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Preface

If a system is both large and complex it may be difficult to find out how it works.
An expert system is a technique to solve a multifacetted problem. Probably the
most important aspect of a medical expert system is its application to the
development of new possibilities with the specific objective of optimizing
diagnostic purposes. This book is dedicated to this topic. Its value is that it goes
much further and deeper than a mere statement of principle, however valuable that
might be. Indeed it analyses in detail how to construct a medical expert system
with the help of causal networks.

This book will therefore hold interest for graduate students, researchers, and
practicians in the fields of applied mathematics, computer sciences, medicine, and

expert systems theory.

February 28, 2002 Prof. Dr. Philippe Blanchard
Faculty of Physics
University of Bielefeld



Foreword

There are only a few medical expert systems which finally could reach practical
application. As an example, there exists a quite useful expert system to decide
between the alternatives “thrombosis™ and “haemorrhage” in case of stroke.

In contrary to the restricted general applicability of existing expert systems, there
are inspiring chances opened by this book. The causal network, forming the basis
of operation, is not limited - shortening or expansion are allowed, as well as the
connection to further causal networks. Furthermore, once the expert system is
realized, the user is in a position to add or remove symptoms in order to practise a
real dialogue between man and machine to decide the question “what, if”.

It is a tempting idea to employ such a universal and powerful expert system which
promises to reduce the daily strain caused by clumsy diagnoses. An early
realization, even if only of modest size as a first step before gradual extension,
would be more than desirable.

January, 2002 Prof. Dr. E. Zimmermann
Director — Department of Sports Medicine
University of Bielefeld
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Summary

We introduce a procedure to compute the probabilities of all events which could
be causes of a given set of symptoms. We establish a causal network holding
events with unknown probabilities as well as deterministic events. For any event
with unknown probability a defining equation is constructed. The set of defining
equations then forms a system of n non-linear equations, where n is the number
of unknown probabilities.

These non-linear equations contain conditional probabilities of sometimes great
complexity, making it unavoidable to realize a decomposition into factors. This is
accomplished with the help of certain assumptions, which, in the medical field,
impose no serious restrictions. The factorization finally yields conditional prob-
abilities, conditioned on just a single event. Consequently, all sampling to obtain
numerical values of such probabilities can be carried out easily.



Introduction

The expert system presented here deals with the task of computing the probabili-
ties of all events which could be the cause of a given set of symptoms, concerning
biological or technical systems of high structural complexity.

Regarding a living organism or a technical system of a certain size, we may define
a number of measuring points which represent the current state of operation at
those points. Each state‘of operation is normally kept within a prescribed interval
by means of the systemic feedback control system. If there is a state of operation
constantly situated outside of the associated interval, it represents a disturbance
which resists the feedback control system. A disturbance is caused by influences
inside or outside the system, and as an irregularity it may be itself the cause of
subsequent irregularities.

If there are irregular states of operation within the system, we can use this infor-
mation to compute the probabilities of the preceding events, i.e. the probabilities

of the assumed causes of such irregularities.

As an introduction to the problems that we are concerned with, we discuss the
situation by using a simple example. Let {F,,..., Fs} be a set of events representing
effects in a given causal network. We are trying to determine the probability of all
net nodes that possibly are the causes of events in {F,,..., Fs}.

A solution is found immediately: If the symbol H denotes one of the assumed
causes of Fy,.., Fs, we write p(H { F;...Fs) and obtain the probability of the com-
mon appearance of H and the logic product (F... Fs).

However, it is hopeless to attempt to obtain the numerical values of large condi-
tional probabilities by means of statistical methods. In addition, there is no chance
to find an easy and immediate way to decompose p(H | F;...Fs) into factors, since
Fy,..., Fs have common causes and are consequently (by definition) not indepen-
dent.



Moreover, we have to consider the mutual influence of two causes, say H and K,
if there exists a common effect of the two causes. In that case the ap-probability of
H (to be defined below) depends on the ap-probability of K, and, on the other
hand, the ap-probability of K; depends on the ap-probability of H.

Note:

We distinguish between the following probabilities concerning the arbitrarily cho-

sen event H:

p(H) a-priori probability of H.

p(H | Fy..Fs) a-posteriori probability of H, conditioned upon a selection of
events.

p(H|H) ap-probability of H, representing the special case of an
a-posteriori probability of H which is conditioned upon all events
within the considered causal network.

This probability will be defined precisely in Section 1.

Furthermore, it is evident that it is not enough to consider only the effects in order
to compute the probability of net nodes within a causal arrangement of some size.
We keep sight of the objective to compute the probabilities of causes like H and
K, by considering all influences and every information attainable, i.e. by making
use of all knowledge within reach (see Section 1, p.18).

It can be seen that it is indeed not easy to compute the probabilities of events
which are assumed to be causes of events in {Fi,..., Fs}. There are a number of
questions;

a) Is it possible to decompose a conditional probability like p(H | F...Fs) into
factors? Which assumptions are needed in order to obtain a decomposition?

b) Which method is suitable for developing a calculation procedure that consid-
ers the mutual influence between the ap-probabilities of events? Is this proce-
dure still applicable even when the causal network contains numerous events
whose ap-probabilities depend on each other?



¢) Which events in the “causal neighbourhood” of an event H have to be consid-
ered in order to calculate the ap-probability of H? What has to be done if these

events have an unknown probability?

These questions pose difficult problems which certainly cannot be solved easily

and immediately. Nevertheless, some of the solutions presented later on will be

clear as well as extraordinarily compact. It will turn out that

1. the interpolation formula of DUDA (Eq.3.3) and the L-Theorem (Eq.4.3) are
special cases of the General Interpolation Theorem (Eq.4.1),

2. the A—>L-Theorem (Eq.7.6) and the A—>L-Corollary 1 (Eq.8.1) are remark-
able with respect to their compactness,

3. the problem of mutual influence can be tackied by forming a defining equation
for every unknown ap-probability and solving the resulting system of non-

linear equations.

The solution of the task may be divided into the following four areas:

L

All knowledge relevant to the problem is transformed into a causal network. With

this structure we are able to label the events which have to be taken into account

in order to compute an unknown ap-probability.

To carry out this plan we have to introduce new mathematical concepts to stan-

dard probability theory, namely:

- The concept of “-events (see Section 1, p. 20), where p(H | H’) is used to de-
note the ap-probability of an arbitrary event H.

- The concept of separated events (see Section 4, p. 53).

i}

The handling of *-events creates the need for interpolation formulas. Therefore we

add the following new theorems to standard probability theory,

- the General Interpolation Theorem,

- the L-Theorem, and

- the Linear Interpolation Theorem.
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In the course of the computations we are confronted with conditional probabilities

of sometimes large size. Therefore, we are in need of procedures which allow to

reduce the complexity of these probabilities. This is the main reason to introduce

assumptions which finally lead to the desired factorization theorems. To standard

probability theory we therefore add

- the A—>L-Theorem,

- the A—L-Corollary 1, and

- the factorization theorems which allow the decomposition of complex condi-
tional probabilities into factors.

The development of these theorems is based on two new concepts:

- The concept of establishing events like (A—L), meaning “A creates L” and
defining p(A—L | A), as well as

- the concept of self-reliant causes.

Iv.

We aim to express every unknown ap-probability within the considered causal

network as a function of the remaining unknown ap-probabilities. Thus, we obtain

a non-linear system of equations in the unknown ap-probabilities. The problem of

mutual influence is thus solved, and the iterative solution of the equation system

yields the result.

In order to start the construction of the expert system, we have to assemble a
causal network as a model of reality. Using net nodes, causal connections and in-

hibitors we are able to model the irregular transitions of the system considered.

Looking at already existing diagnostic expert systems, we find that some of these
expert systems do not utilize causal networks, e.g. some of the diagnostic expert
systems using the Gaussian least squares method. Thus, an important aid to file
and represent the collected knowledge is missed, as well as the opportunity to re-
veal stochastic independence.



As a particular advantage of the causal network to be introduced in Section 1 be-
low, we would like to emphasize the use of modular network pieces and, as a re-
sult of that, the possibility of a gradual refinement on extension. A further advan-
tage of the causal network and of the procedure as a whole arises from its univer-
sal range of use, since the net and the computing procedure are applicable to dif-

ferent fields of knowledge without the need to change any rules or principles.

The property of having a universal range of use is indispensable with regard to the
medical field, since we have to form groups with respect to age, sex, race, climate,
genetic disposition and working place, each requiring a separate causal network.
However, even the forming of numerous groups and hence the use of numerous
causal networks is no problem for the diagnostic expert system we are going to
develop, since the mathematical basis and the procedure itself possess a universal

validity.

The expert system “Computation of causal networks”, and especially the usage of it as a diagnostic
expert system in the medical field, is the subject of two European patent requests.

The two requests for grant of a European patent carry the patent application numbers 91104386.7-
2201 /0504457 and 99105884.3-2201 / 1026616, European Patent Office.

(The request 99105884.3 uses the priority of a preceding request which has the patent application
number 99102275.7.)
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1. _L-Net

In case of working with biological systems the task is to establish a list of all
events which are assumed to be causes of a given set of symptoms, and then to
sort these causes according to their probability.

In other words: for a given set of effects we first have to determine all hypotheti-
cal causes belonging to each single effect. Then we complete the causal arrange-
ment of causes and effects by adding events which influence the probabilities of
the registered hypothetical causes. Finally, we compute the ap-probabilities of all
>-events by using the methods of probability theory.

It is appropriate to insert the effects, having (p = 0) or (p = 1), and the associated
causes, having the unknown probability (0 < p < 1), into a causal network and to
supplement this causal network by events being dependent of the inserted causes.
The specific causal network which has been set up in this way to represent the
pathological processes which might occur in plant, animal or man carries the
name L-Net.

(In case of working on technicai systems there are no changes concerning the

causal network and the computing procedure.)

Definition (Net nodes,

D1.1  The net nodes represent events which are equivalent to the irregular
Physiological states of the system under consideration.

D1.2  Anirregular physiological state is a measurement or a parameter whose
value is situated outside a prescribed interval.

D1.3 Inparticular, regular physiological states are not nodes of the L-Net.

DI1.4 A node of the L-Net carrying a negation represents the nonexistence of this

event.

D1.5 Each net node has an arbitrary number of causal arrows leading towards
the node or leading away from it.
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Definition (Causal connections)

D1.6 LetL bean arbitrary event and A an arbitrarily chosen element within
the set of L-generating causes. Then the causal process “A creates L” is
interpreted as an event as well. The event “A creates L” has the graph

A

L
and the mathematical symbol A—L.
D1.7 A causal connection AL from A fo L as shown in the diagram above,

means:
An event [A creates L] exists having the probability 0 <p < I.

AL is called a transition.

Definition (Inhibitors)

D1.8 Anarbitrary event S which can directly influence the transition from
the event A to the event L is called an inhibitor of A—>L.
Directly means that there is no other known operating state between
S and the inhibiting mechanism.
D1.9 The inhibitor S of AL is shown in the following diagram:

D1.10 Provided A exists, the transition A—L has probabilityp = 1
if there are no events which influence A—L.
(The inhibiting event does not necessarily have to be known. If a diagram
shows a causal arrow, e.g. A—L, then in general there are inhibitors
acting upon that transition — otherwise we would not have to distinguish
between A and L.)
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DI.11 IfS denotes an inhibitor of an arbitrary event A—L, it is allowed

that the inhibiting mechanism caused by S is inhibited itself by another
event T. This is shown by the following diagram:

A S

L

S inhibits A—>L, the evemt T counteracts this inhibition. Both types of
events, i.e. the events with an immediate inhibiting effect on A—>L as
well as the events with an inhibiting effect on inhibiting mechanisms
are collectively called “events with inhibiting activity”, or short
“inhibitors”.
D1.12 Inhibitors represent regular or irregular physiological states of the sys-
tem in question.
(Note: The events at the end of transitions are called net nodes; they
represent irregular physiological states.
Inhibitors are not connected by means of transitions and they are

not net nodes; they represent regular or irregular physiological
states.)

Comment on the definition of inhibitors

a) It is possible to continue the inhibition of inhibiting mechanisms on and on.

Therefore, it is allowed to extend the diagram of D1.11 as follows:

A S T

......

LO
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b)

d

However, it became apparent that it is sufficient to name any influence upon a
transition an inhibiting influence, no matter whether it concerns a single inhi-
bition or the inhibition of an inhibition.

The A—L-Corollary 1 (Eq.8.1) does not need further information about in-
hibiting mechanisms than the summary product D (synonymous: logic prod-
uct, product of events, compound of events), a product which is composed of
A—L-influencing events, and which is brought into the computation as a
whole.

All events exerting influences upon transitions are treated as inhibitors, even if
they exert in fact an “accelerating” influence. Inhibitors of all types are con-
sidered to be present, regardless whether the inhibiting mode of operation is
known or not. This method models the fact that an existing event A will trans-
fer its probability p = 1 to the event A—L if there are no A—L-influencing
events which decrease the probability to p < 1 in a joint action.

It turned out that accelerators are not essential. If we look at an arbitrary tran-
sition, we find that an increase in its probability, equivalent to the effect of an
accelerator, can be regarded as a result of the inhibition of known or unknown
inhibiting mechanisms. This organizational step helps to improve the simplic-

ity of the causal network.

The assembly of the L-Net starts by stating hypothesis H. Hypothesis H represents

an event which is assumed to be the most probable cause of the elements within a

given set of symptoms. We start with H and keep in mind that it is our intention to

list all potential causes and sort them according to their probability.

The search for the most probable cause at the beginning of the project is achieved

by using a selection criterion (see Section 7, Eq.7.6, “A—>L-Theorem”). We

choose a leading symptom L , i.e. the most important symptom, and obtain H by

using the following criterion.
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The equation
pLIH)-pILIH) | pL|4)-pL|A)
pL|H) p(L|4)

shall hold for all events A, where A denotes an arbitrary element within the set of

events which - in addition to H - are possible causes of L.

Assembling the network, we place the starting hypothesis H at the level of hy-
potheses and the events caused by H at the level of effects.

In a graphical representation the following symbols are used:

Al event A having known probability p = 1.

40 event A having known probability p = 0.

A’D event A having known or unknown probability 0 <p < 1.

Ai A is a cause of L; A and L both have known probability p = 1.
Lo

Ais a cause of L; A has known probability p= 1,
L has known probability p = 0.

t~

>
O 44—

A is a cause of L; L has known or unknown

probability 0 <p < 1.

>
¢

B A and B are causes of L. The statement is:

(A creates L) v (B creates L).

Note:
- If a diagram does not show any information about the stochastic dependence

of two events, we are allowed to assume stochastic independence until further
findings show the opposite.
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- Ifa diagram does not show any information about the inhibition of an arbi-
trary transition A—L, we are not allowed to assume the absence of inhibitors.
On the contrary: The transition A—L is influenced in any case by inhibiting
mechanisms.

But we may assume that the inhibitors of A—L act solely upon A—L, and that
these inhibitors do not depend on the inhibitors that belong to an arbitrary
transition B—>L. If this statement does not hold, i.e. if there is information
about the stochastic dependence of two inhibitors acting on different causal

creation processes, we have to complete the diagram correspondingly.

In order to demonstrate the characteristics of the (so far unfamiliar) ap-proba-

bilities, we establish a simple example:

Level of hypotheses

Level of effects F,

1.1
Example of a causal network to determine the ap-probability of H
by means of the effects F; through Fs.

It is allowed to remove arbitrary elements from the set of effects, i.e. we are not
forced to consider every event caused by H. Therefore, the events at the level of
effects shown in I11.1.1 are chosen arbitrarily, and it is permitted that there exist
more consequences of H which we just ignored.

Consequently, we always determine an ap-probability by means of exactly those
events which have been chosen to be part of the causal network.
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If W(H) denotes a product of events (synonymous: compound of events, logic
product) which contains the elements situated at the level of effects in IlL.1.1, we
form the expression p(H | W(H)) and obtain the probability of H conditioned upon
the events in W(H). We get:

p(H |W(H)) = p(H | F,F,F,F,F,) (1.1)

Since p(H | W(H)) considers every event within the causal network in question,
Eq.1.1 provides the ap-probability of H, i.e. the probability of the existence of the
event H, determined by utilizing all knowledge and all information extractable

from the causal network. Of course Eq.1.1 has practical use only if we are able to
determine the numerical value of p(H | F,F,F,F,F,) .

The set-up of such numerical values creates difficulties. We need a representative
sample selected from a population which has the properties F; to Fs. Within this
sample we count all events which possess the additional property H. However, it
is a problem to extract representative samples if the population under considera-
tion is characterized by more than two properties.

But if the condition upon the desired probability consists of only one event, and if,
in addition, this probability is of the form p(effect | cause), it is comparatively
easy to obtain the appropriate sample. The development of probabilities condi-

tioned upon a single event is an aim of the following sections.

The set-up of Eq.1.1 is based on the principle that an event Y is added to W(H) if
H and Y are stochastically dependent, conditioned upon the rest of the elements in
W(H). Since Ill.1.1 will be supplemented with further elements that belong to the
L-Net, the possibility to get new candidates into W(H) is opened up. The neces-
sary decision of whether H and an arbitrary event Y are stochastically dependent,
conditioned upon the rest of the elements in W(H), can be made by using the
knowledge contained in the causal network. For this purpose, it is necessary to

discuss the equivalence of stochastic dependencies and causal structures following
next.
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Structure 1.1 Structure 1.2

A is caused by H A s a cause of H
)5 A
A "

(Structure 1.1 v 1.2 i3 valid) = (H and A are stochastically dependent).

Structure 1.3 Structure 1.4 Structure 1.5
A and H are rivaling A _inhibits H—F; A_inhibits K;—F;
causes of F,

F1 F1

(Structure 1.3 v 1.4 v 1.5 is valid) = (H and A are dependent, conditioned

F

upon Fy)
= [p(H | F1 A) = pH | F; 4)].

Structure 1.6
A inhibits U;—>H
Ui A
(Structure 1.6 is valid) = (H and A are stochastically
dependent, conditioned upon Uy)
HU = [pE | U1 A) # pH | U, 2)].

The nodes A and H shown in Structures 1.1 through 1.6 are dependent, and there-
fore A is a candidate for W(H). An extension of W(H) does not require that we
have to accept the complete list of all events which influence the ap-probability of
H. Type and number of elements used as members of W(H) can be chosen arbi-
trarily.
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Later on we will have to restrict the unconstrained choice of W(H). In order to

achieve conditional independence of the events caused by H, e.g. the conditional

independence of Fi,..., Fs - we will have to insert into W(H) every single cause of

events contained in {Fy,..., Fs}. But this constraint is alleviated by the fact that we

may still reduce the number of effects and thus the number of causes belonging to

it.

At present we intend to construct a causal network containing all events which

possess, due to Structures 1.1 through 1.6, a conditioned or an unconditioned de-

pendence of H. So we complete the L-Net in I11.1.1 by adding
- causes of H,

- causes of events which are descendants of H,

- inhibitors of transitions directed to H,

- inhibitors of transitions directed to descendants of H.

Installing these events, we get an exemplary continuation of IIl.1.1 as follows:

Level of causes U, 0 Uy’ 0 U0 LiO L0
Level of hypotheses K’ i H K; K3’ .—/';
Level of effects Fl F F; FaO Fs

1.2

Example of a causal network to determine the ap-probability of H

using events which possess a conditioned or an unconditioned
dependence on H.
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The following symbols are defined by using the node H as a reference:

URS(H) set of direct causes of H (German: Ursachen).

FOL(H) set of direct effects of H (German: Folgen").

DIFF(H) set of net nodes distinctive from H, being direct causes of elements
belonging to FOL(H).
(DIFF(H) includes the events which have to be considered in the
course of differential diagnostic procedures.)

INH(Z) set of net nodes which inhibit transitions leading to an arbitrary net
node Z.

WERT(H)  set of all net nodes influencing the ap-probability of H (screening
neighbourhood of H; German: Wertungsumgebung ).

Assembling of L-Nets

The first net node inserted is H’, whose ap-probability is assumed to be near 1. In

order to construct causal connections to H, we have the events in URS(H),
FOL(H), DIFF(H), INH(H) and g/INH(Z) Z e FOL(H) at our disposal.

Any newly inserted event Y’ that has unknown ap-probability may receive causal
connections from arbitrary elements contained in URS(Y), FOL(Y), DIFF(Y),
INH(Y) and gJNHﬂ) Z e FOL(Y).

Assembling terminates as a consequence of the assumption that additionally in-
serted events - with growing distances to H - will have only litle influence on the
ap-probability of H. The ’-events which possess only ’-events within their
screening neighbourhood, i.e. within the sets mentioned above, will be removed
Jfrom the causal network.

Assembling of L-Nets is subject to further constraints which result from assump-
tions to be introduced in Section 6.

U Three German words are used: Ursache > cause,
Folge > effect,
Wertungsumgebung > screening neighbourhood.
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Definition (Screening neighbourhood)
Consider an L-Net and a net node H’ having an unknown probability of existence.
We define the screening neighbourhood WERT(H) as follows:

WERT(H) := URS(H) U FOLE)U DIFFE)UINHH)v (U  INH(Z). (1.2
Ze FOL(H)

(The reason for defining WERT(H) as shown in Eq.1.2 will be given in a com-
ment at the end of this Section and in the course of Section 4.)

We transfer the elements belonging to the set WERT(H) into a product (synony-
mous: logic product, compound of events) which we denote by W(H). The ele-
ments of W(H) are negated, non-negated or apostrophized depending on their
probabilities (p = 0) or (p = 1) or (0 < p < 1), respectively. Using W(H) we define:

Definition ("-event)

An arbitrarily chosen net node H’ having known or unknown probability

0 < p < 1 is called ’-event (pronounced: prime event).

Let W(H) be a logic product containing all events of WERT(H), and let

P(H | W(H)) be the ap-probability of H. We define:

PH| H’) := p(H | W(H)); consequently H’ := W(H).

a) H’:=W(H) is the meaning of H’ if the considered probability shows the event
H in front of the conditioning line.

b) Inall other cases, in particular if H’ is contained in probabilities not having
H in front of the conditioning line, the symbol H’ has the following meaning:
H’ denotes an event having an ap-probability 0 < p(H | H’) < 1 which might

be known or which can be computed by means of the L-Net computation sys-
fem.

In particular, H’ cannot be replaced by W(H).

C en finiti gV

11.1.2 may serve as an example to demonstrate the meaning of ’-events. If W(H)



Section 1: L-Net 21

contains all elements of WERT(H), we obtain:
p(H|H):= pH| WH)
= PH |UUUFEFFFKKKLLILT,) (13

In order to point out an inadmissible action, we transform Eq.1.3 by inserting
W(Uy) in the place of Uy’. Because of WERT(U,) := {H’, U, Us’, I, I} we have
W(U,) = (H’ U; Us’ I, I) and get the following transformation:

pH|H)

=denticatwith ¢.1.3 P(H |UUUFF,F,F,F,K.K,K,1,1,J,7,)

= Uy replaced) p(H |U,(H U U,11,)U,FF,F,F,F,K,K,K.,1.I,J,J,)

= (huplicates removed) P(H |UH U,F,F,F,F,F,K,K,K,1,1,J,7,)

= (*replaced)

p(H |U,(UU,U,EF,F,F,F,K.K,K,I,1,J,J,)U,F,F,F,F,FK.K,K,I.I,J,J,)
= (uplcaes removeg) P(H | OUUSFF, Fy FF,K K K L0, J2)

= p(H|H'). (1.4)

Eq.1.4 shows immediately that the replacement of Uz’ by W(U,), which again
contains H’, does not make sense. The reason for Uy’ being a member of W(H)
and for H’ being a member of W(U,) is given by the mutual influence of the ap-
probabilities of H and U, on each other.

The problem of mutual influence, unsolved so far, will find a solution resulting

from the development of the L-Net computation system.

Comment on the definition of WERT(H)
The L-Net represents reality. Events outside of the net do not exist, with the ex-

ception that we permit the presence of unknown inhibitors acting upon the causal
generating processes. We are allowed to insert or to remove as many events as we

want. But once the net is finished and the extraction of the desired equations has
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been started, we have to consider every single element within the L-Net. Yet we
are authorized to ignore an element and to make no use of it in W(H) if this ele-
ment is separated from H’.

In anticipation of Section 4 we outline the meaning of the separation property. If
A ¢ W(H) denotes an arbitrary event, and if A is not connected to H’ except via
paths across elements in W(H), then A is called separated from H’ by W(H). For
this, the elements in W(H) may be negated, non-negated or apostrophized. The

definition of separated events and a discussion of the consequences is given in
Section 4.

Conclusion

Consider an arbitrary L-Net and an arbitrarily chosen net node H’ with unknown
ap-probability. If W(H) contains all elements which belong to WERT(H), we get
Jor any event A ¢ W(H):

[H’ is separated from A by WH)] = [p(H | WEH) ) =p(H | WE) 4)]. (1.5

(Please note: We do not demand p(H | W(H) ) = p(H | W(H) 4) = p(H | W(H) 4),
i.e. the independence of A and H, conditioned on W(H). )

At the beginning of this section we established the rule to take an event A into
W(H) if A and H show stochastic dependence in case of condition W(H). Clearly,
we are in a position to remove A from W(H) again whenever A and H turn out to
be stochastically independent if conditioned upon W(H). But even if only the
“weak” separation property holds, i.e. if A is separated from H’ in case of condi-
tion W(H), it is justified to remove A from W(H).

(The separation property is “weak” compared to the “strong” independence prop-
erty, since independent events are always separated, but separated events are not
independent in general. For further information see Section 4.)
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2. _Interpolation functions for a single ’-event

A look at Eq.1.3 reveals that we need to consider the influence of the event Uy’
upon p(H | H’) and, simultaneously, the influence of H’ upon p(U; | U2’). The
problem of such mutual influences has not found a satisfying solution so far. We
will eliminate the difficulty by installing ail unknown existence probabilities in a
system of equations.

In order to execute this plan we need a tool to express an unknown ap-probability
as a function of the remaining unknown ap-probabilities. We demonstrate the
facts by using the following example:

A

H’
With the exception of events which influence the transition A—H, no other ele-
ments exist in addition to A’ and H’. Both have an unknown ap-probability. We
intend to express p(H | H’) as a function of p(A | A”).

We obtain:
p(H|HY) = p(H | W(D))

= p(H|A). @1
P(A[AY) = p(A{W(A))

= p(A[H). 22)

We impose the following requirements:
IFp(A|A) = 1  thenp(H |H) = p(H]|A).
Ep(A[A) = 0  thenp(H|H) = p(H| 4 ).
Ifp(A]A) = p(A) then p(H | H') = p(E).

In order to satisfy the three requirements, we interpolate between the extreme val-

ues p(H | A) and p(H | A) according to the value of p(A | A*). This leads to the
following illustration:
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p(H|H)
p(H|A)
p(H)
p(H| 4)
P pA|AY)
0 p(A) 1
ni2.1:

Interpolation between the extreme values p(H | H) = p(H | A) and
p(H | H) = p(H | 4) according to the value of p(A | A°),
supposing p(H | A) > p(H | 4).

TiL.2.1 yields:
P(H |H') = p(H | A)+[p(H | A)— p(H | A)lp(4| 4"

= p(H | Ap(4| 4)+ p(H | D[1- p(4] 4)]

= p(H | A)p(4| 4)+ p(H | H)p(4]| 4). (2.3
Please note:

111.2.1 allows the choice of either p(A |A’) = p(A) or p(H | H’) = p(H) in order to
avoid inconsistent probabilities as a consequence of overspecification. However,

this fact poses no problem, since we compute all unknown ap-probabilities si-
multaneously through one system of equations.

Because of p(H | H’) = p(H | A’), Eq.2.3 yields an interpolation of p(H | A”):
p(H | A)=p(H | A)p(A| 4)+ p(H | Dp(4] 4). (2.4)

Warning: Despite the equal sign, the functions we established are inter-
polation formulas which in general do not reach equality.
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Now we are in a position to specify the relationship between the unknown vari-
ables p(H |H’) and p(A | A’) as follows:

PH|H") = pH|4)

= p(H | A)p(A| A)+ p(H | A)p(4] 4. (2.5
PAIA) =pA|H)
= p(A|H)p(H | H')+ p(A| H)p(H | H'). (2.6)

Eq.2.5 and Eq.2.6 represent the desired equation system in the variables p(H { H’)
and p(A | A”).

The clear set-up of this system of equations instantly reveals that p(H | H’) = p(H)
and p(A | A°) = p(A) represent a solution.

If we solve the system of equations by using the insertion method, we will obtain

no other result. We demonstrate this computation in full length as an example.

Notation:

y:=pH|H), a:= p(H|4),

x:= p(d|4), b= p(H|4),
c:= p(4| H),
d:= pd| H).

The use of this notation transforms Eqs.2.5 and 2.6 into the customary form of an

equation system in the variables x and y:

y =ax +b(l-x). (2.5a)
x =cy +d(I-y. (2.6a)
The insertion method yields:
= ___(_C_l_—_l_?lq_ib__ . (2.5b)
1-(a-b)c-d)
g = fcod)brd (2.68)

I-@-b)e-d)
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Now we have to show that 1—_%%%%)— = p(H) holds. Elementary compu-
tations yield:
@-1b = p(H|4)- pH| 4)
_ PHE)PA-pHA)
p(A)p(4)
(c—d) - p(A|H)- p(A| H)
_ P ApE) - p(4H)
p(H)p(H)
@-ya+ry - PALHDPE)+pH | A - pH | HpAlH)
r4) ’

(4t o) = PAIDPE)+ pEH | Dp(4) - p(H | Ap(4 | H)

p(A)p(H)
=
(a-b)d+b
e bye-a '
. (c-dp+d _
Analogously, we obtain Tt hver @ byo—a) = p(A).

The representation above also proves the following conjecture:

If a causal connection between events H’ and A’ is known, and there is no further
information concerning existence or nonexistence of events within the screening

neighborhood of H and A, then the ap-probabilities of H and A are not more exact
than the a-priori-probabilities.
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3. Properties of interpolation functions

We will rewrite the interpolation function Eq.2.4 and replace condition (A‘) by
(E,..E,E,,) in order to standardize the statements concerning interpolation
functions. The symbol H denotes the event whose ap-probability needs to be de-
termined. The symbols in {E;,..., Ey} indicate events with probabilities (p = 0) or (p
= 1), i.e. negated or non-negated events, respectively. In order to simplify the

equations we do not specify negated events. The apostrophized symbol E,,, rep-

resents an event with unknown ap-probability 0 < p(E,,, | E,,,) <1 .

Moreover, VE;“ denotes a product of events {synonymous: compound of events,
logic product], obtained from the product(E,..E,E,, )by removingE,, - the
event that acts as an index in VEL, - as well as other arbitrarily chosen elements.
The empty product Vs;.,, = (J is permitted.

We demand that the interpolation functions which wiil be applied to the probability
p(H\|E,. E,E, ) satisfy the following three interpolation points:

1* interpolation point;
p(H ‘ El'EhE;n+l) = p(H ‘ ‘El"'EhE’”']) in case of p(Eh+l 'E;H-l) =0.

2™ interpolation point:
P(H|E..EE, )= pH|E.EFE,,) incase of p(E,,, |E,)=1.

3" interpolation point:
p(H |E..EE,,)=pH|E..E,) incase of p(E,,, | E,.)= P(E, |V )

with arbitrarily chosen VE; -
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Thus, 111.2.1 is transformed into the following diagram:

p(H |E.EE,,)
A

PH|E.EE,,)

pH|E . E,)

p(H | E,.. E,Ena)

» p(E,. | )
0 P(E,, | B E) 1

ms3.i:

Graph belonging to the linear interpolation of p(H | E,.. E,E, )

in case p(H | Ey...EsEer) > p(H | Er.. By Enar ).

Lemma

Interpolation function for a single event

Concerning p(H | E,..E,E, ), the following notation is used:

- E,, ..., B, are negated or non-negated events (arbitrarily chosen but fixed),
E,., has probability 0 < p(E, , | E,,,) <1,

- Vg isanarbitrarily chosen part of the product (E,..E,), Ve, = @ is per-

mitted.

Then the following equations satisfy the three interpolation points specified
above:
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p(H | E,..EE,,)

2By | Ep) = . p(Em|E,,)
P(HE,..E,E, ) = 20 | y(HE | B, Epn )22 Zha)
_ T e (B V) Y p(Ew V) (3.1)
KE,. |E,,) = p(Em 1E,..) '
PE, EE, )= ol oy p L Ep) P2 )
N B E V) T pEa 17, )

Proof: Elementary.

Lemma

Linear interpolation function for a single ’-event

Choosing the maximal VE’,’,“ , L.e VE,’M =(E..E,), Eq.3.1 yields a linear inter-
polation function which reads as follows:
p(H | E..EE,,)

= p(H | B.. E,E, )P(Ey | Ey) + pH | B EEw)pEm | E,). (3.2
(Eq.3.2 is equivalent to the graph shown in 11.3.1.)

Remarks:

In case of {E,,..., Ev} = & we consequently have VE; = &, and Eq.3.1 becomes

the interpolation formula of DUDA. [(See: DUDA, R.O,, P.E. HART, N.J. NILS-
SON: Subjective Bayesian methods for rule-based inference systems. In. WEBER,
B.L., N.J. NILSSON (eds.): Readings in artificial intelligence. Tioga Publ,, Palo
Alto Calif. (1981) p.192 - 199).]

Wiritten in the notation of DUDA, the following statement is given:

PH|E) = PH|E)PE|E)+P@H | E ) P(E | E). (3.3)

Eq.3.3 is a first step to utilize “the observations E’ relevant fo E". Ideas going
beyond this formula, or discoveries of other authors concerning the use of
"-events, did not turn up so far.
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In order to establish criteria which determine the choice of the logic product
VE; we analyze the properties of the functions contained in Eq.3.1 by means of
the graphs belonging to it.

First, we have to add another diagram to Iil.3.1, showing the linear interpolation

function in the p(H | Ex...ByEaw) < p(H | Ei...Ey Ene1) case. We obtain:

p(H\|E.EE,,)

p(H |E,.. E,En)

pH |E,.E,)
p(H\E.EE,,)

P(E,, | E;m)
0 P(E,. |E..E,) 1

m3.2:

Graph belonging to the linear interpolation of p(H | E,..E,E, )

in case of p(H | E1...ExyEy1) < p(H | Ev.. By Enn ).

Looking at Eq.3.1 we find that the choice of the product Vx;.. determines the

graph of the corresponding interpolation function. In order to get a clear view of
the facts, we vary VK.M step by step from @ to the maximum size (E,... Ey).
This leads to the following assignments:
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P, | VE}M) =pE,.).
PE,, | VE}.*,) =pE,. | E,).
P(E,, |VE;M) = pE,, | BE, ).

p(E,, | VE;M) = PE,, | BE, E,,).

P&, |V )= P(E,, | E,.E).

(G4
(3.5)
(3.6)
G.7)

(3.8)

We abbreviate the variables contained in Eq.3.1 by the following symbols:
p(H ' E]"‘EhE;H]):: Yy and p(EhH |E;:+1) =X

Eq.3.1 contains unconditioned probabilities. If we choose the values of

P(E,.. | VE;M ) according

to equations (3.4) through (3.8) and insert them into

Eq.3.1, these unconditioned probabilities will be transformed into the corre-

sponding conditional probabilities. We use the following abbreviations:

Choosing Eq.3.4:

Choosing Eq.3.5:

Choosing Eq.3.6:

a,=p(HE_ . E, \E,.).
b, = p(HE,..E, | Ewn).
¢, = plE..E, | E,,,).
d, = p(E,..E, | Enn).
a,=p(HE, .E, |EFE,,).
b = p(HE,..E, , | E,Enu).
¢, =pE. E,  |EE,.).
d = p(E, .E, | E,Em).
a, = p(HE, .E, ,|E, EE,.).
b, = p(HE,..E, , | E, \E,Ewm).
¢, =pE. . E,_,|E,_EFE,.,).

d, = p(E,..Ey , | E, EEwm).
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Choosing Eq.3.7: a, = p(HE,.E, , | By 2By BnEy) -
b, = p(HE, . E, ;| E,_E\ B, Ewn).
C; = P(El--—E -3 lE »2Eh-1EhEh+1) .

d, = p(E,.. Ey_y | By By EyEwn).

Choosing Eq.3.8: a, =p(H\|E. E,).

b, = p(H | E,.. Enn).

Utilizing this notations, we are able to transform Eq.3.1 into Eq.3.9, no matter
which VE; | we selected, and consequently no matter which indexing of a, b, ¢, d is

currently valid. We obtain:

_@+b(-x) (3.9)
ex+d(1~x)

_ax+b-bx (3.10)
cx+d-dx’ o

We proceed by showing the graphical appearance of the family of curves repre-
sented by Eq.3.10. To begin, we differentiate Eq.3.10:

von_  ad-bc

y(x)———-——————(cﬁd_dx)z. (3.11)
ey = (_yad —be)(c - d)

y'(x)=( 2)——-—————(m+d_dx)3 . (3.12)

Using Eq.3.11, we obtain that y'(x) # 0 for all x, whenever (ad —bc) 0.

Therefore, y(x) shows no extremum and no point of inflexion within the open in-
terval 10, 1[. We obtain:



Section 3: Properties of interpolations 33

. ad —bc
Yi=0)~ T :
These values characterize the gradient at the endpoints.
. ad - bc
Yaay™ 2 -

[9

We need to discuss cases I through IV, ie. (ad —bc)> 0 and < 0, together with
(c — d) > 0 and < 0. The choice of these terms determines the arrangement of ab-
scissa and ordinate values.

The criterion to arrange the abscissa values is the following:

Proposition: (c>d) = p(E,, | E,..E,) > p(E,,, IVE;“).

Proof:

Using Eq.3.4 as an example, i.e. choosing p(E,,, |VE; 1) = p(E,,,), we demon-

strate that co > dp causes p(E,,, | E...E,) > p(E,,,), which is the arrangement

shown in I11.3.3. Let

¢, >d,.
= P(E. E,|E,.) > pE. E, | Em).
- P& EyEyy)  PE . EyEw)
P(Eys) P(En)
= P(Ey | B, E,)p(Enn) > p(Era | .. E)p(E,,,).

= p(Eh+1 l ElEh) - p(Eh+l)P(Eh+\ l 'ElEh) > p(Eh+l) - p(Eh+l)p(Eh+l I E]“'Eh)

= P, E.E)>pPE,,). o

Analogous proofs yield in case of any arbitrarily chosen Vs;., :

(c>d) > p(E,,|E..E)>pE,, |V, ). (3.13)

Al

(c<d) = pE,. |5 E)<pE, |V, ) (G.19)

A+l

Ils.3.3 through 3.6 reflect the statements of (3.13) and (3.14) using VB.'.,. =2



Section 3: Properties of interpolations 34

The criterion to arrange the ordinate values is the following:

Proposition: (@d- bc) >0 = p(H | E.. EE,,) > p(H | E. E,En).
We use two examples (1. and 2.) to demonstrate this proposition.

1.

(a,d, — byc,)

#

P(HE,..E, | E,,)P(E,..E, | Esn) - p(HE,..E, | Ew)p(E,..E, | E,.)

= pH | E . E, ). E,

1) T
+ . E Eh+l
p(E,.) P& E, | )

P(H | E,..E,Eva)p(E,..E, Enn)
_ ad E,.
i) PE.E, | E,.)

= p(&..E,|E,,)p(E..E, | Ew)[p(H | E.. EE,,)~ p(H | E,..E,Ena)]
cdo(P(H | E,.. E,E,.) - p(H | E,..E,Ex)].

Conclusion: If (aydo — boco) > 0 then p(H | E,..E,E,,)) > p(H | E,..E,Ena). O
2.
(aldl - blcl)
=p(HE,..E, , | E,E,.)P(E, .E, | E,En)
~P(HE,..E, | E,Es)p(E,.. E, , | E,E,,))

. PWHI|E.E, )pE. E,)
p(EhEhﬂ)

pE.E, | EhE"ﬂ)

_pH| E1...E,,E'h+1_)p(E‘...E,,Eh+x)
p(E,,E;m)
PE..E,,|EE, )pE.E,, |EEnm)

[p(H | E,..E,E,,))~ p(H | E,.. E,Eru1)}

cldx[p(H,E]-~~EhEh+1)—P(H’El..EhEhn)].

P..E, | EE,.)

I}

Conclusion: If (a;d; ~ bic1) > 0 then p(H | E, ~EE,.)> p(H\E,. E,Ep).0
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The two examples (1. and 2. on page 34) yield equation (3.15) which will be of
good use:
(ayd, - bycy) - fo_d_q_

. 3.15
(ad, -bc) cd, 19

Case I:
(ad -bc)>0 and c>d.

It follows that:

1) y‘(x:O) >0 and }"(x=1) >0.

2 Vo> Ve -

3) y'"'(x)<0 forall x, since (c—d)x+d >0 forallx.

Consequently, the appropriate curve is situated above the linear interpolation

shown in [1.3.1. ( The curved line in the following illustration reflects the assign-

ment p(E,., | VE;H) = p(E,,.), i.e. it represents the simple case of Eq.3.4).

P(H | E. E,E,.,)
A

pH|E.EE,)
PH|E,. E,)

\

P(H | E,..E En)

4> P(‘Eh+1 | E‘hﬂ)

0 p(&,,) P(E,, |E. E)) 1

1.3.3:
Graph belonging to Eq.3.1 in case of (ad -b6c) >0 and c>d (Casel).
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Case Il
(ad-bc)>0 and c<d.

It follows that:

1) Vieany>0 and )',.,>0.

2) Yy <V -
3) »'(x)>0 forallx.

Consequently, the appropriate curve is situated below the linear interpolation

shown in IIL3.1. ( The curved line in the following illustration reflects the assign-
ment p(E,,, | VE;M) = p(E,.,), i.e. it represents the simple case of Eq.3.4).

PH |E. EE,.)

PHI|E.EE,,)

P(H\|E, E,)
P(H\E,..E,Enn)

" p(E}H-l ' E'h+1)
0 P(E | E.E,) PE,,) 1

1.3.4:

Graph belonging to Eq.3.1 in case of (ad —bc)>0 and ¢ <d (Case ).
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Case TIT:
(ad ~bc) <0 and ¢ <d.

It follows that:

D) Y4y<0 and y',,<0.
2) ¥'eey> V'emyy -

3) »"'(x) <0 forall x.

Consequently, the appropriate curve is situated above the linear interpolation
shown in [11.3.2. ( The curved line in the following illustration reflects the assign-

ment p(E,,, | VE,’,,, )= p(E,,), ie. it represents the simple case of Eq.3.4).

p(H | By E,E,,)
A

P(H | E,..E,En)
P(H\E E,)

)

P(H |E..EE,,)

> (.. By

0 P(E,. |E..E) pE,.) 1

IiL.3.5:
Graph belonging to Eq.3.1 in case of (ad —bc)< 0 and ¢ <d (Case III).
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Case IV:
(ad-bc)<0 andc>d.

1t follows that:

D) V<0 and )',.,<0.

2) Vi< Yy -
3) y"(x)>0 forallx

Consequently, the appropriate curve is situated below the linear interpolation

shown in [11.3.2, ( The curved line in the following illustration reflects the assign-

ment p(E,,, IVE}, l) = p(E,.)), 1.e. it represents the simple case of Eq.3.4).

PH\E, EE,.)

p(H | E,..E,Enn)

P(H|E, .E,)
p(H | E,..E,E,,) \

P p(Ey | Br)
0 p(E,.) P, |E. E) I

1i.3.6:

Graph belonging to Eq.3.1 in case of (ad ~bc)< 0 and ¢>d (Case IV).
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We still need to determine if two curves, derived from Eq.3.1 by using two differ-

ent but arbitrarily chosen VE’,. , intersect. For this, we utilize the abbreviations a,
+1

bo, co, do and a,, by, ¢4, d;, which define two curves of Eq.3.1. We define a differ-
ence function D(x) as follows:

a,x+b,—bx ax+b -hx

cox+d,—dyx cx+d —-dx

D(x)=

Differentiating D(x) and setting D’(x) = 0 yields:

D‘(x) — aodo - boco _ aldl - blcl )
(cx+d,—d,x)* (cx+d —dx)

(and, —Big, _ (e —dy)x +d, _ (3.16)
ad -bc, (¢, —-d)x+d,

UsingEq.3.15, we obtain:

Vo - (¢~ dy)x+d, .
cd, (¢ —d)x+d

= Vcodo[(cl"dl)x"‘dl]:Vcl‘il[(co'do)x"’do]-
= X - dr)\/codo —(cd)ed 1= d,\cd, “‘dn/codo .
‘= dyy6d, —d \c,d, _
cn/codo ’dn/"’odo -—c(,,/cld] +d,4Jcd,
1

= x:l ced, —co\/c,_d, '

F e eee———
dyady —di\Cod,

= x-—1
1

+0

0= cl\/"odo —CoyCid, '
. do\lcldx_dl cyd,

, using the assignment
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Proposition: 0 20.

Proof (by contradiction):

Assume Q<0

=> [numerator(Q) > 0 and denominator(Q) < 0] or
[numerator(Q) < 0 and denominator(Q) > 0].

If [numerator(Q) > 0 and denominator(Q) < 0]
= co,/c,d1 < c,,/c(,d0 and d,,/codo > d,yJod,

= (EO_)Z < éﬁ_ci and 99._‘19_ > (%0_)2
1

cl dl cl cl dl
c, d ¢, d,
o> 2<% and 2>-2
a 4 a 4

= contradiction.

(If [numerator(Q) < 0 and denominator(Q) > 01, an analogous procedure is carried

out.) 0

We proved that from D’(x) = O follows 0 <x <1. The difference function D(x)
therefore has at most one extremum within the open interval 10 , 1[. We conclude

that any two interpolation functions belonging to cases I through IV, do not have

common points other thanat x =0 and x = 1.

In order to give a summary representation of the (b+1) interpolation functions de-

rived from Eq.3.1 by using the (h+1) different values of p(E,,, |V, ) due to
ket

Eq.3.4 through Eq.3.8, we choose the graph of I1.3.3 and its parameters. This

means we take Case I as an example and choose the following sequence:

P(E,) < P(E, | E) < PE, | EE, )<..< PE,, | E, E). ™
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Using (*) we obtain the following summary:

P(H | E.EE,.)
4

pH | E . EE,,)
Eqs. —»
pH | E,. . E,)

3.8

\A\
el
-

N
AN
AN

P(H | E,.. E,Enn)

> (&, | me)
0 1
P(E,, |E, E)

P(E,,, | EE, E, ;)
P(Ewi | E\E, )

P(E,, | E,)

P(E,.)

ms3.7:

Interpolation functions derived from Eq.3.1 (shown according to Case I).
(h + 1) interpolation functions are created if (h + 1) different values of
PE,. | VE;M) are used due to Eq.3.4,..., Eq.3.8.
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Supplement

We point out that the use of discontinuous interpolation functions has its justifica-

tion in case of some special situations.
If we want to have an update of the probability p(H | E... Ey) as a consequence of
the event E,,, , we may utilize Eq.3.1 and choose p(E,,, | Ve, ) as follows:

P(Eni |9) , if Py | Ep)< P(B,),
P(E,. IVE;M) = P(E,., | E..E), if pE,, |E,.)> PE,, |E..E),

P(E,.. | E,,,), otherwise. 3.17)

The result of inserting (3.17) into Eq.3.1 is illustrated below, following the model
of 111.3.3.

pH|EEFE,,)

P(H |E.. EE,,)
pH |E..E)

P(H | E,..E,En)

1 |

> (. | E,)
0 p(Eh+1) P(Eh+| |E1--E;.) 1

11.3.8:

Graph of Eq.3.1 in case of p(E,,, | fo,, ”), chosen according to (3.17).
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The discontinuous interpolation function described in Tl.3.8 has been defined arbi-
trarily.

It follows the concept that we do not accept changes of p(H | E,... E;) if both ex-
istence and nonexistence of E,,, are far from being certain. Therefore we do not
have a change of the ordinate values if p(E,,, | E,,,) is situated between p(E,,,)

and p(&,, |E,. E,).

If the presence of E,,, is almost certain and if this fact meets our expectations, we
allow a slight increase of p(H | E,... Ej) caused by E,,, . This explains the linear
and consequently moderate changes of the ordinate values at the right-hand side of
the curve shown in 111.3.8.

But if the absence of Z,,, is almost certain and if this fact is surprising, we want
to realize a strong response, i.e. we demand a quite considerable decrease of

D(H | E,... E}) as a consequence of E,,, .

In practice, however, the procedures used to update the probability p(H | E.... Ey
as a consequence of E,, will preferably utilize p(E,,, IVE;M):= P&, E.E)

for simplicity.

Parts of the following Sections 4, 6 and 10 have been published in:
LIEBEL, F.-P.: Diagnostik mit Hilfe nicht-linearer Gleichungssysteme. BiBoS, Forschungszen-
trum Bielefeld-Bochum-Stochastik, Nr. 755 / 1 / 97, University of Bielefeld (1997).
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4. Interpolation functions for more than one '-event

We need interpolation formulas in order to remove the prime from events con-
tained in probabilities like p(H |E,..E,E,,,..E,). The events E,,..., Ex have

probability (p = 0) or (p = 1), i.e. they are either negated or non-negated, whereas
the events E;’, i = h+1,.,, k, have probabilities 0 < p(E; | E;") <1 (known or un-
known).

We will use expressions like p(ZE, | VE(.), i=h+l,..., k, where the symbol VE; de-
notes a logic product of events , derived from (E,..E,E,,,..E,.. E,) by removing
E, - the event that forms the index in VE‘. - as well as other arbitrarily chosen ele-
ments. The empty product VE’. = is permitted.

We demand that interpolation functions suitable to compute p(H | E, .E, E,., .E,)

satisfy the following three interpolation points, i == h+1,... k :

st .

17 interpolation point:
p(H |E.EE,. E. E)=pH IE,..E,,E;M..E..E;) in case of p(E, | E))=0.

2 interpolation point:

PH|E.EE,,.E..E)= pH |E_ EE,, E.E)incaeof p(E |E)=1.

PH |E, .EE,,.E. E)=pH|E,.E,E,, E,_E,,.E)

in case of p(E, | E)) = p(E, | VE'.) with arbitrarily chosen Ve.

(The presence of the third interpolation point stems from the fact that no updating
occurs with respect to E; if p(E, | E,) reaches the value PE|V,))
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Theorem
General Interpolation Theorem
For p(H | E,..E/E,.,..E,), consider the following symbols:
E,,...., E,, are negated or non-negated (arbitrarily chosen but fixed).
- ...E,, have probabilities 0 < p(E, | E)) <1, i=h+1,.., k

h+! >

- Forqief01},i=h+l,.  k E® =Eiif g,=0 andE™ =E, ifq; =
1
-V isanarbitrarily chosen part of the product (E,..B,E, , .E, E,, E,),
i=h+l1,.., k. The empty product VE‘. = @ is permitted.
Then the following equations satisfy the three interpolation points specified

above:

E(q) IE)
HE,. EES. E)[ ]2
J g ‘hm,;‘hfo(.l l':] e 111 p(E(‘I:) IV )
p(H | El"'EhElH-]"Ek):

E(qn) ! E )
E (qlul) E(q;)) P(
The1 »%p =0,1 p(E‘ hE IQIP(E(%) I V )

E®=FE and EV=E, i=h+l,. k (4.1)
Proof' Elementary.

The application of Eq.4.1 is an updating procedure.

As a result of the 3" interpolation point we will have no update of p(H | H’) with

respect to E,, if p(E, | E;)= p(E, V). Therefore, the choice of Ve defines the

“point of no alteration”. We give three examples:

a) Theupdate of p(H|H)) = p(H | E,..E,E,,,..E_E,,. E,) as a consequence
of E, may be undesired if the value of p(E, | E,) is determined exactly by
those events which have just been used to calculate the value of p(H | H), i.e.
if we have p(E, |E,) = p(E, | E,..E,E,,,..E, \E,,..E,).

Then we choose V= (£,..E En BBy ), the maximum/, .
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b) In practice, VE‘. = (E,..E,) is used because this product avoids ‘-events.

c) VE‘. = & simplifies matters.

The handling of Eq.4.1 and the appearance of an interpolation concerning two un-

certain events is shown by means of the example p(U>| U; I, I, H* Us?) . Here, V.

and V. are chosen to have their maximum sizes as described in a) above, i.e.

V, =ULLU,) and V. = ULLH ). Then Eq.4.1 yields:

p(U:| U LH UsY) (4.2)

p(UzUlllleUz) p(H lH.) p(U3 IUB')
- pH|ULLU,Y) plU, | UL LAY
H|H') rU U
p(U.LLAU,)—E¢ s17s)
T pH|ULLU,Y) p(U, \ULLH")

pUU LT 2P0 V)
p(H U LLUY p(UiUII,IZH')
P(UJJZHE) p(H | H‘) ' ESUB I UB')
PHIULLU, ) pU, |ULLH")

P(U2U11\I1HU3) £(H lH‘) p(U3 lU’s')
pH |ULLU,) pU, | Ul LLH"Y)
P(U‘IJzHUg) £(H |H') rU, |U,")
p(H | U,LLU,") p(Us |U11112H')

PUULLE Ty—LHEHE) __ pUs1U)
. p(Hl_UJ\IzU;') pUs ‘U,I,IZH')
p(ULILH-Us) _pH | H) £(U3 |U,") .
pH |ULLU," pUs |U11H"

(In the last line we write H -U in order to avoid confusion with HU 3-)
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It is obvious that Eq.4.2 meets the interpolation points specified above.
If we choose VE‘, =, i=htl,..., k, the General Interpolation Theorem becomes

the well-known L-Theorem.
We give the complete L-Theorem since the L-Theorem as stated in Eq.4.3 below
and the historical L-Theorem have different wording even though the statements

are identical.

L-Theorem
Special case of the General Interpolation Theorem using VE‘. =.
For p(H |\ E,..E,E,,, . E,), consider the following symbols:
E,,..., E, are negated or non-negated (arbitrarily chosen but fixed).
- E,,,,....E, have probabilities 0< p(E,|E) <1, i=h+l,.., k
- Forq, €101}, i=h+l,. .k E® =Ei ifq,=0 and E® =E, ifq; =
1.
- VE. = foralli=h+1..,k

Then the following equations satisfy the three interpolation points specified
above:

p(H |E,..EE,,. E,)

‘h) E
S p(HE, . E, B, E®) H PE E“'!) )
— Qpa1 - G2 =0,1 e ) (4 3)
= Z (E. EE(q,,,,) E@.))Hp(E(q.) |E) ’ .
[: Ao, q,—(np ket o] p(E("‘))

E® =E, and E® =E,,i=h+l, .., k

Moreover, Eq.4.1 may turn into a linear interpolation which can be handled much
easier, and which therefore is the desired ideal.
We develop the Linear Interpolation Theorem which follows next.
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Theorem

Linear Interpolation Theorem

If we choose V. = (E,..E,), i = h+1,...k Eq4.1provides a linear interpolation
formula if, in addition, a) or b) holds:

a) (E,,,..E)=9.

) {Ewe1, -, B} are independent, conditioned on (E; ... Ey).

Then Eq.4.1 yields:

k
p(H |E. EE,..E)= Y. pH|E. EES. EM[]pE®|E),

i1 e =01 i=h+]
E®=FE and E® =E,i=ht1,...k (4.9

Proof; Elementary.

We demonstrate the effect of the Linear Interpolation Theorem by means of an ex-

ample. This opens the possibility to introduce the concept of separated events and
to explain the definition of the set WERT.

Ko K 18]

FyO F0

1i4.1:

Example to show the necessity of Requirement b) belonging to Eq.4.4.
We demand the interpolation of the probability p(F, | F,K K K).

In order to show the necessity of Requirement b) mentioned above, we apply as a

first step the General Interpolation Theorem (Eq.4.1) to p(F, | F,K K.K,)"
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p(F | F,K K K)) @41

pK 1K) pK,|K,)
p(EF,K KK, +o
DY (K, | FoK,) p(K, | FK)
pK |K) pK,|K,) .
PFKKK,) +...
U (K, | FK,) p(K, | FK,)

= (Bq4.1)

= P& k) p&,\K,;)
p(F.F,K,K.K)) S .
CUY R, | BK,) pK, | FK,)

P, 1K) pE,IK)
(K, | FK,) pK, | FK,)

PK 1K) P&, |K,) |
p(X, | F,K,) p(K, | F,K,)
T K, | FK,) PK, [ FK)

P& |K) _p&K,|K,;)
pK, | F,K,) p(K; | F;Ko)
P(_Kl !Kx') sz ‘Kz) .
(K | FK,) p(K, | F,K,)

P(FK,K K,)

P(FF,K,KK,)

P(FFK K \K,)

p(F,K,K:K,)

Eq.4.4-1 does not reach linear interpolation due to Eq.4.4, since
P | FK)pK, | F,K,)# p(K K, | F,K,),

i.e. Requirement b), needed to reach a linear interpolation, is violated.

Now we again refer to the configuration of I1.4.1, but execute a negation upon F,.
Thus:
P(F | F,KKK;) (4.42)
p(K,I_{({) K, LI_(Z) +...efc.
- P&, |FK,) pK, | FKy)
pEKkK,)PEIK) PK K |
Pk, |F,K,) pK, | F,K,)

pP(F,F,K ,K.K,)

Since p(K, | F;K,)P(K, | F;K,) = p(K,K, | F;K,) [according to Eq.8.6 / A—>L-
Corollary 2}, we are able to proceed as follows:
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= K, K. |k,
p(FleKoKle) p(K1| 1) p( 2| 2)+....etc.

P(K1K2|EK0) !
— K 1K) pK,IK;)
PEK K ) — L8 D) P LK
pK\K, |F,K,)

P(F | F,K,KK,) =

+...efc.

p(F, iEKoKle)p(Kl |K)) pX, |K,) + _ete.

= 1 1
P&, | K) pK, 1K)
1

P(F | FK K K,)p(K, | K)PK, | K,)+..etc.,

i.e. linear interpolation.

+...efc.

Since F; and F are independent, conditioned upon (K, K; K;), we obtain:
P(FIFKKK,) = pF | KKK,)pK, | K)pK, | Ky)+..etc.

= p(F, |KKIK;). (4.4-3)

Therefore, the Linear Interpolation Theorem gives Eq.4.4-3, but the Linear Inter-
polation Theorem does not give p(F, | F,K,K,K,)= p(F, |K,K,K,), although
the definition of WERT(F,) provides this equation, i.e.
p(Fi | L-NET) = p(F, | F)

= p(F | F,K K K;)

= (aefinition of WERT) P(F, | K K, K,).

This alleged inconsistency will be cleared up when we establish the defining equa-

tions which belong to the ‘-events of 11.4.1. This gives the following equation sys-
tem:

PK,1K) = (&, | FFKK;). (4.4-49)
PK, 1K) = p(K, | FF,KK). (4.4-5)
PEIF) = p(F oK KK, = p(F | KKK, (4.49

(The removal of F, will be discussed in detail below.)
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We compare I11.4.1 and its set of equations with the following example:

Ko Ky O

F,0 ¥, 0

1.4.2:
Example derived from I11.4.1 by moving the prime from F, to K.
We demand the computation of p(K, | K,), p(K, |K,) and p(K, | K,).

The set of equations to compute the L-Net shown in Il1.4.2 is as follows:

P&, 1K) = p(K, | FF,KK;). (4.4-7)
Pk, |K;) = p(K, | EF,KK)). (4.4-8)
P&, |Ky) = p(K, | FF,K\K) (4.4-9)

We transform Eq.4.4-9 in the same manner as Eq.9.1 in Section 9. It follows:
PEFFKK;)
(K FEKK,)+ pK FFKK,)
1
14 PELFFRKK)
P FEKK))

(K, |K,) =

1
14 PEF KKK )pK, | KK,)
p(FF, | KK K,)p(K, | K,\K,)
= 449y
+ P(F | B KK K)p(F, lKoK}Klz)P(Ko lKle)
P(F | KK K,)p(F, | K K .K,)pK, |K,K;)
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We see that Eq.4.4-9* contains p(F, | F,K K,K,), which also is part of Eq.4.4-6.
The problem at hand consists of the necessity to name the properties which allow
to remove F; from p(F, | F,K K,K,). Such properties exist in case of Eq.4.4-6
but not in case of Eq.4.4-9*. The reasons for that are the following:

1)

If p(F, | F,K,K,K,) belongs to Eq.4.4-9* the ap-probability values of K, and
K, are not given since

- the probability of F; depends on the ap-probability values of K, and X,, and

- the ap-probability values of K, and K, depend on the probability of F;.

Since p(F, | F,K,K,K,) is not a variable of an L-Net computation system, the
mutual dependence is not settled. Therefore, F, and F, are not independent in

case of condition (K K ,K,).

L)

The situation differs if we look at Eq.4.4-6.

Premise

(K, |K), p(K,|K,)and p(F, | F,)are part of an L-Net computation system.
Proposition

P |F) = p(F KKK K,) = p(F | KKK;). (identical to 4.4-6)
Explanation

If p(F, | F,K K K,) belongs to Eq.4.4-6 then p(F, | F,K,K.K;)=: p(F,|F,) is
a variable of an L-Net computation system. The variables p(X, |X,), p(X, |K;)
and p(F, | F,) are understood to have definite values which are determined by the
L-Net. If we now remove F; from p(F, | F,K,K,K,), without removing it from
the L-Net, there will occur no change of the probability p(F, | F,K,K,K,). This

holds since F, influences F; only via paths across X, and K, and the ap- .
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probabilities p(K, | K,) and p(K, |K,) remain unchanged if the L-Net remains
unchanged. Removing F, from p(F, | F,K K K,) without consequences is equi-

valent to the separation of ¥, from F, by means of (K, K,K;).

Because of the proposition above, we were able to establish Eq.1.2 and define the
set WERT(I) in the way we did [e.g. without additional events which might be-
long to the sets FOL(Uy), ..., FOL(Us) 1.

We now use the example of IlL.4.1 to define separated events in a less formal way.

Definition (Separated events)

Consider the structure of IlL.4.1.

An arbitrary event F, is separated from an arbitrary event F; by means of an ar-

bitrary conditioning product, containing negated, non-negated or apostrophized

events, e.g. (KK, K,), if

- the ap-probabilities of the participating “events, i.e. p(F, | F,), p(K, | K})
and p(K, | K,), are variables of an L-Net computation system, and

- all connections betweenF, and F, lead across the elements included in the
separating product, i.e. across {K,K,, K, }.

Then p(F, | F)) = p(F, | KK.KiK;) = (R | KKK,

Importance of separated events
The logic product W(H), no matter if the events in W(H) are negated, non-negated

or apostrophized, separates the event H’ from any event A ¢ W(H) if the causal
connections between H’ and A consist only of paths across events included in
W(H). So p(H | W(H)) can be kept small since the integration of all elements be-
longing to WERT(H) into the product W(H) produces the effect that we may ig-

nore all net nodes “outside”.
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Finally, we show the handling of Eq.4.4 and, in particular, that the three requested
interpolation points are satisfied. As an example, we choose p(H |U,L,I,U,U;).

If U, and U; are independent, conditioned upon (U, I; 1), Requirement b) of the

Linear Interpolation Theorem is satisfied. It follows:

P(H | ULLUUL)= @assy P(H |ULLUUL) pU, |U,)pWU; (US) (4.5
+ pH\ULLU,U,) pU, |U;)pU, | Us)
+ pH|ULLUU;) pU, |U,)p(U, |U5)

+ p(H |ULLU, -U,) pU, |U,)pT, |U;).

It is obvious that Eq.4.5 satisfies the 1" and the 2™ interpolation point.
The 3" interpolation point is defined by using p(E, | E) = P(E, | VE'.) with an ar-
bitrary VE;. Since the Linear Interpolation Theorem requires VE‘, = (E,..Ey, we
choose VU; = VU; =(U,I,1,) . Hence,
pH\ULLUU)= p(H |U,LLUU) pU, \U,11)pWU, |U,L1L,)

+ p(H |ULLU,U) pU, |ULL)pT, \U L)

+ PH|ULLUU,) pU, |ULL)pU, \ULL)

+ p(H |ULLU, -U,) pU, \UL1L)pU, |U,LL,)

pH | U11112U2U3) P(UzUs |U11112)
+ p(H|U,11,U,U,) pU,U, |U,L1,)
+ p(H |\ULLUU,) p(U,U, |U,LI,)

+ p(H|U\LL,U,-U,) pU, U, |U,LI,)

P(HUU,\ULL) + p(HU,U,|U1I,)

+ p(HU,U, \UL1)+ p(HU, U, |U,LL,)

It

PH|ULL,), ie. the 3" interpolation point is satisfied.
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Excursion
We are going to discuss the properties needed to turn the Linear Interpolation
Function (Eq.4.4) into an equation. This problem is presented in a simplified
manner using I11.1.2 and p(H | U; I; I U;* Us*) as an example:

> p(HULLUUUSUE)

2q3=0,1
> p(ULLUUUUS)

42,4,=0,1

P(H’Ullxle;U;)= (extension) L

_ XA ULLU,UUU) pUU, | ULLLULU,) +ete.....
2(U,U, [ULLUU,) +ete....

In order to transform Eq.4.6 into the form of the Linear Interpolation Theorem, we
need special properties which are defined by Eq.4.7 and Eq.4.8 (U, and Us are ar-
bitrarily negated or non-negated):

PH\U L LU Us' U, Uy = p(H| U I; I; U; Uy).

(4.7)

pU: U\ U 1 LU ' Us) = p(Uz | Uy) p(Us | Us). 4.8

Considering now the configuration of L-Nets and the concept of separated events
we may conclude:

1.

Eq.4.7 holds if W(U;) and W(Uj3) include only events which are connected to H’
solely via U, or Us, respectively, or which are already elements of the condition-
ing product ( U; ; I Uy Uy).

2.

Eq.4.8 holds if U, and Us are independent when conditioned upon (U,1,1,U,U5),
ie. if (U,J,1,U,U,) includes no events which are able to destroy the demanded

independence of U, and Us; in particular, the independence of two events is lost if

there is a common effect of these two events having p = 1.
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5. Causality and dependence

The arrangement of events in a causal network offers the opportunity to detect
stochastic dependencies. Furthermore, it opens a way to name the conditions

which are needed to turn dependent events into conditionally independent events.
A) De ent successors

First, we shortly repeat the note in front of Il.1.1.

Note:

- Ifa diagram does not show any information about the stochastic dependence
of two net nodes or two inhibitors, we are allowed to assume stochastic inde-
pendence until further statements are declared.

- Ifa diagram does not show any information about the inhibition of an arbi-
trary transition A—L, we are not allowed to assume the absence of inhibitors.

On the contrary: The transition A—>L is influenced in any case by inhibiting

events.
Structure 5.1:
Let K, Kz be dependent. K; K,
R F,
Special case K;=K.. K
F F,

(Structure 5.1 is valid) = (F; and F; are stochastically dependent).
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Structure 5.2:

Let

K, K be independent, and Kiy 2O RO Ky
Ji, ]2 be dependent.

Fi 0 F0
Special case J; = Ja: K, J K>
F, 0 F0

(Structure 5.2 is valid) = (F1 and F; are stochastically dependent).

Structure 5.3:
Let

K, K2 be independent, Kl LA kN Ky
Ji, J2 be independent, and
J;, K2 be dependent

or
J2, K; be dependent. F. 0O F, 0
Special case, e.g. J; =Kz Ky K 1

F1 FZ

(Structure 5.3 is valid) = (F; and F, are stochastically dependent).
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Sufficient condition for dependent events Fy, F»

(Structure 5.1v 5.2 v5.3 isvalid) = (F1, F2are stochastically dependent).
(C5.1)

In general, the converse of (C.5.1) does not hold. But we may state:
Necessary condition for dependent events F;, F>

If the left-hand side of (C.5.1) specifies a complete list of networks which produce

two dependent successors F) and F,, the conclusion may be reversed:

(The successors Fy, F» are dependent) = (Structure 5.1v 5.2 v 5.3 is valid).
(C52)

B) Eliminating the dependence of successors by conditioning

Stochastically dependent events that are descendant nodes in a causal network
may reach conditional independence by means of specific conditions. These con-
ditions will be made explicit in the case of the successors F; and F, contained in
Structure 5.1 through 5.3.

Eliminating the dependence between F;, F;
If Structure 5.1v 5.2 v 5.3 is valid

=
F1, F; are independent in case of a condition which contains one of the events
{Xk, Yi} for all k =1,...,4, according to the following enumeration:

1) Either X; € URS(F)) or Y; € URS(F2) if X; and Y} are dependent.

2) Either X; € INH(F)) or Y, € INH(F)) if X; and Y; are dependent.

3) Either X3 € INH(F)) or Y5 € URS(Fy) if X3 and Y3 are dependent.

4) Either Xy € URS(F)) or Y4 € INH(F) if X; and Y4 are dependent.

For each option 1) through 4) we give an example.
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Examples: Eliminating the dependence of F; , Fa.

Ko \KIN Ks
F,0 F.0O

URS(F1) = {Ko, Ki },

ad 1)

> F;, F, are independent if conditioned upon K;.
URS(Fz) = {Ki, K3, K3 }.

( / means: stochastically dependent.)

ad 2):

I

F; F2

URS(F1) = {Ko, K1 }, >

IJRS(F2) = { Kl’ Kz; K3 }'
Fy, F; are independent if conditioned

INHF) = {J1, 12 }, > upon (K J) or (K, Jy).

INH(F:;) = {J5, J4 }.
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ad 3). 4):

URS(F:) = {Ko, K1 },
URS(F2) = { K1, K2, Ks 1. >

1, F2 are independent if conditioned

URS(F1) = {Ko, Ki},
> upon (K; Ko I1) or (K; Kq Ks).

INH(F?) = {Ko}.
INH(F) = {J1}, >
URS(F2) = { K1, K2, K3 }.

C) Dependent parent nodes as a result of specific conditions

Stochastically independent events that are causes may become dependent in case
of specific conditions.

Structure 5.4:
Let

K, K2 be independent. K 7]
F, T

G O
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( Structure 5.4 is valid) = (K; and K, are stochastically dependent when
conditioned upon F) or G,.

Struktur 5.5;
Let
K1, Kz be independent. K K, K

F.0 F, 0

(Structure 5.5 is valid) = (K; and K are stochastically dependent when
conditioned upon (F; F3)).

D) Eliminating the conditional dependence of parent nodes
by changing the condition

The events K, and K; contained in Structure 5.4 lose the property of being inde-

pendent if they are conditioned upon F; , but they may become independent again

when conditioned upon F, . This requires that certain assumptions which are

named in A—L-Corollary 2 (see Section 8, Eq.8.6) are satisfied.

The events K; and K; contained in Structure 5.5, which lose independence as a re-

sult of the condition (F; F;), may become independent again in case of an ex-

tended condition.

(Structure 5.5 is valid) = (K; and K; are independent, conditioned upon the

logic product (F; F; K3)).
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Importance attached to independent events

Ii1.1.2 shows that the events F; , i = 1,..., 5 are stochastically dependent since these

level-of-effects events have common causes at the H/K-level. It is therefore defi-

nitely wrong to assume that the F; are independent.

But if we look at two arbitrarily chosen events Fy, F, € {F; |i=1,..,, 5}, and in-

troduce a condition (K; Kz K3 J H) according to the following requirements,

- T is the logic product of all known inhibitors which act upon the transitions
leading to F; and F7,

- (K1 Kz K3 H) includes all causes of F;and Fz,

we may have a chance to reach

pF R\ K Ko K JH) = pF) | K1 K> K3 J H) p(F2 | Ki X2 K3 J H). 5.3

This equation holds if, in addition, we impose the restriction that unknown ele-

ments belonging to INH(F) ) are independent of the unknown elements in INH(F2)
(see Section 6, Assumption Ilc).

To sum up, it can be said that the F;, situatgd at the level of effects, reach sto-
chastic independence if we use a conditioning product which contains ail causes
ofthe Fy, i = I,..., 5, and if, in addition, the events in INH(F; ) are independent of
the events in INH(F, ), for all ip #1;.

Although we are forced to admit the stochastic dependence of the F; as a conse-
quence of their common causes located at the H/K-level, there is no such general

restriction concerning the independence of two elements A and B, 4 € INH(F, )
and B e INH(F, ). If there is information that events in INH(F; ) depend on some

events in INH(F, ), we take at least one event of the detected paired dependence

and place it into the product J.

The equivalence of causality and independence - in conjunction with the neces-

sity of using independent events - leads to the assumptions stated in Section 6.
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6. _Assumptions

L-Nets are structured according to the following assumptions in order to facilitate
the intended computations. The causal net, i.e. the web of transitions which start
and end at irregular physiological states, must necessarily allow these
assumptions. We discuss the situation in detail and introduce a number of symbols

which again are defined using the event H of I11.1.2 as a reference.

U  product of elements from the set URS(H); U:= (U, U;’ Us)).

F  product of elements from the set FOL(H); F:= (F) F> F3 E Fs).

K product of elements from the set DIFF(H); K:=(X;’ K> K3)).

I product of elements from the set INH(H); I:= (I; ).

J  product of elements from the sets INH(F}),..., INH(Fs); J:= (J; 72- ).

Assumptions I, Ila, Ilb, Ilc, and Il as well as the complementary Assumptions
Ila* Ib* IIc* apply equivalently to every non-inhibiting net node which has an

unknown ap-probability.

Assumption [
The events of F, I, J possess the probability (p = 0) or (p = 1).

Comment on _Assumption I
The problem at hand is to determine the probabilities of hypothetical causes, i.e.

the probabilities of events belonging to the H/K-level, to the U-level or to levels
situated “further up” (see Fig.1.2). The computation of these values is done by
using the probabilities of inhibiting events, of F-level-events or of events “further
down”, all of which should not be uncertain in order to achieve precise results.

Assumption Ila
URS(F, ) includes all causes of F,,foranyF, € F.
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Comment on Assumption Ila
Medical diagnoses suffer from possible incorrectness unless every cause of each

single symptom is taken into consideration, and this applies to computer aided
procedures as well as to pencil and paper methods. But the main purpose of
Assumption Ila is the fact that elements in F can reach conditional independence
only if, among other requirements, the conditioning product contains each and

¢very cause.

Assumption IIb
The events in URS(F, ) are self-reliant causes of F,, for any F, € F.

Comment on Assumption ITb
Self-reliance as a property of causes is going to be defined precisely when
introducing the A—L-Theorem below. To get the idea: Self-reliant causes of an
arbitrarily chosen net node F; show the characteristics that

- the events in URS(F) are independent, and that

- an arbitrary Fi-generating process is not influenced by other causes or by

the inhibitors of another F;-generating process.

For the case of medical diagnoses we may assume that Assumption IIb is satisfied

if the causes of F; do not show a close relationship.

Assumption llc

For any {F}O,F}l} c{Fi|i e N}, {K;, Ky} cURS(F, ) K5 € URS(F,I) and all
events X, Y, Z we have:

- Xe URS(F,) is independent of Y € URS( F) and Ze URS( F,).

- Xe INH(K,—F, ) is independent of Y € INH(K;— F, ) and Ze INH(K 3—>F,).

- Xe URS(F,) is independent of Y € INH(F, ) and Ze INH(F, ).

Comment on Assumption Ilc

1. In order to obtain Eq.9.1, independence of events in (K J H) is required.
2. Eq.9.2 also needs independence of events in (K J H).
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3. Eq.9.3 requires conditional independence of the F; € F. This is satisfied if the
conditioning product contains all causes of the F;, and if additionally the
elements in INH(F, ) are independent of the elements in INH(F,), for

any ¥, ,F, eF.

Assumption Il
PWUFKIJ{H) = p(UI|H) p(FKJ| H), event H negated or non-negated.

Comment on Assumption III
Assumption HI mathematically expresses the separation of events in (U I) from

events in (F K J) brought about by means of the net node H. Therefore, the nodes
belonging to (U I) and the nodes lying “beneath™ the (U I)-level are connected

only via paths across the node H.
Assumption III, which is used to obtain Eq.9.1, causes no problems even though

there are ‘-events located in front of the conditioning lines.

In anticipation of Section 7 below, we take a closer look at the statement of

Assumption IIb in order to determine the parts which are covered by Assumption
Ilc.

Proposition
Let F e Fand K;, K; € URS( F,o ) be arbitrary events.

If [elements in URS(F, ) are independent]
A [elements in INH(K)— F, ) are independent of the elements in INH(K;— F, )]

A [elements in URS(F, ) are independent of the elements in INH(F, )]

=
the elements in URS(F, ) are self-reliant causes of F,, ie. any element belonging

to URS(F, ) meets the Assumptions 1/4 —L through 4/4A—L (Eq.7.6).

The proposition leads to the following corollary:
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Assumption Ilc = Assumption Illc/single F, € F = Assumption IIb.

We are able to handle probabilities like p(F | K J H) [see Eq.9.1] because we
introduced the necessary assumptions. But we still need similar assumptions to be
able to transform p(H| U ).

Assumptions Ifa, IIb and Iic have been established to arrange the events at the F-
level and the H/K-level. We now “move up to the next floor” and declare the
H/K-level to be the new level of effects, and the U-level above to be the new level
of causes. This action yields the new set of assumptions which we name Ila*, ITb*

and IIc* and which read as follows:

Complementary assumptions

Assumption llg*
The set URS(H) includes all causes of the event H.

Assumption [Ib*

The events in URS(H) are self-reliant causes of H.

Assumption Ilc*

Let Uy, Uy € URS(H) be arbitrary events.

- U, U; are independent.

- The elements in INH(U;-»H) are independent of the elements in INH(U,—H).
- The elements in URS(H) are independent of the elements in INH(H).

In Section 9 we will introduce a procedure to decompose conditional probabilities
with respect to inhibiting events contained in the conditioning product. Such a

decomposition into factors needs the following assumption.

Assumption concerning inhibitors

Let K; € URS(F, ) be an arbitrary event and I, ..... I, the inhibitors of K;—>F, .

If K exists, 13,..., I are assumed to be self-reliant causes of the event (K, ~ F).
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Structure and appearance of the causal network depend upon the assumptions
which we had to establish. Because of the equivalence of causality and
independence, assumptions which demand stochastic independence or the
separation of events have great impact:
Ilc Independence of two arbitrarily chosen elements belonging to one or two
arbitrary sets included in the set of sets{URS(F;), INH(F)) | F; € F}.
Ilc* Independence of two arbitrarily chosen elements belonging to one or two
arbitrary sets included in {URS(H), INH(H)}.
HI  Separation of the elements in (U I) from the elements in (F K J) by means
of H.
This seems to impose tremendous independence demands. But as a matter of fact
there is almost only one essential requirement, namely - short and inexact - the
independence of causes and inhibitors situated at the level of hypotheses.
a) There are no fundamental reasons against the assumption of independent

events included in an arbitrary set URS(F, ), F, € F, because these events

generally do not have common predecessors.

b) If the elements contained in URS( F}n) are not closely related (since they do
not have the same ancestors), we may assume the same for the elements in
INH(F,).

c) Inhibitors represent regular or irregular physiological states while causes
belong to irregular physiological states only. Therefore, the assumption that
causes are independent of inhibitors may not be too far from reality.

Altogether there is justified hope to satisfy Assumption Ilc.

Prospect
In the course of Section 9 we utilize the assumptions in order to obtain Eq.9.1.

Since Eq.9.1 includes conditional probabilities of sometimes extended size, we
need a decomposition into factors. This requires the A—L-Theorem and the

A—>L-Corollaries which are presented in the Sections 7 and 8.



Section 7: A—»L-Theorem 68

7. AL-Theorem

We want to obtain statements about the probability of a transition directed from an
existing parent event towards a possible subsequent event.

We use the arrangement of events in the L-Net and look at an arbitrarily chosen
net node L and its set of causes URS(L). The point of interest is the probability
which may be assigned to a generating process ending at the event L and starting
at an arbitrary element of URS(L).

If there are k causes A,,..., A¢ of a given net node L, i.e. if the L-Net
LO

represents the current situation, the expression p(L | AlZZ...Zk) primarily gives
the probability of event L in case of condition (4, Ay...Ax). Since there is no other
cause of L in addition to A, the expression p(L | AJ;...Z,,) simultaneously gives

the probability of the event “A; creates L“ in case of the condition (A,Zz A ).

The event [A; creates L] has the meaning [the system state A, leads to the system
state L], or [the system state L develops from the system state A,], or short {there
is a transition from A; to L]. In this context we consider the cause A;, the
generated event L and the causal generating process “A; creates L“ as events

which occur together.

Correspondingly, the expression p(L| 44, Za...zk) represents the conditional
probability of the event [(A; creates L) v (A; creates L)]. In case of condition
(AlAZZ:,..;h) , the causal process [A; creates L] may be inhibited or accelerated
by A; and the causal process [A; creates L] may be inhibited or accelerated by A;.
Then no method of standard probability theory is suited to decide which fraction

of the generating process belongs to A; and which fraction belongs to A,. In this
case, we will not be able to assign a numerical value to the conditional probability
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pl(A creates L)| 4,4, :4_3...2&]. All that can be done is to unite A, and A; and

determine p[(A; A;) creates L |A1A223...2k].
Summary: If L denotes an arbitrary event and A an arbitrary element taken from
the set URS(L), we regard the causal process [A creates L] as an event as well and

denote it by A~ L. The objective is to develop formulas to compute p(A—L | A).

Note
In the past we used the symbol A.L instead of A—L.

A.L and A->L are synonymous symbols.

Because of the definition of A->L the following statements hold:
1. If A is an L-generating event then 4 is not, i.e. A->L=02.
2. If (A-L) then A and L must exist.

3. If Aor L then(A—L).

Consequently, we obtain the following equations:

p(A-L) = p(A (A-L)) = p(A (A-L) L). (7.1)
p(A-L| 4) =0. (1.2
p(A-L|A L) = 0. (7.3)

If the symbol A does not represent a single event but a logic product of events, the

definition of [A creates L] is extended as follows:

Definition ((A;...Ax) creates L)
Incase of A := (4;... 4y) and AL := (4, ... Ax)->L we define:

DI(A1 ... Ap—L | A; .. A = PI(A1=D) vi.. v(4—L) | 4; ... 4],
(A A) S L) 4..4] = pl(4 > DA A, > L) 4..4,].

Applying this definition, we obtain Eqs.7.4 and 7.5, which correspond to Eqs.7.2
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and 7.3 above.
p((A1 .. AQ-L| Ai.dr) = 0.
p((A1 .. A)-L|A; .. Ac L) = 0,

(7.4)
(1.5)

In order to state the A—>L-Theorem we use symbols which are introduced next:

/\A/\A

1.7.1
View of the symbols used to establish the A—L~Theorem.

INH(A—L) INH(X~L)

A arbitrarily chosen, but fixed product of non-negated elements

belonging to URS(L), A:=(Ai... Ag).

X arbitrarily chosen product of negated or non-negated events

belonging to URS(L) \ {elements in A}.

A-L transition “A creates L”. In case of A:= (Aj...Ay), the symbol A—L

means: “Aj creates L” v ... v “Ay creates L.

INH(A—L) set of events which inhibit A;—L, ..., Ak—L, or which increase or

decrease the inhibitions acting upon A;-L, ..., Ax>L.

INH(L) set of events which inhibit the transitions leading to L, or which

increase or decrease the inhibitions acting upon the transitions

leading to L.

D arbitrary product of negated or non-negated elements belonging to

INH(A-L).



Section 7: A~»L-Theorem 71

We demand that an arbitrary A and all X satisfy the following assumptions:

Assumption 1/A—L:
P((A-L) (XL) |AX) = p(A—>L| AX) p(X—L| A X).

Assumption 2/A—L:
P(AL|4X) = p(A4—>L|A).

Assumption 3/A—>L:
P(X—L|AX) = pX—L| Ai..AX ).

Assumption 4/A—L:

P(X|A) = p(X| Ar.. Ak ).

Definition (self-reliant cause)
Event A is called a self-reliant cause of event L, if A satisfies Assumptions 1/A—L

through 4/A—L for any X.

Self-reliant causes are the subject of Assumption IIb which is included in

Assumption Ilc (see Section 6):
Assumption llc => Assumption lc/single F, € F = Assumption IIb.

A—>L-Theorem

Let A:= (A;...Ay) be a self-reliant cause of the event L. Then

_ pLiH-pd LE...E) .
pASLIY Ll Adr) (7.6
pA-L|AL) = p(L| A)- p(L] Ar...4) 7.7

p(L1A) p(L] Aide)

Proof
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1.

From Assumptions 1/A—L and 3/A—L we obtain for any X:

p(X = L| 4X) = p(X - L| 4.4 X).
p(X - L| AX(4 > L)) = pX-L|AX). >
e

pX > L1 AX(A> L) = p(X - L| A1.. 4 X).

=

X > DAX(A> L) _ p((X > L)dr.. 4 X)
p(AX(4-> L)) A A X)

=

PXX > L) AA>L) _ p(X(X > L)| 4. 4x)

PX A4 L)) p(X | 4. Ar)

Assumption 2/A—L yields:
p(A—>L|AX) = p(4— L] 4).

=

PASDAX) _ p(A>D)4)
p(AX) P

=

(X144 L)) = p(X]|4).
=> (because of Assumption 4/A—>L)

PX|AASLY) = p(X| 4. A).

From Egs.(*) and (**) follows for any X:
PXX > L) AA-L) = p(X(X - L)| A1..4s).
—4

p(LIAA> L) = p(L]| A 4.

The last line follows, since

™

**

(**%)
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- Eq.(***) holds for any X,
- only (X) is able to generate L, and
- the probability of (X(X—L)) conditioned upon(4(4 — L)) is equal to the

probability of (X(X—L)) conditioned upon (21 ...Zk) .

2.

Without any further assumptions, only using extensions, transformations and the
statement of part 1., we proceed as follows:

p(LA) = p(LAA—> L))+ p(LAA > L))

=

p(L A)=pL|A(A->L)) p(A(A->L)) +p(L| A(4—> L)) p(A(4 > L))

=
[ because of p(L| A(A—> L))=1and p(L| A(A— L)) = p(L| Ar..As) ]
p(LA) = p(A(A—> L)+ p(L| 4. A)p(A(4— L)).

=

p(L4) =

P(4—> L) A)p(A)+ p(L| 4r...4x) p(A) - p(L | Ar...Ax)p(4 > L| A)p(4).
=

P(LA) = p(A— LI A) [ p(4)~ p(Ap(L| Ar...dx) 1+ p(A)p(L| Ar..Ar).

=

A LA = PLA= PP A )
PA=LID p(A) - p(ADp(L| Ar...4k)
=
p(A—>L|4) = p(L‘A)_E(L'ZI...Zk)'

p(L| Ar..Ax)

Eq.7.7, the second statement of the A—L-Theorem, holds, since
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_ p((4-> L)4L)
p(AL)
_ p((4—>L0)4)
P(AL)
_ pA4-L|4
p(L1A)

p(4d—> L|AL)

Complementary remark to Eq.7.6:

Proposition: 0<p(A—>L[A)<1.
Proof (by contradiction):
Assumption 1: p(A—-L|A)>1.

=

pULIA-pLidA)
1-p(L| Ar..4x)

=

P -pL| A A) > 1= p(L| 4. Ar).
=

pL|A) > L

=

Contradiction.

Assumption 2: p(A—L|A)<0.
=

PLIA) = pL| A Ar)
1- p(L| Ar.4r)

<0

=

PL[A) < p(L| 4. A).
=

Contradiction.
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Deduction from the A—1-Theorem

If we know about the existence of two events A and L, the A>L-Theorem draws
no distinction between [A is the cause of L] and conversely [L is the cause of A].
In other words: In case of two existing events A and L, i.e. if the conditioning
logic product (A L) is valid, the event A—L has the same probability as the

event L>A. This is the subject of the following rule.

In analogy to the Multiplication Rule we write the L-Rule as follows:

Multiplication Rule: pAILpd) = pl|A4) pA).

L-Rule: pA—L|AL = p(L>4|LA).

In a different form:

Multiplication Rule: pAL = pAlLpd) = pliA4 pA).
L-Rule: PUD-PDPE) _ 114D = plL—od|L4).

= P(AL)p(4-L)

Proof of the L-Rule:

pLI4)-pLI|A)

p(L14)-p(L| 4)

_ PLAPA) - p(LAP(A)

PLAP(L-4)

_ P(LA)- pLA) p(4) - pLA)p(4)
pULAP(L-4)

_ PULA) - p(A)p(LA) + p(LA)]
p(LAp(L-4)

- PdA-pHplL)
p(LA)p(L- 4)

p(Ad—L|AL) =

( Continued on next page )
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- 2dA) - pAHpd)
pULAP(L-4)

- D -pHp4
pAL)p(4-L)
_ PAL)-p(L)[p(LA) + p(LA)]
p(AL)p(4-L)
_ P(4L)- p(AL)p(L) - p(4L)p(L)
P(AD)p(4 1)
_ pALp@) - p(4L)p(L)
P(AL)p(4-L)
_ P4~ p4]1)
P41 L)p(4| L)
= p(L—> A|L4). O

The following conjecture (regarded to be almost certainly true) has found its

Jformal proof as a result of the L-Rule:
It is impossible to determine the direction of a causal connection between two

existing events by means of stochastic evaluations.

In the course of the expert system’s development, which started in 1985, it has become a custom to
use the letter L as a characterization. Originally, the symbol L indicated the “leading symptom”
(German: Leitsymptom).
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8. A—L-Corollaries

The A—L-Theorem depends on Assumptions 1/A—L through 4/A—L which are
contained in Assumption Ilc, However, it may happen that the independence of
the events in URS(L) and in INH(L), or the independence of the events in URS(L)
of the events in INH(L), cannot be reached in any case. We then make use of the
possibility to reduce the independence demands by defining subsets of events

which are allowed to contain dependent events.

We use the following notation;

A arbitrarily chosen but fixed logic product consisting of
non-negated elements in URS(L), A:=(A;... Ay).

B logic product consisting of arbitrary non-negated elements in
URS(L)\ {elements in A}.

C logic product consisting of negated elements in
URS(L) \ {elements in (A B)}.

D arbitrary logic product consisting of negated or non-negated
elements in INH(A—L).

X arbitrarily chosen logic product consisting of negated or non-negated

events in URS(L) \ {elements in (A B C)}.

Assumptions 1/Cor.] through 4/Cor.1 needed for A—»L-Corollary 1

For an arbitrarily chosen event A := (4,...Ay) and any X we demand:
1Corl: p((4—> LY(BX)~ L)| ABCDX)
= p(4 - L)| ABCDX)p((BX) - L| ABCDX).
2/Corl: p(4—>»L| ABCDX) = p(A->L|ABCD).
3/Cor.1: p(BX) — L] ABCDX) = p((BX) - L| A1...4+BCDX).
4/Cor.1: p(X | ABCD) = p(X | 41..4: BCD).
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A comparison with Assumption Ilc reveals the difference that now

- only events in URS(L) \ {elements in (B C)} have to be independent and not
all events in URS(L), and

- only events in INH(L) \ [ INH(C—L) U {elements in D}] are demanded to be
independent and not all events in INH(L).

Hence, we establish the following two steps to handle dependent events:

1. If URS(L) contains two elements being stochastically dependent, we assign
one of them to B or C.

2. If INH(A-L) contains an element which depends on an element in
INH((BX’ )-»L), it is sufficient (according to the statements in Section 5) to
insert this INH(A—>L)-element into D in order to preserve the independence of
A-Land (BX )-L.

But we have to accept the drawback that the formulas (belonging to the A—>L -

Corollary 1) will become large for extensive logic products B, C, D.

Proposition
Let K;, K> € URS(L) be arbitrary events.
If [elements in URS(L) \ {elements in (B C)} are independent]
A [elements in INH(K;—L) \ (INH(C—L)  {elements in D}) are independent

of the elements in INH(K;—L) \ (INH(C—L) U {elements in D})]
A [elements in URS(L) \ {elements in (B C) } are independent of the elements

in INH(L) \ (INH(C—L) U {elements in D})]

=

any element in URS(L) satisfies Assumptions 1/Cor.1 through 4/Cor. 1,

Definition_(conditional self-reliance)

Ifan event A & URS(L) satisfies Assumptions 1/Cor. I through 4/Cor.1.,
it is called a self-reliant cause of L, conditioned upon (B C D).
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A—L-Corollary 1
Let A be a self-reliant cause of L, conditioned upon (B C D).
Then

_ p(L) ABCD) - p(L| 41...AxBCD)

A— L|ABCD —
P | ) p(L| Ai...Ae BCD)

@8.1)

p(L| ABCD) - p(L| 4:... A BCD)
p(L| ABCD)- p(L| 41...AxBCD)

p(Ad—> L| ABCDL) = (8.2)

Proof:
1.

From 1/Cor.1 and 3/Cor.1 it follows that for any X :

p((BX) = L| ABCDX) = p((BX)—> L| Ai...A«BCDX).
P((BX)—> L| ABCDX(4 > L))= p((BX)— L| ABCDX).

=

P((BX)—> L| ABCDX (A > L)) = p((BX)—> L| A1...A«BCDX).

=

p((BX) - LIABCDX (4> L)) _ p((BX)~> L_]Zx...ZkBCD)?)
P(ABCDX (4 — L)) p(4:...4: BCDX) '

=

P(R[(BX) > L)) ABCD(4 > L)) _ p(XI(BX)—~ L]| Ai...A+BCD) .
P(X| ABCD(4 > L)) p(X | 41...4x BCD)

*

2/Cor.1 yields for any X :
p(A— L| ABCDX) = p(4— L| ABCD).
=

p((4L)ABCDX) _ p((ﬂ)ABCD)_
pP(ABCDX) P(ABCD)

=
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p(X | ABCD(A—> L)) = p(X | ABCD).
=> (‘because of 4/Cor.1)
p(X | ABCD(A—> L)) = p(X | Ar...A«BCD). (*%

From Eq.(*) and Eq.(**) we now obtain for any X :

p(X[(BX) - L}| 4BCD(4 — L)) = p(X[(BX) - L]| A1..4xBCD). (**%)

=

p(L| ABCD(4 > L)) = p(L| A:...A«BCD).

The last line follows, since

- Eq.(***) holds for any X,

- only(B X ) is able to generate L, and

- the probability of ()2' (BX' ) = L) conditioned upon(ABCD(A_—-;—L)) is equal to
the probability of X (BX ) = L) conditioned upon (21 A BCD).

2.

Without any further assumptions, only using extensions, transformations and the

statement of part 1., we proceed as follows:

p(LABCD) = p(LABCIXA —> L))+ p(LABCIXA —> L)).
=

P(LABCD) = p(L|{ABCD(4 - L))p(ABCD(4 — L))

+ p(L| ABCD(4 = L)) p(ABCD(4 — L))
= ( because of p(L| ABCD(A — L)) =1 and
p(L)| ABCD(A— L)) = p(L| A1..A«BCD) )
P(LABCD) = p(ABCD(A— L))+ p(L| 41...AxBCD)p(ABCD(A — L)).

=
P(LABCD) = p(4— L| ABCD)p(ABCD)+ p(L| A:...AxBCD)p(ABCD)
— p(L| 41...4«BCD) p(4 — L | ABCD) p(ABCD).
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P(LABCD) = p(A—> L| ABCD)-[ p(ABCD)~— p(ABCD)p(L| A:..AxBCD)]
+ p(ABCD)p(L)| A:...AxBCD).

=

_ P(LABCD)~ p(4BCD)p(L | 4...4BCD)
P(ABCD) - p(ABCD)p(L| A...AxBCD) '

p(4— L| ABCD)

=

p(L| ABCD) - p(L| 4:...A+ BCD)
p(L| 41...A¢BCD) '

p(4~> L| ABCD) =

Eq.8.2, the second statement of the A—>L-Corollary 1, holds, since:
p((4—> LYABCDL)
p(ABCDL)

_ p((4— L)4BCD)
p(ABCDL)
_ p(4-> L| ABCD)
p(L|ABCD)

p(4—> L| ABCDL) =

A-L-Corollary 1 allows to reduce the independence demands of the A—L-
Theorem step by step.

If (A B C) contains all events in URS(L), i.e. ifX =2, Assumptions 2/Cor. 1
and 4/Cor.1 expire. This is the subject of the following A—L-Corollary 1.1.

A—L-Corollary 1.1

Let (4 B C) contain all events in URS(L). Let A := (A,...Ay) satisfy the following

assumptions:
1/Cor.1.1: p((A—L) (B=L)|ABCD) = p(A->L|ABCD)p(B->L|4ABCD).

2/Cor.1.1: expired.
3/Cor.l.1: p(B->L|ABCD) = p(B->L| 4: ... Ax BCD).

4/Cor.1.1: expired.
Then
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p(L| ABCD)- p(L| 4:...Ax BCD)

p(A—>L| ABCD) = tid AN
p(L| Ar...ABCD)

(8.3)

Proof:

The result follows from A—>L-Corollary 1 for X=0.

Complementary remark to Eq.8.3
Proposition:
If [elements in INH(A—L) are independent of the events in INH(B—L)]

A [events in A are independent of the events in INH(B—L)]

=
A satisfies 1/Cor.1.1 and 3/Cor.1.1.

A—L-Corollary 1 results in the following A—>L-Corollary 1.2, if all causes of L

are negated with the exception of event A.

A—L-Corollary 1.2

Let (4 C) contain all events in URS(L).

Remark: All assumptions are expired.

Then
p(4— L | ACD) = p(L ‘ AC]_)_) :p(£| Z]...ZkCD)
p(L| A1...AxCD)
= p(L]| ACD). 8.4
Proof:

This is a direct consequence of A—L-Corollary 1, since p(L | A ...Z;,CD) =0.

For some applications the following might be significant:
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Let A = (4,..4,)and C := (4u..4v) represent logic products which contain all
known elements from URS(L), i.e. A includes all known causes of L having p = 1

while C includes all known causes of L having p = 0. The logic product B consists
of all unknown causes of L.

Without loss of generality we set D = .

If there are no causes of L outside of (A C), i.e. if B =, we have

p(L|Ar..Ax Au..A,B) =0.

If we assume B # & and thus have p(L| A A Zu...ZvB)> 0, we want to express
the probability of “A creates L” in terms of p(L | Ar..Ax Au..4,B). If we assign
an arbitrary value, e.g. 0.75,t0 p(L] 4,..4, Zu...ZvB) , we obtain from Eq.8.3

0.75- p(L| 41...Ak Au...4,B)

A>L|4..A A, AB) = AR
P |4yt ) 1- p(L| Ar...Ak Au...A,B)

(8.5)

which leads to the following table of values:

0.75— p(L| 41...Ax Au...A.B)

p(L| 4v.. Ax Au...4:B YR P(A—>L|4.4,4...4,B)
0.00 0.75 : 1.00 0.7500
0.01 0.74 : 0.99 0.7475
0.02 0.73 : 0.98 0.7449
0.03 0.72 : 0.97 0.7423
0.04 0.71 : 0.96 0.7396
0.05 0.70 : 0.95 0.7368
0.06 0.69 : 0.94 0.7340
0.07 0.68 : 0.93 0.7312
0.08 0.67 : 0.92 0.7283
0.09 0.66 : 0.91 0.7253
0.10 0.65 : 0.90 0.7222
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0.75- p(L| 4i...Ax Au...AsB)

p(L| 1.4k Au... A, B) N A P(A—>L|A.A,Au.AB)

0.1 0.65 : 0.9 0.72
0.2 055 : 08 0.69
0.3 045 : 0.7 0.64
0.4 035 : 06 0.58
0.5 025 : 05 0.50
0.6 0.15 : 04 0.38
0.7 0.05 : 0.3 0.17
0.75 0.00 : 025 0

p(d—> L| 4.4, Au..A,B)
1.00_5
0.90_
0.80_|
0.70,
0.60_
0.50
0.40_|
030_| \
020_|

0.10_|
0.00_|

v

I l I | | | l |
00 01 02 03 04 05 06 07 08

P(L| 4. Ak Au.. AvB)
11.8.1
Graph of Eq.8.5.

Obviously, the probability of [A creates L] decreases if unknown causes increase.
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The A—L-Theorem and its Corollaries can also be used to answer a question

which emerged in Section 5.

Conjecture
Let independent events A and B be causes of an event L. Then

P(AB|L)=p(4| L)p(B|L).

This statement, although it seems to be next to certain, is not true in general.

The reason is that the inhibitors and their dependencies are not defined. If the
independence of A and B is the only information about the structuring of the
causal network, it is of course not forbidden that the inhibitors belonging to A—>L
are dependent of the inhibitors belonging to B—L, or that for instance the event B
influences A—L.
Example:
R4

LO
The events A and B are independent, but p(AB| L) = p(A| Z) (B} Z). This can
be seen immediately by considering the fact that event L with p = 0 causes the

probability of A to decrease if the probability of B decreases.

The following corollary states the properties which are needed to maintain the

independence of A and B in case of the condition L.

A—L-Corollary 2

Let events A and B be arbitrary causes of an event L. If A and B are self-reliant
causes of L, then

p(4B| L) = p(4| L)p(B| L). 3.6)
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Proof:
P(AB)—>L|4B) = p(A—>Lyv (B L)| 4B)
= p((A> LYB—L)| 4B)
= (because of Assumption 1/A—L)

p(A—> L| AB)p(B — L| AB)
= (because of Assumptions 2/A—L and 3/4—L)

p(A4—> L|Ap(B— L|B).

Applying the A—L-Theorem, Eq(*) becomes:
p(L|4B) _ p(Li4) pL|B)
p(L|4-B)  p(L|4) p(L]B)
=> (because A and B are independent)

pLdB) _ p@h) pIB)
p(L-4-B)  p(L-A4) p(L-B)

=

p(4B|L) _ p4|L) p(B|L)
p(4-B|L)  p(4|L) p(BIL)

=

P(ABIL) [1- p(4|L) - p(BIL) + p(4|Lyp(B|L)]

= p(4|L)p(BIL) [I1- p(A|L) - p(B|I) + p(4B|L)].

P(4BIL) [1- p(A|L) - p(B|L) ]
= p(4|L)p(BIL) [I1- p(4|I) - p(B|L)].

=

P(4BIL) = p(4|L)p(B|L).

Eq.(**) holds, since

™

**
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p(4-B|L) = 1-p(4-B|L)

1- p(4vB| L)

1-[p(4| L)+ p(B| L) - p(4B| L)]

1- p(4| L)~ p(B| L)+ p(4B|L). o

The independence of self-reliant events is not lost if conditioned on L. If the

events A and B are only independent but not self-reliant, Eq.8.6 does not hold.

A-L-Corollary 2 is used in the course of Section 9 below.

If 1) and I, denote two inhibitors which act upon an arbitrary transition K;—F) ,
and if I; and I; are self-reliant causes of (K, — F}) for an existing event K;,

A—L-Corollary 2 yields:

p LK > F)= p(l,|K, - F) p,|K, > F).

A—L-Theorem and A—»L-Corollary 1 have been published in 1991. See:

LIEBEL, F.-P.: Wahrscheinlichkeit der Entstehung eines Folgezustands aus einer vorhandenen Ur-
sache. In: Osterreichische Zeitschrift flir Statistik und Informatik (ZSI), 21. Jg. (1991), Heft 3 - 4.
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9. Computation of ap-probabilities

In order to compute the ap-probability p(H | H’) we make use of the assumptions
and transform p(H | H')= p(H |UFKLJ), which is identical to Eq.1.3, as

follows:

p(HUFKIJ)
p(HUFKIJ)+ p(HUFKIJ)

1
L PUFKLJ | H)p(H)
pP(UFK1J | H)p(H)

1
, PFKJ H)p(UI H)p(H)
P(FKJ \H)p(UI H)p(H)
1
, P(FKJH)p(UI H)
P(FKJH)p(Ul H)

1
p(F [KJH)p(KJH)p(UI H)
p(F \KJH) p(KJH)p(U1 H)

1
p(F [KJH)p(H | K))p(UL H)
p(F [KJH)p(H | K))p(UL H)
1
1+ PF KTH)p(H)p(UL H)
p(F\KJH)p(H)p(UL H)
1
p(F | KJH)p(UI H)
p(F | KJH)p(UIH)

_ 1
L PEIKTEpEUD oD

p(F|KJH)p(H |UI)

p(H|UFKLJ)

=(Assumpt.IIl)

= (Assumptlic)
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The next step will be the computation of the conditioned probabilities p(F | K J H)
and p(H | U I) which appear in Eq.9.1. Since these probabilities normally contain
apostrophized events within their conditioning products, we have to apply an

interpolation procedure. (Early in Section 6 we defined K and U to represent the

products X =(K,K,K;) and U =(UU,U,).)

We first consider p(F | K J H). According to Assumption Ilc, the events in the
logic product (KJ H), i.e. K;, K5, K3, J;, Jo, and H, are independent. Since K; and
K; are independent in case of the condition (K, J H), we are able to use the Linear
Interpolation Theorem to obtain:
P(EFy...Fy | KKK JH)
= p(FF,..F | K. K,KJH)p(K, | K)p(K, | K;) ™)

+ P(RFy..Fy) KK, KJH)p(K, | K)P(K; | K;)

+ p(RFy. Fs | KK KK, | K)p(K, | K))

+ p(FF,.F,| KK, K,JH)p(K; | K)p(K, | K;).

In order to establish Eq.(*) we demonstrate another method which does not utilize
the Linear Interpolation Theorem. However, the independence of the events in

(K J H) is also needed.
We execute the following simple transformation by using the chain rule:

P(F|KJH) = p(Fy..Fs| KJH)
= p(F; | F2..FsKJH) **
-p(Fy | F5..FsKJH)
-p(F3| Fa FsKJH)
-p(F4| FsKJH)
-p(Fs | KJ H).

We now apply the L-Theorem (Eq.4.3) five times to the right-hand side of Eq.(**)
and obtain:
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P(RFy..Fy | KK, Ko JH)

p(K, 1K) p(K, | K) ‘
FF .FKKK,JH) +...efc.
R AT AN )

(K, 1K) pK, | K,)
F,..F,K,K,K,JH) +.etc
PE-EEREID TR aKy)

pK, |K,) p(K, | K3)
F,F,..F,K,K,K,JH) +..etc.
PER-BEEAID TR i)

p(K, [K}) p(K; | K,)
(F,..F,K,K,K,JH) +..etc
PRE-BRESTT0KY pKs)

— p(K, 1K) p(K, | KS)
(F,F,..F,K,K,K,JH) +..elc.
PETSAR 00k oK)

p(Fon K KK PELK) PE LK)
pK))  pK,)

= p(K, | Kl) P(Ka | Ks)
p(F,F,K,K,K,JH) +...efc.
e p(K)  p(K;)

p(F;KleK3JH)p(Kl |K1) p(K3 IK3) +..elc
pK) p(K3)

Fok K K i) 2EL LKD) P | K3)
o( ,K;JH) (K, oK)

P(K,K,K,JH) p(K, | K) p(K; 1 K3)
18, K )

+...elc.

+...elc

P&, | K,) P&, 1 K3)
p(F,F,..F,K,K,K,JH) +..elc.
_ T pK)  pK,)

oK K, K, i) PELKD) pKs 1K) |
128 (K, p(KJ)

.etc

i P(K1 lKI) P(Ka J K:)
p(FF,. F,K K,K,JH)- . +..elc.
~ PRSI p(KJHY  p(K)  pKy)

(K, K,K,JH)- ! PK, 1K) P(K; |K;) +
p(KJH)  pK)  p(K;)

= (because the events in (K J H) are independent)
PEFy.. Fy | KKK JH) (K, | KDP(K, | K;) +.etc.

el
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Note:

We are allowed to apply the Linear Interpolation Theorem to the left-hand side of
Eq.(**) because Requirement b) of the Linear Interpolation Theorem is satisfied.
But we are not allowed to do the same to all factors on the right-hand side of

Eq.(**) since only the last one meets Requirement b).

The difficulties concerning the computation of the probability p(F | K J H) do not
differ from the questions which emerged in the course of establishing Eq.4.4-9.
There we discussed

PRI FKKK,)# p(F | KKK,

which is of the same form as

p(F, | F,..F;,K,K,K,JH)# p(F,|K,K,K,JH).

The last mentioned inequality holds since p(F, | F,...F;K,K,K,JH) is not part of
an L-Net computation system (see Section 4, Eq.4.4-9.) and thus F; is not
separated from (F... F5) by means of (K,K,K,JH).

This leads to the following conclusion:

- It is not permitted to decompose p(F,F,...F, | K,K,K,JH)into the factors
P(F, | K,K,K;JH),.., p(Fy | K K,K,JH).

- Itis necessary to apply the Linear Interpolation Theorem ( or another
interpolation procedure) to p(F,F,..F; | K,K,K,JH) first and only then

execute the decomposition
p(FF,..F,| K K,K,JH) = p(F, | K,K,K;JH) - ... - p(F; | K,K,K,JH).

This conclusion is expressed in Eqs.9.2 and 9.3 below.

The Linear Interpolation Theorem, or the L-Theorem as shown above, yields for n
-events K,,....K,:

p(FIK.KJH)= Y p(F|K®. KW IH)pK® | K) ... (K | K,).(9.2)

Gpote=0,1 .
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Eq.9.2 includes the probabilities p(F|K{*...K{*’JH) which do not contain
apostrophized events. Since the conditioning product contains all causes of

events belonging to F [see Assumption Ila], and since the elements in INH( F, )
are independent of the elements in INH(F, ) for any F; , F, e F [see Assumption

Ilc], we obtain:

P(F| K@ K9 JH) = T]p(F, K™ .. K JH). 9.3)

FeF

Eq.9.3 contains the probabilities p(F; | K;..K, J H), F; € F. In order to
decompose probabilities of this form into factors we develop the theorems T-9.4
and T.9.12 below.

Eq.9.4 of Theorem T-9.4 will produce conditional probabilities which contain
only one cause with p = 1 in their conditional preduct. The inhibitors remain
unchanged. Factorization Theorem T-9.12 will then provide the tools to factor

with respect to the inhibitors.
Theorem (T-9.4) (Factorization with respect to causes)

Let {H, K}, ..., Ky} denote the set of all causes of an arbitrarily chosen event F),.
Let all elements in {H, K;, ..., K} be self-reliant causes of F).
Let 1y, ..., I be the inhibitors of K;—F), and J), ..., J; the inhibitors of K;—F).
Then
p(F\|HK,..K,I,..1.J,.J,) = p(Fi|HKiK:..Kn) (9.4)
- p(F1 | HK,K2..K1,..1,)
-p(F1|H -K1K,K3..K4J,..J,)
. p(-l;x | H- -1?17(-21(37(-4 T(-n)
p(Fi|H-K1.K,,K,).

n-1

In particular, we have:
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p(Fi | HK,..K,)
= p(F1 | HK1..K2)p(F1 |HK,K2.. K1) ... p(F1 |H-K1..KuiK,). (9.5

Remark:

If the conditioning product on the lefi-hand side of Eq.9.4 or 9.5 contains a
negated event, e.g. (H 7{_,K 2-+K,), then terms containing solely negated causes
[p(F; | H K Ez..j(—,.ll...l,) or p(f: [ H-Ki.. K En)] are replaced by 1 in
Eq.9.4 and 9.5, respectively. (9.6)

Proof:
p(F|HK,..K I,..1.J,.J,)
plH—-> F)vK, > F)v..v(K, - F)|HK,..K I,..1J..J] 9.7)

1- p((HS>F)AK, > F)A..A(K, > F)| HK,..K,I,..1.J,..J,]

1

1-[1-p(H - F,|HK,..K,1,..1,J,..J,)]

f1-p(K, > F|HK,..K I,.1J.J)]

[1-p(K, > F,| HK,..K,I,..1.J,..J,)]

(because of the self-reliance property)

I1-[1-p(H > F|HK...K.)] (9.7a)
[1-p(K, > F|HK,K2..K1,..1,)]
[1-p(K, > F,|H-KiK,K3..KxJ,..J,) ]
[1-p(K, = F,|H-K1K2K,K4..K»)]

.[].._p(K" —-)I'-'l I—ﬁ'-k-l...zn—lK,,)]

= (applying the A—L-Theorem or A—»L-Corollary 1)  (continued on next page)
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.- p(E, | HE..K) - p(F, | H -K1..Kn)

1-p(F, | H - K1..K») ]

.. p(F, | HK,K2.. Knl,..1,) - p(F,| H-K1.Knl,..1,)
1- p(F, | H - K1..Knl,..1)

ol 7

p(F | H-KiK,Ks..KnJ,..J,) - p(F, | H - K1..KnJ,...J,)
1- p(F, | H-K1..KxJ,...J,)

[1- 7

- p(F|H -K:K:K,Ka..X,)- p(F, | H-K.. K)]
1- p(F, | H -K1..K»)

p(F, | H -Ki..Kr1K,)- p(F, | H -K1..K»)
1-p(F | H-K1..K»)

f1- 7]
The rest of the proof is shown using the last factor:

p(F,|H - K1..KnK,)— p(F, | H -K1..Kn)
1- p(F, |H-K:1..K»)

1- p(F, | H -K1..Kn) - p(F, |H - K1..KnaK,)+ p(F, | H-K,.. X )
1- p(F, | H -K1..K»)

_ 1-p(F|H Ki..KriK,)
1~ p(F, | H-K1..K»)

(F1|H K. Kan)
p(Fi|H-Ki..Kn)

Hence, p(F, | HK,..K, 1,..1.J,...J,)

_ p(F1|HK:..X,) p(F)|HK K. K],..1,)
p(F\|H-K1.K.)  p(Fi|H Ki..Kn)

(Fl]H K1K2K3 Km] WJ,) p(FIIH K1 K2k, K. Kn)
p(FllH K. Kn) p(F1|H K:.. K)

p(F1 |H-K|...Kn~1K,,)
p(Fi|H -K:1..K»)

and the result follows, since p(-ﬁl | H -E, Kn)=1.
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Eq.9.5, the second statement of Theorem T-9.4, represents a special case which
has been explicitly mentioned for its easily remembered form. Statement (9.6)

follows from Eq.9.7 if we consider the definition of A—L in Section 7, which

demands A > L=0. O

Eq.9.5 turns out to be extraordinarily convenient because it allows to decompose

the probability p(F: | HK; ... K,) right away, just by writing down the factors.
Moreover, we notice that the factors of the product

p(Fi | HK\K2..Kn)p(F\ |HK,K2.. K1) oo p(F1 | H- K1 K naK,,)

possess a remarkable symmetry. Each factor contains exactly one Fy-generating
cause which has p = 1, while all other causes of F; have p = 0. This greatly
simplifies the statistic sampling needed to determine the numerical values of such

probabilities.

“Simplification of statistic sampling” means that a comparatively large population
can be used. In the case of e.g. p(Fl |H El...f,.), the only required property of
the population is H; none of X,,..., K, is requireded. Using this population we
count all occurrences having property F; and obtain the relative frequency

hF |H X1..K») which allows the approximation

p(Fi|HK .. Kn)~1 - h(F, | HK .. K»).

If we look back at Eq.9.4 we detect the probabilities p(fn IﬁKlEz.j(_nI]..J,)
and p(F Iﬁ~_IZ|K2E3...E,,JI..J:). It is possible to factorize once again, this

time with respect to the inhibitors.

We keep the notation used to state Theorem T-9.4 above. In order to decompose a
probability such as p(Fi |HK,K2..KI,...I,)into factors with respect to the
inhibitors we need the following assumption which has already been stated at the
end of Section 6.
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Assumption concerning inhibitors
If K; exists, the inhibitors Iy,..., I, are assumed to be self-reliant causes of the

event (K, - F)) .

Comment

Considering the events I;,..., I;, which are assumed to be self-reliant causes of
(K, = F)) in case of an existing event K;, we may use A—L-Corollary 2 without

any change. The notation of A—L-Corollary 2 corresponds with the notation of

the assumption above as follows:

A—L-Corollary 2 | Assumption concerning inhibitors

Generated event L (K= F)
Set of causes {A, B} {4, ., I }.

I, ..., Iy are stochastically independent given K.
According to A—>L-Corollary 2, the independence of two events I; and I, is not
lost in case of a conditioning element which is commonly generated but actually

not existent. In the present case, the independence of I, and I is not lost by the

commonly generated event (K; — F)) in its negated form, i.e. (K, > F,), which
means (K;—F).

Therefore, the events Iy,..., I, which are independent if conditioned upon (X;), do
not loose the independence property when the condition (K,) is increased to

Xy Ki—Fyp).

We use the independence of I, ..., I; , conditioned upon (K, (K;—F))), in order to
establish the following theorem (Theorem T-9.9), which is needed to develop
Theorem T-9.12.
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Theorem (T-9.9) (Factorization with respect to inhibitors)

Let {H, K, ..., Ky} denote the set of all causes of an arbitrarily chosen event F).

Let all elements in {H, K, ..., K} be self-reliant causes of F, and let
Iy, ..., 1. be the inhibitors of K;—»F).

Assume that I, ..., I, are self-reliant causes of (E,———)?;) if K; exists.
Then

K, > F|K]I.1)=

P(K1 ’")F; |K111) P(K| "‘)Fl | KIIr)
(K, > F | K,)- N .
P )k SRIK) " oK SRIK)

If we define factors i,,...,i, 1o represent the quotients

iy o= PAIHR Ko KoL) p(FIHK Ko Kod,)
p(F, | HK,K2..K») p(F, | HK,K2..K»)

we obtain the easily remembered form:

p(K, > F|K1,..L) = p(K,>F|K) i ... iy

Proof:
K, - FR|K]1.1,)

_ P&, > R)K ,..,]
p(K1,..1,)

= .1, | K (K, = R plK (K, - F)]
pK)p)- ... p,)

= (because of the independence of I,,..., I, given [K;(K;—F})] )
p[IlIKl(Kl_)F‘l)]. .p[IrIKl(Kl—)I:l)].p(K’__)F}IKl)

() r,)
AK S F)KL] | PAK D FKL] e ey

PICK, > K 1pU) ™ Pl > FOK IpU,)
_PK o FIKL) K SFIKL) o g

K, = RlK) p(K, —> F | X))

9.8

9.9
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This proves Eq.9.8.
We show the validity of Eq.9.9 by transforming the first quotient of Eq.9.8.
p(K, > F 1K\ 1)
p(K, > F |K))
p(K, > F| K LH -K1..Knr)
p(K, > F |K,H-K2..K»)

= (because of self-reliance)

p(F‘[ | K]II—I;“EL..—K—n)'—P(E |7<_|II.FI.-E2“_E")
p(Fi| Kil,H K2..K»)

= (applying the A—>L-Theorem)

(| K,H -K2..Kn)—p(F, | K1 H -K1..Kn)
= (because of p(F | K11,) = p(F, | K1)
p(F, | K, H - K2 K)— p(F, | H-K1..K»)

e —— 9.10)
PR KH K2..Kn)— p(F { H-K1..K») (
= (because of p(F, 15-21..3,,):0)
p(F | K\ H-K2..K») ©.11)

p(F, | K,H K1..Kn)

We finally combine Theorems T-9.4 and T-9.9 in order to establish Theorem
T-9.12 below. This theorem is a tool suited to factor even large conditional
probabilities of the form p(F; | HK; ... K, I; ... 1, J; ... J;) right away, just by
writing down the factors. Each of these factors contains exactly one cause with p
= ], and at most a single inhibitor belonging to that existing cause. Since the
handling of Eq.9.12 needs no further calculations it is very well suited to
automate the corres-ponding procedure.

(The factors contained in Eq.9.12 are also utilized as a summary of the
probabilities in use.)
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Theorem (T-9.12) (Combined Factorization Theorem)

Let {H, K;,..., K,} denote the set of all causes of an arbitrarily chosen event F).
Let all elements in {H, K,,..., K,,} be self-reliant causes of F.

Let1y,..., I, and J,,..., J; be the inhibitors of K)—F; and K,—F), respectively.
Assume that, if both K;and K; exist, 1y,..., I, and Jy,..., J;are self-reliant causes of
(E——TF;) and (m) , respectively.

Let

_ (R |HK K2 Kul) . _ p(FR|HKK2..Kul,)
p(F | HK K2.K,) """ p(F,|HK,K2..K»)

ilt

*

. p(F, | H-K\K,K3..KaJ)) . p(F|H KiK,K5.K.J,)
1= == T s eeen s )s T = T .
p(F, | H-K\K,Ks..Kn) > p(F|H -KiK,Ks..K»)

Then )

P(F\ |HK) . KDy Ly .. J) = p(Fy|HK:..K») (9.12)
[ 1- p(F|HK,K2..K»)-i,..i,]
[1-p(F|H Ki\K,K3.Kn)" j,f,]
p(El E'EI.K‘ZKJE‘L..E'I)
’p(—l;l IFI--E...'IE,,_, K,).

Proof: Application of Theorem T-9.9 to Eq.9.7a yields the result. | 0

We again look back at Eq.9.1 which contains the probabilities p(F | K J H) and
pH|UD.

Since we were successful in transforming both types of probabilities into the form
Pleffects | causes A inhibitors), we are in a position to interpolate and decompose
p(F | K J H) and p(H | U I) in the same way. The essential assumptions have
already been stated in Section 6.
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10. Computation of an L-Net

The L-Net of I11.1.2, which has been established in order to determine the ap-
probability of H, will be completed by a number of L-Net modules. These L-Net
modules are created “around” arbitrarily chosen ‘-events and then connected to
the already existing causal network.

This work-step is not mandatory, e.g. p(X, | K,) may be determined without any
further information than that of 111.1.2. But the ap-probability of H, which is our
main interest, is inexact if there were not enough efforts to obtain reliable ap-
probabilities for the other events at the H/K-level. Furthermore, the events
situated at the H/K-level have a very special importance since they “compete”
with H. Therefore, it is almost unavoidable to extend an L-Net to a certain degree
by further L-Net modules.

We continue the example of Ill.1.2 by arranging two L-Net modules around X,

and K, as follows:

R] R3

Kl w H\
F[ Fz FS
111.10.0:
Example of two L-Net modules in order to extend I11.1.2. The L-Nets

are created around events K,’ and K3’.
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The connection of the L-Net modules to the already existing causal network in
I1.1.2 results in:

U-level Ry

H/K-level Ky

F-level FiO

ML.10.1:
Example of an L-Net, completed in order to determine the ap-probabilities
of the *-events at the H/K-level. (Derived from I11.1.2.)

Step 1
The L-Net module around H comprises the sets which belong to WERT(H), i.e.

the sets URS(H), FOL(H), DIFF(H), INH(H) and \UJINH(Z). The set DIFF(H)
Ze FOL(H)

has to be present entirely in any case (Assumption Ila), while the set URS(H) has
to be maximal only if needed (Assumption Ila*), e.g. when Eq.9.4 or Eq.9.12. are
to be used. The remaining structure of the L-Net module follows the
independence requirements listed in Section 6.

We are interested in the ap-probabilities of the *-events situated at the H/K-level.

Step2
We refer to the example of Eq.1.3 in order to state the ap-probabilities of the

events H’, K,’, K3, Uy’, Us’. This results in the following equation system.
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p(H|HY) = p(H|W(H) ( identical with Eq.1.3)

= pH|UFKI1J) (10.1)

= P(H|U1U;U;F;F2F3E_FstleK;Il]lej;)-
pKi| K1) = pKi | W(KY)

= p(K,|FRHJR). (10.2)
P(K3| K3) = p(Ks| W(K3)

= p(K; | F,H' J,R,). (10.3)
p(Uz| Uz2) = p(U:| W(Uy)

= pU, |H'U1U;I|12) (10.4)
p(Us | Us) = p(Us| W(Us)

= P(U3|H'U1U'21112) (10.5)

Advantages compared to other computation systems
The ap-probabilities of the ‘-events contained in a causal network have a mutual

influence on each other which is of considerable impact. This property usually
frustrates all efforts to compute probabilities of net nodes in the neighbourhood of
nodes which have unknown probability as well. Here, we eliminate this difficulty
by simultaneously installing all unknown ap-probabilities into one equation
system.

The target now is to express each ap-probability in terms of the remaining ap-
probabilities. However, such calculations pose no problems when using

interpolation formulas.

Step3

Application of the General Interpolation Theorem (Eq.4.1) or the Linear
Interpolation Theorem (Eq.4.4) to the equation system consisting of Eq.10.1
through Eq.10.5 leads to the following equation system:
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1

4 PEFs | KK Ko T D) p(H | UUUS L)
p(F,..Fy | K\K,K,J, JH)p(H | UU,U,LL)

To compute Eq.10.1a we use Eq.9.2:

P(FF; | KK, K J\ T2 H)

PHI|H) = 00

(10.1a)

= Y p(F..F | KKK, T H)p(K® | KK | K;).

41,43=0,1

Eq.9.3 yields:

—_ 5 —_
PR Fy | KWK, KT, T H) = T]p(F, | K@ K,K®J, T H).

i=l
Since the elements in (K J H) are self-reliant causes, we have:

PRI KWKK® ) JoH) = p(F | K™ H),

P(Fy | KWK, K, T H)

1t

PR | K", H),

P(F, | KWK, K90, T, H) p(F, | K,H),

p(Fs | KWK, K, J1H)

it

p(Fs| K,H),

P(F | KWK, K0, T H) p(F, | K T, H).

Furthermore, we need

p(H|UUU,LL) = identical to Eq.4.5.
1
PKi | K1) = gqo) s . (10.2a)
T PEFR | HK)p(K: | R)
P(RE, | H'JK)p(K, | R)
(Further transformations analogous to Eq.10.1a.)
pKs | K5 = 1 (1030
31 K3) = g0 = . .
" + PEH T2 K)p(Ks | Ry)
p(Fs | H'J2K)p(K, | Ry)
pU2| Uz = (gg.41) identical to Eq.4.2. (10.4a)

P(Us | Us’) = (g4.4.1) like Eq.10.4a, with U, and Us exchanged. (10.5a)
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Step 4

We choose p(U, | U,) =1 and introduce the following abbreviations:
x=p(H|H),

y = p(K 1K),

z:= p(K;1K3),

u=pU,|U,).

Eqgs.10.1a through 10.5a contain ‘-events which will be removed by means of the
Linear Interpolation Theorem (Eq.4.4) which transforms the equation system into

the following form:

1
x= — == , (10.1b)
1_'_a(,yz+a,y~z+a2y-z+c13y~z. 1 -1
byz+by-z+by-z+by -z c0u+c1;
where

a, = p(F,..F; |K1K2K3J|J_2'7{—)’
al = p(ﬂ...]‘rs | Kle—Ez—Jl:]—Z_‘E)’
a, = p(F..F, | K,K,K,J, T, ‘H),

a, = p(F,..F, | KK, K,J,J, -H),

by = p(F..F; | K,K,K,J, T, H),
by = p(F..F; IKszsz—J—zH);
b, = p(Fy..Fy | KK, K,J, T, H),

by = p(F,..F, | KK, KJ, T, H),

¢, = p(H | U LLLUU,),
6= P(Hllenlz-U—zUs)-
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1

14 %xtdx (1
ex+ex \ Sy

y:

where

d, = p(FF,| HJ,|K,),
d, = p(RF,|HJ|K,),
e, = p(FF, | H/\K)),

e, = p(KF, |ﬁJ,K1),

fo =K | R).
1
z= -
L Bxtex (1
hyx+hx \k
where

g =p(F; | HJ,-K3),
g =pF | H-J, Ky),
hy = p(Fy | HT,K),
h = p(F, | H-J,K,),

k, = p(K; | R,).

u=lx+lx
where

Iy = pU, |U,L,I,HU,),

I, = p(U, |U1,1,HU,).

vi=pU,|U,;)=1.

105

(10.2b)

(10.3b)

(10.4b)

(10.5b)

(p(U, | U,) =1 has been arbitrarily chosen.)
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StepS

106

We decompose into factors and assign numerical values.

ao = p(F‘l"'I?S |K1K2K3J1J_2.ﬁ)

P(F KKK I, T, -

-p(F, |K1K2K3J|Z'
-p(F, |K1K2K3J|Z'
'P(E | KleKle‘]_z'

- p(F; lKleKleJ—z'

Pp(F, | K, H)
-p(F, | K,J, H)
-p(F, | K, H)
-p(F, | K, H)
-p(Fy | Ky J, - H)

02-02-0.2.08-0.1
0.00064.

a, = p(F..Fy | KK, K,J,J, - H) =0

a, = p(F,..F, | K,K,K,J,J, - H) :=0.

ay = p(F..Fs | K K, Ky, J, - H) =0,

by = p(F,..F, | K,K,K,J,J, H)

il

p(F,| K,H)
-p(F, | K, J.H)
-P(F, | K, H)
-p(F, | K,H)
-P(Fy | Ky J,H)

H)

H)

H)

H)

H)

05-04-05-05-0.5

0.025.
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b = p(F..F, | K K,K.J,,H) = p(F|KH) := 0.5 (as above)
p(F, | K\J,H) .= 0.4 (as above)
‘p(F | K, H) :=0.5 (as above)
-p(F, | K,H) ;= 0.5 (as above)
P(F K- L H) =01
= 0.5-04-05-05-0.1
= 0.005.
b, = p(F..Fy | KK, K.\, H) = p(F,| K H) =02
-p(F, | K\J\H) =02
-p(F; | K, H) :=0.5 (as above)
'P(EI K,H) .= 0.5 (as above)
-P(Fy | K, J,H) := 0.5 (as above)
= 0202050505
= 0.005.
b, = p(F,..F; | KK, K, J,J,H) = p(F,|K.H) = 0.2 (as above)
-p(F, | K, J,H) := 0.2 (as above)
‘P(Fy | K,H) = 0.5 (as above)
-p(F, | K H) := 0.5 (as above)
- p(F lk_;-._]:H ) := 0.1 (as above)
= 0202050501
= 0.001.
¢, = p(H|U,LLLUU,):= 0.8.
¢ = p(H |ULLL,UU,) = 0.4. These assignments result in:
L 0.0064yz _1 § _.( 1 _-1). (10.1¢)
0.025yz +0.005y- z+0.005y - 2 +0.001y -z \0.8% +0.4u
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d, = p(F,Fy | HJ,K)) = p(F,|HJ,K))
- p(F, | HJ,|K,)

= p(F | HK))
- p(F, | HJ,K,)

d = p(F,F,|HJ,K,) = 0.
e, =p(RF,|HJ,K) = p(F,|HJK,)
- p(F, | HJ\K})
= p(F,| HK,)
- p(F, | HJ\K))
=0.5-04 = 0.2.
e, =p(RF,|HJK) = p(F|HK))

-p(F, | HJK,)
=02-02 = 0.04.
f, =p(K,|R):= 0.6,
_ 1
r= 0.04x TR}
4—— | — -1
0.2x+0.04x \0.6

g, =p(F,|HJ,-K;) := 0.1 (as above).

& =pF|H-J,-Ky) = 0.
hy = p(F;| HJ_2K3) := 0.5 (as above).
h = p(F,|H-J,K,) := 0.1(as above).
k= p(K; | Ry) =07

1

z= 0.1 1
12 [ 1
0.5x+0.1x \0.7

0.2-0.2 = 0.04.

= 0.2 (as above)

= 0.2 (as above)

= 0.5 (as above)
= 0.4 (as above)

= 0.2 (as above)

= 0.2 (gas above)

These assignments result in:

(10.2¢)

These assignments result in:

(10.3¢)
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0.6

Iy = p(U, U1, HU;) :

#

I, = pU, |ULL,HU,) := 0.1

These assignments result in:

u=06x+0.1x (10.4¢c)
To summarize, we obtained the following equation system:

1

= . (101
* N 0.0064 2 ( T 1) (10.1¢)
0.025yz +0.005y -z +0.005y - z+0.001y -z \ 0.8u +0.4u
= ! (10.2¢)
Y00k -(-—L—l) '
0.2x+0.04x 0.6
z= L (10.3¢c)
- 0.1x ( 1 ) ' '
14— —-1
0.5x+0.1x \0.7
u=0.6x+0.1x. (10.4¢)
Step 6

In order to solve the equation system we employ the commercial computer

algebra system “Maple 6, whose output is as follows:

eqnl=x=1/(1-+(((0.00064*y*2)/((0.025*y*Zy+(0.005*y*(1-z)+0.005*(1-
y)*z)+(0.001*(1-y)*(1-2)))) *((1/((0.8*u)+(0.4*(1-u))))-1)));
1
00064y z (7;1;7- 1)
1+ 025574005y (1 =2)+.005 (1 7Yz +.001 (1=) (1 =2)

eqnl =x=
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eqn2:=y=1/(1+(((0.04*x)/((0.20*x)+(0.04*(1-x)))) *((1/0.6)-1)));
1
02666666668 x
d6x+ .04

eqn2 =y=

1+

eqn3:=z=1/(1+(((0.1*x)/((0.5*x)+(0.1*(1-x)))) *((1/0.7)-1)));
1
.0428571429x
A4x+.1

eqgnl = =z=

1+

eqnd:=u=(0.6*x)+(0.1*(1-x));

eqgnd :==u=5x+.1

solve ({eqn1,eqn2,eqn3,eqnd},{x.y,z,u});
{u=-1.042618895, z = .8926149951, y = 8423611317, x = -2.285237791},
{x =-.2446786040, y = -.1500744630, u = -.02233930198, z = -.2546833095 },
{z=-.4372489087, y = -.2431224964, x = -.2421083162, u =-.02105415808},
{x=.9862353880, z = 9212550827, y = .8826419881, u = .5931176940}

Thus we obtain the final result:
p(H| H')=98.6%.
p(K, | K,) = 88.3%.
p(K, | K;)=92.1%.
p(U, |U;) =59.3%.

Note

If there are no hidden causes we have, according to Factorization Theorem T-9.4,
the following decomposition into factors:

pF\HK) = 1~ p(Fi|HK)p(F1 | K, H).
p(F2| K1 i H) = 1 - p(F2|HJ,K\)p(F: | K, H).
p(Fs| Ko H) = 1- p(Fs | HK2)p(Fs | K, H).
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P(Fi| K H) = 1- p(F) Kz H)
=1~ [I- p(Fs|HK2)p(F« | K, H)]

p(Fs | HK2)p(F4 | K, H).

P(F, | K, J2H)Y= 1~ p(Fs | HK:)p(Fs | K,J . H).

In order to keep the example easy to understand, we immediately assigned

numerical values to the probabilities on the left-hand side.

However, in practice the factorization theorems are used to decompose extended
conditional probabilities into factors, for which numerical values can easily be

determined.

The Factorization Theorem T-9.12 has not been used since all probabilities

contained less than two inhibitors.

Final remark

The prospect of letting everyone receive medical treatment in line with the latest findings is
brought about by expert systems. The expert system presented here enables the utilization of every
single symptom and the inclusion of the total number of hypothetical diagnoses, and it dogs not
estimate but carries out computation processes which produce precise numerical values.
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11. Appendix

Hidden causes

Theorems T-9.4 and T-9.12 use the assumption that the set {H, X;,....K,} contains
all causes of F; and that there are no unknown Fj-generating events. But if
(A |\H -K1..K») > 0 and if we nonetheless apply T-9.4 or T-9.12, we will not

obtain precise result.

At first, we consider Eq.9.4 and amend that formula to work in the case of hidden
causes, i.e. if p(F, |'1?-'121...E) > 0.

Theorem (T-11.1) (Eq.9.4 for the case of hidden causes)

Let {H, K, ..., Ky} denote the set of all fnown causes of an arbitrarily chosen

event Fy. Let there be unknown causes of F), for which we write the summary

designation K,,. Let all F)-generating events be self-reliant causes of F).
Let1y,..., I, and Jy...., J; be the inhibitors of K;—F; and K;—F),, respectively.
Then

p(Fi | HK,..K I,..1.J,..J,) = p(Fi|HK...K») (11.1)
-p(F1 | HK, K 1. KaI,..1)
p(Fi{H- KK, K. Kud .. J)

p(Fi|H-K\K2K,Ka..K»)

-p(Fi|H - K1.KX, K, -f
1
(o1 1H X

where [ = z ))H , m = number of elements in {H, K,,...K,}.

The value of p(F1 | HK,..K,1,...1,J,...J,), when p(F, | H K\..Kn)> 0, is
J-times the result obtained from Eq.9.4, f> 1.

Proof:
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p(F, | HK,..K,I,..1,J,..J,)

= pl(H > F)v (K, > F)v.v(K, 5> F)v(K, > F)| HK,..K,1,.1,J,.J,]

=1-pl(H > F)Awn(K, = F)AK, > F)| HK,..K,1,..1,J,..J,]

=1-[1-p(H—F,|HK,..K,I,..1J,.J.)]

[1-p(K, - F,|HK,..K,I,..1.J,..J,) ]

{1-pK, - F,| HK,..K,1,..1,J,..J.,)]

{1-p(K, > F|HK,.K,I,..1.J,..J,)]. &)
The last factor is transformed as follows:
1-p(K, —» F|HK,.K,I..1J,.J,)
= [-p(K, > F) (since K, is a self-reliant cause of F))

_,_ PR |K,H-K1..K»)~ p(F, | KyH K1..K»)

1-pl(K, = F)K,)]
I-p(K, > F | K )p(K,)

1-p(K, > F|K,H-K..K»)p(X,)

Ak Rk X,
1- p(F, | K, H -K1..K») P&

1-p(F 1K, H-Ki.Kn)p(K,).

(because of Eq.7.1)

(A—L-Theorem)

Proposition: p(F, | K, H Ki..K»)p(K,)= p(F, | H K1..K»).

Proof: If F) exists then p(K | FH-Ki.K.) = 1

=

p(K,)
p(K, |, H-K:..K,)

pK,) =

p(K,|H Ki..K»)
p(K, | FH -K1..Kx)

_ p(K,H -K1.K»)p(F,H - K1..K»)

p(K,F,H-K1..K»)p(H -K1..K»)

(self-reliance)

(continued on next page)
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_ p(R|H Ki.K»)
p(F|K,H-Ki..K»)’

i.e. the proposition. With this result we proceed from Eq.(*):
=1-[1-p(H—F,|HK:..K»)]

[1-p(K, = F,|HK,K2..K1,..1,)]

[1-p(K, > F,|H -KiK,K3..KnJ,..J,)]

[1-p(K; = F IE'E]Esz-Ea...En)]

[1-p(K, > F,|H-K\..KsK,)]-[1- p(F,|H-K1..Kn)].

p(Fi|HK1..K»)

— (see proof of Theorem T-9.4)
p(Fr|H -Ki.K»)

p(F1 | HK, K2..Kol,..1,)
p(Fi|H-K\..K»)

p(Fi |H KiK,Ks..KnJ,...J,)
p(Fi|H -K1..K»)

p(Fi|H KiK2K, Ks..Kn)
p(Fi|H-K\..K»)

. p(il IE-E!...E;.-IK")
p(Fi |EE|E,,)

. p(fl J HElEn)

=1- p(F\|HK:..X»)
-p(F1 | HK,K2..KI,...1)
-p(F1|H - K\K, K. KnJ,..J,)
-p(Fi |H - K1 K2K, K4 K1)

1
(p@ 1 H K K

-p(Fi|H K.k, K,)
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Theorem T-11.1 states that using Eq.11.1 instead of Eq.9.4 increases the value of
p(Fi | HK,..K I,..1,J,...J,) by the factor .

As an example we choose p(F, | H - Ki1..K»)=0.01 and m := 11 which yields
f=[p(F1|H-Ki.K)™ =099 = 1.1057.

Therefore, if p(F | fI--El...E.,) =0.01, and if we use Eq.11.1 instead of Eq.9.4,

the value of p(F1| HK,..K,I,...I1.J,..J,) increases by 10.6 %.

Theorem (T-11.2) (Eq.9.12 for the case of hidden causes)

Let {H, K, ..., K} denote the set of all known causes of an arbitrarily chosen

event F,. Let there be unknown causes of F which entail p(F, | H K. K)> 0.

Let all F-generating events be self-reliant causes of F.
LetIy,..., I, and J,,..., J; be the inhibitors of Kj—F) and K;—F, respectively.
Assume that, if both K; and K3 exist, 1,..., I, and Jy,..., Jsare self-reliant causes of

(K, > F) and (K, > F,), respectively.

Then

p(Fi |HK; .. KoLy L J; .. J) = p(Fi|HEK:..X») (11.2)
[1- p(F,|HK,K2..K»)-i,..i,]"
[1- p(F,|H-KiK,K3..Xn) j,j, ]
p(F |H KiK:K,Ka..K»)
p(F1|H-K1.K,,K,) 1,

where

. PR |HK K2..Kal) i = P | HK,K..K.l)

p(F|HK,K2..K») P(F, |HK,K2.K»)

iy = PAIH KKK Knd) o p(RIH KKK K,
P(F1H:K\K,K5..K») P(F1H -KiK,K3..K,)
(Continued on next page)
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[l - p(F IﬁKJ(—z...-I?,.) il...i,]‘ can be obtained from
[1- p(F | EK;IE:...—IZ,.)- i,..d,] by means of the following replacements:

S — p(F, | HK,K2..K») - p(F, |H K1..K»)
F,|HK,K:..K,) replaced b A ,
PR | HK, Ka...Kn) replaced by 1-p(F, | H K. Kn)

p(FIHKKzKI) p(F,IHKKz K.1)-p(F,|H K. K,.)
h= p(F, | HK,K2.K») replaced by p(F, | HK,K2.Kn)—p(F | H - K1.Ks)
iyyesd, accordingly.

[1-~ p(F |ﬁ'E1K2-I_<-3...En)' Jreeds ]’ is obtained through an analogous
procedure.
1

) (pF I E KK

m* := number of factors without square brackets contained in Eq.11.2.

Proof
The replacement of p(F, | HK,K1...K ») follows from the A—L-Theorem,

p(F,V HK,K2.K.1,)
p(F, | HK,K2..K»)

the factor f* follows from Eq.11.1. a

the replacement of i,:= follows from Eq.9.10,

Since

p(F | HK, K2..K )~ p(F | H-K1..K»)

F | HK K2 Kn) > 12
P(l‘ 182 ) 1- p(F|H Kl K") ( a)
and
p(F, | HK, K2, K1)  p(F, | HK K>, Knl\)~ p(F | H-Kr. Kn) (11.2b)

p(F,|HK,K2.K») ~ p(F,|HK,K2.K»)- p(F, | H - K1.Xn)
we have that [1 - p(F, | HK,K2..K»)-i,..d,) <[1 - p(F, | HK,K2..Xn)-i,.0,]".

This holds since p(F, lﬁK,Ez.j(_,.)and i1,..., iy are replaced in each case with
something smaller.
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Of course Theorem T-11.2 is quite unwieldy. Therefore, we give the following

approximations.
Theorem (T-11.3) (Approximation of T-11.2)

Consider the setting of T-11.2.
Then Eq.11.2 can be approximated thus:

p(Fi |HK; . K1y L J; .. J,) & p(Fi|HK1..K») (11.3)
[1- p(F,|HK,K2..Kn)-i\.d, - fy. ]
[1- p(F|H KK, K3 Kn) jyfo fo, ]

'p(Elﬁ-E1E2K3E4...En)

-p(Fi|H Ki. K, K,) f*.
The first expression in square brackets which in full length reads

.. p(F,|HK,K2..X») p(F,|K,H-K:..K.1,) p(F,|K,H-K2..XI,)

[ 1 P(F\K.H K1..Kn) ~ p(F | K H -K2..Kn) I
contains the factor
num(q,)— p(F, IH'EI..._E")
T, = ( ,
f H num(g,)

where num(q,) denotes the numerator of the quotient at position 2.

All other expressions in square brackets contain analogous factors.

Proof:

p(F, | HK,K1..Kx) p(F,|HK,K2..K.1,) p(F, | HK,K2..Kxl,)

n - i kL VA s
1 p(F,| HK,K2..K»n) p(F, | HK, K. K»)

contains p(F I_I-iK fz...fn) , which in case of hidden causes has to be replaced

with 2| HE K. Kn)= p(F | H K. K..)
1- p(F, | H-K1..K»)
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We set p(F, |-I-{—K1E2...En) =0.75, p(F 'E'El..._K—n) =x and consider

- 0.75-x
1-x

Y aswellas y, = 0.75-x .Seealso J11.8.1.

\ Y V2
1.00_ |
0.90_
0.80_|
0.70_I—=><

0.60_| <
0.50 N »

040_|

0.30_[
0.20 \\,\

0.10_| \\

0.00

I I | | | l | | |
00 01 02 03 04 05 06 07 08
111

<

p(F, | HK,K2..K»)— p(F, | H -K1..K»)

Approximation of y, = - o lff— e 3
- 1 (i A RO,

by

¥,= p(F, | HK,K2»..K»)— p(F, |H K. K»).

According to (11.2a) and I11.11.1 we have:

p(F,|HK,K2..K»)- p(F,|H-K1..K»)

F|HK,K2..X») > AN
P(F | HK,K2..K») 1-p(F,|H -K1..K»)

> p(F,|HK,K2..K»)- p(F,|H-Ki..K»).

Therefore,
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_ p(F, |HK,K>..K») p(F,| HK,K:..Kal)  p(F, | HK,K:1..Kal,)
1 p(FVHK,K2.K») =~ p(F,|HK,K2..Kn)

{1

increases if, in case of hidden causes, p(F | ﬁK, K2..K») is replaced with

p(F,|HK,K1..K») - p(F; | H -K1..K»x).

This replacement is equivalent to a multiplication of p(F l—ﬁK'-I?Z...En) with

p(F, |HK,K2..K») - p(F, | H-K1..Kr)

A 2 R X since:
Pp(F|HK K2..K»)

the constant

p(F, |HK,K2..K»)~ p(F, | H-K1..K»)

p(F, VHK,K2..Kn) - p(F, |H - K:1..K»)

= F EK —K—Z..-En v . ¥
P(F, | HK, ) p(F, |HK,K1..K»)

p(F, | HK, K2..Xn)— p(F, | H -K1..Kn)
p(F, | HK, K2.. K1)

The multiplicative constant itself can

num(q,) — p(F | EEE) -

be written in the form
num(q,)

p(F, | HK,K 2. K1) - p(F, | H - K:1.X»)
p(F,|HK,K2.K»)— p(F, | H-K1.K»)

We now consider , which represents

the next replacement. In order to give an example similar to the above we set
p(F | HK,K:..K») =0.75,

p(F1H-Ki.K») =X,

p(F, | HK,K2..KsL,) =05

and consider y, = 05-x aswellas y, = 05-x .
0.75-x 0.75
Table of values:
X 0.00 0.10 0.20 0.30 0.40 0.50

3 0.67 0.62 0.55 0.44 0.29 0.00



Appendix: Hidden causes 120

Jis V2
1.00_ ]
0.90_|
0.80 _{
0.70_1
0.60_|

0.50_| N

040_[ S
030_| \

020_| 2
0.10_|
0.00 >
I I I I I | I I | X
00 01 02 03 04 05 06 07 08
1112
Approximation of y, = P& ‘HK K. K. h)-pf ‘_fI_K __I.< ") by
P(F, | HK,K2.Kn)- p(F, | H-K1.K»)
_ p(F,| HK,K:. Knl) PR, |H K. Kn)
2" p(F, | HK,K1.K»)
According to (11.2b) and I11.11.2 we have:
p(F | HK\K2.. KoL) p(F | HK K2 K1)~ p(F | H-K1.K»)
p(F, | HK,K1..K ) P(F,|HK,K2.K»)- p(F, | H-K1.X»)
p(F, | HK,K3.Kal,)~ p(FIH K1.K» )
p(F, |HK, K2.K»)
Therefore,
(1 - PFIHK Kz K) p(FIHK K2 Knl)  p(RIHK K2 Kal,) ]
1 p(F, | HK,K2..K») P(F | HK, K2..K »)
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p(F | HK K. K 1)
p(F, | HK,K>..K )
p(F, | HK,K2.Knl1,) - p(F, | H - K1.K»)

p(F |HK,K2.Kr) '

increases if, in case of hidden causes,

is replaced with

This replacement is equivalent to a multiplication of (A HK K2 K 4 )
P(F, |HK K. K»)

the constant p(FlHK,Kz KnI) PR |H-X)..K») since:

p(F VHK, K2.. K1)

p(F, | HK,K2. KoL) - p(F, | H -K1.K»)
p(F,|HK,K2.K 1)

_ p(F\HK,K>..Knl)) p(F,|HK,K:..Ka1,)~ p(F, | H - K1..K»)
p(F, | HK,K2..K») p(F, | HK,K2..K\1)) '

P(F, | HK,K2..K.1) - p(F, | H -X1..K»)
p(F, |HK,K 2. Kx1,)

itself can be written in the form

num(q, )~ p(f, IH-KI...K,.) '
num(q,)

Theorem (T-11.4) (Approximation of T-11.3)

Consider the setting of T-11.2 and T-11.3.
Then the following approximation of Eq.11.3 holds:

p(Fy |HK; . KoL L Jy .. Jy) = p(Fi|HK1..K»x) (11.4)
[1- p(F|HK,K2..Kn)i,..i.]
[1- p(F|H -K\K,K3..Kn) jyof,]
p(F | H - K1K2K,K4..K»)

— e — — f‘
-p(F1|H -K1..K, ,K,) )
l fx,‘fx,
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Proof
Eq.11.3 contains the expression [ I - p(F, | HK,K2..K») 1.4, f, ]. We write
this expression in the form [1 - a- f], using the following abbreviations:
a:= p(F,|HK,K2..Kn)-i\..d, ,
fi=1 K

. . 1-a l-a
We consider the functions y, =l-a-f, y, =——, y; =—.

f 7

We set a := 0.5 which leads to the following table of values:

f f% w=l-af | »3=12 yy =28
f 7

1 1 0.50 0.5000 0.5000

0.98 | 0.9899 0.51 0.5102 0.5051

0.96 | 0.9798 0.52 0.5208 0.5103

0.94 | 0.9695 0.53 0.5314 05157

0.92 | 0.9592 0.54 0.5435 0.5213

0.90 | 0.9487 0.55 0.5556 0.5270

0.88 | 0.9381 0.56 0.5682 0.5330

0.86 | 0.9274 0.57 0.5814 0.539

0.84 | 0.9165 0.58 0.5952 0.5456

0.82 ] 0.9055 0.59 0.6098 0.5522

0.80 | 0.8944 0.60 0.6250 0.5590

We will replace [1~a- f] with [-1—-_1-;] and we will not use the option [l—la 1.

fE

See the illustration below.

Wehave f<1;f isclose to 1 since £, =[] mum(@,) = P | H-Ky..K0) .
Y num(q;)
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PEIRCER?
0.62_
0.61
0.60_|
N

0.59 [
0.58_| AN

0‘57; AN

o _ IN
0.56_

0.55_{ N ,
0.54_| 3 \\
0.53_ D~
0.52_| \\
0.51_| [~

050 | TR

[ A T e D A B
0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1

<~V

nL113

Approximation of y, =1-a-f by y, =1—7a or y, =l;1‘i . a=05.

f?

The replacement of [1~a- f] with [I-—Ta] is one of several options. In general,

the expressions [-1—;—,"—] are suitable to replace [1-a- f]. We chose t:= 1. 0
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Index of symbols

A single event or logic product of k non-negated events; A := (A}...Ax).

EN|

negation; event A has the probability p = 0.

A’ *.event; see definition in Section 1, page 20.

A-L event “A creates L ; in case of A:=(A;...Ay) we get [(A; ... AY)—L]
which means “A; creates L v...v “Ag creates L.

AL synonymous to A—L; AL is the symbol formerly used.

ap ap-probability; special case of an a-posteriori-probability which is
conditioned upon all events within the considered causal network.

B logic product consisting of arbitrary non-negated elements in

URS(L)\ {elements in A}.

C logic product consisting of arbitrary negated elements in
URS(L) \ {elements in (A B)}.

D arbitrary logic product consisting of negated or non-negated
elements in INH(A—-L).

DIFF(H)  set of net nodes distinctive from H, being direct causes of elements
in FOL(H).
DIFF(H) includes events which have to be considered in the
course of differential diagnostic procedures.
F product of elements which belong to FOL(H); F:= (F, F, F; E_ Fs).
Fi events included in F.

FOL(H) set of direct effects of H (German: Folgen).

H hypothesis; H represents the most probable cause of a given set of
symptoms.

h relative frequency.

I product of elements belonging to the set INH(H); I:= (I, I,).

INH(A—L) set of events which inhibit A;—>L, ..., Ay—L, or which increase or
decrease inhibitions acting upon A,—>L, ..., Ay—L.
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INH(L) set of events which inhibit transitions leading to L, or which

increase or decrease inhibiting mechanisms acting upon these

transitions.

J product of elements belonging to the sets INH(F)),..., INH(Fs);
I=W J,).

K product of elements belonging to the set DIFF(H); K:= (K;’ Kz K3°).

K—F; event “K; creates F;*.

L arbitrary event; L represents the “leading symptom” (German: Leit-
symptom).

p(A]A¢) ap-probability of the event A.
p(A—L|A) probability of the transition A—L in case the event A exists.

ai variable of value 0 or 1.

Ry, Ry events belonging to URS(K;) or URS(K3), respectively.
(Representatives.)

U product of elements belonging to the set URS(H); U:= (U; Uy’ Uy’).

URS(H) set of direct causes of H (German: Ursachen).

Ve product of events, derived from the product (E,...E,E,,..E,..E})

by removing E, as well as other arbitrarily chosen elements; the
empty product V. =< is permitted.
WERT(H) set of all net nodes influencing the ap-probability of H

(screening neighborhood of H; German: Wertungsumgebung).
W({H) logic product consisting of the events in WERT(H).

X arbitrarily chosen product of negated or non-negated events in
URS(L)\ {elements in A}.
X arbitrarily chosen logic product consisting of negated or non-negated

events in URS(L) \ {elements in (A B C)}.
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midpoint, x,, in one of three possible ways

() x1¢ %2 > x3,

(2) X1— X2 > X3 OF X4 X3 ¢ X3,

B) x> x2 « x3.7
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not a member of the screening neighbourhood defined by the Pearl book.

Starting at page 250, the book contains a description of belief propagation in be-
lief trees, but we did not follow the method given there (pp. 250 — 287 / Chapter 2
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This paper describes one of the very few medical expert systems in actual use. It
employs the Gaussian least squares method, which is completely different from
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BiBoS-Preprint 836 - 4 - 99 (1999), revised version (2000).

The original version of this book, in German.
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is important that NLD is applicable to complex systems that are not in thermo-
dynamic equilibrium (like e.g. living systems), to analysis of processes in such
systems and of signals generated by such systems. For example, analysis of elec-
troencephalographic signals (EEG) using methods of NLD can help to reveal ‘the
signatures’ of different physiological and pathological states of human brain the
linear methods (like spectral analysis) do not reveal. But the same methods that
are used for analysis of complex systems and signals in Natural Sciences may be
adapted e.g. for Socio-Economic system analysis - such systems also produce
some specific ‘signals’ and NLD can help to reveal ‘the signatures’ of different
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agencies may be analyzed as self-organizing entities.
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Peter V. Zysno

Qualitative Verbundmessung

Die moderne Psychologie sucht die vielschichtigen Figenschaften und Ressourcen des
Menschen qualitativ und quantitativ durch empirische Verfahren zu erfassen und damit
zugleich intersubjektiv kontrollierbarer zu machen. Im Kern geht es darum, eine geeignete
Operationalisierung fiir das jeweilige Konstrukt zu finden, die dessen Charakteristika mog-
lichst authentisch verkorpert. Die Formulierung dieses Zusammenhangs ist gleichermaBen
kreative wie diffizile Arbeit am Fundament. Seine Soliditit ist auRerordentlich wichtig, weil
es die Aussagekraft aufbauender wissenschaftlicher Sitze und den Realititsgehalt prakt-
scher Schluffolgerungen trégt. Der grundlegenden Bedeutung entsprechend wurde im
Laufe der Zeit eine recht stattliche Kollektion von Verfahren entwickelt, die aber ein eher
unauffdlliges Dasein im Methodenarchiv fithren. lhr Abschreckungspotential beruht vor
allem auf der mathematischen Einkleidung und dem nicht unerheblichen Durchfithrungs-
aufwand. Als Gegenstrémung erfreuen sich naive Zahlenetiketten und Einschitzungsska-
len fiir jede Gelegenheit zunehmender Verbreitung. Die sind zwar einfach zu handhaben,
geniigen in ihrer Aussagekraft aber bestenfalls sehr bescheidenen Anspriichen und sind
mifibrduchlicher Verwendung wehrlos ausgesetzt.

Die qualitative Verbundmessung verfolgt einen neuen Weg, um die beiden Grundanliegen
nach valider Eigenschaftserfassung und einfacher Durchfithrung zu bedienen. Sie stellt ei-
nen rational und empirisch Uberpriifbaren Bezug zwischen definiertem psychologischen
Konstrukt, menschlichem Verhalten und zahlenmaBiger Reprisentation her. Sie legt be-
sonderen Wert auf die Explikation des empirischen Relativs, die Wiederspiegelung der de-
finierten Eigenschaft im konkreten Verhalten. Bestitigt das Geflecht der tatsichlichen Re-
aktionen die hypothetische Struktur, wird das Datengefiige in eine homomorphe Zahlen-
konfiguration (ibertragen. Die Beziehung zwischen den individuellen Reaktionen und den
Skalenaussagen bleibt stets transparent,

Fir Urteilskonzepte und Bevorzugungsdaten, fiir klassifikatorische und kontinuierliche
Merkmale stehen Prozeduren zur Verfligung, die iiberwiegend ohne groBe Schwierigkei-
ten praktisch umzusetzen sind. Die Resultate lassen sich aufgrund ihrer Datennihe eindeu-
tig interpretieren. Beispiele aus der angewandten Psychologie illustrieren jedes Verfahren.
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