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Abstract

In this thesis an approach to single object detection is presented, aimed at use in
the context of service robots. The approach integrates suggestions for sample data
acquisition for real robots in typical environments and efficient algorithms for model
construction and detection. A novelty is that the early fusion of 3D and color data
per image pixel is explored in detail. In order to approach the challenge of sample
data acquisition, this fusion is used to provide segmented training views using 3D
masking shapes for segmentation. Combined with powerful feature points that have
been published elsewhere in the context of 2D vision, a new data representation is
derived. This representation, called feature frame cloud, is similar to the well-known
point cloud, but makes full use of the information delivered with 3D and color data.
Instead of points being the basic elements, here full coordinate frames are used. These
can be computed from the 2D feature point gradient, the 3D position, and the 3D
surface normal. Feature frames of object models can be described by their relative
position and orientation to an intrinsic object frame. The frames can be accessed
efficiently by the use of low-dimensional discrete keys consisting of stable attributes.
It is shown in this work, that the complexity for frame estimation using this new data
structure is low. Only two matching correspondences are required to fully determine a
frame. Efficient algorithms are presented for object model construction and detection.
The collection of training data in real-world environments is addressed explicitly.
Measurements, tests and demonstrations in the evaluation part of the document
show that the ideas presented are suited for the use on real robots. The low search
complexity to estimate a single object pose hypothesis, the robustness against large
fractions of background in the scene data and against object coverage, combined with
the learning ability, are seen as key advantages of this approach.
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Notation

In the following some of the symbols that are used in this document are listed arranged
in order of the related chapters. In the appendix of this document the conventions
are given.

R real numbers
R3 representation of the 3D Euclidean space

F ⊂ R3×4 frame space, three unit lengths orthogonal orienta-
tion vectors plus offset vector in R3

W ∈ F world frame
R ∈ F robot frame
E ∈ F end effector frame
S ∈ F sensor frame (in this document usually set to

S=W )
O ∈ F object frame
D ∈ F detected frame (the object frame relative to the sen-

sor frame)

S ∈ Rw×h×3×3 shared image
P ∈ Rw×h×3 coordinate image of the shared image
C ∈ Rw×h×3 color image of the shared image

w ∈ N width of the shared image
h ∈ N height of the shared image

u = (u, v)T ∈ N2 image coordinates in the range image and shared
image

pu,v ∈ R3 shared image point 3D coordinates in the sensor
system S

C ⊆ R3 color space containing red, green and blue values
cu,v ∈ C color values of a pixel position in the shared image

Cpu,v coordinates in the color imaging sensor system C
at (u, v)T

T ∈ Rw×h range image containing the time-of-flight values
(phase shifts) per pixel

xv



Notation

tu,v ∈ R a single time-of-flight value at a pixel position in
the range image

C ′ ∈ Rwc×hc×3 the raw color image from the color imaging sensor
wc ∈ N width of the raw color image
hc ∈ N height of the raw color image

uc = (uc, vc)T ∈ N2 image coordinates in the raw color image
c′uc,vc

∈ R3 color value in the raw color image
du,v ∈ R Euclidean distance of the shared image coordinates

at a pixel location
| · | absolute value (Euclidean norm) of a vector

d ∈ R Euclidean distance of a point
fx, fy ∈ R the focal lengths of the range imaging sensor in

pixel units
cx, cy ∈ R image plane center of the range imaging sensor

k1, k2, k3 ∈ R radial distortion coefficients of the range imaging
sensor

p1, p2 ∈ R tangential distortion coefficients of the range imag-
ing sensor

rnd : R→ N rounding function
x′ ∈ R2 projected point on the ideal image plane
x′′ ∈ R2 corrected point on the ideal image plane

RC rotation matrix from S to C
oC translation vector, base point of C in S

fx c, fy c ∈ R scaling parameters of the color imaging sensor
cx c, cy c ∈ R image plane center of the color imaging sensor

k1 c, k2 c, k3 c ∈ R radial distortion coefficients of the color imaging
sensor

p1 c, p2 c ∈ R tangential distortion coefficients of the color imag-
ing sensor

d′u,v ∈ R intrinsic divisor to compute the orthogonal (z) dis-
tance from the Euclidean distance

k, l,m ∈ R parameters for the distance computation
← value assignment in pseudo codes

Zbuf ∈ Rwc×hc z-buffer storage
zmax ∈ R maximal possible z-value

U ∈ Rwc×hc×2 pixel position storage of the closest points so far
I ∈ Rw×h gray-level intensity image of the range imaging sen-

sor

xvi



Ic ∈ Rwc×hc gray-level intensity image of the color imaging sen-
sor

O ∈ R3×k×l point set of the calibration rig coordinates
I ∈ R2×k×l 2D image point coordinates in the intensity image

of the range imaging sensor
Ic ∈ R2×k×l 2D image point coordinates in the gray-level image

of the raw color image
T ∈ Rw×h image containing the time-of-flight measures

I′ ∈ R2×k×l corrected 2D image point coordinates
T ∈ Rk×l set of time-of-flight values
D ∈ Rk×l set of distances

P ∈ R3×k×l set of points computed by using the extrinsic cali-
bration frames

P′ ∈ R3×k×l set of points computed by using the transformation
equations

En ∈ F extrinsic coordinate frame of the nth view

L ∈ F learning frame
Sseg ∈ Rw×h×3 segmented training image of an object view

Strain training set of shared images

s ∈ R feature point scale measure
φ ∈ [0, .., 2π] ⊂ R feature point 2D orientation

l ∈ N descriptor vector dimensionality
d ∈ Rl descriptor vector of a feature point

F feature frame cloud as enumerated set
m ∈ N number of different keys in a feature frame cloud
ni ∈ N number of frames associated with the ith key of a

feature frame cloud
F feature point tuple

k ∈ N4 discrete description key
i ∈ {0, 1, 2} image channel identifier or counting variable

r ∈ N discrete feature point radius
l ∈ {0, 1} Laplacian identifier
c ∈ Nnc cluster identifier, nc ∈ N is the number of clusters
b·c floor operation of type R→ R

Ftrain training set of feature frame clouds
k′ ∈ N3 description key prefix

xvii



Notation

s′ ∈ N discrete size label of a feature point
G argument feature frame cloud

Dk′ ∈ Rl×n descriptor partition of size n associated with the
key prefix k′

ck′(d) ∈ N function to retrieve the cluster identifier for descrip-
tor d at the key prefix k′

nc ∈ N maximal cluster identifier
tcls ∈ R threshold controlling the descriptor clustering

nu,v ∈ R3 surface normal at shared image position (u, v, )T
g ∈ R3 gradient vector
h ∈ R3 orthogonal axis vector
Hi ∈ F ith hypothesis frame
H ∈ Fn set n of frame hypotheses

dF : F× F→ R frame distance function
tF ∈ R frame threshold

c(Hi) : F→ N count of frames in the vicinity of tF for the ith
hypothesis Hi

H∗ best hypothesis frame
H∗ ⊂ H subset of H containing the hypotheses of the voting

cube with highest count
uF ∈ F rotation axis of a frame F

α ∈ [0, ..π] ⊂ R rotation angle of a frame F
θ ∈ [0, ..2 π] ⊂ R first component of the sphere coordinates of uF

φ ∈ [−π/20, .., π/2) ⊂ R second component of the sphere coordinates of uF

M object model feature frame cloud
S scene feature frame cloud

tsurf ∈ R Hessian threshold used for SURF features
R+ positive reals

ed ∈ R+ descriptor error rate
nfa ∈ N number of false alarms
nm ∈ N number of misses
nneg ∈ N number of feature points outside the object region
npos ∈ N number of feature points inside the object region
eF ∈ R frame error rate
h ∈ R hit rate

D̂ approximated detection frame D
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1 Introduction

In this chapter the context and problem that motivate this work are introduced. First,
applications that can profit from sophisticated perception abilities are presented.
Service robots are chosen to be of primary interest in this work. Then, the object
detection problem is introduced as the subject of this thesis. Finally, the ideas of this
work are summarized and an outline of the document is given.

1.1 Motivation for Vision

1.1.1 Pros and Cons for Vision

Today, we are surrounded by technical devices that contain mechanical, electronic and
software components. Computers and devices such as mobile phones have become
our permanent companions. It is expected that this trend will continue and that
there will be more applications for such systems to be found in the future.

Vision systems are enablers for future applications since they can be used for a
variety of perception tasks. Many applications in the modern technical world already
incorporate vision systems and there will certainly be more use cases in the future.
Some of the attractions of using vision are:

• Imaging sensors deliver a huge amount of information in one image frame.

• Not only is the high spatial resolution attractive, but also the time for frame
retrieval is constantly decreased with the introduction of new products.

• The hardware on which vision algorithms run is constantly being accelerated
and special purpose hardware speeds up processing. Also, special purpose hard-
ware from other domains, such as graphics processing units (GPUs), can be used
for faster computation.

• The images capture a large part of the physical environment, i.e. the field-of-
view is large compared to other (e.g. single point) sensors.

• There are already many vision algorithms available in commercial and open

1



1 Introduction

source software libraries that can be used to cover new problem domains.

However, there are also some drawbacks to vision:

• Many current algorithms in vision are not stable enough to provide the relia-
bility needed in e.g. industrial or domestic domains.

• A vision system can be too expensive. For instance, many vacuum cleaning
robots that are currently on the market do not incorporate a vision system due
to high cost. Although vision sensors can be quite cheap, the processing re-
quirements may quickly exceed those of the embedded micro controller systems
integrated in such products.

• Many problems that e.g. human or animal vision systems can solve are not yet
solved in computer vision. Furthermore, some problems can be better solved
with specialized sensors. For instance, large area position estimation can be
solved by using a global positioning system (GPS).

1.1.2 Vision Applications

One new technical device that could play an important role in the near future is
the service robot [68]. These are devices aimed at helping humans in their daily
life. Ideally they operate reliably and safely in typical household or other domestic
environments to the satisfaction of their user. Typical tasks they perform may involve
the physical manipulation of objects. A distinguishing attribute of the future service
robot from those available today (e.g. robot vacuum cleaners) is that they will be
multi-functional. Necessary capabilities are to provide many different services, learn
new skills, and interact closely with the environment. The environment may include
humans that want to interact with the robot. Furthermore, the environment contains
objects such as tools that the robot could manipulate or use. In this sense the idea
of such a multi-purpose robot can be seen as a first attempt to realize the idea of the
first-generation universal robot defined in [51]. The author optimistically dated the
arrival of first-generation universal robots at around 2010. In a number of projects
(e.g. [59]) researchers are actively developing control components of these robots.
One output of these developments is the Care-O-bot® 3 robotic hardware platform
([24] and [61]) shown in figure 1.1 (left). Another example is the technology platform
of the project Desire [59], shown in figure 1.1 (right). The home robot league of the
Robocup competition series [63] provides more examples.

The hardware of the robot consists of sensors, actuators and computation compo-
nents. The robot needs sensors in order to receive what happens in its environment
and actuators (e.g. motors or speakers) to change the environmental state. The
actual design of the hardware depends on the task domain (e.g. needed manipulative

2



1.1 Motivation for Vision

Figure 1.1: Two examples of service robot research platforms. On the left the Care-
O-bot® 3 is shown and on the right a newer platform that includes two
manipulator arms. Both robots are equipped with various sensors and
actuators and were used during the work related to this document.

and perceptual capacities), type of the environment, and available sensor-actuator
and computation technology.

One may split the overall software of the robot roughly into the basic installations
(operating system, drivers for sensors and actuators, libraries, etc) and those com-
ponents that constitute the control system. These mediate between the sensors and
actuators in order to transform the inputs from the sensors into actions applied to
the environment. The control system’s purpose is to provide an operation ability to
the robot such that it can provide services to the user. A useful working distinction
is between physical and informational services. Physical services are those that in-
volve the physical manipulation of objects or involve physical contact with the user.
Informational services are those that are related to communication. For instance the
robot can serve as an easy-to-use Internet access based on speech dialog.

Vision systems are used in modern robotics in order to provide data about partial
information of the current state of the environment. The primary attraction of the use
of vision in service robot control is the large amount of data available at fast update
rates. Based on the image data and subsequent recognition processes, decisions can
be made. Instant or future actions may be triggered or planned. Some possible
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applications for vision systems in robots are given in the following list:

• mobility: goal following, localization (metric, symbolic), obstacle avoidance

• manipulation: object detection (position, pose, state, category), collision mon-
itoring, object tracking

• human-robot interaction: human detection, human identification, tracking of
body-parts (e.g. to support gesture recognition or safe interaction), face analy-
sis (emotional state recognition, viewing direction), speech recognition support

This set of applications is meant to be illustrative, not exhaustive. The vision system
is an important component of the control system. Other components within the
control system interact with the vision system. Typically, receiving components
require some high-level information from the vision system in form of e.g. symbolic
(predicate logic statements) or geometric information. Then the robot’s world model
can be updated and suitable actions can be selected. Direct coupling between vision
and action selection is also possible, e.g. for reactive obstacle avoidance or person
following.

Vision systems are not only important components of robots. A variety of appli-
cations in the modern technical world already incorporate vision systems and there
will certainly be more use cases in the future. Some examples are listed below:

• automation: quality control, object detection, counting, safety systems, goal
following, localization, obstacle avoidance

• security systems: entry control (person detection and identification), warn-
ing/alert systems

• medical applications: assistance in diagnostics, operation guidance/assistance

• video games/virtual reality: gesture recognition/tracking, action capture

• digitalization: scanning of large areas/buildings and generation of virtual mod-
els

1.2 Object Recognition

What is object recognition? In this section two quotations are discussed which try to
answer this question. The first quotation (see [57]) stems from the field of artificial
intelligence while the second quotation (see [19]) is an objective of the more specialized
field of computer vision. The first quotation is:

[...] the system must, based on the camera image, identify the corresponding
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object. The problem is that objects can change their appearance because of
viewing positions, photometric effects (e.g., light conditions), object setting
(e.g., different backgrounds), and changes in shape (e.g., animals). The core
problem in object recognition is to somehow relate the many views that one
and the same object can generate. For example, a car can look very different
depending on the viewing position, but it is always the same car.

It is stressed that the object itself and the general scene conditions can generate many
different views. An extension to this might include the variations within general
object categories. In the second quotation the problem is described in terms of
requirements for an ideal (fictive) object recognition system:

The ideal object recognition system would

• recognize many different objects:
This is much more difficult than it sounds: To recognize large numbers of
objects, we need to know how to organize them into a data structure that
is easily searched given image data. In particular, we need to know what
measurements can be used to distinguish between objects as opposed to
distinguishing between instance (one cat may be tabby, the other gray:
they are both cats).

• recognize objects seen against many different backgrounds;
Again, this appears to be difficult. Ideally, an appropriate object repre-
sentation would help by organizing the image into segments that might
have come from an object category (without reference to a particular
instance) and those that could not.

• recognize objects at an appropriate level of abstraction.
Humans do not need to have seen a particular chair before they know it
is a chair. Ideally, our programs would be able to recognize both leopards
and cheetahs as spotted cats before drawing a distinction. Just precisely
what is an appropriate level of abstraction is mysterious; at least part of
the issue is tied up in the question of recognizing many different objects.

In contrast to the previous definition of the object recognition problem, here the
problem of category detection is included as well. Further extensions of these capa-
bilities are the recognition of functions of objects or the detection of the states of
parameterized (articulated) objects [46].

1.2.1 Localization of Objects

In the quotations given in the previous section, the terms “recognition” and “identi-
fication” were not defined. The scenarios can be used for clarification:

• An object is presented in a segmented way or with some spatial reference (e.g.
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the user points to the object) and the robot must tell “what” object it is.

• The user tells the robot which object he wants and the robot finds out “where”
the object is.

• Complete scene analysis: an estimate about which can be seen and where they
are.

In the “what” and “where” cases one can distinguish between different levels of object
abstraction, e.g. specific objects (“my red cup”), object categories (“a cup”) and more
abstract categories (“dishes”).

In this thesis the “where” part is the subject of interest related to specific ob-
jects, not categories. The “where” is given some geometric meaning. It relates to
a coordinate system that is attached to a rigid object that has to be found in the
scene. A robot that has to manipulate the object has to “measure” the relative po-
sition and orientation of this system in order to derive further information such as
grasping point positions. In figure 1.2 this setting, including important coordinate
frames, is shown. Note that for description purposes, in this document a general
frame A is notated with a large letter associated with a four-tuple of origin and axes
vectors, i.e. A = (oA, iA, jA,kA) ∈ F ⊂ R3×4 where the real numbers R3 represent
the Euclidean space in millimeter units. Furthermore, the notation C = AB is used
to describe the frame C that expresses how B is located and oriented relative to A.
The computations necessary to operate on coordinate frames are given in [14]. Here
a simplified notation is used. The transformation matrix is not written explicitly. In
the appendix of this document the notation conventions are given.

The geometric setting of object and robot includes a world frame W that is the
neutral frame in which all other frames are expressed. Furthermore, a robot frame
R, the end effectors frame E, and the sensor frame S belong to the robot and can
be moved independently according to the kinematic equations involved. The object
frame O is assumed to be attached to the object. An assumption in this work is that
the object is rigid, i.e. it does not possess any internal degrees-of-freedom (DOF) nor
is it plastic. To estimate the conversion frame from O to S is the basic problem of
object localization. This is notated with D, i.e. the frame D = SO describes how O
is located and oriented in S. Therefore, if D is known then also O is known since
R is known by the localization system of the robot and RS is based on the known
kinematic relationships inside the robot. Finally, the object position and orientation
can be expressed in robot or world coordinates as a basis for further actions.
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Figure 1.2: The geometric setting of object placed on a table in front of a robot. It
includes a world frame W , a robot frame R, an end effector frame E, an
object frame O and the sensor frame S. The conversion from O to S is
the basic problem of object localization. This is notated with the frame
D = SO that describes how O lies in S.

1.2.2 Learning Object Properties

A second criterion not treated so far, is whether recognition can improve over time
based on experiences made with the object. The learning ability of humans is enor-
mous; we can learn object appearances, behavior and functions through interaction
with the object. The more learning capabilities are provided by a robot object recog-
nition system, the more open-ended is the system. If an object cannot be recognized
the first time, it can be learned and recognized subsequently. Ideally, this would be
possible for single object instances of a certain category and also for category prop-
erties (e.g. when the robot knows what many “cups” look like, then it does not have
to be taught each new instance of the category “cup”). Only a system capable of
learning is useful in real-world application scenarios. Hence, in addition to the local-
ization problem, a second interest in this thesis is the learning ability of the object
detector.
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1.3 Outline of the Approach

1.3.1 Basic Design Decisions

Some basic design decisions that are seen as working assumptions or hypotheses in
this work have been made. Therefore, not all of them are exhaustively defended
against alternatives in this document.

• The first assumption is that a visual approach is chosen. There can be var-
ious technologies used to detect objects in the robot’s working environment
(e.g. the use of RFID transponders attached to the object or intelligent en-
vironments). Typically these methods require the preparation of objects or
environment, resulting in a need to organize different technology contributing
parties. Therefore the visual approach seems reasonable. Another issue is that
other, e.g. tactile, sensors can be used for grasping objects. However, these
systems cannot estimate the object position in a larger region of space.

• The second working assumption and approach is the use of both RGB and
3D camera as separate devices. The need for 3D information in the context
of object recognition is obvious since the size/distance of unknown objects or
precise object shapes cannot be sufficiently detected with 2D color cameras
alone. 3D data can be reconstructed from multiple 2D images but only reliably
at matching locations. The use of two separate cameras for 3D and color in
this work is because only very recently combined sensors have been developed.
However, the use of two different imaging devices is still interesting in practical
applications, as the two sources can be chosen depending on the application
needs. Advances in resolution and speed related to both technologies can be
combined easily.

• The third working hypothesis is that learning with on-board sensors is a good
way to approach the extensibility of the robot’s perceptual capacities. Object
models could also be downloaded from the Internet by the robot. This requires
manufacturers to publish models or for models to be scanned with some stan-
dard sensor devices. The main objection here is the organizational burden of
the standardization, collection and distribution of this data as well as its adap-
tion to specific robot hardware. An additional advantage using the on-board
sensors is that error effects specific to a particular robot hardware operating in a
specific environment occur at learning as well as during perceptional operation.
Hence, some error effects can be nicely by passed.
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1.3.2 Overview of Prior Approaches

As noted in the previous section, the focus in this work is on the localization of
specific objects and how this can be done efficiently with models that can be learned
on-line, i.e. during the robot’s operation. In the following, some aspects of earlier
works that gave rise to the approach introduced in this document are described. Here
only a brief overview is given. More details and references to important publications
are discussed in chapter 2.

Trainable classifiers such as artificial neural networks or support vector machines
(SVMs) can be used for tasks like handwritten character recognition as described
in [73]. The basic idea has been applied successfully to images that contain objects
seen from different view angles e.g. in [58]. There are improvements to achieve
robustness against partial occlusions and other disturbances in [64]. The problem
with these “pure” learning approaches is that many effects that typically make object
recognition in arbitrary scenes difficult must be communicated through the training
set. This leads to a combinatorial explosion. Furthermore, in some works complete
image patches are subject to classification. This means that the image position
of the patch of interest must be pre-selected somehow. It follows that complete
object detection as would be desired is not to be solved based only on these methods.
However, the advantage of learning approaches is that object properties do not have to
be modeled explicitly, only the example views must be given. In real-world scenarios
it is easier to provide sample views than correct and complete geometric models.

Modern feature points such as SIFT or SURF ([47] and [4]) are made invariant
against typical effects in vision, e.g. changes in position, size, brightness or even affine
changes. This means that these invariant attributes need not be communicated with
the training setm, as would be the case for a pure classifier-based approach. Generally,
the system components that follow the feature point extractor (e.g. matching or
classification components) may be less complex due to the properties of powerful
feature points. Also partial object coverage can be tolerated if smaller subsets of
feature points are sufficient for detection purposes. Therefore, approaches to (single)
object detection are quite successful using feature points with matching descriptor
level together with some global voting on pose consistency method. Using 2D feature
points without any depth estimation leads to the problem that 3D models cannot be
constructed. The feature point’s size in pixels cannot be related to the real size in
meters.

A third category of approaches works with range data directly. Geometric shape
descriptions can be used (see [69] or [1] combined with some iterative model fitting
strategy. Also so-called spin-images [35] and local shape context [6] can be used for
modeling and recognition based in range data. These approaches do not use the
texture information obtainable with color cameras. However, intensity, color and
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contrast information can provide very distinctive features. Objects may have the
same 3D shape, but different surface texture.

More recent and current work focuses on the use of color and depth information
for recognition. The presented work can be seen as part of this new direction. On
the one hand there are algorithms e.g. as part of the point cloud library (PCL)
(see [44]) that work on point cloud data that is further augmented with attributes
such as color information. The problem with approaches working on dense point
clouds is the high data volume that has to be processed. Therefore, current work
concentrates on how such algorithms can be implemented in parallel, to be executed
on GPUs or on multiple processor cores. A second direction that uses 3D and color
data are approaches that work on multiple 2D images (e.g. stereo-vision) to recover
the depth information of feature points. The advantage is that there are typically
fever features with augmented 3D positions than 3D points in the dense point clouds.
The problem is the missing shape information other than the 3D point locations of
the features. Furthermore, the existence of the features used is a necessity and the
depth estimation step requires an extra feature matching process. Examples for these
approaches are [22], [43], and [26]. With the use of both 3D and color information it
becomes possible to use distinct features. Both modalities can be integrated in one
approach either feature type can be enriched. These opportunities lead to interesting
new research directions.

1.3.3 Basic Ideas of this Approach

The idea behind the approach presented here is to use powerful feature points aug-
mented with 3D information. Here the 3D information stems from a 3D range image
that contains a depth value for each image location. Therefore the normal orienta-
tion can be included as a further attribute in addition to the 3D position. Together
with the 2D feature point gradient, full (6D) poses can be defined for each feature
point [38]. Also, the general availability of range and color information is explored
in the context of robot object learning. Construction of a range/RGB sensor can be
done by using two separate cameras, one for range and one for color images with soft-
ware components that provide the necessary transformations. Using this information
some simplifications are possible:

• The first possible simplification enables sample data acquisition. Most of the
approaches that are reported in the overview of the previous section do not
incorporate any means of automated sample data production. Usually they
rely on a “clean” object training set given a priori. In the work here, the
combined 3D and color data provide means to extract such training sets during
the operation of the robot. The segmentation method effectively “cuts” out the

10



1.3 Outline of the Approach

Figure 1.3: Illustration of the main areas of work in this thesis. The fusion of range
and color information feeds to the segmentation and sample acquisition
part Ê. The segmentation and sample acquisition produces training sets
for the model construction Ë. Model detection reads in the sensor data
Ê and the constructed model from the training sets in order to detect it.

object appearance in the image using 3D context information. In this thesis
solutions are provided on a conceptual level of how to retrieve this context
knowledge in real-world learning scenarios.

• A second opportunity that comes with the combined data is a simplification
and improvement of object model construction and detection. Complete coor-
dinate systems are built on object surfaces at feature point locations. If these
systems are stable, then a one-one correspondence pair consisting of a object
model feature point and a scene feature point can reveal an approximate pose
already. Many such hypotheses can be generated very quickly and stored in an
accumulator data structure. Dense regions in the accumulator lead to the final
object pose. Based on some experiments, it is shown that detection is possible
even if large regions of the object are covered and even if the fraction of pixels
that belong to the object is very small compared to the full scene.

The whole approach of this thesis is split into three main work areas as shown in
figure 1.3. An important point that separates this work from others is the integral
treatment of these areas. Furthermore, novel ideas within these topics are presented.

11



1 Introduction

1.4 Organization of this Document

The thesis is structured as follows. First, chapter 2 introduces related work that is
seen as background for this thesis displaying the state of the art. Then, chapter 3
gives a more detailed problem formulation of what kind of questions are tackled in this
work, followed by an overview of the components that are selected, integrated, and
further developed. There are three individual chapters devoted to the technical areas
shown in figure 1.3. Chapter 4 treats the transformations and calibrations needed for
sensor fusion. How the combined information can be used to acquire training data
sets in real-world learning scenarios is the subject of chapter 5. Then in chapter 6
the extraction of feature points and the construction of local coordinate systems
at feature point locations is described. Model construction and detection are also
treated in chapter 6. Chapter 7 contains results including outcomes of experiments
and tests. Finally, chapter 8 summarizes the work presented, draws some conclusions
and discusses improvements and future work.
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In this chapter a selection of some foundations, methods and algorithms that are seen
as background for this work are presented.

2.1 Classical Vision and Recognition Paradigms

In [28] general vision stages of typical object recognition systems are described. These
are shown in figure 2.1. They comprise a generic framework for object recognition.
Conditioning is the process that prepares the image e.g. by noise removal. Labeling
assigns a discrete label to each pixel in the image. If there are only two possible labels
this is called binarization. The goal of grouping is to find connected regions of pixels
that belong to the same label. Extracting is the process of computing some geomet-
rical description for each region. Matching is the final process of identification. It is
verified whether or not the extracted shape matches the object being searched. This
scheme structures typical robot vision systems. It stresses the top-down processing
of data during which the important information is extracted from the images while
the volume of data is reduced. These stages are very basic and can still be found in
modern vision systems.

Another view of vision systems is that of a general pattern classification system
that has a sensor input and outputs a discrete label. The input could be an image
and the output a decision on the result, e.g. “this is object X.” Generic stages
of a pattern classification system are listed in [16] and shown in figure 2.2. Here,
the data acquisition process is termed sensing. Similar to the labeling and grouping
operations, introduced above, the next stage is segmentation. However, segmentation
is more general. It means that pixels can be grouped according to whether or not they
belong to an object. Segmentation is followed by feature extraction. A segmented
region is processed with a feature extractor that converts the region into feature
vector. This is a vector that consists of a selected set of task dependent attributes
that were chosen during the system design. During the classification step the classifier
processes the feature vector and outputs a class label. The post-processing stage can
be used to include additional information such as context knowledge to improve
the confidence of the result. The difference between the classifier approach and the
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Figure 2.1: Classical stage model of vision systems.

Figure 2.2: Generic stage model of pattern classifier-based systems.
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stage model shown in figure 2.1 is that (typical) classifier systems are not tuned to
geometrical perception tasks such as object localization or measuring orientation, but
to rather qualitative outputs such as object categorization or detection of “faulty”
cases in a quality control system.

2.2 Newer Approaches to Robot Vision

Top-down vision systems (see figure 2.1) fit to the classical sense-plan-act control
scheme. New considerations on robot control architecture such as goal-directed
behavior-based control have come up with new views related to robot control. Here,
parallel behavior modules run simultaneously, each representing a certain goal of the
system. The new approaches to intelligent robot control also have an effect on how
vision can work in such a system. Instead of processing a complex image analysis
sequence, special information is passed directly to the control modules (see [2]). The
close coupling of sensors and actuators allows for behavior learning. Experiments
reported e.g. in [52] and [76] are early examples of visual-motor learning.

There is a direct closed-loop approach that includes both vision and action in
a goal-directed scheme. In the context of visual servoing [37] a closed-loop motor
controller measures the feedback with a visual system. For instance, this allows the
robot to grasp moving objects or compensates for errors of the initial pose estimation.
Visual servoing can be applied to grasping tasks by a so-called in-hand mount of the
vision sensor where the camera sits on the gripper. The discipline concentrates on
the question of what vision pre-processing strategies are suitable and which control
systems have to be chosen. Simplifications of both sides (control and vision) are also
possible due to this integrative view.

The link between vision and action has also been reconsidered on the vision side.
In the field of active vision [8] the assumption is that the camera can be moved by
actuators which are controlled by the active vision system. Active vision addresses
questions like how to acquire structure from controlled motion, general tracking,
active focusing of attention, and sensing strategies to acquire data efficiently.

In manipulation-driven vision ( [18]) the objective is to use manipulation to seg-
ment objects if a visual approach fails (e.g. object and background colors match).
Closely related to this field is another topic that emphasizes the close interaction
between vision (perception) and action, called embodied vision [3]. Here, the need
for human-robot interaction is addressed in addition to the use of actuators. Further
works focus on how vision can be combined with additional perceptional sources. For
instance, force measurement sensors (see e.g. [75]) can be used.
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2.3 Algorithms for Object Recognition

2.3.1 Pure Learning Approaches

As introduced in the previous section, object recognition can also be seen as a general
pattern recognition problem. The typical assumption made is that objects are shown
in a database at similar scales, cut out from the background at various rotational
positions (e.g. generated with a turn table). Examples of reference databases of this
sort are the COIL database [53] containing 100 objects each seen from 72 views (i.e.
+5◦ rotation steps) or the ALOI database [21] that contains 1000 objects (also 72
views per object). In this setting the actual problem to be solved is to label the image
with a distinct label associated with the object. The fields of computational learning
theory and statistical learning theory) focus on algorithms that learn from samples
given. There are three general problems investigated that can all be related to object
recognition:

• Pattern recognition: the sample set is given together with output labels that
have to be estimated after the algorithm is trained. In the simplest case, binary
classification, there are only two values possible. Multiple class problems can
either be solved by a network of binary classifiers or in some cases the algorithm
itself can handle multiple labels. The relation to object recognition is that the
input vectors can be directly sub-sampled from image data or that there is
some preprocessing that provides for feature vectors of fixed dimensionality.
An output label might denote a specific object or some general category. One
early example of object recognition using classifiers on raw images is [58].

• Regression estimation: the goal is to derive numerical functions from high di-
mensional input data. The output space is typically a value in R but can be
increased in the number of dimensions by using a collection of regression esti-
mators. This could be related to compute orientations of an object based on
the pure appearance.

• One-class learning: only the input values are given. This is also called unsu-
pervised learning. The advantages of one-class machines are their suitability if
the number of classes is unknown initially and the possibility of novelty detec-
tion [67].

There is a large set of algorithms available today. The SVM is a modern type of
learning machine that has outperformed most other classical systems in a variety of
applications since it was introduced [12]. A network of binary (two-class) SVMs was
applied successfully to object recognition by classifying complete object images [58]
of the COIL database (see [53]). Further experiments are reported with good results
even if noise is added, the object is shifted in 2D, or the object is partially covered.
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A continuation of this work with further improvements is presented in [64]. This
system improves translation invariance and adds scale and background invariance.
The latter is realized through adding artificial object views with white backgrounds to
the original samples of the data set that have black backgrounds. Also, an incremental
hierarchical discriminant regression tree can be used as an on-line- earning machine
to classify complete images [77]. In the paper successful experiments to achieve
invariance against 2D orientation of images are reported.

2.3.2 Modern Invariant Feature Point Detectors

Complete images can be indexed with an object label by using powerful learning
algorithms as described in the previous section. There are, however, problems if these
methods are used alone to build an object detector that has to detect objects under a
large range of transformations (3D position, 3D orientation, camera parameters, etc)
and other disturbances (e.g. shape deformations, occlusions, coverage, shadowing,
etc). In detail the following problems occur with systems that are purely based on
learning direct object views:

• Many object views must be presented in order to capture the full object infor-
mation.

• There is a need to produce “artificial” training samples as e.g. done in [15] to
account for many possible transformations.

• If the object has internal degrees of freedom, then also many state settings must
be produced.

• In detection mode it is difficult to determine which region to select out of the
scene data.

• Object-background separation is difficult if there is no knowledge about the
object and background available.

So-called feature points help to overcome some of the difficulties mentioned above.
They can establish a connection between the visual appearance of an object, its parts
and the real underlying geometric shape. The idea is based on the fact that the image
contains some salient regions or points that are detectable under many variations
like 2D translation, 2D scaling, 2D rotation, affine changes, intensity variations, or
noise. The second idea of feature points is that they also contain regional information
collected in a high dimensional vector, called descriptor . The descriptors can be
used to discriminate between feature points. Feature point detection and descriptor
computation need to be stable against the same image transformations. There are
different research groups actively investigating alternatives methods related to both
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the detection of stable points and descriptor computation. In [66] a general concept
for feature point comparison is introduced based on the concepts of repeatability of
a feature point and information content of the descriptor. A first such feature point
was introduced in [50]. These are based on a local discrete window that is shifted in
several image directions. The differences to the origin (central) window are summed
up. Therefore, features are selected that are defined stably in their 2D position. The
features were improved in [29] using the autocorrelation matrix which is related to
the Hessian matrix. These so-called Harris features were further improved in [66] by
a more precise and faster localization method.

A fundamental extension to feature point detection is to use a pyramid represen-
tation of an image called scale space. A multi-scale version of the Harris-features was
introduced in [49]. Scale invariant feature transform (SIFT) feature key-points ([47])
perform well in database tests and there are several applications using these features.
The (binary) software can be downloaded at [45]. There are further implementations
e.g. at [30] and others. There are also activities that port SIFT either to special-
ized hardware [10] or to compute feature points based on the GPU [79]. A common
interest is to improve feature detection by:

• Reduction of the descriptor dimensionality

• Speed up of the computation time

A significant speed up in computing the scale space is the use of an integral image. A
well-known method for fast object detection using features based on integral images
is [74]. An integral image-based variant of the SIFT features is published in [48], the
FastSIFT detector. It is a fast algorithm that is based on box filters realized with
integral images and on some simplifications compared to the original SIFT approach.
The improvement in computation time in comparison to the original SIFT is about a
factor of eight. The feature point quality is comparable. Another new type of feature
points is the so-called speeded-up robust features (SURF) detector [4]. This method
is based on a fast Hessian computation that is performed using the scale space.
The feature point descriptors are histograms of Haar-like wavelet responses that are
summed up to four different measures: sum of dx, sum of |dx|, sum of dy, and sum
of |dy| over different frequencies. These values were selected based on experiments
including different possible regional attributes. The authors show that these features
are faster and more accurate than other state-of-the-art detectors. Other promising
attempts related to feature points are the star features that can be used together
with the fern method for matching ([56] and [55]) and the more recently appeared
BRIEF features [9].
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2.3.3 Feature Points and Classifiers

So far, the classifier methods and approaches using feature points were introduced
separately. However, they can also be combined in order to recognize a single object
or to detect general object classes. In the following, some examples of such approaches
are briefly introduced.

In [40] SIFT feature point descriptors are classified based on one-class SVMs. A
popular approach uses a cascade of weak threshold-based feature classifiers to detect
objects [74]. An AdaBoost [20] learning strategy is used to select for those features
that minimize the overall error. The result is a trainable single-object detector that
works on gray-level images. However, this method takes a long time for training
since all features of all sizes and width/height ratios need to be considered. However,
detection is very fast since only a subset of features is used for matching. In [80]
local (PCA-SIFT) and global contour features are fed into an AdaBoost classifier
network. The novelty is that also the types of important features are selected using
the AdaBoost procedure. Experimental results demonstrate a high performance of
this method in detecting unknown objects of a trained category.

2.3.4 Geometric Models and Matching

The detection of the object’s presence in the scene can be carried out virtually mov-
ing the object to some part of the scene where it fits. In this case detection is tightly
interlinked with pose estimation. The data representations and matching algorithms
that allow for robust and fast geometric matching were and are subject to research.
In industrial applications, the computer aided design (CAD) models of objects are
sometimes available. They can be used for detection and pose estimation in gray-
level images or based on depth data acquired by some range sensor. Mathematical
functions can be used to model and detect objects as single or compound basic geo-
metrical bodies [1]. Also deformable objects such as Superquadrics can be used for
object modeling. In [34] several types of Superquadrics are introduced together with
additional operations for global bending and tapering. In [40] multiple Superquadrics
are combined into an object model. Another popular shape representation is the tri-
angular mesh-grid. Mesh-grids model the surface shape as neighboring triangles.
These models have also been used for detection and pose estimation in robotics (see
e.g. [70]). Furthermore, oct-trees can be used to represent 3D shape. This is espe-
cially interesting due to the possibility to inspect coarse structures fast (e.g. real-time
obstacle avoidance).

A classical and very rudimentary method is to represent shape on the basis of so-
called point clouds (sets of 3D points). The “correct” shape could only be modeled
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with point clouds of infinitely many points. Therefore, point clouds used in practice
are sparsely quantized approximations of the underlying surface structure. Two types
of point clouds can be distinguished:

• Raw point clouds are directly derived from some range image sensor.

• Pre-processed (sparse) point clouds are reduced point clouds containing stable
3D feature locations.

There have been proposed different approaches in order to match point clouds, among
them:

• For some distributions (e.g. L-shaped objects) the PCA method can be used
to align both clouds.

• The transformation between two point clouds can be estimated on the basis of
a closed-form solution based on quaternions if the correspondence point pairs
are known [32].

• The iterative closest points algorithm (ICP) ([7] and [65]) iteratively fits two
point clouds by estimating a transformation in each step and applying it to
the argument point cloud that finally matches the source point cloud. Each
iteration only uses a number of closest points. These are passed on to the frame
estimation algorithm. The process is also called registration. The method is
robust to some degree of noise. However, a pre-estimate of the transformation
is required.

Some methods can be derived from 2D matching strategies. In the following list some
examples are introduced:

• The random sample consensus algorithm (RANSAC) algorithm ([17]) can be
used to estimate the transformation between two point clouds based on point
triples. These can e.g. be defined as a point together with its first and second
nearest neighbors. The algorithm would have to guess correctly two corre-
sponding point triples. There is only a limited chance for success if the number
of points is large and if the points are indistinguishable. Improvements of the
RANSAC such as PRONSAC [13] try to speed-up the matching process by
keeping track of good matching candidates.

• The geometric hashing method can also be used to match 3D point clouds (an
overview is given in [78]). The algorithm builds a map with discrete buckets in
which possible poses are entered. Each point triple defines a local coordinate
system in which neighbors are expressed by discrete coordinate keys. Thus, the
point triple becomes distinctive based on the point neighborhood configuration.
During detection all possible matches based on the key entries are checked.
Each match votes for a transformation between the two point sets. All votes
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are stored in an accumulator. The result is based on the accumulator cell with
highest count. One problem is the discrete nature on the voting space and
another is the search complexity related to the point triples.

• Finally, the Hough transformation [33] could also be used to match two point
clouds based on two matching 3D point triples. The triples are used to generate
votes on transformations. Finally, the generated votes have to be processed in
order to find a maximum density in the voting space. The problem here is the
search complexity related to finding the correct point triples. However, there
is no loss of information as the correct votes are conserved in the voting space
for further analysis.

Further approaches that work on range data are based on local geometric shape
descriptions. Spin-images [35] and local shape context [6] can be used for object
modeling based on range data.

2.3.5 Combined 3D and 2D-based Approaches

Recent and current research work focuses on approaches that use 3D data combined
with gray-level or color information. One motivation for this is that the gain in infor-
mation that allows to cover a larger object class. The shape of two different objects
can be equivalent while the surface texture differs. Vice versa, the color appearance
can be equivalent but the shape differs. Two research areas can be identified that
address the use of 3D information:

• 3D features based on multiple (e.g. stereo-vision) images

• Point cloud approaches with augmented color information

In [22] a first method is presented that is based on gray-level images. The following
is a quotation from the abstract of the paper [22]:

[...] we describe a system for constructing 3D metric models from mul-
tiple images taken with an uncalibrated handheld camera, recognizing
these models in new images, and precisely solving for object pose. This
approach not only provides for accurate pose, but also allows for integra-
tion of features from multiple training images into a single model that
provides for more reliable recognition.

The approach is based on SIFT features that are computed from 3D image pairs.
Learning and model detection stages are included. The poses are recovered quickly
and accurately.
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In [42] random trees1 are used to classify feature points in stereo-vision images. A
RANSAC algorithm is used to estimate a possible transformation between the model
and scene feature sets. As a result the full object pose is obtained very quickly. The
method can cope with limited background structure.

Though these approaches are promising, they still model the objects on the basis of
3D points that are only determined locally. Further shape information such as local
normals are not used. However, using such information could lead to a reduction
in matching complexity and to object models containing more information. Another
problem is that typically such systems have to compare descriptor distances between
the scene and several object models. The labeling is done based on relative distance
measures. It would be an advantage if descriptor models were only depending on the
single objects and not on objects sets.

Point cloud approaches such as e.g. ICP can be enriched with color information
(see e.g. the web page of the Point Cloud library [44]). Point clouds are usually very
data intense. Finding a relatively small object part in a large scene is seen to be
difficult given the large number of possible correspondences.

2.4 Integration 3D Imaging Sensors

Robotic vision systems are sometimes augmented with panned or rotated laser range
finders (see e.g. [23]) in order to obtain color and range information about a region
in the environment. The disadvantage is the large amount of time needed for data
retrieval due to the necessary motions. A way out of this is the use of 3D time-
of-flight (TOF) cameras which are based on specialized camera ICs which measure
the time of flight of an artificially produced light signal to an object and back. The
measurement is performed for each pixel separately, yielding a complete 2D range
image. There are also attempts to combine range and color information about the
corresponding locations in the environment into one coherent data representation. In
order to combine both range and color information there are several methods possible,
among them:

1. Stereo-vision or multiple-vision systems realized with color imaging sensors (see
e.g. [62])

2. Panned or rotated laser range finder integrated with a color imaging sensor (see
e.g. [23])

3. Color imaging sensor and a time-of-flight range imaging sensor (see e.g. [41])
1This term is related to the random trees learning algorithm and not to be confused with the
random trees method for path planning.
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4. Stereo-vision and time-of-flight sensors (see e.g. [27] and [82])

5. Other depth imaging techniques (e.g. the “light coding” approach [60]) com-
bined with color sensors.

A comparison of general 3D technologies is given in [71] and [11]. Different
time-of-flight cameras are discussed in [36].

2.5 Summary

The following itemization lists a short summary of important points:

• There are generic vision and recognition paradigms that describe the derivation
of information from images to the desired result in a step-wise succession of
abstract operations.

• Reconsidering the interrelation between vision and action can considerably sim-
plify vision problems. For instance, the presence of a body that surrounds the
vision system can simplify and help to solve vision problems.

• Learning algorithms can be used to work directly on image data even without
intermediate (feature) representations.

• Robust and fast computable feature points can be used to detect objects even
in the case of occlusions and other disturbing effects.

• Geometric models are a classical way to match objects in the 3D scene.

• Object shapes can also be naturally represented as, raw or pre-processed, 3D
point clouds. There are a number of algorithms that can be used to match two
3D point clouds.

• A difficulty of point cloud matching is the large search complexity. At least two
matching point triples are needed to estimate a single pose hypothesis.

• New imaging sensors, especially range imaging sensors can significantly simplify
general vision problems since the 3D distance is given directly for each pixel.

• Recent and current work focuses on combining 3D and color information in
order to detect object poses fast, precisely, and in complex scenes.

The shortcomings of the works presented in this chapter and the rationale and
motivation for the approach in the presented work are discussed in the next
chapter (3).
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The approach presented in this document has been developed in a number of research
projects related to vision for mobile robots. All considerations that influenced the
final approach were guided by some requirements one faces in real-world scenarios
containing real objects and real robots. In this chapter the aim is to give a structured
overview about the motivation and the realization of the integrated new approach.

3.1 General Motivation

In the previous chapter a collection of state-of-the-art methods is given. In this
chapter the aim is to derive the approach presented here. Classes of object recognition
systems are presented in section 3.2. Then in section 3.3 observations and inspirations
that gave rise to the new approach are listed. A system overview follows in section 3.5
and section 3.6 summarizes this chapter.

3.2 Classes of Object Recognition

The following aspects help to distinguish between different kinds of object recognition
systems:

• Object properties

• Scene conditions

• Input/Output types

• Learning ability

These aspects are treated in the following subsections.
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3.2.1 Object Properties

A service robot may face a nearly unlimited set of objects during long term operation.
It is not easily possible to give an exact definition in a rigorous way of what an
object is. For instance, a typical set of objects could be those things we have in
our household. It is clear that such a large set contains objects with very different
attributes. Some of these properties are given in the following itemization:

• Shape attributes: concavity/convexity, compactness, topological degree,
whole/part relationships, entropy measures, etc.

• Surface and material properties: arbitrary texture, glittering and metallic ef-
fects, transparency (e.g. glass), mirroring surfaces, light absorption (holes),
etc.

• Changes of state: mechanical state (internal DOFs or plasticity), biologi-
cal/chemical state, electrical/electronic state (e.g. displays change their ap-
pearance), etc.

• Other effects: e.g. long term effects (a candle shrinks over time, plants grow).

The requirement for a sophisticated robot would be to capture all of these effects to
a degree that recognition and manipulation would be possible. Many of these object
attributes still pose challenges. The problem is the large number of variations in
appearance that can emerge. A term important here is scalability, meaning that the
number and diversity of objects should not be limited by the type of representation
selected. A further requirement is that the presence of many object models should
not degrade recognition capacity nor aggravate the addition of new models.

3.2.2 Scene Conditions

There are cases in which a perceptual task is easier to complete with success than
in other cases. In [64] different stages of object recognition systems are discussed by
stepwise weakening assumptions about the image content. Inspired by this approach,
in this thesis a number of levels of complexity of the scene setting are defined. These
are shown in table 3.1 on page 27.

Each level introduces a new effect that permutes with all previous variations. In
the first case there are no occlusions, uniform background and the fraction of pixels
that belong to the objects is relatively high. Then in the next levels (levels two and
three) background structure is added and the object is placed arbitrarily. At level
three objects are placed at an arbitrary position and orientation and they occupy only
a small fraction of the complete image. Thus also the background is arbitrary. If the
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Level Assumption

1 One of the (known) objects is shown always at approximately the same scale
and 2D position but all three rotation angles my vary, the object occupies
most of the image area and is presented against uniform known background.

2 The background can be arbitrary.
3 The object occupies only a small fraction of the image area and appears

at different scales (z-coordinates) and alternative 3D positions (x- and y-
coordinates).

4 The object view is further altered through scene setting related (global and
local) factors.

5 The object’s appearance changes due to factors related to object attributes.

Table 3.1: Complexity levels for object recognition systems.

object appears somewhere in the scene as in levels three and four, then the current
view is changed due to global scene related factors such as the intensity of ambient
lighting, or pollution. Also, local scene related factors can change the appearance of
an object (level four). Neighborhood relationships of objects are a source for partial
object coverage and additional lighting variations due to occurrences of shadows.
Finally, level five introduces further changes in appearance due to object specific
effects such as those described previously in subsection 3.2.1.

3.2.3 Input/Output Types

Many of the approaches that use classifiers are able to assign an object label to an
image that contains an object. Approaches such as the SIFT detector find a 2D image
position of an object. An important difference between the two is that they answer
different questions:

• Classification: Given a number of trained object models and an input image
derive the correct object label.

• Position estimation: Given the trained models, an image and an object label,
estimate if the object is present in the image.

While the classification step is important, preference is given to the position estima-
tion. The classification step can be derived from position estimation by evaluating a
matching score. It follows a list of possible recognition system outputs:

• 3D position (translation)
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• 3D orientation (rotation)

• State information (e.g. mechanical state)

• Object instance (individual object, e.g. this cup)

• Object identity (class e.g. cup)

• Object category (e.g. dishes, tools, function, etc)

• Multiple objects

• Others: ownership, object sub-components (part-of relationships), grasping
points, etc

A difference between methods related to object recognition is the input other than
the image itself. For instance, a label can be used as a selection of which object has
to be found. Or, as noted before, a position can be given as initial guess and the
question is what object there is. A further difference is whether or not the method
can judge the presence of the object. As described in the introduction (see chapter 1)
the goal of this work is an object pose output assuming the object label s given.

Another main distinction between types of recognition is passive “one-shot” recog-
nition or permanent (active/attentive) recognition. In this work the “one-shot” case
is followed since other schemes can be built upon it. Here, the processing type is
blocking, i.e. once called, the recipient has to wait until termination. The goal is to
make the single-object detection efficient such that it could be used as a component
of a more sophisticated attentional vision system. The goal is to provide a method
that can augment/enhance active and embodied vision systems.

3.2.4 Learning Ability

The recognition system has to embed information about the recognition targets in
some way. In the following this information is referred to as object model. There are
different ways to add models. Table 3.2 gives an overview.
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Level Type Description

0 Hard coded Explicit models or related knowledge is included in
the development process by the engineers.

1 Learning based
(development)

Only implicit knowledge is given in the development
phase as “samples” of object appearances.

2 Learning based
(customer,
batch/one-time)

The robot needs to be introduced to a new object at
the user’s place. It gathers all information about the
object at once, based on interaction with the user.

3 Learning based
(customer,
continuous)

As the above but the robot constantly updates the
model (e.g. in SLAM1).

4 Autonomous
experimental
learning

The robot can acquire relevant object knowledge au-
tonomously through interaction or experimentation
with the object.

6 Cognitive learn-
ing

The robot can acquire relevant object knowledge au-
tonomously through “imagining” interactions with
the object.

Table 3.2: Levels of model acquisition.

3.3 Observations and Inspirations

In the following some goals and guidelines are discussed that are to be seen as back-
ground for this work:

• The first goal is to cope with a number of object properties. While it would be
desirable to include all object properties given in the itemization on page 26, the
presented work focuses on coping with arbitrary shape and texture. Internal
DOF, plasticity and surface properties such as glittering or transparency are
excluded in this thesis.

• Emphasis is put on difficulties related to scene conditions. This work focuses
on the fact that the object to be detected may be appearing at arbitrary 3D
positions and orientations possibly with some parts covered. This includes cases
where the overall observable are of the object is very small compared to the size
of the field-of-view. This relates to the levels 3 to 4 of table 3.1.

• The output of interest is the full pose (or frame) of the object. The problem of
detection is simplified in the sense that an input label tells the algorithm which
object it has to search. The judgment of whether the object is present or not
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is the primary interest.

• A learning ability is seen as a requirement in the work presented. Not only
that the algorithms are able to construct models, but also how sample data can
be acquired in the real world are basic interests. The aims towards level 2 of
table 3.2.

The motivation of the approach introduced in this document is to make a step forward
in these respects. The main relations to other existing approaches (compare with the
itemization on page 23) are the following:

• The general vision stages in section 2.5 do not incorporate learning. Though
the stage model of pattern classifiers includes learning, it does not provide any
means of how the sample data can be obtained. Learning, including sample
data acquisition, is explicitly addressed in this work.

• From the field of embodied vision one can learn that the presence of a body
can simplify recognition. One approach to learning in this work focuses on how
the body can be used for sample data acquisition, too.

• A hypothesis of this work is that sophisticated object detection cannot be solved
with a clever learning algorithm alone. However, machine learning techniques
do play a role here as a clustering method is used to index feature points.

• Feature points that have been shown to be stable against typical effects (shift,
scaling, noise, etc) are incorporated in the approach presented.

• Geometric models in the form of functional shape descriptions are not of interest
in this work.

• The concept of 3D point clouds is extended in this work by adding texture
information and other attributes.

• With the extensions of point clouds the complexity of detection decreases sig-
nificantly.

• The main ideas and methods worked out during the research related to this
document are based on a combination of two camera devices, a time-of-flight
range imaging sensor and a color imaging sensor.
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3.4 Rationale on Algorithm Level

Apart from the items above, some considerations on algorithm level motivate the
approach of this thesis. A 3D pose of an object can be estimated purely on 2D
model-images correspondences. However, in order to do this, a 3D model of the
feature points has to be available. This is difficult if not impossible to learn on the
basis of 2D information only.

3D information can be used in the form of 2D feature points found in multiple
images and reconstruction of the depth information based on triangulation (e.g. as
done in stereo-vision). The 3D information is only available sparsely where features
occur in the image. Since the 3D information is only determined at the feature’s
location it may be difficult to construct a surface normal or to retrieve other shape
properties. However, the feature point-based approach in general is very promising as
many solved applications, e.g. 2D object recognition and images stitching are based
on feature points.

In 3D this means that when using feature points, less data has to be taken into
account computationally than e.g. would be the case when working with full point
clouds. Therefore, one rationale here is to show how the use of features points
augmented with 3D information leads to a very sparse representation which is suitable
for model construction and detection.

Another difference is that in this work an attempt is made to isolate descriptor
models. The motivation is to come up with a true single-object detector. This means
that all the parts of an object model should depend on the object alone and not on
sets of objects.

3.5 System Overview

The complete approach developed can be divided into three parts:

• Sensor fusion and calibration

• Sample data acquisition

• Model construction and detection

A description of the approach is given in the following paragraphs. In figure 3.1 the
sequences of computations for single-object learning and detection are shown that
are presented in this thesis. There are three main areas. sensor fusion provides
combined images (here called shared images) that are fed to the detection part and
to the learning part. The system has two modes. In the model construction mode
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Figure 3.1: Proposed processing sequences for the model construction (learning) and
model detection. The details of this figure are described in the text. Note
that sensor fusion parts provides single images (used in the detection
part) as well as image sequences (used in the learning part).

the components depicted in the learning area are active. During detection the
components in the detection area are processed. Note that the two “FFC extraction”
components in the detection area and in the learning area are equivalent.

At the heart of this approach there is the early fusion of both modalities at the very
beginning of the recognition chain. An intermediate representation called shared im-
age is an image with six overlaying channels for RGB color data and XYZ coordinate
data. The discrete 2D pixel plane of these layers is congruent, implying that when-
ever some algorithm finds a result in 2D image coordinates either color information
or coordinate information can be added.

With the shared image available, a second idea in this thesis is that first-time
segmentation of learning views of an object becomes possible based on range segmen-
tation. This means that segmentation masks defined in real 3D space can be used to
cut out color regions that relate to the object’s appearance. In a so-called acquisition
scenario, components are used that are external to the vision system in order to get
the information needed to position the segmentation masks.

The next idea of the approach suggested here is to use the shared image also for
detection based on feature points. A new representation is the so-called feature frame
cloud (FFC). Feature frame clouds incorporate feature points that can be accessed
quickly and that are augmented with local coordinate systems. Thus, shape is also
modeled, based on the parameters of the local coordinate frame. Detection and model
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construction can be based on a single algorithm that estimates the relative frame
between two FFCs. The suggested algorithm is based on voting on pose consistency
and is similar to a Hough-transformation.

The complete approach realizes a single-object detector which constructs object
models during learning and which outputs the detected frame D = SO (see figure 1.2
on page 7) during detection. The object frame O can be converted to to the robot’s
end effector frame to initiate a grasping action. A special attribute of this system
is the explicit inclusion of a segmentation method that enables real-world object
learning.

3.6 Summary

The main motivation that led to the work presented in this document is described
in this section. The main goals are to detect the pose of an object in difficult scene
conditions and with models that can be learned from sample data. This data can
be acquired in the real world using a robot equipped with the selected sensors. Fur-
thermore, an overview of the approach is given. Important terms are introduced and
explained.
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One key idea in this thesis is the utilization of a so-called shared image that gives
access to both 3D and color information about a region in the environment that is
projected onto a virtual common image plane. This chapter introduces methods of
how a shared image can be efficiently computed given the two selected sensory sources:
a range imaging sensor and a color imaging sensor. Furthermore, the calibration
method for the sensor set-up is described. The methods are derived from conventional
camera transformations and calibration and extended by the specifics of the range
imaging sensor. The methods introduced have been tested during the project work
related to this thesis. There might be some overlapping of the methods described here
with calibration schemes used elsewhere (e.g. published in the Internet). This topic
has received much public interest recently due to the wide availability of low-cost
range cameras used for video game control.

4.1 Motivation

The motivation is to obtain an image, called shared image, providing coordinate and
color information at each pixel’s location. The proposition is that such an image can
significantly simplify existing vision algorithms or can lead to new, more efficient and
powerful methods. The approach suggested here provides an approximation to an
ideal shared image based on the following parts:

• a hardware configuration consisting of a conventional charge-coupled device
(CCD) color imaging sensor and a TOF range imaging sensor,

• a method for reassembling a color image in the pixel coordinate system of the
range imaging sensor by forward and back projection, and

• a self-contained calibration method for the selected hardware setting that pro-
vides for all parameters needed based on one calibration point list.

These methods are described from section 4.2 to section 4.4 in the same order as
in the itemization given above. Section 4.5 gives a summary of the content of this
chapter.
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4.2 Hardware Setting

A combination of a color imaging sensors with a TOF range imaging sensor is selected
for the computation of the shared image. Panned or rotated laser range finders are
not chosen due to the fact that only very low frame rates are possible since extra
movements are required to assemble a 2D image from single line scans. Furthermore,
the main advantages of combining color imaging sensors with time-of-flight range
imaging sensor over stereo-vision are:

• Uniform colored regions can still deliver 3D information if they are reflective in
the infrared spectrum; this is difficult when using stereo-vision. In the optimal
case, 3D and color information are defined for the complete image.

• There is no computational cost to pay for the correspondence search which is
required for stereo-vision. For depth estimation based on stereo-vision, fea-
ture points or image patches have to be matched first in order to make depth
estimation possible.

There are also disadvantages compared to stereo-vision systems:

• Current state-of-the-art time-of-flight sensors have rather low resolution, typi-
cally less than 200 pixels maximum in image width or height.

• The volume of the field-of-view is smaller since the emitted light energy rapidly
decreases in intensity with the distance.

• The measured distances are not completely invariant against color variations in
the reflected material.

In this thesis these disadvantages of using TOF range imaging sensors compared to
stereo-vision are accepted in order to profit from the features of TOF imaging sensors.
Usually, grasping tasks take place in the close vicinity of the robot. It is assumed to
be more important that range values are defined for the complete image than that
limitations in the field-of-view exist or that a lower range accuracy is obtained.

The purpose of the sensor set-up is to obtain range images and color images of the
same area in the environment in a timely synchronized way at relatively high frame
rates. Following this goal, a setting is selected of two sensors, a TOF range imaging
sensor and a color imaging sensor, that are mounted next to each other and working
in conjunction. During the work related to this document several such set-ups were
used. These are shown in figure 4.2. A first set-up (see figure 4.1, Ê) was used early
in this work for first studies. It included the Swiss Ranger 2 with 144x124 pixels in
width and height and a color camera DFK42F02. The second set-up (see figure 4.1,
Ë) was used later, including a range imaging sensor Swiss Ranger 3000 and the color
camera DBK31F01. The third set-up (see figure 4.1, Ì) was the first such set-up
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Figure 4.1: Sensor set-ups used. Ê: TOF sensor SR2 (red device, bottom) combined
with the color camera DFK42F02 (black/blue device, top). Ë: TOF
sensor SR3000 (blue device, top) in conjunction with the color camera
DBK31F01 (bottom device). Ì: first set-up integrated on the Care-O-
bot® 3 consisting of a TOF sensor SR3100 (center device) and two color
cameras PIKE AVT (left, right); only the right color camera is used. Í:
current set-up used on the Care-O-bot® 3 with a range imaging sensor
SR4000 (center). Î: the set-up on the robot platform used in the DE-
SIRE project, see figure 1.1 (right) on page 3.

integrated in the Care-O-bot® 3. It contained a Swiss Ranger 3100 and two color
cameras of type PIKE AVT. The more recent set-ups used, shown in figure 4.1 (Í
and Î), are mounted on the robots shown in figure 1.1 on page 3. Here the newer
range imaging sensor SR4000 is used.
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4.3 Shared Image Computation

4.3.1 Shared Image Definition

In order to combine the information of a time-of-flight range imaging sensor and
a color imaging sensor one can think of a combined sensor setting as described in
the previous section and shown in figure 4.1 as a single imaging sensor that directly
delivers geometrical coordinates and color intensities for each pixel. In this work
the combined image is termed shared image since color and coordinate information
share the same pixel system. The shared image is notated as a pair of two triples
(coordinate and color value matrices):

S = (P , C) = ((X,Y ,Z), (R,G,B)) ∈ Rw×h×3×3 (4.1)

where P = (X,Y ,Z) ∈ Rw×h×3 is used for the coordinate part storing the 3D points
(this image is called coordinate image). The other part C = (R,G,B) ∈ Cw×h×3 is
a color image that stores the three color components. The symbol C ⊂ R3 is used to
denote the color space containing red, green and blue components. Note that in this
document large calligraphic letters are used for tuples that consist of more complex
types than scalars (otherwise vectors are used). Coordinate and color components
are arranged in rectangular matrices of size w × h, where w ∈ N and h ∈ N are the
shared image width and height. It is convenient to define an access to the coordinate
parts as vector functions over the image indexes:

pu,v = (xu,v, yu,v, zu,v) ∈ R3 (4.2)

where R3 represents the Euclidean or physical space. In analogy, the color part of
the shared image can be described with:

cu,v = (ru,v, gu,v, bu,v) ∈ C. (4.3)

Since the optical axes of the sensors are not aligned, the computed shared image
can only be an approximation to the reality observed. Errors occur since the two
sensors “see” from different perspectives into the scene. In the following subsections,
the steps that are needed for the shared image computation are introduced in detail.

4.3.2 Transformations

The goal is to compute shared image S from the raw images of a range imaging sensor
and the color imaging sensor, denoted as T and C ′. The range image is written as a
matrix T ∈ Rw×h of size w×h (i.e. it is set to the shared image size) and contains the
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Figure 4.2: The sequence of computations to obtain a shared image. The time-of-
flight values tu,v at (u, v)T (Ê) are used to estimate the 3D coordinates p
(Ë) which are then converted into C (Ì) by computing Cpu,v and mapped
onto the color image’s pixel system in order to get (uc, vc)T (Í) which then
leads to the color value at (u, v)T .

time-of-flight measures tu,v ∈ R that are related to the distance of a light reflective
object. The raw color image C ′ is augmented with the following access function:

c′uc,vc
= (r′uc,vc

, g′uc,vc
, b′uc,vc

) ∈ C (4.4)

where the primes are used to distinguish this color from the shared image color cu,v.
In analogy to the shared image, wc ∈ N and hc ∈ N are the width and height of C ′.

The sequence of computation is shown in figure 4.2. First, the range imaging
sensor reading at the image position (u, v)T (see figure 4.2, Ê) is used to compute
the real coordinates pu,v (figure 4.2, Ë). Note that the sensor system S is used as
base system (S = W ). Therefore, leading superscripts are omitted Spu,v = pu,v
(the leading superscripts are used to denote in which frame a point is measured,
otherwise). Next, the coordinates in the color camera system C, Cpu,v are computed
by coordinate system conversion (figure 4.2, Ì). The result is then projected onto
the image plane of the color image to get (uc, vc)T (figure 4.2, Í). Finally, color
information is attached to the color layers of the shared image, cu,v = c′uc,vc

.

In the following, the necessary equations needed to perform these computations
are described. The equations used are those from conventional camera projection
models as described in e.g. [19] or in the OpenCV manual. Also, the dependency of
the time-of-flight measures and the real distance is treated in some other works. In
the following the computation sequence is described.

First, an iterative algorithm loops over the image T and reads out the time-of-flight
values tu,v. Here the term forward transformation is used to describe the transfor-
mation that maps the internal readings of the range imaging sensor tu,v onto the real
coordinates pu,v in the sensor frame S.
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4 Sensor Fusion

In order to perform this transformation, first the relationship between the real
Euclidean radius distance du,v ∈ R and the time-of-flight measure tu,v has to be
known. The point distance d ∈ R of a general point p ∈ R3 is given by:

d = |p| =
√
x2 + y2 + z2 (4.5)

where |p| denotes the absolute value or magnitude of p. Only points in the field
of view are considered here, i.e. points that lead to valid pixel coordinates after the
projection. The point p is projected onto the image sphere (at unit distance) yielding
the new point x′ = (x′, y′)T ∈ R2, a projection on the ideal image plane:

x′ =
(
x/z

y/z

)
. (4.6)

Radial distortion that results from the refraction of light beams at the lens surface is
usually corrected using a radial polynomial giving a new projection x′′ = (x′′, y′′)T ∈
R2:

x′′ =
x′

(
k3
(

y′2 + x′2
)3

+ k2
(

y′2 + x′2
)2

+ k1
(

y′2 + x′2
)

+ 1
)

+ p2
(

y′2 + 3 x′2
)

+ 2 p1 x′ y′

y′
(

k3
(

y′2 + x′2
)3

+ k2
(

y′2 + x′2
)2

+ k1
(

y′2 + x′2
)

+ 1
)

+ p1
(

3 y′2 + x′2
)

+ 2 p2 x′ y′

 (4.7)

where k1, k2, k3, p1, and p2 are the radial and tangential coefficients used for undistort-
ing the image. Note that there are more refined models available using 8 distortion
parameters. Both options were used in the experiments related to this thesis.

Using the internal parameters of the camera, the image location (u, v)T can be
evaluated:

u =
(
rnd(x′′ fx + cx)
rnd(y′′ fy + cy)

)
(4.8)

where fx and fy are the focal distances measured in pixels and cx and cy the offsets in
pixels. Furthermore, rnd : R→ N, rnd(x) = bx+ 0.5c is used as a rounding function
since u ∈ N2.

To obtain xu,v from tu,v, the direction has to be inverted to a forward transforma-
tion from the internal range sensor reading to the sensor frame S. Therefore, first
x′′u,v needs to be computed from u. This can be done by inverting equation 4.12
which is non-trivial. Another method that can be used is to work with a corrected
image position directly that is here denoted by (u′, v′)T ∈ N2 such that

pu,v =


z (u′ − cx)/fx
z (v′ − cy)/fy

z

 . (4.9)
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A corrected image can be computed by a pre-processing step that uses the forward
transformation to compute remap matrices. These maps contain for each (u′, v′)T in
the undistorted image the (u, v)T in the distorted image (see e.g. [54]).

At a certain pixel location (u, v)T the distance du,v is used to compute zu,v with

zu,v
1 = du,v

d′u,v
(4.10)

for a normalized image plane with unit focal length. The intrinsic divisor d′u,v can
be computed for each pixel based on

d′u,v =

√√√√1 +
(
u′ − cx
fx

)2

+
(
v′ − cy
fy

)2

. (4.11)

These values are constant for all (u, v)T . They only need to be computed once.

Finally, there is a relationship between d (real distance) and t (time-of-flight value).
During the work here, this was initially modeled as a quadratic function:

d = k t2 + l t+m (4.12)

where k, l and m (k, l,m ∈ R) are constant parameters that are computed during
calibration. Other works suggest a higher order polynomial or a spline approximation
in order to achieve a higher precision. The real relationship is a periodic error func-
tion. In the SR4000 this function is already calibrated over the full working range.
How to use this correction is described in chapter 7.

The aforementioned equations comprise all the ingredients relevant to computing
pu,v from tu,v.

4.3.3 Color Assignment

Now, the color values cu,v have to be computed for all pixel locations in the shared
image. The color camera is assumed to be fully calibrated intrinsically and extrinsi-
cally. The extrinsic coordinate system C is measured in S and can be used for the
extrinsic transformation. In table 4.1 the relevant parameters are shown. A point Cp
in the coordinate system of the color imaging sensor can be computed by

Cp = RT
C (p− oC) (4.13)

where RT
C is the transpose of RC and oC the base point of C in S (see table 4.1). The

equations to obtain the pixel coordinates uc are the coordinate transformation and
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Constant Description

RC Rotation matrix from S (set to zero) to C
oC Translation vector, base point of C in S
fx c and fy c Scaling into the image plane
cx c and cy c Image plane center
k1 c, k2 c, and k3 c Radial distortion coefficients
p1 c and p2 c Tangential distortion coefficients

Table 4.1: Extrinsic and Intrinsic parameters of the color imaging sensor.

equations 4.6, 4.7, and 4.8 with the new point Cp, as argument and the parameters
listed in table 4.1.

Typically, in practical settings like those shown in figure 4.1 on page 37, the color
images are of much higher resolution (here up to a factor of about eight), than the
range images. In order to get a more stable shared image, the initial color images
can be down-sampled first. The range image can also be up-sampled in order to keep
a good color image resolution. For this thesis a compromise in resolution was chosen
at a range resolution of three times the original image size leading to to w = 528
and h = 432. The color image was down-sampled to wc = 640 and hc = 480.
The algorithm 1 pseudo code (see next page) describes the proceeding. The shared
image S is computed based on the source images T (time-of-flight range image)
and C ′ (original high-resolution color image). Note that the intrinsic and extrinsic
parameters are assumed to be given. How these can be computed is the subject of the
next section, section 4.4. At step 1 the algorithm starts with resizing the images. This
is an optional step. If range imaging sensors of sufficient resolution were available,
then this step could be discarded. Next, in step 2 the range image T is undistorted
to improve image quality. This measurement also serves for a better alignment of u
with xu,v and v with yu,v at a constant zu,v. In step 3 the x-, y-, and z-layers of P
are computed. Then, in step 4 two storages need to be initialized. The first, Zbuf

is used as a z-buffer that keeps track of the closest point so far for which a certain
(u, c)T led to (uc, vc)T . There can be more than one pair of (u, c)T mapping to one
and the same (uc, vc)T . The z-buffer is used to select one of those pairs, in this case
the closest one in z-distance. The z-buffer is initialized with a large z-value, zmax,
that cannot be exceeded by any time-of-flight value t. The second storage U stores
the pixel positions of P at the current (closest so far) z-value in the pixel system of
the color image.
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4.3 Shared Image Computation

Algorithm 1 S ← computeSharedImage(T , Cc)
1: Optional: resize input images first (enlarge T and downsize C ′).
2: Undistort using mapping matrices computed from k1, k2, k3, p1, p2, and the focal

parameters fx, fx, cx, and cy.
3: Compute P = (X,Y ,Z) from T using the equations 4.6, 4.7, and 4.8 and related

parameters.
4: Initialize a z-buffer Zbuf with size wc × hc and set all elements to an upper

bound zmax. Initialize a two-channel position store U = (U ,V ) with size wc×hc
containing the image positions uuc,vc and vuc,vc . Set all pixels in the color image
of the shared image C to zero (= not valid).

5: for all rows 1 ≤ v ≤ w do
6: for all columns 1 ≤ u ≤ h do
7: Read pu,v from P
8: Compute uc based on the extrinsic and intrinsic transformations in analogy

to equations 4.6, 4.7, and 4.8 with the parameters of the color imaging sensor
(table 4.1).

9: if Zbuf uc,vc ≤ zu,v then
10: continue with step 5
11: end if
12: Set cu,v ← cuc,vc (the basic color copy step)
13: if Zbuf uc,vc > zu,v then
14: cuuc,vc ,vuc,vc

← 0 (0=black marks non-valid pixels)
15: end if
16: Store current z-value and pixel position Zbuf,uc,vc ← zu,v, ul uc,vc ← u, and

vl uc,vc ← v
17: end for
18: end for
19: Optionally fix the masked regions with some “inpainting” method (see e.g. [72])

The basic loop which performs the computation of C, the color part of the shared
image begins at step 5. After reading out pu,v (step 7) and computing uc = (uc, vc)T
(step 8) the algorithm checks whether a certain location (uc, vc)T was visited before
and if the corresponding z-value was closer than the previous one (step 9). Only if
this is the case, then the color copy operation in step 12 is executed. Otherwise the
algorithm continues at step 5. After the color copying to the current location (u, v)T ,
the last location in the shared image (uuc,vc , vuc,vc)T that was projected on the same
(uc, vc)T is set to zero (non-valid). This solves the problem of multiple projections.

43



4 Sensor Fusion

4.3.4 Shared Image Example

In figure 4.3 an image is shown that was computed by the methods introduced.
Figure 4.4 shows a 3D rendering from two perspectives. There are errors in the
resulting images due to the offset of the optical centers of both sensors. As can be
seen in figure 4.4 viewing from the top (right image) large errors can occur at the
object’s borders. This is natural because the fact that range measures are averaged
over the area that is associated with a single pixel.

4.4 Calibration

In the following subsections, two calibration methods that were used during the
research work related to this document are described. The first method recovers all
parameters of the sensor setting. The second method makes use of the factory pre-
calibration of the range imaging sensor. In chapter 7 some results of the achieved
precision are reported.

4.4.1 Complete Calibration

To obtain all parameters that are needed the calibration procedure can be based
on calibration images recorded from both sensors synchronously. There are different
methods implemented in software packages that provide the necessary functionality
to detect the cross points of these patterns and to estimate the extrinsic and intrinsic
parameters. A precondition for the calibration procedure suggested here is that the
range imaging sensor can also deliver a gray-level intensity image called I ∈ Rw×h.
Furthermore, the intensity image of the color image Ic ∈ Rwc×hc has to be computed.

The complete calibration procedure suggested here is self-contained in the sense
that after initial recording of the calibration images, all parameters are computed
automatically without the need for additional manual activities. Figure 4.5 shows
the five calibration steps required. These are described in the following.

The image sets {I1, I2, ...Ik} and {Ic 1, Ic 2, ...Ic k} with In and Ic n, 1 ≤ n ≤ k
represent the gray-level calibration images. The set {T 1,T 2, ...,T k} contains the
range images.

In step Ê of the procedure shown in figure 4.5, the corners of a chess board pattern
are detected. Together with the real 3D coordinates of the points on the pattern that
are known a priori, three sets are available. The first set:

O = {{o1,1,o2,1, ...,ol,1}1, {o1,2,o2,2, ...,ol,2}2, ..., {o1,k,o2,k, ...,ol,k}k} (4.14)
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4.4 Calibration

Figure 4.3: Some results of the shared image computation as suggested in this docu-
ment. Top: the z-channel coded in spectral color. Bottom: the color part
of the shared image (doubled areas are marked black).
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4 Sensor Fusion

Figure 4.4: 3D views of a Shared Image. Left: front view of a scene containing the
cylindrical crisps box. Right: the same scene from a bird’s perspective.
The red, green, and blue lines in the background are the (x, y, and z)
axes of the reference coordinate system.

Figure 4.5: Calibration steps. First, the calibration points are detected in the cali-
bration images (Ê). Then the cameras are calibrated with a conventional
calibration function (Ë). After the calibration points are undistorted the
time-of-flight values are retrieved (Ì), the distance calibration is com-
puted together with a new 3D point set (Í). Finally, the extrinsic frame
can be computed (Î).
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4.4 Calibration

with oi,j ∈ R3 contains the object (rig) coordinates. The second set:

I = {{i1,1, i2,1, ..., il,1}1, {i1,2, i2,2, ..., il,2}2, ..., {i1,k, i2,k, ..., il,k}k} (4.15)

with ii,j ∈ R2 consists of the (interpolated) 2D coordinates of the points in the
intensity image of the range imaging sensor. The third set:

Ic = {{ic 1,1, ic 2,1, ..., ic l,1}1, {ic 1,2, ic 2,2, ..., ic l,2}2, ..., {ic 1,k, ic 2,k, ..., ic l,k}k} (4.16)

contains the 2D image positions in the gray-level image of the color imaging sensor.

After the point sets are available, both cameras can be calibrated using the method
of [81] that is e.g. implemented in the OpenCV (see step Ë in figure 4.5). The
following results of this are needed in the further proceeding:

• the intrinsic parameters of the range imaging sensor: k (distortion coefficients)
and A (intrinsic matrix containing fx, fy, cx, and cy)

• the intrinsic parameters of the color imaging sensor: kc (distortion coefficients)
and Ac (intrinsic matrix containing fx c, fy c, cx c, and cy c)

• the extrinsic frames {E1, E2, ..., Ek} of each view

Using the distortion coefficients k the points in I are undistorted and the time-of-
flight values are read out from T n at the corrected edge points stored in I′. These
and the set of time-of-flight values T are used for the further proceeding. In order to
perform these computations the intrinsic parameters are also needed. This is done
in step Ì.

Now, an important step is the distance calibration of the range imaging sensor
(step Í in figure 4.5). The translation and rotation estimates per view can be used
to compute a set of real positions, called P, of the points O. For each point in P the
distance radius d is given by d =

√
x2 + y2 + z2. The list D of the distance radii can

be used to estimate k, l, and m of equation 4.12 by regression. Then, the complete
forward transformation can be applied to I′ yielding a point list P′ consisting of the
real values the range sensor would deliver with the computed calibration parameters
during operation. The quadratic function used here can be replaced by a more com-
plex approximation function in order to model the periodicity of phase angle/distance
relationship more precisely.

The last step, step Î of the proceeding shown in figure 4.5 is related to the relative
frame estimation, i.e. to the computation of an approximation for C. For this the
newly computed list P′ can be projected onto the color imaging sensor’s plane since
this is already calibrated intrinsically. Errors occur due to the (so far) unknown frame
C. Based on this data known algorithms can be used to estimate the transformation
(see e.g. the implementation of the OpenCV function solvePnP()).
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4.4.2 Calibration Based on Default Parameters

The range imaging sensor used here (SR4000) is pre-calibrated. The x-, y-, and z-
data are computed with calibrated parameters over the complete measurement range.
The calibrated model includes all intrinsic parameters and the non-linear relationship
of distances and phase measures.

Based on 3D-2D point correspondences, the internal parameters can be recon-
structed using known calibration algorithms (see e.g. the implementation of the
OpenCV function calibrateCamera()). The pairs are directly available from the
3D output images of the range imaging sensor and the pixel locations. In order
to calibrate with non-planar data some algorithms need a pre-estimate of the cam-
era matrix. This can be obtained by using two one-dimensional linear regressions
that input normalized x- and y-positions and the pixel locations. More details and
experimental outcomes of this method are described in chapter 7.

4.5 Summary

In this chapter, a set of tools to obtain combined 3D and color information is dis-
cussed. Preference is given to a set-up including a time-of-flight range imaging sensor
and a conventional CCD color imaging sensor. This set-up can be constructed easily
from two cameras without any changes in hardware. Methods are introduced to cali-
brate the sensor setting and to compute a so-called shared image S. The calibration
sequence is self-contained. It only requires point sets from a calibration rig as used
in conventional camera calibration. In the subsequent chapters the shared image will
be used as a basis for the realization of the object detector. In chapter 7 precision
estimates of the sensor fusion methods are presented.
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5 Sample Data Acquisition

In order for robots to learn object models of any kind, segmented object data has to be
collected. This chapter introduces acquisition scenarios that make full utility of other
components “external” to the object detector and of context knowledge in order to
provide learning data. Segmentation of object views is done using 3D masking shapes
in the coordinate image.

5.1 Motivation and Approach

The construction of a model from sample views seen in the real world is a fundamental
necessity for robots intended to serve in environments that contain objects not known
to the developer a priori. There are two topics that have to be addressed in order
to provide such ability: sample data acquisition and model construction. While
the latter is addressed through many approaches in machine learning and computer
vision, the former is less often subject to research. It is quite hard to perform a
first segmentation of an object view if the object is assumed to be unknown. The
availability of 3D and color information in one image provides a solution based on
3D masking shapes that can be parametrized. The learning process itself is not
completely autonomous at this stage. However, much less effort is required than in a
case where in which the operator provides the segmented training views by manual
masking. There are different methods that can be implemented on a real robot
platform to control the segmentation. In this chapter some of these are presented
and discussed. In section 5.2 the basic masking algorithm is described. Then, in
section 5.3, so-called acquisition scenarios are introduced, procedures for obtaining
some of the parameters that are needed for the segmentation. Section 5.4 contains
some illustrative results.
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5.2 Range Segmentation

The process of range segmentation can be used generically for different modes of
acquisition. Initially, an interesting 3D region is defined in the shared image. After
that, the color information of all points within this region are extracted. In order to
determine the position and shape of this region, further context information on the
object’s location and size is needed. The problem is how to separate the data that
belong to the object from those that belong to the background. This has to be done
without the object model yet established. Here, this process is termed first-time
segmentation, describing the need for a segmentation that is performed on object
views prior to model construction.

Using the shared image, which contains color and coordinates of image locations,
such a first-time segmentation can be based on a range segmentation process, i.e.
using 3D information for “cutting out” the color and 3D parts of an object. The
specific acquisition scenario needs to provide two types of information per view: a
learning frame called L and a segmentation shape defined in this frame, called mask.
This shape can vary depending on the scenario. In the work related to this thesis
mostly spheres and cylinders were used. The 3D measures of the range imaging sensor
are unstable at locations where the angle from the measured point vector and the
surface normal is large. Therefore, it was decided to incorporate filtering based on
this angle. The following algorithm (see pseudo code below) describes the first-time
range segmentation. The inputs to the algorithm are the shared image S, the learning
table frame L, and the segmentation mask. The output is a segmented shared image
called Sseg in which all color and coordinate values outside the mask are set to zero.

Algorithm 2 Sseg ← singleV iewSegmentation(S, L,mask)
1: for all rows in S, 1 < v < w do
2: for all columns in S, 1 < u < h do
3: Only consider points for which pu,v lies within the mask
4: Compute the normal nu,v and reject all points for which ∠(pu,v,nu,v) > θ
5: Set the rejected image location to zero in all image layers
6: end for
7: end for

The surface normal can be computed with:

nu,v = (pu+1,v − pu−1,v)× (pu,v+1 − pu,v−1) (5.1)

for all pixels 1 < v < w and 1 < u < h. However, this is not a very stable solution
since it depends on a small number of pixels. It can be improved by using larger
pixel areas and fitting of a least-squares orthogonal regression plane on the basis of
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singular value decomposition (SVD). The normal can be corrected such that it points
to the sensor by conditional inversion. This also prevents toggling if the normal
is not well defined. Note that the mask can be realized easily by using an in/out
equation (e.g. sphere equation). In the experiments related to this document, the
shape description chosen is as a cylinder limited in its height. The learning frame is
located on a learning table with its x- and y-axes aligned to the table surface. The
z-axis is equivalent to the upright normal. The cylinder can be described in terms of
radius and maximal and minimal height values. This simple strategy has been used
during the work described in this document. For the angle limit, a value of θ = 0.6π
can be used safely.

The segmentation can also be done on feature point level. The advantage is that
features caused by the segmentation edges are suppressed. The segmentation on pixel
level is more generic. Such images can be passed to different subsequent processing
stages.

5.3 Possible Acquisition Scenarios

In this document, the term acquisition scenario is used to describe the fact that the
robot possesses some means of interacting with the environment in order to gather
sample data. The following items display the situation:

• A service robot situated in the real-world environment needs to collect the views
of a new object in order to be able to detect it during future operations.

• After a kind of initialization (triggering), the robot starts to enter a pre-
programmed mode or sub-routine that allows it to acquire the needed infor-
mation.

• In order to achieve its learning goal, the robot may use functions of the robot
control system and/or some context knowledge given by the human operator.

• The collection of object information may be supported by a tutor (human op-
erator) or may be fully automated.

• The successfully collected data are stored and passed on to the model construc-
tion part.

Thus, a specific acquisition strategy contains system components and process se-
quences that describe how the information about the object can be acquired. At
this point the description is rather abstract and the itemization above leaves details
unanswered. In the next subsections examples of such acquisition scenarios give more
detail.
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5.3.1 Actuated Robot Motion

Typically, mobile robots are equipped with a localization and mapping system in
order to be able to move around in the environment. This means that the robot
can estimate its position and orientation in the environment relative to a fixed world
coordinate system. The transformation between both is constantly estimated by
the localization system. For this, the localization system maintains a map of the
environment to estimate the current position of the platform. This map also serves
as a basis for goal directed navigation. This external component can be used for the
realization of acquisition scenarios. To vary the views of a static object located in
the environment the robot may circumscribe the object. Another possibility is to
move a robot arm with an in-hand mounting of the sensors. Also, an actuated robot
head and/or torso can produce the necessary motion. The complete strategy can be
sketched as follows:

1. The robot’s user has a new object that the robot will have to detect during
future operation.

2. The object is placed on a dedicated location (“learning table”).

3. A 3D masking shape (e.g. box or cylinder) is defined in world coordinates
surrounding the object.

4. The robot moves around the table ensuring the complete masking shape is
contained in the field-of-view.

5. The images are segmented by range segmentation and stored for later model
construction.

In this scenario the object itself remains static. This implies that some parts of the
object may be covered during the whole process and cannot be learned. However, if
the robot moves safely around equipped with some obstacle avoidance then this is a
very harmless scenario that can be implemented easily.

5.3.2 Robot-Internal Motion

A simple but important support for sample acquisition is the possibility that the robot
can read out its proprioceptive joint sensors (joint angle readings) of the manipulator
arm. Therefore, the robot can compute the position of its gripper within the sensor
frame S based on kinematic forward transformations. This implies that the position
of the appearance of the gripper and a possibly attached object in the shared image
is known. Once the object is grasped the robot can move (e.g. rotate or shift) and
capture object views. A more sophisticated method could include the opportunity
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Figure 5.1: Gripper sensors example (Fraunhofer IPA): IR detectors, a camera and
and IR distance sensors are integrated in the gripper for triggered object
passing.

of releasing the object and grasping it again in another configuration. This could
compensate for limitations of the kinematics. There are different possibilities for the
robot to retrieve the object at the beginning of the acquisition process:

• Grasping of unknown objects by on-line 3D shape approximation. This method
attempts to fit a first approximate shape description into the object. However,
the risk of failure is high in general scenarios.

• Object passing. This method is based on the idea that the human operator
passes the object to the robot. There can be simple solutions to this based on
sensors within the gripper (see figure 5.1 for an example). It is hard to provide
a general solution since at this stage the robot does not know valid grasping
locations on the object’s surface.

• Indirect object passing and shape approximation. The object is first placed on
a dedicated place and then taken by the robot. This can be implemented using
a tray such as is integrated in the Care-O-bot® 3.

There are further components needed for these modes. Flexible shapes have to be fit
into the region in the environment where the object is located and/or object passing
has to be realized. The latter is in its simplest version just a trigger to close a force-
controlled gripper. Such a system was realized for an older research robot using the
in-finger sensors shown in figure 5.1. An example of such an acquisition scenario
could be as follows:

1. The user wants the robot to learn a new object.
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2. The object is passed to the robot. The human operator ensures that the grasp
is stable by putting the object into the gripper correctly.

3. The robot holds the object in a stable manner and moves it within its field-of-
view.

4. A suitable masking shape is located around the gripper whose position is known
through the kinematics.

5. Different views are segmented by range segmentation and stored for later model
construction.

This strategy is desirable since the human is not involved during the generation of
sample views. Hence, the robot may take its time to collect many views, possibly
stopped by a program part that measures the completeness of the model on-line.
A difficulty that cannot be solved easily is that the robot may not know possible
grasping points of an unknown object. This can be resolved partly in the scenario
where the human places the object into the gripper. Then at least one set of grasp-
ing points could be known and more grasps could be learned by exploratory trials.
Another problem in this scenario is that the appearances of finger structures of the
robot remain in the segmented views. The simple range segmentation strategy is
not suitable for removing these. Sophisticated methods could use a 3D model of the
robot in order to remove these appearances.

5.3.3 Human Object Demonstration

An interesting possibility is that the human moves the object in order to produce the
images needed for training. This can be realized on the basis of human detection and
human motion capture algorithms that are available.

Another possibility is to choose the segmented 3D region fix. Then the human
operator is responsible to move the object into the masked region. This was imple-
mented in some set-ups related to this work. In figure 5.2 some visualizations of this
scenario are shown.

An acquisition strategy example involving human object demonstration may pro-
ceed as follows:

1. The user wants the robot to learn a new object.

2. She or he holds the object in the field-of-view of the robot.

3. The masking shape position is computed by an external component that is able
to detect and locate the human and especially the human hand that holds the
object.
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Figure 5.2: Object appearance segmentation based on demonstration. In both cases
the segmentation mask is defined by a threshold in z. Left: the pixel
values are masked. Right: masking is done on feature point level; purple
rings annotate accepted feature points and blue rings rejected ones.

4. Different views are segmented by range segmentation and stored for later model
construction.

A drawback of this approach is that the human selects the training views. Valuable
object information might be ignored. With additional feedback (e.g. speech) the
robot could direct the human operator to show valuable views not seen so far. Parts of
the human fingers remain in the segmented images when the simple masking operation
is used. These could be removed on the basis of a geometric model of the human.

5.4 Range Segmentation Examples

The range segmentation has been used by the author in two research projects and
during further works related to this thesis. This includes both segmenting on pixel
level and segmentation based on feature level. Some illustrations are given in fig-
ure 5.2. The algorithm for the range segmentation of color appearances has been
used for different versions of the object detection system. In order to be able to pro-
duce object views with known transformation frames a learning table set-up is used
(see figure 5.3). An implemented software enables the user to place the initial learning
frame in the center of the rotating table. Since rotation can be controlled precisely,
all other frames are also known. A database including five objects was recorded for
the purpose of this work. The raw shared images and the segmented versions of the
first views are shown in figure 5.4. The time to perform such a segmentation ranges
from 20 to 50ms on the test computer, sufficient for capturing training views fast
enough. The examples given here illustrate that the method is capable of producing
training images of similar quality as those contained in computer vision databases
(e.g. [53] or [21]).
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5 Sample Data Acquisition

Figure 5.3: Object learning cell used in the experiments.

Figure 5.4: Segmented objects of the test database.

5.5 Summary

This chapter has presented several solutions to sample data acquisition through the
introduction of

• range segmentation and

• a number of feasible acquisition scenarios.

The concepts introduced provide realistic opportunities for sample view acquisition
in the real world. This has been verified by many real-live tests during the research
work related to this thesis.
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6 Feature Frame Cloud Extraction
and Matching

2D feature point detectors can be applied to the color part of the shared image. The
features can be augmented with local coordinate systems based on the coordinate
part of the shared image. As a result, a new data representation is available that
combines invariant feature attributes with geometric information about position and
orientation. This new representation, called feature frame cloud can be used for
efficient model construction and detection. The computation and matching of feature
frame clouds is described in this chapter.

6.1 Motivation and Approach

The aim is to further exploit the properties of the shared image for object detection
and object learning. This is done based on an intermediate representation called
feature frame cloud, a term chosen in analogy to the more common term point cloud.
The inclusion of feature and frame account for the fact that the basic elements are
not only defined as 3D points. Rather, complete frames (3D position and orientation)
are associated with each element, together with discrete feature labels that can be
used to distinguish between features.

FFCs can be used to model a large range of objects based on coordinate and color
information. They allow for the construction of object models and efficient object
detection by simplifying correspondence search. The computation and use of FFCs
is based on the following principles:

• Application of the feature point detector to the different image layers (red,
green, and blue) of the color part C of the shared image.

• Discretization of the descriptor vector based on pre-partitioning and clustering
descriptor sets based on image identifier, a discrete feature point size measure
and the Laplacian sign of the feature point. This information, together with
the cluster label, forms a low-dimensional discrete description key that is used
for fast access.
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6 Feature Frame Cloud Extraction and Matching

• Computation of a local coordinate frame associated with each feature point
based on the 2D gradient direction and the surface normal in the coordinate
part of the shared image.

• Efficient storage of feature points by an associative memory that is accessed
by the discrete description key. Each key points to a small-sized list of feature
frames that are mapped to that key.

• Once the FFCs are computed they can be used for model construction and
detection by an algorithm that estimates the relative frame between two FFCs
based on voting on pose consistency.

FFCs are a sparse representation since only feature point locations are included. They
contain partial shape and texture information since both influence the construction
of the local frame. In the following sections these principles are further described. In
section 6.2 the FFC computation is treated. Then follows the object model construc-
tion and detection in section 6.3. In chapter 7 experimental results related to these
algorithms are presented.

6.2 Feature Frame Cloud Computation

A feature point can be defined as a quintuple:

F = (u, v, s, φ,d) ∈ N× N× R× R× Rl (6.1)

where 1 ≤ u ≤ w, 1 ≤ v ≤ h, s ∈ R, φ ∈ [0, .., 2 π), and d ∈ Rl are the image co-
ordinates, scale, orientation, and descriptor vector of a feature point. The descriptor
vector has the dimensionality l ∈ N. Such features are computed e.g. by applying
a SIFT or SURF detector (see also chapter 2). They are defined for single intensity
channels (e.g. gray-level images).

Lists of feature points from different color layers of the shared image together with
the coordinate information can be converted to a feature frame cloud consisting of
access keys to frames lists. One way of how this can be done is presented in this
section. Hence, a feature frame cloud is defined as a set of pairs each consisting of a
discrete description key vector and a list of frames:

F = {(k1, {F1,1, F1,2..., F1,n1}), (k2, {F2,1, F2,2..., F2,n2}), ...
..., (km, {Fm,1, Fm,2, ..., Fm,nm})}.

(6.2)

In this document, sets other than the number spaces are denoted with roman
(upright) capitals and lists are written as enumerated sets. F is used to symbolize
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6.2 Feature Frame Cloud Computation

the complete feature frame cloud as a list of key/frame list pairs. The other symbols
ki and Fi,k with 1 ≤ i ≤ m and 1 ≤ k ≤ ni (m, ni ∈ N) are used for the key vectors
and frame list elements respectively.

Such a feature frame cloud F can be implemented and used efficiently on the basis
of associative containers that map from discrete vectors to frame lists with low access
complexity (e.g. trees or hash maps). If the maximum and minimum values for each
key dimension are known a priori then also a linear arrangement is possible leading
to constant access complexity. For matching purposes, one has to consider only frame
pairs of the same key in the two feature frame clouds. Since two correspondences
already define a full conversion frame, each pair gives rise to a hypothetical relative
frame. For these reasons FFCs can be matched efficiently.

In the following, the basic feature frame cloud extraction algorithm will be de-
scribed. The algorithm converts the shared image S into the FFC representation F.
The function is termed getFFC and consists of two major parts: feature point extrac-
tion and local frame estimation. These steps are further described in the following
subsections. The pseudo-code of the proceeding is given below.

Algorithm 3 F← getFFC(S)
1: Compute the feature point list for the three image layers (RGB) of the color part

of the shared image
2: for all features in the list do
3: Compute the discrete description key k (from image label, size interval, Lapla-

cian sign, and cluster label)
4: Compute the local frame F on the basis of the 2D feature point gradient and

3D surface normal
5: end for
6: Append the new feature frame to F

In step 1 the feature points are computed from the color part of the shared image S.
The SURF blob detector is used in the software related to this document. However,
it can be replaced by any feature point detector that provides the interface described
with equation 6.1. In steps 3 and 4 each feature point is mapped on a feature frame.
These transformation steps are described in the following subsections. The final
step 6 in algorithm 3 is the entry of the new key/frame list pair. If the key is already
contained in the FFC then the frame can be appended to the existing frame list
directly. Otherwise, a new key/frame list pair has to added to the associative store.
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6 Feature Frame Cloud Extraction and Matching

6.2.1 Discrete Descriptor Key Computation

The discrete description key k is an integer list that serves as access address for
the frame lists. At this point the concept is rather general. There could be many
attributes included as key components (e.g. different feature point types). Ideally,
the components are already discrete naturally. Continuous measures need to be
quantized first introducing errors at interval borders due to noise. In the approach
presented here the key vector composition is chosen to be

k = (i, r, l, c) ∈ N4. (6.3)

The components (i, r, l, c) are described in the following.

The first entry i ∈ {0, 1, 2} denotes the image channel in which a feature point is
detected. The values 0, 1, 2 are used to enumerate the RGB layers of the color part
of the shared image C. The second entry r ∈ N is a discrete feature point size derived
from the feature points size s using the following formula:

r =
⌊
|pu,v − pu+rnd(0.5 s cosφ),v+rnd(0.5 s sinφ)|

r0

⌋
(6.4)

where u and v are the feature point pixel coordinates, φ the feature point angle, and
r0 a constant that defines the discrete interval size (in this work it is set r0 = 10mm).
The function rnd is used as a rounding function. The term 0.5 s is the feature point’s
radius (half the size). Note, that the real 3D size is used as attribute. This can be
computed by using the z-distance and the feature point’s scale s, which is delivered by
the feature point extraction. The third element of k is derived from the Laplacian sign
of the feature point l ∈ {0, 1}. If the sign is −1 then l is set l = 0 to describe a local
minimum. If the sign is 1 then l is set to l = 1 which refers to a local maximum. The
fourth and last discrete entry is a discrete cluster identifier c ∈ N, 1 ≤ c ≤ nc where
nc is the maximum cluster number. This is obtained from a clustering algorithm that
is applied to pre-partitioned descriptor sets of the object specific training set Ftrain
during learning. This computation is described in the following subsection.

6.2.2 Clustering Feature Point Descriptors

Commonly, feature point detectors such as SIFT, SURF and related approaches de-
liver a descriptor d ∈ Rl, where l ∈ N is the number of dimensions. These are made
invariant against changes in perspective and brightness as well as robust against noise.
Usually, gradient statistics (SIFT) or responses to different frequencies (SURF) are
used as descriptor vector components. Since the feature frame clouds contain the
full geometric relations of the feature points, less discrimination power is required for
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6.2 Feature Frame Cloud Computation

a single feature point. The geometric relations in the object model can be used to
discriminate feature point groups. The goal is to simplify labeling which is commonly
realized by nearest-neighbor searches in the high-dimensional descriptor space. In-
stead, the descriptor sets are clustered and each training descriptor is associated with
one of the clusters. For recognition the descriptor under question is either contained
in one of the trained clusters or resides outside all clusters. Then the feature point
is rejected.

In the current version of the implementation of the approach presented in this
document, QT clustering (see [31]) is used since it is very simple, can be fast and it
is easy to implement. Also, it does not require a number of clusters to be defined a
priori. Maybe EM clustering could also be used for computing better adapted cluster
shapes. Additionally, sub-space reduction methods such as PCA or unsupervised
learning (e.g. self-organizing feature maps) could be used as pre-processing strategies.
Another possibility is to use one-class SVMs [39] or any other one-class learning
machine that is suited. QT clustering is chosen in the work presented for the reasons
given above.

For the retrieval of the cluster identifier the prefix k′ = (i, r, l) of k is used as a
shorter key that partitions all descriptors of all features in Ftrain. This means that
the descriptors are pre-partitioned into smaller sets for each different k′. Also the
cluster identifier retrieval functions are indexed with k′. Let Dk′ denote a descriptor
partition associated with k′ and

ck′(d) =
i ∈ {1, 2, ..., nc} if d maps to cluster i

0, otherwise.
(6.5)

This function retrieves a cluster identifier for any descriptor d given k′ ranging from
1 to nc, the largest possible cluster identifier. The function ck′ is only available
after the basic clustering process is executed. In order to provide ck′ based on the
QT clustering the conventional QT algorithm can be reformulated (see algorithm 4
below).

Algorithm 4 Ck′ ← getClusters(Dk′)
1: Initialize first cluster prototype c1 ← d1 and a counter k ← 0
2: while Dk′ is not empty do
3: Compute all distances between the elements in Dk′

4: Choose the sample dmax, that contains the most members in a sphere given
through tcls

5: Remove dmax and all members of the cluster defined by dmax and tcls from Dk′

6: Set ck ← dmax and k ← k + 1
7: end while
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6 Feature Frame Cloud Extraction and Matching

The input of algorithm 4 is a set of descriptors Dk′ = {d1, ..., dn} and the output
a reduced set of cluster prototypes Ck′ = {c1, ..., cm},m ≤ n. The parameter tcls
controls the reduction. If the threshold is small then the cluster prototype set equals
the original descriptor set. If in turn tcls is chosen very large then only one prototype
remains.

The size of the set Dk′ is successively decreased by removing clusters that are given
by samples that have many neighbors within a sphere defined by tcls. Note that the
pseudo code is only printed for description of the algorithm’s output. An efficient
implementation does not need to compute all the distances more than once. When
using QT clustering, retrieval of cluster labels can be quickly by only evaluating the
Euclidean distance up to a dimension where the sum of squared component differences
exceeds t2cls. The cluster labels can be of different scopes. In the approach followed
here they are object specific, i.e. the sets Dk′ are derived from an individual object
image collection. Also a global cluster set could be learned incrementally. If a new
object is introduced then some descriptors are covered by clusters learned already and
others add new clusters. In the following, the cluster label is called c with c = ck′(d),
where d is the descriptor in question. Experiments that were performed during this
work showed that the chosen components of k′ are stable enough for object detection
in typical scenes.

6.2.3 Local Frame Construction

Estimating a local frame at the 3D location of the feature point becomes possible by
using the surface normal nu,v (see e.g. equation 5.1 on page 50) at the feature point
location (u, v)T as the first axis. The next axis can be computed from the gradient
direction φ on the basis of a normal vector describing the gradient plane:

ng = (cos(φ+ π

4 ), sin(φ+ π

4 ), 0)T . (6.6)

The intersection of the gradient plane and the surface normal describes how the fea-
ture point is oriented on the surface of the object. Here, the surface is approximated
using a local plane defined by nu,v. This is the first axis of the local frame. The
second axis that is called g (gradient axis) is chosen to align with direction of the
gradient. This can be computed by:

g = nu,v × ng. (6.7)

The third axis called h is the one orthogonal to nu,v and g given by h = g × nu,v.
Finally, the local frame F can be constructed with iF = nu,v, jF = g, and kF = h.
The construction is depicted in figure 6.1.
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Figure 6.1: The computation of a feature frame from a feature point. The gray ellipse
shows an artificially created circular blob feature on an inclined plane.
The white disc within the feature area serves for a strongly defined in-
tensity gradient. With the intensity gradient and the surface normal
available a local frame can be constructed. The black ring shows the de-
tected SURF feature with a gradient angle φ. A normal vector ng is used
together with the surface normal nu,v to construct the gradient vector g.
Finally, a third vector h is constructed which is orthogonal to g and h.

6.2.4 Example

A real-world example of feature frame cloud computation is presented in the following.
In figure 6.2 a scene view is shown as shared image (top/left) and as FFC (bottom).
Also a zoom-in (top/right) shows the feature frames. The colors of the balls visualize
the discrete key vectors as separate colors. The local frames are drawn using colored
(red, green, and blue) lines for the frame axes (x, y, and z). The computation of this
FFC was performed without the cluster label (since this is object dependent).

6.3 Model Construction and Detection

The computation of the FFCs can be applied to the segmented images in Strain for
model construction or to scene images during detection. The resulting training set of
FFCs is denoted as Ftrain. In this section, the goal is to combine the partial object
views into an object model and to use that model for detection. Both processes, object
model construction and detection are based on the same method of matching feature
frame clouds as described in the following subsection, subsection 6.3.1. Then follow
subsections 6.3.2 and 6.3.3, which explain how model construction and detection can
be realized based on the frame estimation algorithm.
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6 Feature Frame Cloud Extraction and Matching

Figure 6.2: An example of FFC computation. Top/left: the original scene shared
image. Bottom: the scene as feature frame cloud. Top/right: a zoom
into the feature frame cloud. The ball’s color denotes the discrete key
vector and the three colored lines are the frame’s axes (red = x, green =
y, and blue = z).
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6.3.1 Feature Frame Cloud Matching

Feature frame cloud matching is the process of estimating the relative frame between
two FFCs (source and argument FFC) such that if the frame is applied as coordinate
transformation to the argument cloud many local feature frames with equivalent keys
have the same position and orientation in both clouds. The solution given here does
this estimation based on density evaluation in a voting space that contains possible
origin frames Gh (the subscript h ∈ N is used as a hypothesis enumerator) of an
argument FFC called G measured in the base FFC F.

Let F be the source feature frame cloud as defined by equation 6.2 and G a second
“argument” feature frame cloud that is contained in F and G is the unknown base
frame of G in F. An assumption is that there is some overlap, i.e. both clouds contain
some common feature frames. For the description here G is composed as follows:

G = {(l1, {G1,1, G1,2..., G1,l1}), (l2, {G2,1, G2,2..., G2,l2}), ...
..., (lk, {Gk,1, Gk,2, ..., Gk,lk})}.

(6.8)

Assume that the origin system of F is chosen as world frame (zero offset and neutral
rotation). To estimate G it is possible to compute and store all possible hypothesis
frames H that result if the correspondence assumption is asserted to be true for each
pair. All hypotheses can be enumerated by listing all possible tuples (Fi,k, Gj,l)h,
which have matching keys ki = lj. Assume there are n such hypotheses such that
1 ≤ h ≤ n.

In the following the computation of a single hypothesis H is described by using
transform equations (see [14]). For simplicity the symbols Fi,k and Gj,l are replaced
by F and G, respectively. In figure 6.3 the construction is shown. The first FFC, F,
contains a frame F that is known relative to the world frameW by the transformation
W
F T . In the second FFC, G, the frame G is assumed to be a correspondence to F .
Therefore,

W
F T = H

GT (6.9)
holds. Furthermore, there are two ways to obtain G: through the direct measure W

G T
or indirectly over the unknown H. This can be expressed as follows:

W
G T = W

H T H
GT . (6.10)

Equations 6.9 and 6.10 can be combined and solved for the frame H, yielding
W
H T = W

G T W
F T−1 (6.11)

which computes the hypothesis. Now let the set H be a hypotheses set that is a
collection of all Gh

H = {H1, H2, ..., Hn}. (6.12)
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Figure 6.3: Dependencies of coordinate frames in F and G (see text for the descrip-
tions of the symbols).

An example of such a set for a real scene and a matched object model is shown
in figure 6.4. It is possible to retrieve an estimate of the frame H by evaluating
the empirical density around single frames in H. In figure 6.4 this is shown by the
(manually annotated) frames in the left and right image.

A density for each frame in H can be computed by iterating over all possible
n (n− 1) pairs and computing a frame distance d(Hi, Hj). Such a frame distance can
e.g. be computed by the suggestion in [25] that is based on the addition of translation
and rotation distances. The distance measure used in this work is described in the
appendix. For each Hi a counting function c(Hi) can be computed denoting the sum
counts in a vicinity defined by a threshold tF ∈ R. This count could also be weighted
by a general weight based on the key occurrences in both clouds. The maximum
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Figure 6.4: This figure shows the set of hypotheses H for an object model of a book.
Left: the scene (color part of the shared image) containing the book.
Right: the dots represent the x- and y-coordinates of the base point of
each frame hypothesis. The red, green, and blue lines in the left and
right image represent the object reference frame (left image) and the
result frame (right) that are manually annotated in this figure.

frame found is called H∗. To find this frame more efficiently, the voting space is
arranged as a set of cubes defined by an interval size for the translation components
and a fix angle for the rotation components. The storage of all votes is commonly
called accumulator . During the voting phase the address of the maximum cube is
continuously updated and the subset contained in the cube with maximum density
is called H∗. These considerations are summarized in algorithm 5 (see below). It
estimates the frame H∗ on the basis of two feature frame clouds P and Q.

In the software used for the tests in this document the translation bin sizes are
set to 50 mm and the rotation sizes to π/4. The components are the three (x, y,
and z) parts of the translation vector oF of a frame F and three angles. The first
angle is the rotation angle αF and the remaining are the sphere angles θF and φF of
the rotation axis uF of the frame F . Per vote there are actually two cells occupied,
one with the bin coordinates resulting from a floor operation and one from rounding
per dimension. The frames are stored collectively in their corresponding cubes. It
follows that the precision of the result depends on the error of one hypothesis only.
The threshold of the distance function is chosen at tF = 25 and would correspond to
millimeters if there was no rotational difference.

The complete algorithm is described by the pseudo code of algorithm 5 (see next
page). The worst case complexity of the first part of the algorithm (the voting phase)
is at most quadratic, i.e. if there was only one matching key in both clouds. In the
best case the complexity is linear (if there is only one frame per matching key).
Since the density evaluation in the second part is based on all pairs of hypotheses,
it is quadratic on the numbers of votes. The discretization of the accumulator helps
overcome this problem in practice. An assumption here is that the best voting cube
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also contains the densest hypothesis. This is not generally the case and thus it is a
weakness of this approach.

Algorithm 5 H∗ ← getFrame(F,G)
1: for all local frame pairs (Fi,k, Gj,l)h with ki = lj do
2: Compute a single hypothesis H based on equation 6.11.
3: Store the pair into a discretely sub-divided accumulator data structure con-

taining H (e.g. based on an associative memory structure).
4: Update a cube specific count by adding wh
5: Update the maximum cube’s address
6: end for
7: Select a sub-set H∗ of the cube in the discrete voting space with the highest

density. Assume there are n elements in H′.
8: for all possible pairs (Hi, Hj) in H∗ with 1 ≤ i ≤ n and 1 ≤ j ≤ n and i < j do
9: Compute a frame distance dF (Hi, Hj).

10: Update the density count c(Hi) if c(Hi) < tF ).
11: end for
12: Choose the kth frame H∗ with maximum cw(Hk) as result.

An advantage is that the algorithm is very robust to noise and can be shown empir-
ically to detect very small subsets of object model feature points in large scene FFCs.
Another advantage is that the concept is open to include other helping knowledge
such as weights based on the feature key distributions. Such weights could also be
based on general feature point type statistics or context knowledge. Another advan-
tage of this algorithm is that the time for estimation could be computed on the key
counts before actually running the algorithm. An upper bound of the computation
time could be sent to the client. This could be desired for time critical applications.
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6.3.2 Object Model Construction

An object model is a FFC called M that has to be constructed from the segmented
training views Strain. Object model construction consists of three distinct parts:

1. The descriptor database has to be constructed in order to be able to compute
the discrete descriptor key completely with the cluster identifier c. The input
to this are all descriptors of the FFCs in Ftrain. Note that Ftrain has constant
cluster labels set to 0 since the clusters are not established at this time. Hence,
effectively only the prefix k′ is used as key.

2. If the acquisition strategy provides the relative frame from each view to the
next (e.g. through internal robot motion) then these frames are used to write all
FFCs together in one remaining FFC, called model M. Otherwise, if the relative
transformations are not known then an appropriate technique to combine all
views (one possible method will be described in this subsection) is applied in
order to get an approximate model M.

3. Cluster and centralize the remaining object model (see appendix). Clustering
can be done to remove copies of one and the same feature frame. The term
centralizing is used here to describe the process of aligning the remaining model
FFC around the neutral frame in order to get the reference frame O “into” the
objects and minimize rotation errors. A method that can compute a centralized
set of frames is described in the appendix of this document.

These steps comprise the following algorithm called getModel. The input to this
algorithm is the set of segmented shared images Strain. The output is a model FFC
called M. The pseudo code is given below.

Algorithm 6 M = getModel(Strain)
1: Initialize a list of feature frame clouds Ftrain
2: for all shared images in Strain, 1 ≤ i ≤ n do
3: Compute F← getFFC(Si) with the cluster identifier set to zero c = 0.
4: Append F to Ftrain
5: Append the descriptors to the corresponding descriptor set Dk′

6: end for
7: Train the object dependent cluster prototype set C using getClusters based on

all clouds in Ftrain
8: for all feature points 1 ≤ j ≤ n in all FFCs of Ftrain do
9: Compute the cluster identifier c and update the key
10: end for
11: Combine all views into one model FFC M
12: Cluster and centralize M

69



6 Feature Frame Cloud Extraction and Matching

If the acquisition scenario provides precise frames then it is strongly recommended
to make use of them. Then the fusion step (step 11) is only a copying and coordinate
conversion process. If not then the fusion of all partial view FFCs into one model is
equivalent to solving a global optimization problem based on an appropriately chosen
fitness function. The output is a list of frames that describes each view relative to a
common reference frame. However, such a global solution is very expensive.

During the work here several simpler fusion methods have been tried. Some were
only based on frame estimation between FFCs. It was found that such methods are
not adequate due to the problem of sequential error propagation. It was observed
that it is necessary to also match views that are not direct neighbors in the sequence.
However, it is difficult to decide algorithmically which pairs have to be matched. The
best simple method found during the work presented here computes some approxi-
mate object models hierarchically. This is shown in figure 6.5. The shapes resulting
from this strategy are not accurate but compact enough to achieve similar recogni-
tion rates as with the known transformations. Finally, (in step 12) the model FFC
is clustered to remove multiple occurrences of one and the same feature point and
centralized. Here also this clustering is done by QT clustering based on the frame dif-
ference function (see appendix). Those frames that lie centrally in dense regions are
kept while their neighbors are suppressed. The centralization is based on computing
the centroid of frame base points and average frame axes (see also the description in
the appendix).

6.3.3 Object Model Detection

The object detection and pose estimation algorithm has to find the object reference
frame O in the sensor system S based on local frames that lie on the object’s surface:
this is shown in figure 6.6. The resulting detection frame is denoted with D = SO
and its approximation D̂. Detection and pose estimation is based on the application
of the getFrame function. Let S be the scene FFC filtered by the descriptor clusters
of the object model O. Then D̂ can be computed using:

D̂ ← getFrame(S,M). (6.13)

6.4 Summary

This chapter has introduced the notion of feature frame clouds, a representation
that leads to efficient matching. Feature frame clouds can model the current scene
view, partial object views and complete object models. They allow for efficient access
due to low-dimensional keys and contain local object shape information. A possible
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Figure 6.5: Hierarchical registration of single view FFCs into one object model. Each
arrow represents a frame estimation and importing operation of two views
into one. The backend of the arrows (right side) are the source views and
the arrow heads (left side) point to the destination views which contain
the feature frames of both views after termination.

Figure 6.6: The detection of an object model based on detections of local frames. In
the object model each local frame is known relative to the world system.
Therefore, a correct correspondence votes on O in S.
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registration technique to compute approximate object models from partial views if
the conversion frames from one sample view to the next are unknown is presented,
too. In chapter 7 some experiments and results on parameter settings and matching
are given.
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7 Evaluation

This chapter contains some experimental results and discussions related to the ap-
proach introduced in this document. These experiments, tests and evaluations con-
centrate on the algorithmic components of the approach. This chapter is organized
as follows.

• First, the combined sensor calibration and shared image computation is treated.
It is shown that the range and color image can be aligned accurately.

• The second part is devoted to the FFC construction and matching algorithms.
It is shown how the local frames can be constructed and they lead to a reduction
in the search complexity. Different matching methods are discussed and reasons
are given to support the approach that evaluates densities in the frame space.

• This is followed by the third part that treats descriptor matching based on
the simple thresholding method and the additional components of the discrete
access keys.

• The fourth part contains some tests of the complete system. Tests include
learning with known learning frames, learning with the registration procedure,
and detection in complex scenes.

These parts are presented in the following sections. Note that these measurements
are based on software that is not optimized for speed. Large parts could be imple-
mented based on parallel algorithms and further improvements could be based on
pre-computation of reused parameters as well as avoidance of unnecessary copies of
data involved.

7.1 Combined Sensor

The image fusion algorithm (algorithm 1 on page 43) for the shared image computa-
tion and the calibration procedures have been implemented and tested in C++. In
the following, representative results are reported.
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Figure 7.1: Examples of calibration images. Top: resized image of the range imaging
sensor (left) with detected corners and center points (right). Bottom: the
intensity image of the color imaging sensor (left) and the detected corners
(right).

7.1.1 Calibration of the Full Sensor Setting

Calibration Image Recording and Selection

For the detection of calibration points the function cvFindChessBoardCorners()
from OpenCV is used. Note that in addition to the corner points, the interpolated
centers of the squares are also used in order to provide different brightness variants
to the distance calibration of the range imaging sensor. In figure 7.1 examples of
calibration images are shown. The original 176 × 144 sized intensity images of the
range imaging sensor are enlarged by a factor of three using the OpenCV function
cvResize(). The intensity image of the range imaging sensor is enhanced in contrast
in order to improve the corner detection.

The original 1280× 960 sized color images of the color imaging sensor are resized
down to 640 × 480 pixels. The color images are converted into gray-level images by
using the OpenCV function cvCvtColor().

In a representative test 343 images were taken and 137 remained after exclusion of
images in which not all corners could be detected or in which corners were detected
at false locations (manually filtered). After the image recording and selection there
were 5617 calibration points available. The recorded images and point sets are used
in the following paragraphs.
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Intrinsic Calibration of Both Imaging Sensors

First, the calibration images are used to calibrate the intrinsic parameters A, k,
Ac, and dc of the two sensors. Here, the OpenCV function cvCalibrateCamera2(),
which implements a method based on [81] is used. The function is called with an
option to fix the pixel aspect ratio at 1. This is possible since the pixels of the
range imaging sensor selected here are squares. The 5617 calibration points that
were recorded result in a pixel error of 1.33 pixels (standard deviation). For the color
imaging sensor the pixel error on the calibration points used is 0.63 pixels. The low
pixel resolution of the range imaging sensor can explain the large error.

Corrected Calibration Points

The method used here undistorts the calibration range images T n to re-detect cor-
rected corner points during calibration. Range images are also undistorted during
operation as a first step. For both purposes maps are are computed with the OpenCV
function cvGetUndistortMaps() for more efficient remapping. The undistorting step
for the range images recorded here takes 38ms in average measured over the original
343 calibration images with non-optimized code on the test computer (Pentium 4,
3GHz with 2GB memory). The set with 137 points used here contains only 124 im-
ages in which all corners are detected correctly in the undistorted images, resulting
in 5084 calibration points.

Distance Calibration

A least-squares quadratic regression) was applied to the 5084 calibration points to
obtain the parameters k, l, m. The regression maps the values in T to the real
distances D. The overall metric error of the forward transformation is computed
by measuring the difference between the 3D coordinates predicted with the intrinsic
parameters contained in set P′ and those derived from the extrinsic frames En. The
overall error on the point set used here is 17.5mm. Also the x-, y-, and z-components
errors were evaluated, as well as the error in the distance radius d. The outcome is
that the distance error in d is 17.4mm. The error in x is 2.2mm while the error in
y is 2.3mm. The relatively large error in d directly causes the large error in z. The
error distribution in of d− d̂ (d̂ denotes the estimated values) in millimeters is shown
in figure 7.2.

In summary, the final distance error of the overall sensor calibration resides at
17.4mm on the 5084 calibrations points set. Note that only a quadratic approxima-
tion is used for the relationship of phase angle and real distance. Better approxi-
mations could improve the error. Another weakness here is that the “ground truth”
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d− d̂ mm

d

Figure 7.2: Remaining distance error distribution: the histogram shows the number
of d− d̂ entries per mm-sized bucket. The peak is at 0 with 363 entries.

distance data are provided by the chess pattern matching. These measurements can
be erroneous, too.

Extrinsic Frame Estimation

The frame C of the color sensor has to be estimated as part of the calibration. The
related part of the software used here takes the forward projected range imaging
sensor measures P′ and minimizes the error on the corner/center locations in the
intensity images of the color imaging sensor. The implementation uses a simple
greedy search. The search steps are decreased if no improvement in any dimension
is possible. The resulting parameters on the calibration point set used here contain
a translation offset in y of about −94mm. This is roughly the real difference in
height between the cameras in the set-up used. The pixel error is, at 4.3 pixels,
higher than those resulting from the single intrinsic camera calibrations. However,
considering that this error is over the full chain of sensors it may be acceptable. The
error distributions of uc − ûc and vc − v̂c in the pixel system are shown in figure 7.3
and figure 7.4.

An example of the output of the procedures introduced is shown in figure 4.3 on
page 45.
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uc

Figure 7.3: Pixel error distribution uc − ûc of the full sensor calibration.

vc

Figure 7.4: Pixel error distribution vc − v̂c of the full sensor calibration.

7.1.2 Calibration based on Default Parameters

In the following a further experiment on the sensor fusion is reported. It is based on
the range camera’s pre-calibration. The advantage compared to the full calibration
approach that is that the camera already compensates for the non-linear relationship
of the time-of-flight phase shift measure and the real distance.

First, the camera parameters of the time-of-flight camera are reconstructed in order
to compute the map for the range image distortion correction and resizing. This can
be done by using the measured 3D coordinates based on some artificial range values
that can be passed to the sensor together with the 2D image positions. In order
to run the calibration based on the OpenCV function calibrateCamera() with all
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points in one view (i.e. as calibration grid containing non-planar points) some initial
estimates of the intrinsic parameters must be given. This is done by using half the
image width and half the image height as estimates for (cx, cy). As focal parameters
(fx, fy) the scale parameters from two one-dimensional linear regression lines are used
that are fit to the pairs (x/z, u) and (y/z, v). An experiment was conducted based
on a raw range image filled with random range values. At a resolution of 176× 144
this led to 24344 2D/3D point pairs. These could reconstruct the internal parameters
with an error of 0.00075 pixels.

Using these intrinsic parameters the range image can be corrected for distortion.
A test based on this correction shows the fitting accuracy of the range camera. A
coordinate image and the gray-level image of the range imaging sensor are used. Both
are corrected for distortion. A chessboard pattern is detected in the raw gray-level
image and the 3D coordinates are picked at interpolated 2D image positions. The
pattern consists of a planar grid 9 × 6 points surrounding squares of 0.04m. The
matching algorithm from [32] is used to estimate the pose. All point distances of
the detected points and their real ground-truth values in the detected pose are used
to compute a 3D error. In a representative test run at a distance of 0.9m between
camera and pattern, the matching error result was 0.00187m, which is in millimeter
range.

The shared image calibration to be evaluated is based on the same software used
in the previous tests. It is a realization of the method described in section 4.4.2.
Again, the initial estimates of (cx c, cy c) are based on the image size of 640 × 480
and the focal values based on two linear regressions. Since in this setting the sensors
are approximately mounted at the same z-coordinate and y-coordinate, the scaling
parameters based on the pairs ((x/z, uc), (y/z, vc)) can be used as initial estimates.
These are provided by calibration pattern detection in the gray-level images of both
cameras. A test was performed using about 4000 calibration point pairs of the form
(x, y, z) 7→ (uc, v, c) and the reprojected error was 0.7 pixels in the higher color camera
resolution of 640×480. The error distributions of uc− ûc and vc− v̂c (the hat denotes
the computed values) in the pixel system are shown in figure 7.5 and figure 7.6.

An example image produced with this calibration is shown in figure 7.7. It includes
fixing of the missing regions that are caused by the fact that the optical systems of
both cameras are spatially separated. The computation of the shared image can be
done fast. On the demo computer (single core 2.8 GHz) used here it takes about
30ms without the region fixing. However, it is not an optimized implementation.
The resizing of the range image and the correction for distortion could be combined
in one step. The fixing operation is computationally expensive and expands the
computation time to about 200ms. However, the advantage is that feature points
that appear due to the strong edges around the masked region are avoided. The mask
for the in-painting algorithm is computed after the shared image construction. Both
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uc

Figure 7.5: Pixel error distribution uc− ûc (interpolated) of the calibration based on
the default parameters on the camera.

vc

Figure 7.6: Pixel error distribution vc − v̂c (interpolated) of the calibration based on
the default parameters on the camera.
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Figure 7.7: Shared image with precise calibration and region fixing (see e.g. the
bottom rows that are interpolated).

steps could be combined in order to increase computation speed.

The basic outcome of this experiment is that both images can be combined with a
shared color image with sub-pixel accuracy in the larger 640 × 480 image size. The
calibration based on the parameters set by the manufacturer is more precise than the
full calibration as reported in subsection 7.1.1 and is expected to keep good precision
over the full measurement range. This can be explained by the fact that the non-
linear phase angle/distance error is corrected on the camera directly and by the use
of a better extrinsic frame estimation algorithm.

7.2 FFC Computation and Matching

7.2.1 FFC Computation

An important question about the feature frame construction is whether there are
frames that are stable from different views. Here, stable means that their relative
coordinate system to the object center system is fixed among varying views. An
example for such a frame construction is shown with a visualization in figure 7.8.

The frames in figure 7.8 are built based on the calibration used in section 7.1.
The image region for normal construction based on a least square plane fitting is
21× 21 pixels. The feature point threshold is chosen to be very high to isolate these
features from surrounding features in order to make them visible. The top row in
the image shows the construction with only the 2D gradient (i.e. the normal is set
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Figure 7.8: Depiction of the frame construction. Top row: an object at 0◦and
30◦where the frames are constructed only using the 2D gradient and set-
ting the normal to n = (0, 0,−1) (i.e. it does not change the other frame
vectors). Bottom row: the same views as in the top row but including the
normal direction in the frame construction. The frames are drawn with
RGB encoding the x-, y-, and z-axes. The blue z-axes in the bottom row
show the surface normals. The red circles denote the feature label.

constant) while the bottom row shows the full construction. It can be seen that the
frame construction is possible – the gradient and normal computation can lead to
frames that are attached locally. The blue colored normal stays orthogonal on the
surface and becomes visible at higher degrees of rotation. However, due to errors in
the normal computation and due to the fact that some features are radially invariant
(e.g. round blobs), it is possible that a single frame becomes instable.

7.2.2 Pose Detection

A test was done based on the segmented unlabeled feature points of the object shown
in figure 7.8 using 36 views at increments of 10◦. The labeling was disabled to only
concentrate on the geometric matching in this test. Each view was matched with its
predecessor and the result frame was compared to the known frame between the two
views. A threshold tsurf = 300 was chosen and the size of the voting cells was set
to 10 cm (translation) and 180◦ (rotation). The feature points were filtered based on
the normals with an angle threshold θ = 0.55 π.

The difference between the true transformations and the computed ones were com-
pared using difference metric described in [25] that is the sum of the translation
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distance (distance of the base vectors of the two frames) and a number that measures
the distance of rotations based on the trace of the rotation matrices product. In
this experiment the final error in translation was 1.13 cm and 7.86◦. This means that
based on the settings described above and the feature frames constructed, a detection
precision in centimeter range and in the range of 10 degrees is possible if the object
contains enough features in each view.

There are different factors that influence the possible accuracy:

• First, the range data measured with the time-of-flight camera are affected by
depth errors caused by so-called multi path reflections.

• Second, to detect stable normals, the computation must be based on large image
regions. But this also induces a smoothing effect and the correct rotation of
the object is damped.

• Third, in this experiment all feature-pairs in object and scene are considered
and the feature count is high per view (about 1500 features in average). This
leads to a large number of noisy frames in the voting cell containing the correct
result. Due to the unstable rotational parameters of the constructed frame
rather large voting cell sizes have to be chosen. Larger cell sizes decrease pose
accuracy.

Therefore, this approach would immediately improve with better techniques to com-
pute the normals in the range image. In the experiments on registration (section 7.4.1)
of the different object views a rotation increment of 5◦is used in order to improve the
frame estimation between the training views. Another opportunity for improvements
could be to compute object dependent or scene dependent (or both) voting cell sizes.
However, this possibility is not explored here.

In a second experiment using the FFC-ICP algorithm the precision could be further
improved up to 4.6◦ and 0.92mm by taking into account 100 nearest frame neighbors.
This means that the information content of the views is possibly limited and that the
large voting cell sizes needed decrease the accuracy. However, in further experiments,
described below, the ICP variant was not found to be able to match views with high
differences in rotation and translation. This is due to the basic assumption that near
frames are matches. Therefore, it is possible to combine the two matching algorithms
in order to improve the pose accuracy. The feature point correspondences that led
to a vote in the densest voting cell could be stored. All the feature points pairs that
belong to this cell could be passed to the ICP algorithm. However, this opportunity
is not further explored in this thesis.
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7.2.3 Lowering the Search Complexity

The possibility of such a construction leads to a decrease in matching complexity.
Although due to the unstable frame construction a relatively high feature count is
necessary to compute more accurate results, the advantage is that the single pose
votes can be computed based on only two correspondences.

Imagine that the computation of the frames would require 3 points. In the positive
case in which 3 features in the scene setting match with 3 features on the object,
this means there are k = n(n − 1)(n − 2) (n is the number of features in the scene)
possible variations to consider. The variations need to be used for this because the
order is important during the frame construction (see e.g. [32]). It follows that the
complexity to find the correct matching triple in the scene is O(n3) in big-O notation.

In the worse case it is not known that a triple in the model is visible in the scene.
Therefore, all possible triples in the object model l = m(m − 1)(m − 2) (m is the
number of features in the object model) have to be considered, each k = n(n−1)(n−2)
many times. For simplicity let m = n (i.e. object model and scene have equivalent
feature count). Then the additional tests required lead to a complexity of O(n6).

Reductions of this complexity are possible by including further 3D information.
For example, if two 3D points are used and one additional surface normal then the
normal and the difference vector of the two 3D positions can be used to compute
the frame axes. The complexity can be reduced to O(n2) in the positive case and to
O(n4) in the case where it is not known if the features are in the scene.

The local frame construction proposed here leads to the linear O(n) complexity in
the positive case and to O(n2) in the worse case. This leads to an opportunity for
algorithms that use many features, possibly of different types, still efficiently. This
search reduction is seen as a clear achievement of this thesis.

Processing more features still efficiently also allows less precision in the feature la-
beling. This leads to the possibility of the simple thresholding approach for descriptor
labeling. Now the “descriptor model” of the object only depends on the single object
alone and not on models based on sets of objects. This is seen as an advancement
compared to existing methods that use comparisons of nearest neighbor distances
between descriptor sets of different objects. If the difference of the feature descriptor
of the object and the nearest descriptor in the scene is compared to all the differences
of that scene feature and the closest neighbor of all other objects in the object set,
then this leads to a complexity O(k), where k is the number of objects. Here, this is
O(1) since only the descriptors of one object need to be processed.

Please note that these theoretical aspects related to search reduction do not mean
that the implementations used in this work readily outperform implementations of
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existing approaches based on multiple feature matches in order to compute one frame
hypothesis. Due to the currently unstable local frame construction and non-optimized
software this is likely not to be the case. A large voting cell size has to be used which
causes errors. However, it shows the potential of the approach related to scalability
in the number of features and matching speed.

7.2.4 Matching Algorithms

The reduction in search complexity can be explored in different search schemes. The
ICP and RANSAC methods converted to working with FFCs were implemented and
compared to the density-based approach.

The ICP FFC version takes a number of nearest frame neighbors and computes
a combined conversion frame between model and scene and applies it to the model
until it aligns with the object in the scene. The algorithm is fast when there are
enough feature labels such that the probability is high that the nearest neighbors in
that label are real correspondences. When the number of features with equivalent
labels is higher and the distance increases between model and scene FFC, then the
algorithm fails. This was verified with a number of tests not printed here.

For each iteration the RANSAC FFC version guesses a (i.e. only one) correspon-
dence pair of the same label, computes the relative frame and verifies the frame. A
frame distance measure (see in the appendix, chapter 8.2) can be used to compute
the number of inliers as a quality value of the pose hypothesis. A disadvantage of the
approach is that either the iterations or the quality measure must be used to termi-
nate. In both cases it is unknown whether the best possible pose has been found or
if the algorithm needed many unnecessary iterations. Also, the verification of each
hypothesis is an extra computational cost compared to the density-based approach.
This complexity could be reduced further by organizing the feature frames into some
fast accessible structure such as a tree. However, this does not eliminate the need for
the confirmation step. It only makes it faster.

During the work related to this document tests were conducted based on randomly
created FFCs. Source and target FFCs were precisely equivalent, but the target FFCs
were transformed by a randomly chosen relative frame. Each test cycle consisted of
100 trials with different FFCs randomly created and at every 10 cycles the relative
frame was varied.

In the test shown in figure 7.9 the feature count starts at 100 and proceeds to
500. There is only one key, i.e. the features are not discriminative. Though this
might seem to be a rather extreme test, note that with 20000 features and 40 keys
(all equal count) the complexity is equivalent. Such a scenario is realistic in the
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Figure 7.9: A comparison of the RANSAC algorithm with the with the density-based
approach. All features have an equivalent key. In this extreme situation
the voting algorithm outperforms the RANSAC approach.
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case in which fewer discriminative features are used or in which the scene contains
multiple instances of the same object. It is shown in figure 7.9 that the density-based
method is faster in these tests. Other tests with 100 to 500 features and 10 keys were
performed, too. Here the RANSAC was faster until a feature count of 400.

It is interesting that many state-of-the-art approaches build on the RANSAC al-
gorithm even though it takes a long computation time if there are many features
that can not be distinguished well. The success of RANSAC can only be explained
by the robust but complex indexing procedures used on descriptor level. With the
FFC representation and the density-based approach it is possible to cope with not as
discriminative features (which may be computed faster due to simpler descriptors).

The fact that a small subset of features can be used to find approximate object
poses quickly means that:

• Scenes may contain more features (e.g. due a wider field-of-view).

• The number of object features may be smaller (e.g. due to featureless objects
or object coverage).

• More features can be used (e.g. lower thresholds or different types).

7.3 Descriptor Tests

The SURF features were selected in this work since the results on the tests proposed
in [4] are superior to other feature points in terms of accepted performance measures.
Additionally, since the integral image is used, SURF is very fast. SURF has the
option to choose between a 64 and 128 dimensional descriptor. Here, the 64 dimen-
sional version was chosen. An experiment was conducted to observe the stability of
the SURF feature points in the color part of the shared images manually. This is
shown in figure 7.10. The green points in figure 7.10 denote the correct matches (i.e.
which belong to the object). Only the first (0◦) view was used to teach the clus-
ter database with the 64 dimensional descriptor vectors. The test parameters were
adapted manually. It can be seen that up to 45◦ (last image at the bottom/right in
figure 7.10) there are still many green points in the region of the apple juice box.

Systematic tests were done using ten of the objects shown in figure 7.7. The
parameter tsurf = 500 was chosen. This value was found to be adequate in some
tests not reported here. The features of all ten objects, placed on a rotation table,
were computed in order to measure the following error, which is a combination of the
false alarm rate and miss rate:

ed = 0.5
(
nfa
nneg

+ nm
npos

)
(7.1)
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Figure 7.10: A visualization of the SURF descriptor stability. The first 9 images of
the object database (object: juice, 5◦ rotation) are shown. Only the
descriptors of the first image are taught and then matched with the
subsequent images. Stable descriptors (green points) exist up to about
40◦ rotation

where nfa ∈ N is the number of false alarms, nneg ∈ N is the number of feature
points outside the object region, nm ∈ N is the number of misses, and npos ∈ N
is the number of feature points inside the object region. The separation between
whether a feature point is located inside or outside the object region is based on
the segmentation masking cylinder described in section 5.2. In order to measure the
generalization capacity over different poses only every second view (+20◦) was taken
for training and all views (+10◦) were taken for testing.

The smallest error for gray-level images only based on the cluster label found here is
ed = 0.182 with nm = 0.269 and nfa = 0.095 at a threshold tsurf = 0.24. If separate
RGB channels are used, the rates are slightly better leading to nm = 0.265 and
nfa = 0.090. The addition of the Laplacian sign and the size labels led to nm = 0.268
and nfa = 0.084.

It follows that the augmentations of the discrete keys do not drastically improve
these rates. However, the value of the separate RGB features is that generally more
features are available and that objects of different color but same or similar surface
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texture can be distinguished. Since the features are stored in separate lists, the in-
crease of the number of features does not increase the search complexity quadratically
if new keys are added. As noted before, the advantage of using FFCs is that higher
feature counts can still be processed efficiently.

The remaining keys (Laplacian sign and size interval) do not increase the errors
but allow for better splitting of the feature frames into shorter lists resulting in faster
matching. The additional value related to error rates of the augmented components
discussed here may possibly increase with larger number of objects.

Due to the efficient matching, the high remaining miss rates can be compensated
with a larger number of features. This results in a higher probability that there are
at least a few matches. Larger feature counts can be achieved by changing the feature
point parameters or by using feature extractors of different type.

7.4 System Tests

In this section, results of complete object learning and matching based on FFCs
are reported and discussed. The tests are based on software implementations that
differ in some respects from the implementations used in the previous evaluations.
Most importantly, the sensor fusion used during the time of database recording did
not achieve the accuracy of the results in subsection 7.1.2 and image fixing was not
applied. In these tests the normal is calculated from a small image region (3 × 3
windows) and the depth data is not precise due to multi path reflections. Further-
more, the implementations are not optimized for speed. Still, the tests show that
object learning and object detection are possible in complex scenes with the methods
introduced. The tests are split into three parts:

• First tests treat learning and detection with known learning frames. This means
that the object model FFCs are simply constructed by applying the known
transformations at learning time to each view. This technique relates to those
scenarios in chapter 5 in which the transformations are known from the context
(e.g. the robot holds and rotates the object). Detection results are established
by counting matches based on the segmentation shape and evaluating sums of
frame distances to the original transformations that are known. Three types of
detection tests are reported:

– Matching with the segmented training views is used to compare the re-
estimated learning pose with the true conversion frame. The tests show
the correctness of the implementation and some problems that occur with
too low feature counts.
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– Matching with the non-segmented training views is performed in a similar
way. However, the segmentation is disabled. The test shows what detec-
tion rates are achievable in a complex scene setting, in which most of the
features belong to the background. These tests measure the impact of the
background features on pose accuracy.

– Matching in random scene images is tested by counting in the 2D projec-
tion of the result frame position is located within some annotated rectangle
in the test image. The rectangles are annotated manually. These tests do
not measure the performance in pose precision accurately. However, they
show whether approximate pose detection is possible in a qualitative sense.

• Further tests focus on the more difficult case of learning and detection with
unknown learning frames. The database used here is equivalent to the “known
frames” case but the transformations between the training views are not fed
to the model construction algorithm. Not all detection tests of the known
frame case are repeated as the exact pose information is lost after registration.
Therefore, these tests are only based on counting if the detected poses match
with the correct image region.

• Finally, the third part describes some impressions gained during live tests with
a real robot platform.

These tests are described in the following subsections.

7.4.1 Learning and Detection with Known Learning Frames

Learning

Here, some results of the model construction algorithms are reported. First tests
were based on the known learning frames. All partial views were converted into
the learning frames, thus constructing the real object model FFC by importing all
transformed views into one FFC. Table 7.1 shows numbers are that characterize the
model construction process.

The learning times for the objects are very low (about 47 s for all of the five
objects with 72 views per object). This can be explained by the fact that the SURF
extractor is very fast and there are no cost intensive registration operations following.
The resulting model FFCs are shown in figure 7.11.

It can be seen that there are relatively many keys for one object even after cluster-
ing. This means that relatively many features have to be extracted in order to raise
the number of features with equivalent keys between separate object views.
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Object No Keys (1) No Keys (2) Learning time (s)

book Duda 10084 3502 9.42
book Forsyth 14398 6442 15.14

bottle 2047 958 4.47
juice 12209 4532 11.45
crisps 9494 4281 10.17

Table 7.1: Numbers for the learned object models with known frames for a represen-
tative parameter setting. “No Keys (1)” are the number of keys before
clustering and “No Keys (2)” after clustering.

Figure 7.11: Learned models FFCs for the objects in the database. From left to right
there is the same order as in table 7.1 from top to bottom. The upper
row shows the front views and the lower row the top views.
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Object models of the quality reported here approximately match with the real
shape. This is only possible using the filtering mechanism based on the angle between
pixel position and normal as described in chapter 5. Otherwise, the models tend to be
much larger due to pixels that mix foreground and background. The models obtained
are shown to be adequate for detection purposes in the next subsection.

Detection

There are three kinds of tests relevant in this section as described in the introduction
to this chapter:

• Matching with the segmented training views.

• Matching with the unsegmented training views.

• Detection in random scene images.

The following paragraphs report on the different tests.

Matching with the Training Views Matching with the training views is important
for checking the correctness of the mathematical operations involved and the overall
implementation of the system. The error of these tests is measured with:

eF =
√√√√ 1
n

n∑
i=1

dF (Li, Oi)2 (7.2)

where Li (1 ≤ i ≤ n) is the ith learning frame and Oi is the ith estimated object
frame. The distance measure d2

F used here is:

dF =
√
d2
t + (u dr)2 (7.3)

where dt is the translation difference and dr is the rotation difference described in
the appendix. Both are measured in millimeters. The value u is set to u = 10mm.
A distance value of 20 either refers to a translation error of 20mm with no rotation
error, a rotation error of 180◦ with no translation error, or a mixture of translation
and rotation error.

In a first test the object models are matched to the training views with minimal
voting cell sizes. This case corresponds to the exact situation in which the matching
result and learning frame between two views are be identical. It turns out that
with the implementation used here this is true since the resulting error is with eF =
0.0003... close enough to zero.
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Figure 7.12: Error histogram of the known frames case (segmented images). There
are five objects in the database and 72 rotated views per object. The
histogram shows the distribution of the summands dF (Li, Oi)2 of equa-
tion 7.3. The bucket size is equal to 10 units. This means that an
error in the 150 bucket corresponds e.g. to a pure translation error of√

150mm ≈ 12.25mm. The tail of the distribution is cut at bin 250 and
all remaining entries are included in the 250 bin.

In the second test voting cell sizes of 50mm and 180◦ are chosen. The error
histogram is shown in figure 7.12, and in figure 7.13 some representative annotated
result images are shown. The outcome is that detection in the centimeter range
is possible, except for some complete mismatches that are collected in the bin 250.
Most measurements are exact matches located in the first histogram bin. The main
distribution expands up to bin 150. This is due to noise in the voting cells stemming
from feature matches with some model features that do not belong to the observable
object features. The entries larger than 250 refer to complete mismatches that can
occur if too few features are available. An example of this case is the book edge
shown in figure 7.13.

The average FFC matching time in these tests was about 0.07 s on a 2.7 GHz test
computer (single core). The results show that the computations are mathematically
correct. One problem is that large voting cell sizes have to used. This is due to the
instability of the local features frame’s rotation components. A second problem is
the fact that some views contain too less features. The error for the correct matches
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Figure 7.13: Detection results with known frames and segmented images. The bold
frames with their x-, y-, and z-axes (red, green, and blue lines) are
the estimated values Oi. The long thinner frames are the ground truth
frames Li. Left: examples for very precise matches (Ê and Ë). Right:
mismatches due to too few features in an object view (Ì and Í). The
thin line long axes denote the ground truth frame, the short thicker axes
the frame as is computed by the algorithm. The blue and yellow circles
denote the next best matches (yellow: second best, blue: third to fifth
best).
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Figure 7.14: Error histogram known frames and unsegmented images. The tail of the
distribution is cut at bin 220 and the remaining entries are added to this
bin.

is roughly in the 1.5 cm range (translation).

Matching with Background A second series of tests test was run without back-
ground removal. The focus of these tests is the question whether other objects in
the scene disturb correct detection. Dense regions in the voting space can occur else-
where than at the object’s real position. In the test performed the hit rate h and the
error of the frames eF were measured. The hit rate h counts the number of times the
detection result is located within the cylinder used as segmentation shape. The error
eF is computed as described above.

The error histogram is shown in figure 7.14. The number of mismatches shown
in bin 220 increases due to background disturbance. Note that bin 220 includes all
results of the tail of the distribution. Still, a large amount of the results corresponds
to exact matches. The hit rate in this test was h = 0.73, i.e. 262 views of 360 (5
objects, 72 views per object) were matched correctly. Here the full detection time
was 0.5 s on average. The occurring errors are due to views having too few features
compared to some regions in the background. This decreases the stability of the
maximum voting cell. Especially, the text parts in the background interfere with
the correct voting cell. Such dense regions may “survive” the basic loop in which

94



7.4 System Tests

Figure 7.15: Detection results with known frames and unsegmented images. Left:
examples of very precise matches. Right: inaccurate cases in which the
background text on the poster interferes with the true correct voting
cell. The frame annotation is equivalent to figure 7.13.

the hypotheses are generated. Better results would be possible using smaller cell
sizes. However, this is only possible with a more stable computation of the rotation
components of the local frame.

The resulting pose error remains in the range as before regarding the the correct
matches. However, there is also a large number of mismatches due to the fact that
large voting cell sizes have to be chosen. Densely distributed background features
in the scene image also lead to dense feature distribution in voting cells that do
not contain the target conversion frame. With a more stable computation of the
rotation components of the local frames smaller cell sizes could be chosen to avoid
this problem.

Matching in Random Scene Views In the final test series it was investigated how
the system copes with random scene settings. A database consisting of 16 images
was used for this purpose. The first five test images were drawn from the training
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Figure 7.16: Single object rates for random scene images.

data; the rest are random scene set-ups. One scene image was created artificially as
an exact copy of its predecessor and then darkened and blurred. The random scene
images contain different object configurations.

Since here the correct object frames are unknown, the testing was based on anno-
tated 2D rectangles. Approximate left, right, upper and lower borders in which the
objects reside were manually defined. Not all objects can be seen in all images. The
maximum number of hits possible in the perfect detection case is 67 in this database.

With the object models built from known conversion frames between the training
views, 46 results are correct. In the successful cases the detected poses within the
annotated rectangles seem to be correct. In figure 7.16 the hit counts of each object
are shown. Figure 7.17 illustrates positive results. These include views with large
object coverage. The average detection times for these images is 0.5 s on the test
computer (Pentium 5, 2.7 GHz, one core) with non-optimized software.

The results show that object poses not contained in the training set can be ap-
proximated using the registered model FFCs.
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7.4 System Tests

Figure 7.17: Illustration of selected results. Top three rows: results of the book
“Duda”, bottom row: results for the apple juice box. Note that in the
bottom/left image the fraction of object related pixels is only about 2%
(i.e. 98% of the image is background).
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Figure 7.18: Approximated models constructed directly from the training views, not
knowing the relative transformations between each view. The resulting
models are rough approximations of the real shape.

7.4.2 Learning and Detection with Unknown Learning Frames

The final tests do not assume known frames. This is e.g. the case in the acquisition
scenario in which the human shows the object. A difference to the real scenario is
that here no fingers or other parts of the human body are contained in the training
views. The approximated models were constructed using the hierarchical registration
method. The time for training was only 10% higher than in the known frames case.
This shows that the registration method is fast. The main problems are caused by
views with a feature count too low. The registration method suggested can cope with
this case. It produces compact but only approximate models.

The approximated models are shown in figure 7.17. The detection results are
comparable to the known frames case with 46 hits on the test set. In the left/bottom
image of figure 7.17 the fraction of pixels that belong to the object is only about 2%
of the full image size. This shows that the methods are very robust to large amounts
of background features in the image. The registration leads to an object reference
frame central in the object. The correctness of this frame could only be validated
visually during the tests reported here.

The outcome is that in the case using approximately registered object models the
error is equivalent to the known frames case.

7.4.3 Live Tests

The software was ported on the robot platform shown in figure 7.19 (on the right).
The software was shown live to project reviewers by demonstrating the learning and
detection part on a randomly selected object out of an object set used in the project.
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Figure 7.19: Live tests on the robot. Left: a segmented training image. Center: the
object is detected even in the case of another object located on top of
it. The green circle annotates the position of the detected frame. Right:
the robot platform used in the live tests.

The learning and detection part were fully integrated and demonstrated to the
project reviewer audience. As acquisition scenario, the human object demonstration
was selected with a virtual wall and limitations in image width and height as segmen-
tation shape. An example of a segmented training view is shown in figure 7.19 (left
image). Several objects were taught on-line. The software was prepared to capture
15 object views per object. In most cases it took about 15 s to construct an object
model out of these views. Therefore, it could be demonstrated live.

After training, the detection part was run iteratively and a green circle (see fig-
ure 7.19, right image) depicted the 3D coordinates of the detected frame’s base point
oD. It could be demonstrated that the detection method is fast enough to re-detect
the object in small cycles (estimated at about 300ms) including all necessary com-
putations. The detection time was higher than during other tests reported in this
chapter due to the use of a larger amount of features. Tests showed that large cover-
age can be coped with (as shown in figure 7.19, right image). An evident disadvantage
of the system is that only objects that provide features can be trained and detected.

7.5 Summary

The experiments, tests and observations in this chapter can be summarized as follows:

• High precision range and color image fusion is possible based on standard cal-
ibration techniques only requiring a minimal manual effort. This is especially
true for the calibration that uses the internal parameters of a calibrated range
imaging sensor.

• Local coordinate frames at 3D feature point locations can be constructed that
are stable over small object rotations. A set of one-to-one correspondences of
local features frames can be used to recover an approximate pose.
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• Since only one-to-one correspondences are needed in order to estimate a single
vote on the object pose, the search complexity can be lowered from O(n6) to
O(n2) compared to algorithms that need point triples for pose recovery.

• In the case of many possibly indistinguishable features, the approach of eval-
uation densities in the voting frame space outperforms a random (RANSAC)
search.

• Due to the cheap computation of single votes on the object pose, descriptor
matching can be simplified. An interesting solution is a simple threshold-based
approach since only the features on the object of interest have to be processed
and no relative measures among elements of an object set have to be taken into
account.

• The tests on system level show that approximate object poses can be found in
cluttered environments. However, since the rotation components of the single
local frame are not very stable between similar views the voting cell sizes have
need to be large. This induces errors such that mismatches can occur.

• Detection is possible in difficult setups where only a small fraction (2%) of the
image belongs to the actual object or where parts of an object are covered.
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8 Summary and Conclusions

In this chapter the content of this thesis is summarized and pointers to open issues
are given.

8.1 Achievements

A new object detector is presented, which outputs an approximate object pose and
which can learn object models. The models consist of shape and texture information.
Its main application area is the service robot domain. However, applications in other
areas are also possible.

First, the fields of service robots and object recognition are investigated. An as-
sumption made in this thesis is that single object detection is an important capability
needed. Some selected requirements led the work described here, among them:

• Full 3D pose output (3D position and orientation) is needed.

• Detection must be efficient (computationally cheap) and possible in “difficult”
settings including object coverage, variations in brightness, different geometric
settings and other effects. Also, the object it must be detectable if only a small
fraction of observable space belongs to it.

• The system needs a learning ability that provides real robots with the capacity
to learn object models in real-world learning scenarios since the objects are not
known a priori.

The author believes that with the approach presented in this document, a step for-
ward is achieved in these directions.

A main idea of this thesis is to combine range and color images and to explore the
improvements possible with the new data. Two potential opportunities have been
identified and further investigated:

1. Making real-world object learning feasible and implementable by using a simple
range segmentation method to segment object views.

2. Reducing the search complexity by using a new object representation for object
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model construction and object detection.

This thesis shows that both opportunities can actually be realized. The complete
approach developed can be roughly divided into three parts:

• Sensor fusion and calibration

• Sample data acquisition

• Model construction and detection

Sensor fusion is done in analogy to stereo-vision by using conventional camera trans-
formations. It is possible to reconstruct a shared image (a color image in range image
format) such that for each pixel location, color and coordinate information are avail-
able. The reconstruction is an “inverse” process that assembles a color image seen
from the range camera by fetching color values from the color camera based on 3D
projections. In addition to the shared image computation algorithm the thesis also
describes calibration methods that are self-contained and based on known calibration
components. One method determines parameters for the complete sensor setting. A
second one makes use of the default range camera parameters that are set by the
manufacturer. The first method is used if the camera is not calibrated already. The
second method is simpler and leads to more precise results. It is shown in the evalua-
tion part of this document that image fusion is possible with a back-projection error
in sub-pixel range related to the larger 640× 480 color image size.

Sample data acquisition becomes possible for real robots in real-world environments
by using the shared image coordinate part. Segmented images are obtained by pixel-
wise masking, or by masking on feature point level. The parameters required to
correctly position and layout masking shapes can be obtained by some acquisition
strategies a service robot could follow. The robot could move around the object, it
could move the object itself, or a human tutor could show the object. For all three
cases advice is given on how the masking shape can be positioned during learning
using components of the robot’s control system. That this segmentation leads to data
that can be used for object learning is shown in the evaluation part of this document.
This fact is further supported by live trials not reported here. Problems occur if the
object is transparent, has a metallic or glittering surface, or if object parts are too
small in relation to the camera resolution. Of course, the approach is limited by the
capabilities of the range imaging sensor used.

The capability of extracting relevant 3D and color data of the object in complex
scenes is seen as a first achievement of this work. It is independent of the object
representation and matching algorithm used in subsequent processing stages. The
figure-background separation based on the 3D masking shapes is capable of delivering
isolated object views required for learning.
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Object model construction and detection are based on a new data representation
called feature frame cloud (FFC). Two attributes of the FFC support efficient match-
ing, the use of discrete keys that allow for fast accessing and the availability of local
coordinate frames. The local coordinate frames are sparsely distributed since they
are built only at feature point locations. They incorporate partial shape and tex-
ture information. The local coordinate frame is constructed by using the feature
point’s image gradient and the local surface normal. The FFC is a set of key/frame
list pairs. Two FFCs can be matched efficiently by considering all possible frame
correspondences, where one correspondence is from the base cloud and one from
the argument cloud, that match with respect to the key. Each pair provides a full
conversion frame hypothesis between object and scene.

This basic property of FFCs reduces the search complexity for a variety of matching
algorithms. In the case where point triples are needed for full conversion frame
reconstruction, (e.g. point cloud-based approaches or 3D feature points based on
stereo-vision) the complexity of finding two matching triples can reach O(n6) (here
n is the number of features in the object model and in the scene). A reduction to
O(n4) is possible with approaches that would use e.g. two 3D positions and one
surface normal. The use of FFCs reduces this further to O(n2). The features that
are used to construct a FFC are not limited to the type used in this thesis. Full
frames could be obtained based on other (e.g. purely shape-based) measures. The
fusion of the 2D features and local 3D information is only one approach. However,
this approach is seen as an elegant way to combine the 3D and 2D “worlds”.

The reduction in search complexity related to full conversion frame estimation is
seen as the second achievement of this work. Matching algorithms can be made faster
and therefore higher feature counts are made feasible to process. This can lead to
more robust recognition in large and complex scenes where only a tiny subset of
the feature points belongs to the object of interest. A weakness of the current ap-
proach is that currently the poses obtained are imprecise. Especially the rotational
components of the local frames need improvement. This is caused mainly by un-
stable normal computations, not strongly defined 2D gradient directions, and depth
measuring errors (e.g. light reflections over multiple paths).

The matching algorithm suggested in this thesis collects all hypotheses resulting
from all pairs and evaluates a density in the frame space by using a distance function
suited for frames. The advantage of this approach is that a global optimum can be
found. This makes it also particularly interesting for multi object detection. Compar-
isons to the more popularly used RANSAC technique (converted to FFC matching)
shows that the density based approach outperforms RANSAC at high feature point
counts of indistinguishable features. This in turn puts fewer requirements on feature
descriptor matching and can lead to more robust recognition in complex scenes. The
results of the density-based algorithm could be used for more precise pose estimation.
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An ICP FFC variant could use the approximate pose as a basis for a more accurate
fitting.

FFC matching is used to construct an object model by a hierarchical strategy if
the relative frames between the learning views are not known. If they are known,
then the views are just transformed to assemble the final object model FFC. The
hierarchical strategy leads to approximate models that can be used for fast approx-
imate detections. The registration technique can cope with situations in which two
successive views have almost no matching features. An object can be detected by
applying the object model FFC to the scene FFC. The methods are shown to work
by some evaluations and live tests on a real robot platform. However, one major
drawback is that the objects need to be structured such that they contain a sufficient
number of the feature points chosen. Simple objects such as a uniform colored ball or
box are impossible to model with this technique. Another disadvantage of the voting
strategy is the voting cell size parameter which has to be selected manually. This
could be made object dependent, scene dependent, or both.

8.2 Further Work

Some immediate improvements would enhance the approach presented here, e.g:

• Improvements related to the range measurement.

• Faster and more precise range and color sensor fusion.

• Pattern-free automatic calibration of the imaging sensors.

• Automatic on-line parameterization of the learning masks.

• More stable computation of the rotational components of the local frames.

• Object dependent feature parameters.

• Use of other alternative feature points (either color-based, or shape-based, or
combinations).

• Automatic on-line adjustment of the voting cell size parameters.

• Improvement for registration in the case of unknown learning frames.

Furthermore, the following directions could be interesting building on this ap-
proach:

• Statistical knowledge about feature point distributions on the descriptor label
level could be used to improve accuracy or to speed up matching.
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• The approach presented here can also be generalized to a multiple object detec-
tor by using global descriptor clusters. during the introduction of new objects
new clusters are only added if necessary (i.e. many clusters are shared by dif-
ferent objects). The matching algorithm would then iterate over all descriptor
models and each voted hypothesis would be stored in conjunction with one or
more possible object labels.

• Fast controlled detection is possible by using the masking shape that is used
for segmenting the training data as a pre-selector during recognition. Track-
ing would thus be easily possible by continuously updating the masking shape
position based on the previous detection result.

• Attention selection control could direct the masking shape to constrain the
search space and to provide support for context-based recognition.

• FFCs could be used for category detection by the use of key or frame statistics
or to model animated objects containing mechanical degrees-of-freedom. Then
separate static FFCs (the components) would have to be “connected” by the
kinematic equations.

These opportunities support the idea that research on the capabilities of feature frame
clouds could be an interesting future direction in the field of robot vision.
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Appendix

In this appendix the notation and and mathematical basics used in this document
are described.

3 General Type Notations

A scalar s ∈ R is written as a small letter, as are single numbers of other numerical
sets, e.g. u ∈ N. Tuples of scalars are used to represent vectors of different dimen-
sionality as column vectors, i.e. a = (a1, a2, .., ad)T , where d is the dimensionality
and T is used to represent the transpose. Typical vectors used here are 2D and 3D
vectors, e.g. a = (ax, ay, az)T ∈ R3 describes a 3D column vector used for a position
or direction with magnitude in space and b = (u, v) ∈ N2 is a discrete point in an
image plane. Generally, subscripts are used to further specify variables or constants.
Numbers in the subscripts are used for enumerations.

Tuples of more complex types than scalars are described by large letters, e.g. a
frame F = (oF , iF , jF ,kF ) ∈ F describes a coordinate frame with an origin point
oF ∈ R3 and the directions of the coordinate axes iF ∈ R3, jF ∈ R3, and kF ∈ R3.
Large bold letters denote matrices of scalars such as a rotation matrix R ∈ R3×R3.
For matrices of more complex types than scalars, large letters in calligraphic are
used, e.g. I is used for a 2D image (arranged in rows and columns) that has tuples
of scalars as elements. Sets are denoted with large roman letters such as S = {a, b, c}
independent of the type of elements they contain. Lists are represented as enumerates
sets, e.g. L = {e1, e2, ...en}, n ∈ N1.

4 Point and Frame Operations

In this document, a frame F is defined by F = (oF , iF , jF ,kF ) ∈ F, where o is the
coordinate vector of an origin (or base) point oF and iF , jF , and kF the directions
of the coordinate axes (unit lengths). The set F ⊂ R3×4 denotes the frame space.
The direction cosine matrix (DCM) RF can be easily constructed as from these data
as well as the rotation axis uF and angle αF or the related quaternion.
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A special frame is the zero or world frame W in which other frames can be ex-
pressed, W = ((0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T ). A point in a frame F is de-
noted as

Fp =


px
py
pz

 = ax iF + ay jF + az kF (1)

and for points in the world frame W the leading superscripts are omitted, Wp = p.

A point Fp measured in some frame F can be converted to world coordinates by
the following transformation function:

p = rotF (Fp) + oF = RF p + oF (2)

where rotF : R3 → R3 is a rotation function. This can be based on multiplication
with the rotation matrix, by the use of quaternions, or by the Rodriguez’ formula
([5]). The inverse operation can be accomplished with

Fp = rot−1
F (oF − p) = R−1

F p + oF (3)

where rot−1
F denotes a rotation around the same axis about the negative rotation

angle. This can also be done by a multiplication with the inverse rotation matrix
R−1 = RT .

In this document frames are not only used as transformations but also as the
objects of measurement. This notation

C = BA (4)

is used to denote a relative frame A measured in some other frame B. This is closely
related to the notion of frames as homogeneous coordinate transform matrices which
is also used in this document. A 4× 4 homogeneous transformation matrix B

AT also
describes how A lies in B. It can be constructed from the relative rotation matrix
and offset vector (see e.g. [14]). In order to work with networks of transforms the
transformation matrices can be multiplied and this gives rise to so-called transform
equations that serve as an algebra tool to solve for an unknown frame. An important
equality is

B
AT = A

BT−1 (5)
which is the inverse transform.

In this work a frame difference function is used. A simple and intuitive frame dif-
ference function dF : F×F→ R+ is based on a weighted sum between the translation
of the two frames dt and a term denoting the rotational distance dr (see e.g. [25]):

dF (F,G) = dt + u dr (6)
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where u ∈ R is a factor to be chosen manually. Usually, the Euclidean distance of
the base points of a frame is used for the translation term:

dt = |oF − oG|. (7)

The first rotation distance used in this work, dr, is based on the distances between
two rotated points of one and the same original reference point using uF and uG,
the rotation axes of F and G. To guarantee equal influences of the two rotations a
reference point is chosen that stays orthogonal on both rotation axes pref = uF ×uG.
If the two rotation axes are equivalent then a random point orthogonal to them can
be chosen. The Euclidean distance of two rotated points is then used as rotation
distance dr:

dr = |rotF (pref )− rotG(pref )|. (8)

Note that this function is only used in this document. Another distance metric for
frames is given in [25]. This was used later in this work. It replaces the rotation
distance in the frame distance formula above with:

dr = cos−1
(

trace(RT

F RG)−1
2

)
(9)

where RF and RF are the rotation matrices of the two frames. This distance measure
is known to fulfill the requirements for a distance metric.

In the following, operations on sets of frames that are relevant in this document
are described.

Clustering is performed by a QT clustering algorithm that used the difference
function and a threshold to count the number of frames in the vicinity of a single
frame. Those are then successively removed. The result is a sparser list of frame
containing fewer double or multiple appearances that are only slightly different with
respect to the frame distance.

Centralizing is an operation that is similar to using PCA to align point clouds
around the neutral frame. The centralizing operation used in the measurements in
this document sums up all oF , iF , jF and kF components of the frames and constructs
a new frame by finding orthonormal vectors based on the sums. The frame computed
can then be used to convert all frames in the list such that they are aligned to the
zero offset and neutral rotation.
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5 Image Notation

A simple image with one channel of data, e.g. gray-level image is represented as a
matrix

I =


i1,1 i1,2 . . . i1,h
i2,1 i2,2 . . . i2,h
... ... . . . ...
iw,1 iw,2 . . . iw,h

 (10)

of type (w, h), where w ∈ N is the image width and h ∈ N is the image height. An
image matrix can be accessed with

iu,v ∈ C ⊂ R (11)

where v ∈ [1, .., h] and u ∈ [1, .., w] are the discrete image coordinates. Note that
in typical implementations of arrays in programming languages the top left element
starts with i0,0 and the bottom right element is ih−1,w−1. The value type of the
components iv,u ∈ C is a subset of reals C ⊂ R. If v and u are not important for
descriptions then the image value is just referred to as i, assuming that i = iv,u. The
value i can have different actual meanings e.g. intensities, distances or temperature
depending on the type of imaging sensor used.
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Glossary

accumulator
A storage data structure that contains many single hypotheses of a solution to
a problem that were derived from single estimations called “votes”.

acquisition scenario
A scenario that includes a robot, an object of which the properties have to be
learned, possibly a human tutor, and possibly some prepared facilities in the
environment needed for learning.

active vision
Methods that make use of actuators connected to the vision system in order to
simplify the vision task.

behavior-based control
A control technique that is organized in different parallel layers that each have
an own goal, sometimes also their own senses, and send commands to shared
motor resources.

Care-O-bot® 3
A service robot research platform developed at Fraunhofer IPA.

cluster identifier
Used in this document for a discrete number associated with a certain cluster
address.

control system
A system that produces actions from received perceptions such that a goal can
be met.

coordinate image
An image containing coordinate (XYZ) information at each pixel’s location.

degrees-of-freedom
Number of free and independent dimensions of motion in a kinematic system.

descriptor
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Glossary

This means a vector containing regional information around a feature point.
The information should be stable against typical image transformations and
disturbances

discrete description key
A term used in this document to describe a small list of discrete numbers used
as key to a list of frames.

EM clustering
Expected Maximization (EM) clustering uses probability distributions to
achieve a “soft” clustering where each sample belongs to all clusters with a
specific probability.

embodied vision
Vision techniques that rely on and make use of the existence of a body.

environment
This is the “external” world in which the robot acts. The robot perceives partial
information about the state of the environment through its sensors and it can
alter the state of the environment using its actuators.

feature frame cloud
A feature frame cloud is a light 3D representation that can be used for frame
estimation. It consists of discrete key vectors that are derived from distinctive
attributes pointing to lists of coordinate frames.

feature point
A local pattern in an image that can be assigned a definite image position and
that can be repeatedly detected if the image is subject to transformations (also
called point features, interest points, or key points)

field-of-view
This term refers to a subset of space that can be inspected by the vision sensors
without moving them.

first-time segmentation
Used in this document to describe a segmentation of an object’s view when the
object itself is unknown so far.

forward transformation
A transformation that maps the internal readings of the range imaging sensor
onto the real x-, y-, and z-coordinates in the sensor frame.

frame distance
A distance function to measure the difference between two coordinate frames.
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Glossary

geometric hashing
A method that casts pose information of point clouds into discretely accessible
map entries that can be used for fast matching.

Hough transformation
An algorithm that constructs a parametric accumulating space in which all
possible models that can be associated with a single measured observation (e.g.
3D point) are successively added.

information content
The property of feature points that they contain information valuable for match-
ing purposes.

integral image
An image that contains at each pixel location the sum of all pixels in the original
image that lie within the rectangle that is spanned by the origin (zero) point
and the location of interest

iterative closest point algorithm
An algorithm that aligns two point clouds by iteratively estimating a transfor-
mation and applying it.

object model
A description of a specific object by a set of parameters. Models may be explicit
(e.g. geometric descriptions) or implicit (e.g. neural network).

point cloud
A set of 3D points used to represent an object’s shape.

QT clustering
Quality Threshold (QT) clustering groups data samples by selecting prototype
samples that have a high density within a distance-based vicinity.

quaternion
A representation for 3D orientation that is closely related to the rotation axis
and rotation angle.

random trees
A learning algorithm based on a collection (forest) of decision trees.

range image
An image containing the time-of-flight values of a range imaging sensor.
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Glossary

range segmentation
A segmentation process that separates a colored object region in a color image
based on the real 3D coordinates of the areas in the environment that are
associated with the pixels in the image.

RANSAC
A matching strategy based on finding a few support measurements randomly
that give rise to a globally consistent model.

registration
The process of associating each point of one point cloud with a correspondence
in the second “argument” point cloud.

repeatability
This refers to the property of feature points that they are detected stably.

scalability
This term addresses the capability of object recognition systems to cope with
large and diverse object sets.

scale space
A 3D space of an image consisting of the two discrete image coordinates plus a
scale coordinate. The scale space is built by image pyramids of down-sampled
image copies of the original with decreasing size and/or successive smoothing

segmentation mask
A region in 3D space that is used for first-time range segmentation in order to
acquire segmented training images.

sense-plan-act
A scheme often used in robot control systems that senses and then plans action
sequences based on the previous observations and finally forwards the action
command to the actuators.

service robot
A robot that is able to provide services to the human possibly involving physical
manipulation of objects.

shared image
A term used in this thesis that describes a six-layer image that represents color
(RGB) and coordinate (XYZ) information in congruent 2D pixel coordinate
systems.

SIFT
Scale-invariant feature transform based on the difference-of-Gaussians (DOG)
scale space and local orientation histograms.
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Glossary

support vector machine
A batch learning and classification technique that has been successfully adapted
to difficult recognition problems. SVMs choose some subset of the training
samples (the support vectors) that describe a separating function between two
classes with a maximal margin.

SURF
Speeded-up robust features are based on fast Hessian scale space and frequency
responses for local descriptors.

undistorting
The process of removing the “pillow effect” from images that results from light
refraction at the lens’s surface.

vision stages
A general concept for detecting structure in images by proceeding through:
conditioning, labeling, grouping, extracting, and matching.

vision system
A module or a set of modules that is (are) part of the overall robot control
system providing basic perceptual capabilities based on imaging sensors.

visual servoing
The topic of robot control by combining closed-loop control methods with vision
sensors as input sources.
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