
Dynamic semantics as monadic computation

Christina Unger

CITEC, Bielefeld University

Abstract. This paper proposes a formulation of the basic ideas of dy-
namic semantics in terms of the state monad. Such a monadic treatment
allows to specify meanings as computations that clearly separate context
updating and context accessing operations from purely truth conditional
meaning composition. Different behavior regarding the availability of ref-
erents throughout a discourse is modelled by adding structure to states,
more specifically by distinguishing between global and local contexts,
while relying solely on basic operations on sets and stacks.

1 Introduction

In the Montegovian tradition, formal semantics of natural languages are formu-
lated in terms of the lambda calculus, starting with a core set of types, lexical
meanings and simple composition rules. To account for phenomena such as in-
tensionality, new types are introduced and make it necessary to revise all existing
lexical meanings and composition rules in order to incorporate the new meaning
aspect. In order to simplify presentations and allow for uniform, compositional
and modular analyses of different phenomena, Shan [6] proposed to phrase for-
mal semantic accounts in terms of monads.

The concept of monads stems from category theory and became a key tool
for structuring the denotational semantics of programming languages [4] as well
as for modelling computational effects such as non-determinism, continuations,
state changes, exceptions and input-output [7]. Some of these concepts have also
been applied to the semantics of natural language, e.g. continuations for a treat-
ment of quantification [1] and exception handling for capturing presupposition
projection [3].

Shan [6] considers several monads well-suited for capturing semantic phe-
nomena: the (pointed) powerset monad for interrogatives and focus, the reader
monad for intensionality, and the continuation monad for quantification. Fur-
thermore there is a reasonable consensus that dynamic semantics can be phrased
in terms of the state monad, representing common wisdom of dynamic seman-
tic theories as stateful computations. Such a treatment was, e.g., provided by
Ogata [5] and Bekki [2]. This paper proposes a slightly different way to do this,
mainly relying on the structure of the state in order to capture different context
updating and accessing behaviors.

A monadic approach has two benefits. The first one is a clear separation of
those meaning aspects that affect the context from static meaning aspects in a
way that retains full compositionality. The second one is modularity. Since all

monads rely on the same primitives and composition rules, our state monad for
dynamic semantics can be composed with monads capturing other phenomena
such as intensionality and presuppositions in a modular fashion.

2 The state monad

A monad is a triple (M,unit,⋆), where M is a type constructor mapping each
type α to the corresponding monadic type Mα (objects of type Mα can be
thought of as computations that yield a value of type α), unit is a function of
type α → Mα that injects the value into the monad (i.e. it transforms a value
into a computation), and ⋆ (pronounced ‘bind’) is a function of type Mα → (α →
Mβ)→Mβ that composes two computations, where the second one depends on
a value yielded by the first one.

The state monad represents computations that read and modify a state,
where a state can be any kind of environment: a counter, a tree, a set of entities,
and so on. The type constructor M in the case of the state monad constructs
a function type that takes a state as input and returns a pair of a value and a
(possibly new or modified state) as output:

Mα = State→ (α × State)

We take State to be a type synonym for a set of entities, representing the context
that stores anaphoric possibilities in dynamic semantics. We will therefore use
variables c, c′, . . . for states.

The functions unit and ⋆ of the state monad are defined as follows:

unit x = λc.⟨x, c⟩
v ⋆ k = λc.k π1(v c) π2(v c)

Where π1 and π2 are functions that return the first and second element of a pair,
respectively.

Monadic function application @ of type M(α → β) → Mα → Mβ is com-
monly defined as follows:

k@ v = k ⋆ λf.(v ⋆ λx.unit (f x))

This can be read as the following sequence of computation steps: Compute k
and name the result f , compute v and name the result x, then apply f to x and
inject the result into the monad again. For the state monad, k@ v reduces to
λc.⟨f x, c⟩, i.e. the result of extracting the function and its argument from the
monad, applying the former to the latter and injecting the result into the monad
again.

For practical reasons, we additionally define a function ⊳ of type Mα →
Mβ →Mβ for threading operations that only affect the state without producing
a meaningful value, defined as follows: k ⊳ v = k ⋆ λx.v, where x must not occur
free in v. Introducing entities into the context will be an example for such an
operation.

3 Formulating dynamic semantics in terms of the state
monad

We first inject the familiar denotations of nouns, verbs, etc. into the state monad,
i.e. every denotation of type α will be lifted to a denotation of type Mα = State→
α × State. Then we will specify operations reading and updating the state and
add them to the denotations of proper names and pronouns. Finally, we will hint
at additions necessary for capturing quantifiers as well.

3.1 Lifting denotations to the state monad

Values are injected into a monad by means of the function unit. We thus start
from the familiar denotations and lift them to monadic computations by applying
unit. For the denotation of a common noun like unicorn of type e → t we thus
get a monadic denotation of type M(e→ t), i.e. State→ (e→ t) × State:

⟦unicorn⟧ = unit (λx.unicorn x) = λc.⟨λx.unicorn x, c⟩

Since we will use generalized quantifiers as noun phrase denotations, we use lifted
verb denotations of type gq → gq → t, where gq is short for (e → t) → t. They
are injected into the monad with unit, as before:

⟦whistles⟧ = unit (λP.P (λx.whistle x))
⟦admires⟧ = unit (λPλQ.P (λx.Q (λy.admire x y)))

Now suppose we lift the denotations of proper names such as Alice in the same
way, such that ⟦Alice⟧ = unit (λP.P a). Then we can compute the meaning of
Alice whistles by means of monadic function application:

⟦whistles⟧@ ⟦Alice⟧
=λc.⟨λP.P (λx.whistle x), c⟩ ⋆ λf.(λc.⟨λP.P a, c⟩ ⋆ λx.unit (f x))
=λc.⟨whistle a, c⟩

Thus, at the core of meaning computation nothing changes yet. We just intro-
duced a context paramater and used unit and @ to hide this parameter and
its threading. But what we actually want a proper name denotation to do is to
introduce a new entity into the context that can be picked up by pronouns later
on, for example in a discourse like Alice whistles. Bob admires her. We therefore
need a way to modify the state.

3.2 State changing denotations

In order to add entities to and extract them from a context, we introduce two
functions over contexts: ˆ of type e → State → State that adds some entity x

to a context c with cˆx being the enriched context, and a function sel of type
State→ e that selects an entity from a context.1

Now, in order to read and modify the context, we define two state changing
operations. The function new of type e→M () adds an entity to the context and
returns the unit value (actually it does not matter which value is returned,
since we will thread this operation using ⊳, which swallows the value):

new x = λc.⟨ , cˆx⟩

The function get of type (e → M(e → t)) → M(e → t) replaces an argument
position of type e by an entity selected from the context:

get m = λc.m (sel c) c

Now we can specify the denotations of proper names and pronouns as follows:

⟦Alice⟧ = (new a) ⊳ (unit λP.P a) = λc.⟨λP.P a, c â⟩
⟦her⟧ = get ⊳ (λx.unit λP.P x) = λc.⟨λP.P (sel c), c⟩

That is, we inject the familiar denotations into the monad using unit and addi-
tionally compose it with a state affecting operation.

3.3 From sentences to discourses

For sequencing sentences we specify a merge operation ⊕ of type Mt→Mt→Mt
that composes two sentences, where the second one should be interpreted w.r.t.
the context that the first one returns, and the returned value should be the
conjunction of the two sentence meanings. Since sequencing is already encoded
in ⋆, ⊕ can be defined straightforwardly (and in a way very similar to @):

s1 ⊕ s2 = s1 ⋆ λp.(s2 ⋆ λq.(unit (p ∧ q)))

This definition can be read as follows: Compute s1 and name the result p, com-
pute s2 and name the result q, then build the conjunction of p and q and inject
it into the monad again.

Take, for example, the sentences Alice whistles and Bob admires her. The
discourse of the former followed by the latter yields the following result:

Alice whistles ⊕ Bob admires her

=λc.⟨whistle a, c â⟩ ⊕ λc.⟨admire (sel c) b, c b̂⟩
=λc.⟨(whistle a) ∧ (admire (sel c â) b), c â b̂⟩

That is, Alice whistles is interpreted w.r.t. the input context c and updates it
by adding a. The subsequent sentence Bob admires her is then interpreted w.r.t.

1 Which entity is selected from the context should be determined by a pronoun reso-
lution mechanism, which is out of the scope of this paper. We therefore assume sel

to function as an oracle here.

this updated context c â and adds another entity, b, which could be picked up
by pronouns still to come.

That is, meaning composition proceeds as usual, and additionally an input
context (c) is related with an output context (c â b̂). In terms of DRT, a simple
DRS [x1, . . . , xn ∣ C1, . . . ,Cm] with discourse referents x1, . . . , xn and conditions
C1, . . . ,Cm would correspond to the lambda term λc.⟨C1∧. . .∧Cm, cˆxnˆ. . . ˆx1⟩,
i.e. one like the resulting lambda term from above.

3.4 Adding structure to states

The most interesting problem still remains: Quantifiers like most and every in-
troduce entities into the context that are not accessible beyond the scope of the
quantifier. E.g. in Every unicorn is eating Bob’s flowers. He adores it, the pronoun
it cannot pick up the entity introduced by every unicorn. This suggests that we
need a way to empty the context. However, since entities introduced by proper
names such as Bob are usually accessible throughout whole discourses (he in the
second sentence can pick up Bob as referent without a problem), not all of the
context can be deleted.

The solution we want to pursue here is to add more structure to the state.
States cannot simply be sets of entities anymore, rather they have to distinguish
local from global contexts. Quantifiers could then add entities into the local
context, which is emptied once the interpretation process leaves the scope of
the quantifier, whereas proper names introduce entities into the global context,
which is kept throughout the whole discourse. Now, since different quantifiers
can have different scopes, we actually need a local context for every quantifier
occurrence, so we will assume states to be a pair of a global context and a LIFO
stack (denoted as [⋅]) of local contexts, where contexts are sets of entities as
before (denoted as {e}).

State = [{e}] × {e}

Proper names introduce entities into the global context, quantifiers push a
new local context on the stack and introduce an entity there. The two definitions
of according functions are adapted versions of the function new ∶∶ e →M() that
we used earlier:

newglobal x = ⟨ , (snd c)̂ x⟩
newlocal x = ⟨ ,add x (top (push (fst c)))⟩

Where fst and snd are the usual functions for accessing the first and second
element of a pair, top ∶∶ [α]→ α is a function that retrieves the top-most element
from a stack, push ∶∶ [α] → [α] pushes an empty context on a stack, and add ∶∶
α → {α}→ {α} adds an element to a set.

Proper names use newglobal, i.e. the denotation of Alice, for example, is the
following:

⟦Alice⟧ = (newglobal a) ⊳ (unit λP.P a)

The interpretation of pronouns does not change at all:

⟦she⟧ = get ⊳ (λx.unit λP.P x)

We assume that the function sel still acts as an oracle that, given a state, selects
an entity now from the union of all contexts within this state.

Quantifiers like every, most, and so on, will use newlocal, i.e. add an empty
local context on the stack and add the variable they introduce to that local
context.

3.5 Quantifier denotations

Quantifier denotations differ from the denotations of proper names in that they
introduce an entity only locally, and empty that local context once their scope
is closed, so the introduced entity is not available as antecedent outside of the
quantifier’s scope. In order to capture this behavior, we assemble quantifier de-
notations using the following ingredients:

– the function newlocal that introduces an entity into a new local context
– the usual quantifier denotation lifted into the monad, e.g.

unit λPλQ.∀x.P x→ Q x
– a function clear that removes the local context of the quantifier from the

stack

We assume that the function clear has a way to recognize the context that
belongs to the quantifiers (e.g by adding an identifier to the stack elements, but
the exact mechanism does not matter here). Additional to that, we do not assume
anything else but the common stack operation pop, a function that removes the
top-most element from a stack. This means that if the local context of the
quantifier is the top-most one, it is simply removed, however if it is lower on
the stack, all contexts above it have to be removed as well, in order to reach it.
And this is exactly what we assume clear does.2 Here we do not give a precise
formalisation of all low-level operations involved in this kind of popping until
a certain context is reached, but hope that the concept is clear enough. Now,
assuming we have such function poplocal ∶∶ State → State that accesses the stack
of local contexts and pops all elements from this stack until (and including)

2 In many cases, different quantifier scopes can be closed in the order they were intro-
duced, which would make the clearing mechanism even simpler. Cases of quantifiers
outscoping each other, however, would require a slightly more sophisticated mecha-
nism of accessing and removing only a certain (possibly non-top-most) element from
the stack. Another solution is to exploit the modularity that monads offer by import-
ing a separate monadic treatment of quantifier scoping. Such a monadic treatment
could be built using the continuation monad, e.g. modelling the continuation ap-
proach to quantification proposed by Barker [1]. We will leave this issue for another
time.

the context that was introduced by the quantifier. Then we define the function
clear ∶∶ t→Mt simply as a function that applies poplocal to the state and leaves
the value of the computation untouched:

clear = λvλc.⟨v,poplocal c⟩

Putting together all ingredients for quantifier denotations, we would want
something like the following, i.e. a computation that inserts the usual quantifier
denotation (here for every) into the state monad and composes it with two state-
ful computations, one introducing the relevant variable into a new local context
and one removing this context again:

(newlocal x) ⊳ (unit λPλQ.∀x.P x→ Q x) ⋆ clear

However, specifying the denotation like this would have the effect of adding
a local context and immediately removing it again. Instead, we want clear to
apply only after the quantifier denotation received its arguments. In order to
achieve this, we have to lift the denotation and specify it as follows:

λPλQ.((((newlocal x) ⊳ unit λPλQ.∀x.P x→ Q x)@P)@Q) ⋆ clear

This denotation is no longer of type M((e → t) → (e → t) → t) but of type
M(e→ t)→M(e→ t)→Mt. It takes two arguments P and Q of type M(e→ t)
and feeds them to the quantifier denotation (newlocal x) ⊳ (unit λPλQ.∀x.P x→
Q x) using monadic application @, and applies clear to the result. I.e. the
monadic composition of the quantifier and its arguments is introduced explicitely
into the quantifier denotation, thuse quantifiers can be seen as taking control
over the involved computations. Nevertheless, nothing is added to the idea of
sequencing the three involved ingredients.

Let us look at a simple example: Every contestant thinks he wins. The deno-
tation of every was given above, the denotations of the other lexical items are as
expected:

⟦contestant⟧ = unit λx.contestant x
⟦thinks⟧ = unit λpλy.think p y

⟦he⟧ = get ⊳ λz.unit λP.P z

⟦wins⟧ = unit λx.win x

First we compute the meaning of the embedded verb phrase thinks he wins
by means of the monadic application ⟦thinks⟧@(⟦he⟧@⟦wins⟧). The result is the
following:

1. λc.⟨λy.thinks (win (sel c)) y, c⟩

Next, applying the denotation of every to the denotation of contestant, we
get:

2. λQ.((λc.⟨λQ.∀x.contestant x→ Q x, ĉ {x}⟩⟩@Q) ⋆ clear)

Where ĉ {x} stands for the state c with a local context {x} added. Finally,
we apply 2 to 1, which yields:

3. λc.⟨∀x.contestant x→ think (win (sel ĉ {x})) x, c⟩

Note that the function clear removes the local context {x} from the state,
thus the state that will play a role in further computations is the input state c,
while the state that the selection function sel applies to is still ĉ {x}.

At this point, we will not look into modelling varying scopal behaviors of
different quantifiers, which would require a paper on its own (or two), but rather
turn to indefinites, which exhibit a behavior that differs from quantifiers and
requires another way of updating contexts.

3.6 Indefinites

In contrast to quantifiers such as every, most, no, and the like, indefinites like a
unicorn differ in their behavior regarding the availability of introduced referents.
In a simple predication without scope-taking elements such as quantifiers and
negation, they are able to extend their scope arbitrarily far to the right, even
across sentences as in 4.

4. Alice saw a unicorn in her garden. It was eating the flowers.

Because of this property, such free indefinites are often assumed to not be
quantifiers. We follow this assumption and give existentials a meaning unit λP.P x
with a free variable x that is supposed to be interpreted existentially once truth-
conditions are assigned to a discourse. The scope of indefinites is, however, re-
stricted if they occur in the scope of a quantifier, see 5. But inside this scope,
they are free, as can be seen in a typical donkey-type sentence as 6.

5. Every formal semanticist saw a unicorn in his garden. #It was eating the flowers.

6. Every formal semanticist who saw a unicorn admired it.

That is, we want to capture that if there is a quantifier, the indefinite in-
troduces its referent into that quantifier’s local context, and if there is none,
its referent is added to the global context where it is available throughout the
discourse. To this end, we need a function slightly different from ˆ that decides
to which context to add the introduced referent. We refert to it as + and propose

its working as follows: If there is a local context stack in state c, add a new vari-
able x to the top-most3 context of that stack: add x (top (fst c)). Otherwise
add it to the global context: add x (snd c). A rationale for this is that since
existentials do not denote quantifiers, they do not have the force to open up a
new local context, thus have to add their referent to an already existing context
(be it local or global).

The denotation of indefinites now should contain the base denotation lifted
into the monad: unit λPλQ.P x∧Q x, as well as the stateful computation that
we call newfree:

(newfree x) ⊳ unit λPλQ.P x ∧Q x

Where newfree x = λc.⟨ , c + x⟩.
The goal is that the discourse in 7 receives the interpretation given in 8,

where ĉ x â refers to the state c where x and a are added to the global context,
and the discourse in 9 receives the interpretation given in 10, where ĉ {x, y}
refers to the state c with a local context containing x and y.

7. A unicorn barks at Alice. It is afraid.
8. λc.⟨unicorn x ∧ barkAt a x ∧ afraid (sel ĉ x â), ĉ x â⟩
9. Every gardener saw a unicorn.

10. λc.⟨∀x.gardener x→ unicorn y ∧ saw y x, ĉ {x, y}⟩ ⋆ clear
= λc.⟨∀x.gardener x→ unicorn y ∧ saw y x, c⟩

The difference is that in 7, the stack of local contexts is empty, as it is the
beginning of the discourse and no quantifier meaning was computed,4 while in 9
the universal quantifier pushes a local context on the stack, to which the referent
introduced by the existential will be added. Once all arguments of the universal
quantifier are provided, the state is cleared, thereby also deleting y, which is
thus not available as antecedent of later occurring pronouns.

Let us first look at example 7: A unicorn barks at Alice. It is afraid. In addition
to the above denotation of the existential a, we have the following denotations:

⟦unicorn⟧ = unit λx.unicorn x
⟦barks at⟧ = unit λxλy.barksAt x y

⟦Alice⟧ = (newglobal a) ⊳ unit λP.P a

⟦it⟧ = get ⊳ λx.unit λP.P x

⟦is afraid⟧ = unit λx.afraid x

3 The top-most stack is the one that is easiest accessible with the simple operations
we assume, and empirically it seems warranted that existentials are available as
antecedents only within the scope of the closest quantifier. E.g. the pronoun it in
Most women like all men who saw a unicorn and admired it can refer to a unicorn only
if the conjunction is interpreted as being within the scope of the universal all.

4 Even if there was a quantifier in the earlier discourse, its local context would have
been removed from the stack before encountering the first sentence of 7.

Composing the meaning of a unicorn barks at Alice yields the following:

(⟦a⟧@⟦unicorn)@(⟦barks at⟧@⟦Alice⟧)
=λc.⟨unicorn x ∧ barkAt a x, (c + x)̂ a⟩

Assuming that there was no previous discourse, the input state c will contain
no local context and an empty global context, so (c + x)̂ a refers to the state
where x and a are added to the global context. The denotation of It is afraid is
the following:

λc.⟨afraid (sel c), c⟩
Combining this with the denotation of the first sentence, we get:

λc.⟨unicorn x ∧ barkAt a x ∧ afraid (sel (c + x)̂ a), (c + x)̂ a⟩

Let us now look at example 9 with an indefinite in the scope of a quantifier:
Every gardener saw a unicorn. The denotation of the existential noun phrase a
unicorn is λc.⟨λQ.unicorn z ∧Q z, c + z⟩, and combining it with the denotation
of saw lifted in the second argument (unit λPλy.P λx.see x y) yields 11.

11. λc.⟨λy.unicorn z ∧ saw z y, c + z⟩

Now applying the denotation of every first to the denotation of gardener (which
is unit λx.gardener x) and then to 11 gives the sentence denotationa already
provided in 10:

λc.⟨∀x.gardener x→ unicorn y ∧ saw y x, ĉ {x, y}⟩ ⋆ clear
= λc.⟨∀x.gardener x→ unicorn y ∧ saw y x, c⟩

Treating indefinites in such a way, we compute their non-quantificational
reading (there is some unicorn that every gardener saw). In order to also get the
quantificational reading (for every gardener there is a possibly different unicorn),
we would need a quantifier denotation of the existential, such as the following,
completely in parallel to the denotation of every:

λPλQ.((((newlocal x) ⊳ unit λPλQ.∃x.P x ∧Q x)@P)@Q) ⋆ clear

Finally, a note on negation: Negation is a scope-taking element which restricts
the availability of referents introduced by indefinites just like quantifiers, as can
be seen in 12.

12. Alice did not see a unicorn in her garden. #It was eating the flowers.

If we want to treat these cases analogously to cases like 9 above, negation
has to push a local context on the state exactly like quantifiers, just without in-
troducing a referent. This is achieved, e.g., by assuming the following denotation
for sentence negation:

⟦not⟧ = λc.⟨ ,push (snd c)⟩ ⊳ unit λp.¬p

Note that, as in the other cases, this denotation consists of the usual deno-
tation lifted into the monad and composed with a purely state affecting com-
putation, thus it separates the truth-conditional part of the meaning from the
context changing one.

4 Conclusion

We used the state monad to formulate characteristics of dynamic semantics,
where the state was assumed to consist of a global context and a stack of local
contexts, with contexts being sets of referents. Different behavior of denotations
that introduce referents was captured by whether they were introduced into the
global or a local context and whether this context was cleared after computation
or not. Proper names were assumed to add a referent to the global context,
which is kept throughout the whole discourse, thus being available as antecedents
without restriction. Quantifiers, on the other hand, were assumed to push a new
local context with a newly added referent to the stack, and to clear this context
once their computation is finished, thereby making their referent available as
antecedent only within the quantifier’s scope. Existentials constitute a case in
the middle, being available arbitrarily long in a discourse if not under the scope
of a quantifier or negation, otherwise being restricted to the closest embedding
scope. We proposed to capture this behavior by assuming that free indefinites
cannot introduce a new local context (due to not having quantificational force),
thereby having to add a referent to an already existing context. We proposed
that this context is the top-most local context if there is one, and the global
context otherwise.

This monadic approach offers a computational view that separates stateful,
i.e. context updating or context accessing operations (restricted to basic opera-
tions on sets and stacks), from static, truth conditional meaning composition.

Furthermore, a monadic treatment fits nicely into Shan’s picture of a mod-
ular treatment of semantic phenoma such as intensionality, variable binding,
presuppositions, and so on. How our proposed state monad would combine and
interact with other monads, however, still remains to be worked out.

References

1. C. Barker. Continuations and the nature of quantification. Natural Language Se-
mantics, 10:211–242, 2002.

2. D. Bekki. Monads and meta-lambda calculus. In H. Hattori et al., editor, New Fron-
tiers in Artificial Intelligence (JSAI 2008 Conference and Workshops, Asahikawa,
Japan, June 2008, Revised Selected Papers from LENLS5) LNAI 5447, pages 193–
208. Springer, 2009.

3. P. de Groote and E. Lebedeva. Presupposition accommodation as exception han-
dling. In Proceedings of the 11th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, SIGDIAL ’10, pages 71–74, 2010.

4. E. Moggi. Computational lambda-calculus and monads. In Symposium on Logic in
Computer Science, Asilomar, California. IEEE, June 1989.

5. N. Ogata. Towards computational non-associative lambek lambda-calculi for for-
mal pragmatics. In Proceedings of the Fifth International Workshop on Logic and
Engineering of Natural Language Semantics (LENLS2008) in Conjunction with the
22nd Annual Conference of the Japanese Society for Artificial Intelligence 2008,
pages 79–102, 2008.

6. C.-C. Shan. Monads for natural language semantics. In K. Striegnitz, editor, Pro-
ceedings of the 2001 European Summer School in Logic, Language and Information
Student Session, pages 285–298, 2002.

7. P. Wadler. Comprehending monads. Mathematical Structures in Computer Science,
2(4):461–493, 1992.

