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ABSTRACT
Motivation: Bioimaging techniques rapidly develop towards higher
resolution and dimension. The increase in dimension is achieved
by different techniques such as multi-tag fluorescence imaging,
MALDI imaging or Raman imaging, which record for each pixel
a N dimensional intensity array, representing local abundances of
molecules, residues or interaction patterns. The analysis of such
multivariate bioimages (MBI) calls for new approaches to support
users in the analysis of both feature domains: space (i.e. sample
morphology) and molecular colocation or interaction. In this paper
we present our approach WHIDE (Web-based Hyperbolic Image
Data Explorer) that combines principles from computational learning,
dimension reduction and visualization in a free web application.
Results: We applied WHIDE to a set of MBI recorded using the
multi-tag fluorescence imaging TIS (Toponome Imaging System).
The MBI show FOV in tissue sections from a colon cancer study
and we compare tissue from normal / healthy colon with tissue
classified as tumor. Our results show, that WHIDE efficiently
reduces the complexity of the data by mapping each of the
pixels to a cluster, referred to as MCEP (Molecular Co-Expression
Phenotypes) and provides a structural basis for a sophisticated
multi-modal visualization, which combines topology preserving
pseudocoloring with information visualization. The wide range of
WHIDE’s applicability is demonstrated with examples from toponome
imaging, high content screens and MALDI imaging (shown in the
Supplementary).
Availability: The WHIDE tool can be accessed via the BioIMAX
website http://ani.cebitec.uni-bielefeld.de/BioIMAX/

Login: whidetestuser, Password: whidetest.
Contact: tim.nattkemper@uni-bielefeld.de

1 INTRODUCTION
Bioimage informatics has been established as a new branch in
the tree of bioinformatics’ fields of research in the last ten years.
The term bioimage comprises all kinds of images generated for
biological samples in a biological or biomedical research context
using a large diversity of imaging techniques. The techniques
range from standard ones such as bright field imaging or phase
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contrast to advanced technologies that enable recording many
molecular variables for each resolvable volume unit. The latter
group of technologies can also be referred to as multivariate
bioimages (MBI) (Herold et al. (2011)). MBI belong to the so
called high-content (HC) imaging techniques which apply high
resolution imaging in time and/or space and/or variables to close
those open gaps in systems biology which can not be bridged
by standard, i.e. non-spatial omics techniques (Starkuviene and
Pepperkok, 2007; Megason and Fraser, 2007). While these can in
principle resolve the almost complete molecular composition in a
sample on different levels (genomics, transciptomics, proteomics,
metabolomics) they have to leave out the spatial domain. In contrast
to that, bioimaging approaches, which usually work with a lower
level of molecular resolution, can relate molecular information to
spatial features such as morphology.

Typical examples for MBI are MALDI imaging (Cornett et al.
(2007)), vibrational spectroscopy/Raman microscopy (van Manen
et al. (2005)), or Multi-Epitope-Ligand Cartography (MELC) /
Toponome Imaging System (TIS) (Schubert et al. (2006)). The
first two techniques measure molecular features and interactions in
localized spectra, arranged in a pixel grid. The interpretation of
the obtained images aims at the identification of pixel groups that
share particular or similar spectral features (e.g. Alexandrov et al.
(2010)) while the final identification of molecules and a semantic
interpretation remains a unsolved problems for most applications.
In contrast to that, MELC/TIS (for the sake of compactness we
will refer to this technique with TIS) imaging aims at the imaging
of a selected set of N proteins using a library of N fluorescent
labeled antibodies, lectins or other specific ligands (referred to as
tags, in general) in combination with a cyclic protocol of staining,
fluorescence imaging and soft bleaching. To unfold the full potential
of all these kinds of MBI, new algorithms and software are needed
that allow researchers to visually explore the data and to identify
the hidden regularities. In this article we will focus on images
recorded using the TIS technology, however our method is definitely
applicable to other multivariate bioimage data recorded with a
different multi-tag technology or MALDI images as well.

For one selected field of view (FOV) in the sample, TIS records
one multivariate image T(s) which consists of a set of N aligned
images g

(s)
a (x, y)a=1,...,N (with x, y as pixel coordinates) with

s(s = 1, ..., S) describing the ID of the TIS image/FOV and g
(s)
a

denoting the fluorescence grey value image for tag a. In practice a
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number of S TIS runs with one library of N > 10 tags are applied
to record a set of S data sets. With gx,y = (g1, g2, ..., gN )x,y we
will refer to the N grey values for the respective N tags assigned to
one pixel (x, y) in a TIS image T(s). To align the N fluorescence
images in one TIS image, phase contrast images are recorded in
each cycle and used as a reference.

One TIS image or a set of S TIS images resembles a
high-dimensional complex data structure that encodes hidden
relationships between colocation of proteins and the spatial
distribution pattern, which is also referred to as the toponome
(Schubert et al. (2006)). While on the one hand, the gain in
molecular information through toponome data may undoubtedly
have the potential to lead to a new understanding of functional
molecular networks, the analysis of TIS data represents a new
challenging problem with a large number of open issues for
bioimage informatics on the other hand. It is evident that by
visual inspection of each one of the N single grey value images,
colocation of proteins can hardly be identified. Likewise, iteratively
superimposing three out of the N images or even all images to
obtain RGB fusion images is not feasible for protein network
identification since an observer would need to analyze a number
of N !/(3!(N − 3)!) visualizations and link the results obtained for
each each image triplet, which is impossible for human observers.

One straightforward way to reduce the complexity of the data
is to apply a threshold to each image. Schubert et al. (2006)
applied such a method for pixel-wise extraction of binary colocation
and anti-colocation vectors, termed combinatorial molecular
phenotypes (CMPs), by manually thresholding each image g

(s)
a for

a combinatorial analysis. Random colors are subsequently assigned
to each of the n detected CMPs to construct so called toponome
maps which encode the spatial location of each CMP with its
individual color. Although the concept of binary CMPs has the
advantage of a fundamental reduction of data complexity and a clear
interpretation on the level of a single CMP, thresholding each image
by manual human interaction features several disadvantages. It is
quite time consuming and requires a high level of expertise to set
reasonable thresholds. Slight modifications of the threshold can lead
to different CMP lists, potentially affecting the interpretation of the
data. Furthermore, thresholding discards information inherent in the
data. Thus, analyzing non binarized grey value images may be better
suited to track protein locations in the cell (Friedenberger et al.
(2007)). However, the CMP concept has successfully been applied
in several studies (Bonnekoh et al. (2006); Eyerich et al. (2009);
Ruetze et al. (2010); Bhattacharya et al. (2010)), for example
revealing proteins controlling the molecular networks of tumor cell
lines, or finding CMPs to distinguish between healthy patients,
patients with psoriasis and patients with atopic dermatitis. But even
regardless of the aforementioned thresholding issue, we believe that
the CMP based visualization concept should be reconsidered as
follows. From a visualization point of view, mapping the CMP to
random colors follows the idea to treat CMP as nominal variables.
On the one hand, this perspective on a colocation pattern is well
motivated since similar patterns (CMPs) can constitute different
functions (similarity may be quantified using the Hamming distance
for binary patterns). But on the other hand, one should also
bear in mind that similar patterns may also belong to the same
functional group or to the same hierarchically organized network.
Another drawback of using random colors for CMPs is that the
morphological structure in a random color map can be hard to

interpret since the colorful map can overburden the cognitive skills
of a user. So an alternative visualization concept is definitely needed,
that maps similar patterns to similar colors. In other words, one
needs a pseudocoloring that preserves the topology of the N -
dimensional fluorescence colocation feature space. In summary,
a new method for visual data mining TIS images is needed that
features he following. First it has to provide an overview on the
entire image using a pseudocolor visualization. Second, it has to
support the identification and display of relevant grey value-based
protein colocation patterns, referred to as MCEPs (Molecular Co-
Expression Phenotypes). Third, the perception of similarities and
contrasts in the expressed MCEPs must be possible. Fourth, filtering
and zooming must be supported in both domains, tissue morphology
and protein-colocation.

In this paper we present the visual data mining tool WHIDE
(Web-based Hyperbolic Image Data Explorer), which offers the
four functions listed above. The idea behind WHIDE is to identify
MCEP in TIS images using a special variant of the self-organizing
map, the hierarchical hyperbolic self-organizing map (H2SOM), in
combination with state of the art internet browser technology and
information visualization concepts. Compared to standard SOMs,
hyperbolic SOMs have the potential to achieve much better low
dimensional embeddings, since they offer more space due to the
effect, that in a hyperbolic plane the area of a circle grows
asymptotically exponential with its radius (see supplementary for
details). This feature has been identified as a solution to the so
called focus and context problem in information visualization (Ware
(2004)) by other researchers as well, like in the famous hyperbolic
tree browser (Lamping et al. (1995)). The tool is integrated in
our full-web-based online bioimage analysis platform BioIMAX
(BioImage Mining, Analysis and eXploration, Loyek et al. (2011))
which uses state of the art web graphics tool kits to realize an
online bioimage analysis workbench as a rich internet application
(RIA) (see access details given above and details given in the
supplementary).

2 APPROACH
WHIDE combines principles from machine learning, scientific
visualization and information visualization that shows to be very
effective to analyze both aspects of TIS images: space and
colocation. H2SOM clustering (Ontrup and Ritter (2006)) is applied
to identify MCEPs as cluster prototypes which are organized on
a regular two dimensional grid, following the SOM topology
preservation principle. Each MCEP is displayed as a graphical
icon called CIPRA (Combinatorial Intensity PRofile Archetype),
showing the individual colocation signal characteristics. Using the
grid position and the CIPRA icons we are able to render a graphical
display of one or two TIS images in dynamic pseudocolor which
can be interactively explored in a web browser tool.

We show, how WHIDE is applied to a set of four TIS images
{T (c1), T (c2), T (n1), T (n2)}. The images were taken using tissue
sections from one colon cancer patient and the four visual fields
were selected. Two visual fields were selected in tissue that was
classified as normal according to histopathological analysis and two
TIS images were recorded (T (n1), T (n2)). The other two images
were recorded in tissue classified as cancerous and two TIS images
were recorded (T (c1), T (c2)). For all images, the following library
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of 11 tags (MUC1, Ep-CAM, DAPI, CD166, CD44, CD36, CD29,
Ki-67, CK20, CK19, CD133) was applied yielding N = 11
fluorescence images per TIS image. In the supplementary A we
show the 11 fluorescence image from one TIS image T (n1) plus one
phase contrast image. Each image was of size 1056 × 1026 with
pixel resolution of 206 × 206 nm / pixel.

3 METHODS
Before a H2SOM is applied, each TIS image is preprocessed in the following
manner: first, image registration is applied, i.e. the single images of one
TIS image are aligned. To this end, a phase contrast image is recorded
within each tag loop so the shifting parameters for the single images can be
computed straightforward using the corresponding phase contrast images.
Second, each image was preprocessed in three steps: first, a median filter
was applied to eliminate outliers. Afterwards, bilateral filtering (Tomasi
and Manduchi (1998)) was applied to smoothen homogenous regions while
preserving the edge information. The grey values in each image of a
stack were scaled to [0; 1] using a tanh() squashing function which also
introduces a slight contrast enhancement to the images. The original grey
values were replaced computing ga(x, y) = tanh(0.5 · E(ga) · ga(x, y),
withE(ga) as the average grey value of image ga. Now, for each pixel theN
grey values are written to a colocation feature vector x = (x1, x2, ..., xN )1.
The feature vectors from one image (or from a selected group of images)
resemble a training set Γ = x(ξ)

ξ=1,...,nt with nt as the number of training
items. We refer to the set of all colocation features from all four images with
Γ∪.

The training set Γ∪ is used to train a H2SOM of nr rings and a
branching factor of b. The foundations of the H2SOM are explained in the
supplementary material. To train a H2SOM with nr rings, the training is
divided into nr epochs (i.e. one epoch per ring) of length L(r). In each
epoch a new ring of nodes is initialized by adding b new branches with child
nodes to each parent node. The first ring contains 8 nodes which are trained
using the SOM training algorithm: In each step, a training example x(ξ) is
selected and the prototype vectors {u(k)

k=1,...,7} are searched for the best

matching unit (BMU) u(κ), with κ = argmin
k
{‖ u(k) − x(ξ) ‖2} and the

learning rule

u(k)(t+ 1) = u(k)(t) + hk,κ(t) · (x(i) − u(k)),with

hk,κ(t) = e(t) · exp
‖ n(k) − n(κ) ‖2

2σ2(t)

is applied to the nodes. The parameters e(t), σ(t) are monotonically
decreasing functions. After the first epoch is completed, each node is
expanded by b child nodes and a new epoch starts applying a beam search
for the BMU (see supplementary material B). This process is repeated until
all nr rings of nodes are adapted. A Poincaré projection is applied to map
the H2SOM grid to the unit disc. To manipulate the projection direction, the
Möbius transform is applied (details are given in the supplementary B).

To assess the quality of the H2SOM projection we applied the approach
proposed by Venna and Kaski (2001) and computed the trustworthiness Tn
and the continuity Cn of the H2SOM projection. The two terms empirically
determine the projection quality by quantifying for each MCEP, how wide
its n most similar MCEPs are scattered across the grid (Cn) and how many
non-similar, i.e. false MCEPs have been wrongly mapped into the vicinity in
the grid (see the supplementary B for details please).

3.1 CIPRA glyphs
Although clustering greatly aids in finding groupings inherent in the data, the
success and efficiency of knowledge discovery mainly depends on suitable,

1 We refer to the feature vector with x to show, that the components differ
from the original grey values for the pixel g due to the applied preprocessing.

Fig. 1. The CIPRA (Combinatorial Intensity PRofile Archetype) glyph: For
each H2SOM node, the prototype coefficients uka are read (1) and for each
protein a bar is plotted in alternating black/white (2). The length and width
of one bar k is scaled so it is proportional to uka (3). The background color
of the glyph is chosen depending on the grid coordinates of the prototype in
relation to the HS color scale plate (4). In the bottom row five more examples
for CIPRA glyphs are shown.

linked visualizations of the feature domain, i.e. the clusters and prototypes,
as well as visualizations of the image domain, i.e. the topological ordering
of the data items.

First we will focus on visualizations of the feature domain. Second a
pseudocoloring technique will be described. The interactive combination of
the two techniques showed to be a powerful approach to the analysis of TIS
data.

To visualize the feature domain we render a graphical display for each
MCEP cluster and we refer to this as the CIPRA (Combinatorial Intensity
PRofile Archetype) glyph of the cluster. The general reason to visualize
the MCEPs, is that by focusing on the clustering result, i.e. the CIPRAs,
the data complexity is significantly reduced. The main protein colocation
characteristics of the data can be visually explored in one rapid knowledge
discovery attempt without the need of analyzing single images gs. If
interesting CIPRAs are found, the associated data items can be analyzed
in a subsequent step following the Ben Schneiderman visualization mantra
of “Overview first, zoom in and filter, details on demand” (Schneiderman
(1996)). However, a suitable CIPRA visualization is not as straightforward
as it seems. A simple strategy for the display of multivariate data such as
CIPRAs is an extension of the scatter plot to a generalized drafter’s plot
(Chambers et al. (1983)), also referred to as scatter plot matrix. Here, scatter
plots for all possible pairs of features are displayed. A related technique,
termed dimensional stacking (LeBlanc et al. (1990)), embeds one coordinate
system into another and bins the data. These techniques are a straightforward
extension of lower dimensional displays, but are often hard to interpret with
increasing dimensionality. This holds especially if a combination of more
than two features contribute to an interesting pattern, as it is likely the case in
protein colocation studies. Another popular way to display multivariate data
are glyph or icon displays. According to Colin Ware “A glyph is a graphical
object designed to convey multiple data values” (Ware (2004), p.145). Each
data feature is mapped to a different graphical attribute of the glyph such
as size, shape or color. For example Chernoff faces (Chernoff (1973)), star
glyphs (Chambers et al. (1983)), color icons (Levkovitz (1991)), or stick
figures (Pickett and Grinstein (1988)) belong to these types of displays.

The CIPRA glyph combines visualization aspects known from bar charts
and star glyphs and is to some extend inspired by the sequence logo display,
which represents patterns in nucleotide or amino acid sequences (Schneider
and Stephens (1990)). In a sequence logo, for each position of a set of aligned
sequences, e.g. nucleotide sequences, the four nucleotides are arranged
on top of each other sorted according to their frequency at that position.
The character height represents the frequency of the according nucleotide.
Through this visualization, a rapid identification of prominent sequence
patterns can be achieved as high frequent nucleotides can directly be “read”
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Fig. 2. The WHIDE result for two TIS images from normal tissue T (n1), T (n2) is shown as a screenshot from the WHIDE tool in the BioIMAX system.
On the right, the color disc is shown with H2SOM nodes displayed as square icons at positions computed with a Poincaré projection. The size of the squares
encodes the size of the clusters. Moving the mouse over one square activates the display of its CIPRA. Alternatively, CIPRA displays can be activated in the
image. At the bottom of the screen, the history of selected CIPRAs is shown as bookmarks. In the upper left of each image display one fluorescence image
is shown for an overview and using the sliders below the user can change the opacity of the pseudocolor map and the zoom as it is demonstrated in the lower
screenshot. This way, the user can modify the display to relate the found clusters, i.e. MCEPs to individual fluorescence signals for a detailed analysis.

from the logo. To construct a glyph for one CIPRA uk(k = 1, ...,K), a
horizontal box is drawn for each data feature (see figure 1). The height, as
well as the length, of each box is scaled according to the feature’s value.
To increase differentiation between neighboring boxes, they are alternating
colored black and white. This follows C. Ware’s suggestion for star glyphs
or whisker plots to increase the number of dimensions by changing length
and width of the bars as well as using different luminance levels. To allow
for a fast identification of prominent proteins, the protein names are directly
incorporated into the visualization. To this end, the associated protein name
is written in each bar and scaled in height and length analog to the bar
itself. With this strategy, prominent protein co-localization can easily be
identified by “reading” the CIPRA analog to the reading of a sequence logo.
The color background of the glyph is determined by the position zk in the

(Hue,Saturation)-color scale disc (see the following section 3.2). Figure 1
gives an overview of the construction of the CIPRA display (top) and shows
six CIPRA examples that have been computed for one TIS image with
N = 22. One can see, that the three blue CIPRA glyphs share a large
number of features but differ in some features as well (like high/low values
for DAPI and CD166). With changing color the differences in the CIPRAs
grow as well.

In the display of a CIPRA additional information about the corresponding
cluster is shown. In the upper right of a CIPRA display, the size of the
corresponding cluster in relation to the entire number of projected pixels is
shown as a percentage. If WHIDE is applied to two or more images, one can
expect a cluster of one MCEP prototype to include feature vectors from more
than one TIS image. This information may be important to users since it

4

 at U
niversitaetsbibliothek B

ielefeld on A
pril 3, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


could point to differences in MCEP abundances in different samples, which
can be an interesting feature resulting from different dynamics of molecular
networks. Thus, the information about the composition of each cluster is
encoded in a MCEP’s CIPRA as well by a graphical line symbol, which
encodes the different percentages as line segments. In a bookmarked CIPRA,
a mouse over provides the numerical information.

3.2 H2SOM pseudocolor map
The CIPRA glyphs are used to display colocation features of pixel groups,
i.e. it shows features of the N -dimensional colocation space. However, as
outlined above, the morphological features need to be explored as well.
Thus, WHIDE uses the H2SOM training result is used to visualize a TIS
image in pseudocolor. To this end, the Poincaré projection is applied to
map the node coordinates of the H2SOM prototypes {u(k)} to coordinates
{zk} in a unit disc (please see supplementary B for full details). These new
coordinates are then used to pick up colors in a circular color scale with
radius R = 1. In this work we choose the basic plate of a HSV color
cone as a color scale disc, i.e. the color hue changes with the angle α and
the saturation changes with the radius R. One may argue, that isoluminant
color scales should be preferred to avoid tendencies for a human observer
to perceive contrast of different intensities dependent on the particular color
scale region. However, we found that isoluminant color scales have strong
negative effect on a human observers ability to resolve smaller structural
features. Thus, we use the (Hue,Saturation)-disc and allow the user to rotate
the H2SOM projection on the disc to individually choose, which clusters
are to be displayed in blueish (lower contrast sensitivity for humans) or in
reddish (higher sensitivity) colors.

3.3 Implementation and Web Application
The H2SOM learning and the WHIDE visualization are implemented as
modules of the BioIMAX platform and can be applied by all registered users.
The H2SOM learning and mapping is realized in a client server architecture
as described in Langenkämper et al. (2011).

To enable the previously described continuous visual exploration of
complex datasets and benefit from the tight integration with the BioIMAX
infrastructure, WHIDE was designed as a Rich Internet Application (RIA).
RIAs resemble classic desktop applications with regards to the richness of
the user interface and computational power, but are more independent from
hardware or system limitations and require no extra installation procedures
or setup routines. This is achived by executing most of the application’s
computation, presentation and interaction in a client side browser plugin,
thereby leveraging the local hardware resources and reducing client-server
traffic.

The open-source RIA framework choosen for the implementation of
WHIDE is Flex2. It is already employed by the BioIMAX platform, which
enables easy access to the H2SOM mapping results, and deploys consistently
on most systems due to the high penetration rate of the Adobe Flash Player,
which is the properitary browser plugin used for its client side execution.
Furthermore Flex offers a good selection of predefined but extensible user
interface components, e.g. the CIPRA glyph is build upon the standard
charting components.

WHIDE has only a short inital communication phase with the server-side
of the BioIMAX platform to retrieve the necessary H2SOM mappings as
well as image data. All H2SOM mapping data is transfered in a compressed
and space optimized file in JSON3 format for fast transfer and parsing. After
that the tool needs no further server connections and runs solely on the client-
side. Depending on the number of rings in the H2SOM result and the amount
of concurrently viewed TIS images the tool may take a while to construct all
data structures needed for fast data look-up and interface manipulation. This
approach is necessary because all available data is needed right from the start

2 http://www.adobe.com/products/flex/
3 http://www.json.org/

to enable the user to switch rapidly between a coarse overview and focus of
arbitrary details.

Computation of interaction relevant data on the server-side would result in
high client-server traffic and notable delays in the visualization, hampering
the desired free and continuous exploration.

4 RESULTS
The data set was built by extracting the multidimensional (N=11) intensity
values for each pixel (|Γ∪| =1083456). A H2SOM was initialized with a
branching factor of 8 and 3 rings (not counting the central node) yielding a
total number of 160 nodes. The H2SOM was trained in 30·P steps following
the training algorithm described in the Methods section. Training took 4
h. After training for each TIS image a BMU index image was computed,
mapping each pixel to the index of the BMU in the H2SOM, which took
less than one min per image. The trustworthiness and the continuity indices
were computed at start and stop of each training period and plotted (see
Supplementary B for details). One can see, how these indices increase over
time and the H2SOM approaches a stable state which seems to show no
drastic topologic distortions such as wrong folds. Using the WHIDE tool
the results have been visually analyzed regarding different aspects. First,
the topology is qualitatively analyzed by moving the mouse cursor along
the border of color disc. One can observe the continuous changes in the
MCEP patterns while the color changes. Some example CIPRAs are shown
as bookmarks in Figure 2. One can see, that with changing color (from blue
to green to yellow to red) some markers go up (such as DAPI) and some
are going down and up again (such as EpCAM or CD133) or vice versa
(such as KI-67). The color mapping did not show any strong distortions, such
as CIPRAs with similar colors but different colocation pattern. The second
interesting aspect was how the WHIDE tool reacts to strong noise in the data.
In image T (n2), a strong noise signal can be observed for the CD29 marker
showing a large star-shaped group of fully saturated pixels. Such noise can
be observed from time to time in TIS imaging and from a data mining point
of view these signals form false outlier data clouds in the high-dimensional
colocation signal space. The right image of T (n2) in Figure 2 shows this
case and some magenta / blue spike of the noise pattern can be observed in
the right half of the image. However, the pattern does not have an influence
on the global color mapping, since both cases, T (n1) and T (n2), show
equivalent color mappings of their morphology and their MCEP patterns.
Third, we investigated WHIDE’s potential to reveal differences in MCEP
statistics and spatial distribution for cancer and normal tissue. To this end,
we apply the special WHIDE feature of a continuous interactive tuning of
the color mapping. The color mapping is changed in two ways: The color
disc can be rotated as shown in Figure 3, where we rotate the color disc, so
some regions are drawn in yellow, which are visible in T (c1) and T (c2) as a
small number of cellular/sub-cellular objects, marked with white ellipsoids.
The motivation to move these regions to yellow is that human observers
can perceive more color details in the green-yellow-red interval of the color
spectrum than in the bluish region. So the observer might discriminate more
colors i.e. different MCEPs for these regions now. In addition, the Möbius
transform is applied to move the nodes from the yellow region towards the
center, thereby, squeezing the opposing nodes all into the blue region of
the color scale disc (see Figure 3 Alower row on the right). Please note,
that the colors of the bookmarked CIPRAs are adapted accordingly. This
transformation has two important consequences: the majority of MCEPs
are drawn blue with a low color contrast (so the human observer does not
perceive many structural features) and the color contrast for a comparably
small subregion of the 11-dimensional colocation feature space, spanned by
the rest of the MCEPs is strongly enhanced. The selected individual MCEPs
of the selected regions can now be distinguished more easily and analyzed
in detail. This way, we enable a kind of a zoom in a N -dimensional space
which is interactive and continuously, so the user does not loose the context.
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Fig. 3. The H2SOM architecture provides the structural basis for a synchronized interactive dynamic pseudocoloring of TIS images. In the upper row, the four
TIS images T (c1), T (c2), T (n1) and T (n2) from left to right. The bottom row shows a small set of selected bookmarked CIPRAs. On the right, the color disc
is shown with its control buttons below. To change the coloring, the user can combine two functions. First, using the rotate-button, the user can turn the color
disc so that of the H2SOM grid which is of less interest is mapped to the blue area (since human observers are more sensitive to non-blue colors). Second, the
user can use the arrow buttons to change the Möbius projection, i.e. to move H2SOM nodes towards the center and squeeze the opposing nodes into a small
cloud. In this example the nodes from the upper right are moved towards the enhancing the color contrast for a chosen region of interest in one image (marked
with white ellipsoids).

For comparison we show results obtained with a Principal Component
Analysis (PCA). The PCA was performed on the same data set Γ∪ and
the feature vectors were projected onto the eigenvectors of the three largest
eigenvalues to map each pixel to three new coordinates (v1, v2, v3) which
were used for a RGB pseudocolor mapping for each image (Supplementary
C). While we again made the observation of a difference in colocation feature
statistics between normal tissue and cancer tissue, the PCA approach does
not feature the structural advances of the H2SOM which allow resolving
non-linear features and dynamic interactive manipulation of the colors.

5 DISCUSSION
The WHIDE tool shows significant advantages compared to other
approaches to MBI analysis. First, it is able to resolve and embed
non-linear data structures. This can be seen by browsing the
CIPRAs on the H2SOM visualization on the color disc. Moving the
cursor slowly across the discs shows the CIPRAs of neighboring

clusters. The CIPRAs show, that similarity in cluster prototypes is
reflected by vicinity in the H2SOM grid, i.e. the N -dimensional
data topology is preserved regarding local neighborhoods. A second
striking feature is the H2SOM visualization using the Möbius
transform which allows change of zoom in the N -dimensional
feature space by mapping a smaller number of neighboring clusters
to a larger area in the color scale. This way, particular groups
of MCEPs can be pseudocolored in higher color resolution while
the rest of the TIS image is colored with a very small part of the
color scale, i.e. with low contrast. Another positive feature of the
WHIDE approach is the reduction of the TIS data using vector
quantization as performed by the H2SOM algorithm which has
shown to resolve even small clusters and organize the clusters in
a hierarchical structure. If the CIPRA visualization is compared
to two classic methods such as bar graphs and star glyphs, it is
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evident that in the CIPRA display the association of proteins to
individual graphical attributes is much easier. Furthermore, besides
being able to rapidly identify the dominant proteins, an advantage
of the CIPRA display is that only features with high values allocate
space, whereas low value features are squeezed. Thereby, space is
only allocated proportional to the importance of the protein and
the total size of the CIPRA reflects the amount of information
provided by the prototype. In some applications, this might not be
a desirable feature so that bar graphs, or CIPRAs with constant
bar width would be more suited but in our current project this
has not been the case yet. Last but not least we must be address
the issue of preprocessing here although this is not part of the
WHIDE tool. The performance and effectiveness of any data mining
approach to MBI depends substantially on the preprocessing applied
to the data. Maybe the most important preprocessing step is local
alignment of the fluorescence images, if volume stacks are recorded
alignment must be applied in (x, y, z). If the images are not aligned
well, i.e. the image registration failed, the feature vectors extracted
for each point display fluorescence values (i.e. molecular signals)
from close but different anatomical sites. As a consequence, the
H2SOM clustering assigns vectors into false clusters which reflect
the misalignment. This would lead to false interpretations and must
be avoided. The problem would be even more serious if two or
more data sets are analyzed in comparison (like in this study)
but the registration fails only in a subset of the data. This could
lead to the false assumption that the false clusters are biologically
very interesting since they separate this subset of TIS images from
the others. Thus, the necessity for an accurate alignment of the
data cannot be overstressed. As a consequence we developed a
novel registration algorithm which is based on an alignment of
square subimages on the phase contrast images (Raza et al. (2012)).
Another kind of small false signal variations can be noise caused by
the imaging chip which can be reduced by filtering (as explained
in the Methods section). Another, sometimes more critical kind
of noise is a locally described over-saturation of imaging elements
leading to a nova-like artifact as in the case of this study in the CK19
tag image and in the CD29 tag image as well. We have tested the
effect of such a kind of distortions to the WHIDE performance and
showed, that these do not have a strong influence in the result so
masking these areas may be not necessary in many cases. However,
we recommend masking such regions and exclude this data from a
study.

6 CONCLUSION
Due to advances in machine learning research, nowadays internet
connection bandwidths and state of the art web graphics technology
enable a new level of multivariate bioimage analysis. Web-
technology allows a direct connection of researchers to the tools and
the result visualizations, independent from their whereabouts and
their computer system. Modern RIA technologies allow web-based
visualizations to be interactive and dynamic, which are prerequisites
for the analysis of MBI data such as TIS. Although we presented the
WHIDE tool in the context of TIS analysis it is evident that the tool
is applicable to other MBI data such as MALDI images as well.
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