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Abstract

Acoustic packaging, intersensory redundancy, motherese and motionese are the main

concepts, which describe how acoustic features and body movements of caretakers are

adapted intuitively in adult-child-interaction. This thesis will approach the question,

whether feature characteristics highlight certain parts of child-directed actions. The

main part focuses on the statistical examination of four features, Eye-Gaze, Intonation,

Word, Velocity of Hand Motion of child-directed demonstrations. The auditory and vi-

sual signals of the recorded toy demonstrations were divided into meaningful segments

for this examination. Then the composition of each feature and its values (fc) in each

segment is analysed. A conditional probability model P (Segmentx|fcj) is computed

to answer the question: in which segment (Segmentx) is, an already appeared feature

characteristic fcj , likely to occur? Patterns of high conditional probability values have

been identified for distinct feature characteristics and provide a basis for a future auto-

matically classification.
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Chapter 1

Introduction

1.1 Child-Directed-Communication

Figure 1.1: A mother demonstrates to her child, see box below for transcript.

“Look, Mandy, look – cups – We have different sizes [silence]. See? [waves

hand, shows object]. Put the green one in the blue one, [clacking noise]

– the yellow one in the green one, [clacking noise, looks at child and

hesitates for a moment] and the red, [waving cup fast] and the red one

in the yellow one and they are all gone – they are all gone – did you see it?

[hands are laid down, observe child, no movements].”
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Chapter 1. Introduction

This is an extract of a transcript made of a tutoring situation. A parent had to explain

to her/his 10 month old child, how different sized cups can be stacked together. I have

added some descriptions in square brackets to give the reader some notion of how the

parent spoke to and acted towards her/his child. These descriptions are not complete,

because more changes in prosody (e.g., intonation) and body movements (e.g., velocity

of hands) are observable.

Tutoring is a special form of communication. Especially in Parent-Child-Interaction:

the parent behaves in a special way when communicating with her/his child com-

pared to adult-adult-interaction. Not only characteristics of parental speech and motion

[Snow 77; Bran 02] are adapted to the infant’s stage of development, but also facial ex-

pressions [Chon 03] and gestures are different [Iver 99]. Masataka found evidence for

child-directed sign language in deaf mothers [Masa 92]. The above named researchers

and many more identified a number of parameters, which are very characteristic for

infant-directed (ID) communication. Entire actions towards children have recently been

investigated for a complete picture of the interplay of these characteristics. This picture

is not complete and research needs to be done in identifying the exact pattern of features

over the course of an ID- communicative situation.

1.1.1 Motherese and Motionese

Snow and Ferguson [Snow 77] report that parents simplify the grammatical structure of

utterances and repeat sentences when speaking to a child. Prosodic features of speech

are more exaggerated. Brand looked upon movements in child-directed demonstra-

tions and identified some parameters, which are modified [Bran 02]. Not only speech,

but also motions can be simplified and more repetitive. She found that the rate

of hand-movements was slower, and more abrupt and more expansive compared to

adult-adult-demonstrations. Additionally researchers found that infants prefer child-

directed-speech (motherese) and child-directed-motion (motionese) over adult-directed-

interaction [Kote 06].
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1.1. Child-Directed-Communication

Various researchers conclude that an infant directed input directs attention to the

relevant information and therefore, language and movements are more easily learned

[Bran 02; Bahr 00; Goga 00]. But as Gogate et al. points out, infant-directed commu-

nication is as seldom unimodal as it is in face-to-face communication between adults. It

is a very complex and broad topic.

The entire sensory system perceives information about the dialogue partner. Communi-

cation is so much more than speech and simple movements. It encompasses more than

simply focusing on visual and audible signals: variations in intonation, pitch, intensity

and gestures, facial expression and eye-gaze are recognisable. Cynthia Breazeal pointed

out that social robots, as well as, humans need additional information to interpret am-

biguous information in a dialogue. Dialogue partners need to establish common ground

in order to recognise each others’ intentions and theories of mind. To communicate and

understand verbal and nonverbal signals is a very challenging task for social robotics

according to Cynthia Breazeal [Brea 08] and of course for babies, too.

Infants may, however, have an advantage because child-directed communication is sim-

pler, prosodic and visual features are more exaggerated, which makes certain sensory

input more salient and intentions are therefore easier to recognise and patterns in the

information stream can be more easily identified.

1.1.2 Interplay of Modalities

There was a clear separation in child-directed research between that of different modal-

ities, mainly auditory (speech) and visual (motion). Only recently has research been

oriented towards the interplay of amodal input.

Bahrick and coworkers found another way of catching attention. They theorise that

intersensory redundancy makes the given information more salient in a constant stream

of arbitrary information. She states that young infants prefer temporal synchronous and

amodal stimuli over asynchronous stimuli. For example, to hear somebody speak in the
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Chapter 1. Introduction

same rhythm and to see her/his movements of lips in the same rhythm. Bahrick et al.

explain that temporal synchronous, redundant and amodal information can also direct

attention to meaningful events, which may be beneficial for learning [Bahr 00].

In addition, Gogate and coworkers state that naming an object and touching or moving

or rather showing it, is redundant information across the auditory and visual senses

and therefore, makes the relation between the name and the object salient. They call

child-directed-speech plus co-occurring and redundant information at another modality

multimodal motherese [Goga 00].

Coming from the perspective of infant-directed-motion research, Brand and Tapscott

asked themselves the question, whether utterances (they call it narrations) facilitate the

perception of actions in infants. They carried on the idea of acoustic packaging from

Hirsh-Pasek and Golingkoff (1996) who pointed out that co-occurring sound might em-

phasise segments within an action [Bran 07b]. Brand et al. found out that co-occurring

infant-directed-speech and motion can help infants (9.5-11.5 months) to segment the ac-

tion into smaller units [Bran 07b]. It is assumed that acoustic packaging emphasises the

importance of visual modality compared to multimodal motherese. The characteristics

of child-directed communication and their benefit are summed up in picture 1.2.

The preferential looking paradigm is a well established and often used method within

research in child-directed input with very young children (0-13 month and even older

[Bran 07b]). In order to focus more on the entire child-directed communication it is

necessary to engage the parents in an everyday and communicative situation with their

child - a tutoring situation, for example demonstration of toys [Goga 00; Bran 07b].

The next section takes a closer look at the tutoring situation, which provided the data

for my analysis of child-directed action. It is hoped to find out more about how and

when exactly parents structure their action towards their children. Furthermore it will

be defined what an action is and how the term will be understood in regard of the

present data.
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1.1. Child-Directed-Communication

function as

attentiongetter, emphasise, highlighting, make salient

relevant words, action, motion, wordobject relation

relation and organisation of action units, interpersonal communication, motor skills

which help to
learn

motion (Motionese) [Brand]

speech (Motherese) [Snow]

facial expression [Chong]

gesture [Iverson]

sign language [Masataka]

Multimodal Motherese [Gogate]

      basic element: speech 

      temporal synchronous

      redundant information

       across senses 

Acoustic Packaging [HirshParsek]

      basic element: motion

      speech and motion in action

which help to
learn

Reseach perspectives of childdirectedcommunication

modal amodal amodal

Abstraction level

low level

high level

related
features
(cues)

Figure 1.2: Research perspective of child-directed communication (CDC). Modal ap-
proaches concentrate only on one feature (cue). The other two approaches consider
input-signals over more than one sense, however, with different features as a basis
(speech, motion). Modal, multimodal and amodal cues of CDC function similar on
ways to help children learn and cope with the world on various levels.
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Chapter 2

Description of Data

2.1 The Demonstration of Toys

This thesis focuses on the topic of a special tutoring situation, in which parents had to

demonstrate to their 8-11 months old children different toy settings.

During the experiments the mother or the father sat at a table opposite their child, who

sat in a highchair. Both were videotaped separately but were audio taped together. In

this thesis audio and video data of the parent only will be taken into account.

The video- and audio taped experiments were part of a bigger“Motionese”project, which

was carried out by the Applied Computer Science Group and Faculty of Psychology at

Bielefeld University [Rohl 06], for a detailed overview please see earlier reports [West 08;

Pete 08]. I chose these two experimental settings of the Motionese project because the

structure of the task is comparable, but the toys were different. Both tasks consist of

three toys, which the parents had to manipulate in order to reach the expected goal:

• Three different sized cups had to be inserted into a fourth cup (for picture see
Figure 1.1).

• Three different shaped toy blocks had to be put next to each other (for picture
see Figure 2.1)

Situations, in which movements play a crucial role (e.g., demonstration and showing)
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Chapter 2. Description of Data

Figure 2.1: A father demonstrates to his child, how to stack toy building blocks.

are called action in the literature. Unfortunately there is no clear separation between

action and motion. A definition for action is needed for this thesis.

2.2 Definition of Action

The definition of action is a very old topic of philosophical discussion. Aristotle defined

in his action theory that action is a process of wilful bodily movement [Wiki 08].

At the 2008 Workshop “Intermodal Action Structuring” researchers agreed

upon the same definition of action, (Gisa Aschersleben, Annette Baumgärt-

ner and Britta Wrede) [Rohl 08]:

Action ⇒ goal directed motion

The general definition does not seem to be the problem but the interpretation of the

beginnings and the end of a goal-directed-motion is ambiguous. The starting point

of an action is lifting-up-an-object-motion, according to Brand and coworkers latest

8



2.2. Definition of Action

experiments, at which mothers had to show toys to their infants [Bran 07a]. The initial

movement of the hand towards the toy and grasping the toy are not counted as goal-

directed-motions, as was stated by Brand at the workshop [Rohl 08].

Gogate and coworkers use moving objects, showing object, gestures and action as syn-

onyms in their paper “A study of Multimodal Motherese: The Role of Temporal Syn-

chrony between Verbal Labels and Gestures” [Goga 00]. This still conforms to the

definition of action, since showing, moving objects and gestures can serve a purpose and

are therefore goal-directed. But her definition of initial and end points of an action is

different to the definition of Brand et al.. For Gogate et al. target words (names of toys

and verbs of the toy’s ability: swimming) served as the definition of starting and end of

an action as long as they occurred in the same time span [Goga 00].

2.2.1 Hierarchical Action

Brand et al. define that action can exist in a hierarchical order. One action (action

of demonstration or task) can be split up into smaller actions [Wred 05; Bran 07b]. If

this is the case, then the goal is split up as well, for instance the entire goal of the

demonstration: “put all cups together” is split up into three minor goals (3 toys), “doing

something with each toy”. These sub goals can again be divided into even smaller

units, Brand and Tapscott call these sub actions, events, which include for example,

pointing, inserting etc.. Brand et al. suggest that other modalities for instance, speech

could “highlight at a variety of levels” [Bran 07b]. That means other modalities can be

divided to fine-grained levels for analysis (utterances-> words -> intonation).

Seeing the action as defined above as part of a demonstration, it nevertheless provides

visual and audible sensory input for the child. A variety of features can be extracted

from these signals, which can be hierarchical (word-intonation). The characteristics

of a feature describe it precisely (Intonation = falling, rising). A set of features then

describes the action.

9



Chapter 2. Description of Data

2.3 My Definition of Action

In my opinion the definition of action depends on the way one looks upon the concept

of action.

There is the unimodal perspective, where the action could only be a goal-directed mo-

tion. But as mentioned before the interaction between modalities is important in com-

munication. Speech can be goal-directed, too. In my opinion goal-directed speech could

be defined as an action as well, especially when utterances are comments on one’s own

goal-directed movements and therefore very close to the movement itself. For instance,

the sentence: “I put this building block on top” describes the movement “put” and the

goal “on top”. Buccino and coworkers report that mirror neurons in monkeys are acti-

vated not only by viewing or performing an action but also when listening to a sound.

Buccino et al. follow up this finding and were able to show that processing hand- and

foot-action-related sentences involve the motor system as well, because they did not find

the same responses when listening or observing a goal-directed motion, Buccino et al.

assume that listening to an action-related sentence evokes representation of the action

at a higher level. Observing and executing a goal-directed motion reveals more details

about how exactly the motion is performed, listening to a sentence like “he took the cup”

lacks that information but still discharges the same area of the motor system [Bucc 05].

The other way to look at an action is the bimodal or multimodal way where, as in

the case of acoustic packaging, goal-directed movements and speech interplay serve one

goal: to facilitate the organisation of an action unit. In Brand’s and Tapscott’s study the

question remaines unanswered, whether child-directed speech needs to be goal-directed

or whether characteristics of motherese only are enough to highlight the beginning and

end of an action, for example intonational contours [Bran 07b]. Gogate et al. even pay

only attention to (target) words, which occurred in parents’ utterances while they were

teaching toy names and the toy’s purpose. However, both bimodal approaches have in

common that they attribute the bimodal features’ co-occurrence to play a role in infant

learning.
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2.3. My Definition of Action

The data for my examination comes from an auditory and visual input. The parent’s

demonstrations are bimodal, because mostly they commented their actions (object ma-

nipulation). In short, in regard of the presented theory, the data could be described as

acoustically packaged action.

To make my definition complete, I define starting points in regard of goal-directed-

motion at the first body movement towards a goal, for example if the goal is: “inserting

one cup into another”, then the action starts at the first movement of the hand towards

the cup (or building block) and stops when the cup is inserted and the hand does not

touch the cup anymore and/or the hand engages in another movement or action.

The starting point in speech is the beginning of the first word, when talking about

another action: “[start] Put the red one into the yellow one [end]”, please compare the

transcript (box) of the experiment in Chapter 1 and for more detailed information about

the segmentation of action please read Chapter 5.1.

For an overview of features, which are found in the sensory input of an action please see

picture 2.2.

Figure 2.2: From sensory input to an extraction of features. There are examples for
visual and auditory input signals, because they are the basis for the later statistical
examination.

As stated before, research has identified specific features, which are adapted in child-

11



Chapter 2. Description of Data

directed communication. Features might reveal the structure of the entire demonstration

through features specific changes to infant-directed input. For this examination, it will

be necessary to look at selected features separately (in a unimodal way), to better work

out the gain of each of them and to be able to combine them freely in future work

and my interpretation. In the next chapter features for my analysis will be introduced.

Following on from that, the goal and motivation of this thesis will be explained on the

basis of the theory in chapter 1 and 2.

12



Chapter 3

Features and their characteristics

Features, dimensions or parameters are measures, with which a situation can be de-

scribed. But the type of the situation can only be determined with the characteristics

of the measures. For instance if Brand’s parameter “proximity to the partner” has the

value “very close”, then the situation is very likely to be child-directed, especially when

the value for adult-directed is the opposite, “very far”.

I chose four features; two were extracted from the audio signal and two from the visual

signal:

audible utterances of the parent as single Words and ratings of Intonation

visible Eye-Gazes in different directions and Velocity of Hand Movements

All characteristics of features have starting and end points, so the time of their occur-

rence can be related across the features. Those intervals have different lengths, but their

time format is the same. The time is measured in seconds with three decimal places (for

millisecond precise output). For example the word “hello” could occur between 20.111 s

to 21.342 s in one experiment. All features and their values were extracted offline.

13



Chapter 3. Features and their characteristics

3.1 Word

origin A human transcribed the audio signal. She/he also assigned starting and end

points only to meaningful segments (for examples please see box at Chapter 11).

The boundaries of the words had to be computed by a standard speech recognition

method, forced alignment2 [Holt 99]. In some cases the forced alignment did not

work, therefore start and ends were computed by dividing the wrapping boundary

by the number of words.

characteristics each unique word counts for one outcome/characteristic, for e.g. look,

cup, put, the, and .... Only names of the children (short: ndk=name of child),

declensions3 of adjectives of colour, different spellings of transcribed words4 were

summed up

cause and prognosis Multimodal motherese and especially acoustic packaging em-

phasise the importance of words within the learning of word-object relation and

recognising action boundaries. Distinct utterances or even words, which coincide

with action, may help highlight boundaries of action units [Bran 07b]. For exam-

ple the word “look” could occur at the beginning of an action. It will be interesting

to see if characteristics of the feature Word, which are not classified into mean-

ingful categories (e.g., categories for colour, object names, attention-getters, verbs

of movement), will still reveal certain groups by themselves by occurring at the

same time (part of the demonstration) over all subjects and experiment settings,

for instance prepositions like “onto, into5” and all sorts of conjunctions like ”and“,

”then“.

1Meaningful segments are parts not divided by square brackets or dashes, see box at Chapter 1
2Lars Schillingmann saw to it, thank you
3Declension is typical for the German language e.g. gruene, gruenes, gruener, gruenen, ...
4Different spellings of the word are due to the dialect/common speech and clipped speech
5German: rein und drauf

14



3.2. Intonation

3.2 Intonation

origin Originally two human evaluators had to decide whether the intonation of the

end of a meaningful segment (see Section 3.1) was rising, falling, continuing or

unsure. These two evaluators agree only in 60% of the cases. The rate ”rising“ does

not seem to be the problem, but sorting segments into ”falling“ and ”continuing“

seemed to be difficult for evaluators, according to Dominik Westhues in his master’s

thesis on this topic [West 08]. For this reason I took the ratings of one of the

evaluators6. Naturally there need to be more evaluators for a statistical significant

interpretation.

characteristics Each segment has starting and end points. Originally these ratings

were used for a different study. Therefore, each rating contains approximately

three words [West 08].

cause and prognosis Brand et al. as well as Wrede and coworkers suggest that into-

national contours useful for packaging units of action, especially ”the falling into-

nation may mark a boundary of a completed action“ (p.323 [Bran 07b]) [Wred 05].

They question the need for words and their meaning when prosodic features like

intonation in motherese are so distinct.

3.3 Eye-Gaze

origin Student assistants7 coded manually from the video stream the gaze direction

of the parent into four classes. The videotape displays only the parent, not the

infant; therefore the coders had been only able to annotate the direction of the

view, not the actual eye contact.

characteristics The gaze-directions are towards the object, infant, instruction, miscel-

laneous. As characteristics before, each outcome has interval starts and ends.
6Dominik Westhues calls the evaluator A
7Angela Grimminger and Miriam Semin thanks for annotating
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Chapter 3. Features and their characteristics

cause and prognosis Striano and Stahl found that adult gaze towards an object and

the infant in exchange (2-3 seconds) may arise or maintain the infant’s attention

towards the object, (triadic attention from 3 months on) [Stri 05; Stri 07]. More-

over, Interactiveness is one of Brand’s dimensions of motionese, eye-gaze bouts are

one of its quantifiable measures/characteristics. Brand et al. consider eye gaze a

global feature, which is there to draw the infant’s attention in the joint attention

manner [Bran 02; Bran 07c]. An equivalent number of eye-gaze direction changes

are expected mainly between object and infant during the demonstration.

3.4 Velocity-of-Hand-Movements

origin Velocity of Hand Motion of the parent was computed from hand-trajectories.

Hand-trajectories for each hand were extracted in a semi-automatic way from the

video stream. A tracker8 for each hand computed the x- and y-coordinates per

hand and per frame of the video image (every 25 Hz or 40 ms). A student assistant9

had to control the tracker from time to time. The velocity of each hand movement

was computed (velocity value per 40 ms) and smoothed. In order to sum up the

movements of both hands the velocities were added as both hands were at no

time moved together. The velocity of both hands was divided into five different

speed categories with global thresholds. These thresholds were carefully chosen

by statistical survey of the velocity data from each person (quartiles, histograms,

kmeans).

characteristics The velocity data for each person is annotated with categories of no,

slow, medium, fast and very fast motion of hands and same and successive cate-

gories are summed up to bigger intervals. There are no time breaks between the

intervals, which mean that the starting point of the current interval is the ending

point of the interval before.

8Thanks to Philipp Gebert for developing the tracker
9Thanks to Miriam Semin
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3.4. Velocity-of-Hand-Movements

cause and prognosis The computation of the feature ”Velocity of Hand Motion“ dif-

fers from Brand’s coding parameter ”rate“. Coders had to valuate the veloc-

ity of Hand Movements for the entire experiment duration per subject. Brand

and coworkers assume that this is one reason why the difference between infant-

directed-action and adult-directed action did not vary significantly. Child-directed

motion has merely a tendency toward faster movements [Bran 02]. Consistent with

this discovery findings of Rohlfing and coworkers in a similar study [Rohl 06]. The

outcome of those studies does not mean that there is not a pattern or regularity

hidden in the speed of hand-movements over the time of a demonstration. Brand

et al. calculated only one mean value (global rating) per subject, the present

Velocity data contains on average, 85 intervals per subject per demonstration10.

If the same speed categories can always be associated with the same part in a

demonstration, this could also reveal more about the Motionese dimensions of

smoothness or punctuation of the hand movements [Bran 02; Rohl 06]. These are

said to be abrupt and sharp in child-directed-motions.

10This means 85 intervals consist of a mixture of the Velocity characteristics, for instance slow,
medium, fast, medium, fast and so on
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Chapter 4

Goal and Motivation

In regard to the present research from the computational point of view, it is incredible,

how well infants cope with this huge amount of information, which is provided by the

environment and needs to be processed through various senses. Infants have to learn to

understand language and movements from the beginning, similar to robots.

Current research on infants directed input illustrates that adults intuitively help infants

to cope with the world by using various means. A lot of features have been detected,

which characterise motherese and motionese, for example proximity to the partner, pace,

simple and short utterances, variations in pitch, intensity and intonation, rate of hand

movements abd eye-gaze-directions [Goga 00; Bahr 00; Bran 02; Wred 05; Rohl 05].

Some have been made quantifiable by counting occurrences within interaction periods

[Bran 07c]. Little research, however, has been done on identifying pattern intra and

inter feature wide and pairing occurrences to part of an action (e.g. beginning, middle

and end of an interaction period).

Brand and coworkers propose that a ”fine-grained analysis of characteristics of Mo-

tionese” is very fruitful, if characteristics like interactiveness are evaluated by “quan-

tifiable sub-features” (sub-features of interactiveness are eye-gaze bouts). All features,

therefore, should be computed to avoid dependence on the opinion on human elevators
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Chapter 4. Goal and Motivation

[Bran 07c].

Quantifiable features are of great interest in robotics, as a distinct pattern can reveal,

in which state of an action a distinct feature is situated, for example the word: “look at”

could have a pattern: “look at is always heard at the beginning of a tutoring situation”.

This pattern or rather prediction can in turn help to direct the information processing

unit of a robot to a special signal and its interpretation.

The next step could be predicting the communicative partner’s following action or in-

tention. For example, this person said “look at” and now he is going to show the use of

the object, which is somehow important to learn.

The general motivation in regard of the above lookout on robotics is to find dependencies

between a feature and the corresponding part of an action. This is so attractive for

robotics and child development because dependencies can reveal, which feature enhances,

what part of the structure of an action. This piece of information can help to uncover,

how exactly a structured action is perceived and processed by the infant [Naga 08], which

might help to build or evaluate models of how children acquire social skills (action skills).

This work follows up Brand’s example of a fine-grained analysis from a computational

point of view and the approach of Wrede to break down actions into subactions or even

smaller parts [Wred 05] and a new approach of regarding values of features with their

corresponding time of occurrence.

Acoustic packaging, intersensory redundancy, motherese and motionese are the main

concepts, which describe how acoustic parameters and body movements of caretakers

are adapted intuitively in adult-child-interaction. This thesis will approach the question:

Do feature characteristics highlight certain parts of an action and on which level of the

action hierarchy?

The following chapters will provide an insight into the method I used and the patterns,

which occurred during a demonstration of toys. The course of demonstration will be

analysed with regard to the four above presented features (see Chapter 3). The chances1

1Conditional Probability = P(Part x of a demonstration | characteristic j of feature i)
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of each part of a demonstration, given that there is a distinct characteristic of one feature,

will be computed to provide a first overview of the information features. This will lead

to the more precise question of whether these conditional probabilities reveal anything

about the structure of an action. The probabilities will be analysed in regard of patterns

and discussed.

Before conditional probabilities can be computed the demonstration needs to be divided

into meaningful time periods (later: segments) to examine the feature characteristics

behaviour in different states of the demonstration. The next chapter explains how the

segmentation is done. Then, in the following chapter the mathematical background is

described.
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Chapter 5

Segmenting the Task

In order to analyse the behaviour of features and their characteristics at certain stages

within the course of the demonstration task, this approach needs to determine mean-

ingful segments with prior knowledge. It is essential to know where an action segment

starts or ends in order to examine features within these segments and to build hypothe-

ses about any pattern like “the intonation contour is always falling towards the End of

an action”.

The difficulty will be balancing the level of partition of the action or rather demonstra-

tion task and the resulting information gain. Fortunately, the experiments my analysis

is based on, have a natural structure.

5.1 Hierarchy of Demonstration Task

The task (or to be more precise, the recorded data of one experiment) needs to be

segmented into smaller parts in order to examine features within an action. There is

a certain sequence or structure of events, which is very similar for each parent in the

study. Out of 55 subjects, 52 said or did something before starting the demonstration,

all parents demonstrated the toys and 48 mothers or fathers did or said something after
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Chapter 5. Segmenting the Task

Figure 5.1: Partition of the “task”. The task (experiment) can be divided into a
demonstration segment and two bounding segments (level 2). Those segments which
occur before and after the demonstration segment, are called “introduction” and sum-
mary in the next level of partition (level 3). In the third level, the demonstration is
divided into its three action segments. In the highest partition level (and the level of
examination), each of the segments are divided into a “Begin”, “Middle” and “End”
part (segment) (level 4).
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5.1. Hierarchy of Demonstration Task

achieving the goal. This was due to the job the parents had to fulfil and the comparable

toy settings the parents attended to (please see Chapter 2.1 for description of task).

Figure 5.1 level 2-4 represent the partition of the (demonstration) task.

Most of the time the parents gave themselves some time to familiarise themselves with

the toys and the task, listening to the experimenter’s instruction and either reciting

the instruction or addressing the child directly, giving him/her a short overview, for

example “do you know these toys, we have them at home” or touching the toys. In short,

everything that happens before the demonstration of toys is referred to as introduction

(short: i1/in), (please consult Figure 5.1 level 2 and 3). Accordingly, everything that

happens after the demonstration of toys is called summary (short: s1/su). After fulfilling

the goal, for example, the parent would summarise verbally what she/he just did, repeat

the task or give the toys to their infant. A variety of actions followed, which will be not

considered in the computation because they are too variable, (please see Section 5.1.1

for more details).

The demonstration of the objects can be split up into three separate actions (short: a1,

a2, a3) due to the fact that each experiment setting contained similar toys the parents

had to use. This means parents attended to one object in each action and manipulated

the toy in order to reach the goal.

I divided the actions as well as the introduction and summary into three equal parts,

Beginning, Middle and End for a more fine-grained analysis, (please see Figure 5.1 level

4).

With this trisection I hope to acquire results, which are comparable to other assump-

tions and findings made on action structuring. Yukie Nagai et al. worked on the cup

experiments of the motionese-project, but they analysed the demonstration as one ac-

tion. They examined the behaviour of visually salient objects before, during and after

the demonstration [Naga 07a]. Since they started the action with “grasping the cup”,

findings like salient eye-contact before the action should be found in the Beginning seg-

ment of action 1 or even before this segment (i1Beg-i1End), please refer to Figure 5.1.
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Chapter 5. Segmenting the Task

Brand et al. thinks that features might exhibit distinct patterns after completion points

or before initiation points of an action. Wrede and coworkers suppose that the end of

each action might be highlighted through prosodic features because it helps breaking up

an entire task and therefore makes the communicated structure easier to comprehend.

The last partition (Beg, Mid, End) results in 1-2 seconds per interval. Making the

intervals even smaller, would result in a number of empty intervals for the Intonation

feature, which is only available in intervals of up to 3 seconds (mean duration of Into-

nation intervals 1-2 s). In addition Word- and Intonation- intervals cannot be divided

because they have already the smallest partition level available.

Another approach would be to divide the actions into subactions like grasping, showing,

inserting, and not in segments Beg-End, but this would be too fine-grained for my

analysis and would not serve to analyse the structure on action levels.

I defined an action as either a goal-directed motion or a goal- directed speech. The focus

lies on the communicated structure of action. Therefore, the task will be divided on

the basis of the audio signal, into the five segments, see Figure 5.1 level 3. To control

is, if these audio annotated boundaries are in any way temporally associated with the

boundaries of the video signal. A partition is made accordingly on the basis of the video

signal.

The following section will explain precisely the rules of segmenting the task separately

by both signals. Furthermore, the results, of how well the action annotation of audio

and video signal fit together, will be summed up here since it is not the main part of

the analysis.

5.1.1 Action Segmenting

The goal was to determine the five time periods as illustrated and described in Section

5.1. Keeping in mind that the audio and video signal of the task are continuous and

provide ongoing data, the task was gapless separated, thereby acquiring it a complete
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5.1. Hierarchy of Demonstration Task

overview of feature occurrences. This implies that the beginning of a segment is the

ending point of the previous segment, as displayed in Figure 5.2 and Figure 5.3. The

examples (no.1-no.4) in Figure 5.2 and 5.3 provide not only an example of the similarity

of the length of the action intervals and onset, but also the variation in length of segment

summary and with that the total length of the experiments.

Figure 5.2: An example of a “Cup” – task segmentation by video and audio signal for
two independent subjects (no.1-2). The colours indicate when segments of level 3
start and end. The first bar is the segmentation, which is made on the basis of the
video signal. The second bar represents the segmentation of the audio signal.
(i1=magenta, a1=dark blue, a2=grey blue, a3=turquoise, s1=rose)

Figure 5.3: An example of a “Minihausen” – task segmentation by video and audio sig-
nal. The diagrams represent segmentations for two subjects with different lengths in
the “summary” segment. (i1=magenta, a1=dark blue, a2=grey blue, a3=turquoise,
s1=rose)

The definition of action in Chapter 2.2 and 2.3 forms a basis for the separation of the

task up to level 3, (figure 5.1). The exact rules for separation are of course very similar
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Chapter 5. Segmenting the Task

to each other. Note, that start and end are the same and therefore there is only the

need for one rule for each signal (see figure 5.4 for rules and examples).

• audio beginning

1. semantics and speech pauses are the key for segmenting. Separation will occur:
(a) when something new is talked about (the utterance belongs to the next action)
(b) after a long pause of speech
(c) with the start of special words

– “and then” is a key word for something new
– “look at the green” silence [EndAction BeginAction] “look at the yellow”

pause ...
– “look at the green” silence [EndAction BeginAction] “hey Pete, are you

looking – the yellow one goes ...”

• video beginning

1. A separation will be made: when a new goal-directed-movement of any body part
starts

– head turn and eye gaze towards new object
– moving hand from home position1or long pause in motions
– changing goal and direction of movement in a continuous flow of motion

∗ e.g. ... grasping, lifting, inserting [EndAction BeginAction] grasping...
∗ e.g. ... grasping, lifting, inserting, pausing [EndAction BeginAction] grasp-

ing...

Figure 5.4: Segmenting rules to find start points of actions (segments) for the audio
and video signal.

In general the rule “a new segment starts whenever there is a new goal-directed speech

or motion” is easier to apply. A similar rule for endings is harder to apply, because

action endings are somewhat blurry. Pauses in motion and speech in a gapless anno-

tation make it harder to define boundaries; a new segment category (pause) would

be needed here. For example, consider the following sequence of hand-cup move-

ments “grasping, lifting, showing, inserting,(E) putting hands down (E),

not moving, (E)(S) turning torso to new cup, grasping ...”.

If there is a simple rule for action ends, like “end of goal-directed motion” the end-begin

(transition) point should be after inserting or somewhere in the middle of the italic text,

see (E). But this would make the rule too variable and would not result in a comparable
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5.1. Hierarchy of Demonstration Task

annotation of the data set. The action start will not leave such room for variability, as

the above example demonstrates. There is only one point, where a new goal-directed

motion starts, see (S).

5.1.2 Task Segmentation Results

The results of task segmentation reveal that all segments except the summary segment

share a similar mean of duration and have a similar standard deviation. In approximately

80 % of the cases the start of one video annotated segment (e.g., short: a1 v) precedes

the start of the corresponding audio interval (short: a1 a) and so does the ending of the

video interval.

Interval Duration

One way ANOVAs2 illustrate that not only the audio and video segments of the same

type (e.g. a1 audio and a1 video) but also intervals from introduction to action 3

(i1–a3 ) have no significant differences in their length; F (7, 432) = 0.77, p = 0.6123

without su segment and with su F (9, 540) = 6.54, p < 0.0001. The multiple comparison

procedure (at a 95 % confidence interval) reveals that only summary segments audio

and video (su a and su v) have significantly different mean durations compared to the

others but not to each other. The box plots in Figure 5.5 illustrate the mean duration

of all segments, introduction till summary (i1-s1 ), for audio and video segments.

Moreover, the box plots and Figure 5.6 reveal a broad standard deviation in summary

segments (short: s1 or su). This is due to the non restricted end of the experiments. The

parents determined themselves when to end the task. Figure 5.6 represents the standard

deviation for all durations of audio and video annotations of all experiments and sepa-

rately for each experiment setting “Becher” (cup) and “Minihausen” (building blocks).

2ANOVA = here: Fisher’s ANalysis Of VAriance, uses Fisher’s F-distribution as part of the test of
statistical significance.
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i1 a i1 v a1 a a1 v a2 a a2 v a3 a a3 v s1 a s1 v
−5

0

5

10

15

20

25

30

35

40

45

50

D
ur

at
io

n

Interval Name

Figure 5.5: Box Plots represent the length of all segments for audio (a) and video
(v) segmentation. All segments, apart from the “summary” (s1) segments, have the
same average length and their variance is similar.

The Figure illustrates the rather low standard deviation for actions 1-3 compared to

in and su segments
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5.1. Hierarchy of Demonstration Task

Figure 5.6: Standard Deviation of the duration per interval for audio and video seg-
mentation. The bars depict SD for all experiments (total) and per experiment set-
ting, Becher = cup and Minihausen = blocks (audio = dark colour, video = light
colour)

On- and Offset

Beginning and end of audio and video segments were compared to each other. In 82.59%

of the cases the initial points of segments, which were separated by means of the video

signal, precede their corresponding audio segments. The mean onset is 1.125 seconds.

In only 12.95% of the cases it is vice versa and in 4.46% of the cases there is no corre-

sponding segment in either audio or video.

These findings are at the first sight not consistent with results of other experiments in

this area. Gogate et al. and Brand et al. report that speech and goal-directed motion

start and end temporal synchronous (on- and offset only up to 300 ms) in ID-Input. But

considering that Brand et al. did not count the grasping or reaching movement towards

objects as action, see Chapter 2.2 and [Bran 07c]. Moreover, Gogate et al. did not

assign start and endpoints to motions. They counted speech and motion as synchronous

whenever speech was accompanied by motion, see Chapter 2.2 and [Goga 00]. The

mean onset of video (motion) to audio (speech) in this thesis contains the reaching and

grasping act towards the object and in 82.59% there is motion when speech starts. For
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Chapter 5. Segmenting the Task

that reason this findings can be considered as consistent with the latest research.

Naturally, the results of the comparison of the end points are very similar as Table 5.1

illustrates. Onsets and offsets are the same; as mentioned before, there are no gaps

between the segments. The only difference between onsets and offsets is between i1-

offset, a1-onset and a3-offset, s1-onset. 12 parents started with action 1 and 10 parents

had no summary segment. According to the reasons above, it will be only spoken of

onsets. Only if it is important offsets will be mentioned.

The onsets of segment a1, a2 and a3 share a very similar mean length (between 1.2-1.5

seconds, 10% trimmed mean). The onset of segment su has a mean duration of only

0.373 seconds. That is the offset of a3, too and the goal of stacking the cups should be

fulfilled by then. The completion of the entire task might lead to a tighter alignment of

audio and video signals. The standard deviation for a1 (SD = 2.83) is slightly higher

compared to the others (SD 1.3-1.6). This effect is also shown in Figure 5.7. Starting the

demonstration might be slightly more variable compared to continuing a demonstration

(see onsets of a2 and a3 in Figure 5.7).

video precedes audio audio precedes video no partner
onset 82.59% 12.95% 4.46%
offset 81.70% 12.95% 5.36%

Table 5.1: Onset of audio− video starts and offset of audio− video ends

As stated before, the segment summary represents everything that happens after fulfill-

ing the task. A statistical analysis gives evidence for the difference to the other segments.

For this study, the segment summary will be excluded from the computation of condi-

tional probabilities. For completeness however, it will be considered in computation up

to the point of conditional probabilities and their interpretation.

Having now obtained the initial and completion points of the annotated intervals, the

four features and their characteristics need to be associated with their corresponding

task segment (i1-s1 ). And then they are again assigned into beginning-, middle- and

end parts.
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Figure 5.7: Box Plots of the duration of the Onsets from “a1-s1”. The average Onset
duration is positive, that means the video segments precede the audio segments. The
average duration of the Onset of the “summary” segment (ons1) is closer to zero
than the other Onsets (see green doted line)

33





Chapter 6

Basis for Analysis

6.1 Assigning Features to Segments

Each feature characteristic is a time interval with a start and an end point. Each interval

carries one characteristic value, for example “r” for “rising”, a Word like “put”, a certain

Eye-Gaze direction “child” or a certain Velocity of Hand Movements “fast”.

In order to assign feature intervals to their corresponding task segments (first to i1-s1,

and then to Beg-End), the following decisions need to be made.

One has to determine, if start or end points of the intervals are important or in other

words, if it is possible to divide the feature characteristic interval into smaller ones.

This decision depends mainly on the fact that some feature intervals can not be divided.

Words and Intonation are such features. Dividing the Word would result in either

duplicating the word or splitting it into syllables, both results are unwanted.

Gogate and co-workers report that for children co-occurring motion and language do

not need to be temporally aligned as precisely as it needs to be for adults [Goga 00].

This is the reason, why some blurriness around start and end points of Beg-End units

is allowed for Word and Intonation intervals.
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a1Beg a1Mid

Words

Intonation

Eye Gaze

Velocity
of Hand
Motion

Figure 6.1: Assigning feature intervals to task segments. Word and Intonation in-
tervals cannot be divided, therefore they are assigned to a segment by rule. The
horizontal doted lines represent segment boundaries. Word intervals, which start
in a segment, are assigned to this segment. Inclusion is defined by the start point
marked in red. Intonation intervals are associated with a segment by the end point
marked in red. Eye-Gaze and Velocity intervals are dividable and more frequent.

Words will be sorted by their beginning time. Intonation intervals, however, will be

judged by their end point time because the end of the segment determines the value

in this case (please read Chapter 3.2). Eye-Gaze and Hand Velocity intervals will be

divided into smaller intervals, if they enclose a segment start or end (i1-s1 and Beg-

End) because they are only summaries of smaller units. Here a value was produced

every 40 ms, please see Chapter 3.3 and Chapter 3.4 for exact description. Column two

and three of Table 6.1 and Figure 6.1 sum up the information given above. Figure 6.1

illustrates through each coloured row and corresponding arrows how each feature interval

is assigned and adjusted. Each coloured row in Figure 6.1 represents through arrows,

how each feature interval is assigned and adjusted. It also illustrates the proportion

between feature intervals and in which frequency intervals occur compared to the other

feature intervals.

Before assigning and adjusting feature intervals at level 4 (i1Beg-s1End (see Figure

5.1) there are some further problems to be solved. i1-s1 segments (level 3) need to be

divided into smaller units Beg, Mid, End. In this case there are two possibilities, how
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6.1. Assigning Features to Segments

intervals sorted by divisible Word boundary
Word start no yes

Intonation end no yes
Eye Gaze start yes yes, no

Hand Velocity start yes yes, no

Table 6.1: Feature intervals can be assigned to the task segments in different ways
and task segments can be divided on basis of word boundaries or audio boundaries,
column 4.

those segments can be trisected, either the entire time per each segment i1-s1 is divided

by three or in this case, where language is more in focus, word-boundaries are taken to

trisect the segments. This means that the start of the first Word in each segment (is-s1 )

and the end point of last Word interval, make the time length, which will be trisected,

(please see at Figure 6.2). This ensures that each unit (Beg-End) contains about the

same amount of Word intervals.

Beg End

Words

Mid

WordBoundary expand

Velocity
of Hand
Motion

Beg Mid End + End
Segment 
Boundary

Figure 6.2: Word Boundaries as boundaries for segment trisection into segments
Beg-End. Horizontal grey lines mark the segment trisection (simple trisection).
The horizontal red lines represent the trisection boundaries on the basis of the word
boundary. The end part needs to be expanded, because Eye-Gaze and Velocity inter-
vals have values in the part, which is cut of by the word boundary trisection as no
words are located, there (pink doted lines).

The problem with this is that features not based on language (Eye-Gaze, Hand Velocity)

will have occurrences between the segment’s last Word and completion point of the

segment. In Figure 6.2 the problematic zone is marked in pink. If the End segment

is enlarged by about the missing length, then there are on average four for eye gaze

intervals and 18 Velocity intervals more in the End unit than in every other segment.
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The green row in Figure 6.2 shows exemplary a few intervals only. This could result

in balancing out the characteristics in the End segment. Another possibility would

be to ignore word-boundaries with the video based features only. For Eye-Gaze and

Velocity of Hand Movement data, both variants will be tried out and results presented

and discussed later in Chapter 7.

6.2 Conditional Probability – Bayes’ Rule

Without segment su there are now 12 segments (i1Beg-a3End), which have been assigned

feature characteristics. Figure 6.3 illustrates for simplicity only three segments (a1Beg-

a1End) as boxes (or cylinders) and the corresponding Intonation characteristics as balls

with rising (r = green), falling (f = blue), continuing (c = yellow) and unknown (? =

red) values.

Figure 6.3: Example for computation of conditional probabilities. Intonation values
are represented as balls in three boxes (segments), blue=f=falling, green=r=rising,
yellow=c=continuing, red=?=unsure.

The problem is the calculation of the conditional probability of any segment Segmentx

if a distinct feature characteristic fc has already occurred: P (Segmentx|fc).

If one supposes that the feature characteristic“rising”(fc) occurs and one wants to know

in which segment (Segmentx) it was likely to occur. This problem can be transferred

to an easier formulated question. Suppose you have three boxes as depicted in Figure

6.3. “Which box would you guess if the ball drawn is green and what is your chance of

guessing right?”

38
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The goal is to have a simple model where as little as possible prior knowledge is needed.

The general formula for computing conditional probabilities comes from Bayes. His Rule

is used to model the problem, which can be found in (6.1)

P (Segmentx|fc) =
P (fc|Segmentx)P (Segmentx)

n∑
i=1

P (fc|Segmentx)P (Segmentx)
(6.1)

All components for the computation of the Bayes’s Rule can be derived:

• Segmentx: the events Segmentx represent n mutually exclusive possible re-

sults of the first stage of some procedure. In this case they are the twelve possible

segments i1Beg-a3End. Which of these events has occurred is unknown. Suppose

they contain the results fc

• P (Segmentx): unconditional probability or prior probability. It is assumed

that each event Segmentx has the same possibility 1
n = 1

12

• fc: the result of some second stage procedure has been observed, whose chances

depend on which of the Segmentx’s has occurred. The fc’s are the distinct Feature

Characteristics, for instance as ”rising“, ”falling“, ”continuing“ and ”unknown“ are

the characteristics of feature ”Intonation“.

• P (fc|Segmentx): likelihoods or conditional probability. In this case it is the

ratio of the number of observations (fc) to the total number of observations in

each Segmentx (the relative frequency). The example in Figure 6.3 represents

three segments as boxes with feature characteristics as balls. The probability for

a ”rising (green ball)“ given the occurrences of Segmenta1Beg is

P (rising|a1Beg) = #(rising)
#(Ω= all fc in a1Beg) = 5

9

•
n∑

i=1
P (fc|Segmentx)P (Segmentx) the overall probability P (fc) is the

weighted average of the conditional probabilities P (fc|Segmentx) with weights

P (Segmentx).
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Each feature will be computed separately. For determination of the conditional proba-

bilities for all segments in regard of distinct feature characteristics one needs the num-

ber of feature characteristics of the corresponding feature per segments only. A model

calculation of the conditional probabilities for all segments, if ”rising“ has occurred is

demonstrated in Table 6.2 on the basis of the example in Figure 6.3.

P (Segmentx|fc) = P (fc|Segmentx)P (Segmentx)
nP

i=1
P (fc|Segmentx)P (Segmentx)

= P (Segmentx)P (fc|Segmentx)

P (Segmentx)
nP

i=1
P (fc|Segmentx)

=

with P (a1Beg)=P (a1Mid)=P (a1End)= 1
3

P (fc|Segmentx)
nP

i=1
P (fc|Segmentx)

P (a1Beg|rising) = P (rising|a1Beg)P (a1Beg)
nP

i=1
P (rising|a1Beg)P (a1Beg)

=
1
3 ∗

5
9

1
3 ∗ (5

9 + 3
5 + 2

7)
=

38.55%
P (a1Mid|rising) = 41.63%
P (a1End|rising) = 19.82%

Table 6.2: Exemplary calculation of the conditional probabilities for the example in
Figure 6.3

As it is recognisable in Table 6.2 the weights P (Segmentx) can be cancelled from the

nominator and denominator, see row one. This is only possible because there is now

prior knowledge of P (Segmentx) assumed and the uniform distribution of the segments

is taken.

6.2.1 Limitation of Conditional Probability

The conditional probability P (Segmentx|fc) as computed above does say something

about which segment is likely to be the segment, which a feature value comes. But it

does not reveal anything about the overall rate of distinct values. For example, if there

is a single occurrence in one segment but nowhere else, the probability P (Segment1|fc)

is 1 and for all other segments P (Segment2,...,n|fc) it is 0. Following up the example

in Figure 6.3, the probability P (a1Beg|?) is 1 for the ”unknown“ (red) value in segment

a1Beg. Thus one has to be careful not to judge the quality of the feature distribution

only on conditional probability. In the example given, the high probability could induce
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a wrong interpretation, that there is, for example, a pattern found: all ”unknown“ val-

ues, which occur, can be associated with the segment ”a1Beg“. In other words ”unknown“

values could be taken for start of an action. But single occurrences are not at all statis-

tically significant. The overall rate of a feature characteristic or value gives information

on how to interpret the very high probabilities. Another uncertainty with a probability

value is that you do not know if the value you are seeing does reveal any information.

For example, suppose you have probability P (i1Beg|x) of 8.3% for some feature x.

The value does not reveal anything about the probability of the other segments – the

probability could be 1
12 = 8.3% for all 12 segments and there would be no information

gain or in other words no uncertainty loss about where the feature x comes from. So

if the results are equiprobable a measure should then reach a maximum value. The

Shannon entropy gives a measure for ”uncertainty“.

6.3 Shannon Entropy

The entropy by Claude Elwood Shannon is a measure of randomness or ”uncertainty“.

For a discrete set of variables the entropy is measured in bits. One bit corresponds

to the uncertainty that can be resolved by the answer to a single yes/no question,

adapted from [Duda 01]. For the computation of the entropy one needs a set of discrete

symbols or variables here: {i1Beg,...,a3End} with associated probabilities, here P (i) =

P (Segmentx|fc). The sum of these probabilities is 1:
n∑

i=1
P (Segmentx|fc) = 1, here

with n = #variables = 12. The Shannon entropy is computed with the binary logarithm

for discrete variables, please compare [Duda 01]:

H = −
12∑
i=1

P (i) log2 P (i) (6.2)

The equation (6.2) reaches its maximum (Hmax) if the probabilities are equally likely,

thus P (i) = 1
n . In this case, with n = 12, Hmax is 3.585 bits. This means that on
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Chapter 6. Basis for Analysis

average one needs to ask 3 to 4 yes/no question to be sure into, which segment a seen

feature value x belongs, equation (6.3) shows the corresponding calculation.

Hmax = −
n∑

i=1

1
n

log2

1
n

= log2 n, if ∀P (i) =
1
n

= −
12∑
i=1

1
12

log2

1
12

= log2 12

= 3.585bits

(6.3)

Usually the entropy needs to be normed1 to make the values comparable with other

statistical experiments but since there are always 12 segments in each of this thesis

feature calculation there is no need to norm the entropy. All entropy values are between

0 > x ≤ 3.585bits (the minimum 0 and maximum 3.585 bits) and therefore comparable

with each other.

The entropy value for all probabilities {P (Segmentx|fc), ..., P (Segmentx|fc)} is ap-

proximately 1.52 bits, for the example, which is depicted in Table 6.2. On average 1.5

questions have to be answered to be certain where the occurred ”rising“ value belongs

to. The maximum entropy value for this example is 1.58 bits. The result is not far away

from the result for the result of the uniform distribution. This conforms with the values

shown in Table 6.2. The probabilities 41.63% and 38.55% differ only 3% in that nearly

equally probable.

Note, that the computation of the entropy depends on the conditional probabilities,

which means a single occurrence will have entropy of 0. Therefore, the overall rate of

feature occurrences should always be referred to before any interpretations are made.

1e.g. with Hmax see equation (B.1) in Appendix B
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Results

This chapter presents the conditional probabilities and, when needed, entropy values

and overall rates of the four features. Each feature and its values will be examined and

interpreted separately. The discussion will be held for all features.

Mainly there are two patterns in the outcome to observe (see Figure 7.1). The condi-

tional probabilities of all segments observing one feature characteristic x, shows mainly

either a global or a reoccurring pattern.

A global pattern means, that the probabilities have only high values at successive seg-

ments and share most of the probability density, e.g. the first third or half of the task

or segments in action 1 (a1Beg, a1Mid, a1End).

A reoccurring pattern, as the name says, has reoccurring high probabilities at segments

named either Beg or Mid or End. For example, segments with the name Mid possesses

more than 50% of the conditional probability density (see Figure 7.1).

Figure 7.1 illustrates the global and the reoccurring pattern. The black punctuated line

displays the conditional probability per segment and the pink punctuated lines stand

for the conditional probability density. Marked is only the density, which exhibits the

pattern.
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Global pattern

conditional 
probalility

0
BegBegBeg BegMidMid MidMidEnd EndEnd End

Introduction Action 1 Action 2 Action 3

Reoccurring pattern

conditional 
probalility

0
BegBegBeg BegMidMid MidMidEnd EndEnd End

Introduction Action 1 Action 2 Action 3

of feature characteristic (fc_j)

of feature characteristic (fc_j)P(Segment_x|fc_j)

Segment_x

Segment_x

P(Segment_x|fc_j)

Figure 7.1: The Figure represents the main patterns for conditional probability (CP)
P (Segmentx|fcj) outcomes (fcj =feature characteristic). A global pattern has high
CP values at successive segments, which share most of the CP density. A reoccurring
pattern has high CP values at segments named either “Beg”, “Mid”, “End”.

The global pattern in Figure 7.1 shows high probabilities only for the segments i1Beg

to a1Beg, thus the feature characteristic x belongs to one of either segments at the

beginning of the task. Whereas the reoccurring pattern reveal segments, with the name

Mid, holding approximately 90% of the conditional probability density.

The results (conditional probabilities) are summed up for interpretation, see above.

This is only mathematically correct, if it is assumed that a new statistical experiment is

created, when saying: P (i1Mid|fcj) + P (a1Mid|fcj) + P (a2Mid|fcj) + P (a3Mid|fcj)

is equal to P (Mid|fcj). To keep the equation true, the priori probability P (Segmentx)

of segments need to be likewise summed up. In this example, the new segment Mid,

which consists of all four segments named Mid, has the priori probability of the sum of
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the priori probability of all Mid segments:

P (Mid) = P (i1Mid) + P (a1Mid) + P (a2Mid) + P (a3Mid)

=
1
12

+
1
12

+
1
12

+
1
12

=
1
3

Only then are statements, like “all segments named Mid share 90% of the conditional

probability density (on condition that fc j occurred)” true. If a uniform distribution

for the priori probability of summed up segments (Mid) and a single segment (a1End)

is assumed, the ratio of the nominator and denominator in the Bayes’ equation will

change.

The interpretation of the feature characteristic is not always easy as it is shown in Figure

7.1. Some feature values do not have a clear pattern. They lie between both ways and

some do not have a big difference to the uniform distribution. Therefore, only the “best”

feature characteristics will be examined in detail. Others will be presented in a more

summarised manner and some others will be found in Appendix C. Moreover, each of

the following four sections displays a Table with important data about the feature and

diagrams to illustrate the probability distribution per feature value.

Note, when referring to probabilities, conditional probabilities are meant except it is

clearly expressed otherwise. During the interpretation, the names of feature values are

taken to distinguish between probabilities. Sometimes the more correct, but very long

form: “the conditional probability of on condition that feature x occurred”, is clipped.

Other probability will be marked as such.

7.1 Word

The feature Word has 26 values (words), which occurred in more than 0.01% of all

recorded words. This threshold is necessary to throw out words, which occurred less
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than 16 times over all segments and experiments, e.g. “uppsi”, “puh”. 280 distinct words

were uttered, 203 occurred only once to three times (a list of all words can be looked

up in Appendix C.1).

German speech could be extracted for 49 experiments (49 parents), who spoke an average

of 32 words per task. Table 7.1 displays the average amount of words per unit Beg, Mid

and End, which lies between 8-13 words per unit.

The conditional probabilities of 18 feature values are displayed in Figures. For eight

words there was no pattern visible and nearly maximum entropy values, which indi-

cate that the conditional probability is uniformly distributed. Table 7.1 shows these

words with square brackets. However, these diagrams are displayed in Appendix C for

completeness.

# of experiments 49
fc per task 32.37
fc per Beg seg. 13.53
fc per Mid seg. 8.35
fc per End seg. 10.49
# of distinct fc 26

fc values
[auch], [becher], [da], dann, [das], [den], der, die, drauf,
du, ein, gelber, gruener, guck, [hier], in, [ist], ja, jetzt,
kommt, mal, ndk, rein, so, und, [wir]

overall rate selection > 1%
selection per segment all fcs

Table 7.1: Little profile for feature Word. Figures for feature characteristics (fc) in
square brackets can be refered to in Appendix C.1 (seg. = segments)

As there are a lot of Word characteristics, they are grouped by similar patterns into

subsections.

7.1.1 Pattern: first third and first half of the task

The conditional probabilities for segments with the occurring Words “guck”(look), “mal”

(belongs to look) and“ndk”(name of the child) display a global pattern. All three Words

occur mostly at segments i1Beg-a1Beg – the first third of the task. “Guck”and“mal”are

46



7.1. Word

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.2

0.4
guck

C
on

di
tio

na
l

P
ro

ba
bi

lit
y

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.2

0.4
mal

C
on

di
tio

na
l

P
ro

ba
bi

lit
y

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.2

0.4
ndk

Segment

C
on

di
tio

na
l

P
ro

ba
bi

lit
y

Figure 7.2: Global pattern for P (Segmentx|guck), P (Segmentx|mal) and
P (Segmentx|ndk) in the first third or even half of the task (guck=look, mal=
“belongs to guck”, ndk=name of the child)

the Words, which occur most often. 8.57% of all the spoken words are “guck” (look) and

8.26% of all words are“mal”. Unfortunately both Words have a high entropy value of 3.3

bits. It is recognisable, the probability graph in Figure 7.2 depicts some low probabilities

for the rest of the segments. Since there are four segments with high probabilities, one

would need to decide between those four (the max. entropy value for n=4 would be still

2 bits). Even if the entropy value is high, the sum of the probabilities for i1Beg-a1Beg

show clearly, that a global pattern for each of the three Words “guck”, “mal” and “ndk”

exists. Table 7.2 displays the sum of the conditional probabilities for the first third and

first half of the task which are all above 50%.

With “guck, mal” parents address their child directly. By uttering the child’s name the

attention is captured even better. Mack et al. confirmed that one’s own name is a good

means to capture attention [Mack 02]. In combination with “guck” (look) parents might

direct their child’s attention to for example, the toys.

For completeness another feature value should be mentioned, which has a similar pattern

to the above. The first half of the task bears 76% percent of the conditional probability
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�sum
fc �

i1Beg-a1Beg=
1
3 of the task

i1Beg-a1End=
1
2 of the task

guck 59% 68%
mal 60% 76%
ein 59% 76%
ndk 78% 87%

Table 7.2: Sums of conditional probabilities reveal a global pattern for Words guck,
mal, ndk

density when feature value “ein”(indefinite artical:a ) occurs. This can be seen in Figure

7.3. “ein” has a low overall rate of 1.9%. Unlikely “ndk” (name of the child) there are

no further interpretations to be made for Word “ein”.
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Figure 7.3: More a global pattern for feature value “ein”, with 76% of the probability
density in the first half of the task

7.1.2 Pattern: mixed introduction and Ends

Even if a global pattern for feature value “ndk” (name of the child) can be identified, a

weak reoccurring pattern can be recognised, too. “ndk”(name of the child) does reappear

at the End of action 1 and 2, the sum of the probabilities for End segments on condition

that “ndk” has occurred is 32% (see Table 7.3 for an overview).

A similar pattern is shown for the Word “du” (you), (see Figure 7.4 and Table 7.3).

The segments summarised by introduction have a conditional probability of 53% and

the chance that “du” occurred in the time of an End segment is 55%. “ndk” and “you”

are words, with which parents address their child directly, this might be for preserving

or restoring the child’s’ attention after each action and at the start of the task, which

might be the reason why “guck” and “mal” occurred there, as well.
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Figure 7.4: Features reoccurring at action End segments and at the introduction seg-
ment

The Word “ja” (yes) might belong to this group of words, too (i1 =54%, End=40%), see

in Figure 7.4 and Table 7.3. “Yes” might be a part of some reassuring questions like,

“Did you see it? Yes?” etc. With the Word “yes” one has to be careful because “yes”

was sometimes not addressed towards the child. Especially at the very beginning of the

task, speech was sometimes addressed towards the experimenter.

�sum
fc �

i1Beg-i1End=
introduction

i1-a3End= all
Ends

ndk 54% 32%
du 53% 55%
ja 54% 40%

Table 7.3: Sums of conditional probabilities lean towards a global pattern and a
reoccurring pattern at for ndk, du, ja (ndk=name of the child, du=you, ja=yes)

7.1.3 Pattern: action Ends

The conditional probability distributions for Words “rein” (into) and “drauf” (on top

of), which are shown in Figure 7.5, depict a clear reappearing manner at action Ends.

59% of the conditional probability density is recorded for “drauf” and even 77% for the

“rein”. That is one of the cleanest results for the feature Word. Those prepositions

do not mean the same, but both describe the position, where the toy is put during

the manipulation. The difference in meaning of the prepositions comes from the two
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Figure 7.5: Words, which reoccur especially at actionEnds, P (actionEnds|rein) =
77%, P (actionEnds|drauf) = 59% (rein=into, drauf=on top of)

different experiment settings: stacking building blocks on top of others and inserting

cups into each other. Despite the different experiment setting a similar structure of

occurrences can be identified for those prepositions as assumed in Chapter 3.1. 63% of

all “rein” and “drauf” occurrences appear in one of the action Ends. This makes 73%

(P (drauf |actionEnds) + P (rein|actionEnds)) of parents uttering one of the preposi-

tions at the End of an action segment. For those experiment settings, it can be said

that, “rein” and “drauf” stand for action Ends.

7.1.4 Pattern: Mids

The conditional probabilities for segments on condition, that Words “so” (so) or “die”

(feminine article: the) or “kommt” (comes) have occurred, are nearly always present,

see Figure 7.6. It is noticable that for “so” and “die” i1Mid has the highest conditional

probability. The conditional probability P (i1Mid|so) especially stands out with its

31%. That is the third highest conditional probability for only one segment. This peak

might be evidence for a communicated start of the real task: “so, what do we have

here” or “so, [pause] look at”. The third graph in Figure 7.6 depicts the conditional

probabilities for “in” (in). The Words “die”, “in” and “kommt” show some evidence for

a reoccurring pattern at Mid segments. The Mid segments on condition that “die”

occurred hold 51%, “in” 57% and “kommt” 53%. That is not significant because nearly
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Figure 7.6: Tendency for Mid segments or one peak at a Mid segment, low condi-
tional probabilities at action Beg segments. P (i1Mids|so) = 31%, P (Mids|die) =
51%, P (Mids|in) = 57%, P (Mids|kommt) = 53% (so=so, die=the, in=in,
kommt=comes)

any four segments can be summed up to reach about 50% of the probability density.

Noticeable is that “in” and “kommt” have low or zero probabilities at Begin segments

(3%-6%). Segment a2Mid under the condition that “in” occurred has a very high peak

(37%) and P (a3Mid|kommt) = 0.3. All four Words have a very low overall rate of

2-3%, which makes only 5-7 occurrences for the segment with the highest probability.

This means the interpretation should be taken cautiously.

7.1.5 Pattern: action Begs

The next four feature values “und” (and), “dann” (then), “der” (masculine article: the)

and “jetzt” (now) in Figure 7.7 are grouped together, because the segments a2Beg and

a3Beg in each conditional probability distribution provide the two highest probabilities1.

60% of the probability density share those two segments for “und”. In this case segment
1to be precise it is the first and third highest probability for “jetzt”
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Figure 7.7: Tendency for a reoccurring pattern at beginnings, especially at segments
a2Beg and a3Beg. P (a3Beg|und) = 0.39 is the highest conditional probability for
one segment. (und=and, dann=then, der=the, jetzt=now)

a3Beg holds 39% alone, it is the highest probability percentage for a single segment.

Naturally, the entropy value is low at 2.55 bits. In addition to this, the Word “und”

has an overall rate of 7%. This means about 30 parents have uttered “und” at the

beginning of action 3, adding the amount from a2Beg, 49 parents used “und”. A possible

interpretation could be that especially the conjunctions “und” and “dann” but “der” and

“jetzt2”,too, might be used to lead from one action to another.

7.1.6 Pattern: action 2

The next feature value “gelber” (yellow) has the best entropy value, namely 2.24 bits.

The three segments of action 2 share 77% of the conditional probability density, see

Figure 7.8. This occurrence of yellow around action 2 is due to the fact that the second

toy of both experiment settings had been yellow. This is why, “yellow” can be taken

as a control feature for finding existing patterns and modelling them by conditional
2”jetzt“ only mentioned for completeness, its entropy value is 3.02 bits
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Figure 7.8: Action 2 on condition that “gelber” (yellow) occurred has 77% of the
conditional probabilities density, P (action2|gelber) = 0.77

probabilities.

7.1.7 Pattern: always present

This can be said about feature value “gruener” (green) as well. In Figure 7.9 one can

see two broad amplitudes at action 1 and about action 3. This is because the green cup

was mostly the first toy to be manipulated and the green building block was the last or

sometimes second toy to be spoken of. It is not surprising that the entropy value is at

3.05 bits, here.
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Figure 7.9: The feature characteristic “gruener” (green) is nearly always present, due
to the fact that the first and third toy were green. Entropy value is 3.02 bits.

7.2 Intonation

The Intonation data comes from 55 experiments, equalling about 10 Intonation values

per experiment. On average Begin and Middle segments contain 2-3 Intonation inter-

vals, which are as long as 3-4 Word intervals. One End segment has approximately

five Intonation intervals, but, which encompasses only two Word intervals. The exact

numbers can be obtained from Table 7.4. The Intonation Section will be much shorter
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than the Word Section, because there are only four categories to discuss. The category

“unsure” (x) will not be presented here, because it has a low overall rate of 3% (17

occurrences over all segments and all 55 experiments = 569 segments, see Appendix C

Figure C.4).

# of experiments 55
fc task 10.35

fc per Beg seg. 2.76
fc per Mid seg. 2.44
fc per End seg. 5.15
# of distinct fc 4

fc values r, f, c, [x]
overall rate selection > 1%
selection per segment all fcs

Table 7.4: Little profile of the feature Intonation. Figure for feature characteristic
[x] will be shown in Appendix C.2 (task without summary, seg.=segment, fc=feature
characteristic)

The categories/values “rising” (r), “falling” (f) and “continuing” (c) have high en-

tropy values of 3.4 bits to 3.53 bits. The conditional probabilities P (Segmentx|r),

P (Segmentx|f), P (Segmentx|c) are nearly equally distributed over all segments, con-

sult Figure 7.10. This means, that there are no significant patterns to be recognised,

but there are, however, tendencies to present.

The conditional probability P (Segmentx|continuing) shows a tendency towards action

Mids and action Ends (see green graph in Figure 7.10). The range of the conditional

probabilities (P (Segmentx|continuing)) is between 3% and 17%.

For the conditional probabilities, P (Segmentx|rising) and P (Segmentx|falling), the

range is even more narrow: between 6%-11% for “falling” and 4%-14% for “rising”. The

two highest conditional probabilities, P (a3Beg|rising) = 0.14 and P (a2Beg|rising) =

0.12 for “rising”, occur at action Begs, closely followed by a2Mid and a2End. This hints,

that there might not be a reoccurring pattern, but a global one, on action 2 .

A slight tendency for P (a3End|falling) = 11% as highest probability can be seen for

“falling”. The conditional probability P (i1Beg|falling) is only 0.13% behind. This
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Figure 7.10: Conditional Probability distribution for P (Segmentx|r)
(r=pink=rising), P (Segmentx|f) (f=falling=blue) and P (Segmentx|c)
(c=continuing=green). The fine proportion of the y-axis reveals tendencies,
even if the conditional probability range is narrow.

might be due to the fact, that speech in segments i1Beg-i1End is directed towards the

experimenter in 29% of the cases. Brand and Wrede suggest that a falling intonation

contour stands for a completed action [Bran 07b; Wred 05]. This means, that according

to the highest probability [P (a3End|falling)] at the end of the task, the intonation

contour “falling” works on a higher segmentation level and does not divide the action

into three (sub)actions as it is done in this masters’ thesis. Those results will not be

elaborated any further, because the data does not reveal anything significant. More

evaluators and a finer-grained evaluation on word level need to be done to test this

hypothesis.

7.3 Eye-Gaze

Across 52 experiments, a task contains approximately 30 changes in Eye-Gaze direc-

tions. End segments have on average 12 intervals, which is four more than Beg and Mid

segments contain. The four feature characteristics here, Eye-Gaze directions towards

the, “Kind” (child), “Objekt” (object), “Instruktion” (instruction), “Sonstiges” (miscella-
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neous) will be presented in this section. Miscellaneous, means a gaze direction towards

something not covered by the directions mentioned before.

First, the section will examine the effects of the “word boundary segmentation” and the

“segment boundary trisection”.

Eye-Gaze direction is one feature, whose annotation is based on the video signal. It

is not, like the feature Intonation, dependent on the parents’ utterances. As ex-

plained in Chapter 6.1, there are two ways of dividing the segments, introduction to

action 3, into Begin, Middle and End units/segments. The simple approach is to di-

vide the segment into three equal parts by taking the boundaries of the segment (e.g.
action1End−action1Start

3 ).

The other possibility is to create new boundaries for trisecting the segments, namely,

the start point of the first spoken word and the end point of the last spoken word of

the actual segment. This ensures, that there are Words in each Begin, Middle and End

unit. The conditional probabilities are computed on basis of both ways. The prob-

abilities do not vary much. The Ansari-Bradley3 test (alpha = 0.0001) reveals, that

the conditional probability outcomes have the same distribution4. The average differ-

ence of the conditional probabilities5 for the feature values “Kind” (child) and “Objekt”

(object) are 0.3% and 0.47%. However, the mean difference for “Instruktion” (instruc-

tion) is 5% and for “Sonstiges” (miscellaneous) 3%. Both have a low rate of occurrences

and patterns are somehow better to recognise in the word boundary trisection. Figure

C.5 in Appendix C.3 depicts the conditional probabilities on the basis of the segment

boundaries. In this section, presented conditional probabilities are based on the word

boundary segmentation.

3The Ansari-Bradley test tests the hypothesis, that two independent samples come from the same
distribution, against the alternative, that they come from distributions, that have the same median and
shape but different variances.

4I also performed a Kolmogorov-Smirnov test (alpha = 0.0001), which compares both distributions,
but assumes, that they are continuous. This test also reveals that the conditional probabilities are from
the same distribution

5More precisely: the average difference is P (Segmentx−segBoundary|Kind) -
P (Segmentx−wordBoundary|Kind). The short version in the text above should make it more
readable.
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# of experiments 52
fc per task 29.69 (29.75)

fc per Beg seg. 8.79 (9.65)
fc per Mid seg. 8.23 (9.40)
fc per End seg. 12.67 (10.49)
# of distinct fc 4

fc values Kind, Objekt, Instruktion, Sonstiges
overall rate selection > 0.1%
selection per segment > 2

Table 7.5: Little profile of the feature Eye-Gaze and word boundary trisection. In
round brackets are the numbers of segment boundary trisection of segments (seg.).
Translation of feature characteristics (fc): Kind=child, Objekt=object, Instruk-
tion=instruction, Sonstiges=miscellaneous.

Distinct feature value occurrences had to be more than two per segment and had an

overall occurrence rate of more than 0.1%. The overall rate selection is low, to compute

the conditional probability, P (Segmentx|Sonstiges), even if the overall rate is only

0.8%. If the gaze direction is neither towards the object nor towards the child nor

towards the introduction, then the communication between child and parent could be

disturbed. Brand and co-workers found evidence, that there are frequent Eye-Gaze

bouts and longer gaze durations of the parent towards the child, when engaged in child-

directed interaction (IDI) compared to ADI6 [Bran 07c]. As a result, there should be

no time left for the parent to look at something else. In fact, in 43% (overall rate) of

the cases the parents looked at the child and in 54% of the cases parents looked at the

toy. This conforms to the findings of Brand et al., who found that children were gazed

at 47% of the time in IDI [Bran 07c]. Those eye-gazes towards the child counterbalance

the eye-gazes towards the object in each segment, as their overall rate shows.

The conditional probability P (Segmentx|Sonstiges) reveals only three segments with

probabilities at the start and end of the task: i1Beg (45.6%), i1Mid (35.8%) and

a3End (18.6%). This is a tendency, (on basis of Eye-Gaze direction), that parents

engaged undisturbed with their child during i1End-a3Mid (see Figure 7.11).

The overall rate of feature value “Instruktion” is also low (2%), because it occurred in
6Adult-directed Interaction
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Figure 7.11: Global and reoccurring pattern for conditional probabilities (CP)
P (Segmentx|fcj), fcj stands for any of the four Eye-Gaze directions: Instruk-
tion (instruction), Sonstiges (miscellaneous), Kind (child), Objekt (object). CP are
created on basis of word boundaries
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Minihausen7 experiments. However in “Minihausen”- Experiments, there was a little

picture (or instruction) next to the toys, showing how to stack the building blocks.

The corresponding graph in Figure 7.11 depicts a global and a reoccurring pattern for

the conditional probability distribution P (Segmentx|Instruktion). The global pattern

contains the introductory (i1 ) segments (i1Beg-i1End). The summarised conditional

probability P (i1|Instruktion) holds 59% of the density. The reoccurring pattern of

action End segments of action 1 and 2 share the rest of the conditional probability

density,P (a1a2End|Instruktion) = 0.41. The gaze towards the instruction might have

been interfering with the distribution of Eye-Gaze directions towards the child and

object.

The conditional probability distribution P (Segmentx|Object) and P (Segmentx|Kind)

are both nearly equally spread (see Figure 7.11). Therefore, the entropy values differ

only 0.003-0.006 bits from the maximum entropy value. However, a tendency for a

global pattern can be revealed, if the threshold for accounting occurrences per segment

is increased from 2 to 50. The results are outlined in Figure 7.12.

A global and a reoccurring pattern for conditional probabilities P (Segmentx|Objekt)

and P (Segmentx|Kind) can be recognised in Figure 7.12. The entropy value did not

decrease much (from 3.58 bits to 3.51 bits) for the conditional probabilities distribution

P (Segmentx|Objekt). Six Segments Beg and Mid of i1, a2, a3 have the highest

conditional probability of 11%.

The graph for Eye-Gaze direction “Kind” (child) shows the opposite effect for seg-

ments. All conditional probabilities are between 16%-19% and appear only at End

segments with P (End|Kind) = 67% and at the start of the action with P (i1End −

a1End|Kind) = 65% (segments i1End and action 1 ). The entropy value here is

2.58 bits, because there are still six segments, whose conditional probability are nearly

equiprobable.

These tendencies conform to the findings of Nagai and Rohlfing, who applied a saliency

7Experiments with building blocks as toys
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Figure 7.12: Global and reoccurring pattern for conditional probabilities
P (Segmentx|Object) and P (Segmentx|Kind). The occurrences per segment of dis-
tinct Eye-Gaze characteristics were filtered. Only occurrences above 50 were taken
into account. Segments Mid and Beg of i1, a2, a3 have equally high conditional prob-
abilities (CP) of 11% for “Objekt” (object). The graph for Eye-Gaze direction “Kind”
(child) shows CPs from 16%-19% for all segments of the global pattern, i1End +
action 1

based attention model on the cup experiment data [Naga 07a]. Their global model

computed, that, before and during the task, the objects attracted more attention. The

parents’ face attracted more attention after the task. My findings indicate, that this

might even be true for a finer grained segmentation of the task.

7.4 Velocity-of-Hand-Movements

The annotation of the feature Velocity of Hand Movements (short:Velocity) was made

on the basis of the video signal, like the feature Eye-Gaze (section 7.3). This is why, the

time of occurrences of the feature characteristics (fc) are not depending on the utterances

of the parent. As explained above and in Chapter 6.1, there are two ways of trisecting

the segments (i1-a3 ) into units Beg, Mid, End.

First the conditional probabilities (CP) were computed with no limitation of fc selection
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7.4. Velocity-of-Hand-Movements

per segment. Therefore, the results do not reveal any significant pattern, neither if

CPs were computed on the basis of the segment boundary nor on the basis of the word

boundary trisection ( see Figure C.8 in Appendix C.4). Their entropy values are over

3.5 bits (≈ maximum entropy). The high amount of feature characteristic intervals

per segments Beg, Mid and End balances the ratio of distinct feature values across all

segments. Beg and Mid segments contain on average 16 intervals more than the Eye-

Gaze segments. End segments hold even more intervals: 29 Velocity intervals more than

Eye-Gaze fcs. The exact numbers can be seen in Table 7.6.

# of experiments 54
fc task 90.80 (92.91)

fc per Beg seg. 25.69 (29.20)
fc per Mid seg. 23.46 (30.07)
fc per End seg. 41.65 (33.63)
# of distinct fc 5

fc values nomo, slow, medium, fast, very fast
overall rate selection >= 0.1%
selection per segment all vs. only one per segment

Table 7.6: Little profile of the feature Velocity of Hand Movements. The numbers
of feature characteristics (fc) per task, Beg, Mid, End correspond to the number of
intervals without any selection boundaries. With limited selection of one interval (fc)
per segment (seg.) per experiment. In round brackets are the numbers of segment
boundary trisection of segments .

There is a reoccurring pattern of high conditional probabilities P (Segmentx|fcj) for

segments Mid on the condition that a“medium”,“fast”or“very fast”movement of parent

hands occurred. To reveal this pattern, the selection of intervals8 per segment (Beg, Mid,

End), which are taken into account for the computation of conditional probabilities,

needs to be restricted. Only the very first feature characteristic interval from each Beg

segments is taken. The middle interval of the Mid segment is sampled and the very

last element from each End segment is counted. This makes, naturally, on average

one feature characteristic (fc) per segment and 54 fcs per experiment. As a result, the

conditional probability distributions in both trisection ways are very similar9.
8Each feature characteristic (fc) has an interval (time period) of occurrence. The term interval is

used in order not be confused with segments or distinct fcs.
9The Ansari-Bradley and the Kolmogorov-Smirnov test did reveal so, with alpha=0.0001, see Section
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The conditional probabilities of both trisection ways differ by only 0.5%-0.8% (for

P (Segmentx|nomo) and P (Segmentx|slow)). However, the difference of both trisec-

tion ways of conditional probabilities P (Segmentx|medium), P (Segmentx|fast) and

P (Segmentx|vfast) is larger, namely between 2%-4%. This is recognisable, when com-

paring the graphs of conditional probabilities of both trisection ways in Fig. 7.13 and

Fig. 7.14
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Figure 7.13: The graphs depict conditional probabilities (CP) P (Segmentx|fcj) for
all feature characteristics (fcj): nomo (no motion), slow, medium, fast, vfast (very
fast) on basis of the word boundary trisection. Selection of one interval (fc) per
segment (Beg, Mid, End) and per experiment. Under this condition, the reoccurring
high CP of Mid segments for graphs “medium”, “fast” and (“vfast”) is visible

Unlike Eye-Gaze patterns, the reoccurring pattern, of high conditional probabilities

for Mid segments, is better revealed, if the conditional probabilities are computed on

the basis of the simple segment trisection (segment boundaries) (see Figure 7.14 for

conditional probabilities).

In general all conditional probabilities P (Mid|fcj) of all Mid segments with feature

characteristic fcj = {medium, fast, very fast} hold 68%-93% of the conditional

probability density. Even P (actionMid|fcj) with fcj = {medium, fast, veryfast}

7.3 for more information.
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have 50%-67% of the conditional probability density. Results of Yukie Nagai saliency

model indicate, that parents hands (and cups) are salient to the child during the task

[Naga 07a]. Salient fast hand motions indicate either parents movements with an object

towards inserting / stacking or showing (waving) the object.

The conditional probability P (Mid|fast) = 93% stands out in both trisection ways.

The probability mass is equally distributed among the Mid segments (P (i1Mid|fast)

...) if the simple trisection is used. However, if the word boundary trisection is used,

the conditional probability P (a2Mid|fast) holds alone 53% (see Figure 7.13: high peak

in blue graph). Across all feature characteristics and segments, this is the highest con-

ditional probability peak for one segment. This results of course in a low entropy value

of 1.86 bits (else 2.15 bits). The entropy values for conditional probability distribution

of “medium” and “very fast” are around 2.7-3.0 bits for both trisecting ways.

The conditional probabilities P (Segmentx|nomotion) and P (Segmentx|slow) are nearly

equally distributed across the segments, so the entropy values are still between 3.4-

3.5 bits. Noticeable for feature characteristic “no motion” is though, that Mid seg-

ments have a lower conditional probability than any other conditional probability

P (Segmentx|nomotion).

Rohlfing and co-workers stated, that pauses in movements are made between actions

or better (sub)actions (like my action 1-3) [Rohl 06; Naga 07b]. These breaks should

emphasise the just executed action and indicate start and End of an action. My findings

conform to this from different perspective. However, Mid Segments have a significant

high conditional probability P (Mid|fast) on condition, that any “medium” to “very

fast” movement has occurred. Around Mid segments, (namely in Begins and Ends),

the ratio must be in favour of “no motion” and “slow motion” within other segments

than Mid segments. Results of conditional probabilities P (Segmentx|nomotion) and

P (Segmentx|slow) imply, that “no motion” or at least “slow motion” of hand move-

ments occur everywhere. In fact, the overall rate of “no motion” is 70%, leaving only

3-5% for each hand movement from “medium” to “very fast”. This is not surprising,
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Figure 7.14: The graphs show conditional probabilities (CP) P (Segmentx|fcj) for
all feature characteristics (fcj): nomo (no motion), slow, medium, fast, vfast (very
fast) on basis of the word boundary trisection. Selection of one interval (fc) per
segment (Beg, Mid, End) and per experiment. Under this condition, the reoccurring
high CP of Mid segments for graphs “medium”, “fast” and “vfast” is even better
visible
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because tendencies for abrupt / punctuated movements in child-directed motion have

been described by Brand, Rohlfing and co-workers [Bran 02; Rohl 06]. Accordingly,

these movements should be short in duration.

The high probability P (i1Mid|fast) cannot result from one of the actions, but from

“introducing” (showing) the toys before the actual action starts.

Nagai and co-workers analysed parental demonstrations (stacking cups) only in a global

manner with their saliency model. They divided the task into before, during and after

the action of stacking all cups [Naga 07a]. The analysing method might be applied to

finer grained level of (sub)actions for Velocity feature values and Eye-Gaze characteris-

tics.
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Chapter 8

Discussion

Two general patterns have been identified, within the conditional probability exami-

nation P (Segmentx|fcj) (over all segments (Segmentx) on condition, that one feature

characteristic (fcj) has occurred).

There are six different reoccurring patterns, which have been found during feature anal-

ysis, either Beg or Mid or End segments have high conditional probabilities. Moreover,

a distinction can be made between all Beg, Mid, End segments or Beg, Mid, End action

segments with high conditional probabilities .

Four global patterns have been introduced in Chapter 7. High conditional probabilities

have been found in the first third of the task or a bit finer, high conditional probabilities

at segments introduction (i1Beg-i1End), action 1 and action 2 have been identified.

A further group of patterns, which cannot be associated with one of the above pattern,

is identified. Some conditional probability distributions concentrate mostly on one seg-

ment, so that the conditional probability graph depicts one high peak. For example some

feature values have been identified to have conditional probabilities P (Segmentx|fc)

only at the start and/or end of the task.

Note, that not all feature values, which have been presented, show only one of the
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above mentioned patterns (for exact numbers refer to Chapter 7). There are mixtures

of pattern, mostly a reoccurring pattern at the action (or demonstration) segments and

a tendency for a global one at the beginning of the task, see for example “ndk” in Section

7.1.2.

The rest of the feature characteristics (fc) has a conditional probability density, which

is evenly spread across the segments, which means that conditional probabilities are

always present and not interpretable, if no prior knowledge is available (see for example

conditional probability for “gruener”, Section 7.1.7).

Table 8.1 sums up the results of the conditional probability examination for all con-

sidered feature values. The feature characteristics (fcs) are associated with their cor-

responding conditional probability pattern. An evaluation of the significance of the

corresponding pattern is coded in the appearance (colour) of feature values.

A fc is coloured in red, if the conditional probability per segment in the corresponding

pattern is over 17.5%. For example “rein” (into) is red and is associated with pattern

action Ends, which then stands for the conditional probability P (actionEnd|rein) ≥

70%. There are always three End segments in pattern action End P (actionEnd|fcj),

which share on average, a distinct amount of the conditional probability density.

The orange colour represents all feature values, which have an average conditional prob-

ability mass per segment of 13.75%-17.5% in their associated pattern, that makes a

conditional probability density of 55% for pattern (P (pattern|fcj)), which consists of

four single conditional probability P (Segmentx|fcj).

Black coloured fcs stand for a segment probability P (Segmentx|fcj) ≥ 10% < 13.75%

within segment in a pattern. Round brackets mean, there is only a tendency towards

the corresponding pattern (P (Segmentx|fcj) < 10%).
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pattern Word Intonation Eye-Gaze Velocity

re
o
cc

u
rr

in
g

Beg
(no in),

(no kommt)
objekt

action Beg
und, dann,

jetzt, der
(rising)

Mid
in, die,

kommt
objekt

medium,

fast, vfast

action Mid continuing
medium,

fast, vfast

End ja, du, (ndk) kind

action End rein, drauf (continuing) instruktion

gl
ob

al

first third
guck, mal,

ein, ndk

introduction

du, ja, ndk,

guck, mal,

ein

instruktion,

(kind)

action 1 kind

action 2 gelber rising

p
ea

k

one peak

jetzt,

kommt,

so, und, in

fast

i1Beg falling
sonstiges,

(objekt)

a3End falling
sonstiges,

(kind)

u
n
if

or
m

always present

hier, da, den,

das, wir,

ist, becher,

gruener,

auch

falling,

rising
objekt, kind nomo, slow

Table 8.1: Summarised results of the conditional probability (CP) examination of all

features. A pattern stands for the conditional probability P (pattern|fcj) per fc.

The feature values are coloured, if the CP per segment in the pattern is over 13.75%

(orange) and 17.5% (red). Black coloured feature values stand for a CP per segment

between 10-13.75%. Round brackets around feature values mean, there is a tendency

towards this pattern.
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Looking at Table 8.1 one might imagine, which feature values from the same and different

features could occur within the same segment (time period). For example, the intonation

contour is extracted/annotated from spoken words, therefore the relation between those

feature characteristics is close. It would be interesting, to find out, if these words, for

instance “dann” (then) and “und” (and) are the words, from which a “rising” intonation

contour has been extracted (referring to Table 8.1 row two). As already explained, per

word Intonation extraction should be an important future topic.

In addition, relationships between other features seem reasonable. Due to high condi-

tional probabilities for pattern, P (End|du) and P (End|kind), the feature values “du”

(Word:you) and “kind” (Eye-Gaze:child) might be both associated with End segments.

This is not a great surprise, because whenever one addresses a dialogue partner directly,

one should look at him/her, too. However, there are different tendencies noticeable.

P (introduction|du, ndk, ja) and P (introduction|instruktion) have conditional proba-

bilities over 70%. Word values “du” (you) and “ndk” (name of the child) stand for

addressing the child directly, but at the same time they still look at the “instruction”.

The conditional probabilities for Eye-Gaze direction “child” give merely a tendency for

segments introduction. This reveals that although parents engage with their children

verbally, they divide their attention and look at their child in the next time period

(segment). P (action1|kind) holds over 41% of the conditional probability density. The

conditional probability P (introductioncup|kind) for cup experiments has slightly more

probability mass. This means, large disturbances1 are reflected only slightly by the con-

ditional probability model, it merely models the trend of the majority. Naturally, this

should be tested with more experiments and comparable settings.

In addition, comparing feature values of different features can indicate new ways of

interpreting the feature values. Considering the Intonation contour “falling” and pattern

i1Beg and a3End in Table 8.1, there is only a tendency towards the pattern. Considering,

the Eye-Gaze “sonstiges” (sth. better somewhere else) and this pattern, it is noticeable

1Referring to Minihausen experiments, which is half of the data and contained an instruction
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that P (i1Beg|sonstiges) and P (a3End|sonstiges) have high probabilities. This could

mean, that “looking at something else” hints that the parent is not engaged with his/her

child anymore and speech might not be directed to child either. This in turn interferes

with a clear pattern for the Intonation contour “falling”, which has been hypothesized

and found to occur at the end of a completed action in child-directed speech, [Bran 07c;

Wred 05].

Those unexpected shifts of high conditional probabilities to a successive pattern (e.g.

introduction, action 1) across distinct features (e.g. Eye-Gaze, Words) might be further

evidence, that there is no ground truth and amodal boundary or changing point from

one subaction to another. As was found out earlier in this master thesis, there is an onset

of boundaries annotated on the basis of the video signal compared to audio boundaries.

Comparing features leads naturally to the question of temporal synchrony, which plays

a role in some approaches of child-directed-communication research and therefore, has

been the basis for audio-visual attention models [Naga 07a; Rolf 08]. There is evidence,

that temporal synchrony across modalities (e.g. hearing and seeing something) triggers

attention and therefore helps to highlight for example word-object relation or might

emphasise the structure of an action [Goga 00; Bahr 00].

This is the reason for discussing another point, whether the time periods or segments

Beg, Mid and End, in which feature occurrences have been examined, are still small

enough to speak of synchrony of occurrences of different features, such as “Eye-Gaze

direction: kind” and “the uttered Word du” (see Table 8.1). As those feature intervals

have different lengths and they can occur anytime in the 2-3 second long time periods,

there is no guarantee that they start and end at the same time. This is why, exact tem-

poral synchrony is not modelled with this approach, but a tendency for co-occurrences

with highly possible interval overlaps or successions, is modelled. Currently under dis-

cussion is the issue of, whether there is a need at all, for exact temporal synchrony of

features to highlight structural components of an action or a demonstration, containing

several actions. Brand and Tapscott suggest, that it might be enough, if features can be
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associated with a certain pattern [Bran 07b]. For example, different features identified

in one pattern could fulfil this demand by occurring close together.

Considering a higher level, a new pattern could result from the patterns of my condi-

tional probability examination: a reoccurring succession of patterns of feature values.

This could be the case on present data: Words “and”, “then”, “now”, which have high

conditional probabilities at action Begs and “fast” hand movements occur most prob-

ably at action Mids. This new pattern, might in turn emphasise a global aspect of

the demonstration scenario, namely, that something similar happened three times in a

row. These are only hypotheses, because this conditional probability model does not

compute any dependencies between features. But this is exactly, what this conditional

probability model is for, to think of some new hypotheses and the interplay of features.

In the next section the conditional probability model itself will be evaluated, to see if

hypotheses can be constructed on the basis of this model.

8.1 Evaluation

Evaluating the conditional probability model means to test, how well the results predict

new data or how similar results are of different data sets. The main problem for evalu-

ating the present model is that the data set was too small to divide it into a test and

training set. For future evaluation, the left out summary segments, in which parents

repeated their demonstration, could be used to acquire a training set.

The focus of this masters’ thesis is to examine the child-directed demonstration data

statistically. It would be a different approach/goal to build for example a classificator.

One still could have divided the data set in order to test and train a classificator, but with

my approach only two experiments were left out to have a tiny evaluation of conditional

probabilities. One from each experiment setting (Cup and Minihausen) was not used

within the computation of conditional probability model. This means, for each feature,

two data sets with annotated characteristics are available and were separated on the

72



8.1. Evaluation

basis of the word boundary trisection.

The goal is, to evaluate, how many actual feature values would have been placed

by the conditional probability model, into the segments, they originally came from.

As the conditional probability results do not favour only one segment (for example

P (a2Beg|guck) = 100%), scores were associated to the conditional probability outcomes

(for each feature characteristic and their conditional probabilities P (Segmentx|fc)).

The highest conditional probability per feature value is associated with a score of five.

The second highest score is associated with a score of 4 and so on. This makes the inter-

pretation of the probability distribution easier, especially for very narrowly distributed

results. All conditional probabilities were rounded to integers. Equal results are associ-

ated with the same score accordingly, the successive score is left out. For example there

are two results with score 5, the next higher result will have the score 3, (see Appendix

C for Figures C.7 and C.9, which show scores instead of conditional probabilities for

feature Eye-Gaze and Velocity of Hand Movements).

In 89% of the cases the first three scores correspond with the identified patterns (see

Table 8.1). A score of 4 was associated for the conditional probability, if a pattern was

identified (for the CP of the fc), which consisted of four conditional probabilities.

The segments with corresponding scores of 4-5 or at least the segments with the three

highest scores were marked as “expected” for a distinct feature characteristic. For ex-

ample, suppose the feature characteristic “fast” occurred in a2Mid. The corresponding

conditional probability model has the following scores associated:

• P (a1Mid|fast) = 22%⇒ score = 5

• P (a2Mid|fast) = 20%⇒ score = 4

• P (i1Mid|fast) = 19.9%⇒ score = 4

• P (a3Mid|fast) = 17.5%⇒ score = 2

Furthermore pattern Mid (P (Mid|fast)) is identified and P (a3Mid|fast) = 17% gets

a score of 4. All four segments are marked with “expected”. For this example “fast” in
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a2Mid would be counted as match between the actual and the expected outcome. In

Table 8.2 the percentages (match rate) stand for the number of all matched occurrences

of all fc of one feature divided by the number of all seen (occurred) fc (# matched fcj

# all fc ).

The outcome ranges between 28%-63% for the features. Each of the dataset had sim-

ilar match rates per feature. Table 8.2 shows the match rate per feature. Eye-Gaze

(62.67%) and Intonation (59.09%) feature characteristics seem better modelled by the

conditional probabilities / score model than Words (44.23%) or Velocity of Hand Move-

ments (28.64%). Fourteen unseen Words occurred, which had naturally no conditional

probabilities available, therefore they are marked as not matched. The low match rate

for feature Velocity might be due to the fact, that frequent seen feature values “no mo-

tion” and “slow” occurred everywhere and were mostly not matched with the expected

place (time, segment). It was noticeable, that about 60% of the “fast” and “vfast” move-

ments occurred at action Ends in the training set. This might mean that a trisection

on the basis of the segment boundaries is more suitable for the feature Velocity of Hand

Movements.

Feature Match Rate
Eye-Gaze 62.67%
Intonation 59.09%

Word 44.23%
Velocity 28.64%

Table 8.2: Match rates # matched fcj

# all fc show the rate between actual occurred fcs in
a Segmentx, which have been matched with expected place of occurrence segment
divided by all occurred fcs per feature.

This simple evaluation approach did not work very well. In order to achieve more cor-

rect matches, there need to be rules for not seen events and for computed, but not

significant or equally distributed conditional probability results for feature characteris-

tics. The overlap or match rate is higher if only feature characteristics with a significant

conditional probability model are considered and the match rate is computed fc wise

(match rate:# matched
# all fcj

). Most of the Word and Eye-Gaze characteristics, which have a

significant conditional probability pattern, have a high rate. Four of six Word feature
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characteristics occur to 100% at the expected segments. Velocity features “medium”,

“fast” and “very fast” have low rates with word boundary trisection, but with segment

trisection their rate increases to > 57%. Features characteristics with round brackets

around, (see Tab. 8.3) have no significant conditional probability pattern. Most of them

have low conditional probabilities except fc “continuing”, which has a rate of 60%.

Feature FC Match Rate Pattern

Word

guck 50% first third
mal 100% first third

drauf 100% action End
gelber 100% action 2
und 100% action Beg
dann 50% action Beg

Velocity
vfast 25% (62%) Mid
fast 8.33% (65.2%) Mid

medium 38.46% (57.43%) Mid

Intonation
(rising) 44.44% action Beg
(falling) 37.5% i1Beg/a3End

(continuing) 60% action Mid

Eye-Gaze
(objekt) 21.74% Mid

kind 52.63% End
instruktion 75% introduction

Table 8.3: Match rates (# matched
# all fcj

) show the rate between actual occurred fcj in
a Segmentx, which have been matched with expected place of occurrence segment
divided by all occurrences of only fcj. All unseen fcs and fcs with non significant
conditional probabilities were ignored. For convenience the conditional probability
pattern are included.

This evaluation (Tab. 8.3) hints, that the significant conditional probability patterns

might be used as a basis to predict, where an occurred feature characteristics comes from

(and as basis to compute a complex classificator). Those results can be used to construct

new hypotheses about how amodal and modal features interact to help structure actions.

.
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Chapter 9

Conclusion

This chapter concludes the Masters’ thesis “Statistical analysis of characteristics of

Infant-Directed-Interaction with respect to action structure”. The next section presents

some ideas about different segmenting strategies and different features. The thesis con-

cludes with a summary.

9.1 Suggestions

Prior to the statistical analysis, the audio and video signal were divided into successive

time periods, which were called segments (introduction-summary). These segments were

again trisected into a beginning, a middle and an end part (Beg, Mid, End), which were

called segments or units. In order to make each of the experiments comparable, each

task was divided into those segments. It was expected and found, that features exhibit

different values at distinct segments. This analysis was conducted to find patterns in

the feature value exhibition (precisely: conditional probabilities ), which could in future

help to recognise the different parts of an action (here: demonstration) only by means

of the features and their characteristics and the conditional probability model.

“Precisely how and when each of these mechanisms for action parsing may be available
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to infants is unknown ...” (Hollich, Hirsh-Pasek, Golinkoff, 2000). Until today, nobody

really knows, where or when exactly which of the feature values might be repeatedly used

to reveal something about the structure of an action. There are two ways to approach

this problem within the scope of this thesis, either to change the segmenting strategy

or to use different features.

9.1.1 Segmenting

It is a fact that features of communication change characteristically when the communi-

cation is child-directed and some features appear only in child-directed communication.

Mostly those feature values are there to catch the child’s attention or intensify attention

towards meaningful things, which could be word-object relation, special movements or

entire actions [Bahr 00]. If all parents repeatedly use the same means to do so, there

should be a recognisable pattern. The difficulty is to establish when those means occur,

and how to quantify, summarise and compare them across all experiments. Different

segments might reveal different compositions of features and that would result in dif-

ferent or clearer patterns. A good example of a possible dissimilarity of outcomes can

be seen at the results of feature Velocity of Hand Movements. These results computed

on the basis of word segment - and segment boundaries (the segment boundary results

were clearer).

Segmenting the task in different ways and on the basis of different signals might con-

tribute to reveal the great picture. Anyway, segments should not be smaller than 1-2

seconds, because the feature characteristics of Word cannot be divided into meaningful

smaller parts and too many segments would be empty.

The present approach was to segment the task gapless, so that ends and starts of the

segments are at one point in time. This was difficult, because pauses in speech and mo-

tion were difficult to assign to any of the segments. Henceforward, there should be a new

segment category pause introduced, which could be trisected as the others. Pauses are

said to reveal transition points, for example from one (sub)action to another, compare
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[Bran 07b; Naga 07a]. Moreover, the concept of redundant information hypothesis can

be applied, if in segment pause, pauses of speech and motion (“no motion”) co-occur.

Two amodal inputs would behave equally and therefore the pause segment (or parts of

it) will be emphasised. In addition, the child’s attention is caught or at least the pause

could give the parent time to check, if the child’s attention is still focused and he/she

can proceed with the next part (action).

Another point of discussion should be the finding, that there is an onset of segment

starts, if the segmentation is made on the basis of the video signal (mostly on body

movements) compared to the audio segmentation (mostly on speech). This means,

there are different starting times of, actions in each of the two modalities. Segmentation

based on only one modality could result in not finding patterns, which are modality

specific.

In the present segmentation only the audio segmentation was considered, that means

that for example the movement “reaching towards the cup” was most of the time not

considered to be part of the next action as speech did not start before then. However,

this movement cannot be associated with the last action. Vice versa words meaningful

to the last action could be assigned to the next action, because the video segments

suggest otherwise.

For a general examination of multimodal features, the solution to the problem above

could be, to assume that there is an area of transition from one part (action) to an-

other and should be considered as a distinct segment in addition to the other segments

(introduction-summary). Figure 9.1 depicts this segmentation idea.

In the same respect, an examination, on the basis of each modality segmentation, could

be conducted separately to reveal, for which feature the current modality segmentation

reveals a pattern more clearly.

In addition, another approach of designing segments prior to the analysis could be,

creating new segments1 around starting and ending points (changing areas) on and rest
1Segments on the introduction-action3 segment level
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action1

action2 action3

introduction

introduction action1

action2 action3

TA TA TA

TA = Transition Area

audio 
segmentation

video 
segmentation

Figure 9.1: Segmenting strategy: Transition Area is the area between start or end
points of the same segment, but different modality.

segments (see Fig. 9.2). This could also overcome the problem of on- or offset of start

and end of segments across different modalities. Those changing area segments might

include pauses, which need not be new segments but a new feature or at least a new

feature characteristic, which could be beneficial for a statistical examination.

In short pauses as new segment category or feature characteristic, could solve the prob-

lem of finding an exact start or end point There might not be a fundamental truth

change point between last and new (sub)action, there might be an area of change, like

pauses in speech and motion suggest.

action1introduction action2 action3

CA

CA = Changing Area

CA CA

Rest Rest Rest Rest

Figure 9.2: Segmenting strategy: Changing Area segments and rest segments are new
segments, created on the basis of the the present segmentation method. Changing
areas are around start/end points of the actual segments (introduction-action3)

9.1.2 Data

Features: As already mentioned in the above Section pauses in motion and speech

could play a role in structuring a demonstration. Brand et al. states, that pauses and
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exclamations are salient speech markers [Bran 07b]. Also, Nagai et al. report that there

are longer pauses between actions in IDI compared to ADI [Naga 07a]. The feature

Word could exhibit two new feature characteristics, “a pause longer than normal silence

between words” and “all sorts of exclamation and if there is, onomatopoeia”, like “uih”,

“ahh”, “ohh” and “peng”, “ding-dong”.

Moreover, words could be summed up into categories, for example, the colour of objects,

the adjectives describing the size of objects, because it is not important for analysis of

action structures to distinguish between colours and sizes as these vary, of course, with

each object. German articles in front of the object could be summed up as well as the

names of the toys, especially if one likes to compare different experiment settings with

each other. Results of the Words “rein” and “drauf” suggest to sum up prepositions, if

they are task related. Naturally, summing up words into categories takes a lot of time

and might also be conducted semi-automatically, because based on context, it needs to

be decided, if something is task related or not. Another option would be to fine tune the

examination or computation of conditional probabilities to antagonise the fact, that the

rate of occurrence within a segment will be low if only half or less of the data contains

those special words. Features of the same category and those, which exhibit the same

pattern, could be summed up after conditional probability computation.

Words, Intonation, Eye-Gaze and Velocity of Hand Movements are the present features.

Pitch or sound intensity is also known to have exaggerated values in child-directed speech

[Bahr 00]. Like Velocity, Pitch could be divided into categories, for example “no sound”,

“quiet sound” ....“very loud sound”. Pitch might reveal exclamations of any kind, as they

are often loud.

Data acquiring process: In general, more humans are needed, who code the data

(annotate the data), because humans could identify in different ways, during evaluation

(for example see Section 3.2). As a result Intonation data should be evaluated by

more evaluators and Intonation categories should be assigned word wise. Moreover,
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humans do make mistakes and therefore cleaning the data takes a lot of time. Coding

and acquiring data should be carried out automatically. If possible, when conducting

experiments, the setting should be optimal for extracting data automatically with the

current annotation and extraction methods.

Naturally, thresholds, which are set manually, are human influenced. Even if they are

well considered, the choice could, of course, influence the outcome. The problem is,

that continuous values like pitch (decibel) and velocity (pixels per 40 ms) need to be

made comparable between all experiments (normalised, smoothed). One approach to

make the data comparable is to compute (think of) a threshold, which results in the

meaningful feature characteristics (see Velocity of Hand Motion, Section 3.4), but has

of course been influenced by human opinion.

9.2 Summary

Four features, namely Word, Intonation, Eye-Gaze, and Velocity of Hand Movements

have been examined statistically (two of each available modality (auditory, visual)).

Therefore the computed conditional probabilities P (Segmentx|fcj) answer the ques-

tion of where, within an action structure (demonstration structure), an occurred feature

characteristic most probably comes from? For example, if I hear “guck” (look), what is

the chance that this word occurred at the beginning of the task? Prior to conditional

probability computation the tasks (experiments) were divided into successive time pe-

riods, which were called segments (introduction-summary). These segments were again

trisected into a beginning, a middle and an end part (Beg, Mid, End), which were called

segments or units. In order to make each the experiments comparable, each task was

divided into those segments. It was expected and found, that features exhibit different

values at distinct segments. This analysis was conducted in order to find patterns in

the feature value exhibition (precisely: conditional probabilities ), which could in future

help to recognise the different parts of an action (here: demonstration) only by means

of the features and their characteristics and the conditional probability model.
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As Chapter 7 (Results) and Chapter 8 (Discussion) state there are some features, which

could help to reveal a similarity of structuring the task across the experiments. Mainly

two patterns of high conditional probabilities P (Segment|fc) at distinct segments and

feature characteristics have been identified: a global pattern and a reoccurring pattern.

A global pattern means, that the conditional probabilities have only high values at

successive segments and share most of the probability density, e.g. the first third or

half of the task or segments in action 1 (a1Beg, a1Mid, a1End). A reoccurring pattern

has reoccurring high probabilities at segments named either Beg or Mid or End. For

example, segments with the name Mid possesses more than 50% of the conditional

probability density (see Figure 7.1).

The Words “und” (and) and “dann” (then) have high conditional probabilities for seg-

ments action Beg (all beginnings of actions within a task). The conditional probabili-

ties for segments action Mid on condition, that “fast” and “very fast” (Velocity of Hand

Movements2), have occurred, are significantly high, as well as, the Words “rein” (into)

and “drauf” (on top of) would most probably belong to segments action End.

The first third of the task (first four segments) have high conditional probabilities

P (firstThird|fcj) for occurring words “ndk” (name of the child) and “guck” (look).

The features Intonation and Eye-Gaze have only tendencies to reveal, because the con-

ditional probabilities are nearly distributed uniformly across the segments. A “Rising”

Intonation contour tends to occur most probably at segments of action 2 and“falling”at

the very last segment a3End. The conditional probability P (Segmentx|child) (kind =

Eye-Gaze) are distributed mostly at End segments, also P (action1|child) holds a high

amount of conditional probability density as well. Eye-Gazes towards the “object” are

more likely to found at the Beg and Mid segments and will be found only with low con-

ditional probability P (End|object) at End segments. Moreover, globally seen, parents

slightly tended to gaze at the object at the very start of the task (P (i1Beg|object)) and

stared at the child at end of the task (P (a3End|child)).

2Example for a “fast” movement: waving object in the child’s focus.
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Chapter 9. Conclusion

More experiments with different task settings should be conducted to make my findings

and their interpretation sounder. However, the presented features are already revealing

tendencies about how the identified patterns for feature characteristics help to structure

an action in the special case of those demonstrations / tuturing situations.
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Appendix A

Segmenting

A.1 Segmenting the Task

Figure A.1: Mean of the duration per interval for audio and video annotation in
total and per experiment setting (10% trimmed mean, audio=dark color, video=light
colour)
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Appendix A. Segmenting

A.2 Onset and Offset

ANOVA of onsets:

• Intervals a1, a2, a3, s1 : F(3,216)=4.94, p=0.0025

• Intervals a1, a2, a3: F(2,162)=0.13, p=0.8813
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Figure A.2: The histogram plot represents the duration of Onset of “a1-s1” (re-
sult=positive ⇒ video precedes audio)
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Appendix B

Entropy

The maximum entropy can be used to norm the entropy as follows:

H

Hmax
= −

n∑
i=1

P (i)
log2 P (i)

log2 n

= −
n∑

i=1

P (i) logn P (i) ≤ 1

(B.1)

With the normed entropy (B.1) (values between 0 and 1) one is able to compare en-

tropies with each other, especially if the number of variables is not the same. The

normed entropy is can be used to give a notion about the ”uncertainty“ of the con-

ditional probabilities for one feature characteristics over all segments but there is no

association with the number of yes/no question one has to ask on average. There is

one value for all probabilities {P (Segmenti|FC), ..., P (Segmenti|FC)}. The normed

entropy is 0.9584 for the ”rising“ value (green ball) for example, which is illustrated in

Figure 6.3.
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Appendix C

More results

C.1 Word

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
hier

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
den

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
wir

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
das

Figure C.1: Words which are in most segments present and have an entropy value
over 3
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Appendix C. More results

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
ist

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
becher

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
da

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
auch

Figure C.2: Words, which are in most segments present and have an entropy value
over 3
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C.1. Word

aha foto lachen suesser grosse soll hallo

alle ganz laenger teil guckst tun loch

als gehen lassen toll hast zuhause hm

alt gib lustig tschueb hast zwei ich

am gibt macht tuere haus drei mit

andere glaube mir ueberlegen kannst es nicht

anderen groessen mund uih kein geht auf

anfangen groesser nehmen uihhhh koennen machen ne

angefangen groesseren nimm verschieden komischen mama blauer

angst gross nochmal verschiedene na mitte man

aufpassen grossen nummer vier nee nen kann

baue guckt obwohl vor nein oben noch

bauen ha oder wah oih siehst roter

bestimmt hab passen wahrscheinlich schluss sind mhm

bild habe peng weil sie stellen auch

bist halber pfeifen wenn sieht turm jetzt

bleibt hau plumps wertvolle sonne was becher

boah herein plumsen will stapeln wie dann

bohrung hinein problem wirds willst also ein

bumm hinkriege queh zeig wird eine in

dabei hinter ran zeigen wo einmal du

dach hochstecken realisieren zip zack eins rein

diesem huch riesig zusammen zu genau ja

dieser huebsch rot zwar zum ok die

dieses ihn rum zweite baukloetze packen wir

ding ineinader rund ab denn passt so

doch interesse schoen aber einen schon gruener

dran jahre schwierig an fest speedy kommt

draufhuepfen jupp setzen aus im dem gelber

drin keine sieh bisschen ineinander hin drauf

dschii kenn sitzt blau kleinen kennst ndk

einer klack sogar bleiben kleiner ah ist

einfach klebt solche bruecke kleinster her den

einfachheit klein sonst dein kloetze klotz der

ende kleine spatz diesen maeuschen okay da

erst kloetzchen spiegel durchgucken muss stecken das

erstmal koerpernah spielzeug fussel oh weg hier

fangen komische springen gar pass ach und

farben kugelstrich springt genauso selber er guck

fast kurz stellt groesster sollen gut mal

Figure C.3: 280 words occurred. The list starts with words, which occurred only once
(overall rate = 0.06%), the words in red colour indicate that the overall rate has been
increased. Please read column wise. The last word “mal” has an overall occurrence
of 5.17%
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Appendix C. More results

C.2 Intonation

Figure C.4: Conditional Probabilities for “unsure”(x), low overall rate: 17
569

96



C.3. Eye-Gaze

C.3 Eye-Gaze

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
Instruktion

C
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P
ro

ba
bi
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y

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.5
Sonstiges

C
on
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ro
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bi
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y

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.1

0.2
Kind

C
on
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tio

na
l

P
ro
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bi
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y

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0.05

0.1
Objekt

Segment

C
on
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tio
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l

P
ro

ba
bi

lit
y

Figure C.5: Global and reoccurring for conditional probabilities (CP)
P (Segmentx|fcj). fcj stands for any of the four Eye-Gaze directions: In-
struktion (instruction), Sonstiges (miscellaneous), Kind (child), Objekt (object).
CP are created on basis of audio segment boundaries
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Appendix C. More results

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Pr
ob

ab
ilit

y

 

 
Kind
Objekt

Figure C.6: Global pattern for Eye-Gaze characteristics “Kind” (P (Segmentx|child))
and “Objekt” (P (Segmentx|Object)) in one diagram created on basis of audio bound-
aries, only taking everything over 52 into account.
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C.3. Eye-Gaze

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

5
Instruktion

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

5
Sonstiges

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

5
Kind

i1BEG i1MID i1ENDS a1BEG a1MID a1ENDS a2BEG a2MID a2ENDS a3BEG a3MID a3ENDS
0

5
Objekt

Figure C.7: Graphs for features have scores as y-value, which is based on the distri-
bution of the conditional probabilities (cp). The highest cp is associated with a score
of five. The second highest score is associated with a score of 4 and so on. This
makes the interpretation of the probability density easier, especially for very narrow
distributed cps.
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Appendix C. More results

C.4 Velocity of Hand Motion

i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
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i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
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i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
0

0.1

0.2
fast

C
on

di
tio

na
l

P
ro

ba
bi

lit
y

i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
0

0.1

0.2
vfast

Segment
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Figure C.8: Conditional probabilities P (Segmentx|fcj) for all feature characteristics
nomo (no motion), slow, medium, fast, vfast (very fast). Trisection of segments on
basis of the word boundary. No limitation of interval selection per segment. Entropy
value 3.5 bits.
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C.4. Velocity of Hand Motion

i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
0

5
nomo

S
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re

i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
0

5
slow

S
co

re

i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
0

5
medium
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i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
0

5
fast

S
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re

i1BEG i1MID i1ENDSa1BEG a1MIDa1ENDSa2BEG a2MIDa2ENDSa3BEG a3MIDa3ENDS
0

5
vfast

Segment

S
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re

Figure C.9: Graphs for features have a score as y-value, which is based on the distri-
bution of the conditional probabilities (cp). The highest cp is associated with a score
of five. The second highest score is associated with a score of 4 and so on. This
makes the interpretation of the probability density easier, especially for very narrow
distributed cps.
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