those utility allocations that are achievable by the

grand coalition N such that no coalition S can improve upon this allocation.

Thus,

C(V ) = {u ∈ V (N)| ∀S ⊆ N ∀u′ ∈ V (S) ∃ i ∈ S such that u′
i ≤ ui}.

Definition 3.4 (inner core, Shubik (1984)). The inner core IC(V ) of a

compactly generated NTU game (N, V ) is

IC(V ) = {u ∈ V (N)|∃λ ∈ ∆ such that u ∈ C(Vλ)}

where C(Vλ) denotes the core of the λ-transfer game of (N, V ).

This means a vector u is in the inner core if and only if u is affordable

by the grand coalition N and if u is in the core of an appropriately chosen

λ-transfer game. If a utility allocation u is in the inner core, then u is as

well in the core.

For compactly convexly generated NTU games we have the following

remark:

Remark (Qin (1993), Remark 1, p. 337). The vectors of supporting weights

for a utility vector in the inner core must all be strictly positive.

3.3.2 NTU Bargaining Games and Asymmetric Nash

Bargaining Solutions

We consider a special class of NTU games, where only the singleton or

the grand coalition can form, namely NTU bargaining games. Two-person

bargaining games with complete information and the (symmetric) Nash bar-

gaining solution were originally defined by Nash (1950).
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Alternatively to the notion based on Nash (1950)2 we adapt the notation

and interpret bargaining games here as a special class of NTU games where

only the grand coalition can profit from cooperation. Smaller coalitions are

theoretically possible but there are no incentives to form them as everybody

obtains the same utility as being in a singleton coalition. Starting from the

definition of a bargaining game based on Nash (1950) we define an NTU

bargaining game. Let B ⊆ Rn be a compact, convex set and assume that

there exists at least one b ∈ B with b ≫ 0. For normalization purposes

we assume here that the disagreement outcome is 0 and that B ⊆ Rn
+.

Nevertheless the results presented here can easily be generalized to the case

that the disagreement point is not equal to 0.

Definition 3.5 (NTU bargaining game). Define an NTU bargaining game3

(N, V ) with the generating set B using the player set N and the coalitional

function

V : N −→ P (Rn)

defined by

V ({i}) : = {b ∈ Rn|bi ≤ 0, bj = 0, ∀j 6= i} = {0} − R
{i}
+ ,

V (S) : = {0} − RS
+ for all S with 1 < |S| < n,

V (N) : = {b ∈ Rn|∃ b′ ∈ B : b ≤ b′} = B − Rn
+.

The definition of an NTU bargaining game reflects the idea that smaller

coalitions than the grand coalition do not gain from cooperation. They can-

2Following the idea of Nash (1950) a n-person bargaining game with complete information
is defined as a pair (B, d) with the following properties:

1. B ⊆ Rn,

2. B is convex and compact,

3. d ∈ B and there exists at least one element b ∈ B such that d ≪ a.

(d ≪ b if and only if di < bi for all i = 1, ..., n. This means that there is a utility
allocation in B that gives every player a strictly higher utility than the disagreement
point.)
B is called the feasible or decision set and d is called the status quo, conflict or disagree-
ment point.

3Billera and Bixby (1973a, Section 4) modeled bargaining games in the same way.
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not reach higher utility levels as the singleton coalitions for all its members

simultaneously. Only in the grand coalition every individual can be made

better off. In the further analysis we use the above comprehensive version

of an n-person NTU bargaining game.

One solution concept for bargaining games with complete information

is that of an asymmetric Nash bargaining solution. To define this solution

we take as the set of possible vectors of weights or bargaining powers the

strictly positive n-dimensional unit simplex ∆n
++.

Definition 3.6 (asymmetric Nash bargaining solution). The asymmetric

Nash bargaining solution with a vector of weights θ = (θ1, ..., θn) ∈ ∆n
++,

for short θ-asymmetric, for a n-person NTU bargaining game (N, V ) with

disagreement point 0 is defined as the maximizer of the θ-asymmetric Nash

product given by
∏n

i=1 u
θi
i over the set V (N).4

Hereby, we consider the symmetric Nash bargaining solution as one par-

ticular asymmetric Nash bargaining solution, namely the one with the vector

of weights θ =
(

1
n
, ..., 1

n

)

. Hence, the correct interpretation of “asymmetric”

in this sense is “not necessarily symmetric”.

As the NTU bargaining game (N, V ) is compactly convexly generated,

the set V (N) is closed and convex and hence the maximizer above exists.

Note that the assumption that the vectors of weights are from ∆n
++ instead

of Rn
++ can be made without loss of generality.

The asymmetric Nash bargaining solution is a well-known solution con-

cept for bargaining games. Similarly to the symmetric Nash bargaining

solution the asymmetric Nash bargaining solution satisfies the axioms In-

variance to affine linear Transformations, Pareto Optimality and Indepen-

dence of Irrelevant Alternatives. As for example shown in Roth (1979,

p.20), these axioms together with an appropriate asymmetry assumption

fixing the vector of weights characterize an asymmetric Nash bargaining so-

lution. Dropping only the Symmetry axiom without making an appropriate

4For bargaining games with a general threat point d ∈ Rn the θ-asymmetric Nash product
is given by

∏n

i=1 (ui − di)
θi .
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asymmetry assumption is not sufficient to characterize the set of asymmet-

ric Nash bargaining solutions. Peters (1992, p.17–25) shows that one needs

to consider so called “bargaining solutions corresponding to weighted hier-

archies” which include as a special case the asymmetric Nash bargaining

solutions.

3.3.3 Relationship between the Inner Core and Asym-

metric Nash Bargaining Solutions

Having introduced the concept of the inner core and the asymmetric Nash

bargaining solution, we investigate the relationship of these concepts for

NTU bargaining games. As in NTU bargaining games only the grand coali-

tion can profit from cooperation, looking at the inner core only transfer

possibilities within the grand coalition need to be considered. Hereby, it

turns out that there is a close connection between the inner core and asym-

metric Nash bargaining solutions:

Proposition 3.1. Let (N, V ) be a n-person NTU bargaining game with

disagreement point 0 and generating set B ⊆ Rn
++.

• Suppose we have given a vector of weights θ = (θ1, .., θn) ∈ ∆n
++. Then

the θ-asymmetric Nash bargaining solution, aθ, is in the inner core of

(N, V ).

• For any given inner core point aθ we can find an appropriate vector

of weights θ = (θ1, .., θn) ∈ ∆n
++ such that aθ is the maximizer of the

θ-asymmetric Nash product
∏n

i=1 u
θi
i .

Proof.

“⇒” Suppose aθ is the θ-asymmetric Nash bargaining solution. To prove

that aθ is in the inner core of (N, V ), we need to show that aθ is in

the core of the NTU bargaining game (N, V ) and that there exists

a transfer rate vector λθ ∈ ∆n
+ such that aθ is in the core of the

λθ-transfer game (N, Vλθ).
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aθ is the maximizer of the θ-asymmetric Nash product

n
∏

i=1

uθi
i

over V (N). Since there exists at least one u ≫ 0 in V (N) the θ-

asymmetric Nash product is strictly positive and thus aθ is as well the

maximizer of the logarithm of the θ-asymmetric Nash product

g(u) =
n
∑

i=1

θilog(ui).

Since aθ is the maximizer of the θ-asymmetric Nash product, aθ is

Pareto optimal. Thus, there is no coalition S that can improve upon

aθ. Remember that we are considering bargaining games. Thus in

particular no singleton coalition can improve upon aθ. We conclude

that aθ has to be in the core of the bargaining game (N, V ).

Next, we show that aθ is as well in the core of an appropriately chosen

λ-transfer game. The gradient of the function g(u) at aθ is given by
∂g

∂x
(aθ) =

(

θ1
aθ1
, ..., θn

aθn

)

. We show now, that we have

∂g

∂x
(aθ) · x ≤

∂g

∂x
(aθ) · aθ

for all x ∈ V (N).5 To see this, let x ∈ V (N) and t ∈ [0, 1] and define

xt = tx+(1−t)aθ. Observe that xt ∈ V (N) since V (N) is convex. Now

we get using the maximality of aθ and by applying Taylor’s Theorem

that

0 ≥ g(xt)−g(aθ) = (xt−aθ)·
∂g

∂x
(aθ)+O

(

|xt − aθ|2
)

= t(x−aθ)·
∂g

∂x
(aθ)+O(t2).

This means that we have

∂g

∂x
(aθ)(x− aθ) ≤ 0

5Compare for the idea of this argument Rosenmüller (2000, p. 549).
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and hence
∂g

∂x
(aθ) · x ≤

∂g

∂x
(aθ) · aθ.

Taking the normalized gradient, defining

λθ =

(

θ1
aθ1

∑n

i=1
θi
aθi

, ...,

θn
aθn

∑n

i=1
θi
aθi

)

and observing that λθ ≫ 0 we obtain that aθ is in the core of the

λθ-transfer game (N, Vλθ).

“⇐” If a ∈ Rn
+ is some given vector in the inner core of (N, V ), then a is

in the core of (N, V ) and there exists a transfer rate vector λ ∈ ∆n
+

such that a is in the core of the λ-transfer game (N, Vλ). Since a is in

the core of the λ-transfer game and the NTU bargaining game (N, V )

is compactly generated, we know that λ needs to be strictly positive

in all coordinates. Otherwise at least one coalition could still improve

upon a. We have a ≫ 0, because a is in the inner core. If we now

take the vector of weights of the asymmetric Nash bargaining solution

equal to

θ = (θ1, .., θn) =

(

λ1a1
∑n

i=1 λiai
, ...,

λnan
∑n

i=1 λiai

)

then a is the maximizer of the asymmetric Nash product
∏n

i=1 u
θi
i

over V (N). Hereby, similar arguments as in the first step can be

used to show that this is the appropriate choice of θ. Hence, a is the

asymmetric Nash bargaining solution with weights θ of the bargaining

game (N, V ).

One direction of Proposition 3.1 can be generalized to the case where

the generating set is a subset of Rn
+ but not a subset of Rn

++. The set of

asymmetric Nash bargaining solutions is always contained in the inner core,

but the inner core might be strictly larger then the set of asymmetric Nash

bargaining solutions. This can be seen in the following two-player example

with disagreement point (0, 0):



CHAPTER 3. NTU BARGAINING GAMES 96

b

b

V ({1, 2})

u2

u1

0

Figure 3.1: Example.

The two points on the axis are in this example in the inner core, as there

exits a strictly positive transfer rate vector λ, such that they are in the core

of the λ-transfer game. But they cannot result from an asymmetric Nash

bargaining solution as any of these solutions chooses only points that are

strictly larger than the disagreement point in all coordinates. Thus, the

inner core is in this example strictly larger than the set of asymmetric Nash

bargaining solutions.

Hence, in general for underlying bargaining sets from Rn
+ and not nec-

essarily from Rn
++ Proposition 3.1 reduces to the following statement:

Proposition 3.2. Let (N, V ) be a n-person NTU bargaining game with

disagreement point 0 and underlying bargaining set from Rn
+.

• Suppose we have given a vector of weights θ = (θ1, .., θn) ∈ ∆n
++. Then

the asymmetric Nash bargaining solution aθ for θ is in the inner core

of (N, V ).
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3.4 Application to Market Games

3.4.1 Market Games

In this section we use the result from the preceding section to investigate the

relationship between asymmetric Nash bargaining solutions and competitive

payoffs of a market that represents the n-person NTU bargaining game.

We start by showing that every NTU bargaining game is a market game.

Afterwards, we apply the results of Qin (1993) and Brangewitz and Gamp

(2011a) to our results from the previous section.

Definition 3.7 (market). A market is given by E = (X i, Y i, ωi, ui)i∈N
where for every individual i ∈ N

- X i ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set,

where ℓ ≥ 1 is the number of commodities,

- Y i ⊆ Rℓ is a non-empty, closed and convex set, the production set,

such that Y i ∩ Rℓ
+ = {0},

- ωi ∈ X i − Y i, the initial endowment vector,

- and ui : X i → R is a continuous and concave function, the utility

function.

Note that in a market the number of consumers coincides with the num-

ber of producers. Each consumer has his own private production set. This

assumption is not as restrictive as it appears to be. A given private owner-

ship economy can be transformed into an economy with the same number of

consumers and producers without changing the set of competitive equilibria

or possible utility allocations, see for example Qin and Shubik (2009, section

4). Differently from the usual notion of an economy a market is assumed to

have concave and not just quasi-concave utility functions.

Let S ∈ N be a coalition. The feasible S-allocations are those allocations

that the coalition S can achieve by redistributing their initial endowments

and by using the production possibilities within the coalition.
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Definition 3.8 (feasible S-allocation). The set of feasible S-allocations is

given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

xi ∈ X i for all i ∈ S,
∑

i∈S

(xi − ωi) ∈
∑

i∈S

Y i

}

.

Hence, an S-allocation is feasible if there exist for all i ∈ S production

plans yi ∈ Y i such that
∑

i∈S(x
i − ωi) =

∑

i∈S y
i.

In the definition of feasibility it is implicitly assumed that by forming

a coalition the available production plans are the sum of the individually

available production plans. This approach is different from the idea to use

coalition production economies, where every coalition has already in the

definition of the economy its own production possibility set. Nevertheless, a

market can be “formally” transformed into a coalition production economy

by defining the production possibility set of a coalition as the sum of the

individual production possibility sets.

Definition 3.9 (NTU market game). An NTU game that is representable

by a market is a NTU market game, this means there exists a market E =

(X i, Y i, ωi, ui)i∈N such that (N, VE) = (N, V ) with

VE(S) = {u ∈ RS| ∃ (xi)i∈S ∈ F (S), ui ≤ ui(xi), ∀ i ∈ S}.

For an NTU market game there exists a market such that the set of

utility allocations a coalition can reach according to the coalitional function

coincides with the set of utility allocations that are generated by feasible

S-allocations in the market or that give less utility than some feasible S-

allocation.

In order to show that every NTU bargaining game is a market game we

use the following result from Billera and Bixby (1974):

Theorem 3.1 (2.1, Billera and Bixby (1974)). An NTU game is an NTU

market game if and only if it is totally balanced and compactly convexly

generated.
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Proposition 3.3. Every bargaining game (N, V ) is a market game.6

Proof. We show that every bargaining game is totally balanced. Suppose

we have an n-person NTU bargaining game. For totally balancedness we

need to check that for every coalition T ⊆ N and for all balancing weights

γ ∈ Γ(eT ) =

{

(γS)S⊆T ∈ R+|
∑

S⊆T

γSe
S = eT

}

we have
∑

S⊆T

γSV (S) ⊆ V (T ).

Since the worth each coalition S ( N can achieve is V (S) = {0} − R+ and

since the grand coalition N can achieve V (N) = B − Rn
+ with at least one

element b ∈ B with b ≫ 0, we have for all S ⊆ N that V (S) ⊆ V (N)

holds. Since for all S ⊆ N we have for the balancing weights 0 ≤ γS ≤ 1

and
∑

S⊆T γSe
S = eT the balancedness condition is satisfied. Thus, the

bargaining game is totally balanced and hence a market game.

We now define a competitive equilibrium for a market E .

Definition 3.10 (competitive equilibrium). A competitive equilibrium for

a market E is a tuple

(

(x̂i)i∈N , (ŷ
i)i∈N , p̂

)

∈ Rℓn
+ × Rℓn

+ × Rℓ
+

such that

(i)
∑

i∈N x̂i =
∑

i∈N(ŷ
i + ωi) (market clearing),

(ii) for all i ∈ N , ŷi solves maxyi∈Y i p̂ · yi (profit maximization),

(iii) and for all i ∈ N , x̂i is maximal with respect to the utility function ui

in the budget set {xi ∈ X i|p̂ ·xi ≤ p̂ · (ωi+ ŷi)} (utility maximization).

6This result was already observed by Billera and Bixby (1973a, Theorem 4.1). In their
proof they define a market representation of a bargaining game with m ≤ n2 commodi-
ties and nondecreasing utility functions.
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Given a competitive equilibrium ((x̂i)i∈N , (ŷ
i)i∈N , p̂) its competitive pay-

off vector is defined as (ui (x̂i))i∈N .

Qin (1993) investigates the relationship between the inner core of an

NTU market game and the set of competitive payoff vectors of a market

that represents this game. He establishes, following a conjecture of Shapley

and Shubik (1975), the two theorems below analogously to the TU-case of

Shapley and Shubik (1975).

Theorem 3.2 (3, Qin (1993)). For every NTU market game and for any

given point in its inner core, there is a market that represents the game and

further has the given inner core point as its unique competitive payoff vector.

Theorem 3.3 (1, Qin (1993)). For every NTU market game, there is a

market that represents the game and further has the whole inner core as its

competitive payoff vectors.7

3.4.2 Results

Now we apply Theorem 3 of Qin (1993) to prove the existence of an economy

corresponding to some vector of weights θ ∈ ∆n
++, such that the unique

competitive payoff vector of this economy coincides with the θ-asymmetric

Nash bargaining solution of the n-person NTU bargaining game.

Proposition 3.4. Given a n-person NTU bargaining game (N, V ) (with

disagreement point 0 and generating set from Rn
+) and a vector of weights

θ ∈ ∆n
++, there is market that represents (N, V ) and where additionally

the unique competitive payoff vector of this market coincides with the θ-

asymmetric Nash bargaining solution aθ of the NTU bargaining game (N, V ).

Proof. (N, V ) is a market game by Proposition 3.3. Moreover, Proposition

3.1 (or Proposition 3.2 respectively) shows, that the θ-asymmetric Nash

bargaining solution aθ is an element of the inner core. Thus, we can apply

Theorem 3 from Qin (1993).

7A market that satisfies this property is the so called “induced market” introduced by
Billera and Bixby (1974). Its definition can be found in Qin (1993).
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The market behind Proposition 3.4 can be taken from Qin (1993) or

Brangewitz and Gamp (2011a) taking necessary monotone transformations

of the original game as done in Qin (1993) into consideration. A version of

these markets for NTU bargaining games can be found in Appendix 2.1 and

2.2.

An Alternative Market for Proposition 3.4

The two markets from Qin (1993) or Brangewitz and Gamp (2011a) have

a quite complicated structure. In the following we give a simpler version a

market, where strictly positive prices are required. This market is a modi-

fication from Brangewitz and Gamp (2011a).

Given a n-person NTU bargaining game (N, V ) and a vector of weights

θ ∈ ∆++. Let a
θ be the θ-asymmetric bargaining solution. From Proposition

3.1 (or Proposition 3.2 respectively) we know that the corresponding λθ-

transfer game is (N, Vλθ)

λθ =

(

θ1
aθ1

∑n

i=1
θi
aθi

, ...,

θn
aθn

∑n

i=1
θi
aθi

)

.

Figure 3.2 illustrates as an example for N = {1, 2} the sets V ({1, 2})

and Vλθ({1, 2}) for an NTU bargaining game with disagreement point (0, 0).

Vλθ({1, 2})

V ({1, 2})

aθ

u2

u1

0

b

Figure 3.2: Illustration of the sets V ({1, 2}) and Vλθ({1, 2}).
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Let z ∈ Vλθ (N) and t̄z = min
{

t ∈ R+|z − teN ∈ V (N)
}

. Define the

mapping Pθ by Pθ : Vλθ (N) −→ V (N) via Pθ (z) = z − t̄zeN . Figure 3.3

illustrates for the same example as in Figure 3.2 the mapping Pθ.

aθ

u1

b

b

b

b

b

b

b

Figure 3.3: Illustration of the mapping Pθ.

The market for the NTU bargaining game (N, V ) and vector of weights

θ, denoted by EV,θ, is defined as follows: Let for every individual i ∈ N be

- the consumption set X i = Rn
+ × Rn

+ × {0} ⊆ R3n,

- the production set

Y i = convexcone









⋃

S∈N\{N}

{(

0, 0,−eS
)}





⋃







⋃

c∈(Vλθ
(N)∩Rn

+)

{(

Pθ(c), c,−eN
)}












⊆ R3n,

- the initial endowment vector ωi =
(

0, 0, e{i}
)

,

- and the utility function ui : X i → R with ui (xi) = min
(

x
(1)i
i , x

(2)i
i

)

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth

coordinate; similarly x(2)i and x
(2)i
j .

It can be shown using the arguments of Brangewitz and Gamp (2011a)

that the market EV,θ represents the NTU bargaining game (N, V ) and has as

its unique competitive equilibrium payoff vector (assuming strictly positive
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equilibrium price vectors) the θ-asymmetric Nash bargaining solution aθ.

For the method of proof and the details we refer to Brangewitz and Gamp

(2011a). Here, we only state how the competitive equilibria of the market

EV,θ look like:

The consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

,
(

aθ
){i}

, 0
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ, aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ, 2 λθ ◦ aθ
)

with λθ◦ aθ the vector with entries λθ
ia

θ
i , constitute a competitive equilibrium

in the market EV,θ.

Considering NTU bargaining games as NTU market games there is a

market such that the same sets of utility allocations are reachable in the

game and the market. Proposition 3.4 shows that in the class of markets

representing a given NTU bargaining game there is a market that has a given

asymmetric Nash bargaining solution (with a fixed vector of weights) as its

unique competitive payoff vector. We establish a link between utility alloca-

tions coming from asymmetric Nash bargaining in NTU bargaining games

and payoffs arising from competitive equilibria in certain markets. Our re-

sult, similar to Trockel (1996), can be seen as a market foundation of asym-

metric Nash bargaining solutions. Instead of considering non-cooperative

games to give foundations of cooperative solutions, we link cooperative be-

havior described by asymmetric Nash bargaining with competitive behavior

in markets.

In addition a similar interpretation holds true for the whole inner core

and certain of its subsets. Combining Proposition 3.1 with Theorem 1 of

Qin (1993) we obtain:
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Proposition 3.5. Let (N, V ) be a n-person NTU bargaining game with

disagreement point 0 and generating set from Rn
++. Then there is market

that represents (N, V ) and where additionally the set of asymmetric Nash

solutions of (N, V ) coincides with the set of competitive payoff vectors of the

market.

Proof. (N, V ) is a market game by Proposition 3.3 and the set of asymmetric

Nash bargaining solutions for different strictly positive vectors of weights

coincides with the inner core of (N, V ) by Proposition 3.1. Thus, we can

apply Theorem 1 of Qin (1993).

The two results of Qin (1993) we use above represent two extreme cases.

On the one hand he uses the whole inner core and on the other hand he uses

only one single point from the inner core. Brangewitz and Gamp (2011a)

show how the results of Qin (1993) can be extended to a large class of closed

subsets of the inner core. Using their results we obtain:

Proposition 3.6. Given a n-person NTU bargaining game (N, V ) (with

disagreement point 0 and generating set from Rn
+) and a closed set Θ ⊂

∆n
++ of strictly positive vectors of weights. Moreover, assume that every

θ-asymmetric Nash bargaining solution aθ with vector of weights θ ∈ Θ

can be strictly separated from the set V (N) \ {aθ}.8 Then there is market

that represents the NTU bargaining game (N, V ) and the set of competitive

payoff vectors of this market coincides with the set of θ-asymmetric Nash

bargaining solutions with vectors of weights θ ∈ Θ, {aθ|θ ∈ Θ}, of the NTU

bargaining game (N, V ).

Proof. (N, V ) is a market game by Proposition 3.3. Moreover, Proposition

3.1 (or Proposition 3.2 respectively) shows, that the θ-asymmetric Nash

bargaining solution with a vector of weights θ ∈ ∆n
++ is an element of the

inner core. Furthermore, note that the set of vectors of weights Θ is assumed

to be closed. If we take now as a parameter the vectors of bargaining weights

θ and consider the function that associates to every vector of weights θ the

θ-asymmetric Nash bargaining solution aθ, we observe that this function is

8More details concerning this assumptions and how they might be weakened can be found
in Brangewitz and Gamp (2011a).
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continuous in θ.9 Moreover, as continuous functions map compact sets into

compact sets, we know that if we take a closed set of vectors of weights Θ

that the set of θ-asymmetric Nash bargaining solutions {aθ|θ ∈ Θ} is closed.

Therefore, the assumptions in Brangewitz and Gamp (2011a) are satisfied

and their result can be applied.

Proposition 3.5 can be regarded as the other extreme case in contrast

to the result in Proposition 3.4. Knowing that competitive payoff vectors

are under weak assumptions always in the inner core (compare de Clippel

and Minelli (2005), Brangewitz and Gamp (2011a)), in the class of markets

representing a game the market behind Proposition 3.5 is the market with

the largest set of possible competitive payoff vectors.

Proposition 3.6 has the following interpretation: If the vector of weights

or interpreted differently the bargaining power is not exactly known, then

as an approximation using Proposition 3.6 we obtain the coincidence of the

set of asymmetric Nash bargaining solutions with a closed subset of weight

vectors and the set of competitive payoff vectors of a certain market.

3.5 Concluding Remarks

The results above show that asymmetric Nash bargaining solutions as so-

lution concepts for bargaining games are linked via the inner core to com-

petitive payoff vectors of certain markets. Thus, our result can be seen as a

market foundation of the asymmetric Nash bargaining solutions. This result

holds for bargaining games in general as any asymmetric Nash bargaining

solution is always in the inner core (Proposition 3.2). The idea of a market

foundation parallels the one that is used in implementation theory. Here,

rather than giving a non-cooperative foundation for solutions of coopera-

tive games, we provide a market foundation. Our result may be seen as an

existence result.

Another interesting related line of research, that we do not follow here,

is to consider the recent definition of Compte and Jehiel (2010) of the coali-

9To see this we use Theorem 2.4 of Fiacco and Ishizuka (1990) applied to maximization
problems.
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tional Nash bargaining solution. They consider cooperative games with

transferable utility (TU) and define the coalitional Nash bargaining solu-

tion as the point in the core that maximizes the Nash product (with equal

weights). Thus, using Theorem 2 of Shapley and Shubik (1975) for TU mar-

ket games, where they define for any given core point a market that has this

point as its unique competitive payoff vector, gives a market foundation as

well for the symmetric coalitional Nash bargaining solution by choosing the

symmetric coalitional Nash bargaining solution as this given core point. It

seems interesting to study how this idea can be generalized for asymmetric

coalitional Nash bargaining solutions or for (asymmetric) coalitional Nash

bargaining solutions for NTU games.

Our approach parallels the one in Trockel (1996, 2005). Trockel (1996)

is based on a direct interpretation of a n-person bargaining game as an

Arrow-Debreu economy with production and private ownership, a so called

bargaining economy. He shows that, given a bargaining economy, the con-

sumption vector of the unique stable Walrasian equilibrium coincides with

the asymmetric Nash bargaining solution with the vector of weights corre-

sponding to the shares in the production of the bargaining economy. The

main difference between our result and his is that Trockel (1996) did not

consider markets in the sense of Billera and Bixby (1974) or Qin (1993)

and thus his bargaining economies do not constitute the kind of market

representation as defined in Billera and Bixby (1974) or Qin (1993). Simi-

larly Trockel (2005) uses coalition production economies to establish a core

equivalence of the Nash bargaining solution. By using the markets of Qin

(1993) we obtained a market foundation of the asymmetric Nash bargaining

solution. This can be seen as a link between the literature on market games

(as in Billera and Bixby (1974), Qin (1993)) and the ideas of Trockel (1996,

2005).
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3.6 Appendix

3.6.1 The Market behind Proposition 3.4 from Qin

(1993)

Qin (1993) considers NTU games in general and does not restrict his atten-

tion to NTU bargaining games. The market behind Proposition 3.4 from Qin

(1993) has a simpler structure if we restrict our attention to NTU bargain-

ing games. The difference lies in the description of the private production

sets.

To show his result Qin (1993) modifies the given NTU game by applying

a strictly monotonic transformation to the utility functions. This allows

him to assume that the given inner core point can be strictly separated in

the modified NTU game. Qin (1993) shows that this market represents the

modified game and that the given inner core point is the unique competitive

payoff vector of this economy. By applying the inverse strictly monotonic

transformation to the utility functions he obtains his result. As we do

not want to restrict our attention to bargaining games with strictly convex

generating sets, a similar transformation need to be applied to the NTU

bargaining game to use the market defined below.

The transformed bargaining game is denoted by (N, V̄ ) with generating

set C̄N . Define for the grand coalition N the following sets

A1
N =

{(

uN ,−eN ,−eN ,−eN , 0
)

|uN ∈ C̄N
}

⊆ R5n,

A2
N =

{(

uN , 0,−eN , 0,−eN
)

|uN ∈ C̄N
}

⊆ R5n,

A3
N =

{(

uN , 0, 0,−eN ,−eN
)

|uN ∈ C̄N
}

⊆ R5n,

and for the remaining coalitions

A1
S =

{(

0,−eS,−eS,−eS, 0
)}

⊆ R5n,

A2
S =

{(

0, 0,−eS, 0,−eS
)}

⊆ R5n,

A3
S =

{(

0, 0, 0,−eS,−eS
)}

⊆ R5n,

Let θ ∈ Θ be a given vector of weights and aθ the θ-asymmetric Nash
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bargaining solution. Define

λθ =

(

θ1
aθ1

∑n

i=1
θi
aθi

, ...,

θn
aθn

∑n

i=1
θi
aθi

)

.

Let EV̄ ,θ = (X i, Y i, ωi, ui)i∈N be the market with for every individual i ∈ N

- the consumption set X i = Rn
+ × {(0, 0, 0)} × Rn

+ ⊆ R5n
+ ,

- the production set Y i = convexcone
[
⋃

S⊆N (A1
S ∪ A2

S ∪ A3
S)
]

⊆ R5n,

- the initial endowment vector ωi =
(

0, e{i}, e{i}, e{i}, e{i}
)

∈ R5n
+ ,

- the utility function ui(xi) = min

{

x
(1)i
i ,

∑n
j=1 λ

θ
j a

θ
j x

(5)i
j

λi

}

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth

coordinate; similarly x(5)i and x
(5)i
j .

Qin (1993) shows that the market EV̄ ,θ represents the modified NTU

bargaining game (N, V̄ ) and has as its unique competitive payoff vector aθ,

a given inner core point. For the method of proof and the details we refer

to Qin (1993). Here, we only state for the case of NTU bargaining games

how the competitive equilibria of the market EV̄ ,θ look like:

The consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

, 0, 0, 0, e{i}
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN ,−eN ,−eN , 0
)

))

i∈N

together with the price system

p̂ =

(

λθ,
1

3

(

λθ ◦ aθ
)

,
1

3

(

λθ ◦ aθ
)

,
1

3

(

λθ ◦ aθ
)

, λθ ◦ aθ
)

with λθ ◦ aθ the vector with entries λθ
ia

θ
i , constitute the unique competitive

equilibrium in the market EV̄ ,θ.
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3.6.2 The Market behind Proposition 3.5 from Qin

(1993)

Similarly to Proposition 3.4 the market behind Proposition 3.5 from Qin

(1993), called the induced market of an NTU market game, simplifies for

NTU bargaining games to:

Definition 3.11 (induced market). Let (N, V ) be NTU bargaining game.

The induced market of the game (N, V ) is defined by EV = (X i, Y i, ui, ωi)i∈N

with for each individual i ∈ N

- the consumption set X i = Rn
+ × {0} ⊆ R2n,

- the production set

Y i = convexcone





⋃

S∈N\N

{

(0,−eS)
}

∪
(

CN × {−eN}
)



 ⊆ R2n,

- the initial endowment vector ωi =
(

0, e{i}
)

,

- and the utility function ui : X i → R with ui(xi) = x
(1)i
i

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth

coordinate.

Qin (1993) shows that the market EV represents the NTU bargaining

game (N, V ) and has as its set of competitive payoff vectors the whole inner

core. For the method of proof and the details we refer to Qin (1993). Here,

we only state for the case of NTU bargaining games how the competitive

equilibria of the market EV look like:

Let θ ∈ Θ be a given vector of weights and aθ the θ-asymmetric Nash

bargaining solution. Define

λθ =

(

θ1
aθ1

∑n

i=1
θi
aθi

, ...,

θn
aθn

∑n

i=1
θi
aθi

)

.

The consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

, 0
))

i∈N
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and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ ◦ aθ
)

with λθ◦ aθ the vector with entries λθ
ia

θ
i , constitute a competitive equilibrium

in the market EV .
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3.6.3 The Market behind Proposition 3.6 from Brange-

witz and Gamp (2011a)

Similarly to Proposition 3.4 and Proposition 3.5 the market behind Proposi-

tion 3.6 from Brangewitz and Gamp (2011a), called the induced A-market of

an NTU market game, can be simplified for NTU bargaining games (under

the assumptions of Proposition 3.6). For θ ∈ Θ define

λθ =

(

θ1
aθ1

∑n

i=1
θi
aθi

, ...,

θn
aθn

∑n

i=1
θi
aθi

)

.

Let (N, Ṽ ) be the NTU-game defined by

Ṽ (S) =







V (S) if S ⊂ N
⋂

θ∈Θ

{

u ∈ Rn|λθ · u ≤ λθ · aθ
}

if S = N

where aθ denotes the θ-asymmetric Nash bargaining solution.

Define the mapping PΘ : Ṽ (N) −→ V (N) via

PΘ (x) = x− t̄xeN .

Define

C̃N =
{

z ∈ Ṽ (N)
∣

∣∃t ∈ R+ such that z − teN ∈ CN
}

.

Then we also have C̃N =
{

z ∈ Ṽ (N)
∣

∣z − t̄zeN ∈ CN
}

.

For the definition of the production sets define for all coalitions S ∈

N \ {N}

A1
S =

{(

0,−eS, 0,−eS,−eS
)}

,

A2
S =

{(

0, 0, 0,−eS, 0
)}

,

A3
S =

{(

0, 0, 0, 0,−eS
)}
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and for the grand coalition N define

A1
N =

{

(

PΘ

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

|c̃N ∈ C̃N
}

,

A2
N =

{

(

PΘ

(

c̃N
)

, 0, c̃N ,−eN , 0
)

|c̃N ∈ C̃N
}

,

A3
N =

{

(

PΘ

(

c̃N
)

, 0, c̃N , 0,−eN
)

|c̃N ∈ C̃N
}

.

The market EV,Θ using the closed set of weights Θ of the NTU bargaining

game is defined by

EV,Θ = (X i, Y i, ui, ωi)i∈N

with for every individual i ∈ N

- the consumption set X i = Rn
+ × {0} × Rn

+ × {0} × {0} ⊆ R5n,

- the production set Y i = convexcone
[
⋃

S∈N (A1
S ∪ A2

S ∪ A3
S)
]

⊆ R5n

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}, e{i}
)

,

- and the utility function ui : X i → R with

ui
(

xi
)

= min

(

x
(1)i
i , x

(3)i
i + ε

∑

j 6=i

x
(3)i
j

)

where ε is chosen such that ε < λθ
i =

λθ
i

1
≤

λθ
i

λθ
j

for all θ ∈ Θ and x(1)i

denotes the first group of n goods of xi and x
(1)i
j its jth coordinate;

similarly x(3)i and x
(3)i
j .

Using Brangewitz and Gamp (2011a) it can be shown that the market

EV,Θ represents the NTU bargaining game (N, V ) and its set of competitive

equilibrium payoff vectors coincides with the set {aθ|θ ∈ Θ}. For the method

of proof and the details we refer to Brangewitz and Gamp (2011a).

The competitive equilibria of the market EV,Θ are of the following form:

Let θ ∈ Θ be the vector of weights and aθ the θ-asymmetric Nash bargaining

solution. The consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

, 0,
(

aθ
){i}

, 0, 0
))

i∈N
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and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN , aθ,−eN ,−eN
)

))

i∈N

together with the price system

p̂ =

(

λθ,
2

3

(

λθ ◦ aθ
)

, λθ,
2

3

(

λθ ◦ aθ
)

,
2

3

(

λθ ◦ aθ
)

)

with λθ◦ aθ the vector with entries λθ
ia

θ
i , constitute a competitive equilibrium

in the market EV,Θ.

In addition to the market EV,Θ Brangewitz and Gamp (2011a) define

a market where the set of payoff vectors of competitive equilibria with a

strictly positive equilibrium price vectors coincides with the set {aθ|θ ∈ Θ}.

This market, denoted by E0
V,Θ, is defined as follows: Let for every individual

i ∈ N be

- the consumption set X i = Rn
+ × {0} × Rn

+ × {0} ⊆ R4n,

- the production set

Y i = convexcone









⋃

S∈N\{N}

{(

0,−eS, 0,−eS
)}





∪





⋃

c̃N∈C̃N

(

PΘ

(

c̃N
)

,−eN , c̃N ,−eN
)







 ⊆ R4n,

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}
)

,

- and the utility function ui : X i → R with ui (xi) = min
(

x
(1)i
i , x

(3)i
i

)

.

Similarly as for the market presented before, it can be shown using

Brangewitz and Gamp (2011a) that the market E0
V,Θ represents the NTU

bargaining game (N, V ) and its set of competitive equilibrium payoff vec-

tors with strictly positive prices coincides with the set {aθ|θ ∈ Θ}. For the

method of proof and the details we refer to Brangewitz and Gamp (2011a).
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Here, we only state how the competitive equilibria of the market E0
V,θ look

like:

Let θ ∈ Θ be the vector of weights and aθ the θ-asymmetric Nash bargaining

solution. The consumption plans

(

x̂i
)

i∈N
=
((

(

aθ
){i}

, 0,
(

aθ
){i}

, 0
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN , aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ ◦ aθ, λθ, λθ ◦ aθ
)

with λθ◦ aθ the vector with entries λθ
ia

θ
i , constitute a competitive equilibrium

in the market E0
V,Θ.
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4.1 Introduction

Default and collateral have been important in the subprime crisis in 2008.

The crisis showed that the liquidity of the market may suddenly vanish. We

study financial strategic market games that incorporate the market illiquid-

ity. Geanakoplos (1990, page 11) argues

“The main problem is that competitive equilibrium does not pro-

vide an explanation of the process of price formation. The single

period condenses a sequence of exchanges over which informa-

tion is revealed. It is probably worthwhile to consider an explicit

model of price formation such as the Shapley-Shubik mechanism,

in which agents act before they know the prices. Agents might

then not be aware of all the spot prices before they decided on

their bids and offers.”

By choosing their actions the individuals in the economy may have an influ-

ence on the prices of goods and financial assets. The idea of strategic market

games goes back to Shapley and Shubik (1977). They use a non-cooperative

game to describe the price formation in an exchange economy. Every player

is asked to place a bid and an offer for every commodity. Afterwards the

price of the commodity is computed as the ratio of the total bid to the total

offer of that commodity. Strategic market games enable to study the feed-

back effect of trading strategies in illiquid markets when individual trades

may have an impact on prices. An overview about strategic market games

and related contributions can be found in Giraud (2003).

With this contribution we extend the model of Giraud and Weyers (2004)

by introducing the possibility of default. We change the structure of the fi-

nancial market and introduce a collateral requirement for financial assets as

it is for example done in Araujo et al. (2002). We show that we can induce a

given allocation that clears the markets and satisfies the budget constraints

by defining appropriate, almost full strategies. Furthermore, we look at the

set of sequentially strictly individually rational allocations and study the ex-

istence of approximate subgame perfect Nash equilibria. It turns out that we

obtain an analogue of a perfect folk theorem similarly to the one in Giraud
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and Weyers (2004). Hence, even with collateral requirements almost every-

thing is possible as soon as people are sufficiently patient, since almost every

feasible, affordable, sequentially strictly individually rational consumption

stream can be obtained by means of some almost full approximate subgame

perfect Nash equilibrium.

4.2 Literature Overview

In this paper we combine the literature from different areas. This includes

in particular the literature on economies with incomplete financial markets,

modeling default by using collaterals and strategic market games.

In this section we present a literature overview on these areas. We start

with the literature on incomplete markets and collateral and afterwards give

an overview on strategic market games.

Incomplete Financial Markets

Models with incomplete financial markets incorporate that there are not al-

ways enough financial assets to make current contracts for all future events.

There are some future events (or dates) for which no contracts can be made

contingent on those events. Radner (1972) studies the existence of equilibria

with incomplete financial markets in an economy with finite horizon. He de-

fines an equilibrium as “[...] a set of prices at the first date, a set of common

price expectations for the future, and a consistent set of individual plans

for consumers and producers such that, given the current prices and price

expectations, each individual agent’s plan is optimal for him, subject to an

appropriate sequence of budget constraints.” (Radner, 1972, page 289). To

show his existence result Radner (1972) imposes a bound on forward trans-

actions. Similarly to Radner (1972), but without this bound, Hart (1975)

addresses the question of optimality and of existence of equilibria in a three

period pure exchange general equilibrium model with incomplete markets,

finitely many consumers, goods and securities for contingent future com-

modities. He shows by simple examples that equilibria are not generally

Pareto optimal if the market structure is incomplete and that opening new
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markets might make everybody worse off. Moreover, he establishes that in

the presence of incomplete markets and under the standard convexity and

continuity assumptions an equilibrium might fail to exist, without the addi-

tional assumption Radner (1972) made, and moreover he gives conditions for

the existence. Werner (1985) establishes, making some assumptions on the

preferences and the initial endowments, the existence of an equilibrium in a

model with purely financial, incomplete future markets. Another, generic,

existence result, where securities are claims to future commodity bundles,

can be found in Duffie and Shafer (1985, 1986). Geanakoplos (1990) and

Magill and Schafer (1991) give an overview of general equilibrium models

with incomplete asset markets. Magill and Quinzii (1994) study the exis-

tence of equilibria in an infinite horizon version of this model imposing debt

constraints or transversality conditions to avoid Ponzi schemes.

Modeling Default

There are different approaches in the literature how default can be modeled:

Collateral or Default Penalties.

The first possibility is to introduce for every financial asset a collateral

requirement. This means each time an individual sells a financial asset

a specified amount of certain goods, called collateral, is needed to ensure

that this individual keeps its promise. If the financial asset does not de-

liver the promised amount, then there still remains the collateral for the

buyer of the asset, assuming implicitly some kind of durability of the col-

lateral. Depending on the future prices the asset defaults or not. There is

no further punishment if the promise is not fulfilled. Geanakoplos (2003a),

Geanakoplos (2003b) and Geanakoplos and Zame (2007) study a two-period

general equilibrium model with durable goods and collateralized assets view-

ing individuals as price-takers. They analyze the impact of the presence of

the collateral on prices, allocations and efficiency of markets. Araujo et al.

(2002) study infinite horizon economies with incomplete markets and collat-

eral structure. They assume finitely many agents, commodities and assets.

Their main result is the existence of an equilibrium in such a model with-

out a further assumption on debt constraints or transversality conditions to
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avoid the possibility of Ponzi schemes. The collateral structure implies the

presence of a uniform borrowing constraint in equilibrium (Araujo et al.,

2002, Remark 2).

A second possibility to model default is allowing the individuals to de-

fault whenever they want to and introducing at the same time a default

penalty if they do so. This concept was for example considered by Shubik

and Wilson (1977), Zame (1993) or more recently by Dubey et al. (2005).

An early contribution containing already default penalties is Shubik and

Wilson (1977). They look at a strategic market game with an outside bank

to borrow money. In case of default an individual suffers a default penalty.

Zame (1993) argues that default may play an important positive role in

an economy with incomplete markets. He shows that introducing default

penalties and hence allowing the individuals strategically to default, may

enhance the efficiency compared to the no default scenario. Dubey et al.

(2005) study a general equilibrium model with incomplete markets in which

they model default using default penalties. They consider assets as pools

and introduce expected delivery rates for the assets. One of their results

shows the existence of an equilibrium (according to their specified notion).

An interesting contribution studying the relationship between economies

with collateral and economies with default penalties is Maldonado and Or-

rillo (2007). They compare the equilibria in a two period economy for these

two classical ways modeling default. Their main result is that starting from

an equilibrium for an economy with collateral requirements they show this

equilibrium is as well an equilibrium with default penalties by defining an

appropriate economy. For the converse to be true they need some addi-

tional assumptions on the payoff functions and the initial endowments of

the agents.

Strategic Market Games

The idea of strategic market games goes back to Shapley and Shubik (1977):

“A general model of non-cooperative trading equilibrium is de-

scribed in which prices depend in a natural way on the buying

and selling decisions of the traders, avoiding the classical as-
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sumption that individuals must regard prices as fixed. The key

to the approach is the use of a single, specified commodity as

“cash,” which may or may not have intrinsic value.”

Shapley and Shubik (1977) use a non-cooperative game to describe the

price formation in an exchange economy. Every player is asked to place a

bid and an offer for every commodity. Afterwards the price of the com-

modity is computed as the ratio of the total bid to the total offer of that

commodity. Shapley and Shubik (1977) make the assumption that the indi-

viduals offer all their initial endowments. This assumption was relaxed for

example by Shapley (1976) or Peck et al. (1992), who study the dimension-

ality of Nash equilibrium allocations. Concerning the “money” Shapley and

Shubik (1977) take an explicit numeraire commodity, called money. The

feasible bids in this case are constrained by the endowments in money. An

other possibility is to take inside or fiat money and to introduce a budget

constraint that depends on the prices and hence on the strategies of the

other players as in Postlewaite and Schmeidler (1978). An overview on the

existing literature concerning strategic market games can be found in Gi-

raud (2003). As already mentioned the model here relies on Giraud and

Weyers (2004) and builds on the investigation of subgame-perfect equilibria

of a strategic market game with a finite horizon. Compared to Giraud and

Weyers (2004) we change the structure of a no default financial market to

a structure with default by introducing collateral requirements.

4.3 Finite Horizon Strategic Market Games

with Collateral

We look at a strategic market game with finitely many discrete time peri-

ods, t = 1, ..., T . We take a tree-like time structure and assume that the

individuals play at every point in time a strategic market game in the econ-

omy, taking into consideration the trades on the financial markets from the

previous periods. Hence, the game we consider is not a repeated game in the

usual sense, as part of the available budget in the actual period is a result

of the actions chosen in the previous periods. Nevertheless, the mechanism
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of price formation remains the same. By using a strategic market game we

drop the assumption of price-taking behavior from the usual competitive

framework. The individuals have the possibility to influence the prices in

the economy by choosing their actions strategically.

4.3.1 The Economy

The Time Structure

The set of finitely many time periods is denoted by T = {1, ..., T}. Let

S = {1, ..., S} be the set of possible states of nature. We assume that, when

the game starts, no information about the state of nature is available and

when the game ends the uncertainty is resolved. This is modeled by an

increasing family of information partitions (in the sense as defined below),

denoted by (Ft)t∈T , with the property F1 = {S} and FT = {{1}, ..., {S}}.

For each date t ∈ T and each ς ∈ Ft, we call the pair ξ = (t, ς) a date-

event or a node. Let D =
⋃

t∈T ({t} × Ft) be the finite set of all nodes.

Define a partial order ≥ (>) on D by ξ = (t, ς) ≥ (>)ξ′ = (t′, ς ′) if and

only if t ≥ (>)t′ and ς ⊆ ς ′. The pair (D,≥) is called a tree and its root

is ξ0 = (1,S). The terminal nodes are elements (T, ς) ∈ {T} × FT and the

set of terminal nodes is denoted by DT . Let D− = D \ DT be the set of

non-terminal nodes. Each non-terminal node ξ = (t, ς) ∈ D− has a finite

set of immediate successors

ξ+ = {ξ′ ∈ D|ξ′ = (t+ 1, ς ′), ς ′ ⊆ ς}.

Moreover every node ξ = (t, ς), except the root, has a unique predecessor

ξ− = (t − 1, ς ′) with ς ⊆ ς ′. For any node ξ ∈ D the set of all nodes with

ξ′ ≥ (>)ξ is denoted by D(ξ) (D(ξ)+) and is itself a tree with root ξ. Let

d = |D| denote the number of nodes in the tree and let τ(ξ) be the time at

which node ξ is reached, i.e. τ : D → T such that ξ = (t, ς) 7→ t.

Consumption Goods and Financial Assets

We consider a pure exchange economy with finitely many individuals and L

consumption goods combined with a financial market where the players are
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Figure 4.1: The T -period strategic market game.

allowed to purchase or sell financial assets. There is a finite set of players,

denoted N = {1, ..., N}, and a finite set of consumption goods, denoted by

L = {1, ..., L}. Consumption goods need to be consumed or can be used

as a collateral on the financial markets. There is no possibility to store a

consumption good for the next period except for using it as a collateral.

We assume that there are J possible short-term assets. The set of assets

is given by J = {1, ..., J}. The available financial assets are supposed to

be exogenously given. A financial asset j ∈ J is characterized by a tuple

(ξj, Aj, Cj) consisting of three elements: an issuing node, a promised amount

of goods and collateral requirement. The issuing node is a node in the tree

D and for short denoted by ξj. The promised amount of goods is described

by a function Aj : D → RL
+ such that Aj(ξ) = 0 for all ξ ∈ D \ (ξj)

+
.

For ξ′ ∈ (ξj)
+
the promises Aj(ξ

′) are the amounts of goods that a seller of

asset j promises to deliver to a buyer of asset j in the next period after the

issuing node ξj. The delivery, pξ ·Aj(ξ), is assumed to be made in fiat money

using spot prices, pξ. We only consider short-term assets. Therefore, for

other nodes before the issuing node and at least two periods after the asset

was issued, we the promised amount is zero. The collateral requirements
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Cj ∈ RL
+ are to ensure that the promised amounts of goods Aj is delivered.

The consumption goods serve as a collateral. We assume that the individuals

are not allowed to consume the collateral. The collateral is stored in a

warehouse for one period and is required at the issuing node ξj of asset j.

For ξ′ ∈ (ξj)
+
the collateral, stored in a warehouse, underlies a depreciation

Y s
ξ′ . Tobacco is one example of a consumption good that possess the required

properties to serve as a collateral. We assume that in the last period T no

assets are traded.

The Players

Every player i ∈ N is characterized by a family of twice continuously dif-

ferentiable, strictly increasing and concave utility functions. For each date

t ∈ T and each player i ∈ N there is a time-independent utility function

ui
t : RL

+ → R. Moreover every player i ∈ N possesses a strictly positive

initial endowment in consumption goods wi(ξ) ∈ RL
++ at every node ξ ∈ D.

Player i is supposed to maximize the discounted sum of expected utilities.

We assume that every player i has a discount factor λi ∈ [0, 1]. Thus, his

utility function is of the form

ui(xi) = (1− λi)
T
∑

t=1

(λi)t−1E[ui
t(x

i
t)]

where the expected values at all dates t ∈ T are taken using given proba-

bility distributions on the respective succeeding nodes,

E[ui
t(x

i
t)] =

∑

ξ:τ(ξ)=t

pt(ξ)u
i
t(x

i
t(ξ))

with
∑

ξ:τ(ξ)=t pt(ξ) = 1 and pt(ξ) > 0 for all ξ with τ(ξ) = t.

4.3.2 The T-Period Strategic Market Game

In the strategic market game, based on the idea of Shapley and Shubik

(1977), each player places for every consumption good ℓ ∈ L at every node

ξ ∈ D a bid biℓ(ξ) and an offer qiℓ(ξ). The bid biℓ(ξ) signals how much (in
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terms of fiat money) player i is willing to pay for the purchase of good ℓ and

the offer qiℓ(ξ) (in terms of physical commodities) is the amount he wants

to sell. The price of good ℓ is then computed as the ratio of the total bid

to the total offer, that is

pℓ(ξ) =

{
∑N

i=1 b
i
ℓ
(ξ)

∑N
i=1 q

i
ℓ
(ξ)

if
∑N

i=1 q
i
ℓ(ξ) > 0

0 otherwise

Hence, if there are no offers on the market the price is set equal to 0. Likewise

if there are no bids, the price is as well equal to 0. A market without trade

is called closed.1

Similarly to trade assets on financial markets at every non-terminal node

ξ ∈ D− each player places a bid βi
j(ξ) containing the amount of money he

wants to spend for buying the real asset j ∈ J and an offer γi
j(ξ) containing

the amount of assets he wants to sell. The price of the real asset is given by

πj(ξ) =







∑N
i=1 β

i
j(ξ)

∑N
i=1 γ

i
j(ξ)

if
∑N

i=1 γ
i
j(ξ) > 0

0 otherwise

Thus, price vectors are given by
(

(pℓ(ξ))ℓ∈L , (πj(ξ))j∈J

)

.

When the promises are settled a seller of the asset j ∈ J compares the

value of the promise with the value of the collateral and pays back the min-

imal value, either p(ξ′)Yξ′Cj or p(ξ
′)Aj(ξ

′), at the node ξ′ ∈ (ξj)
+
. Hence, if

default appears or not depends on the value of the promise compared to the

value of the collateral. This again depends on the price pℓ(ξ
′) which is deter-

mined by the bids and offers at the node ξ′ on the market for consumption

goods.

Define for every asset j ∈ J at the nodes ξ′ ∈ (ξj)
+

Dj(ξ
′) = min {p(ξ′)Aj(ξ

′), p(ξ′)Yξ′Cj} .

1Defining the price as zero when there are no offers on the market we follow here for
example Amir et al. (1990, p.128). Similar assumptions can be found in Postlewaite and
Schmeidler (1978, p.128), Peck et al. (1992, p.275) or Giraud and Weyers (2004, p.474).
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Feasible Bids and Offers

There are some physical and budgetary restrictions on the bids and offers

the individuals can choose. In this section we define the feasible bids and

offers at every node ξ ∈ D. We take into consideration that for every asset

j ∈ J player i sells, he has to have the required amount of collateral. The

amount of collateral needed depends on the asset sales and not on the net

trades. Suppose we are at node ξ and asset j ∈ J is issued at this node.

Assume player i offers to sell γi
j(ξ) units of asset j, which means that he

promises to deliver γi
j(ξ)Aj(ξ

′) at the nodes ξ′ ∈ (ξj)
+
. In this case he

needs to have an amount of γi
j(ξ)Cj ∈ RL

+ goods as a collateral. In oder

to fulfill the obligations from the asset markets player i is allowed to offer

his collateral from the previous period on the goods market. The money

needed to pay his obligations is included in the individual budget constraint

on feasible bids and offers.

The feasible bids and offers are given by:

qiℓ(ξ) +
J
∑

j=1

γi
j(ξ)Cjℓ ≤ wi

ℓ(ξ) +
J
∑

j=1

γi
j(ξ

−) (YξCj)ℓ (F1ξ)

for all ℓ ∈ L,

qiℓ(ξ), b
i
ℓ(ξ), β

i
j(ξ), γ

i
j(ξ) ≥ 0 (F2ξ)

for all ℓ ∈ L, j ∈ J and

βi
j(ξ) = γi

j(ξ) = 0 if ξ 6= ξ(j) (F3ξ)

for all j ∈ J . We assume that the initial holdings of assets are equal to 0.

The offered amount of goods plus the amount of goods that is needed as

a collateral cannot exceed the initial endowment of player i at node ξ ∈ D

plus the depreciated collateral, he put aside in the previous period to fulfill

his promises, condition (F1ξ). Furthermore, the bids and offers cannot be

negative, condition (F2ξ), and assets can only be traded at their issuing

node, condition (F3ξ), as the assets are assumed to be short-term assets.
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Remark. Condition (F3ξ) is needed in the proof of our main theorem.

In order to give the agents incentives to play certain strategies there is a

final reward phase with closed asset markets. Condition (F3ξ) ensures that

financial assets can only be traded at their issuing date. Therefore, the

individuals are not allowed to trade financial assets in the following way:

Suppose all individuals play a strategy bidding and offering zero for asset j.

Then, say individual i could unilaterally deviate and bid and offer a strictly

positive amount for asset j and trade in this way with “himself” as there is

no other player trading asset j. This action has the consequence that the

collateral need to be put up and is be stored until next period. Therefore,

even if the all agents play a Nash equilibrium on the goods markets and no

trade on the asset markets, there might be a profitable deviation using this

kind of “self-trading” actions. These strategies are excluded by condition

(F3ξ) together with an assumption on the issuing nodes of an exogenously

given financial structure. A different condition avoiding “self-trade” actions

is made in Brangewitz and Giraud (2011) where an appropriate condition

is directly added to the feasibility constraints. We can adopt this way here

as well.

Moreover, player i faces the following budget constraints on fiat money

when placing bids and offers:

L
∑

ℓ=1

biℓ(ζ) +
J
∑

j=1

βi
j(ζ)

≤
L
∑

ℓ=1

pℓ(ζ)q
i
ℓ(ζ) +

J
∑

j=1

πj(ζ)γ
i
j(ζ) +

J
∑

j=1

(

βi
j(ζ

−)

πj(ζ−)
− γi

j(ζ
−)

)

Dj(ζ) (∗iξ)

for all ζ ≤ ξ. Thus, by condition (∗iξ) the total value of bids for con-

sumption goods and promises cannot exceed the total monetary amount of

consumption goods and of promises that is offered including the dividends.

This needs to hold for the actual node and all nodes before. If one of the

budget constraints in (∗iξ) is violated, then individual i is removed from

the economy for all nodes D+(ξ) and all his goods are confiscated for those

nodes.
After trading took place player i’s allocation of good ℓ ∈ L available for
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consumption at the end of the current period, time t, is

xi
ℓ(ξ) =



























wi
ℓ(ξ) +

J
∑

j=1

γi
j(ξ

−) (YξCj)ℓ − qiℓ(ξ) +
bi
ℓ
(ξ)

pℓ(ξ)
−

J
∑

j=1

γi
j(ξ)Cjℓ if (∗iξ) holds and pℓ(ξ) > 0

wi
ℓ(ξ) +

J
∑

j=1

γi
j(ξ

−) (YξCj)ℓ − qiℓ(ξ)−
J
∑

j=1

γi
j(ξ)Cjℓ if (∗iξ) holds and pℓ(ξ) = 0

0 otherwise.

Furthermore, his holdings of asset j ∈ J are given by his sales

ϕi
j(ξ) =

{

γi
j(ξ) if (∗iξ) holds

0 otherwise

and his purchases

θij(ξ) =

{

βi
j(ξ)

πj(ξ)
if (∗iξ) holds and πj(ξ) > 0

0 otherwise.

Hence, if θij(ξ)− ϕi
j(ξ) < 0 then player i sold more of the financial asset

j ∈ J than he bought. Analogously for θij(ξ)−ϕi
j(ξ) > 0 he is a net buyer.

Allowable Actions and Strategies

The actions of the players are the choices of bids and offers. The action set
of player i at node ξ is defined as

Ai(ξ) =
{

(

qiℓ(ξ), b
i
ℓ(ξ)

)

ℓ∈L
,
(

γi
j(ξ), β

i
j(ξ)

)

j∈J
∈ R2L

+ × R2J
+

∣

∣(F1ξ), (F2ξ) and (F3ξ) are satisfied
}

.

Let A(ξ) = ×N
i=1A

i(ξ). Note that the definition of the action sets includes

actions that possibly violate the budget constraint (∗iξ). As the prices for

consumption goods and financial assets depend on the actions of all play-

ers, including the budget constraint (∗iξ) as a further restriction into the

definition of the action sets would make the action sets dependent on the

other players’ actions. And hence, we would obtain a generalized game as

introduced by Debreu (1952).2 To avoid this we define the feasible strate-

gies using only the conditions (F1ξ), (F2ξ) and (F3ξ) and assume as stated

before the removal of individuals from the economy that violate the budget

2For more information on generalized Nash equilibrium problems see for example Debreu
(1952), Harker (1991) or Facchinei and Kanzow (2010).
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constraint (∗iξ). The stage-payoff of player i at node ξ is given by the utility

he obtains from consumption.

In a strategic market game the allocation an individual finally obtains

depends on his own actions and the prices, which represent an aggregate of

the own and the other individual’s actions. Because of this it is enough for

an individual to know the prices of the commodities and assets rather than

the particular actions of the other individuals.

A strategy for the T -period strategic market game consists of choosing

actions at every node ξ ∈ D. Let H i(ξ) denote the set of possible histories

for individual i at node ξ given by

H i(ξ) =
{

p(ξ′), π(ξ′), ϕi(ξ′), θi(ξ′)
∣

∣ for all ξ′ < ξ
}

.

The history at the root ξ0 is given by H i(ξ0) = ∅. Therefore, a strategy of

individual i is given by σi :
⋃

ξ∈D H i(ξ) →
(

RL
+

)2
×
(

RJ
+

)2
such that

σi(h) ∈ Ai(ξ)

for all ξ ∈ D and for all h ∈ H i(ξ).

Definition 4.1 (full, almost full strategy profiles). A strategy profile for

the strategic market game with N player and finite horizon T

(

(

qiℓ(ξ), b
i
ℓ(ξ)
)

ℓ∈L
,
(

γi
j(ξ), β

i
j(ξ)

)

j∈J

)

i∈N ,ξ∈D

is called full if

N
∑

i=1

qiℓ(ξ) > 0,
N
∑

i=1

biℓ(ξ) > 0,
N
∑

i=1

γi
j(ξ) > 0,

N
∑

i=1

βi
j(ξ) > 0

hold for all ℓ ∈ L, j ∈ J , ξ ∈ D. A subgame perfect Nash equilibrium

is called full if it is a full strategy profile. We define a strategy profile as

almost full if the strict inequality holds on the goods markets. This means

N
∑

i=1

qiℓ(ξ) > 0,
N
∑

i=1

biℓ(ξ) > 0
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hold for all ℓ ∈ L, ξ ∈ D. Analogously a subgame perfect Nash equilibrium

is called almost full if it is an almost full strategy profile.

Next, we study the existence of approximate subgame perfect Nash equi-

libria of the T -period strategic market game. First we show that any given

feasible and affordable allocation can be induced by some trading strategies

that not equal to zero.

Definition 4.2 (feasible and affordable allocation). An allocation (x̄i, ϕ̄i, θ̄i)i∈N ∈

RL·d·N
+ × RJ ·d·N

+ × RJ ·d·N
+ is said to be feasible and affordable, if there exists

a price system (p̄, π̄) ∈ RL·d
+ × RJ ·d

+ such that the following conditions are

satisfied at every node ξ ∈ D:

• Individual budget restriction for every player i ∈ N :3
∑L

ℓ=1 p̄ℓ(ξ)
(

x̄i
ℓ(ξ) +

∑J

j=1 ϕ̄
i
j(ξ)Cjℓ

)

+
∑J

j=1 π̄j(ξ)
(

θ̄ij(ξ)− ϕ̄i
j(ξ)

)

=
∑L

ℓ=1 p̄ℓ(ξ)
(

wi
ℓ(ξ) +

∑J

j=1 ϕ̄
i
j(ξ

−) (YξCj)ℓ

)

+
∑J

j=1

(

θ̄ij(ξ
−)− ϕ̄i

j(ξ
−)
)

Dj(ξ),

• market clearing on spot markets for every good ℓ ∈ L:
∑N

i=1

(

x̄i
ℓ(ξ) +

∑J

j=1 ϕ̄
i
j(ξ)Cjℓ

)

=
∑N

i=1

(

wi
ℓ(ξ) +

∑J

j=1 ϕ̄
i
j(ξ

−) (YξCj)ℓ

)

,

• and market clearing on financial markets for every asset j ∈ J :
∑N

i=1 θ̄
i
j(ξ) =

∑N

i=1 ϕ̄
i
j(ξ),

(x̄i)i∈N is called a feasible and affordable consumption stream.

The following remark is easy to verify.

Remark. Convexity of the set of feasible and affordable consumption streams:

Let δ ∈ [0, 1]. Let (x̄i)i∈N and (x̄′i)i∈N be two feasible and affordable con-

sumption streams.

1. Then
(

δx̄i + (1− δ)x̄′i
)

i∈N

is a feasible and affordable consumption stream as well.

3We define ϕ̄i
j(ξ

−
0 ) = θ̄ij(ξ

−
0 ) = 0.
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2. Since the utility functions are assumed to be concave we have for every

node ξ = (t, ς) ∈ D−

δui
t(x̄

i
t(ξ)) + (1− δ)ui

t(x̄
′i
t (ξ)) ≤ ui

t(δx̄
i
t(ξ) + (1− δ)x̄′i

t (ξ))

and thus

δE[ui
t(x̄

i
t)] + (1− δ)E[ui

t(x̄
′i
t )] ≤ E[ui

t(δx̄
i
t + (1− δ)x̄′i

t )].

Definition 4.3 (sequentially strictly individually rational). An consump-

tion stream (x̄i)i∈N ∈ RL·d·N
+ is said to be sequentially strictly individually

rational up to time T ∗, if

E[ui
t(x̄

i
t)] > E[ui

t(w
i
t)]

for all i ∈ N and all t ≤ T ∗.

We obtain for our model an analogous Lemma as in Giraud and Weyers

(2004).

Lemma 4.1. If the initial allocations (wi(ξ))i ≫ 0 are Pareto-inefficient

in the L-good spot economy at each node ξ ∈ D then for every terminal

date T there exists a sequentially strictly individually rational and feasible,

affordable allocation.

The proof can be found in the Appendix 4.5.1. Analogously to Lemma

2 in Giraud and Weyers (2004) we obtain:

Lemma 4.2. Let (x̄i)i∈N ∈ RL·d·N
+ be a feasible, affordable and sequen-

tially strictly individually rational consumption stream. Let (x̄i, ϕ̄i, θ̄i)i∈N be

the according feasible and affordable allocation with the price system (p̄, π̄).

Then the following strategies result in (x̄i, ϕ̄i, θ̄i)i∈N :
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For all ξ ∈ D, i ∈ N , ℓ ∈ L and j ∈ J let

qiℓ(ξ) = wi
ℓ(ξ) +

J
∑

j=1

ϕ̄i
j(ξ

−) (YξCj)ℓ ,

biℓ(ξ) = p̄ℓ(ξ)

(

x̄i
ℓ(ξ) +

J
∑

j=1

ϕ̄i
j(ξ)Cjℓ

)

,

γi
j(ξ) = ϕ̄i

j(ξ),

βi
j(ξ) = π̄j(ξ)θ̄

i
j(ξ).

Moreover, the above strategies are almost full.

The proof can be found in the Appendix 4.5.2. The idea Lemma 4.2 is

that every feasible, affordable and sequentially strictly individually rational

consumption stream can be achieved through some trading strategies. The

individuals offer all their initial endowments plus the collaterals needed in

the previous period and bid exactly the value of the given feasible and af-

fordable allocation plus the collateral requirements using the price system

corresponding to this allocation. Similarly, on the asset markets the indi-

viduals offer their asset sales and bid the value of their purchases. Note that

we do not make an statement if the strategies defined in Lemma 4.2 form a

Nash equilibrium. Even if there is no trade on the asset markets, the one

stage actions are not necessarily Nash equilibrium actions.

Remark. Note that we cannot always use almost full strategies to induce

a given feasible, affordable and sequentially strictly individually rational

consumption stream. If there are no transactions on the asset markets

necessary to induce such a given allocation, then the strategies on the asset

markets are no longer full. Forcing individuals to offer some (even very

small) amount of financial assets in order to obtain full strategies will for

them have the consequence that they need to possess the required amount of

collateral and moreover this additional amount of collateral can no longer

be consumed, such that the utility of the actual period decreases. This

problem might be solved by imposing the collateral requirements only on

the net trades. In this case buying and selling the same amount of the same

financial asset does not require some additional collateral. Another point
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is that we assumed in (F3ξ) that assets can only be traded at their issuing

node. We decided to stay with the collateral requirement on the asset sales

and to have only almost full strategies to induce a given feasible, affordable

and sequentially strictly individually rational consumption stream. The

question of netting asset sales and purchases is for example for monetary

equilibria discussed in Dubey and Geanakoplos (2003). In a model with

netting the asset sales are not constrained by the available amount of money

and hence very large short sales are possible. In our model we explicitly

constrain the asset sales by the collateral requirements.

If we consider an economy without trade on the financial markets or

without collateral requirements, the lower bound for the utility a player

can obtain in the whole T -period strategic market game is the utility from

his initial endowment. If we introduce collateral requirements and if there

is trade in financial markets, this situation might change. The following

lemma shows that this is not the case if we consider the whole T -period

strategic market game.

Lemma 4.3. There is no Nash equilibrium and hence no subgame perfect

Nash equilibrium of the T -period strategic market game at which at least

one player has strictly less utility from this allocation than from his initial

endowment.

The idea of the proof is to construct a strategy that insures a player

at least the utility from his initial endowment. This utility can always be

obtained using the no-trade equilibrium strategy by bidding zero for every

good and every asset. It turns out even with forcing all the players to

place strictly positive bids and offers on the goods markets, we can define

appropriate strategies. The proof can be found in the Appendix 4.5.3.

Remark. Due to the fact that the individuals consider expected utilities

the observation in Lemma 4.3 does not exclude that at single nodes the

utility obtained is less than the one from the according initial endowment.

In Lemma 4.3 we only consider the total utility from the T -period strategic

market game. It might happen that very low consumption in one state of
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nature is compensated by high consumption in an other state, such that in

expectation the individual is better off than consuming his initial endow-

ment. We discuss this issue again at the end of this section when we make

the comparison with the no default setting.

Definition 4.4 (approximate subgame perfect Nash equilibrium). A con-

sumption stream (x̄i)i∈N is an approximate subgame perfect Nash equilibrium

of the strategic market game (as defined above) with N players and time

horizon T if for every ε∗ > 0 there is a discount factor λ0 such that if

mini∈N λi ≥ λ0, then there is an almost full subgame perfect Nash equilib-

rium with strategies σ such that

|ui(xi(σ))− ui(x̄i)| < ε∗

for all i ∈ N .

We can parametrize the T -period strategic market games by its time

horizon T , the discount rates λ = (λi)i∈N and the initial endowments

w = (wi)i∈N . Denote the associated economies by E(T, λ, w). Every strate-

gic market game with finite horizon and the associated economy E(T, λ, w)

can be as well considered as a truncation of an infinite horizon game with

the associated economy E∞(λ,w), that becomes stationary after time T .

Let Ω(N) denote the set of all allocations that redistribute the initial en-

dowments in the economy E∞(λ,w) somehow such that the market clearing

condition at every node is satisfied and let ΩT (N) be its restriction until

period T . Thus,

ΩT (N) =

{

w̄ ∈ RL·d·N

∣

∣

∣

∣

N
∑

i=1

w̄i =
N
∑

i=1

wi

}

.

Theorem 4.1. For any N , there exists an open and dense subset Ω∗(N) of

initial endowments and an integer T 0(N) and R such that for every finite

horizon T ≥ T 0(N) ≥ R: if the initial endowments belong to Ω∗
T (N) and if

the issuing nodes of all financial assets are in the first T − R − 1 periods,

then every consumption stream (x̄i)i∈N , that is feasible, affordable and se-

quentially strictly individually rational in the first T − T 0(N) periods, is an
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approximate subgame perfect Nash equilibrium of the strategic market game

with finite horizon T .

The proof of the above theorem is very similar to the one given in Gi-

raud and Weyers (2004). The main idea is to apply the Lemma 4.4 below to

obtain existence of equilibria in the one shot strategic market games (with

closed financial markets) and to use the previous results to construct strate-

gies that induce a given feasible and affordable allocation (Lemma 4.2).

For the proof of the above theorem we use the following lemma as stated

in Giraud and Weyers (2004) [Lemma 3], that was proven by Peck et al.

(1992).

Lemma 4.4. For each node ξ ∈ D there exists an open and dense subset

of initial allocations of the one-period economy at node ξ with closed asset

markets, such that the set of Nash equilibrium allocations of the one shot

strategic market game on the commodity markets with actions, where all

bids and offers are strictly positive, is a smooth sub-manifold of dimension

L(N − 1) of the set of allocations where markets clear exactly.

The proof of Theorem 4.1 can be found in the Appendix 4.5.4.

Remark. As already indicated in Remark 4.3.2 condition (F3ξ) together

with the assumption that there are no financial assets issued at the last

part of the T -period strategic market game, avoids “self trading” actions

and excludes with that storage possibilities of the collaterals at this part

of the game. Lemma 4.4 ensures the existence of one shot Nash equilibria

(with closed asset markets) for appropriately chosen initial endowments. So

far it remains an open question if this choice of the initial endowments is

compatible with storage possibilities of the collateral.

4.3.3 Comparison with the no Default Situation

Giraud and Weyers (2004) impose a no default condition on the sequentially

strictly individually rational allocations they consider. This condition im-

plies that the value of the consumption goods plus the changes in the asset

portfolio need to be financed by the initial endowments taking asset market
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obligations and dividends into consideration. Asset market obligations are

always met, even if the initial endowments might be used to fulfill them. We

argue that in this model without default there exists a sequentially strictly

individually rational and default free allocation in which there exists a state

where one consumer is driven out of the market. This means there exists

a state where the consumption of one consumer comes arbitrarily close to

zero. This is possible as the sequential strict individual rationality is defined

by taking the expectation over future states according to a fixed probabil-

ity distribution. Hence, using the folk theorem like result from Giraud and

Weyers (2004) there exist approximate subgame perfect equilibria of the fi-

nite horizon strategic market game without default with the property that

at least one consumer is driven out of the market.

The following example shows this claim:

Example. Suppose there are N = {1, ..., N} individuals and two future

states of nature. Assume that there is one future state, denoted by ξu, that

appears with a high probability of p close to one, and another one that

appears with a very low probability of 1− p, denoted by ξd. There are two

possible states of nature in the second period and afterwards there is only

one possible state of nature at each node. This is illustrated in Figure 4.2.

b

b

b

b

b

b

b

b

b

b

b

p

1− p

ξu

ξd

Figure 4.2: Example.

Moreover, assume that the time horizon T and the Pareto inefficient

initial endowments, denoted by (wi)i∈N , are chosen in such a way that the
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assumptions of Theorem 1 in Giraud and Weyers (2004) hold. Therefore,

every sequentially strictly individually rational and default-free allocation is

an approximate subgame perfect equilibrium. Let (x̄i)i∈N be a sequentially

strictly individually rational and default-free allocation. In the following

we define a different sequential strictly individually rational and default-

free allocation starting from (x̄i)i∈N where one agent is driven out of the

market. Assume that individual 1 sells a huge amount of a a financial

asset such that he has to deliver only something in the unprobable state ξd.

He sells this amount split equally to the other players. Doing this leaves

individual 1 an amount of ε > 0 small in state ξd with w1
2(ξd) ≫ ε after

the asset market obligations are fulfilled and x̄1
2(ξu) in state ξu. Accordingly

individuals j = 2, ..., N receive x̄j
2(ξu) and x̄j

2(ξd) +
1

N−1
(x̄1

2(ξd)− ε). This

allocation is sequentially strictly individually rational if p is close enough to

one as u1
2 (x̄

1
2(ξu)) ≫ u1

2 (w
1
2(ξu)), and hence we obtain

p · u1
2

(

x̄1
2(ξu)

)

+ (1− p) · u1
2 (ε)

> p · u1
2

(

w1
2(ξu)

)

+ (1− p) · u1
2

(

w1
2(ξd)

)

,

p · uj
2

(

x̄j
2(ξu)

)

+ (1− p) · uj
2

(

x̄j
2(ξd) +

1

N − 1

(

x̄1
2(ξd)− ε

)

)

> p · uj
2

(

wj
2(ξu)

)

+ (1− p) · uj
2

(

wj
2(ξd)

)

for j = 2, ..., N . From period t ≥ 3 onwards the individuals are assumed

to receive (x̄i
t)i∈N .

This example shows that even without assuming heterogeneous beliefs

there are approximate subgame perfect Nash equilibria with nodes where

at least one agent is driven out of the market. This cannot happen if we

introduce default and collateral requirements. Each time a financial asset is

sold the according collateral has to be put aside. If default appears, there

still remains the collateral to pay back at least part of the asset market obli-

gations. Hence, in the model with collateral future initial endowments are

not used to fulfill asset market obligations from previous periods. This fact

avoids the situation that individuals are driven out of the market because

of asset market obligations from past periods. This is a crucial difference

compared to the model with default.
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4.4 Further Research and Concluding Remarks

We model a strategic market game with finite horizon and default. The

main results are similar to Giraud and Weyers (2004). It turns out that

even if we change the structure of the financial market drastically and allow

for default while imposing at the same time a collateral structure for the

financial assets, we are still able to obtain an analogue of a perfect folk

theorem in a similar way as in Giraud andWeyers (2004). Almost everything

is possible as soon as people are sufficiently patient, since almost every

feasible, affordable, sequentially strictly individually rational consumption

stream can be obtained by means of some almost full approximate subgame

perfect Nash equilibrium.

In a setting with incomplete financial markets allowing for default and

introducing collateral requirements seems to have at a first glance a negative

influence on the economy. We no longer assume that individuals are obliged

to fulfill their obligations on the asset markets. Instead we impose that each

time a financial asset is sold the according collateral has to be put aside.

If an individual does not possess the required collateral, it cannot sell the

financial asset. The individuals buying the financial assets anticipate that

the seller might default and pay back only the value of the collateral and

not the promised amount. Having a closer look at the individual budget

restriction (in the definition of a feasible and affordable allocation) shows

that by introducing default and collateral there remains for the seller always

the collateral to fulfill at least part of his asset market obligations. If he

defaults, he has to sell the collateral and use the amount of money he obtains

to fulfill his asset market obligations. Thus, with collateral requirements

future initial endowments are not touched by asset market obligations from

previous periods. We have shown by means of an example that this is not

true in the model without default.

Our result in weaker than the one of Giraud and Weyers (2004) in the

sense that the strategies we use are only almost full. This means we do not

necessarily use full strategies on the asset markets. The collateral require-

ment makes it impossible to imitate the no-trade equilibrium by bidding

and offering at the same time small amounts of financial assets (for example



CHAPTER 4. FINITE HORIZON 139

in the punishment phase). The difficulty is that for every asset sale the ac-

cording collateral has to be put aside. Hence, even if this is possible, as the

initial endowments are strictly positive, putting some consumption goods

aside means that they cannot be consumed in the actual period. As a result

the desired level of utility from consumption cannot be reached exactly. For

this reason we decided to accept the fact that the strategies on the asset

markets might not be full and hence we obtain an analogue of a perfect folk

theorem only in almost full strategies. Another possibility is to take the

collateral requirement only on net trades. In this case it is possible to use

full strategies on the asset markets. To stay close to the existing literature

on collaterals, as for example Araujo et al. (2002) we decided to model the

collateral requirements using asset sales and not net trades.

A further feature incorporated in the competitive model with collateral

of Araujo et al. (2002) is the possibility to store commodities from one pe-

riod to an other. The individuals are free to decide if they are willing to

consume or to store their commodities. In addition durable goods are in-

cluded in their analysis. They use a depreciation structure to model the

amounts that remain after consumption or storage in the next period. The

competitive equilibrium concept is defined taking this into consideration.

Neither Giraud and Weyers (2004) nor our model here allows for storage

or durable goods. It remains an open question if and how the model can

be extended in this direction. Allowing the individuals to store their com-

modities changes the “initial” endowments over time as everything that was

stored is available, maybe depreciated, at the start of the next period. The

proof our finite horizon folk theorem like result is crucially relying on the

fact that the initial endowments in the reward phase are chosen in such

a way that there is an indeterminacy of Nash equilibria in the one shot

strategic market games. Applying a Transversality Theorem Peck et al.

(1992) obtain their result for a generic choice of initial endowments. They

are able to exclude Pareto optimal initial endowments and locally isolated

points in their indeterminacy result. Hence, for a model including storage

possibilities or durable goods, it remains unclear which assumptions are nec-

essary to ensure a certain dimensionality of the set of Nash equilibria of the

strategic market game. Pareto optimal initial endowments were excluded
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from our analysis here. Peck et al. (1992) show that if the initial endow-

ments are Pareto optimal the Nash equilibrium allocation is unique. For a

generic choice of initial endowments that are Pareto inefficient we showed

here in a model with collateral almost every feasible, affordable and sequen-

tially strictly individually rational consumption stream can be obtained as

an almost full approximate subgame perfect Nash equilibrium of the finite

horizon strategic market game if the individuals are patient enough.

Compared to Araujo et al. (2002) we drop the assumption of perfect

competition and model the price formation explicitly using strategic market

games based on Shapley and Shubik (1977) and obtain by that a huge

set of equilibria. Taking into consideration that in reality economies are

not always perfectly competitive explains why in certain market allocations

arise that are not a competitive equilibrium. For example given the initial

endowments in an imperfectly competitive setting modeled by a strategic

market game no trade is a Nash equilibrium and as we have seen there are

many more in the finite horizon case.
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4.5 Appendix

4.5.1 Proof of Lemma 4.1

To show Lemma 4.1 for our model, we modify the proof of Giraud and

Weyers (2004) slightly.

Proof. Fix a node ξ ∈ D at time t ≤ T . Since the allocation of initial

endowments (wi(ξ))i are Pareto-inefficient in the L-good spot economy there

exists a consumption stream (x̄i(ξ))i that Pareto dominates (wi(ξ))i and

satisfies for every good ℓ ∈ L

N
∑

i=1

x̄i
ℓ(ξ) =

N
∑

i=1

wi
ℓ(ξ).

By the strict monotonicity of the preferences, there exists a consumption

stream (x̄′i(ξ))i such that

ui
t(x̄

′i(ξ)) > ui
t(x̄

i(ξ)) i = 1, ..., N

and
N
∑

i=1

x̄′i
ℓ (ξ) =

N
∑

i=1

wi
ℓ(ξ).

Since the utility functions are strictly increasing, there exists a hyper-

plane containing (x̄′i(ξ))i and (wi(ξ))i with a strictly positive price vector

(pℓ(ξ))ℓ∈L. Thus the individual budget restriction

L
∑

ℓ=1

pℓ(ξ)x̄
′i
ℓ (ξ) =

L
∑

ℓ=1

pℓ(ξ)w
i
ℓ(ξ)

is satisfied and furthermore

E[ui
t(x̄

′i)] > E[ui
t(x̄

i
t)] ≥ E[ui

t(w
i
t)]

for all i ∈ N and t ≤ T .
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4.5.2 Proof of Lemma 4.2

To show Lemma 4.2 for our model, we modify the proof of Giraud and

Weyers (2004).

Proof. The final allocation of good ℓ ∈ L available for consumption after

trading at node ξ ∈ D is given by

xi
ℓ(ξ) = wi

ℓ(ξ) +
J
∑

j=1

γi
j(ξ

−) (YξCj)ℓ − qiℓ(ξ) +
biℓ(ξ)

pℓ(ξ)
−

J
∑

j=1

γi
j(ξ)Cjℓ

Since (x̄i)i∈N is a feasible and affordable consumption stream there exists

a feasible and affordable allocation (x̄i, ϕ̄i, θ̄i)i∈N such that the asset markets

clear at every node ξ ∈ D. For all j ∈ J we have

N
∑

i=1

θ̄ij(ξ) =
N
∑

i=1

ϕ̄i
j(ξ).

Using the market clearing condition on the goods markets we obtain

from the definition of the strategies

N
∑

i=1

qiℓ(ξ) =
N
∑

i=1

(

wi
ℓ(ξ) +

J
∑

j=1

ϕ̄i
j(ξ

−) (YξCj)ℓ

)

=
N
∑

i=1

(

x̄i
ℓ(ξ) +

J
∑

j=1

ϕ̄i
j(ξ)Cjℓ

)

,

N
∑

i=1

biℓ(ξ) = pℓ(ξ)
N
∑

i=1

(

x̄i
ℓ(ξ) +

J
∑

j=1

ϕ̄i
j(ξ)Cjℓ

)

.

Hence,

p̄ℓ(ξ) =

∑n

i=1 b
i
ℓ(ξ)

∑n

i=1 q
i
ℓ(ξ)

= pℓ(ξ).

The final allocation of sales and of purchases for asset j ∈ J are given
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by

ϕi
j(ξ) = γi

j(ξ)

θij(ξ) =
βi
j(ξ)

πj(ξ)
.

Hence from the definition of the strategies using the market clearing

condition on the asset markets we obtain for the asset prices

πj(ξ) =

∑N

i=1 β
i
j(ξ)

∑N

i=1 γ
i
j(ξ)

=
π̄j(ξ)

∑N

i=1 θ̄
i
j(ξ)

∑N

i=1 ϕ̄
i
j(ξ)

= π̄j(ξ).

Therefore,

xi
ℓ(ξ) = x̄i

ℓ(ξ),

ϕi
j(ξ) = ϕ̄i

j(ξ)

θij(ξ) = θ̄ij(ξ).

It remains to check that the budget constraint (∗iξ) for the bids and offers

is satisfied.

L
∑

ℓ=1

biℓ(ξ) +
J
∑

j=1

βi
j(ξ) ≤

L
∑

ℓ=1

pℓ(ξ)q
i
ℓ(ξ) +

J
∑

j=1

πjγ
i
j(ξ) +

J
∑

j=1

(

βi
j(ξ

−)

πj(ξ−)
− γi

j(ξ
−)

)

Dj(ξ)

Inserting the assumed strategies for bil(ξ), q
i
l(ξ), γ

i
j(ξ) and βi

j(ξ) we obtain

for (∗iξ)

L
∑

ℓ=1

p̄ℓ(ξ)

(

x̄i
ℓ(ξ) +

J
∑

j=1

ϕ̄i
j(ξ)Cjℓ

)

+
J
∑

j=1

π̄j(ξ)
(

θ̄ij(ξ)− ϕ̄i
j(ξ)

)

≤
L
∑

ℓ=1

p̄ℓ(ξ)

(

wi
ℓ(ξ) +

J
∑

j=1

ϕ̄i
j(ξ

−)Cjℓ

)
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+
J
∑

j=1

(

θ̄ij(ξ
−)− ϕ̄i

j(ξ
−)
)

Dj(ξ)

which holds since (x̄i, ϕ̄i, θ̄i)i∈N was assumed to be a feasible and afford-

able allocation. As (wi(ξ))i ≫ 0, this strategy profile is almost full. This

completes the proof.
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4.5.3 Proof of Lemma 4.3

Proof. We show that there does not even exist a Nash equilibrium that gives

at least one player less utility than he can obtain from his initial endowment.

This implies that there will not be a subgame perfect Nash equilibrium with

this property.

Recall that the utility functions of the players are given by

ui(x̄i) = (1− λi)
T
∑

t=1

(λi)t−1E[ui
t(x̄

i
t)].

Suppose there exists a Nash equilibrium consumption stream (x̄′i)i∈N of the

T -period strategic market game such that for at least one player i ∈ N we

have

ui(x̄′i) < ui(wi).

Denote by σ = (σ1, ..., σN ) the according strategies. If player i now deviates

and plays the strategy σ̄i = 0, then the resulting allocation for i is

xi
ℓ(ξ) = wi

ℓ(ξ) for all ℓ ∈ L,

ϕi
j(ξ) = θij(ξ) = 0 for all j ∈ J

for all nodes ξ ∈ D. Thus, by deviation player i can ensure himself always

a utility of ui(wi) which contradicts the assumption that (x̄′i)i∈N is a Nash

equilibrium allocation of the T -period strategic market game.

For almost full strategies we obtain the following: If we want player i

to bid or offer at least ε > 0 (small) on the goods markets where the price

pℓ(ξ) of good ℓ ∈ L is strictly positive, then his bids and offers for good

ℓ ∈ L need to satisfy

qiℓ(ξ) ·
∑

k 6=i

bkℓ (ξ) = biℓ(ξ) ·
∑

k 6=i

qkℓ (ξ)

to have the same utility as from his initial endowment.

We distinguish between open and closed markets: If
∑

k 6=i b
k
ℓ (ξ) > 0 and

∑

k 6=i q
k
ℓ (ξ) > 0, the above relation ensures, that if we look at the price pℓ(ξ)
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of good ℓ ∈ L, we have

pℓ(ξ) =

∑N

i=1 b
i
ℓ(ξ)

∑N

i=1 q
i
ℓ(ξ)

=

∑

k 6=i b
k
ℓ (ξ) + biℓ(ξ)

∑N

i=1 q
i
ℓ(ξ)

=

∑

k 6=i b
k
ℓ (ξ) + qiℓ(ξ) ·

∑
k 6=i b

k
ℓ
(ξ)

∑
k 6=i q

k
ℓ
(ξ)

∑N

i=1 q
i
ℓ(ξ)

=

∑

k 6=i b
k
ℓ (ξ)

(

1 +
qi
ℓ
(ξ)

∑
k 6=i q

k
ℓ
(ξ)

)

∑N

i=1 q
i
ℓ(ξ)

=

∑

k 6=i b
k
ℓ (ξ)

(∑N
i=1 q

i
ℓ
(ξ)

∑
k 6=i q

k
ℓ
(ξ)

)

∑N

i=1 q
i
ℓ(ξ)

=

∑

k 6=i b
k
ℓ (ξ)

∑

k 6=i q
k
ℓ (ξ)

.

Thus, this action does not influence the price of good ℓ ∈ L. The strategies

on the goods markets are

biℓ(ξ) =
∑

k 6=i b
k
ℓ
(ξ)

∑
k 6=i q

k
ℓ
(ξ)

· ε,

qiℓ(ξ) = ε.

We have

−qiℓ(ξ) +
biℓ(ξ)

pℓ(ξ)
= −ε+

∑
k 6=i b

k
ℓ
(ξ)

∑
k 6=i q

k
ℓ
(ξ)

· ε
∑

k 6=i b
k
ℓ
(ξ)

∑
k 6=i q

k
ℓ
(ξ)

= 0

and thus xi
ℓ(ξ) = wi

ℓ(ξ). These strategies are budget feasible for player i

since

biℓ(ξ) =

∑

k 6=i b
k
ℓ (ξ)

∑

k 6=i q
k
ℓ (ξ)

· ε



CHAPTER 4. FINITE HORIZON 147

=

∑N

i=1 b
i
ℓ(ξ)

∑N

i=1 q
i
ℓ(ξ)

· ε

= pℓ(ξ)q
i
ℓ(ξ).

A crucial assumption for the arguments from before is that the markets

are open.

For closed markets with
∑

k 6=i b
k
ℓ (ξ) = 0 or/and

∑

k 6=i q
k
ℓ (ξ) = 0 we dis-

tinguish different cases.

•
∑

k 6=i b
k
ℓ (ξ) = 0 and

∑

k 6=i q
k
ℓ (ξ) = 0

In this case by bidding and offering ε on the goods markets and 0

on the asset markets player i opens the goods markets and the price

is equal to 1. As the other individuals do not bid or offer in these

markets, player i is only trading with himself and keeps his initial

endowment.

•
∑

k 6=i b
k
ℓ (ξ) > 0 and

∑

k 6=i q
k
ℓ (ξ) = 0 or

∑

k 6=i b
k
ℓ (ξ) = 0 and

∑

k 6=i q
k
ℓ (ξ) >

0

In this case the markets are closed, but in each of the two above cases

there players that want to trade on one side of the market. If player

i places strictly positive offers and bids, then he induces a positive

price and opens the markets. If he is alone on the bidding side, then

bidding a very small amount will necessarily lead to a strictly positive

trade with the other players independently from the amount he might

offer. In this case he has strictly more of that good than his initial

endowment. The case is different if he is alone on the offer side, then

offering a very small amount will necessarily lead to a strictly positive

trade with the other players independently from the amount he might

to bid.

The case
∑

k 6=i b
k
ℓ (ξ) = 0 or/and

∑

k 6=i q
k
ℓ (ξ) = 0, meaning that just

player i places a bid or an offer, does not seem to be reasonable. If we

demand from player i to place a bid and an offer of at least ε, the other

players should be obliged to bid and offer ε at least as well.

Hence, even if we force all the players to play almost full strategies, by



CHAPTER 4. FINITE HORIZON 148

deviation every player can ensure himself always a utility of ui(wi) which

contradicts the assumption that (x̄′i)i∈N is a Nash equilibrium allocation of

the T -period strategic market game.

This completes the proof.
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4.5.4 Proof of Theorem 4.1

Proof. To show Theorem 4.1 for our model, we use the idea of Giraud and

Weyers (2004).

Note that if the players play the following actions

βi
j(ξ) = γi

j(ξ) = 0

on the asset markets at node ξ ∈ D, the collateral requirement is 0.

The existence of a generic choice of initial endowments Ω∗(N) at ev-

ery node ξ ∈ D is ensured by Lemma 4.4 assuming that the asset markets

are closed. The markets clear at a Nash equilibrium and the budget con-

straints are binding. For every interior Nash equilibrium of the strategic

market game with closed asset markets at node ξ we can find by Lemma

4.4 an interior Nash equilibrium, denoted by (xi(ξ,N))i∈N , that strictly

Pareto-dominates the initial allocations (wi(ξ))i∈N . At every node ξ ∈ D

we construct a sequence of N(T − 1) Pareto ranked Nash equilibria us-

ing Lemma 4.4. This sequence is denoted by (xn(ξ,N))N(T−1)
n=1 . Denote by

biℓ(ξ,N, n) and qiℓ(ξ,N, n) the to (xi
n(ξ,N))i∈N corresponding bids and offers

for commodity ℓ ∈ L for player i ∈ N . Define εin(ξ,N) as the utility loss of

agent i by changing from from the n-th to the (n+ 1)-th Nash equilibrium

and ε(N) is the minimal loss considering all players and all Pareto ranked

Nash equilibria.

εin(ξ,N) = ui
t

(

xi
n(ξ,N)

)

− ui
t

(

xi
n+1(ξ,N)

)

for all i, n, ξ = (t, ς)

εn(N) = min
i∈N , ξ:t≤τ

εin(ξ,N)

ε(N) = min
n

εn(N)

Assume that the utilities from feasible and affordable allocations are bounded

above by αi
t for all t and for every player i ∈ N .4

4An upper bound for the utility an individual can reach having a given amount of ag-
gregate initial endowments is the utility he obtains if we allocate all the endowments to
him.
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Define

αi = max
t≤τ

αi
t,

α(N) = max
i∈N

αi

and

T 0(N) = ⌊
α(N)

ε(N)
+ 1⌋.

We consider only T ≥ T 0(N) and α(N)
ε(N)

< R ≤ T .

Let (x̄i)i∈N be a consumption stream, that is feasible, affordable and se-

quentially strictly individually rational (with respect to initial endowments)

in the first T −T 0(N) periods. Denote its associated feasible and affordable

allocation by (x̄i, ϕ̄i, θ̄i)i∈N .

Define the strategies as follows:

• for t ≤ T −R: Predefined Play

Use Lemma 4.2 to construct almost full strategies that exactly achieve

(x̄i)i∈N in the first T −R periods.

• for t > T −R: Punishment and Reward

– If there was no deviation from the equilibrium path in the first

T −R periods, then traders play some actions on the goods mar-

kets that yield x1(ξ,N) and on the asset markets

βi
j(ξ) = γi

j(ξ) = 0 for all j ∈ J , i ∈ N .

– If there was at least one deviation from the equilibrium path in

the first T − R periods, say at time t̃, then the punishment for

everyone is to play on the goods markets

biℓ(ξ) = qiℓ(ξ) =
δ

N
for all ℓ ∈ L, i ∈ N .5

5Note that it is possible to choose such a δ > 0 (small enough) since the initial endow-
ments are assumed to be strictly positive.
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and on the asset markets

βi
j(ξ) = γi

j(ξ) = 0 for all j ∈ J , i ∈ N

until period T − R included. Afterwards, if for t > T − R n

deviations have been observed, then the further punishment is to

play xn+1(ξ,N) on the goods markets and to keep the strategy

on the asset markets. Hence, every player occurs at least a utility

loss of εn(N) in each subsequent period of the reward phase after

the n-th deviation was detected.

We now show that this is an approximate subgame perfect Nash equilibrium,

if T is big enough. For the ε-perfection observe that

|ui(xi(σ))− ui(x̄i)| ≤ (1− λi)
T
∑

t=T−R+1

(λi)t−1|E[ui
t(x

i
t)]− E[ui

t(x̄
i
t)]|

≤ 2αi(1− λi)
T
∑

t=T−R+1

(λi)t−1

= 2αi(λi)T−R(1− (λi)R)

If we choose λi appropriately (sufficiently close to 1) this inequality can be

made less than ε∗ > 0. Thus, there exists λ1(R,N) such that for mini∈N λi ≥

λ1(R,N) we have for every i ∈ N

|ui(xi(σ))− ui(x̄i)| < ε∗.

We further show that nobody has an interest to deviate from the prede-

fined strategies.

Suppose there is a player who deviates in the last R time periods.

• Can a player profitable deviate on the asset markets?

Each date the bids and offers on the financial markets are equal to

0. Thus, a profitable deviation that includes trading assets with other

individuals on the asset markets in the last R time periods is not

possible. The only possible deviation on the asset markets a player
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can make is to trade with “himself”. As a consequence of this action

he has to put up the collateral needed which will be stored for the

next period. Since we assumed that all assets were issued in the first

T −R− 1 periods and since assets can only be traded in their issuing

period, these strategies are not feasible according to condition (F3ξ).

• What is the gain from a deviation on the goods markets?

According to the prescribed strategies, in the last R time periods they

play a Nash equilibrium on the goods markets. Thus no player can

profitably deviate.

Suppose player i wants to deviate before the last R periods. Assume he

deviates in period t̄ ≤ T −R at node ξ. Maximally he can reach the upper

bound of his utility given by αi in the period of his deviation. Moreover, the

maximal amount of each good he can get in each period afterwards is δ. If

he deviates then according to the definition of the strategies above he keeps

his initial endowment in every period after the deviation until including

T − R and obtains additionally maximally δ (from further deviations) for

the periods in between his deviation and the period T − R. Therefore his

maximal gain, considering that a deviation after period T − R cannot be

profitable is

di = (1−λi)

(

(λi)t̄−1(αi − ui(x̄i
t(ξ)) +

T−R
∑

t=t̄+1

(λi)t−1
(

E[ui
t(w

i
t + δ1)]− E[ui

t(x̄
i
t)]
)

)

.

We can choose δ small enough such that

di ≤ (1− λi)(λi)t̄−1αi.

Moreover, his minimal loss, assuming that his is the n-th deviation, is given

by

(1− λi)
T
∑

t=T−R+1

(λi)t−1εn(N) ≥ (1− λi)R(λi)T ε(N).

Thus if

di ≤ (1− λi)(λi)t̄−1αi < (1− λi)R(λi)T ε(N),
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player i has no incentive to deviate. It remains to show that

(λi)t̄−1αi ≤ R(λi)T ε(N).

For this note that

(λi)t̄−1αi < αi ≤ α(N)

and

α(N) < Rε(N)(λi)T

⇔
α(N)

Rε(N)
< (λi)T

Per assumption we have chosen R such that R > α(N)
ε(N)

and hence the left

hand side is smaller than one,

1

R

α(N)

ε(N)
<

1

R
R = 1.

Therefore, for any T (big enough) we can find R and λ2(R,N) < 1 such

that

(λ2(R,N))T >
α(N)

ε(N)
.

If mini∈N λi ≥ λ2(R,N), then no player has an interest to deviate in the

first T −R periods.

Hence define λ(R,N) := max {λ1(R,N), λ2(R,N)} and choose mini∈N λi ≥

λ(R,N). The proposed strategy profile is an almost full subgame perfect

Nash equilibrium that ε∗-approximates (x̄i)i∈N .
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5.1 Introduction

The events leading to the financial crisis 2007-2008 have highlighted the

importance of belief heterogeneity and how financial markets also create

opportunities for agents with different beliefs to leverage up and speculate.

Several investment and commercial banks invested heavily in mortgage-

backed securities, which subsequently suffered large declines in value. At

the same time, some hedge funds profited from the securities by short-selling

them. One reason for why there has been relatively little attention, in eco-

nomic theory, paid to heterogeneity of beliefs and how these interact with

financial markets is the market selection hypothesis. The hypothesis, orig-

inally formulated by Friedman (1953), claims that in the long run, there

should be limited differences in beliefs because agents with incorrect beliefs

will be taken advantage of, and eventually be driven out of the markets by

those with the correct belief. Therefore, agents with incorrect beliefs will

have no influence on the economic activity in the long run. This hypothe-

sis has been formalized and extended in recent work by Blume and Easley

(2006) and Sandroni (2000). However these authors assume that financial

markets are complete, an assumption which plays a central role in allowing

agents to pledge all their wealth. By contrast, Cao (2010) presents a dy-

namic general equilibrium framework in which agents differ in their beliefs

but markets are endogenously incomplete because of collateral constraints.

Collateral constraints limit the extent to which agents can pledge their fu-

ture wealth and ensure that agents with incorrect beliefs never lose so much

as to be driven out of the market. Consequently all agents, regardless of

their beliefs, survive in the long run and continue to trade on the basis

of those heterogeneous beliefs. This leads to additional leverage and asset

price volatility (relative to a model with homogeneous beliefs or relative to

the complete markets economy).

In this paper, we explore a middle ground between these two strands

of literature, where traders have heterogeneous beliefs, cannot be simply

driven out of the market (thanks to the collateral constraints, as in Cao

2010) but strategically learn the true state of the world. The uncertain

state of the world is a transition matrix that gives the probabilities with
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which a succeeding node in a tree-like time structure is reached. The sets

of players and actions are common knowledge, but the distribution of ini-

tial endowments and one-period utility levels conditional on action profiles

is chosen randomly in each period, and the players do not observe nature’s

choice. Neither do they observe any player’s action —hence, markets are as-

sumed to allow anonymous trading. The probability distribution according

to which uncertainty realizes in each period is a (stationary) Markov chain.

This Markov distribution itself is chosen at random once and for all at the

start of play, and, again, the investors do not observe nature’s choice. The

players have a common prior1 over the finite set of possible Markov chains

(states of the world), and they have various ways of learning the state of

the world over time. First, each player observes her own initial endowment

and realized payoff in each period —both are realizations of random vari-

ables whose distribution depends on the state. Furthermore, each player

observes the return of each financial asset she owns in her portfolio (either

as a creditor or a debtor) unless this asset defaults on its promise. In the

latter case, the collateral is forfeit but the precise delivery of the return

remains unknown.

For investors to be able to learn the state, we flesh-out the general equi-

librium skeleton with a strategic market game.2 More precisely, we study a

strategic market game with infinite horizon, finitely many long-lived traders,

and short-lived real assets. Collateral requirements for financial assets are

introduced as in Geanakoplos and Zame (2007) and the subsequent liter-

ature. Investors’ actions are not observable, so that we stick to the basic

anonymity property of large markets. Nevertheless, players can manipu-

late their opponents’ information by influencing publicly announced prices.

Despite the risk of information manipulation, however, those traders with

incorrect beliefs can realize their mistake along the play of the game, and

strategically learn the state of the world. We therefore focus on learning

equilibria, at the end of which no player has incorrect beliefs — not be-

cause they were eliminated from the market (although default is possible

at equilibrium) but because they have taken time to cleverly update their

1See the footnote on page 177 for an argument of this assumption.
2See Giraud (2003) for an introduction.
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prior belief. Our main result is a partial Folk theorem à la Wiseman (2011):

For any function that maps each state of the world to a sequence of feasible

and sequentially strictly individually rational allocations (precise definitions

are given in section 5.3), and for any degree of precision, there is a perfect

Bayesian equilibrium in which patient players learn the realized state with

this degree of precision and achieve a payoff close to the one specified for

each state. Hence, within this class of equilibria, no player with incorrect

belief stays on the market in the long-run, provided she is patient enough

—thus confirming Friedman’s (1953) hypothesis but with a completely dif-

ferent argument.

The double role of financial assets

Our model extends the finite horizon case without default considered in

Giraud and Weyers (2004) and the finite horizon with default examined in

Brangewitz (2011). In both papers, uncertainty is only on future endow-

ments while, here, we allow for uncertainty on endowments, utilities and

asset returns.3 Moreover, the authors restricted themselves to a very spe-

cific game-theoretic set-up: one with partial monitoring (players condition

their actions on the public history of prices but not on traded quantities, and

on the private history of their own individual trades) and ex ante evaluation

of each player’s payoff — that is, when contemplating a counterfactual, a

player considers only the ex ante impact of her deviation with respect to the

expectation operator computed thanks to some prior belief over the whole

event-tree. Everything being computed ex ante, there was no learning pro-

cess during the play of the game, and the authors proved the analogue of a

perfect Folk theorem.

By contrast, we consider perfect Bayesian equilibria where players can

update their belief along the play of the game. This deeply changes the

strategic challenges at stake: Players with incorrect beliefs can now learn

the state of the world (hence better forecast their future payoffs) through

coordinated experimentation, by trying different action profiles, observing

the resulting payoff realizations, and updating their beliefs about the region

3See Thomas (1995) for an example of general equilibrium model where uncertainty
affects consumer’s future utilities.
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of the event-tree where they are currently located. Financial assets, now,

play a double role: On the one hand, they serve as means for reallocating

one’s resources in face of risky events, on the other they can have a function

analogous to that of “arms” in the multiarmed bandit problem (Rothschild,

1974). Since a buyer and a seller of an asset do not know exactly at which

node of the tree they are, for each asset, there is a separate unknown proba-

bility distribution over returns. Each player’s prior beliefs about the return

distribution induce subjective payoff expectations for each asset, but the

asset with the highest subjective expected payoff may not be the best one

to choose: A trader may prefer to sacrifice expected return in the short run

to gain some information that will help her in the long run. Since there are

several traders meeting on the same market, however, the situation becomes

more complicated: Experimentation has to be somehow coordinated to be

effective, since each trader must deliver information through a specified ac-

tion and strategic considerations may interfere with learning.

As an example, suppose that two traders must decide repeatedly whether

or not to exchange some given financial asset. In each period, the buyer

incurs a cost π (the security’s price) but, the next period, the seller incurs

the risk of having to pay a return a > 0 (“bad state”) to the buyer, or

to receive b > 0 from her (“good state” from the seller’s viewpoint). It is

worthwhile for the players to trade only if the discounted mean value of

the payoff is greater than π for the buyer and the mean value of losses is

smaller than π for the seller. But the only way to find out the mean value is

to experiment by effectively trading in order to learn across time what the

next return of this very asset will be.

The piece of good news provided here is that, as long as it is compatible

with our key Informativeness Assumption (IA, to be described in section 5.5

below), market incompleteness does not prevent investors from learning the

state. We show, indeed, that, despite price manipulation, infinite-horizon

incomplete markets may be fully revealing. This is in the line with the

static general equilibrium literature with real assets, where generically, every

equilibrium is fully revealing (Radner 1979, Duffie and Shafer 1985). Beyond

the difference between our imperfectly competitive approach and the perfect

competition hypothesis, the interpretation of our result, however, strongly
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differs from that of the literature just mentioned. First, we focus only on

fully-revealing equilibria where learning enables players to guess the state in

the long-run with an arbitrary accuracy: There might exist plenty other —

partially revealing or even non-informative— equilibria. Second, we restrict

ourselves to real assets for the sake of clarity. A careful reading of our proof,

however, shows that our result goes through in the nominal asset case, as

well.4 Therefore, from the point of view adopted in this paper, there is no

essential difference between real and nominal assets. This contrasts with the

negative results obtained in the perfectly competitive general equilibrium

literature with incomplete markets of nominal assets (see Rahi 1995 and

the references therein). Third, our (partial) Folk theorem implies a huge

indeterminacy of the set of strategic equilibria which also contrasts with the

generic determinacy obtained by Duffie and Shafer (1985) in the perfectly

competitive set-up with incomplete markets of real assets. Fourth, this

indeterminacy delivers an ambivalent message in terms of welfare: Many

learning equilibria, although they are fully-revealing, are Pareto-dominated

by competitive (Radner) equilibria, while many others Pareto-dominate the

perfectly competitive benchmark with incomplete markets.5

A last point is worth emphasizing before turning to the strategic aspects

of our work. Perfect competition with infinite horizon and incomplete mar-

kets faces an important stumbling block for existence, due to the possibility

of Ponzi schemes at equilibrium. As a consequence, the literature devoted

to this setting usually relies on some transversal budget constraint in or-

der to forbid such Ponzi schemes (see, e.g., Florenzano and Gourdel 1996).

On the other hand, when collateral requirements are added, Araujo et al.

(2002) show that no Ponzi scheme arises at equilibrium. In our imperfectly

competitive set-up, there is no need for such any extra transversal budget

4The proof is actually even simpler. This is why we have treated the real asset case.
5As a side-consideration, our approach may shed some light on the current debate about
dark pools (see Zhu 2011). Dark pools are trading systems that do not display their
orders to the public markets. A recent literature investigates whether dark pools harm
price discovery. In light of our anonymous trading assumption, our result can be inter-
preted as showing that, as long as only market orders are allowed, dark pools do not
prevent intermediaries from correctly learning the state of the world. Further investi-
gation in this direction would require to refine the market micro-structure and to allow
players to send limit-price (not just market) orders to the clearing house.
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constraint, even when markets are complete. Due to the finite number of in-

vestors, indeed, a Ponzi scheme would require at least one player to borrow

money from at least one other player during an infinite number of periods.

The lender would clearly better do not to lend her money so many times

—hence, participating to a Ponzi scheme cannot be part of everyone’s best

reply (see, e.g., O’Connell and Zeldes 1988). This is true with and without

collateral constraints.

Asymmetric information and markets

The kind of uncertainty under scrutiny in this paper affects each investor’s

initial endowments, her utility function, and the returns of financial assets.

This setting captures many aspects extensively studied in the literature in

terms of adverse selection. One key assumption in our approach (the In-

formativeness Assumption, (IA)) can be stated as follows: Observing the

realization of one’s (random) initial endowments, one-period (random) util-

ity levels and (strategically determined) final allocations together with all

the assets’ returns suffices for every single trader to learn the true state of

the world in the long-run with probability arbitrarily close to 1. Needless to

say, this assumption is far from being sufficient to guarantee a priori that

every player will always learn the true state with arbitrary accuracy: for

that purpose, she needs to be able to keep every asset in her portfolio in

every period; she may be diverted by the strategic signaling of her oppo-

nents; the learning process must remain compatible with the equilibrium

conditions, hence should not involve too deep losses. On the other hand,

(IA) is verified in a number of important instances:

Arrow securities

(IA) is clearly satisfied when the asset structure is that of Arrow securi-

ties, where each security pays off 1 in one single state. In this case, observing

assets’ returns suffices to identify the Markov chains’ realization after each

round of trade (even without taking account of prices or of one’s private

knowledge gained by observing endowments and stage-payoffs). After a suf-

ficiently long time, if every trader succeeds in observing every asset’s return,

the true state of the world will become common knowledge. Notice, how-
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ever, that, even in this polar case, full revelation at a strategic equilibrium

is not straightforward, and there is something to be proven: Indeed, our

argument requires that every trader be able to trade every Arrow security

in every period. If one of them fails to observe all the assets’ returns in

certain periods, then she might not draw the right conclusion about which

Markov chain is driving uncertainty, so that players cannot coordinate on

any state-dependent equilibrium path. On the other hand, if, say, only the

riskless asset (delivering the same return in every state) is marketed, then

observing assets’ returns does not provide any information.

Akerlof ’s model

Akerlof’s (1970) model of used cars is a static one. Its extension to our

intertemporal framework can easily be interpreted as verifying (IA). Sup-

pose, indeed, that the quality index, s, of a car is an integer belonging to

[1, 10]. s is distributed according to the Markov chain ω. As quality of a

car is undistinguishable beforehand by the buyer (due to the asymmetry of

information), incentives exist for the seller to pass off low-quality goods as

higher-quality ones. The buyer, however, takes this incentive into consider-

ation, and takes the quality of the goods to be uncertain. Only the average

quality of the goods will be considered, which, in a one-shot-set-up, will

have the side effect that goods that are above average in terms of quality

will be driven out of the market. In our multi-period setting, however, this

need not occur: Each time t, the seller receives a new (random) endow-

ment of used cars. Each period, the buyers are informed ex post (through

their stage-payoff) about the actual quality, s, of the car they have bought.

Across time, they may learn the transition matrix ω, hence anticipate the

distribution of s in the future. Our main result then says that the observa-

tion of prices and private knowledge enables actors on the market for used

cars to enforce a large set of effective trades. This sharply contrasts with

Akerlof’s conclusion that the market for used cars should collapse.

Moral hazard.

Since investors take privately observed actions affecting their initial en-

dowments and portfolios, our paper is also linked to the literature on moral

hazard. The differences in information and the signaling aspects of the
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present work are related to, for example, job market signaling model of

Spence (1973) or the competitive insurance market considered in Rothschild

and Stiglitz (1976). However, we do not consider a classical principal agent

model. Every individual may act as a seller or a buyer (or both simulta-

neously), and this on commodity as well as asset markets. Therefore, we

cannot impose, for example, that a seller is always less informed than a

buyer or vice versa. Finally, we consider only finitely many players. Our

set-up therefore sharply differs from the perfectly competitive case studied

in the seminal papers by Prescott and Townsend (1984a,b) or, more re-

cently, by Acemoglu and Simsek (2010). In particular, we get a wide range

of equilibria including allocation streams that are Pareto-optimal and oth-

ers that are dominated. Thus, our result stands at distance both from the

generic inefficiency obtained by Greenwald and Stiglitz (1984) or Arnott

and Stiglitz (1986, 1990, 1991), and from the more positive results obtained

by Acemoglu and Simsek (2010).

The paper is organized as follows: First we describe the infinite horizon

economy and its associated strategic market game. Section 5.3 focuses on

a particularly important subclass of allocations that plays a key role in the

sequel. The next section proves a first (partial) Folk theorem under the

simplifying assumption of complete information. Section 5.5 extends the

later result to the incomplete information case. The last section concludes.
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5.2 The Markov Strategic Market Game with

Collateral

5.2.1 The Markov Economy

The environment

Uncertainty about future states is modeled in a Markov set up, following

Cao (2010). We assume that in each period, t, the state of nature in the

next period is chosen using a Markov transition matrix with a finite set of

possible states of nature S = {1, ..., S}. Therefore, the state tomorrow only

depends on the state today and not the whole history of states that were

realized in the past. Nevertheless as in Magill and Quinzii (1994) and the

subsequent literature, time, uncertainty and the revelation of information

can be described by an event tree, i.e., a directed graph (D,A) consisting

of a set D of vertices and a set A ⊂ D × D of (oriented) arcs.6 In our

Markov set-up, we assume that each node ξ has the same outdegree S > 1,

and the choice of nodes adjacent from ξ is governed by a Markov chain.

A node ξ can be interpreted as a date-event pair (t, st−1, s), where t ≥ 1

is the minimal length of a walk between ξ0 and ξ, st−1 ∈
t−1
∏

t′=1

S is the

sequence of realizations of the state of nature up to t − 1 and s ∈ S is

the last state in t. Let τ(ξ) be the time at which node ξ is reached, i.e.

τ : D → N such that ξ = (t, st−1, s) 7→ t. Define a partial order ≥ on D by

ξ = (t, st−1, s) ≥ ξ′ = (t′, st′−1, s
′) if, and only if, there is a walk from ξ′ to

ξ. Of course, if ξ 6= ξ′ and ξ ≥ ξ′, then ξ > ξ′. The unique predecessor of ξ

is denoted by ξ− = (t − 1, st−2, s
′).7 The set of immediate successors of ξ,

denoted by ξ+, is the set of nodes that are adjacent from ξ. For any node

6The vertex (or node) ξ can be thought of as a particular state of nature and time. If
(ξ, η) is an arc, η is a node that directly follows ξ. Formally, ξ is adjacent to η and η

is adjacent from ξ. The number of nodes adjacent to a given vertex ξ is the indegree of
ξ, i.e. the number of immediate (or direct) predecessors; the number of nodes adjacent
from ξ, its outdegree, i.e. the number of direct followers. A walk from ξ1 to ξk is a
sequence (ξ1, ξ2, ..., ξk) in D such that ξi is adjacent to ξi+1 for 1 ≤ i ≤ k − 1. There
is a unique root ξ0 (whose indegree is zero). Each node, except the root, has indegree
equal to 1, and there is no cycle in D.

7We define s−1 = ∅.
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ξ ∈ D, the set of all nodes with ξ′ ≥ (>)ξ is denoted by D(ξ) (D(ξ)+) and

is itself a tree with root ξ.

A state of the world corresponds to a transition matrix, ω, that is chosen

once and for all at time 0, before the start of the play. We assume that there

are finitely many states of the world, ω ∈ Ω.

Consumption goods and financial assets

We consider a pure exchange economy E with a finite set, N = {1, ..., N},

of individuals, L consumption goods, usually indexed by ℓ, and J short-

term real assets, indexed by j. The possibility of default is introduced

by a collateral requirement as in Araujo et al. (2002). A financial asset

j ∈ J := {1, ..., J} is characterized by a tuple (ξj, Aj , Cj) consisting of three

elements: an issuing node, promised deliveries and collateral requirements.

The issuing node (a node in the tree D) is denoted by ξj. The promised

amount of goods is described by a function Aj : D → RL
+ such that Aj(ξ) = 0

for all ξ ∈ D \ (ξj)
+
. For ξ′ ∈ (ξj)

+
, the promises Aj(ξ

′) are the amounts

of goods that a seller of asset j promises to deliver to a buyer of asset j

in the next period following the issuing node ξj. The delivery, pξ · Aj(ξ),

is assumed to be made in fiat money using spot prices, pξ ∈ RL
+. We only

consider short-term assets. Therefore, for other nodes before the issuing

node and at least two periods after the asset was issued, we assume that the

promised amounts are zero. The vector Cj ∈ RL
+ is the amount of collateral

needed at the issuing node, ξj, in order to back up the promised delivery

Aj. Only consumption goods can serve as collateral.8 Commodities are

assumed to be perishable. Thus, they have to be consumed at the very

date they enter the economy (as initial endowment), unless they are stored

as collateral. Individuals are not allowed to consume a collateral, which is

stored in a warehouse for one period. For simplicity, after having been stored

one period, a collateral must be consumed, otherwise it gets lost.9 For our

Markov environment, we assume that at each node ξ ∈ D the “same” finite

8i.e., we do not introduce securities that are backed by other securities: Pyramiding is
not allowed.

9We could allow for a longer life expectancy of a collateral, of length, say, K, but at the
cost of cumbersome notations. We thus take K = 1.
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number of financial assets is issued. As the time horizon is infinite there

will be infinitely many assets in total.

The players

Every player i ∈ N is characterized by a twice continuously differentiable,

strictly increasing and concave utility function ui
ξ : R

L
+ → R and a strictly

positive initial endowment in consumption goods wi
ξ ∈ RL

++ at every node

ξ ∈ D. We assume that
(

ui
ξ(·)
)

ξ
are uniformly bounded below for all indi-

viduals i. Therefore, without loss of generality suppose ui
ξ(0) = 0. More-

over, we assume that individual endowments are uniformly bounded above

by some w, across individuals and periods. Initial holdings of assets are

0. Player i maximizes her expected, discounted utility from consumption.

This expectation depends on her subjective beliefs on the state of the world

ω ∈ Ω, which may themselves vary across time, depending upon the signals

sent by other players during the play of the game. We shall therefore define

player’s i objective function after having recalled the basic structure of the

strategic market game.

We also denote by Eξ = 〈wi
ξ, u

i
ξ(·), (ξ

j, Aj , Cj)j | ξj=ξ〉 the finite-dimensional

one-shot economy at node ξ. We denote the infinite horizon economy start-

ing from a certain node ξ, that is not necessarily the root ξ0, for short the

economy after ξ, by
⋃

ξ′>ξ Eξ′ .

5.2.2 The Strategic Market Game with Collateral

At each period, players take part to a strategic market game à la Shapley and

Shubik (1977): Each individual places for every consumption good ℓ ∈ L

at every node ξ ∈ D a bid biξ,ℓ and an offer qiξ,ℓ. The bid biξ,ℓ signals how

much (in terms of fiat money) player i is willing to pay for the purchase of

good ℓ and the offer qiξ,ℓ (in terms of physical commodities) is the amount

she wants to sell. The price of good ℓ is then computed as the ratio of the

total bid to the total offer, that is
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pξ,ℓ =







∑N
i=1 b

i
ξ,ℓ

∑N
i=1 q

i
ξ,ℓ

if
∑N

i=1 q
i
ξ,ℓ > 0

0 otherwise

A market without trade is said to be closed.10

Similarly, at every node ξ ∈ D each player places a bid βi
ξ,j stipulating

the amount of money she is ready to spend in buying asset j and offers for

sale γi
ξ,j units of this very asset. The asset’s price is given by:

πξ,j =







∑N
i=1 β

i
ξ,j

∑N
i=1 γ

i
ξ,j

if
∑N

i=1 γ
i
j(ξ) > 0

0 otherwise

When the promises are settled, a seller of the financial asset j ∈ J

compares the value of the promise with the value of the collateral and pays

back the minimal value:

Dξ′,j = min {pξ′ · Aj(ξ
′), pξ′ · Cj} (D)

at node ξ′ ∈ (ξj)+. Hence, whether default appears or not is not the outcome

of a strategic decision but depends upon the commodity price pξ′ , which is

strategically determined by bids and offers posted at node ξ′ ∈ (ξj)+.

Feasible bids and offers

Some physical and budgetary restrictions are put on the bids and offers

individuals can choose. At every node ξ ∈ D and for every financial asset,

player i needs to own the required amount of collateral, which depends on

the quantity of asset offered for sales and not on the net trades.11 Assuming

player i offers to sell γi
ξ,j units of asset j at node ξ, then she needs to store

10Defining the price as zero when there are no offers on the market we follow here for
example Amir et al. (1990, p.128). Similar assumptions can be found in Postlewaite
and Schmeidler (1978, p.128), Peck et al. (1992, p.275) or Giraud and Weyers (2004,
p.474).

11As discussed in Dubey and Geanakoplos (2003), netting before imposing the collateral
requirement would suppress any constraint on the size of short sales. This would make
the proof of our partial Folk theorem only easier.
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γi
ξ,jCj ∈ RL

+ as collateral.12

Feasible bids and offers must satisfy the following two constraints for all

commodities ℓ:

J
∑

j=1

γi
ξ,jCjℓ ≤ wi

ξ,ℓ (F1ξ)

and

qiξ,ℓ ≤
J
∑

j=1

γi
ξ−,jCjℓ +∆(F1ξ), (F2ξ)

where ∆(F1ξ) stands for the difference between the right-hand side and

the left-hand side of (F1ξ). Inequality (F1ξ) says that the collateral that

can be stored by i at node ξ must be taken out of initial endowments. In

particular, it cannot consist of commodities that are already inherited from

the past as collaterals. This is a way to capture our assumption that every

collateral lives at most one period. Either it is consumed at the period it

enters into the economy (as initial endowment) or it is stored and consumed

one period later. Notice that, in the second period of a collateral’s life, it

may be traded by its owner, and consumed by another player. Condition

(F2ξ) says that the offered amount of goods plus the amount of goods that

must be stored as a collateral cannot exceed the initial endowment of player

i at node ξ ∈ D plus the collateral that was put aside in the previous period.

Of course, we impose:

qiξ,ℓ, b
i
ξ,ℓ, β

i
ξ,j, γ

i
ξ,j ≥ 0 (F3ξ)

for all ℓ ∈ L, j ∈ J .

12Later, on page 169 when defining the final allocation in consumption goods, the collat-
eral requirement is taken using the final asset sales, denoted by ϕi

ξ,j and not directly

on the offers γi
ξ,j .
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The budget constraint

Player i also faces the following budget constraint on fiat money when plac-

ing bids and offers:

L
∑

ℓ=1

biζ,ℓ +
J
∑

j=1

βi
ζ,j

≤
L
∑

ℓ=1

pζ,ℓq
i
ζ,ℓ +

J
∑

j=1

πζ,jγ
i
ζ,j +

J
∑

j=1

(

θiζ−,j − ϕi
ζ−,j

)

Dζ,j (∗iξ1)

for all ζ ≤ ξ where θiζ−,j denotes the final asset purchases and ϕi
ζ−,j the asset

sales at node ζ− (as it will be defined below). Thus, by condition (∗iξ1) the

total value of bids cannot exceed the amount of money player i can get given

her sales and given the dividends received from her portfolio, θiζ−,j − ϕi
ζ−,j.

As soon as (∗iξ1) is violated, say at node ξ, individual i is removed from

the game for all subsequent nodes D+(ξ), and all her goods are confiscated

forever.

We shall also need the following condition, for every i:

Either
∑

k 6=i

γk
ξ,j 6= 0 or

∑

k 6=i

βk
ξ,j 6= 0, (∗iξ2)

which says that there is at least one other individual on the bidding or on

the offering side of the financial markets to trade with i.

Final allocations

After trading took place, player i’s holdings of asset j ∈ J are given by her

sales

ϕi
ξ,j =

{

γi
ξ,j if (∗iξ1) and (∗iξ2) holds

0 otherwise

and her purchases

θiξ,j =

{

βi
ξ,j

πξ,j
if (∗iξ1) and (∗iξ2) hold and πξ,j > 0

0 otherwise.
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Note that if θiξ,j − ϕi
ξ,j < 0 then player i sold more of the financial asset

j ∈ J than she bought. Analogously for θiξ,j − ϕi
ξ,j > 0 she is a net buyer.

Moreover, player i’s allocation of good ℓ ∈ L available for consumption

at the end of the current period at node ξ, is

xi
ξ,ℓ =















wi
ξ,ℓ +

∑J

j=1 ϕ
i
ξ−,jCjℓ − qiξ,ℓ +

bi
ξ,ℓ

pξ,ℓ
−
∑J

j=1 ϕ
i
ξ,jCjℓ if (∗iξ1) holds and pξ,ℓ > 0

wi
ξ,ℓ +

∑J

j=1 ϕ
i
ξ−,jCjℓ − qiξ,ℓ −

∑J

j=1 ϕ
i
ξ,jCjℓ if (∗iξ1) holds and pξ,ℓ = 0

0 otherwise.

Remark. To the best of our knowledge, condition (∗iξ2) is new in the strate-

gic market game literature. It seems to us natural once collateral require-

ments are introduced. Suppose, indeed, that individual i is the only one who

wants to trade on the financial markets, i.e.,
∑

k 6=i γ
k
ξ,j =

∑

k 6=i β
k
ξ,j = 0. Ab-

sent condition (∗iξ2), this individual could open the markets by bidding and

offering strictly positive amounts of assets. By doing so, every player could

store some collateral until next period just by trading “with herself” today.

If for several periods such a strategy is played, while the other players play

zero strategies, this would conflict with our assumption that commodities

are perishable.

5.3 Feasibility and interim individual ratio-

nality

Allowable strategies

The action set of player i at node ξ consists in feasible bids and offers:

Ai
ξ =

{

(

qiξ,ℓ, b
i
ξ,ℓ

)

ℓ∈L
,
(

γi
ξ,j, β

i
ξ,j

)

j∈J
∈ R2L

+ × R2J
+

∣

∣(F1ξ), (F2ξ) and (F3ξ) are satisfied
}

.

Notice that Ai
ξ depends upon ξ but not upon ω. Let Aξ :=

∏N

i=1 A
i
ξ. Note

that the definition of an action set includes actions that possibly violate

the budget constraint (∗iξ1) or (∗
i
ξ2).

13 The stage-payoff of player i at node

13An alternative would consist in incorporating these constraints into the very definition
of a player’s strategy set but this would lead to a generalized game as introduced by
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ξ = (t, st−1, s) is given by the utility, ui
ξ(x

i
ξ), she obtains from consumption.

Prices are publicly observed by every player. The information transmit-

ted through prices is therefore common knowledge. However, at each node,

every player also observes her own initial endowment, her final stage-payoff,

her final allocation as well as the returns of the assets present in her portfo-

lio. These observations constitute the private history of player i. A strategy

of player i consists in choosing an action at every node ξ ∈ D as a function

of her own private history. Let H i
ξ denote the set of possible private histories

for individual i at node ξ, given by

H i
ξ :=

{(

pξ′ , πξ′ , ϕ
i
ξ′ , θ

i
ξ′ , x

i
ξ′ , u

i
ξ′(x

i
ξ′), w

i
ξ′ , w

i
ξ

)

∣

∣∀ξ′ < ξ
}

.

The history at the root ξ0 is given by H i
ξ0
=
{

wi
ξ0

}

. Formally, a strategy of

player i is a map

σi :
⋃

ξ∈D

H i
ξ →

(

RL
+

)2
×
(

RJ
+

)2

such that σi(h) ∈ Ai
ξ for all ξ ∈ D and for all h ∈ H i

ξ. Actions are not

observed along the play of the game, which contrasts with the setting con-

sidered, e.g., by Wiseman (2011).

Remark. As is well-known, strategic market games exhibit no-trade as a

one-shot Nash equilibrium.14 As we want to prove the analogue of a Folk

theorem, we shall therefore need some threats that enforce the equilibrium

path. Allowing for punishment phases that consist in playing the autar-

kic Nash one-shot equilibrium ad libitum would make the task rather easy.

In order to prove that our result does not depend upon this kind of trick

(hence is robust to whatever refinement that would allow to get rid of the

autarkic one-shot equilibrium15), we shall focus on out-of-equilibrium strate-

gies where players effectively trade. A second reason for not relying on the

Debreu (1952) (see also Harker (1991) or Facchinei and Kanzow (2010)).
14See Weyers (2004) for the elimination of this autarkic equilibrium after two rounds of
elimination of dominated strategies.

15Such a refinement has been proposed, e.g. by Weyers (2004). As a consequence, Giraud
and Weyers (2004) Folk theorem with complete information was already formulated so
as not to rely on the autarkic threat.
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heavy hammer of autarkic Nash equilibria is that, as already said, in ad-

verse selection problems, the market collapse has been sometimes predicted

as being the unique rational consequence of differential information. Our

proof does not depend upon such a global market collapse, even as an out-

of-equilibrium threat, and even though default is explicitly allowed along

the equilibrium path.

Definition 5.1 (Full strategy profile). A strategy profile σ := (σi)i is

called full if, the following holds

N
∑

i=1

qiξ,ℓ > 0,
N
∑

i=1

biξ,ℓ > 0,
N
∑

i=1

γi
ξ,j > 0,

N
∑

i=1

βi
ξ,j > 0

for all ℓ ∈ L, j ∈ J , ξ ∈ D.

Private interim beliefs

At each node ξ, payoffs are determined as follows: action profile aξ ∈ Aξ is

played; it induces, say, xi
ξ as a final allocation for player i—which is observed

by i only. Then player i’s random payoff, ui
ξ(x

i
ξ), which is also observed by

player i only, is drawn according to ω. Notice that, when entering at node

ξ, player i may not know for sure that the current node is ξ. Thus, when she

takes her action, she considers the expectation of her next payoffs according

to her current private belief.

At each time period t, every player i updates her private belief in a

Bayesian way, according to her private history. We allow for arbitrary cor-

relation of payoffs in each state across players’ utilities, endowments, assets’

returns. So player i’s belief about player j’s private payoff and other higher-

order beliefs are unrestricted. Let Pi
ξ(h

i
ξ) ∈ ∆(Ω) denote player i’s private

belief at node ξ.16 Together with a strategy profile, σ, such a probability

Pi
ξ(h

i
ξ) induces a distribution Pi

ξ(h
i
ξ, σ) (or P

i
ξ(σ) in short) over the random

characteristics of the economy to be selected after ξ, i.e., over
⋃

ξ′>ξ Eξ′ .

In particular, it provides a distribution over i’s future payoffs which, by a

16Hereby, ∆(Ω) is the set of all probability distributions over the finite set of states of
the world.
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slight abuse of notations, is also denoted Pi
ξ(σ). At each node, whatever

being the past history, individuals are supposed to maximize her expected,

discounted utility using their private interim belief and a common discount

factor λ ∈ [0, 1].17 The objective function of player i is therefore of the form

U i
D(ξ)(x

i, σ, ω) := (1− λ)EP
i
ξ
(σ)

∑

ξ′=(t,st−1,s)>ξ

λt−1ui
ξ′(x

i
ξ′)

= (1− λ)
∑

ξ′=(t,st−1,s)>ξ

λt−1EP
i
ξ
(σ)

[

ui
ξ′(x

i
ξ′)
]

for each node ξ. (Given the boundedness of the utility function, the last

equality is a consequence of Fubini’s theorem.)

Feasible allocations and interim individual rationality

Without considering explicitly actions or strategies we define feasible allo-

cation as follows:

Definition 5.2 (Feasible allocation). An allocation (x̄i)i∈N in consump-

tion goods is said to be feasible, if there exists a portfolio (ϕ̄i, θ̄i)i∈N and a

price system (p̄, π̄) such that the following conditions are satisfied:

• Individual budget restriction for every player i and every node ξ ∈ D:18

∑L

ℓ=1 p̄ξ,ℓ

(

x̄i
ξ,ℓ +

∑J

j=1 ϕ̄
i
ξ,jCjℓ

)

+
∑J

j=1 π̄ξ,j

(

θ̄iξ,j − ϕ̄i
ξ,j

)

=
∑L

ℓ=1 p̄ξ,ℓ

(

wi
ξ,ℓ +

∑J

j=1 ϕ̄
i
ξ−,jCjℓ

)

+
∑J

j=1

(

θ̄iξ−,j − ϕ̄i
ξ−,j

)

Dj(ξ)

• market clearing on spot markets for every good ℓ ∈ L and every node:

∑N

i=1

(

x̄i
ξ,ℓ +

∑J

j=1 ϕ̄
i
ξ,jCjℓ

)

=
∑N

i=1

(

wi
ξ,ℓ +

∑J

j=1 ϕ̄
i
ξ−,jCjℓ

)

• market clearing on financial markets for every asset j ∈ J and every

node:
∑N

i=1 θ̄
i
ξ,j =

∑N

i=1 ϕ̄
i
ξ,j

17Allowing for idiosyncratic discount factors would only require notational changes.
18We define ϕ̄i

ξ
−

0
,j
= θ̄i

ξ
−

0
,j
= 0.
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• and feasible trade in financial assets for every good ℓ ∈ L, every node

and every player i:
∑J

j=1 ϕ̄
i
ξ,jCjℓ ≤ wi

ξ,ℓ

Clearly, for every individual i, the sequence of payoffs resulting from the

consumption of initial endowments is bounded from below by a constant,

say, ui. Define u := mini∈N ui. Since initial endowments are uniformly

bounded, the stage-game payoff, ui
ξ(·), induced by a feasible allocation is

also uniformly bounded above by some ui across all action profiles, all states

and all periods. Define u := maxi∈N ui.

In the next definition, individual rationality is understood according to

the interim private beliefs shared by players along the play of the game.

It is therefore defined given some state of the world, ω, and some strategy

profile, σ.

Definition 5.3 (Sequentially strictly individually rational alloca-

tion).

A feasible allocation (x̄i)i∈N is said to be sequentially strictly individually

rational (ssir) given ω, if

U i
D(ξ)(x

i, σ, ω) > (1− λ)EP
i
ξ
(σ)

∑

ξ′=(t,st−1,s)>ξ

λt−1ui
ξ′(w

i
ξ′).

The following Lemma says that our last two definitions generically de-

scribe a non-vacuous subset of allocations in the economy E , on which, from

now on, we shall focus.

Lemma 5.1. If the initial allocations (wi
ξ)i ≫ 0 are Pareto-inefficient in

the L-good spot economy at each node ξ ∈ D, then the economy E admits

a sequentially strictly individually rational and feasible (ssirf, for short)

allocation.

The next Lemma will prove useful for our main result. It shows that

every ssirf allocation can be enforced by means of some adequate strategy.

Such a strategy, however, need not fulfill any equilibrium requirement.
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Lemma 5.2. Let (x̄i)i∈N be a ssirf allocation. Let (ϕ̄i, θ̄i)i∈N and (p̄, π̄)

be the corresponding portfolio and price system. Then (x̄i, ϕ̄i, θ̄i)i∈N can be

implemented through the following strategy profile in the sense that, node-

wise, the utility of this strategy profile is arbitrarily close to the node-wise

utility of (x̄i)i∈N . Whatever being the past history, play

for all ξ ∈ D, i ∈ N , ℓ ∈ L and j ∈ J

qiξ,ℓ = wi
ξ,ℓ +

J
∑

j=1

ϕ̄i
ξ−,jCjℓ

biξ,ℓ = p̄ξ,ℓ

(

x̄i
ξ,ℓ +

J
∑

j=1

ϕ̄i
ξ,jCjℓ

)

γi
ξ,j =

{

ϕ̄i
ξ,j if

∑N

i=1 ϕ̄
i
ξ,j > 0

δ
N

otherwise

βi
ξ,j =

{

π̄ξ,j θ̄
i
ξ,j if

∑N

i=1 θ̄
i
ξ,j > 0

δ
N

otherwise

with δ > 0 small. Clearly, the above strategies are full.

If we target a given allocation using the full strategies as defined in

Lemma 5.2 and this allocation does not always require trade on the asset

markets, then we cannot target the allocation exactly. For the details we

refer to the proof in Appendix 5.7.2. This is due to the presence of the

collateral constraints. Nevertheless choosing δ > 0 arbitrarily small we

reach an allocation that is close to the target allocation.

5.4 Complete Information

We first state our result in the simpler case where information is complete,

i.e., the Markov chain ω is known from the beginning by every player.

Theorem 5.1. Suppose that #Ω = 1. Every allocation that is ssirf can be

approximately enforced as a subgame perfect Nash equilibrium (SPNE).
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Proof. Let (x∗i
ξ )i,ξ be a ssirf allocation for the transition matrix ω with

stage-payoffs (v∗iξ )i,ξ :=
(

ui
ξ(x

∗i
ξ )
)

i,ξ
. We denote by Eω the expectation op-

erator with respect to the beliefs that the state of the world is given by ω.

The utility for player i resulting from x∗i is then given by

U i
D(ξ0)

(x∗i, σ, ω) = (1− λ)
∑

ξ′=(t,st−1,s)>ξ0

λt−1Eω

[

ui
ξ′(x

∗i
ξ′ )
]

.

We construct a sequence of payoff vectors
(

(vi,ndev)i
)

n∈N
that result from

ssirf allocations, and such that: v
i,(n+1)dev
ξ < vi,ndevξ for every integer n ∈ N

and every node ξ — with vi,0dev = v∗i for each i. These payoffs will be the

long-run payoffs after n deviations. They are constructed as follows:

vi,ndevξ := ui
ξ

(

xi,ndev
ξ

)

with xi,ndev
ξ := ρnx

∗i
ξ + (1− ρn)w

i
ξ, ρn ∈ (0, 1).

Assume that, for every n ∈ N and ξ = (t, st−1, s) ∈ D:

0 < εn < vi,ndevξ − v
i,(n+1)dev
ξ (5.1)

Using Lemma 5.2 we construct full strategies that result approximately

in the target allocation (x∗i)i∈N . If there is no deviation from these strate-

gies, then every individual continues to play these strategies. The punish-

ment, if one individual deviates, is to play the following strategies: Every

individual bids and offers δ
N

with δ > 0 small on the goods and on the

assets markets for the next Tn periods, if the nth deviation had been ob-

served. As all individuals bid and offer the same quantities, these strategies

mimic the no trade equilibrium and everybody keeps her initial endowment.

On the asset markets however every individual sells δ
N

of every asset and

hence needs to have a collateral of δ
N
Cjℓ. As there is no trade on the goods

markets, this additional collateral needs to be established from the initial

endowments, which are strictly positive. Thus, δ needs to be small enough

such that this is can be done.

After the punishment phase dedicated to the nth deviation there is a

reward phase, if no further deviation has occurred. As soon as another

deviation occurs, a new punishment phase of length Tn+1 starts immediately.
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Suppose the nth deviation has occurred and there was no further deviation

during the punishment phase. Then in the reward phase the individuals

play some actions, as defined in Lemma 5.2, leading approximately to a

ssirf allocation with a stage payoff of vi,ndevξ . Notice that in order to settle

the asset market obligations from the punishment phase and to establish the

right asset holdings to reach vi,ndevξ two periods of transition are required to

ensure that the individual budget constraint (∗iξ1) is not violated. For the

details concerning the transition periods we refer to the proof of Theorem

5.2, page 190. Taking this punishment behavior into consideration we show

that there is no incentive to deviate.

Suppose individual i deviates at node ξ = (t′, st′−1, s) and this was the

(n+1)th deviation observed. We need to compare the gains and losses from

the deviation. Individual i can by deviating maximally reach the upper

bound of her utility given by ūi in the period of her deviation. In the

succeeding Tn+1 periods after the deviation: According to the definition of

the strategies above she stays close her initial endowment. The (n + 1)th

deviation payoff is arbitrarily close to

(1− λ)
[

λt′−1ui +

t′+Tn+1
∑

t=t′+1

λt−1Eω[u
i
ξ

(

wi
ξ

)

]

+

Tn+1+t′+2
∑

t=Tn+1+t′+1

λt−1u

+
∑

t≥Tn+1+t′+3

λt−1Eω[v
i,(n+1)dev
ξ ]

]

. (5.2)

The long-run discounted payoff after the (n + 1)th deviation consists of

once a (maybe) very high payoff from deviating, then the payoff from a

punishment phase lasting Tn+1 periods, two periods of transition with a

payoff of maximally u and finally the (n+ 1)th reward payoff.

By contrast, if the (n + 1)th deviation did not take place, i’s long-run

payoff starting at time t′ would be arbitrarily close to:

(1− λ)
[

∑

t≥t′

λt−1Eω[v
i,ndev
ξ ]

]

. (5.3)
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Therefore to show that (5.3) - (5.2) is positive it is enough to ensure that:

u− 3u+

t′+Tn+1
∑

t=t′+1

λt−t′−1Eω[v
i,ndev
ξ − ui

ξ

(

wi
ξ

)

] + εn

[

∑

t≥Tn+1+t′+3

λt−t′−1
]

> 0.

Note that since vi,ndev was assumed to be a payoff that results from a sequen-

tially strictly individually rational allocation we have Eω[v
i,ndev
ξ −ui

ξ(w
i
ξ)] > 0

for every t ∈ N, for every individual i ∈ N . Therefore define

gξ := min
i∈N

Eω[v
i,ndev
ξ − ui

ξ

(

wi
ξ

)

]

Therefore, it is sufficient to require that:

u− 3u+

t′+Tn+1
∑

t=t′+1

λt−t′−1gξ + εn
λTn+1+2

1− λ
> 0.

It is easy to see that, whatever being the distance, u − 3u, and for every

εn > 0, there exists some Tn+1 big enough so that this last inequality is

satisfied. Hence, deviating behavior is not profitable. This completes the

proof.

5.5 Incomplete Information

In this section, we turn to the general case where #Ω ≥ 1. Players observe

neither the choice of ω, nor that of ξ. They start with the same prior, P, over

Ω, but, along the play, they may (and, in general, they will) have different

interim beliefs, depending upon the private information they receive.19 Each

household has five ways of updating its beliefs about the state ω over time.

• First, at node ξ, each player privately observes her own (random) spot

endowment, wi
ξ, which is chosen by nature according to the transition

matrix ω.

19This is in accordance with the arguments provided by Heifetz (2006) showing that it
makes hardly sense, within a game-theoretic setting, to assume that players start with
distinct priors. Of course, Aumann’s theorem implies that, along a play of the game it
will not be common knowledge that traders have distinct interim beliefs.
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• Second and third, at every node, after having played her action, each

player observes public prices, pξ and πξ, together with her final alloca-

tion, xi
ξ. Prices and final allocations depend upon the players’ actions

and vary in informativeness across action profiles: they only reveal

the part of the privately hold information that players are ready to

transmit through their bids and offers.

• Fourth, a trader may also learn about the state by observing her final

stage-payoff, ui
ξ(x

i
ξ), which is selected according to ξ —given xi

ξ.

• Finally, the return of the assets she owns in her portfolio (either as a

creditor or as a debtor) also provide information about the realization

of ξ, hence, about ω.

In order to cope with this differential information set-up, we shall need

two key restrictions —Assumptions G and IA.

Assumption G. The set of L consumption goods is partitioned

into two subsets, L = La∪Lc with La∩Lc = ∅. Only commodi-

ties in Lc can be used as collateral, and assets’ promises deliver

only in commodities that belong to La.

In other words, a commodity cannot serve both as a collateral and as a

promise. We use this partition of the commodities to ensure that, during

the play of the game, a single player cannot prevent the other individuals

from learning the true state of the world, ω.

Along a play of the game, while endowments, utility payoffs and as-

set payoffs are observed privately, prices are publicly revealed. Notice that,

given actions aξ, prices are entirely determined — i.e., there is no additional

randomness on public signals, by contrast with Wiseman (2011) where pub-

lic signals are random. Of course, the distribution matrix, ω, might be

degenerate so that payoffs or returns are non-stochastic conditional on ω.

In this case, the realization of payoffs and/or returns perfectly reveals the

state of the world. On the contrary, if two distributions do have the same

support, players may never be able to learn the true state for sure by just

observing their private characteristics and the assets’ returns.
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Given the state of the world, ω, a strategy profile, σ = (σi), induces a

unique probability distribution on the space of sequences (ui
ξ(x

i
ξ(σ)), x

i
ξ(σ),

wi
ξ, Aj(ξ))i,j,ξ. Let us call this distribution, Pω,σ. This is the distribu-

tion over signals from which players try to infer ω. For any two states

ω 6= ω′, there must be at least some player i and some strategy profile

σ = (σi)i such that the distributions induced by (ω, σ) and (ω′, σ) over

(ui
ξ(x

i
ξ(σ)), x

i
ξ(σ), w

i
ξ, Aj(ξ))i,j,ξ differ on a set of positive measure. Two

states of the world that yield almost surely the same payoff, final allocation,

endowment and return distributions to every agent and whatever being the

strategy played, can be treated as a single state. Therefore, there is no loss

of generality in assuming that a complete sequence of stage-payoff profiles,

(ui
ξ(·))i,ξ, final allocations, (x

i
ξ(σ))i,ξ, endowments, (wi

ξ)i,ξ, and asset returns,

(Aj(ξ))j,ξ, jointly identify the state statistically for at least one well-chosen

strategy profile, σ. This does not mean, however, that, by observing her

own private sequence of realized individual payoffs, endowments and asset

returns, a single trader is able to learn the state of the world whatever being

the strategy played. Neither need prices suffice to identify by themselves the

state.20 The following assumption is therefore, admittedly, a restriction: it

says that, for every “reasonable” strategy profile, stage-payoffs, final alloca-

tions and asset returns plus individual endowments contain all the relevant

information about ω. Illustrations of textbook models that satisfy this as-

sumption were given in the Introduction of the paper.

Recall that, given some Markov chain ω, µω ∈ ∆(S) is an invariant

measure of ω if

µω(s) =
∑

s′

ωs′sµω(s
′) ∀s ∈ S.

Suppose that the Markov chain ω is irreducible and aperiodic.21 Then,

it admits an invariant measure if, and only if, every state of nature s ∈ S is

20When prices are interpreted as public signals, this generality contrasts with Wiseman
(2005) where the sole observation of public signals suffices to identify the state with no
ambiguity.

21A state s ∈ S has period k if any return to state s must occur in multiples of k steps.
If k = 1, state s is said aperiodic. If every state s ∈ S is aperiodic, ω is said aperiodic.
The Markov chain ω is irreducible if it is possible to connect every state s ∈ S with any
other state s′ ∈ S with positive probability.
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positive recurrent.22 In this case, µω is unique.

Informativeness Assumption (IA)

(1) For any pair of nodes (t, st−1, s) = ξ 6= ξ′ = (t, st−1, s
′), any

player i, and any strategy profile, σ, that induces an ssirf alloca-

tion at both states, the vectors of signals, (ui
ξ(x

i
ξ(σ)), x

i
ξ(σ), w

i
ξ, Aj(ξ))

and (ui
ξ′(x

i
ξ′(σ)), x

i
ξ′(σ), w

i
ξ′ , Aj(ξ

′)) differ.

(2) Every ω is irreducible, aperiodic and admits an invariant

measure, µω. Moreover, for any pair ω, ω′, if µω and µω′ are two

corresponding invariant measures, then µω = µω′ ⇒ ω 6= ω′.

(IA-1) says that, for a reasonable strategy profile, at the end of each

period t, each player knows for sure at which node, ξ = (t, st−1, s), she

was playing. Of course, this is far from sufficient in order, for player i, to

learn ω. (IA-2) is one way of saying that two states of the world induce

different distributions over states of nature in the long-run. Since we are

going to consider patient players, two Markov chains ω, ω′ that would induce

the same asymptotic distribution over signals on the long-run should be

identified. The last section of the paper provides some hints about how this

assumption can be weakened.

Definition 5.4 (Perfect Bayesian equilibrium). A pair

(

(σ)i∈N ,
(

Pi
ξ(h

i
ξ)
)

i∈N

)

consisting of a feasible allocation and a system of private beliefs is a perfect

Bayesian equilibrium (pbe) if

• (σ)i∈N is sequentially rational given the private beliefs
(

Pi
ξ(h

i
ξ)
)

i∈N
,

i.e., starting at any arbitrary node, given the continuation strategies

of the other individuals, no individual can improve her utility by uni-

laterally changing her strategy profile given her private beliefs Pi
ξ(h

i
ξ),

22A state s is recurrent if, given that the chain starts in s, it will return to s in finite
time with probability 1. s is positive recurrent if, in addition, the expectation of this
hitting time is finite.
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• and the private beliefs
(

Pi
ξ(h

i
ξ)
)

i∈N
are updated via Bayes rule when-

ever it is possible.23

Our main result is that, for any strategy profile that yields an allocation

of commodities, assets and collaterals that is ssirf, there is a pbe in which,

with arbitrarily high probability, every player achieves arbitrarily close to

the allocation specified for the realized path, as long as households are

patient enough. Moreover, along such an equilibrium path, every player

learns the realized state with arbitrary precision.

Theorem 5.2. Under (G) and (IA), let ε > 0 and (x∗i[ω])i∈N ,ω∈Ω be a ssirf

allocation in consumption goods, and let P be a prior belief that assigns

strictly positive probability to each state of the world. Then there exists

λ(P) < 1 such that for all λ > λ(P), there is a pbe that with probability at

least 1− ε, conditional on any state ω being realized, yields a payoff vector

within ε of
(

U i
D(ξ0)

(x∗i, σ, ω)
)

i
. In equilibrium, conditional on ω, each player

i’s interim private belief converges to the truth: limt→∞ Pi
ξ=(t,st−1,s)

(hi
ξ)[ω] =

1 with probability 1.

Proof of Theorem 2

Outline of the proof

The following sketch of the proof may serve as a lighthouse before plunging

into the details.

The equilibrium path uses “blocks” of M + T periods each. An equilib-

rium block has a “target allocation” in commodities, denoted by

(

(x∗i
ξ [ω])i

)

τ(ξ)=1,...,M+T

23Due to our assumptions on the Markov chain, every state of nature is reached with a
strictly positive probability. Therefore, given the current state, Bayesian updating is al-
ways unambiguous. González-Dı́az and Meléndez-Jiménez (2011) discuss the meaning
of “whenever it is possible” for general extensive form games with incomplete informa-
tion. In our special case their notion of a simple perfect Bayesian equilibrium coincides
with usual perfect Bayesian equilibrium.
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for each state ω. Note that, by definition, there exists a corresponding

portfolio
(

(

ϕi
ξ[ω], θ

i
ξ[ω]
)

i

)

τ(ξ)=1,...,M+T
.

Within each equilibrium block, traders follow strategies that rely only on the

history since the start of the block. In particular, they do not care about the

history that happened before the beginning of the block. Rather, they rely

on a truncated belief, Pi
ξ\ξ̄

(hi
ξ) ∈ ∆(Ω), defined as follows: Suppose that the

block under scrutiny started at node ξ̄ ≤ ξ. Given some history, hi
ξ, consider

the truncated history, hi
ξ\ξ̄

, containing only the information delivered from

ξ̄ to ξ−. The truncated belief, Pi
ξ\ξ̄

(

hi
ξ

)

∈ ∆(Ω), is the resulting updated

belief starting with prior P at node ξ̄.

The first M periods are used in experimentation to learn the state of the

world through assets’ returns, initial endowments, final allocations, prices

and individual stage-payoffs. The most likely state, ω̂, is identified according

to Pi
ξ\ξ̄

(

hi
ξ

)

, and, in the remaining T periods, households choose a full action

profile that yields a stream of final allocations close to the target,

(

(x∗i
ξ [ω̂])i

)

τ(ξ)=M+1,...,M+T
,

with utility payoffs close to

(

ui
ξ

(

x∗i
ξ [ω̂]

)

i

)

τ(ξ)=M+1,...,M+T
.

If M is large enough to identify the true state with high probability,

if T/(M + T ) is close to one, so that nearly all of the periods within the

block are spent playing (close to) the target action profile, and if players

are patient enough, then the expected allocation from the block when the

realized state of the world is ω will be very close to the target allocation.

There are 3 types of blocks: an equilibrium block, a punishment block,

and a post-deviation block. The initial block is equilibrium, as are all the

subsequent blocks until the first deviation. If some deviation occurs during

a block, it must impact prices to be profitable. Indeed, deviations that leave

prices unchanged cannot modify the final allocation of goods at the end of

the period, and hence cannot be profitable —a property which is specific to
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Shapley-Shubik games. Since prices are public signals, however, profitable

deviations are immediately noticed by all the investors. Of course, a player

may also want to deviate not in order to improve her current payoff but

with the purpose of modifying the beliefs of her opponents. It turns out

that the unique way to achieve this second goal consists in preventing the

players from observing the assets’ returns by provoking some default. Recall

that default is not strategic in this paper. It happens as soon as the value

of the collateral falls down below that of the promise (cf. equation (D)).

Hence, prices must be (strategically) perturbed by the deviator in order to

induce a default that was not agreed upon. We shall see in the proof how

to circumvent this difficulty.

As it can be only noticed via prices, in any case, a deviation remains

anonymous, even when observed. Hence, punishment blocks cannot be

player-specific. The next block starting after a deviation is therefore a collec-

tive punishment block. All subsequent blocks are post-deviation blocks, un-

til a new deviation occurs. A deviation is immediately punished by switching

to a punishment block.

The target allocation for each player in a punishment block, at node

ξ = (t, st−1, s), is made arbitrarily close to the initial endowment, wi
ξ, in

commodities and no-trade in financial assets. The stage-payoffs of the target

allocations in the post-deviation blocks are chosen to be decreasing in the

number of deviations so that ui
ξ

(

xi,ndev
ξ [ω]

)

< ui
ξ

(

x
i,(n−1)dev
ξ [ω]

)

for each

node ξ = (t, st−1, s) of the post-deviation block and each state of the world,

ω —where n is the number of deviations already observed.24 That is, the

payoff to a deviator is lower than she would get in equilibrium, regardless

of the state. A patient player, therefore, will not deviate, neither on, nor

off the equilibrium path, regardless of her private beliefs.

In order to understand the need for such a block-decomposition, let us

draw on an example (inspired from Wiseman, 2011). Suppose that the

signals (endowments plus returns, prices, allocations and stage-payoffs) ob-

served by the traders strongly suggest that the state of the world is A; but

player’s 1 private information at node ξ indicates state B more strongly.

24Of course, ui
ξ

(

x
i,0dev
ξ [ω]

)

= ui
ξ

(

x∗i
ξ [ω]

)

.
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Player 1 believes that eventually everybody’s belief will converge to a Dirac

mass on state B if players continue to experiment and to learn but:

1) in the future, variables selected by equilibrium strategies turn

out to yield the same signals in every state, so that no further

learning occurs. This happens, for example, if, from ξ on, in-

dividual endowments no more depend upon the state, ξ′ > ξ,

selected by nature, while the equilibrium strategy asks traders

to trade only, say, a riskless asset whose return does not provide

any information at all.

2) The current market belief may put so little weight on state

B that the expected time before convergence is very long, even

whenever the equilibrium path does call for further experimen-

tation.

Further, in state B, the equilibrium actions specified for state A may yield

a lower stage-payoff to player 1 than her initial endowments in state B,

i.e., than the actions designed to punish player 1 for a deviation in state A.

And so, player 1 will deviate. In response, however, the other traders may

conclude from observing unexpected prices that someone must have believed

in state B, so that the market belief may adjust toward state B. Then, such

a deviation may be profitable for player 1 even when her private information

is consistent with state A, provided the punishment profile specified in state

B gives her a higher payoff when the actual state is A than does the on-path

profile specified in state A. This can occur, again, if player 1’s post-deviation

payoff in B is higher than the final allocation induced by the equilibrium

strategy profile corresponding to state A. So, why should players different

from 1 believe the anonymous deviator when she implicitly claims that the

state is B by altering prices? Mimicking the colorful argument given by

Aumann (1990, p.202) in an analogous context, players different from 1

could say: “Wait; we have a few minutes; let us think this over. Suppose

that the deviator —whoever it is— doesn’t trust her own claim, and so

believes in state A. Then she would still want us to play as if we were in

B, because that way she will get a better payoff. And of course, also if she

does believe in B, it is better for him that we play as if we were in B. Thus
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she wants us to believe in B no matter what. It is as if there were no signal

that 1 does not believe in A. So we will choose now what we would have

chosen without any deviation from him.”

The block-construction (borrowed from Wiseman 2011) aims at circum-

venting this kind of complications. Here are the details.

Proof

The proof consists in total of 8 steps. To give a quick overview, these are:

• Step 1: Given a target allocation we construct a sequence of allocations

with utility payoffs below this allocation that will be used to construct

a post-deviation payoff.

• Step 2: We define the δ-action profiles for the learning and punishment

phase.

• Step 3: In order to start a learning phase, we define pre-M -transition

action profiles.

• Step 4: To end a learning phase we define post-M -transition action

profiles.

• Step 5: The block construction and the according action profiles are

described.

• Step 6: The use of truncated beliefs is described and the choice of the

length of the learning phase M is defined.

• Step 7: The length of the targeting period is chosen. In addition it is

shown that the actual payoff is close to the target payoff.

• Step 8: It is shown that a deviation from the predescribed strategies

is not profitable.

The details are following.
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Step 1.

For each state ω ∈ Ω, let (x∗i
ξ [ω])i,ξ be a ssirf target allocation with

stage-payoffs (v∗iξ [ω])i,ξ :=
(

ui
ξ(x

∗i
ξ [ω])

)

i,ξ
. Choose a sequence of payoff vec-

tors
(

(vi,ndev[ω])i
)

n∈N
that result from ssirf allocations, and such that:

v
i,(n+1)dev
ξ [ω] < vi,ndevξ [ω] for every integer n ∈ N, and every ξ —with

vi,0dev[ω] = v∗i[ω] for each i. These utility levels will be the long-run payoffs

after n deviations and can be constructed as:

vi,ndevξ [ω] := ui
ξ

(

xi,ndev
ξ [ω]

)

with xi,ndev
ξ [ω] := ρnx

∗i
ξ [ω]+(1−ρn)w

i
ξ, ρn ∈ (0, 1).

Assume that, for every n ∈ N and ξ = (t, st−1, s) ∈ D :

0 < εn < vi,ndevξ [ω]− v
i,(n+1)dev
ξ [ω] (5.4)

for every player i and every state ω ∈ Ω. Notice that εn does not depend

upon ξ, while the payoff vi,ndevξ [ω] does. The sequences (ρn)n and (εn)n need

to be chosen so as to converge sufficiently rapidly towards 0+ (as n → +∞)

for (5.4) to hold.

Step 2.

Let us now define a δ-action profile as follows.

Every player plays some action on the financial markets, so that every-

body gets and sells a small quantity, δ > 0, of every security. Consequently,

all the commodities that are eligible as collaterals will have to be partially

stored. Meanwhile, on the market for consumption goods that serve as a

collateral, investors bid very large quantities and offer very small quantities.

As a consequence, collateral commodity prices will be large. Let us choose

them sufficiently large so that there will be no default along this part of the

play. And still, the quantities of commodities that are going to be effectively

trade can be made arbitrarily small, as well as the quantities of collaterals

they have to put aside because of their trading in securities.

The δ-actions.

Formally, for node ξ = (t, st−1, s) ∈ D in period τ(ξ) = t ∈ N, a δ-action

is defined as follows: Let δ > 0 be small. Define the actions on the goods
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markets by

biξ,ℓ :=

{

b̄ℓ > 0 large, for ℓ ∈ Lc

δ
N

for ℓ ∈ La

qiξ,ℓ :=
δ

N
for ℓ ∈ L,

for all i ∈ N and on the asset markets by

βi
ξ,j :=

δ

N
,

γi
ξ,j :=

δ

N

for all j ∈ J , i ∈ N .

It can easily be seen that these actions define feasible bids and offers and

that the individual budget constraint is satisfied. The collateral requirement

is equal to δ
N
Cjℓ, and hence as δ > 0 is small, condition (F1ξ) and (F2ξ)

are satisfied. Condition (F3ξ) is trivially satisfied as well. For the budget

feasibility note that, if in period t− 1, everybody already played a δ-action,

for the current period at node ξ the left-hand side of the individual budget

constraint (∗iξ1) is equal to

L
∑

ℓ=1

biξ,ℓ +
J
∑

j=1

βi
ξ,j =

∑

ℓ∈Lc

b̄ℓ +
Laδ

N
+

Jδ

N

and the right-hand side equals

L
∑

ℓ=1

pξ,ℓq
i
ξ,ℓ +

J
∑

j=1

πξ,jγ
i
ξ,j +

J
∑

j=1

(

θiξ−,j − ϕi
ξ−,j

)

Dξ,j

=
∑

ℓ∈Lc

Nb̄ℓ
δ

δ

N
+ La1

δ

N
+ J1

δ

N

=
∑

ℓ∈Lc

b̄ℓ +
Laδ

N
+

Jδ

N
.

Playing the δ-actions on asset markets every individual sells and offers the

same amount of each security. Hence, net trades cancel so that no dividends
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will actually need to be paid.

Moreover condition (∗iξ2) is satisfied.

Now, what happens if player i deviates from a δ-action profile? She can-

not prevent her opponents from observing their own private characteristics.

Can she prevent the other players from observing the assets’ returns? As

she cannot prevent them from trading assets, choosing actions that induce

default in all states might stop the learning process of the other players.

Acting so as to decrease the price of the collateral commodities while at

the same time increasing the price of the non-collateral commodities is the

unique way to cause default. How can a single player achieve this goal?

In order to decrease the price of the collateral commodities at time t, she

can increase her offers on the commodity market for these goods. By do-

ing so, she is physically constrained by her (finite) initial endowment: this

is constraint (F2ξ). In order to be able to increase the bids for the non-

collateral commodities she could first use the money from the additional

sales of the collateral commodities and, second, she might have some addi-

tional dividends from asset market transactions at time t−1. To satisfy the

individual budget constraint (∗iξ1) at time t− 1, hence to finance the asset

purchases in that very period, she needs to make some additional asset sales

which are again constraint by the availability of (finite) initial endowments

that need to be used to put up for the collateral: this is constraint (F2ξ−)

—where ξ− is the predecessor of node ξ. Hence, player i can neither increase

the bids for non-collateral commodities arbitrarily high nor offer arbitrarily

large quantities of collateral commodities. The influence on the price of

player i is bounded. Thus, for each node ξ, there exists a lower bound on

the bids b̄ℓ in the δ-action profile such that, if every trader bids above this

bound, player i cannot induce default. From now on, a δ-action will always

be understood to be such that every player’s bid lies above b̄ℓ.

Step 3.

The pre-M-transition actions.

If the asset holdings are strictly positive and if players want to switch to

a δ-action profile at node ξ, there needs to be transition period to settle

the asset market obligations. Otherwise, the δ-action profile might not be
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budget feasible, i.e., might violate condition (∗iξ1).

For the pre-M -transition period at node ξ, define the following actions:

- on the commodity markets

biξ,ℓ :=

{

∑J

j=1 θ
i
ξ−,jCjℓ for ℓ ∈ Lc

N
δ

for ℓ ∈ La

qiξ,ℓ :=

{

∑J

j=1 ϕ
i
ξ−,jCjℓ for ℓ ∈ Lc

δ
N

for ℓ ∈ La

for all ℓ ∈ L, i ∈ N .

- on the asset markets

βi
ξ,j :=

δ

N
,

γi
ξ,j :=

δ

N

for all j ∈ J , i ∈ N .

The resulting prices are as follows:

pξ,ℓ =

{

1 for ℓ ∈ Lc

N2

δ2
for ℓ ∈ La

πξ,j = 1.

for ℓ ∈ L, j ∈ J . Choose δ sufficiently small so that the prices of commodi-

ties used for the promises of assets are so large that all assets default in the

transition period.

It is easy to verify that the pre-M -transition actions satisfy the feasibility

constraints (F1ξ), (F2ξ) and (F3ξ). For the individual budget constraint

(∗iξ1) at node ξ we obtain for the left-hand side

L
∑

ℓ=1

biξ,ℓ +
J
∑

j=1

βi
ξ,j =

∑

ℓ∈Lc

J
∑

j=1

θiξ−,jCjℓ +
LaN

δ
+

Jδ

N
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and for the right-hand side

L
∑

ℓ=1

pξ,ℓq
i
ξ,ℓ +

J
∑

j=1

πξ,jγ
i
ξ,j +

J
∑

j=1

(

θiξ−,j − ϕi
ξ−,j

)

Dξ,j

=
∑

ℓ∈Lc

1
J
∑

j=1

ϕi
ξ−,jCjℓ + La

N2

δ2
δ

N
+ J1

δ

N
+

J
∑

j=1

(

θiξ−,j − ϕi
ξ−,j

)

(

∑

ℓ∈Lc

Cjℓ

)

=
LaN

δ
+

Jδ

N
+
∑

ℓ∈Lc

J
∑

j=1

θiξ−,jCjℓ.

Moreover condition (∗iξ2) is satisfied.

From now on, unless otherwise stated, every block of δ-actions will always

be preceded by the play of such transition actions.

Step 4.

The post-M-transition actions.

After the experimentation block, when a state, ω, has been identified,

the individuals play actions (according to Lemma 5.2) so as to target a

given allocation. This target allocation might require some holdings in cer-

tain assets which are not budget feasible given the δ-action played in the

last experimentation period (e.g., a player may need to have saved much

more money than she did according to the δ-action in order to finance her

purchases according to the target allocation). Therefore, we add two peri-

ods of post-M -transition after the experimentation block where players can

settle the asset holdings from the M -block (first post-M -transition period)

and build up the necessary asset holdings for the target allocation (second

post-M transition period).

Let the identified state be ω with target allocation x∗i
ξ [ω], together with

actions, ϕ∗i
ξ [ω] and θ∗iξ [ω], on the asset markets. The first post-M transition

period is identical to a pre-M transition period (cf. supra). The second

post-M -transition period at node ξ can be intuitively described as follows:

People who have money from asset sales bid it on the goods markets, people

who need money offer a tiny little bit of their endowment in order to get

money. Commodity prices resulting from this action profile will be high, as

only a little bit of commodity is offered. They turn out to be sufficiently
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high for every player to fulfill her budget constraint. The only point might

be that some player is forced to sell a tiny little bit of her initial endowment

while the collateral requirement associated with her asset sales requires her

whole endowment vector to be collateralized. This would contradict (F2ξ).

Thus, player are actually asked to sell a little bit less of assets than would

be needed, were they to mimic exactly the target trades in assets. As a

consequence, each player will save a small quantity of collateral that can

be sold on the commodity market in order to fulfill her budget constraint.

It turns out that the quantity of money lost by selling less assets can be

compensated by the addition sale of commodities. More precisely,

- on the commodity markets, play:

biξ,ℓ :=

{

1
L

∑J

j=1 π
∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

if
∑J

j=1 π
∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

≥ 0

0 otherwise

qiξ,ℓ :=

{

−δ 1
L

∑J

j=1 π
∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

if
∑J

j=1 π
∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

≤ 0

0 otherwise

- on the asset markets:

βi
ξ,j := π∗

ξ,j[ω]
(

θ∗iξ,j[ω]− ηiξ,j
)

,

γi
ξ,j := ϕ∗i

ξ,j[ω]− ηiξ,j

for all j, i, and where ηiξ,j :=
∑

ℓ

qi
ξ,ℓ

Cjℓ
(with the usual convention 1/0 := 0).

Since x∗i
ξ [ω] is feasible, the asset markets clear,

∑N

i=1 ϕ
∗i
ξ [ω] =

∑N

i=1 θ
∗i
ξ [ω].

Therefore,

0 =
N
∑

i=1

J
∑

j=1

π∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

=
N
∑

i=1,
ϕ∗i
ξ,j

[ω]−θ∗i
ξ,j

[ω]>0

J
∑

j=1

π∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

+
N
∑

i=1,
ϕ∗i
ξ,j

[ω]−θ∗i
ξ,j

[ω]<0

J
∑

j=1

π∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)
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Hence,

N
∑

i=1,
ϕ∗i
ξ,j

[ω]−θ∗i
ξ,j

[ω]>0

J
∑

j=1

π∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

= −
N
∑

i=1,
ϕ∗i
ξ,j

[ω]−θ∗i
ξ,j

[ω]<0

J
∑

j=1

π∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

.

The resulting prices are as follows:

pξ,ℓ =
1

δ

πξ,j = π∗
ξ,j[ω].

for ℓ ∈ L, j ∈ J . Choose δ > 0 sufficiently small.

It is easy to verify that the transition actions satisfy the feasibility con-

straints (F1ξ), (F2ξ) and (F3ξ). For the asset trades note that (F1ξ) holds,

as x∗i
ξ [ω] is feasible.

• Let us check whether the individual budget constraint (∗iξ1) is satisfied

at node ξ. If
∑J

j=1 π
∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

≥ 0, we obtain for the left-

hand side

L
∑

ℓ=1

biξ,ℓ +
J
∑

j=1

βi
ξ,j =

J
∑

j=1

π∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

+
J
∑

j=1

π∗
ξ,j[ω]θ

∗i
ξ,j[ω]

and for the right-hand side:

L
∑

ℓ=1

pξ,ℓq
i
ξ,ℓ +

J
∑

j=1

πξ,jγ
i
ξ,j +

J
∑

j=1

(

θiξ−,j − ϕi
ξ−,j

)

Dξ,j

=
J
∑

j=1

π∗
ξ,j[ω]ϕ

∗i
ξ,j[ω].

• If
∑J

j=1 π
∗
ξ,j[ω]

(

ϕ∗i
ξ,j[ω]− θ∗iξ,j[ω]

)

≤ 0, we obtain for the left-hand side:

L
∑

ℓ=1

biξ,ℓ +
J
∑

j=1

βi
ξ,j =

J
∑

j=1

π∗
ξ,j[ω]

(

θ∗iξ,j[ω]− ηiξ,j
)

,
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and for the right-hand side:

L
∑

ℓ=1

pξ,ℓq
i
ξ,ℓ +

J
∑

j=1

πξ,jγ
i
ξ,j +

J
∑

j=1

(

θiξ−,j − ϕi
ξ−,j

)

Dξ,j

=
J
∑

j=1

π∗
ξ,j[ω]

(

θ∗iξ,j[ω]− ϕ∗i
ξ,j[ω]− ηiξ,j

)

+
J
∑

j=1

π∗
ξ,j[ω]ϕ

∗i
ξ,j[ω].

Thus, each budget constraint is satisfied. Finally, It is easy to see that

these actions are tailored so that each player verifies the collateral constraint

(F2ξ).

Step 5.

We now describe the within-block strategies.

The equilibrium block has length M + T . Suppose the true state of

the world is ω. During the first M periods, play δ-actions (with a transition

period if this is not the first equilibrium block of the whole play). During

the first M periods of an equilibrium block, every trader is able to observe

all assets’ returns and, by combining this information with her own private

initial endowments and stage-payoffs, updates her prior belief, P. According

to (IA), by choosing M long enough, the probability that each player puts

a weight larger than 1 − ε on the true state of the world, ω, can be made

arbitrarily close to 1, whatever being ε > 0. More precisely, suppose that

there exists a positive integer M such that, conditional on any of the finitely

many states ω ∈ Ω, updating the prior P with the M signals that result

from the δ-action profile yields a posterior truncated probability, Pi
ξ\ξ̄

(hi
ξ)

25,

for each player i, that puts weight strictly greater than 1/2 on {ω} with

probability at least 1− ε. That such an integer M exists will be proven in

Step 6 below.

Let ω̂i denote the state given the highest probability by player i under

her own belief, Pi
ξ\ξ̄

(hi
ξ) (ties can be broken arbitrarily). Because of the

choice of M (see above), the identified state ω̂i is identical across players

i with probability at least (1 − ε)N . Indeed, this would be the probability

25The current equilibrium block is supposed to start at time τ(ξ̄) = t̄ ∈ N.
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according to which every player, having observed her own history, will put

a weight greater than 1/2 on the true state, ω, if each history was drawn

independently. Even if initial endowments and stage-payoffs were proba-

bilistically independent, the assets’ returns are certainly not independent.

This correlation among histories can only increase the probability above

according to which players reach a consensus on the true state.

Let us denote by ω̂ the state on which, with probability at least 1 − ε,

players put the highest posterior probability at the end of the M -part of

the block.26 For the remaining T periods of the block, players start with a

post-M -transition actions, and then play the profile that results in a stage-

payoff ui
ξ

(

x∗i
ξ [ω̂]

)

for τ(ξ) = M + 2, ...,M + T in state ω̂. The actions are

constructed using Lemma 5.2 for every node ξ with τ(ξ) = M+3, ...,M+T .

Hence, during the first M periods of an equilibrium block, individuals are

learning the true state of the world. In the last T − 2 periods, where T

is large relative to M , the target utility allocation is reached. If player i

deviates unilaterally, then the equilibrium block ends immediately, and a

punishment block begins in the next period. The lengths, M and T , will be

chosen more precisely in steps 3 and 6.

After a deviation, a punishment phase is played, made of a certain num-

ber, Pn, of punishment blocks, each of length M + T , and the end of the

current block. The number Pn depends on the number, n, of deviations

observed. The construction of a punishment block is as follows. Players

play throughout a δ-action profile as defined earlier (preceded by a transition

period). This enables to learn during the punishment phase while keeping

the size of net trades arbitrarily tiny. If any player unilaterally deviates

from the punishment phase, then the punishment block dedicated to the

first deviation ends immediately, and a new punishment phase (consisting

in Pn+1 blocks) begins in the next period. After the Pn punishment blocks,

if no further deviation has been detected, players switch to a post-deviation

block.

Play in a post-deviation block is divided into two parts. First, there

are M periods of learning using the δ-action profiles, followed by a post-M -

26Ties can be broken by some arbitrary rule.
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transition actions, and finally there are T − 2 periods where action profiles

are played, such that the target allocation after the nth deviation is reached.

The target allocation in the T − 2 last periods of a post-deviation block

consists in playing a certain sequence of ssirf allocations. Which allocations

are targeted depends on the number of deviations already observed. For

example after the first deviation in the T−2 last periods, the profile yielding

vi,1devξ [ω̂] in state ω̂ is played, for ξ with τ(ξ) = M+3, ...,M+T . The first two

periods after the M block is are post-M -transition actions. Compared to an

equilibrium block, a post-deviation block consists as well of a learning phase

of M periods and a target allocation in the last T−2 periods. The difference

is that the second sub-block does not target the equilibrium allocation but

rather ssirf allocations that are strictly worse than the target allocations

of the equilibrium block or the previous post-deviation block.

Step 6.

Play begins with an equilibrium block which is followed by a pre-M -

transition period (for the settlement of assets’ obligations) and another

equilibrium block if no unilateral deviation was observed. A post-deviation-

n block with no additional deviation is followed similarly by a pre-M -

transition period and another post-deviation-n block. A punishment-n block

(i.e., a punishment block devoted to the nth deviation) with no unilateral

deviation is followed by a post-deviation-n block.

On the equilibrium path, each player’s private belief, Pi
ξ(h

i
ξ), is derived

by Bayesian updating the prior, P, using the information of her private

history, hi
ξ. At the same time, each player computes her truncated belief,

Pi
ξ\ξ̄

(hi
ξ) as defined earlier. This belief serves for the identification of the

most likely state of the world, ω̂, according to which the allocation x∗i
ξ [ω̂]

is targeted during the last T − 2 periods of the block. By construction,

Pi
ξ\ξ̄

(hi
ξ) is reset to the prior, P, at the beginning of each block.

For a given ω, let the random variable, T ω
s , be the first return time to state

s ∈ S:

T ω
s := inf{n ∈ N | Xω

n = s},
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where (Xω
n )n stands for the stochastic process (with values in S) correspond-

ing to ω. The number

f (n),ω
s := Pr(Xω

s = n)

is the probability that the process returns to state s for the first time after

n steps. Since every state s is recurrent, it is easy to prove (and well known)

that the expected number of visits to s is infinite, i.e.,

∑

n∈N

p(n),ωss = ∞,

where p
(n),ω
ks := Pr(Xω

n = s | Xω
0 = k) for any (k, s) ∈ S2.

Since the Markov chain, ω, is irreducible and such that all the states in

S are positive recurrent, it admits a unique invariant measure, µω ∈ ∆(S).

The chain ω being aperiodic, the limit of the expected number, pn, of visits

of each state s ∈ S verifies:

lim
n→+∞

p
(n),ω
ks =

1

E[T ω
s ]

= µω(s).

If M , the length of the experimentation block, is large enough, the prob-

ability that, for every i, Pi
ξ\ξ̄

(hi
ξ) puts the maximal probability on the true

state, {ω}, at the end of the block can be made arbitrarily large: by ob-

serving the realization of their random signals, the players can observe the

realization of Xω (IA-1), hence, can compute the empirical mean corre-

sponding to the expected return time Ms of each state s. Hence, they can

approximate p
(n),ω
ss with arbitrary accuracy. According to (IA-2), two dif-

ferent states of the world, ω, ω′ will induce different invariant measures,

µω, µω′ . Thus, for M large enough, all the players will be able to distinguish

between state ω and ω′ with probability at least 1 − ε. As a consequence,

all the players will learn the true state with probability at least 1 − ε. Let

us denote by Mε the smallest such integer (whose existence was announced

in Step 5 above). The crucial observation is that Mε is independent from

the discount factor λ, since it concerns only the learning process. From now

on, we suppose that M ≥ Mε.
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Step 7.

It remains to choose T large enough so that each player’s welfare loss

(with respect to the benchmark v∗iξ [ω]) can be compensated by a sufficiently

long targeting period of length T , provided players are sufficiently patient.

By construction of the δ-actions and by definition of the targeting actions

during the T -phase of an equilibrium block, the difference between v∗iξ [ω]

and the actual payoff that accrues to player i at node ξ can be made lower

than ε (for δ sufficiently small). Let us denote by U i
D(ξ0)

(σ∗, ω) the final

overall payoff induced by the equilibrium strategy, and by U i
D(ξ0)

(x∗i, ω),

the final payoff induced by our equilibrium target allocation.27

During the learning phase (of length M) and the post-M transition

of two periods of each equilibrium block, the maximal stage-utility loss

is u, while during the targeting phase (of length T − 2), it is ε. Suppose

T − 2 = QM for some integer Q. One has:

U i
D(ξ0)

(x∗i, ω)−U i
D(ξ0)

(σ∗, ω) ≤ (1−λ)
+∞
∑

j=0

λjQM
[1− λM+2

1− λ
u+λM+21− λQM

1− λ
ε
]

,

where the sum of the right-hand-side is taken over the sequence (indexed

by j) of equilibrium blocks (of length M + T = (Q+ 1)M). Thus,

U i
D(ξ0)

(x∗i, ω)− U i
D(ξ0)

(σ∗, ω) ≤
1− λM+2

1− λQM
u+ λM+2ε.

For every every ε > 0, there exists some Qε,λ large enough and some λε

close enough to 1, so that the right-hand-side of the last inequality is lower

than ε. From now on, we assume that Q ≥ Qε and λ ≥ λε.

Therefore, along the equilibrium path, players learn the true state with

probability at least 1 − ε and their final payoff will be within ε of the

benchmark. It follows that a patient player prefers not to deviate even if

the truncated belief, after a sequence of misleading signals calls for an action

profile that she thinks will give her a very low payoff for the duration of the

current block: at the start of the next block, the pseudo-belief will revert to

27The slight abuse of notations in the arguments of the overall utility should not create
any confusion.
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the prior, and with high likelihood, experimentation in the next blocks will

reveal the true state of the world, and enable the other players to provide her

with the equilibrium payoff or to effectively punish her in case of deviation.

Actions may reveal a piece of information about a player’s private pay-

offs. For instance, by deviating, player i may induce a final allocation for

player j different from the one that is prescribed at equilibrium. This differ-

ent allocation may in turn provide j with some information in terms stage-

payoff that was out of scope with the equilibrium allocation. And even

during a punishment phase, a deviator might be tempted to keep talking

with her opponents through the manipulation of their commodity alloca-

tions. Nevertheless, (IA) implies that, as long as they still observe every

asset’s return, all the players will learn the true state with arbitrary preci-

sion whatever being their stream of stage-payoffs.28 By manipulating allo-

cations (hence stage-payoffs), a player cannot prevent her opponents from

eventually learning the true state of the world, ω.

Step 8.

It remains to choose Pn (the number of punishment blocks after n devi-

ations) large enough so that no player has any incentive to deviate, neither

on the equilibrium path, nor off this path, whatever her private belief about

ω or her higher order beliefs (about others’ beliefs). For this purpose, we

need to guarantee that a post-deviation long-run discounted payoff never

exceeds the equilibrium long-run discounted payoff. Suppose that the de-

viation occurs at node ξ′ = (t′, st′−1, s
′), that it is the (n + 1)th deviation

observed during the play and that there are no further deviations at later

nodes. It will at most yield ui to player i. Then, the post-deviation payoff

can be made ε-close to the following maximum:

(1− λ)λt′−1
[

ui +
M+T
∑

t=2

λt−1EP
i
ξ′
(σ)[u

i
ξ

(

wi
ξ

)

]

28In other words, players need to be able to observe the sequence of stage-payoffs resulting
from some ssirf allocation, plus asset returns and initial endowments. For a patient
player, the choice of the particular sequence of ssirf allocations is irrelevant.
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+

Pn+1
∑

k=1

[

(k+1)(M+T )
∑

t=k(M+T )+1

λt−1EP
i
ξ′
(σ)[u

i
ξ

(

wi
ξ

)

]

+
∑

k≥Pn+1+1

[

k(M+T )+M
∑

t=k(M+T )+1

λt−1EP
i
ξ′
(σ)[u

i
ξ

(

wi
ξ

)

]

+

k(M+T )+M+2
∑

t=k(M+T )+M+1

λt−1u

+

(k+1)(M+T )
∑

t=k(M+T )+M+3

λt−1EP
i
ξ′
(σ)[v

i,(n+1)dev
ξ [ω]]

]

]

. (5.5)

Indeed, the long-run discounted payoff after a deviation consists of once a

(maybe) very high payoff from deviating, then the payoff from a punishment

during the current block plus Pn+1 punishment blocks lasting M+T periods

and finally the payoff from succeeding post-deviation-(n+1) blocks of M +

T periods including possibly a very high payoff in the post-M -transition

period. On the other hand, since no deviator can prevent her opponents

from learning the state of the world with arbitrary precision (even during

the punishment phase and whatever being the behavior of the deviator), the

reward payoff, EP
i
ξ
(σ)[v

i,(n+1)dev
ξ [ω̂]], computed with the most likely state, ω̂

(according to the players’ truncated belief), can also be made arbitrarily

close to EP
i
ξ
(σ)[v

i,(n+1)dev
ξ [ω]].

By contrast, if the (n + 1)th deviation did not take place, i’s long-run

discounted payoff would consist in the payoff from post-deviation-n blocks

of M + T periods. Therefore, it would be arbitrarily close to:

(1− λ)λt′−1
∑

k≥0

[

k(M+T )+M
∑

t=k(M+T )+1

λt−1EP
i
ξ′
(σ)[u

i
ξ

(

wi
ξ

)

]

+

(k+1)(M+T )
∑

t=k(M+T )+M+3

λt−1EP
i
ξ′
(σ)[v

i,ndev
ξ [ω]]

]

. (5.6)

Note that we assumed here payoff of 0 in the post-M -transition periods.
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In order to check whether the difference (5.6) - (5.5) is positive, all we

need is to ensure that:

(1− λ)λt′−1
[

u− u+

Pn+1
∑

k=1

(k+1)(M+T )
∑

t=k(M+T )+M+3

λt−1EP
i
ξ′
(σ)

[

vi,ndevξ [ω]− ui
ξ

(

wi
ξ

)

]

+ εn
∑

k≥Pn+1+1

[

(k+1)(M+T )
∑

t=k(M+T )+M+3

λt−1
]

− u
∑

k≥0

[

k(M+T )+M+2
∑

t=k(M+T )+M+1

λt−1
]]

> 0

Note that since vi,ndev[ω] results from a ssirf allocation, we have

EP
i
ξ′
(σ)[v

i,ndev
ξ [ω]− ui

ξ

(

wi
ξ

)

] > 0

for every node ξ = (t, st−1, s), and every individual i. Let us define

gξ := min
i∈N

EP
i
ξ′
(σ)[v

i,ndev
ξ [ω]− ui

ξ

(

wi
ξ

)

].

It is sufficient to require that:

(1− λ)λt′−1
[

u− u+

Pn+1
∑

k=1

[

(k+1)(M+T )
∑

t=k(M+T )+M+3

λt−1gξ
]

+ εn
(1− λT−2)

(1− λ)(1− λM+T )
λ(Pn+1+1)(M+T )+M+2

− u
(1− λ2)

(1− λ)(1− λM+T )
λM
]

> 0,

It is easy to see that, whatever being the distance,

(1− λ)u−

(

(1− λ) +
(1− λ2)

(1− λM+T )
λM

)

u,

and for every εn > 0, and every λ ≥ λε, there exists some integer P λ,ε
n+1 big

enough so that this last inequality is satisfied.

Suppose a deviator keeps deviating. While being punished by δ-actions,

the most she can grasp is δ units of each commodity in each period. Im-

mediately a new punishment starts with a punishment phase at least as
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long as the one before. As the reward in the post-deviation block declines,

continuing deviating becomes even less attractive as the payoff in equation

(5.5).

This completes the proof that it is in no player’s interest to deviate

from the prescribed equilibrium strategy, be it on the equilibrium path (i.e.,

whenever no deviation already occurred), or out of the equilibrium path

(i.e., after a deviation occurred), provided: M ≥ Mε, λ ≥ λε, T = QM

with Q ≥ Qε, and ∀n, Pn ≥ P λ,ε
n .

�

5.6 Concluding Comments

In this paper we investigated the general properties of perfect Bayesian equi-

libria in imperfectly competitive environments with incomplete information.

We proved that adding collateral constraints within the rules of trading has

an ambiguous effect. Collateral constraints limit the extent to which agents

can pledge their future wealth and ensure that players with incorrect be-

liefs never lose so much as to be driven out of the market. Consequently

all agents, regardless of their beliefs, survive in the long run and continue

to trade, possibly on the basis of those heterogeneous beliefs. Cao (2010)

showed that the presence of heterogeneous beliefs together with collateral

lead to additional leverage and asset price volatility (relative to a model with

homogeneous beliefs or relative to equilibria in the complete markets econ-

omy). Our result suggests that this conclusion is partly due to his narrow

(though standard) definition of perfect competition. Indeed, due to imper-

fect competition, those traders with incorrect beliefs can strategically learn

the state of the world. We therefore provided a partial characterization of

learning equilibria, at the end of which no player shares incorrect beliefs

— not because they were eliminated from the market (although default is

possible at equilibrium) but because they have taken time to update their

prior belief. The striking point is that our (partial) Folk theorem provides

us with a wide range of equilibria, many of them being first-best efficient,

many others being dominated.

Let us end with a final remark concerning the link of the present work
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with the perfectly competitive set-up. In Giraud and Weyers (2004), as

already mentioned, a first step towards the present Folk theorem had been

obtained in the particular setting of exogenously incomplete markets (with

finite horizon). Here, we get a Folk theorem for economies where missing

markets are endogenously determined, due both to the presence of collateral

constraints and to the lack of complete information. At the end of Giraud

and Weyers (2004), however, the asymptotic properties of type-symmetric

strategic equilibria were studied when the number of individuals of each type

grows to infinity. It was shown that there is a discontinuity at the limit:

Indeed, the limit-set of equilibria remains quite large while it is well-known

that, at least with real assets, finite-horizon economies with incomplete

markets generically admit a finite number of perfectly competitive equilib-

ria (Duffie and Shafer 1985). An analogous remark holds in the present

incomplete information set-up. Suppose that each type of player is actually

represented by K identical individuals, and let K → +∞. The same argu-

ment as in Giraud and Weyers (2004) allows us to extend our partial Folk

theorem to the asymptotic case. Therefore, we get that, at the limit, there

is still a continuum of Bayesian perfect equilibria, exhibiting a large vari-

ety of efficiency properties (although each individual is negligible). It also

suggests that, despite the considerable literature devoted to its foundation,

the very concept of perfect competition itself deserves further investigation.

In particular, whether it is captured as a price-taking assumption or else

as the limit benchmark obtained by letting the weight of each price-maker

shrink to zero does not lead to the same conclusion.

Our result and this last observation suggest that considerable care is

necessary in invoking the impact of collateral regulation on the inefficiency

of equilibria with private information —both in perfectly and imperfectly

competitive environments.
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5.7 Appendix

5.7.1 Proof of Lemma 5.1

To show Lemma 5.1 for our model, we modify the proof of Giraud and

Weyers (2004) slightly.

Proof. Fix a node ξ ∈ D at time t ≤ T . Since the allocation of initial

endowments (wi
ξ)i are Pareto-inefficient in the L-good spot economy there

exists a consumption stream (x̄i
ξ)i that Pareto dominates (wi

ξ)i and satisfies

for every good ℓ ∈ L
N
∑

i=1

x̄i
ξ,ℓ =

N
∑

i=1

wi
ξ,ℓ.

By the strict monotonicity of the preferences, there exists a consumption

stream (x̄′i
ξ)i such that

ui
ξ(x̄

′i
ξ ) > ui

ξ(x̄
i
ξ) i = 1, ..., N

and
N
∑

i=1

x̄′i
ξ,ℓ =

N
∑

i=1

wi
ξ,ℓ.

Since the utility functions are strictly increasing, there exists a hyperplane

containing (x̄′i
ξ )i and (wi

ξ)i with a strictly positive price vector pξ. Thus the

individual budget restriction

pξ · x̄
′i
ξ = pξ · w

i
ξ

is satisfied and furthermore

Eω[u
i
ξ(x̄

′i
ξ )] > Eω[u

i
ξ(x̄

i
ξ)] ≥ Eω[u

i
ξ(w

i
ξ)]

for all i ∈ N and t ≤ T .
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5.7.2 Proof of Lemma 5.2

To show Lemma 5.2 for our model, we modify the proof of Giraud and

Weyers (2004).

Proof. Since (x̄i)i∈N is feasible there exist feasible and affordable allocation

(ϕ̄i, θ̄i)i∈N such that the asset markets clear at every node ξ ∈ D. For all

j ∈ J we have
N
∑

i=1

θ̄iξ,j =
N
∑

i=1

ϕ̄i
ξ,j.

Therefore, if
∑N

i=1 θ̄
i
ξ,j = 0, then

∑N

i=1 ϕ̄
i
ξ,j = 0 and vice versa.

Using the market clearing condition on the goods markets we obtain

from the definition of the actions

N
∑

i=1

qiξ,ℓ =
N
∑

i=1

(

wi
ξ,ℓ +

J
∑

j=1

ϕ̄i
ξ−,jCjℓ

)

=
N
∑

i=1

(

x̄i
ξ,ℓ +

J
∑

j=1

ϕ̄i
ξ,jCjℓ

)

,

N
∑

i=1

biξ,ℓ = pξ,ℓ

N
∑

i=1

(

x̄i
ξ,ℓ +

J
∑

j=1

ϕ̄i
ξ,jCjℓ

)

.

Hence,

p̄ξ,ℓ =

∑n

i=1 b
i
ξ,ℓ

∑n

i=1 q
i
ξ,ℓ

= pξ,ℓ.

From the definition of the actions using the market clearing condition

on the asset markets we obtain for the asset prices

• for
∑N

i=1 θ̄
i
ξ,j =

∑N

i=1 ϕ̄
i
ξ,j > 0

πξ,j =

∑N

i=1 β
i
ξ,j

∑N

i=1 γ
i
ξ,j
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=
π̄ξ,j

∑N

i=1 θ̄
i
ξ,j

∑N

i=1 ϕ̄
i
ξ,j

= π̄ξ,j

• for
∑N

i=1 θ̄
i
ξ,j =

∑N

i=1 ϕ̄
i
ξ,j = 0

πξ,j =

∑N

i=1 β
i
ξ,j

∑N

i=1 γ
i
ξ,j

=
π̄ξ,j

∑N

i=1
δ
N

∑N

i=1
δ
N

= π̄ξ,j.

The final allocation of sales and of purchases for asset j ∈ J are given

by

ϕi
ξ,j = γi

ξ,j,

θiξ,j =
βi
ξ,j

πξ,j

.

The final allocation of good ℓ ∈ L available for consumption after trading

at node ξ ∈ D is given by

xi
ξ,ℓ = wi

ξ,ℓ +
J
∑

j=1

ϕi
ξ−,jCjℓ − qiξ,ℓ +

biξ,ℓ
pξ,ℓ

−
J
∑

j=1

ϕi
ξ,jCjℓ

Therefore,

ϕi
ξ,j =

{

ϕ̄i
ξ,j if

∑N

i=1 ϕ̄
i
ξ,j > 0

δ
N

otherwise

θiξ,j =

{

θ̄iξ,j if
∑N

i=1 θ̄
i
ξ,j > 0

δ
N

otherwise

xi
ξ,ℓ =

{

x̄i
ξ,ℓ if

∑N

i=1 ϕ̄
i
ξ,j =

∑N

i=1 θ̄
i
ξ,j > 0

x̄i
ξ,ℓ −

∑J

j=1
δ
N
Cjℓ otherwise



CHAPTER 5. INFINITE HORIZON 206

It remains to check that the budget constraint (∗iξ1) for the bids and

offers is satisfied.

L
∑

ℓ=1

biξ,ℓ +
J
∑

j=1

βi
ξ,j ≤

L
∑

ℓ=1

pξ,ℓq
i
ξ,ℓ +

J
∑

j=1

πjγ
i
ξ,j +

J
∑

j=1

(

θiξ−,j − ϕi
ξ−,j

)

Dξ,j

Inserting the assumed aci for biξ,ℓ, q
i
ξ,ℓ, γ

i
ξ,j and βi

ξ,j we obtain for (∗iξ1)

• for
∑N

i=1 θ̄
i
ξ,j =

∑N

i=1 ϕ̄
i
ξ,j > 0

L
∑

ℓ=1

p̄ξ,ℓ

(

x̄i
ξ,ℓ +

J
∑

j=1

ϕ̄i
ξ,jCjℓ

)

+
J
∑

j=1

π̄ξ,j

(

θ̄iξ,j − ϕ̄i
ξ,j

)

≤
L
∑

ℓ=1

p̄ξ,ℓ

(

wi
ξ,ℓ +

J
∑

j=1

ϕ̄i
ξ−,jCjℓ

)

+
J
∑

j=1

(

θ̄iξ−,j − ϕ̄i
ξ−,j

)

Dξ,j

which holds since (x̄i, ϕ̄i, θ̄i)i∈N was assumed to be a feasible alloca-

tion.

• for
∑N

i=1 θ̄
i
ξ,j =

∑N

i=1 ϕ̄
i
ξ,j = 0

L
∑

ℓ=1

p̄ξ,ℓx̄
i
ξ,ℓ ≤

L
∑

ℓ=1

p̄ξ,ℓ

(

wi
ξ,ℓ +

J
∑

j=1

ϕ̄i
ξ−,jCjℓ

)

+
J
∑

j=1

(

θ̄iξ−,j − ϕ̄i
ξ−,j

)

Dξ,j

As (wi
ξ)i ≫ 0, this strategy profile is full. This completes the proof.
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Summary

This thesis consists of two main parts: The first one is on coalitional

market games whereas the second one is on strategic market games.

In coalitional market games the relationship between cooperative games and

markets, and their respective solution concepts are investigated. In joint

work with Jan-Philip Gamp we show the following results:

• For coalitional market games with transferable utility we present a

detailed proof that extends the results of Shapley and Shubik (1975)

to any closed convex subset of the core following a remark of these

authors.

• For coalitional market games with non-transferable utility we extend

the results of Qin (1993) to a large class of closed subsets of the inner

core.

• Afterwards, we investigate the relationship between the inner core and

asymmetric Nash bargaining solutions.

A strategic market game is a non-cooperative game that is used to describe

the price formation in an exchange economy. In this thesis the departing

point is the model in Giraud and Weyers (2004).

• For strategic market games with finite horizon, I show proving an ana-

logue of a perfect folk theorem that even with collateral requirements

almost everything is possible as soon as people are sufficiently patient.

• Finally, in joint work with Gaël Giraud, for strategic market games

with infinite horizon and incomplete information we prove a partial

folk theorem à la Wiseman (2011).

Keywords

Market Games, Coalitional Market Games, Competitive Payoffs, Core, In-

ner Core, Asymmetric Nash Bargaining Solutions, Strategic Market Games,

Collateral, Folk Theorem, Finite Horizon, Infinite Horizon, Incomplete In-

formation



Résumé en Français

Cette thèse comporte deux parties : La première partie porte sur les jeux de

marchés coopératifs et la deuxième sur les jeux de marchés stratégi-

ques. Dans le cas des jeux de marchés coopératifs, le lien entre jeux coopé-

ratifs et marchés et les concepts de solution associés sont étudiés. Établis en

commun avec Jan-Philip Gamp nous avons montré les résultats suivants :

• Pour les jeux de marchés coopératifs à utilité transférable nous pré-

sentons une preuve qui généralise les résultats de Shapley et Shubik

(1975) à des sous-ensembles convexes et fermés du coeur suivant une

remarque des auteurs.

• Pour les jeux de marchés coopératifs à utilité non-transférable nous

étendons les résultats de Qin (1993) à une large classe de sous-ensem-

bles fermés du cœur interne.

• Ensuite, nous étudions la relation entre le cœur interne et les solutions

de négociation asymétriques de Nash pour les jeux de négociation.

Un jeu de marché stratégique est un jeu non-coopératif utilisé pour décrire la

formation des prix dans une économie d’échange. Dans cette thèse le point

de départ est le modèle de Giraud et Weyers (2004).

• Pour les jeux de marchés stratégiques à horizon fini, je montre prou-

vant un théorème analogue à un théorème de folk, que même en

présence d’obligation de collatéral, presque tout est possible tant que

les joueurs sont assez patients.

• Finalement, dans un travail commun avec Gaël Giraud, pour les jeux

de marché stratégique à horizon infini et avec de l’incertitude nous

prouvons un thèoreme de folk partiel à la Wiseman (2011).

Mots clés

Jeux de Marchés, Jeux de Marchés Coopératifs, Paiements Compétitifs,

Cœur, Cœur Interne, Solutions de Négociation Asymétriques de Nash, Jeux

de Marchés Stratégiques, Collatéraux, Théorème de Folk, Horizon Fini, Ho-

rizon Infini, Information Incomplète



Summary

This thesis consists of two main parts: The first one is on coalitional market games

whereas the second one is on strategic market games.
In coalitional market games the relationship between cooperative games and markets,

and their respective solution concepts are investigated. In joint work with Jan-Philip
Gamp we show the following results: For coalitional market games with transferable
utility we present a detailed proof that extends the results of Shapley and Shubik (1975)
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je montre prouvant un théorème analogue à un théorème de folk, que même en présence
d’obligation de collatéral, presque tout est possible tant que les joueurs sont assez pa-
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partiel à la Wiseman (2011).
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