
Games and their Relation to Markets

Inaugural-Dissertation

zur Erlangung des Grades eines Doktors

der Wirtschaftswissenschaften (Dr. rer. pol.)

an der

Fakultät für Wirtschaftswissenschaften

der Universität Bielefeld

vorgelegt von

Jan-Philip Gamp

Bielefeld, Februar 2012



Dekan:

Prof. Dr. Herbert Dawid Universität Bielefeld

Gutachter:
Prof. Dr. Walter Trockel Universität Bielefeld
Prof. Dr. Jean-Marc Bonnisseau Université Paris 1

externe Gutachter:
Prof. Hans Peters, Ph.D. Maastricht University
Prof. Herves Béloso, Ph.D. Universidade de Vigo

Adresse:
Universität Bielefeld
Fakultät für Wirtschaftswissenschaften
Universitätsstr. 25
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Chapter 1

Introduction

General Introduction

General equilibrium theory and cooperative game theory are different models

in economic theory describing perfectly competitive or cooperative behavior in

economic environments. This dissertation analyzes several aspects of the relation

between these different approaches.

General equilibrium theory describes the behavior of agents on perfectly com-

petitive markets. One considers some basic physical realities as the primitives of

the model. These can be preferences of the agents, consumption sets, production

sets and endowment vectors, but can also include several other aspects like time,

uncertainty, financial assets and much more. In a next step one analyzes the

equilibrium values of all variables of interest within a closed and interdependent

system. Hereby, it is in particular interesting to consider equilibrium prices. The

most prominent solution concept for Arrow-Debreu-Economies is the Walrasian

or competitive equilibrium. It reflects the idea that given the prices agents act as

price takers and maximize their utility subject to their budget constraints. Fur-

thermore, firms also act as price takers and choose profit maximizing production

plans. A tuple of price vectors, consumption plans of consumers and production

plans of producers is called a competitive equilibrium if the prices are such that all

markets clear, given the utility maximization of the agents and profit maximiza-
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tion of the firms. One typically considers questions like existence, uniqueness,

stability of equilibria but also the analysis of efficiency or social desirability of

competitive equilibria is of particular interest.

On the other hand, there is the theory on cooperative or coalitional games.

This theory can be used to describe many different kinds of interactive decision

situations where agents can form coalitions and make binding agreements about

their cooperation. The aim here is to study what groups can reach rather than

what individuals do. Hereby, one considers details of the behavior of the agents as

a black box and just analyzes which outcomes are achievable for which coalition.

Often, one even suppresses physical outcomes and considers only the allocations

of utility that are feasible for the coalitions. The set of players together with the

coalitional function is called a cooperative or coalitional game. The coalitional

function describes for each coalition the utility allocations that are achievable for

the coalition. Hereby, one often assumes that these outcomes are independent of

the behavior of the agents outside the coalition. A solution concept for cooperative

games assigns to each cooperative game a set of outcomes in terms of utility

vectors. Such solution concepts can be single valued but may also be set valued.

There exist several solution concepts for cooperative games like the core, inner

core, Nash bargaining solution, Shapley value, kernel, nucleolus and many others.

These solution concepts capture ideas like efficiency, stability, fairness, justice,

equity or others and try to predict or suggest possible agreements. One of the

most prominent solution concepts is the core where for elements of the core two

conditions have to hold. First, they have to be contained in the set of utility

allocations achievable for the grand coalition and, second, it must be impossible

for any coalition to make each member of this coalition better off than in the core

utility allocation.1

There exist mainly two approaches to study the relation between general

equilibrium theory and cooperative game theory. The first approach is to analyze

1There exists a slightly different definition of the core. This alternative definition re-
quires that core utility allocations have to be achievable for the grand coalition and,
furthermore, that there is no coalition that can assign to each member of the coalition
a utility that is at least as high as in the core utility allocation and to one member of
the coalition a utility that is higher than in the core utility allocation.

2
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an economy via concepts borrowed from game theory. Starting with a market

Shapley (1955) considers markets as cooperative games with two kinds of players,

seller and buyer. He introduces in this context the general notion of an ‘abstract

market game’. This is a cooperative game with certain conditions on the charac-

teristic function. Shubik (1959) extends the ideas of Edgeworth (from 1881) and

studies ‘Edgeworth market games’. In particular he shows that if the number

of players of both sides in an Edgeworth market game is the same, then the set

of imputations coincides with the contract curve of Edgeworth. Furthermore, he

considers non-emptiness conditions for the core of this class of games. Debreu

and Scarf (1963) show that under certain assumptions a competitive allocation

is in the core. Aumann (1964) investigates, based among others on the oceanic

games from Milnor and Shapley (1978)2, economies with a continuum of traders

and obtains that in this case the core equals the set of equilibrium allocations.

De Clippel and Minelli (2005) even show that competitive equilibrium allocations

are under mild conditions not only in the core, but even in the inner core, a re-

finement of the core. The core convergence theorem by Debreu and Scarf (1963)

shows that the core shrinks to the set of competitive equilibrium allocations if an

economy becomes very large in a specific way.

The second approach is to consider cooperative games themselves as economies

or markets and goes back to Shapley and Shubik (1969). They look at TU market

games. These are cooperative games with transferable utility (TU) that are in

a certain sense linked to economies or markets. More precisely, a market is said

to represent a game if the set of utility allocations a coalition can reach in the

market coincides with the set of utility allocations a coalition obtains according

to the coalitional function of the game. If there exists a market that represents a

game, then this game is called a market game. Shapley and Shubik (1969) prove

the identity of the class of totally balanced TU games with the class of TU market

games. In Shapley and Shubik (1975) they show that starting with a TU market

game every payoff vector in the core of that game is competitive in a certain

market, called direct market, and that for any given point in the core there exists

2The reference Milnor and Shapley (1978) is based on the Rand research memoranda
from the early 1960’s.

3
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at least one market that has this payoff vector as its unique competitive payoff

vector.

Cooperative games with non-transferable utility (NTU) can be considered as

a generalization of TU games, where the transfer of the utility within a coalition

does not take place at a fixed rate. After Shapley and Shubik (1969), Billera

and Bixby (1974) investigated the NTU case and obtained similar results for

compactly convexly generated NTU games. Analogously to the result of Shapley

and Shubik (1969) they show that every totally balanced NTU game, that is

compactly convexly generated, is a market game. The inner core is a refinement

of the core for NTU games. A point is in the inner core if there exists a transfer

rate vector, such that - given this transfer rate vector - no coalition can improve

even if utility can be transferred within a coalition according to the transfer rates

given by this vector. So, an inner core point is in the core of an associated

hyperplane game where the utility can be transferred according to the transfer

rate vector. The notion of the inner core was first described by Shapley and

Shubik (1975) and formalized by Shapley (1984). Sufficient conditions for the

non-emptiness of the inner core are studied in Qin (1994), Inoue (2010a) and

in Bonnisseau and Iehlé (2007). Furthermore, de Clippel and Minelli (2005)

give indirectly conditions for the non-emptiness of the inner core via economies.

A recent contribution of Bonnisseau and Iehlé (2011) discusses necessary and

sufficient conditions for the non-emptiness of the inner core. Hereby, they make

use of the notion of payoff depend balancedness developed in Bonnisseau and Iehlé

(2007). Qin (1994) analyzes the relation of the inner core with strictly inhibitive

sets and de Clippel (2002) gives an axiomatization of the inner core.

It turns out that the inner core is a suitable concept in the context of NTU

market games. Qin (1993) shows, verifying a conjecture of Shapley and Shubik

(1975), that the inner core of a market game coincides with the set of competitive

payoff vectors of the induced market of that game. Moreover, he shows that for

every NTU market game and for any given point in its inner core there exists a

market that represents the game and further has this given inner core point as its

unique competitive payoff vector. These results indicate the loss of information

when going from markets to market games, since different markets can represent

4
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the same market game.

There exist other approaches to market games where different kinds of pro-

duction are considered. In their work about TU-games Sun et al. (2008) consider

economies with coalitional production. Motivated by Sun et al. (2008) and the

approach of Billera and Bixby (1974), Inoue (2010b) considers the NTU-case.

He proves that every compactly generated NTU game can be represented by a

coalition production economy. Moreover, he proves that there exists a coalition

production economy such that its set of competitive payoff vectors coincide with

the inner core of the balanced cover of the original NTU game. Bejan and Gomez

(2010) consider not necessarily balanced TU games. They show that the aspira-

tion core of a TU game coincides with the set of competitive wages of two different

types of direct production economies including coalitional production. Garratt

and Qin (2000a) and Bejan and Gomez (2011) consider market games with time

constraints or even time and location constraints. Bejan and Gomez (2011) show

that in economies with time and location constraints and without free disposal

every TU game is a TU market game in the sense that the game can be generated

by an economy of this special type.

Trockel (1996, 2000) introduces an alternative approach and interprets in an

NTU-context bargaining games directly as Arrow-Debreu or as coalition pro-

duction economies. He shows that the unique equilibrium of such an economy

coincides with the asymmetric Nash bargaining solution of the underlying game

where the weights of the bargaining solution correspond to the shares in produc-

tion. One difference to other literature is that he uses a stylized models with

outputs in the production without requiring inputs.

Another contribution discussing the relation of bargaining solutions with com-

petitive equilibria is an article by Sertel and Yildiz (2003). They consider pure ex-

change economies and study bargaining games that are induced by these economies.

They prove ”that there are distinct exchange economies whose Walrasian equi-

librium welfare payoffs disagree but which define the same bargaining problem

and should have hence determined the same bargaining solution and its payoffs.”

So, they show that in general there cannot be a bargaining solution that always

yields the same payoffs as competitive equilibria.

5
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But the results of Sertel and Yildiz (2003) just show the impossibility of a Wal-

rasian bargaining solution in a very general setup. Under more restrictive condi-

tions it is possible to give a bargaining solution that yields the same payoffs as

Walrasian equilibria. John (2005) considers economies with linear utility functions

and proportionally divided endowments. In this situation a certain asymmetric

Nash bargaining solution yields exactly the competitive equilibrium allocations.

Moulin (2003) mentions only in passing that there should exist a version of the

results of John (2005) in the context of homogeneous utility functions.

Ervig and Haake (2005) also compare economies and bargaining games. They

show that in their model the payoffs of competitive equilibria coincide with payoffs

resulting from asymmetric versions of the Perles-Maschler bargaining solution.

The main reason for their different result is that they restrict consumer demand

by the total endowments of the economy.

Chipman and Moore (1979) discuss the relation of individual demand, ag-

gregate demand and social welfare functions. They consider in particular the

question whether the market demand function can be seen as the demand func-

tion of some representative consumer.

Contents of this dissertation

This dissertation studies several aspects of the relation of economies and coop-

erative games. Hereby, the focus is on the relation of solution concepts of the

different fields. More precisely, we discuss the relation of competitive equilibria

with solution concepts for cooperative games like core, inner core or asymmetric

Nash bargaining solutions. We consider games and study which solutions appear

as equilibria in economies representing these games. On the other hand we ana-

lyze when competitive equilibria of economies and cooperative solutions applied

to induced games yield the same allocations.

The dissertation consists of four chapters. Hereby, the first three chapters are

in joint work with Sonja Brangewitz (EBIM, Bielefeld University). We worked

together on these chapters with equal overall contributions of both of us. These

chapters are also a part of her dissertation.

6
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Competitive Outcomes and the Core of TU Market

Games

In the second chapter we investigate the relationship between certain subsets of

the core for TU market games and competitive payoff vectors of certain markets

linked to that game. Given a TU market we consider a certain market depending

on a given compact, convex subset of the core. We prove that this market repre-

sents the game and further has the given set as the set of payoffs of competitive

equilibria. This can be considered as the case in between the two extreme cases

of Shapley and Shubik (1975). They remark already that their result can be ex-

tended to any closed convex subset of the core, but they omit the details of the

proof which we present here. This more general case is in particular interesting,

as the two theorems of Shapley and Shubik (1975) are included as special cases.

Furthermore, it is interesting to see this result in contrast to the NTU version

presented in the third chapter. While in chapter 2 convex, closed subsets of the

core are considered it turns out that in the context of NTU market games the

appropriate approach is to study compact subsets of the inner core. Also the

techniques used in those chapters differ substantially.

More precisely, we denote with N = {1, 2..., n} the set of players. The set

of all non-empty coalitions is given by N = {S ⊆ N |S 6= ∅}. Thus, a coalition

is a non-empty subset of players. A cooperative game with transferable utility

(TU) is given by the pair (N, v) where N is the player set and v : N → R is the

characteristic or coalitional function.3 One well known solution concept for TU

games is the core. The core C(v) of a TU game (N, v) is the set of payoff vectors

where the value v(N), the grand coalition N can achieve, is distributed and no

coalition can improve upon,

C(v) = {x ∈ Rn|x(N) = v(N), x(S) ≥ v(S) ∀S ∈ N}.

We consider the relation of games to a certain class of pure exchange-economies

3Shapley and Shubik (1969) define the characteristic function as well for the empty set
with v(∅) = 0. Others, for example Billera and Bixby (1974), exclude the empty set
from this definition.

7
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called markets.

Definition 1 (market). Let N = {1, 2..., n} be the set of agents. A market is

given by E = (Xi, ωi, ui)i∈N where for every individual i ∈ N

- Xi ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set, where

ℓ ≥ 1, ℓ ∈ N is the number of commodities,

- ωi ∈ Xi is the initial endowment vector,

- ui : Xi → R is a continuous and concave function, the utility function.

Having introduced the notion of markets one can define when games are re-

lated to markets and analyze which games are related to markets. We follow

the notion of Shapley and Shubik (1975) and define a TU market game in the

following way:

Definition 2 (TU market game). A TU game (N, v) that is representable by a

market is a TU market game. This means that there exists a market E such that

(N, vE) = (N, v) with

vE(S) = max
xS∈F (S)

∑

i∈S

ui(xi) for all S ∈ N .

We analyze which kind of equilibria markets have that represent a game.

Hereby, we use a notion of equilibrium that suppresses the explicit use of a nu-

meraire commodity. In an extended model this commodity could be used to make

transfers of utility between different agents possible.

Definition 3 (competitive solution). A competitive solution is an ordered pair

(p∗, (x∗i)i∈N ), where p∗ is an arbitrary n-vector of prices and x∗N is a feasible

N -allocation, such that

ui(x∗i)− p∗ · x∗i = max
xi∈Rl

+

[ui(xi)− p · xi] for all i ∈ N.

The following notion describes payoffs of equilibria.

8



1.

Definition 4 (competitive payoff vector). A vector α∗ is a competitive payoff

vector if it arises from a competitive solution (p∗, (x∗i)i∈N ) such that

α∗i = ui(x∗i)− p∗ · (x∗i − ωi).

A competitive payoff vector describes the payoffs of competitive equilibria in

the complete model incorporating a numeraire commodity. The definition goes

back to Shapley and Shubik (1975) and is more precisely discussed in chapter 2.

In so called direct markets the competitive payoff vectors appear also as the set

of equilibrium price vectors.

The main result of this chapter is the following theorem.

Theorem 1. Let (N, v) be a TU market game and let A be a closed, convex subset

of the core. Then there exists a market such that this market represents the game

(N, v) and such that the set of competitive payoff vectors of this market is the set

A.

Competitive Outcomes and the Inner Core of NTU

Market Games

In the third chapter we consider the classical approach using NTU market games.

Hereby, it is well known that a market game can be represented by several mar-

kets. A natural question that arises in this context is which competitive equilibria

those economies have. In particular, it is not clear which utility payoffs these equi-

libria generate and how they are related to the game. We investigate the case

in between the two extreme cases of Qin (1993), where on the one hand there

exists a market that has the complete inner core as set of its competitive payoff

vector and on the other hand for any given inner core point there is a market

that has this point as its unique competitive payoff vector. We extend the re-

sults of Qin (1993) to compact subsets of the inner core: Given an NTU market

game we construct a market depending on a given compact subset of the inner

core. This market represents the game and further has the given set as the set

of payoff vectors of competitive equilibria. Hereby, we can not chose arbitrary

9
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compact subsets of the inner core but only subsets satisfying a condition called

strict positive separability. This condition mainly requires that any point con-

tained in the compact set can be strictly separated from the set of allocations of

utility available for the grand coalition. As this condition is relatively mild our

result shows that mainly any compact subset of the inner core of a given game

can appear as the set of payoff vectors of an economy representing that game.

The result is interesting itself as it gives new insights into the structural relation

of market games and markets, but it could also be useful in the context of market

foundations of compact valued solutions for cooperative games. The result is an

NTU version of the results presented in chapter 2.

In our work we follow the notion of Billera and Bixby (1974) or Qin (1993). An

NTU (non-transferable utility) game is a pair (N,V ), that consists of a player set

N = {1, ..., n} and a coalitional function V . The coalitional function defines for

every coalition a set of utility allocations this coalition can reach, regardless of

what players outside this coalition do. Hence, the coalitional function V is defined

as a mapping from the set of coalitions, N , to the set of non-empty subsets of Rn,

such that for every coalition S ∈ N we have V (S) ⊆ RS , V (S) is non-empty and

V (S) is S-comprehensive, meaning V (S) ⊇ V (S)−RS
+. Hereby, R

S is defined as

RS = {x ∈ Rn|xi = 0 if i /∈ S} ⊆ Rn. The core C(V ) of an NTU game (N,V ) is

defined as the set of utility allocations that are achievable by the grand coalition

N such that no coalition S can improve upon this allocation. Thus, in the NTU

context the core is defined as

C(V ) = {u ∈ V (N)| ∀S ⊆ N ∀u′ ∈ V (S) ∃ i ∈ S such that u′i ≤ ui}.

It turns out that in the context of NTU market games a refinement of the core,

the inner core, is a suitable concept. To introduce it we need the following notion.

Definition 5 (λ-transfer game). Let (N,V ) be a compactly generated NTU game

and let λ ∈ RN
+ . Define the λ-transfer game of (N,V ) by (N,Vλ) with

Vλ(S) = {u ∈ RS |λ · u ≤ vλ(S)}

where vλ(S) = max{λ · u|u ∈ V (S)}.

10
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The idea of the λ-transfer game is that we allow for transfers of utility within

a coalition according to the transfer rates given by the vector λ. Now we can use

this notion to introduce the inner core.

Definition 6 (inner core, Shubik (1984)). The inner core IC(V ) of a compactly

generated NTU game (N,V ) is

IC(V ) = {u ∈ V (N)|∃λ ∈ ∆ such that u ∈ C(Vλ)}

where C(Vλ) denotes the core of the λ-transfer game of (N,V ).

We analyze the relation of games to economies. Therefore, we consider a

particular class of economies called markets. Deviating from the definition in the

TU case we consider economies with production where each agent owns his own

firm. 4

Definition 7 (market). A market is given by E =
(

Xi, Y i, ωi, ui
)

i∈N
where for

every individual i ∈ N

- Xi ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set, where

ℓ ≥ 1, ℓ ∈ N is the number of commodities,

- Y i ⊆ Rℓ is a non-empty, closed and convex set, the production set, such

that Y i ∩ Rℓ
+ = {0},

- ωi ∈ Xi − Y i, the initial endowment vector,

- and ui : Xi → R is a continuous and concave function, the utility function.

In a market we can describe which allocations are feasible for coalitions.

An S-allocation is a tuple
(

xi
)

i∈S
such that xi ∈ Xi for each i ∈ S. The set

of feasible S-allocations is given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

xi ∈ Xi for all i ∈ S,
∑

i∈S

(xi − ωi) ∈
∑

i∈S

Y i

}

.

4This type of economies was considered in Hurwicz (1960), Rader (1964), Billera (1974),
Qin (1993), Qin and Shubik (2009), among others

11
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A feasible S-allocation is an allocation that is feasible for a coalition S if the

members of the coalition use their joint endowments and produce with their firms.

Having introduced this notion we can analyze which games are related to

markets. An NTU game is called an NTU market game if there exists a market

such that the set of utility allocations a coalition can reach according to the

coalitional function coincides with the set of utility allocations that are generated

by feasible S-allocations in the market or that give less utility than some feasible

S-allocation. The main result of this chapter is the following theorem.

Theorem 2. Let (N,V ) be an NTU market game and let A be a compact subset

of the inner core of (N,V ). Suppose that the game together with the set A satisfy

the condition of strict positive separability. Then there exists a market such that

a) this market represents the game (N,V ) and

b) the set of competitive payoff vectors of this market is the set A.

Inner Core, asymmetric Nash and competitive payoffs

In the fourth chapter we discuss the relation of the inner core with the set of

asymmetric Nash bargaining solutions for bargaining games. We show that the

set of asymmetric Nash bargaining solutions for different strictly positive weights

coincides with the inner core, if all points in the underlying bargaining set are

strictly positive. Furthermore, we prove that every bargaining game is a mar-

ket game. By using the results of Qin (1993) we conclude that for every possible

vector of weights of the asymmetric Nash bargaining solution there exists an econ-

omy that has this asymmetric Nash bargaining solution as its unique competitive

payoff vector. We relate the articles of Trockel (1996, 2005) with the ideas of Qin

(1993). Our result can be seen as a market foundation of the asymmetric Nash

bargaining solution in analogy to the results on non-cooperative foundations of

cooperative games.

More precisely, we introduce the following notion of a comprehensive bargain-

ing game.

12
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Definition 8 (NTU bargaining game). Define an NTU bargaining game(N,V )

with the generating set B using the player set N and the coalitional function

V : N −→ P (Rn)

defined by

V ({i}) : = {b ∈ Rn|bi ≤ 0, bj = 0, ∀j 6= i} = {0} − R
{i}
+ ,

V (S) : = {0} − RS
+ for all S with 1 < |S| < n,

V (N) : =
{

b ∈ Rn|∃ b′ ∈ B : b ≤ b′
}

= B − Rn
+.

We apply the well known concept of an asymmetric Nash bargaining solution

to this bargaining game.

Definition 9 (asymmetric Nash bargaining solution). The asymmetric Nash

bargaining solution with a vector of weights θ = (θ1, ..., θn) ∈ ∆n
++, for short

θ-asymmetric, for a n-person NTU bargaining game (N,V ) with disagreement

point 0 is defined as the maximizer of the θ-asymmetric Nash product given by
∏n

i=1 u
θi
i over the set V (N).5

If ν =
(

1
n
, ..., 1

n

)

the ν-asymmetric Nash bargaining solution is called the

(symmetric) Nash bargaining solution. We obtain the following result about the

relation of asymmetric Nash bargaining solutions with the inner core.

Proposition 1. Let (N,V ) be a n-person NTU bargaining game with disagree-

ment point 0 and generating set B ⊆ Rn
++.

• Suppose we have given a vector of weights θ = (θ1, .., θn) ∈ ∆n
++. Then the

θ-asymmetric Nash bargaining solution, aθ, is in the inner core of (N,V ).

• For any given inner core point aθ we can find an appropriate vector of

weights θ = (θ1, .., θn) ∈ ∆n
++ such that aθ is the maximizer of the θ-

asymmetric Nash product
∏n

i=1 u
θi
i .

5For bargaining games with a general threat point d ∈ Rn the θ-asymmetric Nash product
is given by

∏n

i=1
(ui − di)

θi .

13
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Combining this proposition with the results of Qin (1993) we obtain the main

result of the chapter.

Proposition 2. Given a n-person NTU bargaining game (N,V ) (with disagree-

ment point 0 and generating set from Rn
+) and a vector of weights θ ∈ ∆n

++,

there is market that represents (N,V ) and where additionally the unique competi-

tive payoff vector of this market coincides with the θ-asymmetric Nash bargaining

solution aθ of the NTU bargaining game (N,V ).

Asymmetric Nash bargaining solutions and perfect com-

petition

Chapter 5 builds on an unpublished mimeo by Reinhard John. The idea of this

paper is to study the compatibility of competitive equilibria with concepts of

bargaining theory and in particular with asymmetric Nash bargaining solutions.

We consider a pure exchange economy and study this economy on the one hand

with means of general equilibrium theory and on the other hand with means of

cooperative bargaining theory. It turns out that sets of competitive equilibrium

allocations and of allocations resulting from an asymmetric Nash bargaining so-

lution coincide as long as one restricts attention to economies where agents have

homogeneous (of degree 1) utility functions and where the initial endowments are

proportionally distributed. We study what happens when these assumptions are

relaxed or changed. Our result also holds if the agents have utility functions that

are homogeneous of the same degree k with 0 < k ≤ 1. Moreover, we analyze

the robustness of the result. Modifying the utility functions via certain monotone

transformation of utility leads to a breakdown of the implications of the results.

Furthermore, the unusual choice of the status quo point is analyzed in detail.

More precisely, we consider economies with n consumers i = 1, ..., n and m

commodities j = 1, ..., l. An economy is a tuple
((

(Xi, ui)ni=1

)

, e
)

. Xi = Rl
+

is the consumption set of consumer i. Each consumer is described by a utility

function

ui : Xi −→ R (1.1)

14
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which is weakly increasing, locally nonsatiated, concave, continuous and homo-

geneous of degree 1. Applying the concept of the Walrasian equilibrium in the

context of a proportional division of the endowments leads to the following defi-

nition.

Definition 10. An allocation x̄ ∈ A is called a Walras allocation with respect

to (the ownership or income distribution) α if there exists a price vector p =

(pj)
l
j=1 ∈ Rl

+ \ {0} such that

For i = 1, ..., n : x̄i maximizes ui
(

xi
)

subject to

xij ≥ 0 for all i = 1, ..., n, j = 1, ..., l,

p · xi ≤ p · (αie) for all i = 1, ..., n

n
∑

i=1

x̄i ≤ e and p ·
(

n
∑

i=1

x̄i − e

)

= 0.

In order to analyze this situation from the viewpoint of cooperative game

theory we apply an asymmetric version of the Nash bargaining solution. That

leads to the following definition.

Definition 11. A feasible allocation x̄ ∈ A is called a Nash allocation with

respect to α if it maximizes Ũα (x) =
n
∏

i=1

(

ui
(

xi
))αi on the set of all feasible

allocation, i.e. if x̄ is a solution to

max Ũα(x) subject to

xij ≥ 0 for all i = 1, ..., n and j = 1, ..., l

n
∑

i=1

xij − ej ≤ 0 for all j = 1, ..., l

The following proposition is the main result of chapter 5.

Proposition 3. An allocation x̄ =
(

x̄i
)n

i=1
is a Nash allocation with respect to α

if and only if it is a Walras allocation with respect to α.
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Short Overview

The main chapters of this thesis, each of which self contained in notation, are

based on four articles. Chapters 2 and 3 consider extensions of the results of

Shapley and Shubik (1975) and Qin (1993) to subsets of the core respectively the

inner core. Chapter 2 considers the case of TU market games while in Chapter

3 the NTU case is analyzed. Chapter 4 investigates the relation of asymmetric

Nash bargaining solutions with the inner core in the context of bargaining games.

We conclude that asymmetric Nash bargaining solutions are related to certain

markets. The fifth Chapter considers the relation of asymmetric Nash bargaining

solutions and competitive equilibria but now starting with economies and looking

at induced bargaining games.

Chapters 2 and 3 stress the loss of information when going from markets to

games. They illustrate that it is impossible to reconstruct payoffs of equilibria of

economies if one just has information about the possible allocations of utility, i.e.

about the coalitional function. In contrast to this result (and also in contrast to

the results of Sertel and Yildiz (2003)) chapter 5 illustrates that the conclusion

is not correct if one restricts attention to economies with homogeneous utility

functions (see chapter 5 for the detailed conditions). But this result is not very

robust. Already small deviations from the assumptions lead to a breakdown of

the results. So, only under very restrictive conditions it is possible to consider

an asymmetric Nash bargaining solution as the bargaining solution describing

payoffs of competitive equilibria.

Chapter 3 and Chapter 4 are also directly related. Chapter 4 makes direct

use of the results of Qin (1993) and the results of Chapter 3 which show that

essentially anything within the inner core can appear as the set of payoffs of

competitive equilibria of some market. Therefore, in particular the set of utility

payoffs given by an asymmetric Nash bargaining solution appear as the set of

payoffs of competitive equilibria of some market. This market can be chosen as

the market constructed by Qin (1993) or as the market given in Chapter 3.

Chapters 4 and 5 both discuss the relation of asymmetric Nash bargaining

solutions with competitive equilibria of certain economies. Nevertheless, both

16
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approaches differ substantially. In chapter 4 we start with an arbitrary NTU

bargaining game and pick a certain market representing this bargaining game.

In this suitably chosen market utility payoff vectors of competitive equilibria and

those allocations of utility, that an asymmetric Nash bargaining solution yields,

coincide. In contrast to that, in chapter 5 we start with a given economy with

certain properties. We show that the competitive equilibrium payoff vectors of

this economy coincide with the vector of utilities given by an asymmetric Nash

bargaining solution of the induced bargaining game.

To this point we have given a brief outline of the general context and devel-

opments which lead to this work. Since the questions and topics treated in the

following chapters differ, a more detailed scientific placement of this work will be

discussed in each chapter separately. This includes separate introductions and

conclusions.
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Introduction en Français

Introduction générale

La théorie de l’équilibre général et la théorie des jeux coopératifs sont deux mod-

èles différents de l’économie théorique permettant de décrire les comportements

compétitifs ou coopératifs. Cette thèse analyse différents aspects des relations

entre ces deux théories.

La théorie de l’équilibre général décrit le comportement des agents sur des

marchés parfaitement compétitifs. On considère des données physiques comme

des éléments primitifs du modèle. Cela peut être les préférences des agents, les

ensembles de consommation, les ensembles de production et les vecteurs de dota-

tions initiales, mais aussi plusieurs autres aspects comme le temps, l’incertain,

les actifs financiers et bien d’autres. Dans une étape ultérieure, on analyse les

valeurs de toutes les variables endogènes à l’équilibre à l’intérieur d’un système

complet d’équations interdépendantes. En conséquence, il est particulièrement

intéressant de considérer les prix d’équilibre. Le concept de solution dominant

pour les économies à la Arrow-Debreu est l’équilibre de Walras ou compétitif. Il

traduit l’idée qu’étant donné les prix, les agents agissent comme s’ils n’avaient

pas d’influence sur ceux-ci et maximisent leurs fonctions d’utilité sous leur con-

trainte budgétaire. De plus, les entreprises agissent aussi en prenant les prix

comme une donnée et choisissent des productions qui maximisent le profit. La

donnée d’un vecteur de prix, de consommations pour les consommateurs et de

productions pour les producteurs est appelé un équilibre compétitif si les prix sont

tels que l’offre est égal à la demande sur tous les marchés. Dans ce contexte, on

étudie typiquement les questions d’existence, d’unicité, de stabilité des équilibres
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mais l’analyse de l’efficacité ou de l’efficience sociale est aussi particulièrement

intéressante.

La théorie des jeux coopératifs ou des jeux avec coalitions est une autre ap-

proche des interactions entre agents économiques. Cette théorie peut être utilisée

pour décrire de nombreux types d’interactions où les agents peuvent former des

coalitions et faire des accords contraignants sur leur coopération. L’objectif ici

est d’étudier quels groupes peuvent être atteints plutôt que ce que les individus

vont faire. Ainsi, les détails sur le comportement des agents est traité comme une

boite noire. On analyse seulement quelles conséquences sont réalisables par quelles

coalitions en prenant en compte les préférences des agents sur ces conséquences.

Souvent, on ne considère même pas les conséquences physiques mais seulement

les niveaux d’utilité réalisables par les coalitions. L’ensemble des joueurs avec

les fonctions de coalition est appelé un jeu coopératif. Les fonctions de coali-

tion décrivent les niveaux d’utilité réalisables pour chaque coalition. On suppose

souvent que ces niveaux d’utilités sont indépendant du comportement des agents

hors de la coalition. Un concept de solution pour les jeux coopératifs associe à

chaque jeu un ensemble de conséquences exprimées en terme de niveau d’utilité.

Les ensembles de solutions peuvent être des singletons ou multivoques. Il existe

plusieurs concepts de solution pour les jeux coopératifs comme le coeur, le coeur

interne, la solution de marchandage à la Nash, la valeur de Shapley, le noyau,

le nucleolus et bien d’autres. Ces concepts traduisent des notions d’efficacité, de

stabilité, d’équité, de justice ou d’autres et tentent de prédire ou de suggérer des

accords possibles. L’un des principaux concepts est le coeur pour lequel deux

conditions doivent être satisfaites. Premièrement, les niveaux d’utilité dans le

coeur doivent être réalisables par la grande coalition regroupant tous les joueurs

et, deuxièmement, il ne doit pas être possible pour une coalition d’assurer à tous

ses membres un niveau d’utilité strictement supérieur à celui offert par l’élément

du coeur considéré.6

Il existe principalement deux approches pour étudier les liens entre théorie

6Il existe une version un peu différente pour le coeur. Celle-ci requiert que les niveaux
d’utilité doivent être réalisables par la grande coalition et que, de plus, aucune coalition
peut garantir à chacun de ses membres un niveau d’utilité supérieur ou égal à celui de
l’élément proposé et strictement plus grand pour au moins un de ses membres.
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de l’équilibre général et théorie des jeux coopératifs. La première approche est

d’analyser une économie avec les concepts empruntés à la théorie des jeux. Shap-

ley (1955) considère les marchés comme des jeux coopératifs avec deux types

de joueurs, les vendeurs et les acheteurs. Il introduit dans ce contexte la no-

tion générale d’un “jeu de marché abstrait”. C’est un jeu coopératif avec cer-

taines conditions sur les fonctions caractéristiques. Shubik (1959) étend les idées

d’Edgeworth (de 1881) et étudie les “jeux de marché d’Edgeworth”. En partic-

ulier, il montre que si le nombre d’agents des deux côtés dans un jeu de marché

d’Edgeworth est le même, alors l’ensemble des conséquences cöıncide avec les

courbes des contrats d’Edgeworth. De plus, il considère des conditions suffisantes

de non vacuité pour le coeur de cette classe de jeux. Debreu and Scarf (1963)

montre que sous certaines hypothèses une allocation associée à un équilibre com-

pétitif appartient au coeur. En partant des jeux océaniques introduit entre autres

par Milnor and Shapley (1978)7, Aumann (1964) examine les économies avec un

continuum d’agents et obtient que le coeur cöıncide alors avec l’ensemble des al-

locations d’équilibre. De Clippel and Minelli (2005) montre même que sous des

conditions assez faibles, les allocations d’équilibre appartiennent non seulement

au coeur mais aussi au coeur interne, qui est un raffinement du coeur. Le théorème

de convergence vers le coeur de Debreu and Scarf (1963) montre que le coeur se

rétrécit vers l’ensemble des allocations d’équilibre si l’économie devient de plus

en plus grande dans un sens bien précis.

La deuxième approche, datant de Shapley and Shubik (1969), est de con-

sidérer les jeux coopératifs eux-mêmes comme des économies ou marchés. Dans

Shapley and Shubik (1969), les auteurs considère les jeux de marchés avec utilité

transférable (TU). Ce sont des jeux coopératifs TU qui sont dans un certain sens

reliés aux économies ou marchés. Plus précisément, un marché représente un jeu

si l’ensemble des niveaux d’utilité qu’une coalition peut atteindre dans le marché

cöıncide avec l’ensemble des niveaux d’utilité pour cette coalition donné par la

fonction de coalition. S’il existe un marché qui représente le jeu, alors le jeu est

appelé un jeu de marché. Shapley and Shubik (1969) montre l’identité entre la

7La référence Milnor and Shapley (1978) est basée sur le Rand research memoranda de
début des années 60.
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classe des jeux TU totalement équilibré avec la classe des jeux de marché TU.

Dans Shapley and Shubik (1975), il montre qu’en partant d’un jeu de marché

TU, tous les vecteurs de paiements dans le coeur du jeu sont des niveaux d’utilité

d’équilibre d’un certain marché appelé marché direct, et que pour tout point dans

le coeur, il existe au moins un marché tel que ce paiement est l’unique niveau

d’utilité d’équilibre de ce marché.

Les jeux coopératifs à utilité non-transférable (NTU) peuvent être vu comme

une généralisation des jeux à utilité transférable, où les transferts à l’intérieur

d’une coalition ne peuvent pas être fait à un taux d’échange constant. Après

Shapley and Shubik (1969), Billera and Bixby (1974) a étudié les jeux NTU et

a obtenu des résultats similaires pour les jeux NTU générés par des convexes

compacts. De manière analogue au résultat de Shapley and Shubik (1969), ils

montrent que tous les jeux NTU totalement équilibrés et générés par des convexes

compacts sont des jeux de marché.

Le coeur interne est un raffinement du coeur pour les jeux NTU. Un paiement

appartient au coeur interne s’il existe un vecteur de taux de transfert tel que,

étant donné ce vecteur, aucune coalition ne peut améliorer le paiement même si

les niveaux d’utilités pourraient être transférés en suivant les taux donnés par le

vecteur. Donc, un élément dans le coeur interne est un élément du coeur d’un

jeux associé ou les ensembles d’utilités réalisables sont des demi-espaces définis

par le vecteur de taux de transfert. La notion de coeur interne a été décrite pour

la première fois par Shapley and Shubik (1975) et formalisé dans Shapley (1984).

Des conditions suffisantes pour le non-vacuité du coeur interne ont été proposées

dans Qin (1994), Inoue (2010a) et dans Bonnisseau and Iehlé (2007). De plus,

de Clippel and Minelli (2005) donne des conditions indirectes pour la non-vacuité

du coeur interne pour les jeux dérivés d’une économie. Une contribution récente

de Bonnisseau and Iehlé (2011) discute des conditions nécessaires et suffisantes

pour la non-vacuité du coeur interne. Qin (1994) analyse la relation entre le coeur

interne avec les ensembles strictement inhibitifs et de Clippel (2002) donne une

axiomatisation du coeur interne.

Il apparâıt que le coeur interne est un concept approprié dans le contexte des

jeux de marché NTU. Vérifiant une conjecture de Shapley and Shubik (1975), Qin
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(1993) montre que le coeur interne d’un jeu de marché cöıncide avec l’ensemble

des vecteurs de paiements compétitifs du marché induit par le jeu. De plus, il

montre que pour tout jeu de marché NTU et pour n’importe quel élément dans

le coeur interne, il existe un marché qui représente le jeu et qui a pour unique

paiement compétitif l’élément choisi dans le coeur interne. Ces résultats montrent

la perte d’information lorsqu’on va des marchés aux jeux de marché, parce que

différents marchés peuvent représenter le même jeu.

Il existe d’autres approches des jeux de marché où différents types de pro-

duction sont introduites. Dans leur travail sur les jeux TU, Sun et al. (2008)

considèrent des économies avec des productions par coalition. Inspiré par Sun

et al. (2008) et l’approche de Billera and Bixby (1974), Inoue (2010b) étudie le

cas des jeux NTU. Il montre que chaque jeu NTU généré par des ensembles com-

pacts peut être représenté par une économie avec production par coalition. De

plus, il prouve qu’il existe une économie avec production par coalition telle que son

ensemble de paiements compétitifs cöıncide avec le coeur interne de l’extension

équilibrée du jeu NTU original. Bejan and Gomez (2010) considèrent des jeux TU

non nécessairement équilibrés. Ils montrent que le coeur espéré d’un jeu TU cöın-

cide avec l’ensemble des revenus compétitifs de deux différents types d’économies

directes avec production dont des productions par coalition. Garratt and Qin

(2000a) et Bejan and Gomez (2011) considèrent des jeux de marché avec des

contraintes de temps ou des contraintes de temps et de localisation. Bejan and

Gomez (2011) montre que dans les économies avec contraintes en temps et en

localisation et sans libre disposition, chaque jeu TU est un jeu de marché TU

dans le sens où le jeu peut être généré par une économie de ce type particulier.

Trockel (1996, 2000) introduit une approche alternative et interprète un jeu

de marchandage dans un contexte NTU directement comme une économie à la

Arrow-Debreu ou comme une économie avec des productions par coalition. Il

montre que l’unique équilibre de cette économie correspond à la solution de

marchandage de Nash asymétrique du jeu sous-jacent où les poids de la solu-

tion de marchandage sont les parts dans la production. Une différence avec le

reste de la littérature est qu’il utilise un modèle où la production a des outputs

mais pas d’inputs.
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Une autre contribution au sujet des relations entre solutions de marchandage

et équilibres compétitifs est l’article de Sertel and Yildiz (2003). Ils considèrent

des économies d’échange pures et étudient le jeu de marchandage induit par ces

économies. Ils montrent qu’il existe des économies d’échange différentes dont les

niveaux d’utilité à l’équilibre de Walras sont différents mais qui induisent le même

jeu de marchandage et qui donc devrait avoir la même solution de marchandage

et donc les mêmes paiements. Ainsi, ils mettent en évidence que, en général, il

n’existe pas de solution de marchandage qui donne toujours le même paiement

que l’équilibre compétitif.

Mais les résultats de Sertel and Yildiz (2003) montre juste l’impossibilité d’une

solution de marchandage walrasienne dans un contexte très général. Sous des hy-

pothèses plus restrictives, il est possible de donner une solution de marchandage

qui conduit aux mêmes paiements que l’équilibre walrasien. John (2005) consid-

ère des économies avec des fonctions d’utilité linéaires et des dotations initiales

proportionnelles. Dans cette situation, une solution de marchandage de Nash

asymétrique particulière conduit exactement à l’allocation de l’équilibre compéti-

tif. Moulin (2003) mentionne seulement qu’il devrait exister une version des

résultats de John (2005) pour des fonctions d’utilité homogène.

Ervig and Haake (2005) comparent aussi des économies avec des jeux de

marchandage. Ils montrent que dans leur modèle, les niveaux d’utilité à l’équilibre

compétitif cöıncident avec ceux de la solution de marchandage asymétrique de

Perles-Maschler. La principale raison qui justifie la différence de leur résultat

est qu’il restreignent la demande des consommateurs par la dotation totale de

l’économie.

Chipman and Moore (1979) discutent la relation entre demande individuelle,

demande agrégée et fonction de bien-être sociale. Ils considèrent en particulier

la question de savoir si la fonction de demande du marché peut être interprétée

comme une fonction de demande d’un consommateur représentatif.
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Contributions de la thèse

Cette thèse étudie plusieurs aspects des relations entre économies et jeux coopérat-

ifs. Dans la suite, nous nous concentrons sur les relations entre les concepts de

solution dans les différents domaines. Plus précisément, nous discutons les re-

lations entre équilibre compétitif d’une part et les concepts de solution des jeux

coopératifs d’autre part comme le coeur interne ou les allocations de marchandage

de Nash asymétrique. Nous partons des jeux et nous étudions quelles solutions

correspondent à des équilibres des économies qui représentent ces jeux. Nous

étudions également quels couples de solutions conduisent aux mêmes niveaux

d’utilité.

La thèse est en quatre partie. Les trois premières sont un travail conjoint avec

Sonja Brangewitz (EBIM, Université de Bielefeld).

Allocations compétitives et le coeur des jeux de marchés

TU

Dans le second chapitre, nous analysons les relations entre certains sous-ensembles

du coeur des jeux de marchés TU et les vecteurs de paiements compétitifs de

certains marchés reliés à ces jeux. Etant donné un marché TU, nous construisons

un marché dépendant d’un sous-ensemble donné convexe et compact du coeur.

Le marché représente le jeu et de plus, l’ensemble des paiements compétitifs est

égal au sous-ensemble donné a priori. Ce résultat peut être vu comme un résultat

intermédiaire entre les deux cas extrêmes de Shapley and Shubik (1975). Les

auteurs avaient déjà remarqués que leur résultat pouvait être étendu à n’importe

quel ensemble fermé et convexe du coeur, mais ils n’avaient pas donné les détails

de la démonstration qui est exposé ici. Ce cas plus général est en particulier

intéressant car les deux théorèmes de Shapley and Shubik (1975) sont des cas

particuliers. De plus, il est utile quand on le compare avec le résultat pour les

jeux NTU présenté dans le troisième chapitre. Alors que dans le chapitre 2,

l’ensemble de départ doit être convexe et fermé, il apparâıt que pour les jeux de

marchés NTU, la bonne approche est d’étudier les ensembles compacts du coeur
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interne. Notons aussi que les techniques utilisées dans les deux chapitres sont

substantiellement différentes.

Soit N = {1, 2..., n} l’ensemble des joueurs. L’ensemble de toutes les coali-

tions non vides est donné par N = {S ⊆ N |S 6= ∅}. Une coalition est donc un

sous-ensemble non vide de l’ensemble des joueurs. Un jeu coopératif avec utilité

transférable (TU) est la donnée d’une paire (N, v) où N est l’ensemble des joueurs

et v : N → R est la fonction caractéristique ou de coalition.8

Un concept de solution bien connu pour les jeux TU est le coeur. Le coeur

C(v) du jeu TU (N, v) est l’ensemble des vecteurs de paiements ou la valeur

v(N) de la coalition de tous les joueurs est distribuée et aucune coalition ne peut

améliorer cette distribution.

C(v) = {x ∈ Rn|x(N) = v(N), x(S) ≥ v(S) ∀S ∈ N}.

Nous considérons les relations entre les jeux avec une certaine classe d’économies

d’échange pures appelées marchés.

Définition 1 (marché). Soit N = {1, 2..., n} l’ensemble des agents. Un marché

est donné par E = (Xi, ωi, ui)i∈N où pour chaque agent i ∈ N

- Xi ⊆ Rℓ
+ est un l’ensemble de consomation qui est non vide, fermé et

convexei et ℓ ≥ 1, ℓ ∈ N est le nombre de biens,

- ωi ∈ Xi est le vecteur de dotations initiales,

- ui : Xi → R est la fonction d’utilité continue et concave.

Ayant introduit la notion de marché, nous pouvons définir comment les jeux

sont reliés aux marchés et quels jeux sont reliés aux marchés. Nous suivons

l’approche de Shapley and Shubik (1975) et définissons un jeu de marché TU de

la façon suivante:

Définition 2 (jeu de marché TU). Un jeu TU (N, v) qui est représentable par

un marché est un jeu de marché TU. Cela signifie qu’il existe un marché E tel

8Shapley and Shubik (1969) définit la fonction caractéristique également pour l’ensemble
vide par v(∅) = 0. D’autres auteurs, par exemple Billera and Bixby (1974), excluent
l’ensemble vide de l’ensemble des coalitions.
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que (N, vE) = (N, v) avec

vE(S) = max
xS∈F (S)

∑

i∈S

ui(xi) pour tout S ∈ N .

Nous utilisons maintenant une définition d’équilibre sans expliciter le bien

numéraire qui est utilisé pour faire les transferts d’utilité entre les agents.

Définition 3 (solution compétitive). Une solution compétitive est une paire

(p∗, (x∗i)i∈N ), où p∗ est un vecteur de prix de dimension n et x∗N est une al-

location réalisable pour la coalition de tous les agents vérifiant

ui(x∗i)− p∗ · x∗i = max
xi∈Rℓ

+

[ui(xi)− p · xi] pour tout i ∈ N.

La définition suivante décrit les paiements d’équilibre.

Définition 4 (vecteur de paiements compétitifs). Un vecteur α∗ est un vecteur de

paiements compétitifs s’il est définit à partir d’une solution compétitive(p∗, (x∗i)i∈N )

par

α∗i = ui(x∗i)− p∗ · (x∗i − ωi).

Un vecteur de paiements compétitifs décrit les paiements à l’équilibre com-

pétitif en intégrant le bien numéraire. La définition est introduite dans Shapley

and Shubik (1975) et elle est plus précisément commentée dans le chapitre 2. Dans

le marché particulier appelé marché direct, le vecteur de paiements est aussi le

vecteur des prix d’équilibre.

Le principal résultat du chapitre 2 est le résultat suivant.

Théorème 1. Soit (N, v) un jeu de marché TU et soit A un sous-ensemble

convexe fermé du coeur. Alors, il existe un marché qui représente le jeu (N, v) et

tel que l’ensemble des vecteurs de paiements compétitifs de ce marché est égal à

l’ensemble A.
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Paiementss compétitifs et coeur interne des jeux de

marché NTU

Dans le troisième chapitre, nous considérons les jeux de marchés NTU. Il est

bien connu qu’un jeu de marché peut être représenté par plusieurs marchés. Une

question naturelle dans ce contexte est d’étudier quels sont les équilibres com-

pétitifs de ces économies, en particulier, quels sont les niveaux d’utilité générés

par ces équilibres et comment ils sont reliés au jeu. Nous examinons le cas in-

termédiaire entre les deux cas extrêmes de Qin (1993), où d’un côté il existe

un marché dont les vecteurs de paiements compétitifs sont tous les éléments du

coeur interne et d’un autre côté, pour n’importe quel élément du coeur interne, il

existe un marché tel que cet élément est l’unique vecteur de paiements compéti-

tifs. Nous étendons les résultats de Qin (1993) aux sous-ensembles compacts du

coeur interne: étant donné un jeu de marché NTU, nous construisons un marché

dépendant du sous-ensemble donné. Ce marché représente le jeux et, de plus,

a l’ensemble donné comme ensemble de vecteurs de paiements compétitifs. A

vrai dire, nous ne pouvons pas choisir un sous-ensemble compact arbitraire du

coeur interne mais seulement ceux satisfaisant une condition appelée séparation

positive stricte. Cette condition exige principalement que tous les éléments du

sous-ensemble compact peuvent être strictement séparés de l’ensemble des allo-

cations en utilité réalisable par la coalition de tous les agents. Comme cette

condition est relativement faible, notre résultat montre que presque tous les sous-

ensembles compacts du coeur interne d’un jeu donné peuvent être l’ensemble des

vecteurs de paiement compétitifs d’une économie représentant le jeu.

Le résultat est intéressant en lui-même car il donne de nouvelles intuitions sur

la relation structurelle des jeux de marché et des marchés, mais il peut aussi être

utile dans le contexte de l’analyse des fondations des concepts de solution pour

les jeux coopératifs par les marchés. Le résultat est une version NTU de ceux

présentés dans le chapitre 2.

Dans notre travail, nous adoptons les notations de Billera and Bixby (1974)

ou Qin (1993). Un jeu à utilité non transférable (NTU) est une paire (N,V )

où N = {1, ..., n} est l’ensemble des agents et V une fonction de coalition. La

28



1.

fonction de coalition définit pour chaque coalition un ensemble d’allocations en

utilité que la coalition peut réaliser, sans tenir compte des agents en dehors de

la coalition. Donc, la fonction de coalition V est définie comme une application

de l’ensemble des coalitions, N , dans l’ensemble des sous-ensembles non vides

de RN , tel que pour toute coalition S ∈ N , V (S) ⊆ RS , V (S) est non vide et

S-comprehensif, c’est-à-dire que V (S) ⊇ V (S)−RS
+. Le coeur C(V ) du jeu NTU

(N,V ) est défini comme l’ensemble des allocations en utilité qui est réalisable par

la coalition de tous les agent N et telles qu’aucune coalition S ne peut améliorer

cette allocation. Donc, dans le contexte NTU, le coeur est défini par:

C(V ) = {u ∈ V (N)| ∀S ⊆ N ∀u′ ∈ V (S) ∃ i ∈ S tel que u′i ≤ ui}.

Il apparâıt que dans le contexte des jeux de marché, un raffinement du coeur, le

coeur interne, est un concept bien adapté. Pour le définir, nous avons besoin de

la notion suivante.

Définition 5 (jeu avec λ-transfert). Soit (N,V ) un jeu NTU généré par des

compacts et soit λ ∈ RN
+ . Le jeu avec λ-transfert de (N,V ) est le jeu (N,Vλ) où

Vλ(S) = {u ∈ RS |λ · u ≤ vλ(S)}

et vλ(S) = max{λ · u|u ∈ V (S)}.

L’idée du jeu avec λ-transfert est que nous permettons des transferts d’utilité

à l’intérieur des coalitions suivant les taux de transferts donnés par le vecteur λ.

Maintenant, nous pouvons utiliser cette notion pour définir le coeur interne.

Définition 6 (coeur interne, Shubik (1984)). Le coeur interne IC(V ) d’un jeu

NTU généré par des compacts (N,V ) est

IC(V ) = {u ∈ V (N)|∃λ ∈ ∆ tel que u ∈ C(Vλ)}

où C(Vλ) est le coeur du jeu avec λ-transfert associé à (N,V ).

Nous analysons les relations entre jeux et économie. En conséquence, nous

considérons un classe particulière d’économies appelée marchés. Nous considérons
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des économies avec production où les agents possèdent leur propre entreprise9 ce

qui diffère du cas TU.

Définition 7 (marché). Un marché est la donnée de E =
(

Xi, Y i, ωi, ui
)

i∈N
où

pour chaque agent i ∈ N

- Xi ⊆ Rℓ
+ est un ensemble de consommation non vide, fermé et convexe et

ℓ ≥ 1, ℓ ∈ N est le nombre de biens;

- Y i ⊆ Rℓ est l’ensemble de production de l’agent i, qui est un sous-ensemble

convexe et fermé vérifiant Y i ∩ Rℓ
+ = {0};

- ωi ∈ Xi − Y i est le vecteur de dotations initiales;

- et ui : Xi → R est la fonction d’utilité continue et concave.

Dans un marché, nous pouvons décrire les allocations réalisables de chaque

coalition.

Une S-allocation est un élément
(

xi
)

i∈S
tel que xi ∈ Xi pour tout i ∈ S.

L’ensemble des S-allocations réalisables est défini par

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

xi ∈ Xi pour tout i ∈ S,
∑

i∈S

(xi − ωi) ∈
∑

i∈S

Y i

}

.

Une S-allocation réalisable est une allocation réalisable par la coalition S si les

membres de cette coalition utilisent conjointement leurs dotations initiales et leurs

capacités de production.

Ayant introduit cette notion, nous pouvons analyser quels sont les jeux reliés

aux marchés. Un jeu NTU est appelé un jeu de marché NTU s’il existe un marché

tel que l’ensemble V (S) des allocations en utilité réalisable par une coalition

S donné par la fonction de coalition est égal à l’enveloppe compréhensive de

l’ensemble des allocations en utilité qui est généré par les S-allocations réalisables

du marché. Le résultat principal de ce chapitre est le résultat suivant.

9Ce type d’économie est considéré dans Hurwicz (1960), Rader (1964), Billera (1974),
Qin (1993), Qin and Shubik (2009), parmi d’autres.
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Théorème 2. Soit (N,V ) un jeu de marché NTU et soit A un sous-ensemble

compact du coeur interne de (N,V ). Supposons que le jeu et l’ensemble A vérifient

la condition de stricte séparabilité positive. Alors, il existe un marché tel que

a) ce marché représente le jeu (N,V ) et

b) l’ensemble des vecteurs de paiements compétitifs de ce marché est égal à

l’ensemble A.

Coeur interne, allocation de Nash asymétrique et paiements

compétitifs

Dans le quatrième chapitre, nous étudions la relation du coeur interne avec

l’ensemble des solutions de marchandage de Nash asymétriques pour les jeux

de marchandage. Nous montrons que l’ensemble des solutions de marchandage

de Nash asymétriques pour différents poids strictement positifs est égal au coeur

interne si tous les éléments du jeu de marchandage sous-jacent sont strictement

positifs. De plus, nous démontrons que chaque jeu de marchandage est un jeu

de marché. En utilisant les résultats de Qin (1993), nous pouvons en conclure

que pour chaque solution de marchandage de Nash asymétrique, il existe une

économie qui a pour unique vecteur de paiement compétitif cette solution. Nous

faisons ainsi un lien entre les articles de Trockel (1996, 2005) avec les idées de

Qin (1993). Notre résultat peut être vu comme une fondation par les marchés de

la solution de marchandage de Nash asymétrique comparable aux résultats sur la

fondation non-coopérative des jeux coopératifs.

Plus précisément, nous introduisons la notion suivante d’un jeu de marchandage

compréhensif.

Définition 8 (jeu de marchandage NTU). Nous définissons un jeu de marchandage

NTU (N,V ) avec un ensemble générateur B, un ensemble de joueurs N et une

fonction de coalition

V : N −→ P (Rn)
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définie par:

V ({i}) : = {b ∈ Rn|bi ≤ 0, bj = 0, ∀j 6= i} = {0} − R
{i}
+ ,

V (S) : = {0} − RS
+ pour tout S avec 1 < |S| < n,

V (N) : =
{

b ∈ Rn|∃ b′ ∈ B : b ≤ b′
}

= B − Rn
+.

Nous appliquons le concept bien connu de solution de marchandage de Nash

asymétrique à ce jeu de marchandage.

Définition 9 (solution de marchandage de Nash asymétrique). La solution de

marchandage de Nash asymétrique avec le vecteur de poids θ = (θ1, ..., θn) ∈ ∆n
++,

en bref θ-asymétrique, pour un jeu de marchandage NTU avec n joueurs (N,V ) et

point de désaccord 0 est définie comme la solution de la maximisation du produit

de Nash θ-asymétrique donnée par
∏n

i=1 u
θi
i sur l’ensemble V (N)10.

Si ν =
(

1
n
, ..., 1

n

)

la solution de marchandage de Nash ν-asymétrique est ap-

pelée la solution de marchandage de Nash (symétrique). Nous obtenons le résultat

suivant sur les relations entre coeur interne et solutions de marchandage de Nash

asymétriques.

Proposition 4. Soit (N,V ) un jeu de marchandage NTU avec n joueurs ayant

pour point de désaccord 0 et engendré par l’ensemble B ⊆ Rn
++.

• Supposons que nous avons un vecteur de poids θ = (θ1, .., θn) ∈ ∆n
++. Alors

la solution de marchandage de Nash θ-asymétrique, aθ, appartient au coeur

interne de (N,V ).

• Pour n’importe quel élément a du coeur interne, nous pouvons trouver un

vecteur de poids approprié θ = (θ1, .., θn) ∈ ∆n
++ tel que a est la solution

de la maximisation du produit de Nash θ-asymétrique
∏n

i=1 u
θi
i .

En combinant ce résultat avec ceux de Qin (1993), nous obtenons le résultat

principal de ce chapitre.

10Pour les jeux de marchandage avec un point de désaccord général d ∈ Rn le produit de
Nash θ-asymétrique est donné par

∏n

i=1
(ui − di)

θi .
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Proposition 5. Etant donné un jeu de marchandage NTU à n joueurs (N,V )

(avec point de désaccord 0 et engendré par un sous-ensemble de Rn
+) et un vecteur

de poids θ ∈ ∆n
++, il existe un marché qui représente (N,V ) et, de plus, l’unique

vecteur de paiement compétitif de ce marché est la solution de marchandage de

Nash θ-asymétrique aθ du jeu de marchandage NTU (N,V ).

Quatrième article

Le chapitre 5 est basé sur une note non publiée de Reinhard John. L’idée du

papier est d’étudier la compatibilité des équilibres compétitifs avec les concepts

de la théorie du marchandage et en particulier, avec la solution de marchandage

de Nash asymétrique. Nous considérons une économie d’échange pure et nous

l’étudions à la fois d’un point de vue de la théorie de l’équilibre général et d’un

point de vue de la théorie des jeux coopératifs. Il apparâıt que les ensembles des

allocations d’équilibre compétitives et les allocations obtenues par la solution de

marchandage de Nash asymétrique cöıncident lorsqu’on se restreint aux économies

où les agents ont des préférences homogènes de degré 1 et lorsque les dotations

initiales sont distribuées proportionnellement à la dotation initiale totale. Nous

étudions également ce qu’il advient lorsque les hypothèses sont affaiblies ou modi-

fiées. Notre résultat est encore vrai lorsque les agents ont des préférences qui sont

homogènes pour le même degré k avec 0 ≤ k ≤ 1. Nous analysons la robustesse

du résultat. La modification des fonctions d’utilité par des transformations mono-

tones ne permet plus d’obtenir ce résultat. De plus, le choix inhabituel du point

de status quo est étudié en détail.

Plus précisément, nous considérons des économies avec n consommateurs i =

1, ..., n et ℓ biens j = 1, ..., ℓ. Une économie est un nuplet
((

(Xi, ui)ni=1

)

, e
)

.

Xi = Rℓ
+ est l’ensemble de consommation du consommateur i. Les préférences

de chaque consommateur sont décrites par une fonction d’utilité

ui : Xi −→ R (1.2)

qui est faiblement croissante, localement non saturée, concave, continue et ho-

mogène de degré 1. Le concept d’équilibre de Walras dans ce contexte avec une
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répartition proportionnelle des dotations initiales conduit à la définition suivante:

Définition 10. Une allocation x̄ ∈ A est appelée une allocation de Walras par

rapport à la distribution des ressources α s’il existe un vecteur de prix p =

(pj)
ℓ
j=1 ∈ Rℓ

+ \ {0} tel que

Pour i = 1, ..., n : x̄i maximise ui
(

xi
)

sous les contraintes

xij ≥ 0 pour tout j = 1, ..., ℓ,

p · xi ≤ p · (αie)

n
∑

i=1

x̄i ≤ e et p ·
(

n
∑

i=1

x̄i − e

)

= 0.

Pour analyser la même situation d’un point de vue des jeux coopératif, nous

utilisons la solution de marchandage asymétrique de Nash. Ceci nous donne la

définition suivante:

Définition 11. Une allocation réalisable x̄ ∈ A est appelée une allocation de

Nash par rapport à α si elle maximise Ũα (x) =
n
∏

i=1

(

ui
(

xi
))αi sur l’ensemble des

allocations réalisables, c’est-à-dire si x̄ est une solution de

max Ũα(x) sous les contraintes

xij ≥ 0 pour tout i = 1, ..., n et j = 1, ..., ℓ

n
∑

i=1

xij − ej ≤ 0 pour tout j = 1, ..., ℓ

La proposition suivante constitue le résultat principal du chapitre 5.

Proposition 6. Une allocation x̄ =
(

x̄i
)n

i=1
est une allocation de Nash par rapport

à α si et seulement si c’est une allocation de Walras par rapport à α.

Une rapide synthèse

Les principaux chapitres de cette thèse, chacun étant auto-suffisant pour les no-

tations, sont basés sur quatre articles. Les chapitres 2 et 3 sont des extensions

des résultats Shapley and Shubik (1975) et Qin (1993) à des sous-ensembles du
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coeur ou du coeur interne. Le chapitre 2 est consacré aux jeux de marché à

utilité transférable alors que le chapitre 3 analyse les jeux à utilité non trans-

férable. Le chapitre 4 étudie les relations entre la solution de marchandage de

Nash asymétrique avec le coeur interne dans le contexte des jeux de marchandage.

Nous pouvons en conclure que les solutions de marchandage de Nash asymétriques

sont reliées à certains marchés. Le cinquième chapitre considère les relations entre

les solutions de marchandage de Nash asymétriques et les équilibres compétitifs

mais en partant maintenant des économies et en regardant les jeux induits.

Les chapitres 2 et 3 mettent en évidence le manque d’information lorsqu’on

part des marchés vers les jeux. Ils montrent qu’il est impossible de déterminer les

paiements associés à l’équilibre dans les économies si on a seulement l’information

au sujet des allocations réalisables en utilité, c’est-à-dire, les fonctions coalition-

nelles. Au contraire (et aussi au contraire des résultats de Sertel and Yildiz

(2003)), le chapitre 5 montre que la conclusion n’est pas juste si on se restreint

aux économies avec des préférences homogènes (voir le chapitre 5 pour les condi-

tions précises). Mais ce résultat n’est pas très robuste. De petites déviations par

rapport aux hypothèses rendent invalides le résultat. Ainsi, seulement sous des

conditions restrictives, il est possible de considérer la solution de marchandage

de Nash asymétrique comme la solution de marchandage décrivant les paiements

des équilibres compétitifs.

Les chapitres 3 et 4 sont directement reliés. Le chapitre 4 utilise les résul-

tats de Qin (1993) et les résultats du chapitre 3, qui montrent qu’essentiellement,

n’importe quel ensemble à l’intérieur du coeur interne peut être représenté comme

l’ensemble de paiements des équilibres compétitifs d’un marché. Donc, en parti-

culier l’ensemble des paiements associés à une solution de marchandage de Nash

asymétrique peut être représenté comme l’ensemble des paiements compétitifs

d’un marché. Ce marché peut être construit en suivant soit Qin (1993) soit le

chapitre 3.

Les chapitres 4 et 5 sont tous les deux consacrés aux relations entre solu-

tions de marchandage de Nash asymétriques et équilibres de certaines économies.

Cependant, les deux approches sont substantiellement différentes. Dans le chapitre

4, on part d’une jeu de marchandage NTU et on choisit un marché qui représente
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ce jeu. Pour ce marché soigneusement choisi, les vecteurs de paiements en utilité

des équilibres compétitifs et ceux associés à une solution de marchandage de Nash

asymétrique cöıncident. Au contraire, dans le chapitre 5, on part d’un économie

donnée avec certaines propriétés. On montre que le vecteur de paiement des

équilibres compétitifs de cette économie cöıncide avec celui donné par la solution

de marchandage de Nash asymétrique du jeu de marchandage associé.

A ce stade, nous avons donné une brève présentation du contexte général et

des développements qui conduisent à ce travail. Comme les questions et les su-

jets traités dans les chapitres ci-après diffèrent, un positionnement scientifique

plus détaillé est donné dans chaque chapitre avec des introductions et des con-

clusions propres. Nous avons essayé d’utiliser des notations constantes dans les

quatre chapitres. Nous avons réussi presque partout mais à certains moments des

variantes sont nécessaires.
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Chapter 2

Competitive Outcomes and the

Core of TU Market Games

2.1 Abstract

We investigate the relationship between certain subsets of the core for TU market

games and competitive payoff vectors of certain markets linked to that game. This

can be considered as the case in between the two extreme cases of Shapley and

Shubik (1975). They remark already that their result can be extended to any

closed convex subset of the core, but they omit the details of the proof which

we present here. This more general case is in particular interesting, as the two

theorems of Shapley and Shubik (1975) are included as special cases.
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2.2 Introduction

The idea to consider cooperative games as economies or markets goes back to

Shapley and Shubik (1969). They look at TU market games. These are cooper-

ative games with transferable utility (TU) that are in a certain sense linked to

economies or markets. More precisely, a market is said to represent a game if the

set of utility allocations a coalition can reach in the market coincides with the set

of utility allocations a coalition obtains according to the coalitional function of the

game. If there exists a market that represents a game, then this game is called a

market game. Shapley and Shubik (1969) prove the identity of the class of totally

balanced TU games with the class of TU market games. Furthermore, Shapley

and Shubik (1975) show that starting with a TU market game every payoff vector

in the core of that game is competitive in a certain market, called direct market,

and that for any given point in the core there exists at least one market that has

this payoff vector as its unique competitive payoff vector. Moreover, they claim

that an analogous result holds also for closed convex subsets of the core. Shapley

and Shubik (1975) give a hint how this can be shown but they omit the details

of the proof. By following this remark of Shapley and Shubik (1975) we give a

detailed proof how their two main results can be extended to any closed convex

subset of the core. This more general case is in particular interesting, as the two

theorems of Shapley and Shubik (1975) are included as special cases.

Similarly to the approach of Shapley and Shubik (1969, 1975), Inoue (2010b)

uses coalition production economies as in Sun et al. (2008) instead of markets.

Inoue (2010b) shows that every TU game can be represented by a coalition pro-

duction economy. Moreover, he proves that there exists a coalition production

economy whose set of competitive payoff vectors coincides with the core of the

balanced cover of the original TU game.

A different extension of Shapley and Shubik (1969, 1975) is Garratt and Qin

(2000b). They consider time-constrained market games, where the agents are

supposed to supply one unit of time to the market. Their main result is that a

TU game is a time-constrained market game if and only if it is superadditive.

This result of Garratt and Qin (2000b) was again extended by Bejan and Gomez
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(2011) introducing additionally location and free disposal constraints. They show

that in this sense the entire class of TU games can be considered as market games.

For NTU market games Brangewitz and Gamp (2011a) extend the NTU ana-

logue to Shapley and Shubik (1975), namely Qin (1993), to closed subsets of the

inner core. Hereby, the techniques used to show the results in the TU and the

NTU case are notably different.

2.3 TU market games

In this section we state the main definitions and results on TU market games.

The following introduction for TU market games is mainly based on Shapley and

Shubik (1969) and Shapley and Shubik (1975).

Let N = {1, 2..., n} be a set of players. The set of all non-empty coalitions is

given by N = {S ⊆ N |S 6= ∅}. Thus, a coalition is a non-empty subset of players.

A cooperative game with transferable utility (TU) is given by the pair (N, v) where

N is the player set and v : N → R is the characteristic or coalitional function.1

A subgame (T, vT ) of a TU game (N, v) is a subset of players T ∈ N and the

characteristic function vT with vT (S) = v(S) for S ⊆ T , S 6= ∅. A payoff vector

for a TU game (N, v) is a vector x ∈ Rn. The payoff of a coalition S ∈ N is

given by x(S) =
∑

i∈S xi. The core C(v) of a TU game (N, v) is the set of payoff

vectors where the value v(N), the grand coalition N can achieve, is distributed

and no coalition can improve upon,

C(v) = {x ∈ Rn|x(N) = v(N), x(S) ≥ v(S) ∀S ∈ N}.

Given a set of players N = {1, 2..., n}, a family B ⊆ N is a balanced family if

there exist weights {γS}S∈B, with γS ≥ 0, such that for all i ∈ N we have

∑

S∈B, S∋i

γS = 1.

1Shapley and Shubik (1969) define the characteristic function as well for the empty set
with v(∅) = 0. Others, for example Billera and Bixby (1974), exclude the empty set
from this definition.
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The weights γS do not depend on the individual players but on the coalition

S ∈ N . The above condition can be as well written as

∑

S∈N

γSe
S = eN

where eS ∈ Rn is the vector with eSi = 1 if i ∈ S and eSi = 0 if i /∈ S. Let the set

of weights be denoted by Γ(eN ). The balancing weights can be interpreted as the

intensity with which player i participates in a coalition or the fraction of time he

spends to be in this coalition.

A TU game (N, v) is balanced if for every balanced family B with weights

{γS}S∈B we have
∑

S∈B

γSv(S) ≤ v(N).

A TU game (N, v) is totally balanced if all its subgames are balanced. The

totally balanced cover of a TU game (N, v) is the smallest TU game (N, v̄) that

is totally balanced and contains the game (N, v).

Shapley and Shubik (1969) recall the following result of Shapley (1965):

Theorem 3 (Shapley and Shubik (1969)). A game has a non-empty core if and

only if it is balanced.

In oder to define a TU market game we first need to introduce the notion of a

market. For the TU case it is sufficient to consider markets without production.

Definition 12 (market). Let N = {1, 2..., n} be the set of agents (or players). A

market is given by E = (Xi, ωi, ui)i∈N where for every individual i ∈ N

- Xi ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set, where

ℓ ≥ 1, ℓ ∈ N is the number of commodities,

- ωi ∈ Xi is the initial endowment vector,

- ui : Xi → R is a continuous and concave function, the utility function.
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2.3. TU MARKET GAMES

Note that in the case with non-transferable utility (NTU) usually markets

with production are considered, see for example Billera and Bixby (1974) or Qin

(1993).

Let S ∈ N be a coalition. The set of feasible S-allocations is given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

∣

xi ∈ Xi for all i ∈ S,
∑

i∈S

xi =
∑

i∈S

ωi

}

.

Elements of F (S) are often denoted for short by xS . The feasible S-allocations

are those allocations the coalition S can achieve by redistributing their initial

endowments within the coalition.

Now we define a TU market game in the following way:

Definition 13 (TU market game). A TU game (N, v) that is representable by

a market is a TU market game. This means there exists a market E such that

(N, vE) = (N, v) with

vE(S) = max
xS∈F (S)

∑

i∈S

ui(xi) for all S ∈ N .

For a TU market game there exists a market such that the value a coalition

S can reach according to the coalitional function coincides with the joint utility

that is generated by feasible S-allocations in the market.

Given a TU game we can generate a market from this game in a “natural”

way. Shapley and Shubik (1969) call this market a direct market.

Definition 14 (direct market). A TU game (N, v) generates a direct market

Dv = (Xi, ωi, ui)i∈N with for each individual i ∈ N

- the consumption set Xi = Rn
+,

- the initial endowment ωi = e{i} with e
{i}
i = 1 and e

{i}
j = 0 for j 6= i,

- the utility function ui(x) = max

{

∑

S∈N
γSv(S)

∣

∣

∣

∣

γS ≥ 0 ∀S ∈ N ,
∑

S∈N
γSe

S = x

}

.
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The utility function ui(·) of the direct market Dv is identical for every individ-

ual i ∈ N and is homogeneous of degree 1, concave and continuous. Note that in a

direct market every consumer owns initially his own (private) good or interpreted

differently every player “is” himself a good. Using the direct market Dv, Shapley

and Shubik (1969) obtain the following characterization of TU market games.

Theorem 4 (Shapley and Shubik (1969)). A game is a market game if and only

if it is totally balanced.

This means that in order to consider TU market games it is sufficient to

consider just those TU games that are totally balanced. To obtain the above

result Shapley and Shubik (1969) start by looking at an arbitrary TU game and

its direct market. Hereafter, they consider the TU game of the direct market and

show that it is equal to the totally balanced cover of the TU game they started

with.

In a second paper Shapley and Shubik (1975) investigate the relationship

between competitive payoffs, that arise from a competitive solution in the market,

and the core of TU market games.

Definition 15 (competitive solution). A competitive solution is an ordered pair

(p∗, (x∗i)i∈N ), where p∗ is an arbitrary n-vector of prices and x∗N is a feasible

N -allocation, such that

ui(x∗i)− p∗ · x∗i = max
xi∈Rl

+

[ui(xi)− p · xi] for all i ∈ N.

We are in a setting with transferable utility. Thus, there is implicitly the

additional commodity money, that makes the transfer of utility possible. Suppose

ξi0 are the initial money holdings of agent i. Then his“true”maximization problem

is

max
xi∈Rl

+

[ui(xi) + ξi0 − p ·
(

xi − ωi
)

].

Since the solution of the maximization problem is independent of the initial money

holdings and the initial endowment, it is equivalent to solve the in the definition

above stated maximization problem.
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Definition 16 (competitive payoff vector). A vector α∗ is a competitive payoff

vector if it arises from a competitive solution (p∗, (x∗i)i∈N ) such that

α∗i = ui(x∗i)− p∗ · (x∗i − ωi).

Shapley and Shubik (1975) show the following two relationships between the

core and competitive payoff vectors.

Theorem 5 (1, Shapley and Shubik (1975)). Every payoff vector in the core of

a TU market game is competitive in the direct market of that game.

Theorem 6 (2, Shapley and Shubik (1975)). Among the markets that generate a

given totally balanced TU game, there exists a market having any given core point

as its unique competitive payoff vector.

These two theorems represent the two extreme cases where on the one hand

the whole core equals the set of competitive payoff vectors of the direct market

and one the other hand a given core point is the unique competitive payoff vector

of a certain other market. The main ideas to prove the above two theorems

are the following: For the first result Shapley and Shubik (1975) use the direct

market to show that its competitive payoff vectors coincide with the core of the

TU market game. To prove the second theorem they introduce a second game

with a modified coalitional function for the grand coalition N . Afterwards they

look at the direct market of the original game with a modified utility function

depending on a given core point. Finally they show that this market represents

the original TU game and has a given core point as its unique competitive payoff

vector.

2.4 Results on TU market games

Shapley and Shubik (1975) already remark that for TU market games a extension

of their proof for their second theorem leads to the following result.

Theorem 7. Let (N, v) be a totally balanced TU game and let A be a closed,

convex subset of the core. Then there exists a market such that this market rep-
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resents the game (N, v) and such that the set of competitive payoff vectors of this

market is the set A.

Shapley and Shubik (1975) omit the details of the proof. We elaborate on

them here. They remark that it is enough to change the definition of the utility

function.

In the following we first define the according market and show afterwards in

two steps that this market satisfies the properties we require.

Let (N, v) be a totally balanced TU game with N = {1, ..., n} the set of

players and the coalitional function v. Let Dv be its direct market as defined

before. For d ∈ R++ define the TU game (N, vd) by

vd(S) = v(S) for all S ⊂ N

and

vd(N) = v(N) + d.

Since d > 0 the game (N, vd) is totally balanced. Analogously let Dvd be the

direct market of (N, vd). Let (u
i
d)i∈N denote the utility functions of Dvd , i.e.

uid(x) = max

{

∑

S∈N

γSvd(S)

∣

∣

∣

∣

γS ≥ 0 ∀S ∈ N ,
∑

S∈N

γSe
S = x

}

.

As the utility functions uid in the direct market Dvd are identical for every indi-

vidual i ∈ N , we write for short ud.

Let A be a any non-empty closed convex subset of the core. For α ∈ A let

ud,α be defined as

ud,α(x) = min(ud(x), α · x).

Then define the function ud,A by

ud,A(x) = min
α∈A

ud,α(x).
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Since ud,A is continuous and concave we can define a market by

Evd =
(

Rn
+, e

{i}, uid,A

)

i∈N
.

with uid,A = ud,A for all i ∈ N . It is easy to see that ud,A is homogeneous of

degree 1.

Next, we show first that the market game of this market is (N, v) and second

that the set of competitive payoff vectors of the market Evd is exactly the set A.

Proposition 7. The market Evd represents the game (N, v).

Proof. Recall that for the market Evd the set

F (S) =

{

xS ∈ Rn·S
+ |

∑

i∈S

xi =
∑

i∈S

e{i}

}

is the set of feasible allocations for a coalition S ∈ N .

Looking at the market game generated by the market Evd we obtain

vEvd (S) = max
xS∈F (S)

∑

i∈S

uid,A(x
i)

= |S| max
xS∈F (S)

∑

i∈S

1

|S|ud,A(x
i)

(1)
= |S| max

xS∈F (S)
ud,A

(

eS

|S|

)

= |S|ud,A
(

eS

|S|

)

(2)
= ud,A(e

S)

= min
α∈A

ud,α(e
S)

= min
α∈A

(min(ud(e
S), α · eS))

(3)
= min

α∈A
(min(vd(S), α · eS))

= min
α∈A

(vd(S), α · eS)
(4)
= v(S)
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The detailed arguments are the following:

(1) First observe that
∑

i∈S
1
|S|ud,A(x

i) ≤ ud,A

(

∑

i∈S
xi

|S|

)

= ud,A

(

eS

|S|

)

from

the concavity of ud,A and the market clearing condition. We take the max-

imum on both sides over the feasible S-allocations F (S) and we observe

that x̄i = 1
|S|e

S for all i ∈ S is a feasible S-allocation. Therefore, we obtain

that setting
(

x̄i
)

i∈S
maximizes the expression on the left side and hence we

get equality.

(2) The equality follows from the homogeneity of degree 1 of ud,A.

(3) Using the totally balancedness of the game (N, vd) we obtain

ud(e
S) = max

{

∑

T∈N

γT vd(T )

∣

∣

∣

∣

(γT ) ≥ 0,
∑

T∈N

γT e
T = eS

}

= vd(S).

(4) For S ⊂ N this minimum is equal to v(S), since α is in the core of the TU

game (N, v) and therefore α · eS ≥ v(S) = vd(S). For S = N the minimum

is equal to α′ · eN for some α′ ∈ A and since α′ is in the core of (N, v) we

have α′ · eN = v(N). As d > 0 we have v(N) < vd(N).

Thus vEvd = v and hence the market Evd generates the game (N, v).

Proposition 8. The set of competitive payoff vectors of the market Evd are co-

incides with the set A.

Proof. The proof is divided into five parts:

1. First, suppose
(

(x∗i)i∈N , p∗
)

is a competitive solution in the market Evd ,
then competitive payoffs are of the form

(

p∗ · e{i}
)

i∈N
.

From the definition of a competitive solution it follows that (x∗i)i∈N clears

the markets,
n
∑

i=1

x∗i =
n
∑

i=1

e{i} = eN

and maximizes for each trader i his trading profit given by

ud,A(x
i)− p · xi.

46



2.4. RESULTS ON TU MARKET GAMES

Moreover, we have from the existence of a maximum and the fact that the

trading profit as a function of the consumption bundle is homogeneous of

degree 1 that

ud,A
(

x∗i
)

− p∗ · x∗i = 0.

Looking at the competitive payoffs of competitive solutions we observe

ud,A
(

x∗i
)

− p∗ · x∗i + p∗ · e{i} = p∗ · e{i}.

2. Second, suppose
(

(x∗i)i∈N , p∗
)

is a competitive solution in the market Evd ,
then

(

(

1
n
eN
)

i∈N
, p∗
)

is as well a competitive solution in the market Evd .
In addition the competitive payoffs coincide.

From the fact that the trading profit equals zero we obtain

ud,A

(

1

n
eN
)

− p∗ · 1
n
eN = ud,A

(

1

n

n
∑

i=1

x∗i

)

− p∗ · 1
n

n
∑

i=1

x∗i

(1)
=

1

n

n
∑

i=1

ud,A
(

x∗i
)

− p∗ · 1
n

n
∑

i=1

x∗i

=
1

n

(

n
∑

i=1

ud,A
(

x∗i
)

− p∗ ·
n
∑

i=1

x∗i

)

=
1

n

(

n
∑

i=1

(

ud,A
(

x∗i
)

− p∗ · x∗i
)

)

= 0.

The detailed argument is the following:

(1) Using the concavity of ud,A gives us “≥” and from maximality of x∗i

we obtain the equality.

As already seen in 1., looking at the competitive payoffs of these competitive

solutions we observe

ud,A
(

x∗i
)

−p∗·x∗i+p∗·e{i} = ud,A

(

1

N
eN
)

−p∗·
(

1

N
eN
)

+p∗·e{i} = p∗·e{i}.
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To summarize these results mean that looking for competitive solutions and

their competitive payoffs we can focus on possible equilibrium prices of the

allocation
(

1
N
eN
)

i∈N
. Then those competitive solutions give us all possible

competitive payoffs.

3. Third, as in the proof of Proposition 7, equality (3)

ud

(

1

N
eN
)

=
1

N
vd(N) >

1

N
v(N) = ud,A

(

1

N
eN
)

and furthermore

ud,A

(

1

N
eN
)

= α′ ·
(

1

N
eN
)

for all α′ ∈ A. Because of the continuity of ud(·) it follows for all α′ ∈ A

that ud(x) > α′ · x for x in a small neighborhood of 1
N
eN . Thus, in a

neighborhood of 1
N
eN , ud,A(x) = minα′∈A (α′ · x).

4. Forth, it remains to check for which prices p∗ the pair
(

(

1
N
eN
)

i∈N
, p∗
)

is

a competitive solution. In a first step we show that each p∗ ∈ A can be

chosen as an equilibrium price vector, in a second step we show that any

p∗ /∈ A cannot be an equilibrium price vector. For the second step it is

enough to concentrate on p∗ ∈ C(v) \ A as we have seen in 1. that the

equilibrium price vector determines the competitive payoff vector, which

are necessarily in the core.

Step 1: Suppose p∗ ∈ A. Then for all xi ∈ Rn
+ we have

min
α′∈A

(

α′ · xi
)

− p∗ · xi ≤ p∗ · xi − p∗ · xi = 0

and furthermore

min
α′∈A

(

α′ ·
(

1

N
eN
))

− p∗ ·
(

1

N
eN
)

= 0.

Hence, xi = 1
N
eN maximizes the trading profit of agent i. Further-

more, the markets clear, as
∑

i∈N

1
N
eN = eN .

So, the pair
(

(

1
N
eN
)

i∈N
, p∗
)

is a competitive solution.
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Step 2: Suppose p∗ ∈ C(v) \A. Recall that the set A is compact and

convex. Hence, we can apply the separating hyperplane theorem2 and

obtain that there exists x̄ ∈ Rn
+ such that for all α ∈ A

α · x̄− p∗ · x̄ > 0.

Therefore we conclude that

min
α′∈A

α′ · x̄− p∗ · x̄ > 0.

Now, for sufficiently small ε > 0 we have that 1
N
eN + εx̄ is in a

neighborhood of 1
N
eN where we have ud,A(x) = minα′∈A (α′ · x). But

min
α′∈A

(

α′ ·
(

1

N
eN + εx̄

))

−p∗·
(

1

N
eN + εx̄

)

= ε

(

min
α′∈A

α′ · x̄− p∗ · x̄
)

> 0.

This implies that 1
N
eN does not maximize agent i’s trading profit for

p∗ /∈ A.

5. To summarize the line of argument:

If
(

(x∗i)i∈N , p∗
)

is a competitive solution in the market Evd , then by 2. we

have that
(

(

1
n
eN
)

i∈N
, p∗
)

is a competitive solution. By 4. we show that

p∗ ∈ A and by 1. we know that its competitive payoff vector is equal to p∗.

On the other hand if p∗ ∈ A then by 4. we have that
(

(

1
n
eN
)

i∈N
, p∗
)

is a

competitive solution. The competitive payoff vector is equal to p∗.

2.5 Concluding Remarks

Shapley and Shubik (1975) investigate the relationship between competitive pay-

offs of markets that represent a cooperative game and their relation to solution

concepts for cooperative games. We presented the details of the proof of Shapley

and Shubik (1975), that extends their two main results to closed, convex subsets

2See for example Mas-Colell et al. (1995, Theorem M.G.2, p.948).
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of the core. This shows also the two theorems of Shapley and Shubik (1975). In

a further contribution (Brangewitz and Gamp, 2011a) we establish an analogue

result for NTU market games.
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Chapter 3

Competitive Outcomes and the

Inner Core of NTU market

games

3.1 Abstract

We consider the inner core as a solution concept for cooperative games with

non-transferable utility (NTU) and its relationship to competitive equilibria of

markets that are induced by an NTU game. We investigate the relationship

between certain subsets of the inner core for NTU market games and competitive

payoff vectors of markets linked to the NTU market game. This can be considered

as the case in between the two extreme cases of Qin (1993). We extend the results

of Qin (1993) to a large class of closed subsets of the inner core: Given an NTU

market game we construct a market depending on a given closed subset of its inner

core. This market represents the game and further has the given set as the set of

payoffs of competitive equilibria. It turns out that this market is not determined

uniquely and thus we obtain a class of markets with the desired property.
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3.2 Introduction

The idea to consider cooperative games as economies or markets goes back to

Shapley and Shubik (1969). They look at TU market games. These are cooper-

ative games with transferable utility (TU) that are in a certain sense linked to

economies or markets. More precisely, a market is said to represent a game if the

set of utility allocations a coalition can reach in the market coincides with the

set of utility allocations a coalition obtains according to the coalitional function

of the game. If there exists a market that represents a game, then this game is

called a market game. Shapley and Shubik (1969) prove the identity of the class

of totally balanced TU games with the class of TU market games. Furthermore,

Shapley and Shubik (1975) show that starting with a TU market game every

payoff vector in the core of that game is competitive in a certain market, called

direct market, and that for any given point in the core there exists at least one

market that has this payoff vector as its unique competitive payoff vector.

Cooperative games with non-transferable utility (NTU) can be considered as

a generalization of TU games, where the transfer of the utility within a coalition

does not take place at a fixed rate. In this paper we consider NTU market games.

After Shapley and Shubik (1969), Billera and Bixby (1974) investigated the NTU

case and obtained similar results for compactly convexly generated NTU games.

Analogously to the result of Shapley and Shubik (1969) they show that every

totally balanced NTU game, that is compactly convexly generated, is a market

game. The inner core is a refinement of the core for NTU games. A point is in

the inner core if there exists a transfer rate vector, such that - given this transfer

rate vector - no coalition can improve even if utility can be transferred within

a coalition according to this vector. So, an inner core point is in the core of an

associated hyperplane game where the utility can be transferred according to the

transfer rate vector. Qin (1993) shows, verifying a conjecture of Shapley and

Shubik (1975), that the inner core of a market game coincides with the set of

competitive payoff vectors of the induced market of that game. Moreover, he

shows that for every NTU market game and for any given point in its inner core

there exists a market that represents the game and further has this given inner
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core point as its unique competitive payoff vector.

Similarly to the approach of Billera and Bixby (1974), Inoue (2010b) uses

coalition production economies as in Sun et al. (2008) instead of markets. Inoue

(2010b) shows that every compactly generated NTU game can be represented by

a coalition production economy. Moreover, he proves that there exists a coalition

production economy whose set of competitive payoff vectors coincides with the

inner core of the balanced cover of the original NTU game.

Here we consider the classical approach using markets. We investigate the

case in between the two extreme cases of Qin (1993), where on the one hand

there exists a market that has the complete inner core as its set of competitive

payoff vectors and on the other hand there is a market that has a given inner

core point as its unique competitive payoff vector. We extend the results of

Qin (1993) to closed subsets of the inner core: Given an NTU market game we

construct a market depending on a given closed subset of the inner core. This

market represents the game and further has the given set as the set of payoffs of

competitive equilibria. It turns out that this market is not determined uniquely.

Several parameters in our construction can be chosen in different ways. Thus, we

obtain a class of markets with the desired property.

Shapley and Shubik (1975) remark that in the TU case their result can be

extended to any closed and convex subset of the core. Whether a similar result

analogously to the one of Shapley and Shubik (1975) holds for NTU market

games, was up to now not clear. Our result shows, that in the NTU case it is

even possible to focus on closed, typically non-convex, subsets of the inner core.

The inner is one solution concept for NTU games. Extending the results of

Qin (1993) to closed subsets of the inner core means in particular to show such a

result for all solution concepts selecting closed subsets of the inner core.

3.3 NTU market games

Let N = {1, ..., n} with n ∈ N and n ≥ 2 be a set of players. Let N = {S ⊆
N |S 6= ∅} be the set of coalitions. Define for a coalition S ∈ N the following sets

RS = {x ∈ Rn|xi = 0 if i /∈ S} ⊆ Rn, RS
+ = {x ∈ RS |xi ≥ 0 for all i ∈ S} ⊆ Rn

+,
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RS
++ = {x ∈ RS |xi > 0 for all i ∈ S} ⊆ Rn

++. For a vector a ∈ Rn and a

coalition S ∈ N let aS denote the vector, where for i ∈ S we have aSi = ai and

aSj = 0 for j /∈ S. Moreover, for a ∈ Rn and b ∈ Rn denote the inner product by

a · b =∑n
i=1 aibi and the Hadamard product by a ◦ b = (a1b1, ..., anbn).

An NTU (non-transferable utility) game is a pair (N,V ), that consists of a

player set N = {1, ..., n} and a coalitional function V , which defines for every

coalition the utility allocations this coalition can reach, regardless of what the

other players outside this coalition do. Hence, define the coalitional function V

from the set of coalitions, N , to the set of non-empty subsets of Rn, such that

for every coalition S ∈ N we have V (S) ⊆ RS , V (S) is non-empty and V (S) is

S-comprehensive, meaning V (S) ⊇ V (S)− RS
+.

The literature on NTU market games, as for example Billera and Bixby (1974)

and Qin (1993), considers NTU games that are compactly and convexly generated.

An NTU game (N,V ) is compactly (convexly) generated if for all coalitions S ∈ N
there exists a compact (convex) set CS ⊆ RS such that the coalitional function

has the form V (S) = CS − RS
+.

Given a player set N = {1, ..., n} the set of balancing weights is defined by

Γ(eN ) =
{

(γS)S⊆N |γS ≥ 0 ∀ S ⊆ N,
∑

S⊆N γSe
S = eN

}

. The balancing weights

can be interpreted in the following way: Every player i has one unit of time that

he can split over all the coalitions, he is a member of, with the constraint that a

coalition has to agree on a common weight. Thereby, each player has to spend all

his time. The weight γS can be seen as well as the intensity with which each player

participates in the coalition S ∈ N . In particular, if we have a partition of the

player set into a coalition S and its complement N \S a balancing weight can be

defined by γS = γN\S = 1 and γT = 0 for all other coalitions T except for S and

N \S. An NTU game (N,V ) is balanced if for all balancing weights γ ∈ Γ(eN ) we

have
∑

S⊆N γSV (S) ⊆ V (N). Moreover, an NTU game (N,V ) is totally balanced

if it is balanced in all subgames. This means for all coalitions T ∈ N and for all

balancing weights γ ∈ Γ(eT ) =
{

(γS)S⊆T |γS ≥ 0 ∀ S ⊆ T,
∑

S⊆T γSe
S = eT

}

we

have
∑

S⊆T γSV (S) ⊆ V (T ).

In order to define an NTUmarket game we first consider the notion of a market
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which is less general than the notion of an economy according to for example

Arrow and Debreu (1954). In a market the number of consumers coincides with

the number of producers. Each consumer has his own private production set. In

contrast to the usual notion of an economy a market is assumed to have concave

and not just quasi concave utility functions.

Definition 17 (market). A market is given by E =
{

(

Xi, Y i, ωi, ui
)

i∈N

}

where

for every individual i ∈ N

- Xi ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set, where

ℓ ≥ 1, ℓ ∈ N is the number of commodities,

- Y i ⊆ Rℓ is a non-empty, closed and convex set, the production set, such

that Y i ∩ Rℓ
+ = {0},

- ωi ∈ Xi − Y i, the initial endowment vector,

- and ui : Xi → R is a continuous and concave function, the utility function.

As pointed out before in a market each consumer is assumed have his own

private production set. This assumption is not as restrictive as it appears to be.

A given private ownership economy can be transformed into an economy with the

same number of consumers and producers without changing the set of competitive

equilibria or possible utility allocations, see for example Qin and Shubik (2009,

section 4).

In the following, we often consider markets where Xi ⊆ Rkn
+ with k, n ∈ N.

Then, consumption vectors are usually written as xi =
(

x(1)i, ..., x(k)i
)

∈ Xi

where x(m)i ∈ Rn
+ for m = 1, ..., k. In a sense, we divide the kn consumption

goods in k consecutive groups of n goods. The vector x(m)i is the mth group of n

consumption goods of the consumption vector xi. We use an analogous notation

for the production goods and price vectors.

Given a market we define which allocations are considered as feasible for some

coalition S ∈ N . An S-allocation is a tuple
(

xi
)

i∈S
such that xi ∈ Xi for each
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i ∈ S. The set of feasible S-allocations is given by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

xi ∈ Xi for all i ∈ S,
∑

i∈S

(xi − ωi) ∈
∑

i∈S

Y i

}

.

Hence, an S-allocation is feasible if there exist for all i ∈ S production plans

yi ∈ Y i such that
∑

i∈S(x
i − ωi) =

∑

i∈S yi. We refer to a feasible S-allocation

in the following together with suitable production plans as a feasible S-allocation
(

xi
)

i∈S
with

(

yi
)

i∈S
.

In the definition of feasibility it is implicitly assumed that by forming a coali-

tion the available production plans are the sum of the individually available pro-

duction plans. This approach is different from the idea to use coalition production

economies, where every coalition has already in the definition of the economy its

own production possibility set. Nevertheless, a market can be transformed into

a coalition production economy by defining the production possibility set of a

coalition as the sum of the individual production possibility sets.

Given the notion of a market and of feasible allocations for coalitions S ∈ N
we define an NTU market game in the following way:

Definition 18 (NTU market game). An NTU game (N,V ) that is representable

by a market is an NTU market game. This means there exists a market E such

that (N,VE) = (N,V ) with

VE(S) =
{

u ∈ RS | ∃ (xi)i∈S ∈ F (S), ui ≤ ui(xi), ∀ i ∈ S
}

.

For an NTU market game there exists a market such that the set of utility

allocations a coalition can reach according to the coalitional function coincides

with the set of utility allocations that are generated by feasible S-allocations in

the market or that give less utility than some feasible S-allocation.

One of the main results on NTU market games in Billera and Bixby (1974) is

the following:

Theorem 8 (2.1, Billera and Bixby (1974)). An NTU game (N,V ) is an NTU

market game if and only if it is totally balanced and compactly convexly generated.
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Hence, in order to study NTU market games, it is sufficient to look at those

NTU games that are totally balanced and compactly convexly generated.

For the succeeding analysis, it will be useful to shift a given NTU game in the

following way (compare Billera and Bixby (1973b, Proposition 2.2)): Given a vec-

tor c ∈ Rn define the coalitional function (V +c) via (V + c) (S) = V (S)+
∑

i∈S ci.

To represent a shifted game by a market we have to shift the utility function of

agent i by ci. Hence, the shifted game with coalitional function (V + c) is again

a market game. Furthermore, shifting the utility functions of the agents does

not change the set of competitive equilibria. Having this idea of shifting in mind

we will focus in some proofs on games where for every coalition S ∈ N we have

CS ⊆ RS
++.

To prove the above result Billera and Bixby (1974) introduce the notion of an

induced market that arises from a compactly convexly generated NTU game.

Definition 19 (induced market). Let (N,V ) be a compactly convexly generated

NTU game. The induced market of the game (N,V ) is defined by

EV =
{

(Xi, Y i, ui, ωi)i∈N
}

with for each individual i ∈ N

- the consumption set Xi = Rn
+ × {0} ⊆ R2n,

- the production set Y i = convexcone
[
⋃

S∈N

(

CS × {−eS}
)]

⊆ R2n,

- the initial endowment vector ωi =
(

0, e{i}
)

,

- and the utility function ui : Xi → R with ui(xi) = x
(1)i
i .

It can easily be seen that this is a market according to the previous definition.

Note that in an induced market we have input and output goods. Initially every

consumer owns one unit of his personal input good that can only be used for

the production process. By using his input good the consumer can get utility

just from his personal output good. The consumption and production set are the
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same for every player. Just the utility functions and the initial endowments are

dependent on the player.

The individual production sets in an induced market are convex cones and

identical for all agents. In this situation taking the sum over production sets of

some agents leads to the same production set. Setting Y =
∑

i∈N Y i the condition

for feasibility of S-allocations reduces to
∑

i∈S(x
i − ωi) ∈ Y . Furthermore, for

convex-cone technologies the competitive equilibrium profits are equal to 0. This

means that in equilibrium we do not have to specify shares of the production as

it usually done in private ownership economies.

Thus, as long as the individual production sets are convex cones and identical

for all agents, we could alternatively consider a model for the production where

we have only one production set for all agents and possible coalitions without

specifying the shares. This model could be used instead of the production setup

in the definition of a market.

In the definition of the induced market it is assumed that every individual

has already the production possibilities, that become available if coalitions form,

included in his personal production set. This means he already knows everything

that can be produced in the different coalitions, even if he does not possess the

necessary input commodities himself. Starting with an NTU game the utility

allocations a coalition can reach in the derived induced market are not described

by defining production sets individually for every coalition but by using input

and output commodities. A utility allocation, that is reachable in the NTU game

by a coalition S, is reachable in the induced market by the same coalition if the

individuals pool their initial endowments using “one general” production possibil-

ity set. Utility allocations that require the cooperation of individuals outside the

coalition S are technologically possible but can actually not be produced as the

input commodities of these individuals are needed. In contrast to this interpre-

tation in coalition production economies every coalition has its own production

set.

The main proof of the above theorem from Billera and Bixby (1974) relies
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on Billera (1974). In a similar manner as Shapley and Shubik (1969), he starts

with an NTU game, (N,V ), and looks at the induced market of that game, EV ,
and afterwards at the NTU game that is induced by the induced market, VEV .

He shows that this game coincides with the totally balanced cover of the game

(N,V ).

The next step is to investigate the existing literature on and to study the

relationship between solution concepts in cooperative game theory, as the inner

core, and those in general equilibrium theory, as the notion of a competitive

equilibrium. Analogously to the TU case of Shapley and Shubik (1975), Qin

(1993) shows that the inner core of an NTU market game coincides with the set

of competitive payoff vectors of the induced market of that game. Moreover, he

shows that for every NTU market game and for any given point in its inner core,

there is a market that represents the game and further has the given inner core

point as its unique competitive payoff vector. Before we extend the results of Qin

(1993) we recall the basic definitions and state his main results. We start with

the definition of the inner core and the notion of competitive payoff vectors in

the context of NTU market games. Afterwards, we state the main results of Qin

(1993) and comment on the ideas he uses to prove them.

In order to define the inner core we first consider a game that is related to a

compactly generated NTU game, called the λ-transfer game. Fix a transfer rate

vector λ ∈ Rn
+. Define vλ(S) = max{λ · u|u ∈ V (S)} as the maximal sum of

weighted utilities that coalition S can achieve given the transfer rate vector λ.

The λ-transfer game, denoted as (N,Vλ), of (N,V ) is defined by taking the same

player set N and the coalitional function Vλ(S) = {u ∈ RS |λ · u ≤ vλ(S)}. Qin

(1994, p.433) gives the following interpretation of the λ-transfer game: “The idea

of the λ-transfer game may be captured by thinking of each player as representing

a different country. The utilities are measured in different currencies, and the

ratios λi/λj are the exchange rates between the currencies of i and j.” As for the

λ-transfer game only proportions matter we can assume without loss of generality

that λ is normalized, i.e. λ ∈ ∆ =
{

λ ∈ Rn
+|
∑n

i=1 λi = 1
}

. Define the positive

59



3. COMPETITIVE OUTCOMES NTU

unit simplex by ∆++ =

{

λ ∈ Rn
++

∣

∣

∣

∣

∑n
i=1 λi = 1

}

.

The inner core is a refinement of the core. The core C(V ) of an NTU game

(N,V ) is defined as the set of utility allocations that are achievable by the grand

coalition N such that no coalition S can improve upon this allocation. Thus,

C(V ) =
{

u ∈ V (N)
∣

∣ ∀S ⊆ N ∀u′ ∈ V (S) ∃i ∈ S such that u′i ≤ ui
}

.

A utility allocation is in the inner core IC(V ) of a compactly generated game

(N,V ) if it is achievable by the grand coalition N and if additionally there exists

a transfer rate vector λ ∈ ∆ such that this utility allocation is in the core of the

λ-transfer game. More precisely:

Definition 20 (inner core). The inner core of a compactly generated NTU game

(N,V ) is given by

IC(V ) = {u ∈ V (N)| ∃λ ∈ ∆ such that u ∈ C(Vλ)}.

Qin (1993, Remark 1, p. 337) remarks that if the NTU game is compactly

convexly generated the vectors of supporting weights for a utility vector in the

inner core must all be strictly positive. This can be seen by the following argu-

ment: If for one player i ∈ N λi is equal to 0, then the core of the λ-transfer

game is empty, because player i can improve upon any u ∈ Vλ(N) by forming the

singleton coalition {i}.
Qin (1994) considers sufficient conditions for the inner core to be non-empty.

In particular he shows that a compactly generated NTU game (N,V ), where V (N)

is convex, has a non-empty inner core if it is balanced with slack, meaning that

for balancing weights (γS)S⊆N with γN = 0 we have
∑

S⊂N

γSV (S) ⊂ intRn V (N)

where intRn V (N) is the interior of V (N) relative to Rn. Other contributions

related to the non-emptiness of the inner core can be found for example in Iehlé

(2004), Bonnisseau and Iehlé (2007) or Inoue (2010a).

We now define a competitive equilibrium for a market E .

Definition 21 (competitive equilibrium). A competitive equilibrium for a market
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E is a tuple
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

∈ Rℓn
+ × Rℓn

+ × Rℓ
+

such that

(i)
∑

i∈N x̂i =
∑

i∈N (ŷi + ωi) (market clearing),

(ii) for all i ∈ N , ŷi solves maxyi∈Y i p̂ · yi (profit maximization),

(iii) and for all i ∈ N , x̂i is maximal with respect to the utility function ui in

the budget set {xi ∈ Xi|p̂ · xi ≤ p̂ · (ωi + ŷi)} (utility maximization).

Given a competitive equilibrium its competitive payoff vector is defined as
(

ui
(

x̂i
))

i∈N
.

Qin (1993) investigates the relationship between the inner core of an NTU

market game and the set of competitive payoff vectors of a market that represents

this game. He establishes, following a conjecture of Shapley and Shubik (1975),

the two theorems below analogously to the TU-case of Shapley and Shubik (1975).

Theorem 9 (1, Qin (1993)). The inner core of an NTU market game coincides

with the set of competitive payoff vectors of the induced market by that game.

Theorem 10 (3, Qin (1993)). For every NTU market game and for any given

point in its inner core, there is a market that represents the game and further has

the given inner core point as its unique competitive payoff vector.

To show his first result Qin (1993) uses the notion of the induced market of a

compactly convexly generated NTU game as it was already used by Billera and

Bixby (1974). It turns out that the set of competitive equilibrium payoff vectors

of the induced market coincides with the inner core. For his second result Qin

(1993) fixes an inner core point, denoted by u∗ 1, and chooses one transfer rate

vector λ∗
u∗ from an associated λ-transfer game. He modifies the given NTU game

by applying a suitable strictly monotonic transformation on the utility allocations

a coalition can reach. In this modified game the given inner core point u∗ can be

1Qin (1993) considers only NTU games where for all coalitions S ∈ N the generating sets
satisfy CS ⊆ RS

+ and CS ∩ RS
++ 6= ∅ and hence has u∗ ≫ 0.
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strictly separated from the set of utility allocations the grand coalition can reach

(excluding u∗). Denote the modified game by (N, V̄ ) and the convex compact sets

generating this game by (C̄S)S∈N . A market to prove Theorem 3 of Qin (1993)

can be defined as follows:

Define for all coalitions S ∈ N

A1
S =

{(

uS ,−eS ,−eS ,−eS , 0
)

|uS ∈ C̄S
}

⊆ R5n,

A2
S =

{(

uS , 0,−eS , 0,−eS
)

|uS ∈ C̄S
}

⊆ R5n,

A3
S =

{(

uS , 0, 0,−eS ,−eS
)

|uS ∈ C̄S
}

⊆ R5n.

Let EV̄ ,u∗ =
{

(

Xi, Y i, ωi, ui
)

i∈N

}

be the market with for every individual

i ∈ N

- the consumption set Xi = X = Rn
+ × {(0, 0, 0)} × Rn

+ ⊆ R5n
+ ,

- the production set Y i = Y = convexcone
[

⋃

S⊆N

(

A1
S ∪A2

S ∪A3
S

)

]

⊆ R5n,

- the initial endowment vector ωi =
(

0, e{i}, e{i}, e{i}, e{i}
)

∈ R5n
+ ,

- the utility function ui(xi) = min

{

x
(1)i
i ,

(λ∗

u∗
◦u∗)·x(5)i

λ∗

u∗i

}

with xi = (x(1)i, 0, 0, 0, x(5)i) ∈

Xi and x
(1)i
k is the kth entry of x(1)i.

Note that, similarly to the induced market, all individuals have the same

consumption sets and the same production sets. The individuals differ in their

initial endowment vectors and their utility functions. Qin (1993) introduces the

sets A1
S , A

2
S , A

3
S in order to be able to show that the equilibrium price vector for

the 5th group of n goods, p̂(5), is strictly positive. The ith consumer obtains utility

from the ith component of the vector of the 1st group of n goods and from all the

5th n goods. The dependence of the utility function on all components of the 5th

group of n goods is crucial to show the positiveness of p̂(5). To prove his result

Qin (1993) shows that the market EV̄ ,u∗ represents the modified game and that

the given inner core point is the unique competitive payoff vector of this economy.

By applying the inverse strictly monotonic transformation to the utility functions

he obtains his result.
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In order to extend the results of Qin (1993) to a large class of closed subsets

of the inner core we make use of the fact that for compactly convexly generated

NTU games competitive payoff vectors need necessarily to be in the inner core.

To see this we use a modified version of Proposition 1 from de Clippel and Minelli

(2005).

Let N = {1, ..., n} be the set of agents and {1, .., ℓ} be the set of commodities.

Let Xi ⊆ Rℓ
+ be a convex set containing 0, the consumption set of agent i. Each

individual has a continuous, concave, (weakly) increasing and locally non-satiated

utility function ui : Rℓ
+ → R and an initial endowment vector ωi ∈ Rℓ

+ \ {0}. Let
Y i ⊆ Rℓ be a non-empty and closed convex cone, the production set of agent i’s

firm.

Lemma 1. Let
(

(

x̂i
)

i∈N
,
(

ŷi
)

i∈N
, p̂
)

be a competitive equilibrium such that p̂ ·
ωi > 0 for all individuals i ∈ N . Then

(

ui
(

x̂i
))

i∈N
is in the inner core of the

game induced by the economy.

The proof of Lemma 1 can be found in Appendix 3.6.1.

3.4 An extension of the Results of Qin (1993)

In the above two theorems Qin (1993) considers on the one hand the whole inner

core and on the other hand a single point in the inner core. In this section we

extend the results of Qin (1993) by showing a similar result for closed subsets of

the inner core. In the following we consider NTU market games and closed subsets

of the inner core with certain properties. We want to ensure that for every point

in a subset of the inner core, denoted by A, of a given NTU market game (N,V )

we can find a normal vector such that this point is strictly separated from the set

V (N) without the point by the hyperplane using this normal vector. If we assume

that the individual rational part of V (N) is strictly convex, then this property

is satisfied. Moreover, we want to assume that this set of normal vectors, where

each normal vector corresponds to one point of the set A, is bounded below by a

strictly positive vector. This means that the exchange rates, represented by the
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normal vectors, within the set A cannot be too extreme. We make the following

definition:

Definition 22 (strict positive separability). A pair [(N,V ), A] consisting of a

compactly, convexly generated and totally balanced NTU game (N,V ) and a

closed subset A of its inner core satisfies strict positive separability [SPS] if the

following condition holds:

There exists an ε > 0 and a mapping λ : A → ∆++, that associates to

every point x ∈ A a normal vector λ(x) = λx, such that

– every point x ∈ A can be strictly separated from the set V (N) \ {x}
using this normal vector λx, i.e.

λx · x > λx · y for all y ∈ V (N) \ {x},

– for all x ∈ A every coordinate of the normal vector λx is strictly

greater than ε, i.e.

λx
i > ε for all i ∈ N.

For a pair [(N,V ), A] satisfying strict positive separability there might exist

more than on mapping λ and more than one ε. In the following we always

consider one fixed mapping λ together with one fixed ε satisfying the conditions.

Whenever λ or ε appear we mean the ones we fixed knowing that we might have

chosen different ones.

The assumption of strict positive separability is not as restrictive as it might

appear. It is satisfied for example if the individual rational part of V (N) is strictly

convex and A is a closed subset of the interior of the inner core.

Note that from ε < λx
i =

λx
i

1 ≤ λx
i

λx
j
it follows that

ε < min
i,j∈N

λx
i

λx
j

for all λx, x ∈ A.

Figure 3.1 illustrates the idea of strict positive separability with some exam-

ples. Assume that we have always two players and that the coalitional function
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is given by V ({1}) = V ({2}) = {0} − R+ and V ({1, 2}) is given as indicated in

Figure 3.1.

V ({1, 2})

u2

u1

A
b

0

V ({1, 2})

u2

u1

A
b

b

0

V ({1, 2})

u2

u1

A
b

b

b

b

0

Example 1 Example 2 Example 3

V ({1, 2})

u2

u1

A
b

b

0

V ({1, 2})

A
u2

u1

b

0

V ({1, 2})

A

u2

u1

b

b

0

Example 4 Example 5 Example 6

Figure 3.1: Examples where SPS is satisfied.

In Examples 1, 2, 3 and 4 the set V ({1, 2}) is strictly convex. Here the inner

core is given by all points on the efficient boundary without the two points on

the axes. Thus, the NTU game together with every closed subset of its inner

core satisfies SPS. This holds in particular for single points, finite sets, closed and

connected sets or finite unions of closed sets.

Example 5 illustrates the case where the set V ({1, 2}) is generated by a square

and thus the inner core consists only of the corner point. In this case all the vectors

in the strictly positive two-dimensional simplex support this inner core point. In

order to establish SPS we just take one of these supporting vectors.

In Example 6 the set V ({1, 2}) is generated by a polyhedron. The set A is a

65



3. COMPETITIVE OUTCOMES NTU

finite set, consisting of some corner points of the polyhedron. For each of these

corner points there exists a strictly positive normal vector that strictly separates

it from V ({1, 2}) without this corner point. The NTU game (N,V ) and this

choice of the set A satisfy SPS.

Figure 3.2 shows some examples that do not satisfy strict positive separability.

As before assume that we have always two players and that the coalitional function

is given by V ({1}) = V ({2}) = {0} − R+ and V ({1, 2}) is given as indicated in

Figure 3.2.

V ({1, 2})
A

u2

u1

b

b

0

V ({1, 2})

u2

u1

A
b

b

0

Example 7 Example 8

Figure 3.2: Examples where SPS is not satisfied.

In contrast to Example 6, in Example 7 the set A is chosen to be the line

segment connecting two neighboring corner points of a polyhedron. Hence, all

points in the set A have a common normal vector. Thus, each of this points

cannot be strictly separated from the polyhedron without this point. Therefore,

SPS is not satisfied. In Example 8 each point in the set A can be strictly separated

from V ({1, 2}) without the point. Nevertheless SPS is not satisfied, as the set A

is not closed.

The properties, that we require at this point by considering only [(N,V ), A]

satisfying SPS, are stronger than the properties, that we really need. For example

it is sufficient if we can strictly separate each point in the boundary of A from
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A without it. Nevertheless, we choose to consider [(N,V ), A] which satisfy SPS,

because they allow for an easy interpretation. After the presentation of the main

results we discuss the question, how this can be weakened such that cases as in

Example 6 are included in our results.

Now we prove the following result:

Theorem 11. Let [(N,V ), A] satisfy strict positive separability. Then there exists

a market such that this market represents the game (N,V ) and such that the set

of competitive payoff vectors of this market is the set A.

We show this result for NTU games where for every coalition S ∈ N we have

CS ⊆ RS
++. Due to the remark on page 57 this is not a restriction as we can

shift an arbitrary given NTU game such that this condition is satisfied. After

having applied our results we shift back the obtained economies such that they

represent the original game. Hence, in the following if we consider an NTU game,

we always assume for every coalition S ∈ N that we have CS ⊆ RS
++.

Before beginning with the construction of a market satisfying the properties

mentioned above, we introduce an auxiliary game and some notation.

Let [(N,V ), A] satisfy SPS. Let (N, Ṽ ) be the NTU-game defined by

Ṽ (S) =

{

V (S) if S ⊂ N
⋂

a∈A
{z ∈ Rn|λa · z ≤ λa · a} if S = N

where λa is as in the definition of SPS.

Note that to define the game (N, Ṽ ) we use for every point of the set a ∈ A

just one normal vector that strictly separates this point from V (N) \ {a}. The

games (N,V ) and (N, Ṽ ) are equal except for the grand coalition N . For the

coalition N we extend the set V (N) depending on the normal vectors of the set

A. For illustration purposes figure 3.3 shows as an example for two players the

sets V ({1, 2}) and Ṽ ({1, 2}).
To describe the relation between (N, Ṽ ) and (N,V ) we introduce the following
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b

b

b

b

Ṽ ({1, 2})

V ({1, 2})

u2

u1

A

0

Figure 3.3: Example: The sets V ({1, 2}) and Ṽ ({1, 2}) for N = {1, 2}.

notation: Let z ∈ Ṽ (N) and

t̄z = min
{

t ∈ R+|z − teN ∈ V (N)
}

.

Define

C̃N =
{

z ∈ Ṽ (N)
∣

∣∃t ∈ R+ such that z − teN ∈ CN
}

.

Then we also have C̃N =
{

z ∈ Ṽ (N)
∣

∣z − t̄zeN ∈ CN
}

.

The following remark is easy to verify:

Remark 1.

1. The game (N,V ) is contained in the game (N, Ṽ ). This means we have

V (S) ⊆ Ṽ (S) for all S ⊆ N .

2. The set C̃N is convex and furthermore, CN ⊆ C̃N .

3. The game (N, Ṽ ) is a convexly generated and totally balanced NTU-game,

but it is not compactly generated. In particular we have Ṽ (N) 6= C̃N −Rn
+.
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4. SPS ensures in particular: If we take x in V (N) outside from A, then x is

in the interior of Ṽ (N),

x ∈ V (N) \A ⇒ x ∈ int
(

Ṽ (N)
)

.

The second point of the remark can be seen as follows: Take z1, z2 ∈ C̃N and

α ∈ [0, 1]. Then there exist tz1 and tz2 such that z1−tz1eN ∈ CN and z2−tz2eN ∈
CN . As CN is per assumption convex α

(

z1 − tz1eN
)

+ (1 − α)
(

z2 − tz2eN
)

∈
CN . As well the set Ṽ (N), as an intersection of halfspaces, is convex and hence

αz1 + (1−α)z2 ∈ Ṽ (N). Thus taking tαz1+(1−α)z2 = αtz1 + (1−α)tz2 shows that

(αz1 + (1− α)z2)− tαz1+(1−α)z2eN = α
(

z1 − tz1eN
)

+(1−α)
(

z2 − tz2eN
)

∈ CN .

Therefore, we have αz1 + (1− α)z2 ∈ C̃N . Hence, C̃N is convex.

Definition 23. Define the mapping PA : Ṽ (N) −→ V (N) via

PA (x) = x− t̄xeN .

The following figure illustrates the mapping PA for the example from figure

3.3.

b
A

u1

b

b

b

b

b
b
b

Figure 3.4: Illustration of the mapping PA for the example from figure 3.3.

Note, that if x ∈ V (N) then t̄x = 0 and PA (x) = x.

Remark 2.

69



3. COMPETITIVE OUTCOMES NTU

1. The mapping PA is continuous and its image is V (N).

2. The set C̃N can be written as

C̃N =
{

z ∈ Ṽ (N)
∣

∣PA (z) ∈ CN
}

= P−1
A

(

CN
)

,

thus we have PA

(

C̃N
)

= CN .

3.4.1 The basic idea

First, we present an intermediate result, which is interesting in itself. For [(N,V ), A]

satisfying SPS we construct a market such that this market represents the given

game and such that the set of payoff vectors of competitive equilibria with strictly

positive price vectors coincides with the given set A. In the last chapter we show,

how we deal with the case, when the equilibrium price vectors are not necessarily

strictly positive, using a more complicated market with a similar structure.

Definition 24. Let [(N,V ), A] satisfy SPS. Then the market E0
V,A is defined by

E0
V,A =

{

(

Xi, Y i, ui, ωi
)

i∈N

}

with for every individual i ∈ N

- the consumption set Xi = Rn
+ × {0} × Rn

+ × {0} ⊆ R4n,

- the production set

Y i = convexcone









⋃

S∈N\{N}, cS∈CS

(

cS ,−eS , cS ,−eS
)





∪





⋃

c̃N∈C̃N

(

PA

(

c̃N
)

,−eN , c̃N ,−eN
)







 ⊆ R4n,

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}
)

,

- and the utility function ui : Xi → R with ui
(

(x(1), 0, x(3), 0)
)

= min
(

x
(1)
i , x

(3)
i

)

.
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Note that this market has the same consumption and production set for every

individual i ∈ N . The individuals differ in their initial endowment vectors and

their utility functions. There are input and output commodities. The 2nd group

and the 4th group of n commodities are the input commodities and every individ-

ual i ∈ N owns one unit of his personal input commodity in the ith component of

the 2nd and the 4th group of n goods. The 1st and the 3rd group of n goods are

the output commodities, from whose ith component player i ∈ N obtains utility.

The construction of this market is based on the idea of the induced market in

Billera and Bixby (1974) or Qin (1993).

We now need to establish first that the market E0
V,A is indeed a market for

the NTU market game (N,V ).

Lemma 2. The market E0
V,A represents the game (N,V ).

The proof of Lemma 2 is inspired by Billera (1974).

Proof.

• As V (S) = CS − RS
+ it is enough to show, that for all S ∈ N the payoff

vectors in the set CS can be achieved by coalition S in the market E0
V,A.

Let z ∈ CS . We show, that there exists a feasible S-allocation
(

xi
)

i∈S
with

(

yi
)

i∈S
such that ui

(

xi
)

= zi for all i ∈ S.

Define for i ∈ S the consumption plan

xi =
(

z{i}, 0, z{i}, 0
)

and let

yi =
1

|S|
(

z,−eS , z,−eS
)

be the production plan for all i ∈ S. By the definition of the consumption

sets we observe xi ∈ Xi for all i ∈ S. With regard to the production sets

for S 6= N we have immediately yi ∈ Y i for all i ∈ S. For S = N note that

z ∈ V (N) ⊆ Ṽ (N) and thus PA(z) = z. Hence, we have yi ∈ Y i for all

i ∈ N . Observe that
∑

i∈S

(

xi − ωi
)

=
∑

i∈S

yi.
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Hence,
(

xi
)

i∈S
is a feasible S-allocation and

ui
(

xi
)

= zi for all i ∈ S.

• Let
(

x̄(1)i, 0, x̄(3)i, 0
)

i∈S
be a feasible S-allocation with

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i
)

i∈S

in the market E0
V,A.

The feasibility implies

(

∑

i∈S

x̄(1)i,−eS ,
∑

i∈S

x̄(3)i,−eS

)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i
)

.

Each production set is a convex cone of a union of convex sets. Hence, an

arbitrary production plan can be written in the following way: Choose one

suitable element from each of the convex sets and build a linear combination

(with non-negative coefficients) of these elements. For the 1st and the 2nd

group of n commodities we obtain, that there exist αi
R ∈ R+ for all R ∈ N ,

ziR ∈ CR for all R ∈ N \ {N} and z̃iN ∈ C̃N , such that

(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N\{N}

αi
R

(

ziR,−eR
)

+ αi
N

(

PA

(

z̃iN
)

,−eN
)

.

As PA

(

C̃N
)

= CN there exists ziN ∈ CN such that PA

(

z̃iN
)

= ziN and

hence we have
(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N

αi
R

(

ziR,−eR
)

.

As feasibility implies

(

∑

i∈S
x̄(1)i,−eS

)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i
)

, for the 2nd group

of n coordinates we have that

eS =
∑

i∈S

∑

R∈N

αi
Re

R

=
∑

R∈N

(

∑

i∈S

αi
R

)

eR.

Thus αi
R > 0 implies R ⊆ S and if we define α (R) =

∑

i∈S
αi
R, then

(α (R))R⊆S is a balanced family for the coalition S. Looking at the 1st
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group of n coordinates we have

∑

i∈S

x̄(1)i =
∑

R⊆S

∑

i∈S

αi
Rz

i
R

=
∑

{R⊆S|α(R)>0}

α(R)

(

1

α (R)

∑

i∈S

αi
Rz

i
R

)

.

Since CR is convex we have

1

α (R)

∑

i∈S

αi
RzR ∈ CR

and hence, using totally balancedness,
∑

i∈S
x̄(1)i ∈ V (S).

>From the definition of the utility function we obtain ui
(

x̄(1)i, 0, x̄(3)i, 0
)

≤
x̄
(1)i
i . Since

(

x̄
(1)i
i

)

i∈S
≤ ∑

i∈S
x̄(1)i ∈ V (S) we have by the S-comprehensiveness

of V (S) that
(

ui
(

x̄(1)i, 0, x̄(3)i, 0
))

i∈S
∈ V (S).

We verify that the payoff vectors in the set A are indeed competitive payoff

vectors of the market E0
V,A:

Proposition 9. Every point in the set A is equilibrium payoff vector of the market

E0
V,A.

Proof. Let a ∈ A and λa ∈ ∆ be a normal vector such that a is in the core of the

λa-transfer game. We know that λa is strictly positive (compare the remark on

page 60). By the assumption that CN ⊆ RN
++ we know that a is strictly positive.

To prove the proposition, we show that the consumption and production plans

(

x̂i
)

i∈N
=
((

a{i}, 0, a{i}, 0
))

i∈N

and
(

ŷi
)

i∈N
=

((

1

n

(

a,−eN , a,−eN
)

))

i∈N
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together with the price system

p̂ = (λa, λa ◦ a, λa, λa ◦ a)

constitute a competitive equilibrium in the market E0
V,A.

First note that as PA(a) = a we have ŷi ∈ Y i for all i ∈ N . According to the

remark above, the price system p̂ is strictly positive. As we have a convex-cone-

technology maximum profits are zero. We observe

p̂ · ŷi = 1

n

(

λa · a− (λa ◦ a) · eN + λa · a− (λa ◦ a) · eN
)

= 0.

Hence, the production plan ŷi is profit maximizing.

As we have a min-type or Leontief utility function, it is optimal for each

agent i to spend his budget in a way such that x̂
(1)i
i = x̂

(3)i
i and that he does not

consume anything of the other commodities. Furthermore, he has to spend all

his budget, because the preferences are locally non-satiated and continuous. The

budget constraint is satisfied with equality,

p̂ · x̂i = λa ·
(

a{i} + a{i}
)

= (λa ◦ a) ·
(

e{i} + e{i}
)

= p̂ · ωi

and

x̂(1)i = a{i} = x̂(3)i.

Hence, the consumption vector x̂i is utility maximizing on the budget set of agent

i.

Furthermore, the market clearing condition

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi

is satisfied.

Thus, we have found a competitive equilibrium with equilibrium payoff vector

(

ui
(

x̂i
))

i∈N
= a.
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Looking again at the competitive equilibrium price vectors in the proof of

Proposition 9 note: For a competitive equilibrium with payoff vector a ∈ A the

equilibrium price vector for the 1st (respectively 3rd) group of n goods, the output

goods, is the normal vector λa separating the point a from V (N). The transfer

rate vectors coincide with the equilibrium prices for the output goods of the

market. The input goods are priced by λa ◦ a. This is the transfer rate vector

weighted by the according point of the set A. Interpreted differently: The input

goods are first weighted by the point a of the set A and afterwards they are priced

by the transfer rate vector λa. The relationship of the transfer rate vectors and

the prices of competitive equilibria was observed in several publications discussing

the relation between NTU games and economies. Examples are Shubik (1985),

Shapley (1987), Trockel (1996) and Qin (1993). Shapley (1987, p. 192) states:

“There is a strong analogy though no formal equivalence that we know of between

the comparison weights that we must introduce in order to obtain a feasible

transfer value and the prices in a competitive market.” Here we obtain a formal

equivalence for the prices of the output goods and an indirect link for the prices of

the input goods. Trockel (1996) investigated this equivalence for NTU bargaining

games and Qin (1993) obtained very similar equilibrium prices as we have here.

Next, we consider the utility allocations outside the set A. Using Lemma 1 it

is sufficient to consider those vectors in the inner core.

Proposition 10. Any payoff vector of a competitive equilibrium of the market

E0
V,A with a strictly positive equilibrium price vector is an element of the set A.

Proof. Lemma 1 ensures that every competitive equilibrium payoff vector is in the

inner core. Assume that there exists a competitive equilibrium ((xi)i∈N , (yi)i∈N , p)

such that its payoff vector (ui(xi))i∈N is in the inner core but not in the set A

and such that the equilibrium price vector is strictly positive, p ≫ 0.

Then, there exists an element cN in the inner core outside A such that ui(xi) =

cNi for all player i = 1, ..., n. Let xi = (x(1)i, x(2)i, x(3)i, x(4)i). By the definition of

the consumption set we know x(2)i = x(4)i = 0 and by the definition of the utility

function we obtain x
(1)i
i ≥ cNi and x

(3)i
i ≥ cNi for all i = 1, ..., n.
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Claim 1: >From the utility maximization and the strict positivity of the price

vector it follows that we need to have

x
(1)i
i = cNi = x

(3)i
i .

The proof of Claim 1 can be found in Appendix 3.6.2.

We get by the market clearing condition: y =
∑

i∈N

(

xi − ωi
)

=
(

cN ,−eN , cN ,−eN
)

.

But the production plan y = (cN ,−eN , cN ,−eN ) is not profit maximizing.2

To see this notice the following: As cN is in the inner core but outside the set A

there exists a c̃N with PA

(

c̃N
)

= cN and c̃N ≫ cN . Consider the production plan
(

PA

(

c̃N
)

,−eN , c̃N ,−eN
)

. Looking at the profits and using the strict positivity

of the price vector we observe

p · y = p(1) · cN − p(2) · eN + p(3) · cN − p(4) · eN

< p(1) · cN − p(2) · eN + p(3) · c̃N − p(4) · eN

= p(1) · PA

(

c̃N
)

− p(2) · eN + p(3) · c̃N − p(4) · eN

≤ 0.

Thus, we have found a production plan that has strictly higher profits than y.

This is a contradiction, since y needs to be profit maximizing.

It follows that with strictly positive price vectors the allocations outside the

set A but in the inner core cannot be competitive equilibrium payoff vectors.

Combining the two propositions above we obtain the following theorem:

Theorem 12. Let [(N,V ), A] satisfy strict positive separability. The set of payoff

vectors of competitive equilibria with a strictly positive equilibrium price vector of

the market E0
V,A coincides with the set A.

2Since the individual production sets are convex cones, to check profit maximization it is
sufficient to consider the joint production plans. We have

∑n

i=1
Y i = Y j for any j ∈ N .
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Positive equilibrium price vectors are required to obtain the above

results

Up to now we always considered competitive equilibria with only strictly positive

equilibrium price vectors. This was indeed necessary. If we also allow for price

vectors that are not strictly positive, then we can construct a competitive equi-

librium with competitive payoff vectors outside the given set A. To see this fix

a /∈ A but in the inner core. Then there exists ã ∈ C̃N such that PA (ã) = a and

ã ≫ a. Consider

x̂i =
(

(PA (ã)){i} , 0, ã{i}, 0
)

=
(

a{i}, 0, ã{i}, 0
)

for all i ∈ N,

ŷi =

(

1

n

(

PA (ã) ,−eN , ã,−eN
)

)

=

(

1

n

(

a,−eN , ã,−eN
)

)

for all i ∈ N,

p̂ = (λa, λa ◦ a, 0, 0)

where λa is one normal vector from a λa-transfer game and (PA (ã)){i} is

the vector that has as its ith coordinate the ith coordinate of PA (ã) and zero

coordinates otherwise. Analogously define ã{i}.

We show that
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

constitutes a competitive equilibrium with

the payoff vector a /∈ A.

• First note that ui(x̂i) = min {ai, ãi} = ai, since we have ã ≫ a.

• For the profit maximization we obtain

p̂ · ŷi = 1

n

(

λa · a− (λa ◦ a) · eN
)

= 0.

Since the maximum profits are zero, ŷi is profit maximizing.

• For the utility maximization we obtain that the budget constraint is satis-

fied with equality,

p̂ · x̂i = λa · a{i} = (λa ◦ a) · e{i} = p̂ · ωi,

and furthermore individual i spends all his budget for the ith commodity
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in the 1st group of n goods. Since the prices are equal to zero for the 3rd

and 4th group of n goods he can consume x̂
(3)i
i = ãi without using any of

his budget. Thus, x̂i is utility maximizing.

• Moreover, the market clearing condition is satisfied

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi.

Thus, we have found a competitive equilibrium with equilibrium payoff vector

(

ui
(

x̂i
))

i∈N
= a /∈ A.

3.4.2 The main results

In order to deal with the general case without assuming the strict positivity of

price vectors, we modify the market from the previous section in an appropri-

ate way. This modification allows us to show, that the prices of the 3rd group

of n commodities are strictly positive, p(3) ≫ 0. For the rest of this section let

[(N,V ), A] satisfy SPS. To simplify the notation of the market, we introduce some

sets before:

For the definition of the production sets define for all coalitions S ∈ N \ {N}

A1
S =

{(

cS ,−eS , cS ,−eS ,−eS
)

|cS ∈ CS
}

,

A2
S =

{(

cS , 0, cS ,−eS , 0
)

|cS ∈ CS
}

,

A3
S =

{(

cS , 0, cS , 0,−eS
)

|cS ∈ CS
}

and for the grand coalition N define

A1
N =

{

(

PA

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

|c̃N ∈ C̃N
}

,

A2
N =

{

(

PA

(

c̃N
)

, 0, c̃N ,−eN , 0
)

|c̃N ∈ C̃N
}

,
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A3
N =

{

(

PA

(

c̃N
)

, 0, c̃N , 0,−eN
)

|c̃N ∈ C̃N
}

.

In order to obtain the result without the assumption of strictly positive price

vectors, we modify the utility functions, the production and consumption sets.

The utility functions do not depend anymore only on the two personal output

commodities but also on the whole second group of output commodities. For

that we add ‘a little bit’ of utility from the other players output goods. This

‘little bit’ is described by using the ε > 0 from the definition of SPS.

Definition 25 (induced A-market). Let [(N,V ), A] satisfy strict positive separa-

bility. Let ε > 0 such that ε < mini,j∈N
λa
i

λa
j
for all a ∈ A. The induced A-market

of the game (N,V ) and the set A is defined by

EV,A,ε = {(Xi, Y i, ui, ωi)i∈N}

with for every individual i ∈ N

- the consumption set Xi = Rn
+ × {0} × Rn

+ × {0} × {0} ⊆ R5n,

- the production set Y i = convexcone
[
⋃

S∈N

(

A1
S ∪A2

S ∪A3
S

)]

⊆ R5n

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}, e{i}
)

,

- and the utility function ui : Xi → R with

ui
(

x(1), 0, x(3), 0, 0
)

= min



x
(1)
i , x

(3)
i + ε

∑

j 6=i

x
(3)
j



 .

Note that this market is very similar to the market we defined in the previous

section. We change the definition of the production and consumption sets slightly

by introducing a further input commodity. Moreover, the utility functions here

depend on all coordinates of the 3rd group of n goods.

Having defined the induced A-market we prove the following theorem, which

is the main result of this paper:

Theorem 13. Let [(N,V ), A] satisfy strict positive separability. Then there exists

a market such that this market represents the game (N,V ) and such that the set

of competitive payoff vectors of this market is the set A.
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To prove the above theorem we use the induced A-market EV,A,ε as defined

before. We divide the proof of this Theorem into 3 parts: First we show, that

EV,A,ε represents the game (N,V ), in the second part we prove, that every vector

in the set A is a competitive payoff vector, and in the third part we show that

competitive payoff vectors always belong to the set A.

Lemma 3. The induced A-market EV,A,ε represents the game (N,V ).

The proof of Lemma 3 is inspired by Billera (1974).

Proof.

• As V (S) = CS − RS
+ it is enough to show, that the payoffs in the set CS

can be achieved by coalition S in the market EV,A,ε. Let z ∈ CS . We

show, that there exists a feasible S-allocation
(

xi
)

i∈S
with

(

yi
)

i∈S
such

that ui
(

xi
)

= zi for all i ∈ S.

Define for i ∈ S the consumption plan

xi =
(

z{i}, 0, z{i}, 0, 0
)

and let

yi =
1

|S|
(

z,−eS , z,−eS ,−eS
)

be the production plan for all i ∈ S. By the definition of the consumption

sets we observe xi ∈ Xi for all i ∈ S. With regard to the production sets

for S 6= N we have immediately yi ∈ Y i for all i ∈ S. For S = N note that

z ∈ V (N) ⊆ Ṽ (N) and thus PA(z) = z. Hence, we have yi ∈ Y i for all

i ∈ N . Observe that
∑

i∈S

(

xi − ωi
)

=
∑

i∈S

yi.

Hence,
(

xi
)

i∈S
is a feasible S-allocation and

ui
(

xi
)

= zi for all i ∈ S.

• Let
(

x̄(1)i, 0, x̄(3)i, 0, 0
)

i∈S
be a feasible S-allocation with

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i, ȳ(5)i
)

i∈S

in the market EV,A,ε.
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The feasibility implies

(

∑

i∈S

x̄(1)i,−eS ,
∑

i∈S

x̄(3)i,−eS ,−eS

)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i, ȳ(3)i, ȳ(4)i, ȳ(5)i
)

.

Each production set is a convex cone of a union of convex sets. Hence, an

arbitrary production plan can be written in the following way: Choose one

suitable element from each of the convex sets and build a linear combination

(with non-negative coefficients) of these elements. For the 1st and the 2nd

group of n commodities we obtain, that there exist αi
R ∈ R+ for all R ∈ N ,

ziR ∈ CR for all R ∈ N \ {N} and z̃iN ∈ C̃N , such that

(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N\{N}

αi
R

(

ziR,−eR
)

+ αi
N

(

PA

(

z̃iN
)

,−eN
)

.

As PA

(

C̃N
)

= CN there exists ziN ∈ CN such that PA

(

z̃iN
)

= ziN and

hence we have
(

ȳ(1)i, ȳ(2)i
)

=
∑

R∈N

αi
R

(

ziR,−eR
)

.

As feasibility implies

(

∑

i∈S
x̄(1)i,−eS

)

=
∑

i∈S

(

ȳ(1)i, ȳ(2)i
)

, for the 2nd group

of n coordinates we have that

eS =
∑

i∈S

∑

R∈N

αi
Re

R

=
∑

R∈N

(

∑

i∈S

αi
R

)

eR.

Thus αi
R > 0 implies R ⊆ S and if we define α (R) =

∑

i∈S
αi
R, then

(α (R))R⊆S is a balanced family for the coalition S. Looking at the 1st

group of n coordinates we have

∑

i∈S

x̄(1)i =
∑

R⊆S

∑

i∈S

αi
Rz

i
R
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3. COMPETITIVE OUTCOMES NTU

=
∑

{R⊆S|α(R)>0}

α(R)

(

1

α (R)

∑

i∈S

αi
Rz

i
R

)

.

Since CR is convex we have

1

α (R)

∑

i∈S

αi
RzR ∈ CR

and hence, using totally balancedness,
∑

i∈S
x̄(1)i ∈ V (S).

>From the definition of the utility function we obtain ui
(

x̄(1)i, 0, x̄(3)i, 0, 0
)

≤
x̄
(1)i
i . Since

(

x̄
(1)i
i

)

i∈S
≤ ∑

i∈S
x̄(1)i ∈ V (S) we have by the S-comprehensiveness

of V (S) that
(

ui
(

x̄(1)i, 0, x̄(3)i, 0, 0
))

i∈S
∈ V (S).

Proposition 11. Every point in A is an equilibrium payoff vector of the market

EV,A,ε.

Proof. The above proposition holds by an argument similar to the one used in

the proof of Proposition 9. Let a ∈ A and λa ∈ ∆ an associated normal vector.

We know that λa is strictly positive (compare the remark on page 60). Note that

the consumption and production plans

(

x̂i
)

i∈N
=
((

a{i}, 0, a{i}, 0, 0
))

i∈N

and
(

ŷi
)

i∈N
=

((

1

n

(

a,−eN , a,−eN ,−eN
)

))

i∈N

together with the price system

p̂ =

(

λa,
2

3
(λa ◦ a) , λa,

2

3
(λa ◦ a) ,

2

3
(λa ◦ a)

)

constitute a competitive equilibrium in the market EV,A,ε. The equilibrium price

vector is strictly positive since a and λa are strictly positive.

As we have a convex-cone-technology maximum profits are zero. We observe

p̂·ŷi = 1

n

(

λa · a− 2

3
(λa ◦ a) · eN + λa · a− 2

3
(λa ◦ a) · eN − 2

3
(λa ◦ a) · eN

)

= 0.
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Hence, the production plan ŷi is profit maximizing.

Next we show that the consumption vector xi is utility maximizing on the

budget set of agent i.

• First notice that the budget constraint is satisfied with equality,

p̂ · x̂i = λa ·
(

a{i} + a{i}
)

=
2

3
(λa ◦ a) ·

(

e{i} + e{i} + e{i}
)

= p̂ · ωi.

• Second the consumption vector of agent i satisfies

x̂
(1)i
i = x̂

(3)i
i + ε

∑

j 6=i

x̂
(3)i
j .

This means agent i consumes in a way such that he receives the “same

amount of utility” from the 1st group of n goods and the 3rd group of

n goods. For an agent with a min-type or Leontief utility function it is

a necessary condition for utility maximization to consume in such a way

(as long as we have strictly positive prices). This can be seen by similar

arguments like in the proof of Claim 1.

• Third, it remains to check that x̂i is indeed utility maximizing for agent

i on his budget set. Hereby, the crucial point to see is, that agent i only

consumes his personal output goods, and not the output goods of the other

agents. In particular, this means for the 3rd group of n commodities x̂
(3)i
j =

0 for j 6= i.

First look at the consumption of the 3rd group of n goods when half of the

wealth, λa · a{i}, is used for these goods.

If agent i spends the wealth only for his personal output commodity, he

consumes x̂(3)i = a{i}. Then we have p̂(3) · x̂(3)i = λa · a{i}. Suppose now

agent i changes his consumption plan for the 3rd group of n commodities

to a plan x̃(3)i, where he consumes as well one of the other agents output

goods, meaning x̃
(3)i
j > 0 for one j 6= i. To do this agent i needs to decrease

the consumption in his personal output good and hence x̂
(3)i
i > x̃

(3)i
i . Set

δ = x̂
(3)i
i − x̃

(3)i
i . Then this δ he consumes less gives him an available budget

of λa
i δ, that he can now use to spend for the other agents commodity j. If
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agent i now spends λa
i δ for good j, he can purchase

λa
i

λa
j
δ units of good j

which gives him an additional level of “utility” in good j of the 3rd group

of n goods.

Look at

x̂
(3)i
i + ε

∑

j 6=i

x̂
(3)i
j −



x̃
(3)i
i + ε

∑

j 6=i

x̃
(3)i
j





= x̂
(3)i
i −

(

x̂
(3)i
i − δ + ε

λa
i

λa
j

· δ
)

= δ − ε
λa
i

λa
j

· δ

= δ

(

1− ε
λa
i

λa
j

)

.

The above expression is positive since ε <
λa
j

λa
i
for all i, j ∈ N and hence

ε
λa
i

λa
j
<

λa
j

λa
i

λa
i

λa
j
= 1. Thus we have

x̂
(3)i
i + ε

∑

j 6=i

x̂
(3)i
j > x̃

(3)i
i + ε

∑

j 6=i

x̃
(3)i
j .

The potential loss of utility from consuming less of his personal output

commodity is higher than the potential gain from consuming agent j’s

output commodity given a fixed wealth.

A similar argument also holds true, when agent i changes the consumption

in a way such that he consumes output goods of several other agents.

Thus agent i cannot increase his utility by changing his consumption plan

for the 3rd group of n commodities from x̂(3)i to x̃(3)i and consuming output

commodities of the other agents j 6= i instead of his own output commodi-

ties.

Now it is easy to see, that spending half of the total wealth for each of

the two groups of output commodities leads to the same amount of utility

in both arguments of the min-type utility function and is hence utility

maximizing.
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Furthermore, the market clearing condition

∑

i∈N

x̂i =
∑

i∈N

ωi +
∑

i∈N

ŷi

is satisfied.

Thus, we have found a competitive equilibrium with equilibrium payoff vector

(

ui
(

x̂i
))

i∈N
= a.

In the above proof the competitive equilibrium price vectors are linked to the

transfer rate vectors of points in the set A similarly as in the proof of Proposition

9. The output goods are directly priced by the transfer rate vectors and the input

goods are priced by the transfer rate vectors weighted by the according point of

the set A (multiplied by 2
3).

It remains to show, that vectors not belonging to the set A cannot be com-

petitive payoff vectors. The crucial point is to show, that p(3) is strictly positive.

Lemma 4. Let ((xi)i∈N , (yi)i∈N , p) be any competitive equilibrium for the induced

A-market. Then p(3) is strictly positive.

Proof. Let ((xi)i∈N , (yi)i∈N , p) be a competitive equilibrium for the induced A-

market. By the market clearing condition we have

∑

i∈N

xi =
∑

i∈N

yi +
(

0, eN , 0, eN , eN
)

and by profit maximization p · yi = 0 for all i ∈ N . By the definition of the

production set for each i ∈ N there exist γi1S , γi2S , γi3S ≥ 0 for all S ∈ N ,

ui1S , ui2S , ui3S ∈ CS for all S ∈ N \ {N} and ũi1N , ũi2N , ũi3N ∈ C̃N such that

yi =
∑

S∈N\{N}





3
∑

j=1

γijS uijS , −γi1S eS ,
3
∑

j=1

γijS uijS , −
(

γi1S + γi2S
)

eS , −
(

γi1S + γi3S
)

eS





+





3
∑

j=1

γijNPA

(

ũijN

)

, −γi1NeN ,
3
∑

j=1

γijN ũijN , −
(

γi1N + γi2N
)

eN , −
(

γi1N + γi3N
)

eN



 .
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As PA

(

C̃N
)

= CN there exist uijN ∈ CN such that PA

(

ũijN

)

= uijN for j = 1, 2, 3.

Thus, we have for all i ∈ N

yi =
∑

S∈N\{N}





3
∑

j=1

γijS uijS , −γi1S eS ,
3
∑

j=1

γijS uijS , −
(

γi1S + γi2S
)

eS , −
(

γi1S + γi3S
)

eS





+





3
∑

j=1

γijNuijN , −γi1NeN ,
3
∑

j=1

γijN ũijN , −
(

γi1N + γi2N
)

eN , −
(

γi1N + γi3N
)

eN



 .

By the definition of the consumption set we need to have x(2)i = x(4)i = x(5)i = 0

for all i ∈ N . Hence, for all i ∈ N , we obtain, using the market clearing condition

and the definition of the production sets, for all coalitions S ∈ N

∑

T⊆N

γi1T eT = eS ,

∑

T⊆N

(

γi1T + γi2T
)

eT = eS ,

∑

T⊆N

(

γi1T + γi3T
)

eT = eS .

It follows that γi2S = γi3S = 0 for all i ∈ N and for all S ∈ N and that for some

i ∈ N and some S ∈ N we have γi1S > 0.

Suppose now, that p
(3)
i = 0 for at least one i ∈ N . We show, that this leads to a

contradiction.

First observe: If p
(3)
i = 0 for one i ∈ N , then p

(3)
k = 0 for all k ∈ N .

To see this suppose p
(3)
k > 0 for some k ∈ N . For every individual j ∈ N

the consumption bundle xj maximizes his utility function over his budget

set {x̂j ∈ Xj |p · x̂j ≤ p · ωj}. This implies, if p
(3)
i = 0 that agent j does

not consume any good that has a positive price. If he did so, this would

decrease his available budget whereas he can reach the same utility from

consuming good i that is for free. Precisely p
(3)
i = 0 implies x

(3)j
k = 0 for

all j ∈ N and for all k ∈ N such that k 6= i and p
(3)
k > 0.

However, the market clearing condition and the definition of the production
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set require
∑

j∈N

x(3)j =
∑

S∈N\{N}

γi1S ui1S + γi1N ũi1N ≫ 0,

since ui1S ∈ CS ⊆ RS
++ and ũi1N ≥ ui1N ∈ CN ⊆ RN

++. Hence, we obtain a

contradiction and thus p(3) = 0.

Since uj(x̌j) > uj(x̄j) whenever x̌
(1)j
j > x̄

(1)j
j and x̌(3)j > x̄(3)j , it follows from

p(3) = 0 that p
(1)
j must be positive. This holds for all j ∈ N , thus p(1) ≫ 0.

Since CS ⊆ RS
++, it follows that p

(1) ·ui1S > 0. Since the maximal profits are equal

to zero because of the convex-cone-technology, it must be true that

p(1) · ui1S − p(2) · eS − p(4) · eS − p(5) · eS = 0. (⋆)

For any j ∈ N choose u ∈ C{j} ∩ R
{j}
++ and γ > 0. Then

(

γu, 0, γu,−γe{j}, 0
)

∈ Y j

and

p ·
(

γu, 0, γu,−γe{j}, 0
)

= γ
(

p
(1)
j u− p

(4)
j

)

.

Since p(1) ≫ 0, p
(4)
j must be positive, because otherwise this would contradict the

fact, that maximal profits are 0. Thus, p(4) ≫ 0. Similarly p(5) ≫ 0. Therefore,

from the equation (⋆) above we obtain using −p(5) · eS < 0 and −p(2) · eS ≤ 0

p(1) · ui1S − p(4) · eS > 0.

Hence, we have

p ·
(

ui1S , 0, u
i1
S ,−eS , 0

)

= p(1) · ui1S + p(3) · ui1S − p(4) · eS = p(1) · ui1S − p(4) · eS > 0.

But
(

ui1S , 0, u
i1
S ,−eS , 0

)

∈ Y i as it is of the form as points in the set A2
S . This is a

contradiction to the fact, that the maximal profits are zero. Thus p(3) ≫ 0.

We use this result to show the remaining Proposition that completes the proof

of the theorem:
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Proposition 12. Any payoff vector of a competitive equilibrium of the market

EV,A,ε is an element of the set A.

Proof. Suppose there exists a competitive equilibrium
(

(

xi
)

i∈N

(

yi
)

i∈N
, p
)

, such

that
(

ui
(

xi
))

i∈N
= cN with cN /∈ A.

>From Lemma 1 we know that cN is in the inner core.

That Lemma 1 is applicable can be seen as follows: We know that p ·
ωi > 0. Otherwise agent i would have a budget of 0 and we needed to

have p
(2)
i = p

(4)
i = p

(5)
i = 0. This would mean that the production plan

(

c{i},−e{i}, c{i},−e{i},−e{i}
)

with c{i} ∈ C{i} has strictly positive profits.

This would be a contradiction. Thus, for all individuals i ∈ N we have

p · ωi > 0.

By Lemma 4 we know p(3) ≫ 0. Furthermore we know

y =
∑

i∈N

yi =
(

PA

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

for some c̃N ∈ C̃N satisfying PA

(

c̃N
)

= cN as any other production would con-

tradict the market clearing condition in the 1st group of n coordinates. From the

profit maximization we know that c̃N has to be chosen on the boundary of C̃(N)

and hence, since cN /∈ A, we have c̃N ≫ cN . By the market clearing condition

(for the 3rd group of n coordinates) we have

∑

i∈N

x(3)i = c̃N . (⋆⋆)

Furthermore, by utility maximization we obtain

cNi = x
(3)i
i + ε

∑

j 6=i

x
(3)i
j . (⋆ ⋆ ⋆)

As cN ≪ c̃N , equation (⋆ ⋆ ⋆) implies, that we have x
(3)i
i < c̃Ni for all i ∈ N .

Hence, for every i ∈ N we have
∑

j 6=i x
(3)j
i > 0. Thus, for every i ∈ N there

exists j 6= i satisfying x
(3)j
i > 0. Define a mapping M : N −→ N in the following

way: Every i ∈ N is mapped to one j 6= i satisfying x
(3)j
i > 0. Then, we can find
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k ∈ N and t ∈ N such that M t(k) = k.

We use these results to show some constraints on the equilibrium prices: As

x
(3)M(k)
k > 0, the utility maximization of agent M(k) implies, that we have p

(3)
k ≤

εp
(3)
M(k). Otherwise, agent M(k) would not consume good k, but instead more of

good M(k). In the same way, we can show similar equations for other prices and

obtain

p
(3)
k ≤ εp

(3)
M(k) ≤ ε2p

(3)
M2(k)

≤ ... ≤ εtp
(3)
Mt(k) = εtp

(3)
k .

But εt < 1. This is a contradiction.

As already mentioned before, assuming SPS is more restrictive than actually

needed. Requiring the strict separation property for all points in the set A can

be weakened to requiring it only for the boundary points of the set A. In fact,

we need for the construction of the auxiliary game (N, Ṽ ) that outside the set

A the efficient boundary is strictly enlarged. This means the property that if we

take x ∈ V (N) \ A, then x being in the interior of Ṽ (N) is the crucial property

to eliminate equilibria with a payoff vector outside the set A. Using this weaker

assumption allows a choice of the set A as in Example 7. An example, where

even this weaker version of the strict positive separability property is violated,

and where our approach cannot be applied can be found in Figure 3.5. Assume as

before that we have always two players and that the coalitional function is given

by V ({1}) = V ({2}) = {0} − R+ and V ({1, 2}) is given as indicated in Figure

3.5.

In contrast to Example 7, in Example 8 the set A is chosen in such a way that

it is a closed interval of a line segment connecting two neighboring corner points,

but not the whole line segment. Because of the polyhedral structure none of the

points in the set A can be strictly separated from the set V ({1, 2}) without the

point.
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V ({1, 2})
A

u2

u1

b

b

0

V ({1, 2})
A

u2

u1

b
b

b

b

0

Example 7 Example 9

Figure 3.5: Examples where SPS is not satisfied.

Another important aspect of our result is the fact that the induced A-market

is not determined uniquely. We have some freedom in different aspects of our

construction and obtain a whole class of markets, that can be used to prove our

main theorem:

• First, to define the induced A-market we use the auxiliary NTU game

(N, Ṽ ) where we enlarge the given NTU game (N,V ). For this enlargement

we use for every inner core point one of its normal vectors. This normal

vector is not always unique.

• Second, for the auxiliary game (N, Ṽ ) we define the mapping PA which can

be chosen in different ways. The important property is that for the points

outside the given subset of the inner core, A, we have PA(z) ≫ z for all

z ∈ IC(A)\A. Moreover, for points in the given set A we require PA(z) = z

for all z ∈ A.

• Third, we add to the utility function of the induced A-market an ε-term,

that needs to be between certain bounds and hence is not determined

uniquely. Moreover, we can choose different ε for different players.

3.5 Concluding Remarks

In this paper we have continued the work of Shapley and Shubik (1975) and

Qin (1993) to investigate competitive payoff vectors of markets that represent a
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cooperative game and their relation to solution concepts for cooperative games.

We extend the results of Qin (1993) to a large class of closed subsets of the

inner core: Given an NTU market game we construct the induced A-market

depending on a given closed subset of its inner core. This market represents the

game and further has the given set as the set of payoff vectors of competitive

equilibria. More precisely, inspired by the construction of the induced market

of Billera and Bixby (1974) and by the markets that Qin (1993) uses to prove

his two main results, we define a market in an appropriate way to generalize the

results of Qin (1993) to a large class of closed subsets of the inner core. It turns

out that this market is not determined uniquely and thus we obtain a whole class

of markets that has the given closed subset of the inner core as the set of payoff

vectors of competitive equilibria.

In the literature it was already known that one game can be represented by

several markets, see Billera and Bixby (1974) or Qin (1993). Our work confirms

that going from NTU games to markets some structural information is added

that is not present in the NTU game. To a given NTU market game we can

associate a huge class of markets that represents the NTU game. In particular,

by choosing the structure, that we add, we can control the set of payoffs of

competitive equilibria.

Another point of view on our results is to analyze situations where we start

with given markets and consider the induced games. Looking at competitive

equilibria and how they appear in the game, we observe that almost everything

is possible. Depending on the specific market the set of competitive equilibrium

payoff vectors might fill up the whole inner core or be almost any closed subset, in

particular any single point. Hence, our result demonstrates that we can not expect

to observe more game theoretic properties of competitive equilibria than knowing

that competitive payoffs are in the inner core. Only by imposing additional

structural assumptions on the markets, for example restricting the class of utility

functions, we may observe additional game theoretic properties.

We establish a link between closed subsets of the inner core and competitive

payoffs of certain economies. Extending the results of Qin (1993) to closed subsets

of the inner core means in particular to establish a link for all solution concepts
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selecting closed subsets of the inner core. Therefore, our results can be seen as a

market foundation of game theoretic solution concepts that select closed subsets

of the inner core. For the particular class of bargaining games a more precise

presentation of the idea of a market foundation can be found in Trockel (1996,

2005) and Brangewitz and Gamp (2011b).

The result presented here includes the result of Qin (1993) for a single point in

the inner core. This holds also in a very general setup by using monotone trans-

formations of utilities in the same way as it was done in Qin (1993). Nevertheless,

if we consider closed subsets of the inner core that contain more than a single

point, the idea to transform the utilities seems not to work. Due to this fact we

assume some separation properties on the game and the given closed subset of its

inner core.

Furthermore, by investigating the NTU case we realized that a simple gener-

alization of the approach of Shapley and Shubik (1975) in the framework of Qin

(1993) does not work and we need to stay closer to the results on NTU games.

More precisely, changing the utility function in the market, that Qin (1993) uses

to prove his second result, in analogy to the TU case of Shapley and Shubik (1975)

to

ui(xi) = min

{

x
(1)i
i , min

u∗∈A

{

(

λu∗ ◦ u∗
)

· x(5)i
λu∗

i

}}

does not lead to markets with the desired properties.

Having our result in mind there remains the open question if we can further

weaken our assumptions such that the results can be proved for more general

cases. Another interesting related line of research is to continue to look at the

class of games that are linked to coalition production economies as analyzed by

Inoue (2010b). Given a balanced NTU game Inoue (2010b) defines a coalition

production economy such that this economy represents the game and has more-

over the whole inner core as the set of competitive equilibrium payoff vectors. It

remains an open question if one can find analogously to Qin (1993) and to this

work a coalition production economy such that one inner core point or a certain
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subset of the inner core are competitive equilibrium payoff vectors in this coalition

production economy. Moreover, it is interesting to compare the set of competitive

equilibrium allocations of different market representations of a given NTU mar-

ket game. Does there exist a general and more simple method to obtain desired

competitive payoffs? Can we characterize a class of NTU games where this is

possible? What happens if we restrict our attention for example to bargaining

games?
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3.6 Appendix

3.6.1 Proof of Lemma 1

For the proof of Lemma 1 we follow the idea of de Clippel and Minelli (2005).

Proof. Let
(

x̂i
)

i∈N
and

(

ŷi
)

i∈N
be a competitive equilibrium allocation at a price

p̂ ∈ Rℓ
+ \ {0}. For each individual i ∈ N define the set

Ci =
{

(u,m) ∈ R2|∃zi ∈ Xi : u ≤ ui
(

zi
)

− ui
(

x̂i
)

,m ≤ p̂ ·
(

ωi + ŷi − zi
)}

.

By the concavity of ui, this set is convex. On the other hand, Ci ∩ R2
++ = ∅,

as x̂i is optimal for individual i in his budget set.

Suppose (u,m) ∈ Ci and (u,m) ≫ 0, then there exists zi ∈ Xi with

u(x̂i) < u(zi) and p̂ · zi < p̂ · (ωi + ŷi) which means zi gives individual i a

higher utility as x̂i and is affordable under the price system p̂. This is in

contradiction to the optimality of x̂i.

By the separating hyperplane theorem there exists a non-zero, non-negative vector
(

αi, βi
)

∈ R2
+ such that we can separate 0 from Ci and obtain

αiui
(

x̂i
)

≥ αiui
(

zi
)

− βip̂ ·
(

zi − ωi − ŷi
)

for all zi ∈ Xi.

As p̂ · ωi > 0, it follows from the above inequality that we have αi > 0.

To see this suppose αi = 0 (βi > 0). Then, as in equilibrium p̂ · ŷi = 0, we

obtain from the above inequality

0 ≤ p̂ ·
(

zi − ωi − ŷi
)

for all zi ∈ Xi,

which is not true, as 0 ∈ Xi and p̂ · ŷi = 0. Thus αi > 0.

We can assume αi = 1 without the loss of generality. Moreover, monotonicity

and locally non-satiation of the utility function imply that βi > 0. Let λi = 1
βi .
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Summing up over all i ∈ S we obtain

∑

i∈S

λiui
(

x̂i
)

≥
∑

i∈S

λiui
(

zi
)

− p̂ ·
∑

i∈S

(

zi − ωi − ŷi
)

for all S ⊆ N and for all zi ∈ Rℓ
+ with i ∈ S.

If a coalition S could λ-improve on x with
(

x̄i
)

i∈S
(with the production plan

ȳi ∈ Y i), then the previous inequality would be violated, because we have, due

to feasibility,
∑

i∈S

(

x̄i − ωi − ȳi
)

≤ 0

and thus we obtain a contradiction by

∑

i∈S

λiui
(

x̄i
)

>
∑

i∈S

λiui
(

x̂i
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

(

x̄i − ωi − ŷi
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

(

x̄i − ωi
)

≥
∑

i∈S

λiui
(

x̄i
)

− p̂ ·
∑

i∈S

ȳi

≥
∑

i∈S

λiui
(

x̄i
)

.
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3.6.2 Proof of Claim 1

Proof. We show

x
(1)i
i = x

(3)i
i

by contradiction. Then it immediately follows from ui(xi) = cNi that

x
(1)i
i = x

(3)i
i = cNi .

Suppose x
(3)i
i > x

(1)i
i . This cannot be utility maximizing in the presence of

strictly positive prices. If player i consumes a little bit less of the ith good of the

3rd group of n goods and invests the - not anymore used - additional budget in

the ith good of the 1st group of n goods, then he can strictly increase his utility.

Precisely, from the assumption ui(xi) = cNi and x
(3)i
i > x

(1)i
i it follows that

x
(1)i
i = cNi . For δ sufficiently small, i.e. 0 < δ < x

(3)i
i −x

(1)i
i , player i can increase

his utility by consuming δ less of the ith good of the 3rd group of n goods and

increasing the consumption in the ith good of the 1st group of n goods by
p
(3)
i

p
(1)
i

δ.

To consume

(

x(1)i +
p
(3)
i

p
(1)
i

δe{i}, 0, x(3)i − δe{i}, 0

)

is still budget feasible for player

i, because

p(1)

(

x(1)i +
p
(3)
i

p
(1)
i

δe{i}

)

+ p(3)
(

x(3)i − δe{i}
)

= p(1)x(1)i + p(3)x(3)i ≤ p · ωi.

Hereby, the last inequality follows from the budget feasibility of xi. Moreover,

the utility of consumer i strictly increases, since

ui

(

x(1)i +
p
(3)
i

p
(1)
i

δ, 0, x(3)i − δ, 0

)

> x
(1)i
i = ui

(

x(1)i, 0, x(3)i, 0
)

by the choice of δ. This is a contradiction to the assumption that xi is utility

maximizing. Hence, we have x
(3)i
i ≤ x

(1)i
i .

By exchanging the roles of x
(1)i
i and x

(3)i
i we can analogously show x

(3)i
i ≥ x

(1)i
i .

Therefore, we have x
(3)i
i = x

(1)i
i .
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Chapter 4

Inner Core, Asymmetric Nash

Bargaining Solutions and

Competitive Payoffs

4.1 Abstract

We investigate the relationship between the inner core and asymmetric Nash bar-

gaining solutions for n-person bargaining games with complete information. We

show that the set of asymmetric Nash bargaining solutions for different strictly

positive vectors of weights coincides with the inner core if all points in the un-

derlying bargaining set are strictly positive. Furthermore, we prove that every

bargaining game is a market game. By using the results of Qin (1993) we conclude

that for every possible vector of weights of the asymmetric Nash bargaining solu-

tion there exists an economy that has this asymmetric Nash bargaining solution

as its unique competitive payoff vector. We relate the literature of Trockel (1996,

2005) with the ideas of Qin (1993). Our result can be seen as a market founda-

tion for every asymmetric Nash bargaining solution in analogy to the results on

non-cooperative foundations of cooperative games.
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4.2 Introduction

The inner core and asymmetric Nash bargaining solutions represent solution con-

cepts for cooperative games. The inner core is defined for cooperative games

whereas asymmetric Nash bargaining solutions are usually only applied to a sub-

class of cooperative games, namely bargaining games. A recent contribution of

Compte and Jehiel (2010) generalizes the symmetric Nash bargaining solution to

other cooperative games (with transferable utility). In this paper we consider the

relationship between the inner core and asymmetric Nash bargaining solutions

for bargaining games. Moreover, as an application of these results we show how

asymmetric Nash bargaining solutions can be justified in a general equilibrium

framework as a competitive payoff vector of a certain economy.

In the first section we give a literature overview to motivate our ideas. In the

second section we recall the definitions of the inner core, a bargaining game and

asymmetric Nash bargaining solutions. Afterwards, we investigate for bargaining

games the relationship between the inner core and the set of asymmetric Nash

bargaining solutions. Finally, we apply these results to market games and obtain

by this a market foundation of asymmetric Nash bargaining solutions.

4.3 Motivation and Background

The inner core is a refinement of the core for cooperative games with non-

transferable utility (NTU). For cooperative games with transferable utility (TU)

the inner core coincides with the core. A point is in the inner core if there exists

a transfer rate vector, such that - given this transfer rate vector - no coalition

can improve even if utility can be transferred within a coalition according to this

vector. So, an inner core point is in the core of an associated hyperplane game

where the utility can be transferred according to the transfer rate vector. Qin

(1993) shows, verifying a conjecture of Shapley and Shubik (1975), that the inner

core of a market game coincides with the set of competitive payoff vectors of the

induced market of that game. Moreover, he shows that for every NTU market
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game and for any given point in its inner core there exists a market that represents

the game and further has this given inner core point as its unique competitive

payoff vector.

The Nash bargaining solution for bargaining games, a special class of cooper-

ative games, where just the singleton and the grand coalition are allowed to form,

goes back to Nash (1950, 1953). The (symmetric) Nash bargaining solution is

defined as the maximizer of the product of the utilities over the individual ratio-

nal bargaining set or as the unique solution that satisfies the following axioms:

Invariance to affine linear Transformations, Pareto Optimality, Symmetry and

Independence of Irrelevant Alternatives. If the bargaining power of the players

is different an asymmetric Nash bargaining solution can be defined as the maxi-

mizer of an accordingly weighted Nash product. Concerning the axiomatization

this means that the Symmetry axiom is replaced by an appropriate Asymme-

try axiom, see Roth (1979). In addition to the axiomatic approach the litera-

ture studies non-cooperative foundations to justify cooperative solutions like the

(asymmetric) Nash bargaining solution. The idea is to find an appropriate non-

cooperative game whose equilibrium outcomes coincide with a given cooperative

solution (see for example Bergin and Duggan (1999), Trockel (2000)). Here, we

study the foundation of the asymmetric Nash bargaining solution by having this

solution as a payoff vector of a competitive equilibrium in a certain economy.

There are different approaches to consider the relationship between cooper-

ative games and economies or markets. On the one hand for example Shapley

(1955), Shubik (1959) Debreu and Scarf (1963) and Aumann (1964) consider

economies as games. On the other hand there is the approach to start with a co-

operative game and to consider related economies as it was introduced by Shapley

and Shubik (1969, 1975).

Starting with a market Shapley (1955) considers markets as cooperative games

with two kinds of players, seller and buyer. He introduces in this context the

general notion of an ‘abstract market game’. This is a cooperative game with

certain conditions on the characteristic function. Shubik (1959) extends the ideas

of Edgeworth (from 1881) and studies ‘Edgeworth market games’. In particular
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he shows that if the number of players of both sides in an Edgeworth market

game is the same, then the set of imputations coincides with the contract curve

of Edgeworth. Furthermore, he considers non-emptiness conditions for the core of

this class of games. Debreu and Scarf (1963) show that under certain assumptions

a competitive allocation is in the core. Aumann (1964) investigates, based among

others on the oceanic games from Milnor and Shapley (1978)1, economies with

a continuum of traders and obtains that in this case the core equals the set of

equilibrium allocations.

Starting with a cooperative game Shapley and Shubik (1969) look at these

problems from a different viewpoint and study which class of cooperative games

can be represented by a market. A market represents a game if the set of utility

allocations a coalition can reach in the market coincides with the set of utility

allocations a coalition obtains according to the coalitional function of the game.

Shapley and Shubik (1969) call any game that can be represented by a market a

‘market game’. In the TU-case it turns out that every totally balanced TU game

is a market game. Furthermore, Shapley and Shubik (1975) start with a TU

game and show that every payoff vector in the core of that game is competitive

in a certain market, the direct market. The direct market has a nice structure:

Besides a numeraire commodity there are as many goods as players and initially

every player owns one unit of ‘his personal commodity’. Moreover, Shapley and

Shubik (1975) show that for a given point in the core there exists at least one

market that has this payoff vector as its unique competitive payoff vector.

The idea of market games was applied to NTU games by Billera and Bixby

(1974). Analogously to the result of Shapley and Shubik (1969) they show that

every totally balanced game, that is compactly convexly generated, is an NTU

market game. Qin (1993) compares the inner core of NTU market games with the

competitive payoff vectors of markets that represent this game. He shows that for

a given NTU market game there exists a market such that the set of equilibrium

payoff vectors coincides with the inner core of the game. In a second result, he

shows that given an inner core point there exists a market, which represents the

1The reference Milnor and Shapley (1978) is based on the Rand research memoranda
from the early 1960’s.
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game and has this given inner core point as its unique competitive equilibrium

payoff. Brangewitz and Gamp (2011a) extend the results of Qin (1993) to a large

class of closed subsets of the inner core.

Apart from this literature Trockel (1996, 2005) considers bargaining games

directly as Arrow-Debreu or coalition production economies. One difference to

other literature is that he allows to obtain output in the production without

requiring input. In contrast to Shapley and Shubik (1969, 1975), Trockel (1996,

2005) considers NTU games rather than TU games. Motivated by the approach

of Sun et al. (2008) and the approach of Billera and Bixby (1974), Inoue (2010b)

uses coalition production economies instead of markets. Inoue (2010b) shows

that every compactly generated NTU game can be represented by a coalition

production economy. Moreover, he proves that there exists a coalition production

economy such that its set of competitive payoff vectors coincides with the inner

core of the balanced cover of the original NTU game.

Here, we show that we can apply the main results of Qin (1993) to a spe-

cial class of NTU games, namely bargaining games. By that we obtain a market

foundation of the asymmetric Nash bargaining solution. In contrast to Trockel

(1996, 2005) we do not use Arrow-Debreu or coalition production economies di-

rectly but we consider bargaining games as market games by using the economies

of Qin (1993). By this we relate the approach of Trockel (1996, 2005) on the

one hand with the ideas of Qin (1993) on the other hand. Our result, simi-

lar to Trockel (1996), can be seen as a market foundation of asymmetric Nash

bargaining solutions in analogy to the results on non-cooperative foundations of

cooperative games (see Trockel (2000), Bergin and Duggan (1999)).
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4.4 Inner Core and Asymmetric Nash Bar-

gaining Solution

4.4.1 NTU Games and the Inner Core

Let N = {1, ..., n} with n ∈ N and n ≥ 2 be the set of players. Let N = {S ⊆
N |S 6= ∅} be the set of non-empty coalitions and P(Rn) = {A|A ⊆ Rn} be the

set of all subsets of Rn. Define RS
+ =

{

x ∈ Rn
+|xi = 0, ∀i /∈ S

}

.

Definition 26 (NTU game). An NTU game is a pair (N,V ), where the coali-

tional function is defined as

V : N → P(Rn)

such that for all non-empty coalitions S ⊆ N we have V (S) ⊆ RS , V (S) 6= ∅ and

V (S) is S-comprehensive.

Definition 27 (compactly (convexly) generated). An NTU game (N,V ) is com-

pactly (convexly) generated if for all S ∈ N there exists a compact (convex)

CS ⊆ RS such that the coalitional function can be written as V (S) = CS − RS
+.

In order to define the inner core we first consider a game that is related to

a compactly generated NTU game. Given a compactly generated NTU game we

define for a given transfer rate vector λ ∈ RN
+ the λ-transfer game.

Definition 28 (λ-transfer game). Let (N,V ) be a compactly generated NTU

game and let λ ∈ RN
+ . Define the λ-transfer game of (N,V ) by (N,Vλ) with

Vλ(S) = {u ∈ RS |λ · u ≤ vλ(S)}

where vλ(S) = max{λ · u|u ∈ V (S)}.

Qin (1994, p.433) gives the following interpretation of the λ-transfer game:

“The idea of the λ-transfer game may be captured by thinking of each player as

representing a different country. The utilities are measured in different currencies,

and the ratios λi/λj are the exchange rates between the currencies of i and j.”

As for the λ-transfer game only proportions matter we can assume without loss
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of generality that λ is normalized, i.e. λ ∈ ∆n =
{

λ ∈ Rn
+|
∑n

i=1 λi = 1
}

. Define

the positive unit simplex by ∆n
++ =

{

λ ∈ Rn
++

∣

∣

∣

∣

∑n
i=1 λi = 1

}

.

The inner core is a refinement of the core. The core C(V ) of an NTU game

(N,V ) is defined as those utility allocations that are achievable by the grand

coalition N such that no coalition S can improve upon this allocation. Thus,

C(V ) = {u ∈ V (N)| ∀S ⊆ N ∀u′ ∈ V (S) ∃ i ∈ S such that u′i ≤ ui}.

Definition 29 (inner core, Shubik (1984)). The inner core IC(V ) of a compactly

generated NTU game (N,V ) is

IC(V ) = {u ∈ V (N)|∃λ ∈ ∆ such that u ∈ C(Vλ)}

where C(Vλ) denotes the core of the λ-transfer game of (N,V ).

This means a vector u is in the inner core if and only if u is affordable by the

grand coalition N and if u is in the core of an appropriately chosen λ-transfer

game. If a utility allocation u is in the inner core, then u is as well in the core.

For compactly convexly generated NTU games we have the following remark:

Remark 3 (Qin (1993), Remark 1, p. 337). The vectors of supporting weights

for a utility vector in the inner core must all be strictly positive.

4.4.2 Asymmetric Nash Bargaining Solutions

We consider a special class of NTU games, where only the singleton or the grand

coalition can form, namely NTU bargaining games. Two-person bargaining games

with complete information and the (symmetric) Nash bargaining solution were

originally defined by Nash (1950).

Alternatively to the notion based on Nash (1950)2 we adapt the notation and

interpret bargaining games here as a special class of NTU games where only the

2Following the idea of Nash (1950) a n-person bargaining game with complete information
is defined as a pair (B, d) with the following properties:

1. B ⊆ Rn,

2. B is convex and compact,
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grand coalition can profit from cooperation. Smaller coalitions are theoretically

possible but there are no incentives to form them as everybody obtains the same

utility as being in a singleton coalition. Starting from the definition of a bar-

gaining game based on Nash (1950) we define an NTU bargaining game. Let

B ⊆ Rn be a compact, convex set and assume that there exists at least one b ∈ B

with b ≫ 0. For normalization purposes we assume here that the disagreement

outcome is 0 and that B ⊆ Rn
+. Nevertheless the results presented here can easily

be generalized to the case that the disagreement point is not equal to 0.

Definition 30 (NTU bargaining game). Define an NTU bargaining game3 (N,V )

with the generating set B using the player set N and the coalitional function

V : N −→ P (Rn)

defined by

V ({i}) : = {b ∈ Rn|bi ≤ 0, bj = 0, ∀j 6= i} = {0} − R
{i}
+ ,

V (S) : = {0} − RS
+ for all S with 1 < |S| < n,

V (N) : =
{

b ∈ Rn|∃ b′ ∈ B : b ≤ b′
}

= B − Rn
+.

The definition of an NTU bargaining game reflects the idea that smaller coali-

tions than the grand coalition do not gain from cooperation. They cannot reach

higher utility levels as the singleton coalitions for all its members simultaneously.

Only in the grand coalition every individual can be made better off. In the further

analysis we use the above comprehensive version of an n-person NTU bargaining

game.

One solution concept for bargaining games with complete information is that

3. d ∈ B and there exists at least one element b ∈ B such that d ≪ a.

(d ≪ b if and only if di < bi for all i = 1, ..., n. This means that there is a utility
allocation in B that gives every player a strictly higher utility than the disagreement
point.)
B is called the feasible or decision set and d is called the status quo, conflict or disagree-
ment point.

3Billera and Bixby (1973a, Section 4) modeled bargaining games in the same way.
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of an asymmetric Nash bargaining solution. To define this solution we take as

the set of possible vectors of weights or bargaining powers the strictly positive

n-dimensional unit simplex ∆n
++.

Definition 31 (asymmetric Nash bargaining solution). The asymmetric Nash

bargaining solution with a vector of weights θ = (θ1, ..., θn) ∈ ∆n
++, for short

θ-asymmetric, for a n-person NTU bargaining game (N,V ) with disagreement

point 0 is defined as the maximizer of the θ-asymmetric Nash product given by
∏n

i=1 u
θi
i over the set V (N).4

Hereby, we consider the symmetric Nash bargaining solution as one particular

asymmetric Nash bargaining solution, namely the one with the vector of weights

θ =
(

1
n
, ..., 1

n

)

. Hence, the correct interpretation of “asymmetric” in this sense is

“not necessarily symmetric”.

As the NTU bargaining game (N,V ) is compactly convexly generated, the

set V (N) is closed and convex and hence the maximizer above exists. Note that

the assumption that the vectors of weights are from ∆n
++ instead of Rn

++ can be

made without loss of generality.

The asymmetric Nash bargaining solution is a well-known solution concept

for bargaining games. Similarly to the symmetric Nash bargaining solution the

asymmetric Nash bargaining solution satisfies the axioms Invariance to affine

linear Transformations, Pareto Optimality and Independence of Irrelevant Alter-

natives. As for example shown in Roth (1979, p.20), these axioms together with

an appropriate asymmetry assumption fixing the vector of weights characterize

an asymmetric Nash bargaining solution. Dropping only the Symmetry axiom

without making an appropriate asymmetry assumption is not sufficient to char-

acterize the set of asymmetric Nash bargaining solutions. Peters (1992, p.17–25)

shows that one needs to consider so called “bargaining solutions corresponding

to weighted hierarchies” which include as a special case the asymmetric Nash

bargaining solutions.

4For bargaining games with a general threat point d ∈ Rn the θ-asymmetric Nash product
is given by

∏n

i=1
(ui − di)

θi .
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4.4.3 Inner Core versus Asymmetric Nash Bargaining

Solutions

Having introduced the concept of the inner core and the asymmetric Nash bar-

gaining solution, we investigate the relationship of these concepts for NTU bar-

gaining games. As in NTU bargaining games only the grand coalition can profit

from cooperation, looking at the inner core only transfer possibilities within the

grand coalition need to be considered. Hereby, it turns out that there is a close

connection between the inner core and asymmetric Nash bargaining solutions:

Proposition 13. Let (N,V ) be a n-person NTU bargaining game with disagree-

ment point 0 and generating set B ⊆ Rn
++.

• Suppose we have given a vector of weights θ = (θ1, .., θn) ∈ ∆n
++. Then the

θ-asymmetric Nash bargaining solution, aθ, is in the inner core of (N,V ).

• For any given inner core point aθ we can find an appropriate vector of

weights θ = (θ1, .., θn) ∈ ∆n
++ such that aθ is the maximizer of the θ-

asymmetric Nash product
∏n

i=1 u
θi
i .

Proof.

“⇒” Suppose aθ is the θ-asymmetric Nash bargaining solution. To prove that aθ

is in the inner core of (N,V ), we need to show that aθ is in the core of the

NTU bargaining game (N,V ) and that there exists a transfer rate vector

λθ ∈ ∆n
+ such that aθ is in the core of the λθ-transfer game (N,Vλθ).

aθ is the maximizer of the θ-asymmetric Nash product

n
∏

i=1

uθii

over V (N). Since there exists at least one u ≫ 0 in V (N) the θ-asymmetric

Nash product is strictly positive and thus aθ is as well the maximizer of the

logarithm of the θ-asymmetric Nash product

g(u) =
n
∑

i=1

θilog(ui).
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Since aθ is the maximizer of the θ-asymmetric Nash product, aθ is Pareto

optimal. Thus, there is no coalition S that can improve upon aθ. Remember

that we are considering bargaining games. Thus in particular no singleton

coalition can improve upon aθ. We conclude that aθ has to be in the core

of the bargaining game (N,V ).

Next, we show that aθ is as well in the core of an appropriately chosen λ-

transfer game. The gradient of the function g(u) at aθ is given by ∂g
∂x
(aθ) =

(

θ1
aθ1
, ..., θn

aθn

)

. We show now, that we have

∂g

∂x
(aθ) · x ≤ ∂g

∂x
(aθ) · aθ

for all x ∈ V (N).5 To see this, let x ∈ V (N) and t ∈ [0, 1] and define

xt = tx + (1 − t)aθ. Observe that xt ∈ V (N) since V (N) is convex. Now

we get using the maximality of aθ and by applying Taylor’s Theorem that

0 ≥ g(xt)−g(aθ) = (xt−aθ)·∂g
∂x

(aθ)+O
(

|xt − aθ|2
)

= t(x−aθ)·∂g
∂x

(aθ)+O(t2).

This means that we have

∂g

∂x
(aθ)(x− aθ) ≤ 0

and hence
∂g

∂x
(aθ) · x ≤ ∂g

∂x
(aθ) · aθ.

Taking the normalized gradient, defining

λθ =





θ1
aθ1

∑n
i=1

θi
aθi

, ...,

θn
aθn

∑n
i=1

θi
aθi





and observing that λθ ≫ 0 we obtain that aθ is in the core of the λθ-transfer

game (N,Vλθ).

“⇐” If a ∈ Rn
+ is some given vector in the inner core of (N,V ), then a is in

the core of (N,V ) and there exists a transfer rate vector λ ∈ ∆n
+ such that

5Compare for the idea of this argument Rosenmüller (2000, p. 549).
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a is in the core of the λ-transfer game (N,Vλ). Since a is in the core of

the λ-transfer game and the NTU bargaining game (N,V ) is compactly

generated, we know that λ needs to be strictly positive in all coordinates.

Otherwise at least one coalition could still improve upon a. We have a ≫ 0,

because a is in the inner core. If we now take the vector of weights of the

asymmetric Nash bargaining solution equal to

θ = (θ1, .., θn) =

(

λ1a1
∑n

i=1 λiai
, ...,

λnan
∑n

i=1 λiai

)

then a is the maximizer of the asymmetric Nash product
∏n

i=1 u
θi
i over

V (N). Hereby, similar arguments as in the first step can be used to show

that this is the appropriate choice of θ. Hence, a is the asymmetric Nash

bargaining solution with weights θ of the bargaining game (N,V ).

One direction of Proposition 13 can be generalized to the case where the

generating set is a subset of Rn
+ but not a subset of Rn

++. The set of asymmetric

Nash bargaining solutions is always contained in the inner core, but the inner core

might be strictly larger then the set of asymmetric Nash bargaining solutions.

This can be seen in the following two-player example with disagreement point

(0, 0):

b

b

V ({1, 2})

u2

u1

0

Figure 4.1: Example.
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The two points on the axis are in this example in the inner core, as there exits

a strictly positive transfer rate vector λ, such that they are in the core of the

λ-transfer game. But they cannot result from an asymmetric Nash bargaining

solution as any of these solutions chooses only points that are strictly larger than

the disagreement point in all coordinates. Thus, the inner core is in this example

strictly larger than the set of asymmetric Nash bargaining solutions.

Hence, in general for underlying bargaining sets from Rn
+ and not necessarily

from Rn
++ Proposition 13 reduces to the following statement:

Proposition 14. Let (N,V ) be a n-person NTU bargaining game with disagree-

ment point 0 and underlying bargaining set from Rn
+.

• Suppose we have given a vector of weights θ = (θ1, .., θn) ∈ ∆n
++. Then

the asymmetric Nash bargaining solution aθ for θ is in the inner core of

(N,V ).

4.5 Application to Market Games

4.5.1 Market Games

In this section we use the result from the preceding section to investigate the

relationship between asymmetric Nash bargaining solutions and competitive pay-

offs of a market that represents the n-person NTU bargaining game. We start

by showing that every NTU bargaining game is a market game. Afterwards, we

apply the results of Qin (1993) and Brangewitz and Gamp (2011a) to our results

from the previous section.

Definition 32 (market). A market is given by E =
(

Xi, Y i, ωi, ui
)

i∈N
where for

every individual i ∈ N

- Xi ⊆ Rℓ
+ is a non-empty, closed and convex set, the consumption set, where

ℓ ≥ 1 is the number of commodities,

- Y i ⊆ Rℓ is a non-empty, closed and convex set, the production set, such

that Y i ∩ Rℓ
+ = {0},
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4. INNER CORE AND NASH BARGAINING

- ωi ∈ Xi − Y i, the initial endowment vector,

- and ui : Xi → R is a continuous and concave function, the utility function.

Note that in a market the number of consumers coincides with the number of

producers. Each consumer has his own private production set. This assumption

is not as restrictive as it appears to be. A given private ownership economy

can be transformed into an economy with the same number of consumers and

producers without changing the set of competitive equilibria or possible utility

allocations, see for example Qin and Shubik (2009, section 4). Differently from

the usual notion of an economy a market is assumed to have concave and not just

quasi-concave utility functions.

Let S ∈ N be a coalition. The feasible S-allocations are those allocations

that the coalition S can achieve by redistributing their initial endowments and

by using the production possibilities within the coalition.

Definition 33 (feasible S-allocation). The set of feasible S-allocations is given

by

F (S) =

{

(xi)i∈S

∣

∣

∣

∣

xi ∈ Xi for all i ∈ S,
∑

i∈S

(xi − ωi) ∈
∑

i∈S

Y i

}

.

Hence, an S-allocation is feasible if there exist for all i ∈ S production plans

yi ∈ Y i such that
∑

i∈S(x
i − ωi) =

∑

i∈S yi.

In the definition of feasibility it is implicitly assumed that by forming a coali-

tion the available production plans are the sum of the individually available pro-

duction plans. This approach is different from the idea to use coalition production

economies, where every coalition has already in the definition of the economy its

own production possibility set. Nevertheless, a market can be “formally” trans-

formed into a coalition production economy by defining the production possibility

set of a coalition as the sum of the individual production possibility sets.

Definition 34 (NTU market game). An NTU game that is representable by a

market is aNTU market game, this means there exists a market E = (Xi, Y i, ωi, ui)i∈N

such that (N,VE) = (N,V ) with

VE(S) = {u ∈ RS | ∃ (xi)i∈S ∈ F (S), ui ≤ ui(xi), ∀ i ∈ S}.

110



4.5. APPLICATION TO MARKET GAMES

For an NTU market game there exists a market such that the set of utility

allocations a coalition can reach according to the coalitional function coincides

with the set of utility allocations that are generated by feasible S-allocations in

the market or that give less utility than some feasible S-allocation.

In order to show that every NTU bargaining game is a market game we use

the following result from Billera and Bixby (1974):

Theorem 14 (2.1, Billera and Bixby (1974)). An NTU game is an NTU market

game if and only if it is totally balanced and compactly convexly generated.

Proposition 15. Every bargaining game (N,V ) is a market game.6

Proof. We show that every bargaining game is totally balanced. Suppose we have

an n-person NTU bargaining game. For totally balancedness we need to check

that for every coalition T ⊆ N and for all balancing weights

γ ∈ Γ(eT ) =







(γS)S⊆T ∈ R+|
∑

S⊆T

γSe
S = eT







we have
∑

S⊆T

γSV (S) ⊆ V (T ).

Since the worth each coalition S ( N can achieve is V (S) = {0} − R+ and since

the grand coalition N can achieve V (N) = B − Rn
+ with at least one element

b ∈ B with b ≫ 0, we have for all S ⊆ N that V (S) ⊆ V (N) holds. Since for all

S ⊆ N we have for the balancing weights 0 ≤ γS ≤ 1 and
∑

S⊆T γSe
S = eT the

balancedness condition is satisfied. Thus, the bargaining game is totally balanced

and hence a market game.

We now define a competitive equilibrium for a market E .

Definition 35 (competitive equilibrium). A competitive equilibrium for a market

E is a tuple
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

∈ Rℓn
+ × Rℓn

+ × Rℓ
+

6This result was already observed by Billera and Bixby (1973a, Theorem 4.1). In their
proof they define a market representation of a bargaining game withm ≤ n2 commodities
and nondecreasing utility functions.
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4. INNER CORE AND NASH BARGAINING

such that

(i)
∑

i∈N x̂i =
∑

i∈N (ŷi + ωi) (market clearing),

(ii) for all i ∈ N , ŷi solves maxyi∈Y i p̂ · yi (profit maximization),

(iii) and for all i ∈ N , x̂i is maximal with respect to the utility function ui in

the budget set {xi ∈ Xi|p̂ · xi ≤ p̂ · (ωi + ŷi)} (utility maximization).

Given a competitive equilibrium
(

(x̂i)i∈N , (ŷi)i∈N , p̂
)

its competitive payoff

vector is defined as
(

ui
(

x̂i
))

i∈N
.

Qin (1993) investigates the relationship between the inner core of an NTU

market game and the set of competitive payoff vectors of a market that represents

this game. He establishes, following a conjecture of Shapley and Shubik (1975),

the two theorems below analogously to the TU-case of Shapley and Shubik (1975).

Theorem 15 (3, Qin (1993)). For every NTU market game and for any given

point in its inner core, there is a market that represents the game and further has

the given inner core point as its unique competitive payoff vector.

Theorem 16 (1, Qin (1993)). For every NTU market game, there is a market

that represents the game and further has the whole inner core as its competitive

payoff vectors.7

4.5.2 Results

Now we apply Theorem 3 of Qin (1993) to prove the existence of an economy cor-

responding to some vector of weights θ ∈ ∆n
++, such that the unique competitive

payoff vector of this economy coincides with the θ-asymmetric Nash bargaining

solution of the n-person NTU bargaining game.

Proposition 16. Given a n-person NTU bargaining game (N,V ) (with disagree-

ment point 0 and generating set from Rn
+) and a vector of weights θ ∈ ∆n

++,

there is market that represents (N,V ) and where additionally the unique competi-

tive payoff vector of this market coincides with the θ-asymmetric Nash bargaining

solution aθ of the NTU bargaining game (N,V ).

7A market that satisfies this property is the so called “induced market” introduced by
Billera and Bixby (1974). Its definition can be found in Qin (1993).
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Proof. (N,V ) is a market game by Proposition 15. Moreover, Proposition 13

(or Proposition 14 respectively) shows, that the θ-asymmetric Nash bargaining

solution aθ is an element of the inner core. Thus, we can apply Theorem 3 from

Qin (1993).

The market behind Proposition 16 can be taken from Qin (1993) or Brange-

witz and Gamp (2011a) taking necessary monotone transformations of the original

game as done in Qin (1993) into consideration. A version of these markets for

NTU bargaining games can be found in Appendix 4.7.1 and 4.7.3.

An Alternative Market for Proposition 16

The two markets from Qin (1993) or Brangewitz and Gamp (2011a) have a quite

complicated structure. In the following we give a simpler version a market, where

strictly positive prices are required. This market is a modification from Brange-

witz and Gamp (2011a).

Given a n-person NTU bargaining game (N,V ) and a vector of weights θ ∈
∆++. Let aθ be the θ-asymmetric bargaining solution. From Proposition 13 (or

Proposition 14 respectively) we know that the corresponding λθ-transfer game is

(N,Vλθ)

λθ =





θ1
aθ1

∑n
i=1

θi
aθi

, ...,

θn
aθn

∑n
i=1

θi
aθi



 .

Figure 4.2 illustrates as an example for N = {1, 2} the sets V ({1, 2}) and

Vλθ({1, 2}) for an NTU bargaining game with disagreement point (0, 0).

Let z ∈ Vλθ (N) and t̄z = min
{

t ∈ R+|z − teN ∈ V (N)
}

. Define the mapping

Pθ by Pθ : Vλθ (N) −→ V (N) via Pθ (z) = z− t̄zeN . Figure 4.3 illustrates for the

same example as in Figure 4.2 the mapping Pθ.

The market for the NTU bargaining game (N,V ) and vector of weights θ,

denoted by EV,θ, is defined as follows: Let for every individual i ∈ N be

- the consumption set Xi = Rn
+ × Rn

+ × {0} ⊆ R3n,
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Vλθ({1, 2})

V ({1, 2})
aθ

u2

u1

0

b

Figure 4.2: Illustration of the sets V ({1, 2}) and Vλθ({1, 2}).

aθ

u1

b

b

b

b

b

b

b

Figure 4.3: Illustration of the mapping Pθ.

- the production set

Y i = convexcone









⋃

S∈N\{N}

{(

0, 0,−eS
)}





⋃







⋃

c∈(Vλθ
(N)∩Rn

+)

{(

Pθ(c), c,−eN
)}












⊆ R3n,

- the initial endowment vector ωi =
(

0, 0, e{i}
)

,

- and the utility function ui : Xi → R with ui
(

xi
)

= min
(

x
(1)i
i , x

(2)i
i

)

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth coordi-
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nate; similarly x(2)i and x
(2)i
j .

It can be shown using the arguments of Brangewitz and Gamp (2011a) that

the market EV,θ represents the NTU bargaining game (N,V ) and has as its unique

competitive equilibrium payoff vector (assuming strictly positive equilibrium price

vectors) the θ-asymmetric Nash bargaining solution aθ. For the method of proof

and the details we refer to Brangewitz and Gamp (2011a). Here, we only state

how the competitive equilibria of the market EV,θ look like:

The consumption plans

(

x̂i
)

i∈N
=

((

(

aθ
){i}

,
(

aθ
){i}

, 0

))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ, aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ, 2 λθ ◦ aθ
)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute a competitive equilibrium in

the market EV,θ.

Considering NTU bargaining games as NTU market games there is a market

such that the same sets of utility allocations are reachable in the game and the

market. Proposition 16 shows that in the class of markets representing a given

NTU bargaining game there is a market that has a given asymmetric Nash bar-

gaining solution (with a fixed vector of weights) as its unique competitive payoff

vector. We establish a link between utility allocations coming from asymmetric

Nash bargaining in NTU bargaining games and payoffs arising from competitive

equilibria in certain markets. Our result, similar to Trockel (1996), can be seen as

a market foundation of asymmetric Nash bargaining solutions. Instead of consid-

ering non-cooperative games to give foundations of cooperative solutions, we link

cooperative behavior described by asymmetric Nash bargaining with competitive
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behavior in markets.

In addition a similar interpretation holds true for the whole inner core and

certain of its subsets. Combining Proposition 13 with Theorem 1 of Qin (1993)

we obtain:

Proposition 17. Let (N,V ) be a n-person NTU bargaining game with disagree-

ment point 0 and generating set from Rn
++. Then there is market that represents

(N,V ) and where additionally the set of asymmetric Nash solutions of (N,V )

coincides with the set of competitive payoff vectors of the market.

Proof. (N,V ) is a market game by Proposition 15 and the set of asymmetric Nash

bargaining solutions for different strictly positive vectors of weights coincides with

the inner core of (N,V ) by Proposition 13. Thus, we can apply Theorem 1 of

Qin (1993).

The two results of Qin (1993) we use above represent two extreme cases. On

the one hand he uses the whole inner core and on the other hand he uses only

one single point from the inner core. Brangewitz and Gamp (2011a) show how

the results of Qin (1993) can be extended to a large class of closed subsets of the

inner core. Using their results we obtain:

Proposition 18. Given a n-person NTU bargaining game (N,V ) (with disagree-

ment point 0 and generating set from Rn
+) and a closed set Θ ⊂ ∆n

++ of strictly

positive vectors of weights. Moreover, assume that every θ-asymmetric Nash bar-

gaining solution aθ with vector of weights θ ∈ Θ can be strictly separated from

the set V (N) \ {aθ}.8 Then there is market that represents the NTU bargaining

game (N,V ) and the set of competitive payoff vectors of this market coincides

with the set of θ-asymmetric Nash bargaining solutions with vectors of weights

θ ∈ Θ, {aθ|θ ∈ Θ}, of the NTU bargaining game (N,V ).

Proof. (N,V ) is a market game by Proposition 15. Moreover, Proposition 13

(or Proposition 14 respectively) shows, that the θ-asymmetric Nash bargaining

8More details concerning this assumptions and how they might be weakened can be found
in Brangewitz and Gamp (2011a).
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solution with a vector of weights θ ∈ ∆n
++ is an element of the inner core. Fur-

thermore, note that the set of vectors of weights Θ is assumed to be closed. If

we take now as a parameter the vectors of bargaining weights θ and consider the

function that associates to every vector of weights θ the θ-asymmetric Nash bar-

gaining solution aθ, we observe that this function is continuous in θ.9 Moreover,

as continuous functions map compact sets into compact sets, we know that if we

take a closed set of vectors of weights Θ that the set of θ-asymmetric Nash bar-

gaining solutions {aθ|θ ∈ Θ} is closed. Therefore, the assumptions in Brangewitz

and Gamp (2011a) are satisfied and their result can be applied.

Proposition 17 can be regarded as the other extreme case in contrast to the

result in Proposition 16. Knowing that competitive payoff vectors are under weak

assumptions always in the inner core (compare de Clippel and Minelli (2005),

Brangewitz and Gamp (2011a)), in the class of markets representing a game

the market behind Proposition 17 is the market with the largest set of possible

competitive payoff vectors.

Proposition 18 has the following interpretation: If the vector of weights or

interpreted differently the bargaining power is not exactly known, then as an

approximation using Proposition 18 we obtain the coincidence of the set of asym-

metric Nash bargaining solutions with a closed subset of weight vectors and the

set of competitive payoff vectors of a certain market.

4.6 Concluding Remarks

The results above show that asymmetric Nash bargaining solutions as solution

concepts for bargaining games are linked via the inner core to competitive payoff

vectors of certain markets. Thus, our result can be seen as a market foundation

of the asymmetric Nash bargaining solutions. This result holds for bargaining

games in general as any asymmetric Nash bargaining solution is always in the

inner core (Proposition 14). The idea of a market foundation parallels the one

that is used in implementation theory. Here, rather than giving a non-cooperative

9To see this we use Theorem 2.4 of Fiacco and Ishizuka (1990) applied to maximization
problems.
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foundation for solutions of cooperative games, we provide a market foundation.

Our result may be seen as an existence result.

Another interesting related line of research, that we do not follow here, is to

consider the recent definition of Compte and Jehiel (2010) of the coalitional Nash

bargaining solution. They consider cooperative games with transferable utility

(TU) and define the coalitional Nash bargaining solution as the point in the core

that maximizes the Nash product (with equal weights). Thus, using Theorem 2 of

Shapley and Shubik (1975) for TU market games, where they define for any given

core point a market that has this point as its unique competitive payoff vector,

gives a market foundation as well for the symmetric coalitional Nash bargaining

solution by choosing the symmetric coalitional Nash bargaining solution as this

given core point. It seems interesting to study how this idea can be generalized for

asymmetric coalitional Nash bargaining solutions or for (asymmetric) coalitional

Nash bargaining solutions for NTU games.

Our approach parallels the one in Trockel (1996, 2005). Trockel (1996) is

based on a direct interpretation of a n-person bargaining game as an Arrow-

Debreu economy with production and private ownership, a so called bargaining

economy. He shows that, given a bargaining economy, the consumption vector

of the unique stable Walrasian equilibrium coincides with the asymmetric Nash

bargaining solution with the vector of weights corresponding to the shares in the

production of the bargaining economy. The main difference between our result

and his is that Trockel (1996) did not consider markets in the sense of Billera and

Bixby (1974) or Qin (1993) and thus his bargaining economies do not constitute

the kind of market representation as defined in Billera and Bixby (1974) or Qin

(1993). Similarly Trockel (2005) uses coalition production economies to establish

a core equivalence of the Nash bargaining solution. By using the markets of

Qin (1993) we obtained a market foundation of the asymmetric Nash bargaining

solution. This can be seen as a link between the literature on market games (as

in Billera and Bixby (1974), Qin (1993)) and the ideas of Trockel (1996, 2005).
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4.7 Appendix

4.7.1 The Market behind Proposition 16 from Qin

(1993)

Qin (1993) considers NTU games in general and does not restrict his attention to

NTU bargaining games. The market behind Proposition 16 from Qin (1993) has

a simpler structure if we restrict our attention to NTU bargaining games. The

difference lies in the description of the private production sets.

To show his result Qin (1993) modifies the given NTU game by applying a

strictly monotonic transformation to the utility functions. This allows him to

assume that the given inner core point can be strictly separated in the modified

NTU game. Qin (1993) shows that this market represents the modified game

and that the given inner core point is the unique competitive payoff vector of this

economy. By applying the inverse strictly monotonic transformation to the utility

functions he obtains his result. As we do not want to restrict our attention to

bargaining games with strictly convex generating sets, a similar transformation

need to be applied to the NTU bargaining game to use the market defined below.

The transformed bargaining game is denoted by (N, V̄ ) with generating set

C̄N . Define for the grand coalition N the following sets

A1
N =

{(

uN ,−eN ,−eN ,−eN , 0
)

|uN ∈ C̄N
}

⊆ R5n,

A2
N =

{(

uN , 0,−eN , 0,−eN
)

|uN ∈ C̄N
}

⊆ R5n,

A3
N =

{(

uN , 0, 0,−eN ,−eN
)

|uN ∈ C̄N
}

⊆ R5n,

and for the remaining coalitions

A1
S =

{(

0,−eS ,−eS ,−eS , 0
)}

⊆ R5n,

A2
S =

{(

0, 0,−eS , 0,−eS
)}

⊆ R5n,

A3
S =

{(

0, 0, 0,−eS ,−eS
)}

⊆ R5n,
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Let θ ∈ Θ be a given vector of weights and aθ the θ-asymmetric Nash bar-

gaining solution. Define

λθ =





θ1
aθ1

∑n
i=1

θi
aθi

, ...,

θn
aθn

∑n
i=1

θi
aθi



 .

Let EV̄ ,θ =
(

Xi, Y i, ωi, ui
)

i∈N
be the market with for every individual i ∈ N

- the consumption set Xi = Rn
+ × {(0, 0, 0)} × Rn

+ ⊆ R5n
+ ,

- the production set Y i = convexcone
[

⋃

S⊆N

(

A1
S ∪A2

S ∪A3
S

)

]

⊆ R5n,

- the initial endowment vector ωi =
(

0, e{i}, e{i}, e{i}, e{i}
)

∈ R5n
+ ,

- the utility function ui(xi) = min

{

x
(1)i
i ,

∑n
j=1 λ

θ
j a

θ
j x

(5)i
j

λi

}

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth coordi-

nate; similarly x(5)i and x
(5)i
j .

Qin (1993) shows that the market EV̄ ,θ represents the modified NTU bar-

gaining game (N, V̄ ) and has as its unique competitive payoff vector aθ, a given

inner core point. For the method of proof and the details we refer to Qin (1993).

Here, we only state for the case of NTU bargaining games how the competitive

equilibria of the market EV̄ ,θ look like:

The consumption plans

(

x̂i
)

i∈N
=

((

(

aθ
){i}

, 0, 0, 0, e{i}
))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN ,−eN ,−eN , 0
)

))

i∈N

together with the price system

p̂ =

(

λθ,
1

3

(

λθ ◦ aθ
)

,
1

3

(

λθ ◦ aθ
)

,
1

3

(

λθ ◦ aθ
)

, λθ ◦ aθ
)
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with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute the unique competitive equi-

librium in the market EV̄ ,θ.

121
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4.7.2 The Market behind Proposition 17 from Qin

(1993)

Similarly to Proposition 16 the market behind Proposition 17 from Qin (1993),

called the induced market of an NTU market game, simplifies for NTU bargaining

games to:

Definition 36 (induced market). Let (N,V ) be NTU bargaining game. The

induced market of the game (N,V ) is defined by EV = (Xi, Y i, ui, ωi)i∈N with for

each individual i ∈ N

- the consumption set Xi = Rn
+ × {0} ⊆ R2n,

- the production set

Y i = convexcone





⋃

S∈N\N

{

(0,−eS)
}

∪
(

CN × {−eN}
)



 ⊆ R2n,

- the initial endowment vector ωi =
(

0, e{i}
)

,

- and the utility function ui : Xi → R with ui(xi) = x
(1)i
i

where x(1)i denotes the first group of n goods of xi and x
(1)i
j its jth coordi-

nate.

Qin (1993) shows that the market EV represents the NTU bargaining game

(N,V ) and has as its set of competitive payoff vectors the whole inner core. For

the method of proof and the details we refer to Qin (1993). Here, we only state for

the case of NTU bargaining games how the competitive equilibria of the market

EV look like:

Let θ ∈ Θ be a given vector of weights and aθ the θ-asymmetric Nash bar-

gaining solution. Define

λθ =





θ1
aθ1

∑n
i=1

θi
aθi

, ...,

θn
aθn

∑n
i=1

θi
aθi



 .
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The consumption plans

(

x̂i
)

i∈N
=

((

(

aθ
){i}

, 0

))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ ◦ aθ
)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute a competitive equilibrium in

the market EV .
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4.7.3 The Market behind Proposition 18

Similarly to Proposition 16 and Proposition 17 the market behind Proposition

18 from Brangewitz and Gamp (2011a), called the induced A-market of an NTU

market game, can be simplified for NTU bargaining games (under the assumptions

of Proposition 18). For θ ∈ Θ define

λθ =





θ1
aθ1

∑n
i=1

θi
aθi

, ...,

θn
aθn

∑n
i=1

θi
aθi



 .

Let (N, Ṽ ) be the NTU-game defined by

Ṽ (S) =

{

V (S) if S ⊂ N
⋂

θ∈Θ

{

u ∈ Rn|λθ · u ≤ λθ · aθ
}

if S = N

where aθ denotes the θ-asymmetric Nash bargaining solution.

Define the mapping PΘ : Ṽ (N) −→ V (N) via

PΘ (x) = x− t̄xeN .

Define

C̃N =
{

z ∈ Ṽ (N)
∣

∣∃t ∈ R+ such that z − teN ∈ CN
}

.

Then we also have C̃N =
{

z ∈ Ṽ (N)
∣

∣z − t̄zeN ∈ CN
}

.

For the definition of the production sets define for all coalitions S ∈ N \ {N}

A1
S =

{(

0,−eS , 0,−eS ,−eS
)}

,

A2
S =

{(

0, 0, 0,−eS , 0
)}

,

A3
S =

{(

0, 0, 0, 0,−eS
)}

and for the grand coalition N define

A1
N =

{

(

PΘ

(

c̃N
)

,−eN , c̃N ,−eN ,−eN
)

|c̃N ∈ C̃N
}

,
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A2
N =

{

(

PΘ

(

c̃N
)

, 0, c̃N ,−eN , 0
)

|c̃N ∈ C̃N
}

,

A3
N =

{

(

PΘ

(

c̃N
)

, 0, c̃N , 0,−eN
)

|c̃N ∈ C̃N
}

.

The market EV,Θ using the closed set of weights Θ of the NTU bargaining

game is defined by

EV,Θ = (Xi, Y i, ui, ωi)i∈N

with for every individual i ∈ N

- the consumption set Xi = Rn
+ × {0} × Rn

+ × {0} × {0} ⊆ R5n,

- the production set Y i = convexcone
[
⋃

S∈N

(

A1
S ∪A2

S ∪A3
S

)]

⊆ R5n

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}, e{i}
)

,

- and the utility function ui : Xi → R with

ui
(

xi
)

= min



x
(1)i
i , x

(3)i
i + ε

∑

j 6=i

x
(3)i
j





where ε is chosen such that ε < λθ
i =

λθ
i

1 ≤ λθ
i

λθ
j

for all θ ∈ Θ and x(1)i denotes

the first group of n goods of xi and x
(1)i
j its jth coordinate; similarly x(3)i

and x
(3)i
j .

Using Brangewitz and Gamp (2011a) it can be shown that the market EV,Θ
represents the NTU bargaining game (N,V ) and its set of competitive equilibrium

payoff vectors coincides with the set {aθ|θ ∈ Θ}. For the method of proof and

the details we refer to Brangewitz and Gamp (2011a).

The competitive equilibria of the market EV,Θ are of the following form: Let

θ ∈ Θ be the vector of weights and aθ the θ-asymmetric Nash bargaining solution.

The consumption plans

(

x̂i
)

i∈N
=

((

(

aθ
){i}

, 0,
(

aθ
){i}

, 0, 0

))

i∈N
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and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN , aθ,−eN ,−eN
)

))

i∈N

together with the price system

p̂ =

(

λθ,
2

3

(

λθ ◦ aθ
)

, λθ,
2

3

(

λθ ◦ aθ
)

,
2

3

(

λθ ◦ aθ
)

)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute a competitive equilibrium in

the market EV,Θ.

In addition to the market EV,Θ Brangewitz and Gamp (2011a) define a market

where the set of payoff vectors of competitive equilibria with a strictly positive

equilibrium price vectors coincides with the set {aθ|θ ∈ Θ}. This market, denoted

by E0
V,Θ, is defined as follows: Let for every individual i ∈ N be

- the consumption set Xi = Rn
+ × {0} × Rn

+ × {0} ⊆ R4n,

- the production set

Y i = convexcone









⋃

S∈N\{N}

{(

0,−eS , 0,−eS
)}





∪





⋃

c̃N∈C̃N

(

PΘ

(

c̃N
)

,−eN , c̃N ,−eN
)







 ⊆ R4n,

- the initial endowment vector ωi =
(

0, e{i}, 0, e{i}
)

,

- and the utility function ui : Xi → R with ui
(

xi
)

= min
(

x
(1)i
i , x

(3)i
i

)

.

Similarly as for the market presented before, it can be shown using Brangewitz

and Gamp (2011a) that the market E0
V,Θ represents the NTU bargaining game

(N,V ) and its set of competitive equilibrium payoff vectors with strictly positive

prices coincides with the set {aθ|θ ∈ Θ}. For the method of proof and the

details we refer to Brangewitz and Gamp (2011a). Here, we only state how the

competitive equilibria of the market E0
V,θ look like:
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Let θ ∈ Θ be the vector of weights and aθ the θ-asymmetric Nash bargaining

solution. The consumption plans

(

x̂i
)

i∈N
=

((

(

aθ
){i}

, 0,
(

aθ
){i}

, 0

))

i∈N

and the production plans

(

ŷi
)

i∈N
=

((

1

n

(

aθ,−eN , aθ,−eN
)

))

i∈N

together with the price system

p̂ =
(

λθ, λθ ◦ aθ, λθ, λθ ◦ aθ
)

with λθ ◦ aθ the vector with entries λθ
i a

θ
i , constitute a competitive equilibrium in

the market E0
V,Θ.
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5. NASH BARGAINING AND PERFECT COMPETITION

5.1 Introduction

The idea of this paper is to study the compatibility of competitive equilibria with

concepts of bargaining theory and in particular with the asymmetric Nash bar-

gaining solution. We consider a pure exchange economy and study this economy

on the one hand with means of general equilibrium theory and on the other hand

with means of cooperative bargaining theory. It turns out that sets of competi-

tive equilibrium allocations and of allocations resulting from an asymmetric Nash

bargaining solution coincide as long as one restricts attention to economies where

agents have homogeneous (of degree 1) utility functions and where the initial

endowments are proportionally distributed. We also study what happens when

these assumptions are relaxed or changed. Our result holds as well if the agents

have utility functions that are homogeneous of the same degree k with 0 < k ≤ 1.

It is well known that in general there does not exist a cooperative solution

that always yields the same allocations as the competitive equilibrium. Sertel

and Yildiz (2003) show in the context of pure exchange economies interpreted as

bargaining games ”that there are distinct exchange economies whose Walrasian

equilibrium welfare payoffs disagree but which define the same bargaining problem

and should have hence determined the same bargaining solution and its payoffs.”

In the economies, that they consider, agents have utility functions that are not

homogeneous. Furthermore, the endowments are not proportionally distributed.

Therefore, the results of Sertel and Yildiz (2003) just show the impossibility of

a Walrasian bargaining solution in a very general setup. Under more restric-

tive conditions it is possible to give a bargaining solution that yields the same

allocation as Walrasian equilibria. John (2005) considers economies with linear

utility functions and proportionally divided endowments. In this situation a cer-

tain asymmetric Nash bargaining solution yields exactly competitive equilibrium

allocations. Moulin (2003) mentions only in passing that there should exist a ver-

sion of the result of John (2005) in the context of homogeneous utility functions.

Our work offers such a more general version of the results of John (2005) but

also demonstrates the limitations of the approach. The result is not robust and

already with other utility representations of the same preferences the implications
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of the result do not hold anymore.

Comparing economies and games it is well known that payoffs of utility allo-

cations generated by competitive equilibria are in the core of the game induced

by the economy. De Clippel and Minelli (2005) even show that payoffs of compet-

itive equilibrium allocations are under mild conditions not only in the core, but

even in the inner core, a refinement of the core. But this result can be regarded

as being sharp. For example Qin (1993) shows for markets, a certain class of

economies with production, that every single point in the inner core of a so called

market game can be the payoff of an equilibrium of some economy inducing this

game. So, payoffs of utility allocations generated by competitive equilibria can be

mainly anything within the inner core. This conclusion is no more correct under

the restrictive assumption of homogeneous utility functions. Our result illustrates

that, given these assumptions, payoffs of competitive equilibria are not only some

subset of the inner core but are always a certain point in the inner core - the

point that the asymmetric Nash bargaining solution chooses.

There is another branch of literature studying the relation of competitive

equilibria and the (asymmetric) Nash bargaining solution. Trockel (1996, 2000)

introduces an alternative approach and interprets in an NTU-context bargaining

games directly as Arrow-Debreu or as coalition production economies. He shows

that the unique equilibrium of such an economy coincides with the asymmetric

Nash bargaining solution of the underlying game where the weights of the bar-

gaining solution correspond to the shares in production. One difference to other

literature is that he uses a stylized models with outputs in the production with-

out requiring inputs. Also Brangewitz and Gamp (2011b) study the relation of

competitive equilibria and the asymmetric Nash bargaining solution. They show

that given a bargaining game there exists a market that represents this game and

the utility allocations given by competitive equilibria coincide with those utility

allocations given by the Nash bargaining solution. Comparing Trockel (1996,

2000) and Brangewitz and Gamp (2011a) with the results of this work the main

difference is that Trockel (1996, 2000) as well as Brangewitz and Gamp (2011a)

start with a cooperative game and look at certain induced economies. The com-

petitive equilibrium allocations in those economies coincide with the allocations
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generated by an asymmetric Nash bargaining solution. Here we start with an

economy and compare this result with an induced bargaining game.

Ervig and Haake (2005) also compare economies and bargaining games. They

show that in their model the payoffs of competitive equilibria coincide with payoffs

resulting from asymmetric versions of the Perles-Maschler bargaining solution.

The main reason for their different result is that they restrict consumer demand

by the total endowments of the economy.

One aim of this work is to clarify the relation of the articles of Sertel and

Yildiz (2003) and John (2005) with results of Chipman and Moore (1979) and

Polterovich (1975). Chipman and Moore (1979) discuss the relation of individual

demand, aggregate demand and social welfare functions. They consider in partic-

ular the question whether the market demand function can be seen as the demand

function of some representative consumer. Hereby, they also consider homothetic

preferences and homogeneous utility functions. The main difference to our result

is that they do not take the viewpoint of cooperative game theory and do not

mention the relation to the asymmetric Nash bargaining solution. As they con-

sider the preferences as the data of the model - and not the utility functions like it

is typically done in cooperative game theory - they do not study problems arising

from different utility representations of the same preferences or from the unusual

choice of the status quo point. Polterovich (1975) also considers pure exchange

economies. He introduces a concept that maps sets of utility functions on feasible

allocations. So, his concept is similar to a social choice rule. It turns out that this

concept is related to competitive equilibria and to the Nash bargaining solution.

Furthermore, he proves a result about aggregate demand that is very close to the

result of Chipman and Moore (1979).

5.2 Basic definitions

5.2.1 Economies

We consider economies with n consumers i = 1, ..., n and m commodities j =

1, ..., l where we also use the notation I = {1, ..., n} and J = {1, ..., l}. An economy
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is a tuple
((

(Xi, ui)ni=1

)

, e
)

. Xi = Rl
+ is the consumption set of consumer i. Each

consumer is described by a utility function

ui : Xi −→ R (5.1)

which is weakly increasing, locally nonsatiated, concave, continuous and homo-

geneous of degree 1.

The total endowments of an economy are given by the commodity vector e =

(ej)
l
j=1 ∈ Rl

++. Denote with E the set of all economies satisfying these proper-

ties.

Denote for a, b ∈ Rl with a · b the scalar product of a and b, i.e. a · b =∑l
i=1 aibi.

An allocation x = (xi)ni=1 ∈
n×

i=1

Xi is feasible if it satisfies the inequality
n
∑

i=1
xi ≤ e.

Denote with A ⊂
n×

i=1

Xi the set of feasible allocations.

To study competitive equilibria of these economies we will have to specify

which agent is endowed with which amount of goods. We will focus on the case

that each agent is endowed with some fraction of the total endowments meaning

that for each i ∈ I there exists some αi ≥ 0 with
n
∑

i=1
αi = 1 such that the

endowments of agent i are given by ei = αie. Now we can look at the allocations

that we obtain by applying the concept of the competitive equilibrium to this

situation. We focus on allocations given by competitive equilibria. Therefore, we

use the following definition:

Definition 37. An allocation x̄ =
(

x̄i
)n

i=1
∈ A is called a Walras allocation with

respect to (the ownership or income distribution) α if there exists a price vector

p = (pj)
l
j=1 ∈ Rl

+ \ {0} such that

i) For i = 1, ..., n : x̄i maximizes ui
(

xi
)

subject to

xij ≥ 0 for all i = 1, ..., n, j = 1, ..., l,

p · xi ≤ p · (αie) for all i = 1, ..., n

ii)
n
∑

i=1

x̄i ≤ e and p ·
(

n
∑

i=1

x̄i − e

)

= 0.
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5.2.2 Economies as bargaining games

Another approach to model the situation above is to use cooperative game theory

and in particular bargaining theory. One first analyzes which allocations of utility

are feasible in these economies and uses this to define an induced bargaining

game. In a second step one can apply one of the solution concepts described

in the literature about bargaining games. We start with defining the relevant

concepts:

Definition 38. An n-player bargaining game is a pair V = (U, d) with the

following properties:

1. U ⊂ Rn, d ∈ U ,

2. U is convex and closed,

3. Ud =
{

x ∈ U
∣

∣x ≥ d
}

is bounded,

4. U is comprehensive, i.e. x ∈ U and z ≤ x implies z ∈ U .

Hereby, the status quo point d ∈ Rn is describing the utilities of the agents if

they do not agree to cooperate. If all agents agree to cooperate they are able to

achieve any of the distributions of utilities described by the set U .

A bargaining solution some class of bargaining games U0 is a mapping ϕ that

maps every bargaining game from U0 to Rn and that satisfies

1. ϕ is feasible, i.e. ϕ(U, d) ∈ U ,

2. ϕ is individually rational, i.e. ϕ(U, d) ≥ d,

3. ϕ is Pareto efficient, i.e. ϕ (U, d) is Pareto efficient in U .

The (symmetric) Nash bargaining solution is defined as the maximizer of the

product of the utilities over the individual rational bargaining set or as the unique

solution that satisfies the following axioms: Invariance to positive affine linear

Transformations, Pareto Optimality, Symmetry and Independence of Irrelevant

Alternatives. An asymmetric version of the Nash bargaining solution can be

defined as the maximizer of an accordingly weighted Nash product.
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Definition 39. Let α = (αi)
n
i=1 be a vector of weights, i.e. αi > 0 for i = 1, ..., n

and
n
∑

i=1
αi = 1. Then the α-asymmetric Nash bargaining solution is the bargaining

solution that maps a bargaining game (U, d) to the (unique) maximizer of the the

function

Uα(u) =
n
∏

i=1

(ui − di)
αi (5.2)

over the set U .

Concerning the axiomatization this means that the Symmetry axiom is re-

placed by an appropriate Asymmetry axiom, see for example Roth (2008, The-

orem 3). Then, the α-asymmetric Nash bargaining solution is characterized

through the axioms Covariance with affine linear transformations of utility, In-

dependence of Irrelevant Alternatives and Individual rationality in addition to

an condition describing the solution on symmetric hyperplane games. Hereby,

we observe for the case α =
(

1
n
, ..., 1

n

)

the well known (symmetric) Nash bar-

gaining solution as a special case of the asymmetric bargaining solution. Hence,

the expression “asymmetric Nash bargaining solution” should be understood as a

specific not necessarily symmetric version of the Nash bargaining solution.

Now, we can consider bargaining games induced by pure exchange economies.

Define a mapping U from the set of economies E to P
(

Rn
+

)

. Given an economy

f = ((ui, )
n
i=1 , e) the set

U(f) :=
{

u ∈ Rn
∣

∣∃x ∈ A : ui ≤ ui(xi) for all i ∈ I
}

⊆ Rn

consists of all feasible utility vectors for this economy. Now we can define a

bargaining game induced by an economy:

Definition 40 (induced bargaining game). The bargaining game induced by an

economy f ∈ E is the pair (U(f), 0) .

By the properties of f it is obvious that U(f) is compactly, convexly generated

and comprehensive and furthermore 0 ∈ U(f). Hence, (U(f), 0) has the usual

properties required for a bargaining problem with status-quo point 0 ∈ Rn
+.

135



5. NASH BARGAINING AND PERFECT COMPETITION

Now, we can apply the α-asymmetric Nash bargaining solution to this bargain-

ing game. To be able to compare the utility allocations given by the α-asymmetric

Nash bargaining solution with Walras allocations with respect to α we translate

utility allocations to allocations of goods leading to the utilities. Thus, define the

mapping Ũα from the set of allocations to the reals defined by

Ũα (x) =
n
∏

i=1

(

ui
(

xi
))αi .

Definition 41. A feasible allocation x̄ ∈ A is called a Nash allocation with

respect to α if it maximizes Ũα on the set of all feasible allocations, i.e. if x̄ is a

solution to

max Ũα(x) subject to

xij ≥ 0 for all i = 1, ..., n and j = 1, ..., l

m
∑

i=1

xij − ej ≤ 0 for all j = 1, ..., l

Now, the following Lemma shows that this definition is the“correct”definition.

Lemma 5. A feasible allocation x =
(

xi
)n

i=1
is a Nash allocation with respect

to α if and only if the vector of utilities
(

ui
(

xi
))n

i=1
is the α-Nash bargaining

solution of the bargaining game (U(f), 0).

Proof. Lemma 5 follows directly from the definitions.

5.2.3 A generalization of Chipman and Moore (1979)

The results of Chipman and Moore (1979) will play a crucial role in the proof

of the main result. We present a modified and more general version of their

result. Hereby, we denote with Gi
(

p, ωi
)

the Walrasian demand correspondence

of agent i at price p ∈ Rl
+ if he is endowed with the commodity bundle ωi ∈

Rl
++; denote with G (p, ω) the set of maximizers of the function Ũα on the set
{

x ∈
n×

i=1

Xi
∣

∣

n
∑

i=1
p · xi ≤ p · ω

}

.
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Theorem 17. If there exists k > 0 such that for each agent i his utility function

ui is homogeneous of degree k and weakly increasing and if the income shares are

fixed to α (αi ≥ 0 ∀i,∑αi = 1), then for any endowment vector ω ∈ Rl
+ we have

G (p, ω) =
n
∑

i=1

Gi (p, αiω) .

Proof. For the case k = 1 this Theorem is just a reformulation of Theorem 4.2 of

Chipman and Moore (1979) and hence follows directly from their result. While

Chipman and Moore (1979) denote their result in terms of Marshallian demand

we use the notation in terms of Walrasian demand here. This does not make a

crucial difference as for any price p ∈ Rl
+ we have that agent i owns the fraction

αi of the total wealth.

For the case k 6= 1 the proof of Chipman and Moore (1979) can be adapted

by using the following two results.

First, if a utility function ui is homogeneous of degree k (and satisfies the

other assumptions) then the corresponding indirect utility function is of the form

Vi(p, p · (αiω)) =
(p · (αiω))

k

γi(p)

for a suitable function γi : R
l
+ −→ R+. This follows directly from the fact that

for homothetic preferences the income elasticity of the demand is equal to 1.

Second, one considers the maximization of the product

n
∏

i=1

(

(di (p · ω))k
γi (p)

)αi

=
(p · ω)k

∏n
i=1 γi (p)

αi

n
∏

i=1

dαik
i

as a function of (d1, ..., dn) with respect to the constraint di ≥ 0,
∑

di = 1.

Following the proof of Chipman and Moore (1979) the crucial step is to show

that setting di = αi for all i maximizes this product.

Obviously, any solution satisfies di > 0. Removing constant factors and ap-

plying the monotone transformations k
√

and ln to the target function we obtain
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the equivalent maximization problem

max
n
∑

i=1

αi ln (di) (5.3)

w.r.t.
∑

di = 1. (5.4)

Using the Lagrange approach we get that for a maximizer of this problem

d̂1, ..., d̂n there exists λ ≥ 0 such that for all i

αi

d̂i
= λ

and
∑

d̂i = 1.

It is easy to see that λ = 1 and d̂i = αi is the unique solution to this system of

equations.

Hence, d̂i = αi is the unique solution for this maximization problem.

Together with Theorems 3.8 and 3.9 from Chipman and Moore (1979) this

completes the proof.

This result shows that under the given assumptions the function Ũα can be

regarded as the utility function of a representative consumer. While Chipman

and Moore (1979) denote their result in terms of Marshallian demand we use the

notation in terms of Walrasian demand here. Furthermore, compared with the

version of Chipman and Moore (1979) this version is more general as it includes

the case that utility functions are homogeneous of degree k. Hereby, one should

be aware of the fact that the utility functions of all agents have to be homogeneous

of the same degree.

5.3 Results

5.3.1 The main results

Proposition 19. An allocation x̄ =
(

x̄i
)m

i=1
is a Nash allocation with respect to

α if and only if it is a Walras allocation with respect to α.
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Proof. 1. Assume that x̄ is a Walras allocation with respect to α. By the

definition of a Walras allocation there exists a price vector p ∈ Rl
+ \ {0}

such that (p, x̄) is an α-Walrasian equilibrium. By definition this means

that for each i the vector x̄i maximizes ui
(

xi
)

subject to xi ≥ 0 and

p · xi ≤ p · (αie). By Theorem 17 this implies that x̄ is a maximizer of the

function

Ũα(x) =
n
∏

i=1

ui
(

xi
)αi

on the set

Bp =

{

x ∈
n×

i=1

Xi
∣

∣

n
∑

i=1

p · xi ≤ p · e
}

.

Notice that

A ⊆ Bp

and that

x̄ ∈ A.

Hence, x̄ also maximizes Ũα(x) on the set A. So, x̄ is a Nash allocation

with respect to α.

2. Let x̄ = (x̄)ni=1 be a Nash allocation with respect to α. By the definition of

Nash allocations the allocation x̄ maximizes Ũα(x) =
n
∏

i=1
ui
(

xi
)αi on the

set A. Notice that the function Uα is quasiconcave and that for each i ∈ I

the utility function ui is concave.

Therefore the set

T =
{

z ∈ Rl
+

∣

∣∃xi ∈ Xi, i = 1, ..., n, such that
∑

xi = z, Ũα
(

x1, ..., xn
)

> Ũα (x̄)
}

is convex. Furthermore, we observe that e /∈ T . By the separating Hyper-

plane Theorem there exists an vector p ∈ Rl with p 6= 0 such that p·y > p·e)
for all y ∈ T .

As the utility functions are weakly increasing and locally nonsatiated and

as the function Uα is strictly increasing , we observe that for all x ∈ A with

x > x̄ we have Ũα(x) > Ũα(x̄). It follows that p ≥ 0 holds.

Thus, for any allocation x̂ = (x̂)ni=1 with Ũα (x̂) > Ũα (x̄) we have that
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p ·
(
∑

x̂i
)

> p · e. Furthermore, we observe p ·
(

n
∑

i=1
x̄i
)

≤ p · e. Therefore, x̄

maximizes Ũα(x) on the set Bp. Applying Theorem 17 it follows that for

all i the vector x̄i maximizes ui on
{

xi ∈ Rl
+

∣

∣p · xi ≤ p · (αie)
}

. Hence, the

tuple
(

p,
(

x̄i
)n

i=1

)

is an α-Walrasian equilibrium and the allocation x̄ is a

Walras allocation with respect to α.

There are some immediate consequences of this result that can be used to

derive properties of competitive equilibria under the given assumptions:

• Fix some vector of weights α. It is well known that the α-asymmetric

Nash bargaining solution yields a single point. Hence, each agent’s utility

is constant on the set of of Nash allocations with respect to α. As Nash

allocations coincide with Walras allocations the same holds true for Walras

allocations with respect to α.

• As the utility functions are concave and as each agent’s utility is constant on

the set of Nash allocations, it is easy to see that the set of Nash allocations

with respect to α is convex. The same holds true for the set of Walras

allocations with respect to α.

• It is easy to see that an allocation x̄ can be at the same time Nash allocation

with respect to α1 and α2 for different vectors of weights α1, α2. Then, x̄ is

also a Walras allocations with respect to α1 and α2. This implies that x̄ is

an equilibrium allocation for different prices p1 ∈ Rl
+ and p2 ∈ Rl

+. Thus,

it can happen that an allocation is an equilibrium allocation for different

prices (and different endowments).

• In this context it is individual rational to apply the α-asymmetric Nash

bargaining solution with status quo point 0. This follows from the fact

that Nash allocations coincide with Walras allocation together with the fact

that Walras allocations are individual rational. This point is not a priori

clear as individual rationality has to be seen in relation to the utility of the

endowments vectors. Individual rationality as given in the axiomatization
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of the α-asymmetric Nash bargaining solution with status quo point 0 just

shows that the each agent receives at least 0.

The implications of Proposition 19 also hold if all the utility functions are

homogeneous of the same degree k with 0 < k < 1 instead of homogeneous of

degree 1. Hereby, one should be aware of the fact if a function is homogeneous of

degree k > 1 then this function can not be concave.1

Corollary 1. Suppose for some 0 < k < 1 the utility functions of all agents

i ∈ I are homogeneous of degree k and that in addition all assumptions (except

homogeneity of degree 1) from Section 2 hold. Then, an allocation x̄ =
(

x̄i
)m

i=1

is a Nash allocation with respect to α if and only if it is a Walras allocation with

respect to α.

Proof. This Proposition can be shown in the same way like Proposition 19.

Hereby, it is important to see that the homogeneity of degree 1 enters in the

proof of Proposition 19 only indirectly via Theorem 17. But Theorem 17 is also

valid for utility functions that are homogeneous of degree k with 0 < k < 1.

To prove Corollary 1 it is important that all the utility functions are homo-

geneous of the same degree. If the utility functions are homogeneous of different

degrees the implication of the result does not have to hold. This point will be

discussed more precisely in subsection 5.5.3.

5.3.2 Non-proportional endowments

If the initial endowments are not proportionally distributed there is the problem

that it is not clear for which α the α-symmetric Nash bargaining solution could

be applied.

If the initial endowments are ω =
(

ωi
)n

i=1
one can compute an equilibrium price

1To see this suppose that a function f is homogeneous of degree k > 0 and concave and
suppose that for some x we have f(x) > 0. Then we have f(x) = f

(

1

2
0 + 1

2
2x
)

≥
1

2
f(0) + 1

2
f(2x) = 0 + 1

2
f(2x) = 2k−1f(x) ⇒ 1 ≥ 2k−1. If k > 1 this inequality is not

satisfied.
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vector p (ω). As seen before, this price vector does not have to be unique. Now,

one can compute the vector of weights α (p(ω), ω) ∈ Rn
+ given by

αi (p(ω), ω) :=
{

t ∈ R+

∣

∣p (ω) ·
(

teN
)

= p · ωi
}

for i ∈ N . Using this definition, it is easy to see that Walras allocations (coming

from the vector of initial endowments ω) are also Nash allocations with respect to

α (p(ω), ω). Hereby, one can not just look on the data of the model and knows for

which α the α-bargaining solution is related to competitive equilibria (given ω).

One first has to compute α (p(ω), ω) via the equilibrium prices and then is able

to construct α. Moreover, we observe that the vector α (p(ω), ω) depends on the

choice of the equilibrium price vector and the equilibrium price vector does not

have to be unique. In particular, consider the situation that ω is already a Nash

allocation with respect to some α. Then, it can happen that ω is an equilibrium

allocations for different prices which leads to different choices of α.

On the other hand consider that some allocation x̄ is a Nash allocation for some

α. Then, by Proposition 19 there exists a price p ∈ Rl
+ such that (p, x̄) is an

α-Walrasian equilibrium. Then, x̄ is obviously an equilibrium allocation for all
(

ωi
)n

i=1
satisfying p ·ωi = p ·(αie) for i = 1, ..., n. Moreover, one should recall that

x̄ can also be a Nash allocation with respect to some α′ 6= α. In this way, one

could find even more vectors of endowments such that x̄ is a Walras allocation with

respect to these endowments. Again, we observe the problem that the relation of

α and ω is only indirect via the equilibrium prices.

To summarize, these result illustrate that it is mathematically possible to

relate Walras allocation and Nash allocations even if the vector of initial endow-

ments is not proportionally distributed. Nevertheless, there is a problem with the

economic interpretation. The relation of ω and α is in both cases indirectly via

equilibrium prices. Thus, the concepts of cooperative game theory and general

equilibrium theory are mixed. We do no more analyze distinct concepts and hence

a comparison of those is not that meaningful.
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5.4 Discussion of the status quo point 0

The status quo point 0 in the previous section may be considered as a surprising

choice. The usual interpretation of the status quo point is that this point describes

the utilities of the agents in the case that cooperation fails to happen. In the

situation of a pure exchange economy no cooperation could be understood as

saying that no trade happens and each agents stays with his initial endowments.

Hence, the first idea for the choice of a status quo point could be to choose it as the

vector of utilities that agents obtain by consuming their own initial endowments.

We choose the status quo point 0 ∈ Rn here. Hereby, the following example

shows that implications of the result of the previous section only hold if one really

chooses the status quo point 0. Choosing the utilities of the endowments of the

agents as status quo point can (and typically does) lead to a failure of the results:

Example 1. Consider an economy with two agents i = 1, 2 and two commodities

j = 1, 2. The utility function of agent 1 is given by

u1(x11, x
1
2) = x11 + 2x12

and the utility function of agent 2 is given by

u2(x21, x
2
2) = 2x21 + x22.

The endowments of the agents are given by

ω1 = ω2 = (1, 2)

what means that the set of total endowments is splitted according to α =
(

1
2 ,

1
2

)

.

Denote by U the allocations of utility that are feasible in this economy.

The unique Walrasian equilibrium price vector is p̄ = (1, 12). This leads to the

following demand in equilibrium: For agent 1:

x1∗
(

p̄, ω1
)

= (0, 4),
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for agent 2:

x2∗
(

p̄, ω2
)

= (2, 0)

They constitute the unique Walras allocation with respect to
(

1
2 ,

1
2

)

.

The utility of the endowments for agent 1 is u1(ω1) = 5 and for agent 2 is

u2(ω2) = 4.

The
(

1
2 ,

1
2

)

-Nash solution of the bargaining game (U, (5; 4)) yields the allocation of

utility
(

13
2 ,

19
4

)

. This corresponds to the allocation of goods x̂ =
((

0, 134
)

,
(

2, 34
))

.

This allocation can be regarded as a Nash allocation for the status quo point (5; 4),

but this allocation is different from the Walras allocation x∗ = ((0, 4) (2, 0)).

The
(

1
2 ,

1
2

)

-Nash solution of the bargaining game (U, (0)) is u∗ = (8, 4). Hence,

the Nash allocation with respect to
(

1
2 ,

1
2

)

is x∗ = ((0, 4), (2, 0)) and this coincides

with the Walras allocation with respect to
(

1
2 ,

1
2

)

.

Figure 1 illustrates the situation of this example. On the axes the utility levels

of the agents are drawn. The point A = (8, 4) is the Nash allocation with respect

to
(

1
2 ,

1
2

)

and at the same time Walras allocation with respect to
(

1
2 ,

1
2

)

. The

point B = (5, 4) denotes the vector of utilities of the endowments. So it is easy

to see that agent 2 can not improve through trade in the equilibrium compared

to the utility he receives through his endowments. If the point B is chosen as the

reference point the
(

1
2 ,

1
2

)

-symmetric Nash bargaining solution yields the point

C =
(

13
2 ,

19
4

)

where both agents have a higher utility than in point B.

There is a further reason why the status quo point 0 has to be chosen here.

Remember that the utility functions of the agents are positively homogeneous.

Hereby, the notation hides the fact that the utility functions are homogeneous

in relation to the reference point 0 ∈ Rl, the consumption bundle that describes

no consumption. Looking at the induced bargaining game this translates to the

status quo 0 ∈ Rn
+ where payoffs in terms of utility are in relation to the utility

of consuming nothing, i.e. 0 =
(

ui (0)
)n

i=1
.
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Figure 5.1: Example

5.5 Robustness of the result

5.5.1 Non-homogeneous utility functions

Looking at the results from section 5.3 one could think that these results are in

conflict with the results of Sertel and Yildiz (2003) or the results of Qin (1993).

While here competitive outcomes are captured by the asymmetric bargaining so-

lution, the results of Qin (1993) and others show that competitive outcomes can

be mainly anything within the inner core. The reason for these different results

are the more restrictive assumptions (in particular homogeneity of the utility

functions) in this work. The question arises whether there are less restrictive

assumptions which still lead to the same result.

We begin with an example in the spirit of the results of Sertel and Yildiz (2003). In

this example Nash allocations with respect to
(

1
2 ,

1
2

)

and Walras allocations with

respect to
(

1
2 ,

1
2

)

do not coincide. Moreover, in this example the set of Walras al-

locations can not coincide with the set of allocations chosen by any (single-valued)

bargaining solution. The example given in Sertel and Yildiz (2003) illustrates the

same fact. In their example the utility functions are not homogeneous and the
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endowments are not proportionally distributed. In contrast, we give an example

where the endowments are proportionally distributed but the utility functions are

not homogeneous. Hence, our example illustrates that certain assumptions on the

utility functions are necessary to show our result. The example is a modification

of an economy given in Mas-Colell et al. (1995, Example 15.B.2).

Example 2. Consider a pure exchange economy with two consumers 1 and 2 and

two goods where quantities of these goods are typically denoted by x and y. Let

z̄ = 2
8
9 − 2

1
9 . Let X1 = X2 = R2

+ be the consumption set of the agents, let

u1(x, y) = x− 1

8
y−8

and

u2(x, y) = (y − 2 + z̄)− 1

8
(x+ z̄ − 2)−8

be the utility functions of the agents. The endowments of the agents are given by

ω1 = ω2 = (2, z̄).

Hereby, each of the agents owns one half of the total endowments.

Looking for competitive equilibria one obtains that the price vectors p1 =

(1, 1); p2 = (1, 2); p3 = (1, 12) are competitive equilibrium price vectors.

The Walrasian demands xi(p, ωi) of agent i = 1, 2 for the prices p1 and p2 are:

• x1(p1, ω
1) ≈ (1, 77; 1),

• x1(p2, ω
1) ≈ (1, 69; 0, 93),

• x2(p1, ω
2) ≈ (2, 23; 0, 54),

• x2(p2, ω
2) ≈ (2, 31; 0, 62).

The corresponding indirect utility functions vi
(

p, ωi
)

take the following values in

equilibrium:

• v1
(

p1, ω
1
)

≈ 1, 64,

• v1
(

p2, ω
1
)

≈ 1, 46,
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• v2
(

p1, ω
2
)

≈ 1, 64,

• v2
(

p2, ω
2
)

≈ 1, 77.

We observe in this single economy different payoffs in terms of utility for

different equilibria. If we model the situation with a bargaining situation and

apply any bargaining solution we obtain a unique payoff in terms of utility. Hence,

no bargaining solution can obtain all different equilibrium allocations at the same

time.

To summarize this example shows the economy defined above is also an example

in the spirit of Sertel and Yildiz (2003). In contrast to the example of Sertel

and Yildiz (2003), the total endowments are proportionally distributed in our

example.

The example illustrates that the implications of the results from section 5.3

do not hold if one allows for a very large class of utility functions. But for which

class of utility functions is the result valid? Is it the class of homogeneous utility

functions or is the result even valid for a larger class of utility functions? It is

complicated to give a clear answer to these questions because homogeneity is used

here as a local property in relation to the point 0 ∈ Rl. For example, if the utilities

are not homogeneous in a subset of the consumption set which is not important

for the maximization problems for Nash and Walras allocations the implications

of the result remain valid. The question is whether structural deviations from

homogeneity lead to a breakdown of the results. In subsection 5.5.2 and 5.5.3 we

consider two types of deviations from homogeneity. We will see that although we

modify the utility functions in both cases in a way, such that they still represent

the same preferences, after these modifications Nash and Walras allocations do

no more coincide. Thus, these results illustrate that the result is not robust with

respect to these perturbations of the utility functions.

5.5.2 Shifts of utility functions

For the first modification we consider a situation with two agents and two com-

modities. For simplicity we assume that e = (1, 1). Given some 0 < b < 1 we
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can use the vector α = (b, 1− b) as vector of weights. Suppose that the utility

functions of the agents u1 and u2 are strictly increasing, concave, homogeneous

of degree 1 and continuously differentiable. Furthermore, suppose that for each

i ∈ I and for each j ∈ J we have for all xi−j ∈ Rl−1
++ that lim

xi
j→0

∂ui(xi
j ,x

i
−j)

∂xi
j

= ∞

holds. These conditions ensure interior solutions of the maximization problems

that one considers to find Nash or Walras allocations. Furthermore, Nash and

Walras allocation can be characterized via first order conditions. Given the re-

sults from Proposition 19 we know that Walras allocations with respect to α and

Nash allocations with respect to α coincide.

We modify the situation by changing the utility function of agent 1 to u1ε = u1+ε

for some ε 6= 0. We will refer to situation A as the situation where agent 1 has

the utility function u1 and to situation B as the situation where agent 1 has the

utility function u1ε.

Proposition 20. In situation B Walras allocations with respect to α and Nash

allocations with respect to α do not coincide.

Proof. Suppose that x̄ is a Walras allocation with respect to α in situation B. As

adding ε to u1 is a monotone transformation of utility we have that x̄ is a Walras

allocation with respect to α in situation A. By proposition 19 x̄ is also a Nash

allocation with respect to α in situation A. Now, suppose to the contrary that x̄

is also a Nash allocation with respect to α in situation B.

First, consider situation A. Under the given conditions Nash allocations can

be characterized by first order conditions. Plugging in the feasibility conditions

we can rewrite the constrained maximization problem

max
[

u1
(

x11, x
1
2

)]α [
u2
(

x21, x
2
2

)]1−α
with respect to x1 + x2 ≤ (1, 1)

to the unconstrained maximization problem

max
[

u1
(

x11, x
1
2

)]α [
u2
(

1− x11, 1− x12
)]1−α

.

Taking the partial derivative with respect to x11 and looking at the first order
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condition we obtain

α
(

u1
(

x̄11, x̄
1
2

))α−1 ∂u1

∂x11
(x̄11, x̄

1
2)u

2
(

1− x̄11, 1− x̄12
)1−α

− (1− α)
(

u1(x̄11, x̄
1
2)
)α (

u2
(

1− x̄11, 1− x̄12
))−α ∂u2

∂x21

(

1− x̄11, 1− x̄12
)

= 0. (5.5)

As u2 is strictly increasing and hence ∂u2

∂x2
1
> 0, equation (5.5) can be rewritten as

u1
(

x̄11, x̄
1
2

)

=
α

1− α
u2
(

1− x̄11, 1− x̄12
)

∂u1

∂x1
1
(x11, x

1
2)

∂u2

∂x2
1

(

1− x̄11, 1− x̄12
) . (5.6)

If one now considers situation B one obtains the following equation in the same

way:

u1
(

x̄11, x̄
1
2

)

+ ε =
α

1− α
u2
(

1− x̄11, 1− x̄12
)

∂u1ε

∂x1
1
(x11, x

1
2)

∂u2

∂x2
1

(

1− x̄11, 1− x̄12
) . (5.7)

But ∂u1ε

∂x1
1
= ∂u1

∂x1
1
. Hence, it follows that

u1
(

x̄11, x̄
1
2

)

+ ε =
α

1− α
u2
(

1− x̄11, 1− x12
)

∂u1

∂x1
1
(x̄11, x̄

1
2)

∂u2

∂x2
1

(

1− x̄11, 1− x̄12
) . (5.8)

Using equation (5.6) it follows

ε = 0.

Hence, as ε 6= 0, we have a contradiction. Thus, x̄ is not a Nash allocations with

respect to α in situation B.

5.5.3 Different degrees of homogeneity

Another way to modify the utility functions is to modify them in a way such that

they are not homogeneous of the same degree. As already mentioned before the

implications of Proposition 19 only hold if the utility functions of all agents are

homogeneous of the same degree k. To see this we start with a situation where
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the utility functions of all agents are homogeneous of degree 1. Then, for some

agent j we modify the utility function of this agent by applying the monotone

transformation (.)m for a sufficiently small m > 0. By applying this monotone

transformation we do not change the preferences of the agent. Nevertheless, we

change the degree of homogeneity of the function from homogeneity of degree 1

to homogeneity of degree m. Obviously, this transformation does not change the

set of Walras allocations with respect to α. But we will see that this modification

changes the set of Nash allocations with respect to α.

More general, we first consider the situation that we modify the utility function of

agent j by applying the transformation (.)mj with mj > 0. This does not change

the set of Walras allocations with respect to α but it changes the set of Nash

allocations in the following way. Looking at the Nash product this transforms to

n
∏

i=1

(

(

ui
(

xi
))mi

)αi

.

Maximizing this product is equivalent to maximizing the product

n
∏

i=1

(

ui
(

xi
))βi

with βi =
miαi

n∑

j=1
mjαj

where we have
n
∑

i=1
βi = 1. Hence, this transformation leads

to an application of the β-asymmetric Nash bargaining solution. Hereby, by

choosing the transformations mi for i = 1, ..., n we can basically choose any vector

of weights β. The following Proposition shows that using this transformation we

can change the set of Nash allocations (with respect to α). Hereby, we use the

modification of just one utility function.

Proposition 21. Consider a situation where the utility functions of all agents i ∈
I are weakly increasing, locally nonsatiated, concave, continuous and homogeneous

of degree 1 and fix some vector of weights α. Suppose that for some Nash allocation

with respect to α denoted by x̄ there exists an agent j ∈ I and a feasible allocation

x̂ with
∏

i 6=j

(

ui
(

x̂i
))αi >

∏

i 6=j

(

ui
(

x̄i
))αi .
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Then, there exists an m > 0 with the following property: If the utility function of

agent j is changed to ũj =
(

uj
)m

then Walras allocations with respect to α and

Nash allocations with respect to α do not coincide.

Proof. Suppose to the contrary that for any 0 < m ≤ 1 after the monotone trans-

formation (.)m Nash allocations with respect to α and Walras allocations with

respect to α coincide. We will refer to the situation before applying the mono-

tone transformation as situation 1 and to the situation after the transformation

as situation 2.

First notice that applying the monotone transformation (.)m does not change the

set of Walras allocations with respect to α. We will show that for sufficiently

small m > 0 this transformation changes the set of Nash allocations with respect

to α.

As x̄ maximizes also in situation 2 the α-asymmetric Nash product, we have

(

uj
(

x̄j
)m
)αj ∏

i 6=j

(

ui
(

x̄i
))αi ≥

(

uj
(

x̂j
)m
)αj ∏

i 6=j

(

ui
(

x̂i
))αi .

This implies
(

uj
(

x̄j
)m)αj

(uj (x̂j)m)
αj

≥

∏

i 6=j

(

ui
(

x̂i
))αi

∏

i 6=j

(ui (x̄i))αi

and hence
(

uj
(

x̄j
)

uj (x̂j)

)m

≥





∏

i 6=j

(

ui
(

x̂i
))αi

(ui (x̄i))αi





1
αj

.

Notice, that the term on the right does not depend on l and is larger than 1. Fur-

thermore, lim
m→0

(

uj(x̄j)
uj(x̂j)

)m

= 1. Hence, for sufficiently small m > 0 the inequality

is not satisfied. This is a contradiction. Hence, there exists an m > 0 such that

in situation 2 Nash and Walras allocations do not coincide.

If the Pareto surface of the induced bargaining game in situation 1 is smooth,

then even for all 0 < m < 1 the sets of Nash and Walras allocations do not

coincide any more. If the Pareto surface of the induced bargaining game has a

kink then it may happen that for some set of real numbers m > 0 we observe the

same set of Nash allocations with respect to α.
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Example 1 (continued)

In example 1 we have a kink at the Walras allocation. The vector of utilities (8, 4)

is the Nash bargaining solution for all vectors of weights α with α1 ∈
[

1
2 ,

4
5

]

. If we

apply the monotone transformation to the utility function of agent 2 for some m

this is equivalent to using the vector of weights
( 1

2
1
2
m+ 1

2

,
1
2
m

1
2
m+ 1

2

)

in the asymmetric

Nash bargaining solution. Hence, we observe that after applying the monotone

transformation for any m ∈
[

1
4 , 1
]

Nash allocations with respect to
(

1
2 ,

1
2

)

and

Walras allocations with respect to
(

1
2 ,

1
2

)

still coincide. If m < 1
4 then the set of

Nash allocations changes and hence Walras and Nash allocations do not coincide.

There is also a positive implication of this analysis. Suppose that the utility

functions of the agents are not homogeneous of the same degrees and the utility

function of agent i is homogeneous of degree ki. Then, after applying the concave,

monotone transformation (.)
mini∈I ki

ki to the utility function of agent i the utility

functions of all agents are homogeneous of the same degree (and still concave).

Hence, after this transformation Walras and Nash allocations coincide.

5.6 Relation to Polterovich (1975)

It is interesting to see our result as well as the result of Chipman and Moore

(1979) in contrast to an article written by Polterovich (1975). This article is

not very well known since it was originally published in Russian language (in

1973). We have only access to one printed version of a translation of it. In

this article Polterovich considers economies where the number of agents, income

shares, consumption sets and production are fixed and only the (cardinal) utility

functions vary. Hereby, he uses an unusual kind of production describing the

“total vector outputs of consumer goods available to society” without requiring

inputs. To compare this result with ours we focus in the following on the case

that only one vector of output goods is available to the society, namely the vector

of total endowments e. Polterovich introduces a set valued concept that maps

sets of utility functions (u1, ..., un) from a class of utility functions F to feasible
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allocations. Thus, the concept is similar to a social choice rule. The difference

is that it is not defined on the preferences of the agents but on the cardinal

utility functions of the agents. This so called “solution of the distribution

problem” is characterized through 4 axioms. Axiom 1 describes invariance of the

solution with respect to positive linear and affine transformations of the utility

functions. Axiom 2 requires invariance of the solution with respect to changes

of the utility functions in favor of the allocations that are already chosen before

the change of the utility functions. This axiom can be regarded as a cardinal and

weaker version of Maskin monotonicity. The condition would follow from Maskin

monotonicity. Axiom 3 describes the solution on economies where the agents have

identical, linear and monotonically increasing utility functions. It captures ideas

like efficiency and proportionality of the utilities of incomes in those economies.

The fourth axiom says that given a set of utility functions each agent’s utility is

constant on the set of all allocations the solution yields. The formal versions of

the axioms are given in the appendix.

Polterovich (1975) proves in Theorem 6 that under certain conditions the

solution of the distribution problem exists. Furthermore, if the solution exists

it yields exactly the set of competitive equilibrium allocations. The conditions

he requires include the case that the class of utility functions F is the set of

utility functions which are positive and homogeneous. Thus, the solution of the

distribution can be applied in the context of our work.

In a second part Polterovich (1975) considers a characterization of competitive

equilibrium allocations as maximizers of a certain maximization problem.

Theorem 18 (Polterovich, 1975). Suppose that for each i the utility function ui

is positive, homogeneous of degree ki > 0,nonnegative on Xi = Rm
+ and that Xi

contains a vector where ui is strictly positive.

(a) The tupel
((

xi
)n

i=1
, p∗
)

is a Walrasian equilibrium

if and only if
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(b) the allocation
(

xi
)n

i=1
forms a solution of the problem

max
n
∑

i=1

αi

ki
lnui

(

xi
)

with respect to
n
∑

i=1

xi ≤ e, (5.9)

xi ∈ Xi,

and p∗ is a vector of Lagrange multipliers corresponding to the inequality

of (5.9).

Hereby, one should be aware that, given the conditions of the theorem, the

function
n
∑

i=1

αi

ki
lnui

(

xi
)

does not have to be concave or quasiconcave. In the proof

he claims that for a maximzer x∗ in (b) it follows that

n
∑

i=1

αi

ki
lnui

(

x∗i
)

≥
n
∑

i=1

αi

ki
lnui

(

xi
)

+ p∗ ·
(

e−
n
∑

i=1

xi

)

for all xi ∈ Xi, i = 1, ..., n. Hence, the second part implicitly assumes the

existence of Lagrange multipliers and (quasi)concavity properties of the target

function. This should have been assumed in the conditions of the Theorem.

Thus, in fact a maximzer in b) maximizes the target function with respect to

p∗ ·
(
∑

xi
)

≤ p∗ · e, given a price vector p∗. Hence, this result is the analogue of

the result of Chipman and Moore (1979) but only analyzing equilibrium alloca-

tions and not properties of the demand in general. On the other hand the result

is more general in the sense that it includes the case that the utility functions are

homogeneous of a degree not equal to 1. From a historical point of view this is

interesting as Polterovich (1975) was published earlier than Chipman and Moore

(1979).

In a short remark Polterovich (1975) mentions that, given the conditions of

Theorem 18, assuming that the utility functions are homogeneous of the same

degree 0 < k ≤ 1 and assuming that α =
(

1
n
, ..., 1

n

)

, then his solution of the

distribution yields the same allocation like the symmetric Nash solution for status

quo point 0 in an induced bargaining game. He does not elaborate on the details
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of the proof. In particular, he does not assume concavity of the utility functions

but claims that in the induced bargaining game “all of Nash’s assumptions are

satisfied” where he refers to Nash (1950). But concavity would be necessary to

show that the induced bargaining game is a bargaining game in the sense of

Nash (1950). Without this assumption the bargaining set does not have to be

convex. Moreover, his arguments and the application of Theorem 18 require that

the function
n
∑

i=1

αi

ki
lnui

(

xi
)

is quasiconcave. This does not follow from the other

assumptions and so the remark as presented in Polterovich (1975) is not correct.

Nevertheless, if one assumes concavity of the single utility functions ui, then

the function
m
∑

i=1

αi

ki
lnui

(

xi
)

is concave. Thus, if one adds this assumption the

results become correct. Then, the (symmetric) Nash solution yields the same

allocations as the solution of the distribution problem of Polterovich and, fur-

thermore, the allocations given by the solution of the distribution problem and

competitive equilibrium allocations coincide. Thus, indirectly Polterovich (1975)

shows that Nash allocations and competitive equilibrium allocations coincide and

obviously he was aware of that. He did not pay attention to this relation as he

was more interested in the relation of the solution of the distribution problem

with the Nash bargaining solution. The results of Polterovich were not observed

in the western world as for example Shubik (1984) writes: ”There is a strong

analogy though no formal equivalence that we know of between the comparison

weights that we must introduce in order to obtain a feasible transfer value and

the prices in a competitive market.” Shubik refers hereby to the λ-transfer value

and must have know that in the context of bargaining games the λ-transfer value

coincides with the Nash bargaining solution. We can state that Polterovich was

the first who observed such a relation.

To summarize, the results of Polterovich (1975) can be used to show our result

in a very similar way like it is done in Section 5.3. Furthermore, Polterovich (1975)

mentions already a relation of the Nash bargaining solution with competitive

equilibria. This result is not as general as ours as Polterovich only considers the

symmetric Nash bargaining solution. Moreover, the conditions he requires are

not sufficient to show the result.
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5.7 Conclusion

This article analyzes the relation of asymmetric Nash bargaining solutions and

competitive equilibria in the context of homogeneous utility functions and a pro-

portional division of the endowments. It is shown that given some restrictive

assumptions a certain asymmetric Nash bargaining solutions yields the same al-

locations as competitive equilibria. It is interesting to see this result in contrast

to the results of Sertel and Yildiz (2003) who claim that there does not exist

a Walrasian bargaining solution. Our result suggests that the Nash bargaining

solution is in some sense a Walrasian bargaining solution.

We observe that the result requires an unusual choice of the status quo point.

The result also strongly depends on the choice of the utility function representing

the preferences. It is not robust with regard to monotone transformations of the

utility functions. This fact highlights the differences between the cardinal utilities

in cooperative game theory and the ordinal preferences in general equilibrium

theory.
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5.8 Appendix

5.8.1 The solution of the distribution problem

We recall the definition of Polterovich (1975) of his solution of the distribution

problem. Hereby, we focus on the case that one vector of outputs is available

to the society, namely the vector of the total endowments e ∈ Rl
+. Xi ⊂ Rl

+

denotes the consumption set of agent i. We consider vectors of utility functions

of the agents f =
(

f1, ..., fn
)

that are elements of some class of vectors of utility

functions F .

Definition 42. The correspondence D : F −→
n×

i=1

Xi is called a solution of the

distribution problem in class F , (and the allocation D(f) is called valid), if the

following four conditions hold:

1. The mapping D is invariant with respect to positive linear transformations

of utility function: if f =
(

f1, ..., fn
)

∈ F, f i = ϕi for all i 6= j, ϕj =

af j + b, a > 0, b ∈ R, then D(f) = D(ϕ).

2. Under a change of preferences in favor of the valid allocation, it remains

valid: if f, ϕ ∈ F, f i = ϕi for all i 6= j, ϕj
(

xj
)

≤ f j
(

xj
)

for any xj ∈ Xj ,

z =
(

z1, ..., zn
)

∈ D(f) and ϕj
(

zj
)

= f j
(

zj
)

, then z ∈ D(ϕ).

3. Let all utility functions be identical, linear and monotonically increasing

with respect to all their arguments: f i
(

xi
)

= c ·xi, i = 1, ..., n, c ∈ Rl, c ≥
0. If the feasible allocation z =

(

z1, ..., zn
)

(a) reaches a maximum utility under a given technology, i.e.

n
∑

i=1

c · xi = c · e

, and if it

(b) provides proportionality in the utility of income,i.e.

αic · zj = αjc · zi, i, j = 1, ..., n,
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then it follows that z is a valid allocation, i.e. z ∈ D(f).

4. For any f ∈ F all valid allocations are equivalent: if x, z ∈ D(f) it follows

that f i
(

xi
)

= f i
(

zi
)

, i = 1, ..., n.
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Chapter 6

Concluding Remarks

Within the four chapters of this thesis we have studied several problems arising in

the context of market games. Each chapter discusses its respective topic in detail

and ends with a conclusion summarizing its results. Nevertheless for completeness

we will briefly restate our achievements at this point:

First, we analyze a problem in the context of TU market games. We show

that given a closed, convex subset of the core of a TU market game there exists

a market which represent the game and furthermore has the given subset of the

core as the set of its competitive payoff vectors. The main insight is that within

the class of markets representing a TU market game the markets can have many

different kinds of payoffs. Our work generalizes the results of Shapley and Shubik

(1975) as it contains their results as a special case. Furthermore, it is interesting

to see the techniques of the proofs in contrast to the techniques used in the NTU

case.

In the third chapter of this work we analyze NTU marked games. We extend

the results of Qin (1993) to a large class of closed subsets of the inner core: Given

an NTU market game we construct a market depending on a given closed subset

of its inner core. This market represents the game and further has the given set

as the set of payoffs of competitive equilibria. Our work confirms that going from

NTU games to markets some structural information is added that is not present

in the NTU game. To a given NTU market game we can associate a huge class of

markets that represents the NTU game. In particular, by choosing the structure,



Concluding Remarks

that we add, we can control the set of payoffs of competitive equilibria.

In the fourth chapter we consider NTU bargaining games and prove that

those games are NTU market games. Our results show that asymmetric Nash

bargaining solutions as solution concepts for bargaining games are linked via the

inner core to competitive payoff vectors of certain markets. Thus, our result can

be seen as a market foundation of the asymmetric Nash bargaining solutions. This

result holds for bargaining games in general as any asymmetric Nash bargaining

solution is always in the inner core. The idea of a market foundation parallels

the one that is used in implementation theory. Here, rather than giving a non-

cooperative foundation for solutions of cooperative games, we provide a market

foundation. Our result may be seen as an existence result.

In the last chapter we consider pure exchange economies and study these

economies on the one hand with means of general equilibrium theory and on

the other hand with means of cooperative bargaining theory. We prove that

sets of competitive equilibrium allocations and of allocations resulting from an

asymmetric Nash bargaining solution coincide as long as one restricts attention

to economies where agents have homogeneous (of degree k ≤ 1) utility functions

and where the initial endowments are proportionally distributed. This result

suggests that in the context of homogeneous utility functions the asymmetric

Nash bargaining solution can be seen as a Walrasian bargaining solution.
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Summary

Summary

This dissertation studies several aspects of the relation of general equilibrium

theory and cooperative game theory. Hereby, the focus is on the relation

of solution concepts of the different fields. We discuss the relation of com-

petitive equilibria with solution concepts for cooperative games like core,

inner core or asymmetric Nash bargaining solutions. We consider games

and study which solutions appear as equilibria in economies representing

these games. On the other hand we analyze when competitive equilibria

of economies and cooperative solutions applied to induced games yield the

same allocations.

The main chapters of this thesis, each of which self contained in nota-

tion, are based on four articles. Chapters 2 and 3 consider extensions of

the results of Shapley and Shubik (1975) and Qin (1993) to subsets of the

core respectively the inner core. Chapter 2 considers the case of TU market

games while in Chapter 3 the NTU case is analyzed. Chapter 4 investigates

the relation of asymmetric Nash bargaining solutions with the inner core in

the context of bargaining games. We conclude that asymmetric Nash bar-

gaining solutions are related to certain markets. The fifth Chapter considers

the relation of asymmetric Nash bargaining solutions and competitive equi-

libria but now starting with economies and looking at induced bargaining

games.

Keywords

Market Games, Coalitional Market Games, Competitive Payoffs, Core, Inner

Core, Asymmetric Nash Bargaining Solutions.
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Résumé ein Français

Cette thèse étudie plusieurs aspects des relations entre la théorie de l’équilibre

général et la théorie des jeux coopératifs. Dans la suite, nous nous concen-

trons sur les relations entre les concepts de solution dans les différents do-

maines. Nous discutons les relations entre équilibre compétitif d’une part et

les concepts de solution des jeux coopératifs d’autre part comme le coeur in-

terne ou les allocations de marchandage de Nash asymétrique. Nous partons

des jeux et nous étudions quelles solutions correspondent à des équilibres des

économies qui représentent ces jeux. Nous étudions également quels couples

de solutions conduisent aux mêmes niveaux d’utilité.

Les principaux chapitres de cette thèse, chacun étant auto-suffisant pour

les notations, sont basés sur quatre articles. Les chapitres 2 et 3 sont des

extensions des résultats Shapley and Shubik (1975) et Qin (1993) à des sous-

ensembles du coeur ou du coeur interne. Le chapitre 2 est consacré aux jeux

de marché à utilité transférable alors que le chapitre 3 analyse les jeux à

utilité non transférable. Le chapitre 4 étudie les relations entre la solution

de marchandage de Nash asymétrique avec le coeur interne dans le contexte

des jeux de marchandage. Nous pouvons en conclure que les solutions de

marchandage de Nash asymétriques sont reliées à certains marchés. Le cin-

quième chapitre considère les relations entre les solutions de marchandage de

Nash asymétriques et les équilibres compétitifs mais en partant maintenant

des économies et en regardant les jeux induits.

Mots clés

Jeux de Marchés, Jeux de Marchés Coopératifs, Paiements Compétitifs,

Coeur, Coeur Interne, Solutions de Négociation Asymétriques de Nash.
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