
A Systematic Investigation of Blocking Strategies for
Real-Time Classification of Social Media Content into Events

Timo Reuter
Semantic Computing

CITEC, Universität Bielefeld
Bielefeld, Germany

treuter@cit-ec.uni-bielefeld.de

Philipp Cimiano
Semantic Computing

CITEC, Universität Bielefeld
Bielefeld, Germany

cimiano@cit-ec.uni-bielefeld.de

Abstract

Events play a prominent role in our lives, such that
many social media documents describe or are related to
some event. Organizing social media documents with
respect to events thus seems a promising approach to
better manage and organize the ever-increasing amount
of user-generated content in social media applications.
It would support the navigation of data by events or al-
low one to get notified about new postings related to
the events one is interested in, just to name two ap-
plications. A challenge is to automatize this process
so that incoming documents can be assigned to their
corresponding event without any user intervention. We
present a system that is able to classify a stream of social
media data into a growing and evolving set of events. In
order to scale up to the data sizes and data rates in social
media applications, the use of a candidate retrieval or
blocking step is crucial to reduce the number of events
that are considered as potential candidates to which the
incoming data point could belong to. In this paper we
present and experimentally compare different blocking
strategies along their cost vs. effectiveness tradeoff. We
show that using a blocking strategy that selects the 60
closest events with respect to upload time, we reach F-
Measures of about 85.1% while being able to process
the incoming documents within 32ms on average. We
thus provide a principled approach supporting to scale
up classification of social media documents into events
and to process the incoming stream of documents in real
time.

Introduction
Social Media Applications (SMA) are proliferating and they
are characterized by an ever-increasing amount of content
that represents a never-ending data stream growing at high
rates. As of November 2011, around 140,000 messages per
minute are for example posted via Twitter1, a popular ser-
vice for posting short text messages of at most 140 charac-
ters to following peers. Flickr2, an image database where
people can upload pictures to, counts an average of 2500

Copyright c? 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://www.twitter.com
2http://flickr.com

images uploaded per minute. In Facebook3, a popular social
network, around 500,000 messages are posted per minute.
As events play a prominent role in our lives, many of the

postings and documents uploaded to social media sites are
related to some event. Classifying social media documents
by the events they represent or are related to thus represents a
promising approach to better manage and organize the ever-
increasing amount of user-generated content in social media
applications.
Many social media sites allow users to tag content, thus

supporting the better organization of the content and fa-
cilitating search. Indeed, tags can also be used to assign
documents to their corresponding event. For this purpose,
last.fm4 hosts an event database with unique identifiers in
the form of so-called machine tags that can be used to tag
pictures – for example when uploading them to Flickr – thus
assigning them to one or more uniquely identified events.
While some users exploit such tags, the majority of pic-
tures on Flickr are not assigned to events via such machine
tags. A random sample of Flickr data in fact shows that only
0.0003% of the data are assigned to at least one event via a
machine tag from last.fm, and only 0.0007% of the data has
a machine tag at all. While these numbers might change in
the future, we think that it is reasonable to assume that most
of the data uploaded will not be tagged with any machine
tags as this always represents additional effort for a user. In
the case of using tags from last.fm, the user would have to
search for the event in last.fm, copy the corresponding ma-
chine tag and assign this tag to their pictures when uploading
them to some social media site (e.g. Flickr).
Given the above explanations, it seems clear that there is

an impending need for automatic techniques that perform
the assignment of a social media item (newly uploaded to
some social media site) to its corresponding event (if it al-
ready exists) or create a new event to which future data items
can be assigned to. In line with Becker et al. we refer to this
problem as the event identification problem (Becker, Naa-
man, and Gravano 2010). A challenge in developing such
techniques is to scale to the amounts of data available in so-
cial media applications and to support the classification of
incoming documents into events in real time.

3http://www.facebook.com
4http://last.fm

8

A crucial step to scale-up and achieve real-time behavior
is to filter down the set of events that are considered for every
incoming document. As there might be billions of events in
the database, it is unfeasible to scan all these events to com-
pute the likelihood that the incoming document belongs to
one of these. For this purpose, candidate retrieval or block-
ing strategies are typically considered (Baxter, Christen, and
Churches 2003) which reduce the amount of pairs – in our
case pairs of incoming document and event – to be consid-
ered. When using a blocker, a crucial issue that arises is to
ensure that the blocker is neither too strict, thus filtering too
much, nor too lenient, possibly passing on too much noise to
the classifier. A certain blocking method might thus be effi-
cient from a computational point of view but too inaccucrate,
thus having an overall detrimental effect on the overall per-
formance of the classifier. Given the importance of having
a suitable blocker that is tailored to the domain in question,
in this paper we investigate different candidate retrieval or
blocking strategies in terms of their cost-effectiveness trade-
off with respect to the task of classifying a stream of so-
cial media documents into an evolving set of events. We
show that using a blocking strategy that selects the 60 closest
events with respect to upload time, we reach F-Measures of
about 85.1% while being able to process the incoming docu-
ments within 32ms on average. We thus provide a principled
approach supporting to scale up classification of social me-
dia documents into events and process the incoming stream
of documents in real time.

The article is structured as follows: in Section System De-
scription we briefly describe our overall system. In Sec-
tion Candidate Retrieval, we describe the candidate retrieval
step in more detail, presenting different blocking strategies
that we experimentally analyze with respect to their cost-
effectiveness tradeoff. In Section Experimental Setup and
Results we describe how we created our dataset consisting
of 500,000 Flickr pictures together with an appropriate gold
standard developed using last.fm machine tags. We also de-
scribe how the machine learning components were trained
and provide experimental results. Before concluding, we
discuss related work on event identification in social media
as well as different blocking strategies that have been pro-
posed in the literature.

System Description
Our system processes an incoming stream of documents as
described in the following. For every incoming document
d ∈ D:
1. A setE of k events that d is likely to belong to is retrieved

from the event database (Candidate Retrieval).
2. For each of these candidates e ∈ E, the probability that d

belongs to e, P (e|d), is computed, and all candidates are
ranked according to this probability (Scoring and Rank-
ing). Let emax be the top scoring candidate.

3. Given this ranked list of candidates, the probability that d
belongs to a new event, Pnew(d), or that it belongs to the
first event in the list, Pbelongs to top candidate(d), is com-
puted. We assume that these are the only two options, i.e.
Pnew(d) + Pbelongs to top candidate(d) = 1.

Figure 1: Overview of the event identification system

4. If Pnew(e) > θn, a new event e? is created and d is as-
signed to this newly created event; ?e := ?d (new event
detection).

5. Otherwise, d is assigned to emax; the centroid ?emax is
recomputed.

The above procedure is illustrated by the pseudocode in
Algorithm 1 and depicted graphically in Figure 1.

Algorithm 1 Stream-based classification into events
for all d ∈ D do
Topk(d) = retrieve a ranked list of promising event can-
didates to which d could belong
for all e ∈ Topk(d) do

compute P (e|d) – the probability that d belongs to e
end for
emax = maxe?∈Topk(d)P (e?|d)
compute Pnew(d) – the probability that d belongs to a
new event
if Pnew(d) > θn then
create a new event e?
e? = {d}
?e? = ?d

else
emax = emax ∪ {d}
recompute ?emax

end if
end for

We briefly describe each of the main components besides
the candidate retrieval below. The candidate retrieval strate-
gies are described in Section Candidate Retrieval.

Scoring and Ranking A pair consisting of a document
and a candidate event is described in terms of a vector of
nine features that describe the match between the docu-
ment and the event. In particular, we use as features nine
similarity measures which exploit the following information
sources:

• Temporal information: refers to the moment the doc-
ument was created (e.g. by taking a picture) or the time
when the user uploaded the document. We define the tem-
poral similarity between an event and a document as

simtime(d, e) = 1− log(|time(d)− time(e)|)
y

where time(d) and time(e) are timestamps represented
as integer values denoting the number of minutes elapsed
since the Unix epoch, and y is the logarithmic value
of minutes of one year. This yields two similarity
measures: one calculated on the basis of capture time
(simcapture(d, e)) and one calculated on the basis of up-
load time (simupload(d, e)).

• Geographical information: locates the place where the
document was created (i.e. the location of an event in
terms of latitude and longitude). In our approach we use
the haversine formula to determine the great-circle dis-
tance between two points. The geographic similarity is
thus: simgeo(d, e) = 1−H(L1, L2) where

H(L1, L2) = 2 · arctan2(
?
φ,

?
1− φ)

φ = sin2(
∆lat

2
) + cos(lat1) · cos(lat2) · sin2(

∆lon

2
)

∆lat = lat2 − lat1,∆lon = lon2 − lon1

• Textual information: contains tags, a title, a description,
etc. We describe the textual content by way of TF.IDF
vectors. To determine the similarity we rely on the cosine
similarity (simcos

text(e, d)) as well as the BM25 formula
(Robertson and Jones 1976) (simBM25

text (d, e)).

Overall, a vector describing the similarity between a pair
of document and event looks as follows:

?sim(d, e) =

simcapture(d, e)
simupload(d, e)
simgeo(d, e)
simcos

tags(d, e)
simBM25

tags (d, e)
simcos

title(d, e)
simBM25

title (d, e)
simcos

description(d, e)

simBM25
description(d, e)

For each incoming document d, we compute the likeli-
hood that it belongs to a given event e, P (e|d), and order the
events retrieved by the candidate retrieval step by decreas-
ing probability. The likelihood that document d belongs to
event e is calculated using a support vector machine. To
do this we train a SVM that relies on an appropriate train-
ing dataset to discriminate between pairs of document and

corresponding event (positive examples) and pairs of docu-
ments that do not belong to the given event (negative exam-
ples). We use 4,000 examples for each of these classes to
train binary SVMs and compute the probability P (e|d) as
the probability that the pair (d, e) - described by the above
mentioned vector of similarities - belongs to the positive
class, i.e. P (e|d) = P (positive| ?sim(e, d)). We use the C-
SVMs implemented in libsvm, which uses Platt’s algorithm
(Platt and others 1999) to compute the above probability as
follows:

P (positive|??e, ?d?) := 1

1 + exp(A??e, ?d?+ B)

where the parameters A and B are optimized by the SVM
by minimizing the negative log likelihood of the training
data. The accuracy of this classifier has been shown to be
at around 99.4%.

New Event Detection Once the candidates are ranked by
the likelihood that d belongs to them, an important question
is whether the document d belongs to the top ranked event or
rather to a new event to be created. This is what we refer to
as new event detection problem. The top scoring candidate
might actually represent an event that d is not related to,
such that we need a decision function that decides whether
to assign the document d to the top scoring candidate or to a
newly created event.

For this purpose, we also employ a C-SVM trained on an
appropriate dataset consisting of examples in which the doc-
ument belongs to the top-scoring event (positive examples)
and examples in which the document belongs to a new event
(negative examples). As features for this task we use the
following:
• max: P (e1|d), i.e. the probability that d belongs to the

top-scoring event
• min: the probability P (e10|d) – the probability that d be-

longs to the 10-th ranked event

• average: 1
10

?10
i=1 P (ei|d) – the average probability of

the top-10 most likely events
• standard deviation: the standard deviation of the proba-
bility of the top-10 most likely events

• maximum capture time: simcapture(d, e1)

• maximum upload time: simupload(d, e1)

For each document d this yields a feature vector ?new(d)
that is used to classify d into two classes: belongs to top
scoring event (positive) or belongs to a new event (nega-
tive). The SVM classifier is trained using an equal number of
positive and negative examples and as in the above case re-
turns a probability that the document belongs to a new event:
Pnew(d) = P (negative| ?new(d)).
We then use a threshold on this probability as a hyper-

parameter to be tuned which decides whether the event is
assigned to a new event or assigned to the top ranked event.
The optimal threshold is determined empirically using a gra-
dient descent technique on a split of our training data. The
accuracy of this classifier is around 85.9%.

Candidate Retrieval
In order to scale-up the system, a crucial issue is to reduce
the number of events that the system considers as potential
event candidates for the incoming document. The reason is
that the predictions of the SVM need to be calculated for
each candidate event: one to calculate the probability that
the document belongs to this event – P (e|d). The compu-
tation is thus linear in the number of events, which can be
prohibitive if the number of events is large, e.g. in the region
of millions or even billions. We thus require an event can-
didate retrieval strategy that, ideally, i) retrieves the correct
event and minimizes the overall number of retrieved events
and thus ii) filters out as many of the irrelevant events as
possible in order to reduce the computational cost of post-
processing the retrieved events.

In our experiments, we compare in particular the follow-
ing blocking strategies:
1. k-nearest by capture time: By using this strategy, we

retrieve those k events with the lowest temporal distance
to the document. For this, we order all events ei in the
database by∆(time(d), time(ei)) and then return the top
k events in this ordered list.

2. k-nearest by upload time: We do the same as in k-
nearest by capture time but use the upload timestamps.

3. geo-blocker: We define a window of 1.0◦ × 1.0◦ and se-
lect the top-k events out of this window, i.e. we retrieve
all events such that latitude(d) − 1◦ < latitude(e) <
latitude(d)+1◦∧ longitude(d)−1◦ < longitude(e) <
longitude(d) + 1◦5.

4. Tag-TF.IDF: We score each event by summing up the
TF.IDF values of every tag which the document and the
event share and return the k events having the highest
scores.

5. Title-TF.IDF: The same as Tag-TF.IDF but using the to-
kens in the title.

6. Description-TF.IDF: The same as Tag-TF.IDF but using
the tokens in the description.

7. Uniform Combination: We retrieve the same number of
k
6 (with k mod 6 = 0) events for each of the blocking
strategies b1 · · · b6 described above.

8. Optimal Combination: We determine the optimal com-
bination of the number of candidates to be retrieved by
each blocker empirically. We thus retrieve a number k(bi)
of events that is specific for each blocker. The optimal pa-
rameters are computed by exhaustive search on the train-
ing set with the goal of maximizing the effectiveness of
the blocker (see below for the definition of effectiveness).
The effectiveness of a blocking strategy bi at a number k

of retrieved events is measured as:

Effectiveness(bi, k) =
|{d | event(d) ∈ topk(bi)}|

|D|
5This window roughly corresponds to an area of 50-60 square

kilometers in Europe and the U.S. and to an ear of 110 square kilo-
meters in the vicinity of the equator.

where event(d) is the correct event for document d ac-
cording to the gold standard and topk(bi) is the set of top k
events retrieved by blocker bi.

Experimental Setup and Results
After having presented our system, we now describe how
our dataset consisting of 500,000 pictures from Flickr has
been created and our experimental results.

Experimental Settings
Dataset Creation Since 2007, last.fm has been providing
a freely available event database in which every event con-
tained has a unique event ID. A key function of Flickr is the
possibility for the user to assign so-called machine tags to a
picture. The main difference to normal tags is that machine
tags follow a fixed schema. Such a machine tag might have
the following form: lastfm:event=#eventid. This
provides us with the following information about the pic-
ture: a) the picture belongs to an event contained in the
last.fm database and b) the corresponding event on last.fm
has the ID #eventid. Therefore, this allows us to assume
that pictures marked with the same machine tag on Flickr
belong to the same event. We thus constructed our gold
standard by downloading pictures with last.fm machine tags
from Flickr using their API and grouping them into events
using the event IDs.
We considered pictures with a capture time between Jan-

uary 2006 and October 2011, yielding a dataset of 500,000
pictures assigned to 19,283 events. We divided this dataset
into 5 splits consisting of 100,000 pictures each, in temporal
order. Only 31.3% of the documents had a geo tag assigned,
90.2% had at least one tag, 97.9% had a title, and 45.9% had
a description assigned. Machine tags were only used to cre-
ate the gold standard and were no longer part of the dataset
to conduct our experiments on. Splits 1-3 were used to train
the machine learning components and to optimize parame-
ters. We used split 4 to test the blockers, reporting average
performance of our system with respect to precision, recall
and F-Measure (defined below).

Baseline & Evaluation Measures We report our results
in terms of Precision, Recall and F-Measure as defined by
Becker et al. (Becker, Naaman, and Gravano 2010).

Pb =
?

d∈D

1

|D|
|Cluster(d) ∩GoldStandard(d)|

|Cluster(d)|

Rb =
?

d∈D

1

|D|
|Cluster(d) ∩GoldStandard(d)|

|GoldStandard(d)|

F1 −Measure = 2 · Pb ·Rb

Pb + Rb

Hardware setup All our experiments were conducted on
an Intel Xeon E5620, 2.4 GHz system with 96 GiB of main
memory. The system was equipped with a solid state disk.

Figure 2: Effectiveness of different blockers

Results
Effectiveness of Blockers
First, we examine the effectiveness of the single-strategy
blockers b1, .., b6. The effectiveness of all these blockers
over the number k of events retrieved is depicted in Fig-
ure 2. We can observe that only the temporal blockers and
the Tag-TF.IDF blocker reach higher effectiveness levels of
more than 80%. Only the temporal blockers come close to
an effectiveness of 100%, but at the cost of having to retrieve
more than 300 and 1000 events, respectively. It is interesting
to see that the geo-blocker reaches a plateau at an effective-
ness of close to 40%, but reaches its maximal effectiveness
very quickly for k = 2.

Table 1 shows for each blocker the number of events that
need to be retrieved in order to reach an effectiveness of
30%, 60%, 80% and 90%, respectively. It is remarkable that
only three blocking strategies reach an effectiveness of over
90%: the two temporal blockers and the optimal combina-
tion. An important observation here is that while the tem-
poral blockers achieve this effectiveness for higher ks (over
100), the optimal combination blocker reaches an effective-
ness of 90% after only 4 events retrieved! This is interest-
ing as it suggests that this blocker has a much better cost-
effectiveness ratio compared to the timestamp-based block-
ers. Figure 3 shows the effectiveness and the retrieval time
for the optimal combination blocker over different values of
k. The optimal combination blocker seems to bring together
the advantages of the tag blocker – which returns reason-
able results with only few candidates returned but is limited
to about 88.5% effectiveness due to the lack of tag data –
and the time blockers which need a lot of candidates but can
reach up to 100% effectiveness. The combination reaches an
effectiveness of 98% at k = 25. Further, the diagram also
shows that the retrieval time remains fairly constant across
different values of k.

It is important to note, however, that the above observa-

Table 1: Number of needed k to reach x% effectiveness
Blocking Strategy 90% 80% 60% 30%
Capture Time 109 60 17 3
Upload Time 254 112 26 1
Geo - - - 1
Tags - 2 1 1
Title - - 15 2
Description - - - 4
Optimal Combination 4 2 1 1

tions do not imply that the optimal combination blocker has
the best cost vs. classification performance tradeoff with re-
spect to our classification task. Thus, we turn to examine
the cost-performance ratio of the different blocking strate-
gies with respect to the overall classification performance of
the system as measured by the F-Measure.

Classification Performance
Figure 4 compares the four most effective blocking strate-
gies (Capture Time Nearest, Upload Time Nearest, Uniform
Combination, Optimal Combination) with respect to their F-
Measure on the task of classifying documents into their cor-
responding event. We see that Upload Time Nearest is the
best blocking strategy as it yields F-Measures greater than
80% for k = 10. The retrieval cost for this blocking strategy
is also relatively low as there is only one feature involved
and it can be implemented by a single query to the database.
Figures 5 and 6 show the precision and recall values for

these four strategies over k. In general, the precision de-
creases and the recall increases with growing k, which is
as expected. We can observe that the Capture Time Near-
est strategy has the highest precision compared to all other
blockers, thus being indeed the preferable strategy if preci-
sion is important. The highest recall, however, is achieved

Figure 3: Effectiveness and retrieval time for optimal com-
binations of single ks

Figure 4: Comparison of the performance (F-Measure) for
different blocking strategies over k

by the Upload Time Nearest, which is thus to be preferred
if recall is important, i.e. if all documents which actually
belong to one event should be grouped together by the clas-
sifier.

In Table 2 we compare the F-Measure, Precision and Re-
call values for our different blocking strategies at k = 60
with a configuration of our system that uses no blocking
strategy.

We clearly see that the Upload Time Nearest outperforms
all other blocking strategies for k = 60 and with respect to
F-Measure. We also see that, in spite of considering only 60
events, all the blocking strategies outperform a configuration

Figure 5: Comparison of the performance (Precision) for
different blocking strategies over k

Figure 6: Comparison of the performance (Recall) for dif-
ferent blocking strategies over k

Table 2: Best blocking strategies with k = 60 compared to
no blocker

Blocking Strategy F-Measure P R
Upload Time Nearest 0.851 0.928 0.786
Capture Time Nearest 0.840 0.960 0.747
Uniform Combination 0.786 0.828 0.745
Optimal Combination 0.794 0.839 0.755
No Blocking 0.589 0.464 0.818

of our system that does not use any blocker.
Overall, our results license the following conclusions:

• The blockers that have the highest cost-effectiveness ratio
(e.g. Optimal Combination) are not the best ones with
respect to the overall classification performance, being
outperformed by simpler blocking strategies that consider
only the timestamp (Capture Time Nearest and Upload
Time Nearest) and can thus be computed efficiently by a
single query, not requiring to combine results from multi-
ple queries.

• Our system reaches already its top performance of 85.1%
measure using the k-nearest by capture time blocker at
only 60 events retrieved.

• Our blocking strategies clearly outperform an approach
not using any blocking strategy.

The above results are very interesting and have significant
impact on the design of any system attempting to classify
social media documents into an evolving set of events.

Scalability and Processing Time
While the time needed to retrieve the candidates is fairly
constant across different values of k (see Computation Time
in Figure 3), the overall processing time required clearly in-
creases with k. The graph in Figure 7 depicts the overall pro-
cessing time of our system using the optimal combination
blocker over the number k of event candidates considered.
We see that the more candidates are retrieved, the higher
the computation time per document. In fact, the increase
in computational cost seems to be linear in k, so that min-
imizing k is the key issue towards scaling up the system.
Note that once k is fixed, the computation time is constant

Figure 7: Average processing time for one document using
different k (based on Optimal Combination blocker)

regardless of the size of the event database, an important re-
quirement for scalability.

In Table 3 we compare the average processing times per
document for the different blocking strategies at the small-
est k value that achieves a performance of at least 80%
F-Measure. We thus compare the efficiency of the differ-
ent blocking strategies by maintaining the performance at a
comparable level.

Due to the fact that the upload time blocker only needs to
retrieve few candidates and therefore less comparisons are
needed, the overall computation time for this blocker is the
lowest. The reason why the upload time blocker has a higher
performance compared to the capture time blocker is the
way the events are stored in the database. They are stored
in the database ordered by upload time. This saves extra
computation time as the data does not need to be resorted.
In general, the average processing times per document are
in the range of 32-63 ms. Given the high efficiency of the
upload time blocker and the fact that it achieved the high-
est F-Measures overall, it is clearly the overall best blocking
strategy for our task.

Related Work
Blocking strategies have been mainly considered in dupli-
cate detection or record linkage tasks where the task is to
find equivalent elements. As the search space consists of all
pairs over the original set, it is crucial for efficiency reasons
to reduce the number of pairs considered. This is typically
accomplished by applying an appropriate blocking strat-
egy (Fellegi and Sunter 1969; Hernández and Stolfo 1998;
Jaro 1989; Jin, Li, and Mehrotra 2003; Chaudhuri et al.
2003).

Some blockers rely on pre-defined and simple similar-
ity measures such as in our approach, e.g. relying on the
Jaccard similarity (McCallum, Nigam, and Ungar 2000) or
on some sort of edit distance (Jin, Li, and Mehrotra 2003;
Chaudhuri et al. 2003). More sophisticated blockers include
canopy blockers (McCallum, Nigam, and Ungar 2000; Ren-
dle and Schmidt-Thieme 2006; 2008) and adaptive block-
ers (Bilenko, Kamath, and Mooney 2006; Michelson and
Knoblock 2006). Canopy blockers form blocks of pairs
by randomly selecting one pair from a candidate set and
then adding all pairs within a given distance threshold.

The pairs not contained in the canopy cluster are then re-
moved from the candidate list (Cohen and Richman 2002;
McCallum, Nigam, and Ungar 2000). Hernández and Stolfo
(1998) form blocks based on lexicographic sorting of pairs,
an approach similar to the one presented by Winkler ().
Adaptive blockers learn the blocking function automatically
and have been shown to outperform non-adaptive blockers
on tasks where address data has to be filtered (Bilenko, Ka-
math, and Mooney 2006).
In many cases, it is desirable to optimize blockers to max-

imize their performance on a given task and domain. This
is what we have done for the task of classifying social me-
dia documents into events. We have in particular shown that
a suitable blocking strategy can not only increase the effi-
ciency but most importantly also improve the overall classi-
fication performance.
Baxter, Christen, and Churches (2003) have provided an

overview and comparison of different blocking methods in
the context of the record linkage task. They compare in par-
ticular bigram indexing and canopy clustering with sorted
neighborhood blocking and standard blocking as proposed
by Jaro (1989) and Kelley (1984).
The problem of event identification in social media was

introduced by Becker, Naaman, and Gravano (2010). In
their paper they presented an incremental clustering algo-
rithm which classified documents into a growing set of
events. As the datasets considered by Becker et al. are
smaller than ours, no blocking strategy was applied in their
work.
Earlier work has also addressed the task of deciding

whether a document represents an event or not. Rattenbury
and Naaman (2009) learned a classifier which is capable
to learn to distinguish Flickr documents which represent an
event from those that do not. Firan et al. (2010) use Naive
Bayes classifiers to to classify social media documents into
events. They induce a function class : D → E from train-
ing data, thus reducing the problem of event identification
to a standard classification task. This problem formulation
suffers from the fact that a new classifier needs to be trained
for each different event. In contrast, we induce a classifier:
D×E → [0..1] which does not have to be retrained for new
events.

Conclusions
In this paper we have considered the problem of classify-
ing a stream of social media documents into an evolving set
of events. In particular, we have been concerned with the
question of how to scale up the classification so that it can
be performed in real-time. In order to scale up to the data
sizes and data rates in social media applications, the use of
a candidate retrieval or blocking step is crucial to reduce the
number of events that are considered as potential candidates
to which the incoming data point could belong to. In this
paper we have experimentally compared different blocking
strategies along their effectiveness/computational cost trade-
off and shown that using a blocking strategy that selects the
60 closest events with respect to upload time delivers the
best results, achieving an F-Measure of 85.1%. From a more
general perspective, our results indeed show that a suitable

Table 3: Reaching 80% F-Measure (*Reaching 78.8% as this is the maximum here)
Blocking Strategy Precision Recall Processing Time per Document ∆Processing Time per Document
Capture Time 0.974 0.686 0.054s +0.022s (+68.7%)
Upload Time 0.955 0.724 0.032s 0.000s (0.0%)
Uniform Combination 0.841* 0.741* 0.063s +0.031s (+96.9%)
Optimal Combination 0.860 0.748 0.039s +0.006s (+18.8%)

blocking strategy does not only have the potential to speed
up the classification but also to filter out false positives that
could potentially confound the classifier, thus increasing the
overall classification performance.

Acknowledgements
The research is funded by the Deutsche Forschungsgemein-
schaft (DFG), Excellence Cluster 277 “Cognitive Interaction
Technology”.

References
Baxter, R.; Christen, P.; and Churches, T. 2003. A Com-
parison of Fast Blocking Methods for Record Linkage. In
Proceedings of the 2003 ACM SIGKDD Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, 25–
27.
Becker, H.; Naaman, M.; and Gravano, L. 2010. Learning
similarity metrics for event identification in social media. In
Proceedings of the third ACM International Conference on
Web search and Data Mining, 291–300.
Bilenko, M.; Kamath, B.; and Mooney, R. J. 2006. Adaptive
Blocking: Learning to Scale Up Record Linkage. In Proc.
of the 6th IEEE International Conf. on Data Mining, 87–96.
Chaudhuri, S.; Ganjam, K.; Ganti, V.; and Motwani, R.
2003. Robust and efficient fuzzy match for online data
cleaning. In Proceedings of the 2003 ACM SIGMOD in-
ternational conference on Management of data, 313–324.
ACM.
Cohen, W., and Richman, J. 2002. Learning to match and
cluster large high-dimensional data sets for data integration.
In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, 475–
480. ACM.
Fellegi, I., and Sunter, A. 1969. A theory for record linkage.
Journal of the American Statistical Association 1183–1210.
Firan, C. S.; Georgescu, M.; Nejdl, W.; and Paiu, R. 2010.
Bringing order to your photos: event-driven classification of
flickr images based on social knowledge. In 19th Int’l. Conf.
on Information and Knowledge Management, 189–198.
Hernández, M., and Stolfo, S. 1998. Real-world data is
dirty: Data cleansing and the merge/purge problem. Data
mining and knowledge discovery 2(1):9–37.
Jaro, M. 1989. Advances in record-linkage methodology
as applied to matching the 1985 census of Tampa, Florida.
Journal of the American Statistical Association 414–420.
Jin, L.; Li, C.; and Mehrotra, S. 2003. Efficient record link-
age in large data sets. InDatabase Systems for Advanced Ap-

plications, 2003.(DASFAA 2003). Proceedings. Eighth In-
ternational Conference on, 137–146. IEEE.
Kelley, R. 1984. Blocking considerations for record link-
age under conditions of uncertainty. SRD research report.
Bureau of the Census.
McCallum, A. K.; Nigam, K.; and Ungar, L. 2000. Efficient
Clustering of High-Dimensional Data Sets with Application
to Reference Matching. In Proc. of the 6th International
Conf. on Knowledge Discovery and Data Mining, 169–178.
Michelson, M., and Knoblock, C. 2006. Learning Blocking
Schemes for Record Linkage. In Proc. of the 21st National
Conf. on Artificial Intelligence - Vol. 1, 440–445.
Platt, J., et al. 1999. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood meth-
ods. Advances in large margin classifiers 10(3):61–74.
Rattenbury, T., and Naaman, M. 2009. Methods for extract-
ing place semantics from Flickr tags. ACM Transactions on
the Web 3(1):1.
Rendle, S., and Schmidt-Thieme, L. 2006. Object identi-
fication with constraints. In Data Mining, 2006. ICDM’06.
Sixth International Conference on, 1026–1031. IEEE.
Rendle, S., and Schmidt-Thieme, L. 2008. Scaling Record
Linkage to Non-uniform Distributed Class Sizes. Advances
in Knowledge Discovery and Data Mining 308–319.
Robertson, S., and Jones, K. 1976. Relevance weighting of
search terms. Journal of the American Society for Informa-
tion science 27(3):129–146.
Winkler, W. E. 2005. Approximate string comparator search
strategies for very large administrative lists. Technical re-
port, Statistical Research Division, U.S. Census Bureau,
Washington, D.C.

