
Available online at www.sciencedirect.com
Data & Knowledge Engineering 65 (2008) 325–354

www.elsevier.com/locate/datak
Towards portable natural language interfaces to
knowledge bases – The case of the ORAKEL system

Philipp Cimiano a,*, Peter Haase a, Jörg Heizmann b, Matthias Mantel a,
Rudi Studer a

a Institute AIFB, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
b ontoprise GmbH, Amalienbadstr. 36, D-76227 Karlsruhe, Germany

Received 15 July 2007; accepted 25 October 2007
Available online 22 November 2007
Abstract

The customization of a natural language interface to a certain application, domain or knowledge base still represents a
major effort for end users given the current state-of-the-art. In this article, we present our natural language interface ORA-
KEL, describe its architecture, design choices and implementation. In particular, we present ORAKEL’s adaptation model
which allows users which are not familiar with methods from natural language processing (NLP) or formal linguistics to
port a natural language interface to a certain domain and knowledge base. The claim that our model indeed meets our
requirement of intuitive adaptation is experimentally corroborated by diverse experiments with end users showing that
non-NLP experts can indeed create domain lexica for our natural language interface leading to similar performance com-
pared to lexica engineered by NLP experts.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Natural language interfaces; Domain adaptation; Ontologies; Natural language for DKE; Natural language processing
1. Introduction

As the amount of information available globally on the Web and locally in intranets or databases keeps
steadily growing, the necessity of mechanisms for effectively querying this information gains importance at
the same pace. In fact, it seems crucial to provide end users with intuitive means of querying knowledge as
they cannot be expected to learn and use formal query languages such as SQL, which are typically used by
programmers. Different paradigms have been proposed in the past for querying information collections,
among them form fillin, query-by-example or menu-based approaches (see [50]), as well as natural language
interfaces (NLIs), either relying on controlled language [28] or on more or less free language input [44]. While
the querying paradigm based on natural language is generally deemed to be the most intuitive from a usage
0169-023X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2007.10.007

* Corresponding author. Tel.: +49 721 608 3705; fax: +49 721 608 6580.
E-mail address: cimiano@aifb.uni-karlsruhe.de (P. Cimiano).

mailto:cimiano@aifb.uni-karlsruhe.de

326 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
point of view, it has also been shown to be the most difficult to realize effectively. The main reasons for this
difficulty are that:

� natural language understanding is indeed a very difficult task due to ambiguities arising at all levels of anal-
ysis: morphological, lexical, syntactic, semantic, and pragmatic (compare [1,21]),
� a reasonably large grammar is required for the system to have an acceptable coverage,
� the natural language interface needs to be accurate, and
� the system should be adaptable to various domains without a significant effort.

With the wide availability of cell phones and PDAs, the importance of intuitive ways of interacting with
electronic devices has grown even more. Natural language interfaces are an interesting option to interact with
mobile devices due to their limited input and output functionality. Clearly, automatic speech recognition is a
crucial component towards leveraging the use of natural language interfaces. In this article we are not con-
cerned with speech recognition, but with the process of transforming a user’s question into a formal query
which can be answered with respect to an underlying knowledge or database. Nevertheless, it is worth empha-
sizing that speech recognition systems have nowadays reached a degree of maturity which makes it possible to
apply them for interacting with phones or other mobile devices (see for example the recent SmartWeb project,
which provides natural language access to the Semantic Web [2]).

In the context of this article, we define a natural language interface (NLI) as a system accepting as input
questions formulated in natural language and returning answers on the basis of a given knowledge base. It
is important to emphasize that in our view a natural language interface goes strictly beyond the capabilities
of keyword-based retrieval systems known from information retrieval research [3], which are not able to
return precise answers to questions but only to return a set of relevant documents given a keyword-based
query.

The ORAKEL natural language interface presented in this article addresses all the above challenges, focus-
ing particularly on minimizing the effort of adapting the system to a given domain. ORAKEL is an ontology-
based natural language system in two senses. First, the ontology for a certain knowledge base is used to guide
the lexicon construction process. On the one hand, parts of the lexicon are automatically generated from the
underlying ontology. But most importantly, on the other hand, the ontology is at the core of the whole lexicon
acquisition process in ORAKEL, which is performed by the lexicon engineer to adapt the system to some
domain and a particular knowledge base. Second, ORAKEL is ontology-based in the sense that it is a natural
language interface which relies on deduction to answer a user’s query. The ontology as a logical theory
together with the facts stored in the knowledge base are thus exploited by the underlying inference engine
to provide an answer, even if it is not explicitly contained in the knowledge base but can be inferred from
it. As ORAKEL relies on a well-defined deduction process to answer a query, an important requirement is
that the user’s question is translated into logical form, in particular into a query which can be evaluated by
the underlying inference engine.

In general, the ontology model required by the system for the purposes of lexicon acquisition is rather sim-
ple, consisting of concepts, ordered hierarchically in terms of subsumption, as well as (binary) relations
together with their corresponding restrictions on their domain and range (compare the ontology model
described in [25] for a corresponding more formal definition). In practice, we will however rely on standard
ontology models such as the ones provided by languages such as OWL [6] or F-Logic [34]. In fact, for the
process of query answering, we will rely on the full expressive power of the logical languages used in the
background.

The challenge for natural language interfaces is thus the domain-specific interpretation of the user’s ques-
tion in terms of relations and concepts defined in the schema or ontology of the knowledge base. Thus, parsers
which create a generic logical form for a given input sentence will clearly not suffice for this purpose. The chal-
lenge is to construct a logical query consisting of domain-specific predicates which can be evaluated with
respect to the knowledge base, returning the correct answer as a deduction process. Therefore, it is crucial that
a natural language interface is adapted to every different knowledge base it is applied to.

In general, the problem of adapting natural language applications to some specific domain still remains lar-
gely unsolved. Different models for customization have been proposed in the natural language processing

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 327
(NLP) literature. However, the feasibility of different customization approaches from a user point of view has
been rarely investigated. While letting users engineer a complete grammar by hand might be a potential solu-
tion, it is for sure not feasible as it can neither be expected that general users have grammar engineering expe-
rience nor that they would be willing to make such an effort. Some systems support the user in defining
linguistic rules, especially in the context of information extraction systems (compare [22]). In contrast, some
researchers have examined supervised approaches in which training data is provided and the system learns
domain-specific rules using inductive learning techniques [52]. However, it seems still unclear whether provid-
ing training data, i.e. questions with their corresponding queries, is a feasible way of customizing a natural
language interface to a specific knowledge base from the point of view of an end user. In general, the feasibility
of different approaches for customization has been rarely investigated from a user point of view.

Recently, several approaches have been presented which do not rely on any sort of manual adaptation.
These approaches exploit external lexical knowledge, for example in the form of lexical databases such as
WordNet [26], to account for syntactic variants. This is for example the case of the PRECISE [44] and Aqu-
aLog [35] systems, which essentially rely on lexical matches to determine to which entities in the knowledge
base the words in the query refer to. At first sight, these approaches seem superior to an approach as presented
in this paper in which a lexicon needs to be explicitly created. Nevertheless, such approaches strongly depend
on the quality and coverage of the lexical resources used. Recent work by ourselves [19], in which an approach
based on lexical matching is explored, has in fact shown that one can rely less on lexical matching the more
technical the domains get. In fact, we can not expect to have the complete lexical knowledge necessary for very
technical domains in general resources such as WordNet. Manually engineering a lexicon as in the ORAKEL
system described in this article certainly represents a considerable effort, but it allows to directly control the
quality and coverage of the lexicon for the specific application as the lexicon is represented declaratively and
can be directly updated.

Finally, there are systems which support the user in lexicon acquisition by hiding the linguistic details
behind some frontend. The well-known natural language interface TEAM [29], for example, achieves the cus-
tomization by asking domain experts questions and deriving the necessary linguistic knowledge from their
answers. Rosé et al. [46] have recently also presented an approach in which a NLP system is created by users
as a byproduct of annotating text segments. However, with the only exception of Rosé et al., none of the
above work has examined the question whether typical users of the system are indeed able to successfully per-
form the customization.

In this article, we explore a model of user-centered lexicon customization which merely requires very basic
knowledge about subcategorization frames, but no background in computational or formal linguistics. Sub-
categorization frames are essentially linguistic argument structures, e.g. verbs with their arguments, nouns
with their arguments, etc. As in TEAM, we also assume that a user with general expertise about computer
systems will perform the customization, i.e. we subscribe to the hypothesis mentioned in [29]:
‘‘A major hypothesis underlying TEAM is that, if an NLI is constructed in a sufficiently well-principled

manner, the information needed to adapt it to a new database and its corresponding domain can be acquired

from users who have general expertise about computer systems and the particular database, but who do not

possess any special knowledge about natural-language processing or the particular NLI.”
In the ORAKEL system, the main task of the person in charge of customizing the system is to create a
domain-specific lexicon mapping subcategorization frames to relations specified in the domain ontology.
We present experimental evidence in form of a user study as well as in the form of a case study involving a
real-world application to corroborate the claim that our model indeed allows non-NLP experts to create an
appropriate domain lexicon efficiently and effectively. We show in particular that the results obtained with lex-
ica customized by non-NLP experts do not substantially differ from the ones created by NLP experts. As the
coverage of the lexicon has a direct impact on the overall linguistic coverage of the system, we propose a model
in which the lexicon engineer can create the lexicon in an iterative process until a reasonable coverage is
achieved. We also provide experimental evidence for the fact that such an iterative lexicon construction model
is indeed promising. Furthermore, we also assess the coverage of our system, showing that with a few subcat-
egorization frame types we can indeed yield a reasonable linguistic coverage. Before describing the details of
ORAKEL, we first present an overview of the system in the next section.

Knowledge Base

Domain-specific
LexiconFrameMapper

Query Interpreter

Query Converter

Answer Generation

Domain-independent
Lexicon

Domain Ontology

Fig. 1. Overview of the ORAKEL system.

328 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
2. Overview of ORAKEL

The input to ORAKEL are factoid questions starting with so-called wh-pronouns such as ‘who’, ‘what’,
‘where’, ‘which’, etc., but also the expressions ‘How many’ for counting and ‘How’ followed by an adjective
to ask for specific values of an attribute as in ‘‘How long is the Rhein?”. Factoid in this context means that
ORAKEL only provides ground facts as typically found in knowledge or data bases as answers, but no
answers to why- or how-questions asking for explanations, the manner in which something happens or causes
for some event.

In the ORAKEL system, we assume two underlying roles that users can play. On the one hand, we have end

users of the system which interact with the system in query mode. On the other hand, domain experts or knowl-
edge engineers which are familiar with the underlying knowledge base play the role of lexicon engineers which
interact with the system in lexicon acquisition mode, creating domain-specific lexicons to adapt the system to a
specific domain.

The end users ask questions which are semantically interpreted by the Query Interpreter (compare Fig. 1).
The Query Interpreter takes the question of the user, parses it and constructs a query in logical form (LF),
formulated with respect to domain-specific predicates. This logical form is essentially a first-order logic
(FOL) representation enriched with query, count and arithmetic operators. The Query Interpreter component
is discussed in detail in Section 3. The query in logical form is then translated by the Query Converter com-
ponent into the target knowledge representation language of the knowledge base, in particular to its corre-
sponding query language. The overall approach is thus independent from the specific target knowledge
language and can accommodate any reasonably expressive knowledge representation language with a corre-
sponding query language. Our system has been so far tested with the knowledge representation languages F-
Logic [34] with its query language as implemented by the Ontobroker system [23] and OWL [38] with the query
language SPARQL [45] as implemented by the KAON2 inference engine.1

The conversion from the logical form to the target knowledge language is described declaratively by a
Prolog program. The Query Converter component reads in this description and performs the appropriate
transformation to yield a query in the target language. So far, we have provided the two implementations
for F-Logic as well as OWL/SPARQL. However, our system architecture would indeed allow to port the sys-
1 http://kaon2.semanticweb.org/.

http://kaon2.semanticweb.org/

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 329
tem to any query language, in particular the RDF query languages described in [30] or plain SQL to access
conventional relational databases. In fact, changing the target language requires a declarative description
of the transformation as a Prolog program, but no further change to the underlying system. We describe
the process of query translation in more detail in Section 3.3.

The answer generation component then evaluates the query with respect to the knowledge base and pre-
sents the answer to the user. Answering the query is thus a deduction process, i.e. the answer to a user’s ques-
tion are the bindings of the variables in the resulting query. Currently, the answer generation component only
presents the extension of the query as returned by the inference engine. However, more sophisticated tech-
niques for presenting the answer to the user by describing the answer intensionally or presenting the results
graphically are possible. The way of displaying the results in general depends heavily on the application in
question and will thus not be discussed further in this article.

As an example, consider the question: ‘‘What is the capital of Baden-Württemberg?” to a knowledge base
containing facts about Germany. This question would be translated into the following internal representation
by the query interpreter:
2 Th
ORAK
and no
?x capitalðbaden wuerttemberg; xÞ

This internal representation would then be translated into the target query language, e.g. F-Logic by the query

converter:
8X baden wuerttemberg½capital! X �

The answer to this query is then generated by evaluating the above query with respect to the inference engine.

We have mentioned already in Section 1 that a crucial question for natural language interfaces is how
they can be adapted to a specific domain in order to interpret the user’s question with respect to
domain-specific predicates. In the model underlying ORAKEL, the lexicon engineer is in charge of creating
a domain-specific lexicon thereby adapting ORAKEL to the domain in question. The lexicon engineer is
essentially responsible for specifying how certain natural language expressions map to predicates in the
knowledge base. For this purpose, we have designed an interface FrameMapper (compare Fig. 1) with access
to the knowledge base, which supports the lexicon engineer in specifying by graphical means the mapping
from language to relational predicates defined in the knowledge base. The result of the interaction of the
knowledge engineer is a domain lexicon specific for the application in question. The process of domain
adaptation is described in detail in Section 4, while the graphical user interface of FrameMapper is
described in Section 5.

Besides the domain-specific lexicon, ORAKEL also relies on a general lexicon which specifies the semantics
of closed-class words such as prepositions, determiners, question pronouns, numbers, etc. The semantics of
these closed-class words are actually domain independent and specified with respect to elementary or founda-
tional categories as given by foundational ontologies. In our ORAKEL system, we rely on the foundational
ontology DOLCE [37], which provides fundamental categories such as physical object, agentive physical object,
etc. as well as predicates and relations related to time and space. The latter ones are crucial for representing the
semantics of spatial or temporal prepositions.

The general lexicon and the domain-specific lexicon created by the domain expert provide the only
sources that ORAKEL needs to answer questions. Both type of lexica are in fact a lexicalized grammar
which is used by ORAKEL for parsing but also for constructing the semantics of input questions. Thus,
ORAKEL does not need any external grammar or other lexical resources.2 As the general lexicon is given,
the crucial bottleneck is thus the creation of the domain-specific lexicon. An appropriate domain-specific
lexicon is crucial for interpreting the user’s question with respect to domain-specific predicates. In this arti-
cle, our focus lies in particular on the adaptation model and adaptation mechanism of ORAKEL. Our aim
is to show that, given very rudimentary knowledge about grammar and language, domain experts can
indeed successfully adapt ORAKEL to different domains. We also show that an iterative approach in which
e only two exceptions are lists of base forms for nouns and verbs with their corresponding inflected forms which are used by
EL to generate tree families. This is discussed in more detail in Section 4. Further, WordNet is used to provide synonyms for verbs
uns (compare Section 5). However, this possibility was not exploited in the experiments described in Section 6.

330 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
the lexicon engineers modify the lexicon on the basis of failed questions until a reasonable coverage is
achieved seems indeed reasonable.

We have carried out experiments on two different domains to corroborate our claim. On the one hand,
we have carried out a user study with a small knowledge base containing facts about Germany. On the
other hand, we have used a database containing metadata about research publications from British Tele-
com’s – henceforth BT – digital library, which is orders of magnitude larger than the geography knowl-
edge base. Our studies show that ORAKEL can indeed be successfully adapted to different domains in a
reasonable amount of time, typically a few hours. The British Telecom case study was especially challeng-
ing as ORAKEL had to be modified to scale up to tens of thousands of facts contained in the BT
database.

ORAKEL has also a few limitations which are however not of a principled nature. Currently, ORA-
KEL can neither handle ungrammatical input nor deal with unknown words. On the one hand, as we will
see below, ORAKEL assumes a full parse of the input sentence and thus expects the sentence to be gram-
matical. In case the question is not grammatical it will simply fail and tell the user that it did not under-
stand the question, without giving any further feedback. In case a word is unknown, the system will at
least inform the user about which word is currently unknown. While handling ungrammatical input and
unknown words is a must for any commercial natural language interface, we have decided to abstract from
these issues at this stage as our research is mainly concerned with aspects related to the easy customization
and portability of NLIs. Nevertheless, we are confident that ORAKEL can be extended to show a more
robust behaviour with respect to ungrammatical input and unknown words and to generate appropriate
feedback to the user.

3. Query construction

In this section, we describe how the logical query to the knowledge base is constructed on the basis of a
user’s question formulated in natural language. In order to make this article self-contained, we describe all
the components necessary to understand the ORAKEL system. However, we only describe these components
rather briefly and omit most of the technical details of the system. The interested reader is referred to our tech-
nical report for details (see [18]).

In the next Section 3.1, we first describe the syntactic formalism underlying our system as well as the cor-
responding parser. Then, in Section 3.2 we describe how a query in our enriched first-order logic (FOL) lan-
guage is constructed. Section 3.3 discusses how the FOL query can be translated into an appropriate target
query language, e.g. into a F-Logic or SPARQL query in our case.

3.1. Syntactic theory and parsing

The underlying syntactic theory of our system is a formalism called Logical Description Grammars (LDG)
(compare [40]). LDG is inspired by Lexicalized Tree Adjoining Grammars (LTAGs) [31], which essentially are
tree rewriting systems consisting of a finite set of trees associated with lexical items, so-called elementary trees
(etrees). The two main operations in LTAG are substitution and adjoining. Substitution can be regarded as a
local operation for the insertion of arguments. Adjoining typically folds one tree into another, thereby intro-
ducing modifiers or recursively embedding structures, such as clausal arguments.

The structures used in LDG are essentially (descriptions of) trees consisting of nodes labeled with syntactic
information as depicted below. An important characteristic of these trees is that they encapsulate all syntactic/
semantic arguments of a word. The following tree for wrote for example explicitly indicates that it requires a
subject (the author) at the DP1 position as well as a direct object (the written document) at the DP2 position.
The fact that the line between VP1 and VP2 is dashed denotes that this dominance relation is not immediate,
i.e. some other tree could slip in.3 Typical trees which could slip in into this position are adverbs, e.g. often, or
negation particles, e.g. not.
3 Here, DP stands for a determiner phrase, VP for a verb phrase, V for a verb and S for a sentence.

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 331
In essence, negatively marked nodes correspond to arguments which need to be inserted, while positively
marked nodes denote variables to be inserted as an argument.
In the LDG formalism used in ORAKEL, there is only one operation, which consists in identifying posi-
tively with negatively marked nodes with each other within one or across trees. Hereby, two nodes can only be
identified with each other if (i) they have complementary marks (negative/positive), (ii) they have the same
syntactic category, (iii) their feature structures are compatible as well as (iv) syntactic dominance and surface
order of words is respected. Feature structures in ORAKEL are in essence flat lists of attribute-value pairs.
Two nodes can then only be identified with each other if they have the same value for a common attribute
(see below the discussion of the features used in ORAKEL).

As noted above, the verb ‘write’ requires a subject and an object. We say that ‘write’ subcategorizes a subject
and an object. It is therefore a transitive verb. However, there are not only transitive verbs, but also other types
such as intransitive verbs, which subcategorize only a subject, intransitive verbs with a prepositional complement,
transitive verbs with a prepositional complement as well as ditransitive verbs subcategorizing two objects. We
call a verb together with a specification of which arguments it subcategorizes a subcategorization frame. Sub-
categorization frames are central in ORAKEL as they provide the basic structures which a lexicon engineer is
supposed to map to domain-specific relations. Subcategorization frames give raise to another central notion:
the one of tree families. Tree families encapsulate all the different ways in which a subcategorization frame can
be expressed and thus capture generalizations of a given subcategorization frame type across words. For
example, the tree family of a transitive verb such as ‘write’ consists (at least) of elementary trees corresponding
to the standard active form, a passive form, a realization as relative clause complementing a noun phrase as
well as a form in which the object is extracted and moved to the front of the sentence or question. The different
forms allow for example to ask the following questions:

� Who writes/wrote a book? (active)
� Which authors write/wrote a book? (active plural)
� Who did not write a book? (active, negation, auxiliary construct)
� Which book did Tolkien write? (extracted object)
� Which book was written by Tolkien? (passive)
� Who is the author who writes/wrote ‘‘The Lord of the Rings”? (relative clause)
� Which is the book which Tolkien writes/wrote? (relative clause with extracted object)
� Which is the book which was written by Tolkien? (passive relative clause)

The above are merely syntactic variants of one and the same subcategorization frame, i.e. the one corre-
sponding to the transitive usage of the verb ‘write’. For a natural language interface to be successful, it does
not only have to account for syntactic, but most importantly for lexical variations. Given a relation inhabit-

ants(location,integer) which models the inhabitants of a location (city, state or country) as a datatype property
with an integer as range, a user might ask the following questions:

� How many people live in Karlsruhe? (1a)
� In which city do the most people live? (1b)
� Which is the biggest city? (1c)
� Which city has more inhabitants than Karlsruhe? (1d)

332 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
On the one hand, the above example questions show that the way people ask for information rarely cor-
responds straightforwardly to the way information is modeled in an ontology. In particular, very different lex-
ical and syntactic variants can be used to ask for the very same information. For example, to ask for the city
with the most inhabitants we can either ask ‘‘Which is the biggest city?” – thus using a superlative, or ‘‘Which

city do the most people live in?” – using the intransitive verb ‘live’ with a prepositional complement introduced
by the preposition ‘in’, or ‘‘Which is the city with the most inhabitants?” – using the preposition ‘with’ followed
by a noun phrase with head ‘inhabitants’, or ‘‘Which city has the most inhabitants?” using a similar construction
involving the verb ‘have’.

On the other hand, similar constructions can be used to ask for information which is modeled differently in
the ontology. For example, to ask for the number of inhabitants of a city, which is modeled as a datatype prop-
erty, we can ask ‘‘How many people live in Karlsruhe?”, while when asking for the number of rivers which flow
through a city, which is modeled through an object property, we can ask in the same way – modulo lexical
differences due to the different relations involved – ‘‘How many rivers flow through Karlsruhe?”.

This exemplifies in fact that the correspondences between the way we talk about things and the way they are
modeled in an ontology are far from straightforward. Thus, language is transparent to the way information is
modeled in a given ontology. This shows why the problem of adapting a natural language interface is indeed a
non-trivial task. As already mentioned, we support the customization of ORAKEL through a graphical user
interface by which users can graphically specify how certain subcategorization frames map to relations (or
joins of these) in the ontology. In the background, the system generates all the different syntactic variants
as specified in the tree family of the corresponding subcategorization frame. The advantage of such an
approach is that the semantics of each word needs to be specified exactly once by associating it with the cor-
responding subcategorization frames. Thus, all the generated trees from the corresponding tree family feature
already the appropriate semantic representation. The generation of the trees, however, remains totally trans-
parent to the end user and lexicon engineer. The lexicon engineer is not even aware of the fact that she/he is
associating semantic representations to the subcategorization frames specified.

We have briefly sketched above how the tree family for transitive verbs looks like. It is easy to imagine how
the tree families for intransitive verbs with a prepositional complement, transitive verbs with a prepositional
complement, etc. look like. In ORAKEL, we also have tree families for adjectives as well as relational nouns.
Relational nouns are those which subcategorize a prepositional complement, such as mother (of), brother

(of), capital (of). Typically, relational nouns can be used in a form in which the prepositional complement
is existentially quantified over, as in ‘‘Which rivers flow through a capital?”. Thus, for relational nouns, ORA-
KEL also generates variants in which the prepositional complement is not realized syntactically but existen-
tially quantified over (compare [24] for a more deep and formal discussion of this issue).4

In the LDG formalism used in ORAKEL, parsing boils down to identifying positively and negatively
marked nodes with each other, respecting category information, feature values and surface order of words.
The ORAKEL system implements a procedural version of LDG in which parsing proceeds as in typical
LTAG parsers in two stages. In fact, we implemented an Early-type bottom-up parser as described in [47].
First, appropriate elementary trees for each word in the input are selected from the lexicon, and, second, these
elementary trees are combined to yield a parse of the sentence (compare [47]). In particular, ORAKEL relies
on full parsing and does not make any use of partial parsing techniques. Partial parsing techniques would be
necessary to process input sentences which are ungrammatical or can not be processed by the parser and
would give the system a more robust behaviour. However, robustness with respect to ungrammatical input
is not in the current focus of the system as described here. This is certainly an important issue for future work.

In ORAKEL, we have implemented a procedural version of the parsing mechanism inherent in the LDG
approach. The parser basically identifies positively and negatively marked nodes respecting:

� the syntactic category of nodes,
� feature values,
� ontological constraints,
4 A description of the tree family of relational nouns featuring one prepositional complement is given in our technical report [18].

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 333
� surface word order, and
� syntactic dominance relations.

The parser is an Early-type bottom-up parser using top-down information as described in [47,48]. It scans and
reduces the input string from left to right, traversing the corresponding elementary trees in a top-down fash-
ion. However, the parser can be called a bottom-up parser as it uses the words in the input string to guide the
whole process. The interested reader can find the details about the parser in our technical report [18].
3.2. Semantics construction

ORAKEL implements a compositional semantics approach to construct the logical formula corresponding
to the input question. Compositional means here that the query to the database or knowledge base – i.e. the
semantic representation of the input sentence – is recursively computed on the basis of the meaning of every
single word in the input sentence as well as the way the words are connected. Thus, the logical query repre-
senting a question is constructed en par with the syntactic analysis of the question. Such an approach requires
some sort of syntactic processing grouping words to larger syntactic units and ordering them as trees to guide
the recursive computation. This is accomplished by the parser described in the previous section.

The semantics of a sentence is then the semantics of the top node of the elementary tree marked as root and
is specified by a FOL-like formula which is translated in a subsequent step to a formula in the target query
language via a Prolog conversion program.

The semantic construction proceeds en par with the syntactic construction in a traditional compositional
manner (compare [39]). Thereby, each node specifies how its meaning is constructed on the basis of the mean-
ing of its children using the lambda calculus. In ORAKEL we use an extended version of the lambda calculus
implemented in Prolog by Blackburn and Bos [8].

A compositional semantics construction approach as implemented by ORAKEL requires relatively rich
lexical resources specifying the logical meaning of each word. This is exactly where our user-centered model
for lexicon customization fills a gap as the rich semantic lexicon is generated in the background as a byproduct
of the interaction of the lexicon engineer with the system’s lexicon acquisition frontend, called FrameMapper
(see Section 5). Details about the semantics of each word remain completely transparent to the user. Indirectly,
the lexicon engineer is thus generating a grammar as well as associating logical meanings to words without
even being aware of it. We will discuss this process in detail in Sections 4 and 5.

As a short illustrating example, imagine a user asking the question: ‘‘Which river passes through Berlin?” to
a knowledge base containing facts about German geography. The meaning of the diverse lexico-syntactic units
in the input can be expressed in functional lambda notation roughly5 as follows:

Which river kP?xðriverðxÞ ^ P ðxÞÞ
passes through kxkyflow throughðx; yÞ

Berlin kQQðBerlinÞ
So the semantic representation of ‘passes through’ expects two individuals as arguments to be inserted into the
appropriate relation flow_through. The expression ‘which river’ expects some property P which x, a river, needs
to fulfill. ‘Berlin’ requires some predicate Q into which it can be inserted as an argument.

Given the simplified syntactic structure together with instructions how the semantic expressions are applied
to each other in Fig. 2, and evaluating the tree in a standard bottom-up fashion, we would first carry out the
functional application
5 Ro
presen
ku ðkQ QðBerlinÞÞððkx ky flow throughðx; yÞÞðuÞÞ;
ughly as in principle each word should be associated with a semantic representation. We abstract from this for the sake of clarity of
tation.

Fig. 2. Syntactic analysis with semantic representations for each word specified according to the k-calculus and instructions how to
combine the different representations with each other.

334 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
yielding as semantic representation of the VP node
6 Th
ku flow throughðu;BerlinÞ

in which the argument Berlin has been correctly inserted. To yield the final semantic representation of the top
sentence node S, we would carry out the functional application
ðkP ?xðriverðxÞ ^ PðxÞÞÞðku flow throughðu;BerlinÞÞ

resulting in the final logical query:
?x ðriverðxÞ ^ flow throughðx;BerlinÞÞ
3.3. Query conversion

In order to increase its flexibility, ORAKEL has been designed to be, on the one hand, domain independent
and, on the other hand, independent of the specific knowledge representation and query language used in the
background. Domain independence is achieved by separating the general and domain lexica as is typically
done for transportable NLIs (compare [29]). The latter one needs to be handcrafted by a domain expert.
The independence of the target logical language is achieved by introducing a First-Order-Logic (FOL) lan-
guage enriched with additional predicates for quantifiers as well as query and numerical operators, which is
produced by our semantic analysis component. The question ‘‘Which city do the most rivers flow through?”

is for example represented as follows in our FOL-like query language:
?c9r; n1 cityðcÞ ^ flow throughðr; cÞ ^ countðc; r; n1Þ ^ 8c0; r0; n2ðflow throughðr0; c0Þ ^ countðc0; r0; n2Þ ! n1

P n2Þ

In the above formula, the countða; b; cÞ-predicate is evaluated in such a way that cðaÞ is the number of elements
b standing in the relation expressed in the query grouped by the a’s. So in the above query n1ðcÞ is bound to the
number of rivers r flowing through each city c. Queries in this FOL-like language can then be translated to any
logical language by a translation component. Hereby, the translation is specified declaratively in Prolog and is
thus exchangeable.6 The Prolog conversion programs essentially specify recursively how the operators of the
query language (?, $, ^, ?, count(. . .)) are translated into the target query language. The above query is for
example translated into F-Logic as follows:
8C 9R;N 1C : city ^ R½flow through! C� ^ countðC;N ;N 1Þ ^ 8C0;R0;N 2ðR0½flow through

! C0� ^ countðC0;R0;N 2Þ ! geqðN 1;N 2ÞÞ
While all the queries specified in our FOL-like query language can be translated into F-Logic, this is not the
case for the SPARQL language as implemented in the KAON2 system. Currently, the SPARQL implemen-
e Prolog code for the conversion into F-Logic and SPARQL can be found at http://www.cimiano.de/orakel.

http://www.cimiano.de/orakel

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 335
tation behind the KAON2 system supports only conjunctive queries such that the above query would not be
translatable to SPARQL in our system.

A direct translation to some target formalism as performed in [12] is also possible, but clearly such an
approach is not as flexible as the one pursued within ORAKEL. Currently, our system supports two formal-
isms used in the Semantic Web, the Web Ontology Language (OWL)7 with the query language SPARQL8 as
well as F-Logic as ontology language together with its corresponding query language [34]. The ontologies
essentially provide the schema for the knowledge base and thus the concepts and relations relevant for the
domain in question. This system design allows to port our system to any domain and any (reasonably expres-
sive) logical formalism with a query language. The only requirement on the language is that it provides extra-
logical predicates for counting and for numerical comparisons.9

4. Domain adaption

In our system, we pursue an approach in which the domain lexicon is constructed in interaction with the
lexicon engineer, whose task is to map relations in the knowledge base to appropriate verb and noun subcat-
egorization frames, adjectives, etc. Before explaining in detail the underlying model which allows a lexicon
engineer to create a domain-specific lexicon and thus customize the system to a certain knowledge base, it
is important to mention that the overall lexicon of the system has a bipartite structure consisting of:

� a domain-independent lexicon, containing the semantic representations for determiners (a, the, every, most,
. . .), wh-pronouns (who, what, which, where) as well as certain spatio-temporal prepositions (on, in, at,
before, . . .),
� a domain-specific lexicon, defining the meaning of verbs, (relational) nouns and adjectives occurring in the

domain, and containing lexical entries and the semantics of instances and concepts, which are typically rep-
resented linguistically as proper nouns and nouns, respectively.

The domain-independent lexicon is, as the name suggests, independent of any domain as it specifies the
meaning of words occurring in several domains and with a constant meaning across these. This is the case
for determiners, wh-pronouns and prepositions. The semantic representations of the words in this domain-
independent lexicon thus make reference to domain-independent categories as given for example by a foun-
dational ontology such as DOLCE [37]. This assumes obviously that the domain ontology is somehow aligned
to the foundational categories provided by the foundational ontology. The obvious benefit of such a modular
design of the lexicon is that the meaning of closed-class words such as prepositions, wh-pronouns or determin-
ers are available independently of any domain ontology and need not to be specified for every different domain
the system is applied to. A more detailed description of the general benefits and rationale of such a modular-
ized approach can be found in [16].

The domain-specific lexicon is partially derived in an automatic fashion from the domain ontology loaded
into the system without any manual intervention. In fact, the system reads in all the concepts and instances of
the ontology and relies on their labels to generate appropriate grammar trees representing these. Obviously
this assumes the availability of labels for each concept and instance in the ontology. However, in general it
is regarded as good practice to include such labels into the ontology to enable human inspection. For the gen-
eration of nominal trees on the basis of concepts, we use a lexicon with morphological information to generate
the appropriate plural form. This lexicon was generated on the basis of Tree Tagger’s tagger lexicon [49]. For
illustration, Fig. 3 shows the elementary trees which are automatically generated from the instance Saarbrüc-
ken as well as the concept country.

The other part of the domain-specific lexicon component is generated by the lexicon engineer by mapping
verbs, adjectives and relational nouns to corresponding relations specified in the domain ontology. The
domain-specific lexicon is actually the most important one as it is the one specifying the mapping of linguistic
7 http://www.w3.org/TR/owl-ref/.
8 http://www.w3.org/TR/rdf-sparql-query/.
9 This is currently not met by SPARQL, thus leading to a reduced expressivity in the target language.

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-sparql-query/

Fig. 3. Elementary trees automatically generated from the KB.

336 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
expressions to domain-specific predicates. It is important to emphasize that our natural language interface
does not require any sort of pre-encoded grammar as input of the system. The grammar underlying the ORA-
KEL system consists exactly of the union of the trees in the domain-independent and the domain-specific lex-
ica. Thus, the task of the lexicon engineer is to actually provide a domain-specific grammar to the system. As
this is a difficult task – compare the discussion of syntactic variants in Section 3.1 – in our natural language
interface we implement an approach in which the user simply instantiates subcategorization frames and maps
these to domain-specific relations in the ontology. Actually, the linguistic subcategorization frames as well as
the relation types are organized in a type hierarchy, such that only structures of compatible arity are mapped
onto each other. As shown in Fig. 4, in our type system we distinguish between binary, ternary and quaternary
subcategorization frames which can be mapped to binary, ternary and quaternary relations, respectively.10

Examples for binary subcategorization frames are transitive verbs, intransitive verbs with a prepositional
complement, relational nouns with one prepositional complement as well as participles with prepositional
complements:

� transitive: verb(subject,object), e.g. border

� intransitive + prepositional complement: verb(subject, prep:pobject), e.g. flow through

� noun + pp: noun(prep: pcomp), e.g. capital of
� participle+pp: participle(prep: pcomp), e.g. located in

For example, the lexicon engineer could create the mappings shown in Fig. 5 for a geography knowledge
base. While some of these mappings may seem straightforward, they are indeed crucial for ORAKEL to gen-
erate a full domain-specific grammar mapping linguistic expressions to appropriate semantic representations.
How should ORAKEL in fact know that the relation border is best expressed with a transitive verb with the
same name? How should it know that the capital relation should best be expressed by the noun ‘capital (of)?’
Though simple heuristics based on matches between relation names and verbs or nouns might be applied, they
will in general not suffice to cover all the possible lexical variations one can use to ask for a specific relation.
Actually, language is too variable to be captured by such straightforward heuristics. Further, it is crucial to
determine the order in which the arguments of the relation map to arguments of the linguistic predicate,
e.g. the verb or noun in question. Instead of building on an automatic, heuristic, and therefore error-prone
process, in ORAKEL we build on a more controlled approach in which users can specify lexical variants (with
some support though) as well as the correct order in which the arguments map onto each other. Examples of
mappings which are not as straightforward are (3) and (7). The third mapping is interesting in that it provides
a non-straightforward lexical variant for asking for the inhabitants of a city. The seventh mapping introduces
a further non-obvious lexical variant to ask for the flow_through relation between rivers and cities. By this, we
introduce a lexical ambiguity into the lexicon, as ‘pass through’ can denote either the flow_through relation
between rivers and cities as well as the located_at_highway relation between highways and cities.11 Moreover,
it is not always the case that the domain of a relation is mapped to the subject and the range to the object in
the corresponding verb subcategorization frame. Such an example is provided by mapping (8) where the sub-
10 Note that there is no principled limit to the arity of relation. However, according to our experience considering relations of up to four
suffices to cover most examples in practice.
11 Though we do not discuss this further in this article, it is important to emphasize that ORAKEL can recognize and handle such lexical

ambiguities. The details are given in our technical report.

Fig. 4. Type hierarchies of linguistic templates and relations.

Fig. 5. Some example mappings.

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 337
ject and object of ‘pass through’ are mapped to the range and domain of located_at_highway, respectively. It is
therefore necessary that the lexicon engineer also specifies the order in which the relation’s arguments map to
the ones of the subcategorization frame. For the noun subcategorization frames, the argument of the relation
which has not been mapped to the pcomp position – the y-argument in the above examples – is stored exter-
nally to the actual frame as it will be normally expressed in form of a copula12 construct such as ‘‘What is the

length of the Rhein?”. Note that this holds also for participles which are also typically used in copula con-
structs, e.g. ‘‘Where is Karlsruhe located in?”.

Further, for nouns complemented by the preposition ‘of’, the system also generates trees allowing to ask for
the corresponding relation using the verb ‘have’ (see the examples below). For methods such as capital, which
do not have a datatype such as a string or an integer as range, and which have been mapped to a noun+pp,
ORAKEL’s grammar generation mechanism does not only generate relational noun phrases such that one
can ask: ‘‘What is the capital of Baden Württemberg?” using a copula construct, but also a form in which
12 A copula is an expression involving the verb ‘be’ and linking the subject to some property or object.

338 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
the argument mapped to the pcomp position is existentially quantified over. This allows to ask a question like
‘‘Which rivers flow through a capital?” For verbs, it generates the active, passive and verb-last forms, but also
relative clauses complementing a noun phrase. On the basis of the above example mappings, the system then
generates elementary trees, such that it is able to interpret the following questions where the relevant mappings
are indicated in brackets:

� What is the location of Stuttgart? (1)
� How many inhabitants does Baden Württemberg have? (2)
� How many people live in Karlsruhe? (3)
� What is the length of the Rhein? (5)
� What is the capital of Baden Württemberg? (4)
� Which river flows through the capital of Baden Württemberg? (4,6)
� Which rivers flow through a capital? (4,6)
� What is the length of the Rhein? (5)
� Which river flows through the most cities? (6)
� Which river flows through a state which borders Baden Württemberg? (6,10)
� Which river passes through München? (7)
� Which highways pass through Berlin? (8)
� What is the height of the Zugspitze? (9)
� Which countries does Baden Württemberg border? (10)
� Which countries are bordered by Baden Württemberg? (10)
� Which countries border Baden Württemberg? (10)
� Which state borders the most countries? (10)
� Where is Karlsruhe located in? (11)

Binary relations with an integer as range are special types of relations which can also be mapped to adjec-
tives by specifying (i) the base, (ii) the comparative, and (iii) the superlative form of the adjective, additionally
indicating whether it denotes a positive or negative scale (this is similar to the approach in TEAM [29]). For
example, the adjectives ‘big’, ‘long’ and ‘high’ are mapped to the relations inhabitants, length and height,
respectively:

� adj(big,bigger,biggest,positive) ? inhabitants(city,integer) (Adj1)
� adj(long, longer, longest,positive) ? length(river,integer) (Adj2)
� adj(high,higher,highest,positive) ? height(mountain,integer) (Adj3)

This then allows to ask the following questions:

� How long is the Rhein? (Adj2)
� How high is the Zugsitze? (Adj3)
� How big is Karlsruhe? (Adj1)
� Which is the longest river? (Adj2)
� Which river is longer than the Rhein? (Adj2)
� Which is the highest mountain? (Adj3)
� Which cities are bigger than Karlsruhe? (Adj1)

The positive/negative distinction is necessary to generate the correct semantics for comparative and super-
lative adjectives. In fact, ‘big’, ‘long’ and ‘high’ are positive adjectives in our sense, while ‘small’ is an example
of a negative adjective. In general, specifying the semantics of adjectives in base form is a quite delicate issue as
an adjective such as ‘big’ actually denotes a fuzzy set in the sense of Zadeh [54]. However, we need to specify
the semantics of adjectives in order to answer queries such as ‘‘Which rivers flow through big cities?”. The solu-
tion adopted in ORAKEL is to expect a definition of the semantics of an adjective in terms of a rule, e.g.
8x bigðxÞ cityðxÞ ^ inhabitantsðx; yÞ ^ y > 500:000

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 339
It is important to emphasize that currently ORAKEL can only handle scalar adjectives such as ‘big’, ‘high’,
‘long’, etc. In particular, it can not deal with non-scalar adjectives such as ‘German’, which would need to
be translated into a corresponding relation in which a specific value is inserted. The adjective ‘German’, for
example, could be translated into the expression kxlocatedInðx;GermanyÞ.

In order to allow a lexicon engineer for specifying the above described mappings, we have created a tool
called FrameMapper which supports the lexicon engineer via a graphical user interface in performing the map-
pings. Besides allowing the lexicon engineer to create verb and noun subcategorization frames and graphically
map their arguments to the domain and range of a certain relation, FrameMapper also features an adjective
view which supports the specification of the semantics of scalar adjectives. In addition to entering the base,
comparative and superlative forms of the adjective, the lexicon engineer is also expected to specify the relation
in the knowledge base which the adjective refers to, whether the adjective denotes a positive or negative scale
as well as to indicate a threshold value. Thus, indirectly, the lexicon engineer is specifying the semantics of
adjectives in a way similar to the above stated rule.

As shown in the type hierarchy depicted in Fig. 4, the mapping model is not restricted only to binary rela-
tions. Subcategorization frames can also be mapped to joins of several relations, e.g. a subcategorization
frame of arity 2 can also be mapped to two binary relations joined at a given position (2� 2-Join in
Fig. 4), a subcategorization frame of arity 3 can be mapped either to a simple ternary relation, a join of
two binary relations in which the joined position is also mapped to an argument in the frame (2� 2-Join’
in the figure) or to a join of three binary methods (3� 2-Join in the figure), etc. Hereby Join’ denotes a join
in which the joined position has also been mapped to an argument in the subcategorization frame while for
Join this is not the case. This explains why n� 2 Join’ joins have an arity of nþ 1 while n� 2 Join joins have
an arity of n.

The reason for introducing such an elaborated type system is the fact that linguistic expressions in many
cases do not correspond directly to one relation in the knowledge base, but express a combination of different
relations in the knowledge base which can be expressed through joins.

As a more complex example, assume the following relations are given in the knowledge base: author(arti-

cle,author), title(article,title), year(article,string). If we create a 3� 2 Join by joining the article position of the
three relations, we can map this ternary relation to a transitive verb ‘publish’ with a prepositional complement
introduced by the preposition ‘in’ such that we can ask a question like ‘‘Who published which article in 2002?”

(see also the discussion of this join in Section 5).
Summarizing, the crucial aspect here is that the domain-specific grammar necessary for understanding

domain-specific expressions is generated in the background as a byproduct of a lexicon engineer interacting
with the system and mapping subcategorization frames onto appropriate relations in the knowledge base.
Thus, no pre-encoded grammar is actually needed in the system. In order to map relations defined in the ontol-
ogy to appropriate subcategorization frames, lexicon engineers are supposed to use the FrameMapper lexicon
creation frontend, which allows to select a relation and to create corresponding subcategorization frames. The
ontological restrictions on the concepts which can be used at the different argument positions of the relation
will then be used as selectional restrictions in the subcategorization frames and exploited for disambiguation.
After the lexicon engineer has assigned all the relations to corresponding subcategorization frames or adjec-
tives, she/he can export the lexicon, which can then be used by the natural language interface to answer users’
questions with respect to the knowledge base. In our model, we do not expect a lexicon engineer to model the
lexicon in one turn from scratch, but assume that the lexicon is created in several iterations. After the lexicon
engineer has created a first version of the lexicon, the system is deployed. The lexicon engineer gets presented
the questions which the system failed to answer and the process is iterated. Our hypothesis is in fact that with
such an iterative method, the quality of the lexicon can be constantly improved. We will present experimental
evidence for this hypothesis in Section 6. Before presenting the results of our experiments in Section 6, in the
following section we describe FrameMapper’s graphical user interface.

5. Graphical user interface

Fig. 6 shows a screenshot of FrameMapper’s graphical user interface. It shows how a lexicon engineer
is mapping the flow_through relation to the intransitive verb ‘flow’ featuring a prepositional complement

Fig. 6. GUI of FrameMapper showing a simple mapping for the geographical domain.

340 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
introduced by the preposition ‘through’. The figure shows the three main panes of FrameMapper. In the top
pane, the lexicon engineer sees the relations specified in the ontology. In the second pane, the lexicon engineer
can see the different subcategorization frames assigned to the active relation. In the third pane, she/he sees a
graph visualization of the current subcategorization frame and of the selected relations. She/he can then
graphically map the arguments of the frame to the ones of the selected relation(s). In the GUI screenshot
in Fig. 6, the lexicon engineer has already mapped the intransitive verb ‘pass’ with a prepositional complement
introduced by ‘through’ to the flow_through relation (this can be seen in the middle pane). Currently, the lex-
icon engineer is also mapping the intransitive verb ‘flow’ with a prepositional complement introduced by the
preposition ‘through’ to the same relation. In particular, the lexicon engineer has already mapped the subject
position of the verb ‘flow’ to the domain of the flow_through relation and the prepositional complement to the
range position of the same relation. Further, in the screenshot she/he has already entered the appropriate
preposition ‘through’ in the graph representing the subcategorization frame and is currently editing the verb,
specifying that its base form is actually ‘flow’. With this information, the system can in the background gen-
erate all the grammatical variations of the intransitive verb ‘flow’, thus allowing to ask for the flow_though

relation in a variety of ways. In order to add a further verb, the user simply has to instantiate a new subcat-

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 341
egorization frame and perform the mapping again. The newly created subcategorization frame would then be
added to the list of those subcategorization frames already created for the active relation(s) in the middle pane.
In order to ease the process of adding lexical variants, we have also integrated the WordNet lexical database
[26] with the purpose of automatically suggesting synonyms for the verb or noun currently edited. For this
purpose, we only consider the first sense of each word, suggesting each of the words contained in the corre-
sponding synset to the user as lexical variants on demand in the form of a check-box. Each selected synonym is
then used to generate subcategorization frames only differing in the lexical element. However, this function-
ality was added recently and not used in the experiments described in Section 6.

It is important to mention that the type hierarchy described in the previous section is used to constrain the
subcategorization frames offered to the user. For example, if the lexicon engineer selects a binary relation, she/
he will only be able to instantiate a transitive, intransitive+PP or noun+PP subcategorization frames. In the
adjective view, only relations with an integer as range are visualized such that (scalar) adjectives can me
mapped to them.

Note that the user can also select various relations and carry out joins between them to specify more com-
plex mappings involving more than one relation. Fig. 7 shows a screenshot of the GUI in which the user has
chosen the three relations author(publication,person), title(publication,string) and year(publication,string), all
joined through their domains, i.e. through the publication. The user has further instantiated a subcategoriza-
tion frame for the transitive verb ‘publish’ featuring a direct object as well as a prepositional complement intro-
duced by the preposition ‘in’. Further, she/he has mapped the range of the author (publication,person) relation
to the subject position, the range of the title(publication,string) relation to the object position as well as the
Fig. 7. GUI of FrameMapper showing a more complex mapping involving joins for the academic domain.

342 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
range of the year(publication,string) to the prepositional complement. This mapping would then allow to ask a
question like ‘‘Who published which article in 2002?”.

Finally, the lexicon engineer can export the lexicon, which can then be loaded into the ORAKEL natural
language interface, but she/he can also import an already created mapping lexicon to add more subcategori-
zation frames, thus supporting our iterative lexicon generation model.

6. Experiments

In this section, we first present the settings and results of our experiments, which have been carried out on
two different domains showing that the ORAKEL system can be adapted to different domains without major
efforts. First, we present a user study carried out with a knowledge base and corresponding ontology contain-
ing facts about German geography. The aim of this study was to demonstrate that computer scientists without
any NLP expertise can indeed generate domain-specific lexica for the ORAKEL system without major diffi-
culties. Second, we provide some statistics demonstrating that the system has potentially a reasonable linguis-
tic coverage. The results of the first study have been partially presented also in [17] but are described here in
more detail. In this article, we additionally discuss a case study carried out at British Telecom in which the
ORAKEL natural language interface was successfully applied to offer enhanced search over a digital library.
The application of ORAKEL as well as other tools to the BT use case has been previously described in [9].

6.1. User study

The aim of the user study was to show that computer scientists without any NLP expertise can indeed gen-
erate reasonable domain-specific lexicons for the ORAKEL natural language interface. The study also pro-
vides first evidence that our iterative approach is indeed feasible.

The knowledge base used for the experiments contains geographical facts about Germany. In particular, it
contains states, cities, rivers and highways in Germany, as well as the name of the neighboring countries. It is a
small knowledge base handcrafted by students at our department independently of the experiments described
here. The knowledge base contains the number of inhabitants of each state and city as well as the capital of
each state. For rivers and highways, it contains information about the cities they pass. For rivers, it addition-
ally contains their origin as well as length. It also contains mountains and their heights. Overall, the knowledge
base comprises 260 entities: 108 highways, 106 cities, 18 rivers, 16 states, 9 (bordering) countries and 2 (bor-
dering) seas as well as one mountain peak, i.e. the Zugspitze. The relations defined in the ontology are the
following ones (given in F-Logic style notation):

� city[locatedIn => location].
� city[inhabitants => integer].
� state[inhabitants => integer].
� state[borders =>> location].
� city[located_at_highway =>> highway].
� river[length => integer].
� river[origin => location].
� river[flows_through =>> city].
� mountain[height => integer].
� city[capital_of => state].

Here, => denotes that the relation is functional, i.e. it can have at most one instance as range, and =>>
denotes that there can be more than one instance as range of the relation.

The user study involved one of the authors of this article, as well as 26 additional test persons from four
different institutions, both academic and industrial. Of these 26 test persons, 25 were computer scientists and 1
a graphic designer, most of them without any background in computational linguistics. The role of the author
as well as two of the other participants was to construct a lexicon each (thus playing the role of lexicon engi-
neers), while the rest played the role of end users of the system. We will refer to the author as A and the other

Table 1
Results for the different lexica

Lexicon Users Rec. (avg.) (%) Prec. (avg.) (%)

A 8 53.67 84.23
B (1st lexicon) 4 44.39 74.53
B (2nd lexicon) 4 45.15 80.95
C (1st lexicon) 4 35.41 82.25
C (2nd lexicon) 4 47.66 80.60

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 343
two participants constructing a lexicon as B and C. While A was very familiar with the lexicon acquisition
tool, B and C were not and received 10 minutes of training on the tool as well as 10 min explanation about
the different subcategorization types, illustrated with general examples. Whereas A constructed a lexicon in
one turn, B and C constructed their lexicon in two rounds of each 30 min. In the first round, they were asked
to model their lexicon from scratch, while in the second round they were presented those questions which the
system had failed to answer after the first round consisting of four sessions with different users. They were
asked to complete the lexicon on the basis of the failed questions. Overall, they thus had 1 hour to construct
the lexica. The 24 persons playing the role of the end users also received instructions for the experiment. They
received a document describing the experiment, requiring them to ask at least 10 questions to the system. Fur-
ther, the scope of the knowledge base was explained to them. They were explicitly told that they could ask any
question, also involving negation and quantification, with the only restriction that it should begin with a wh-
pronoun such as which, what, who, where as well as how many or how + adjective. For each answer of the sys-
tem, they were asked to specify if the answer was correct or not. The results are thus reported in the following
as recall, i.e. the number of questions answered correctly by the system divided by the total number of ques-
tions asked to the system. Excluded from this were only questions with spelling errors or which were obviously
ungrammatical, as well as questions which were clearly out of the scope of the knowledge base.13 We also give
the precision of our system as the number of questions for which the system returned a correct answer divided
by the number of questions for which it returned an answer at all. Note that precision and recall are defined
here in line with [44] and not in the standard information retrieval sense (cf. [3]). Table 1 shows these results
for each of the lexicon constructors and the two iterations. The first interesting conclusion is that, for both B

and C, there is an increase in recall after the first round. Thus, the results show that our iterative methodology
to lexicon customization is indeed promising. The involved users also confirmed that it was easier to extend the
lexicon given the failed questions than creating it from scratch. The second interesting result is that the lex-
icons created by B and C show a comparable recall to the lexicon developed by A. In fact, we found no sig-
nificant difference (according to a Student’s t-test at an a-level of 0.05) between the results of B’s lexicon
(p ¼ 0:32) and C’s lexicon (p ¼ 0:15) compared to A’s lexicon. This shows that our lexicon acquisition model
is in fact successful. In general, the results have increased after the second iteration, with the exception of a
slight drop in precision for user C at the second round. We expect that further iterations will continuously
improve the lexica. This is, however, subject to further analysis in future work.

6.2. Question analysis

Having shown that domain experts are able to map relations in a knowledge base to subcategorization
frames used to express them, an important question is to determine how big the coverage of the different sub-
categorization frames is with respect to the questions asked by the end users. Overall, the end users asked 454
questions in our experiments (actually much more than the number of questions requested). Table 2 summa-
rizes the constructions used together with illustrating examples, giving their percentage with respect to the
13 As already mentioned before, our aim here was not to develop a system robust enough to cope with misspellings, ungrammatical input
or sentences for which no parse can be found. In order to verify the appropriateness of our adaptation model we have thus assumed ideal
settings, i.e. that the sentence is grammatical, has no misspellings and is in the conceptual scope of the knowledge base. A real system
which is deployed should certainly address these issues in order to achieve a robust behavior. We think that robustness can be achieved by
implementing certain heuristics on top of our current system. However, we leave these issues for future work.

Table 2
Usage of constructions in main clause (in percent with respect to the total number of questions)

Construction # % Example

Intransitive+pp (�) 169 37.22 How many cities does the A1 pass through ?
Transitive (�) 56 12.33 How many states does Baden Württemberg border ?
be+np (�) 102 22.47 What is the capital of Bayern ?
be+adj (�) 22 4.85 How long is the Donau ?
be+pp (+) 22 4.65 Which cities are in Bayern ?
be+dp (�) 18 3.96 Where is Düsseldorf ?
be+np (poss) (�) 1 0.22 What is Bayern’s capital ?
be+participle (�) 12 2.64 Which cities are located in Bayern ?
be+np (inv) (�) 4 0.88 Which state is München capital of ?
be+np (superlative) (�) 2 0.44 What is the capital of Bayern ?
be+comp (�) 7 1.54 Which cities are bigger than Frankfurt ?
Passive (�) 1 0.22 Which states are bordered by at least 2 countries ?
have (�) 32 7.04 Which states have more inhabitants than Hessen ?
Number of queries: 454 100

344 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
total number of questions. The results show that in principle, assuming that the lexicon is complete, with our
basic subcategorization frames transitive, intransitive+pp, np and adj as well the constructions automatically
generated from these (marked with a ‘�’ in the table), we get a linguistic coverage of over 93%.14 This 93%
of linguistic coverage essentially measures the ideal system coverage in terms of syntactic constructions given
that the lexicon is complete. Of course, due to the fact that the lexica considered in our experiments are from
complete, the system’s actual coverage is far from 93%. Nevertheless, it is important to know that our system
has in principle a reasonable linguistic coverage given that the lexicon captures a sufficient number of lexical
and syntactic variants for expressing a certain relation. In general, the ideal linguistic coverage shows that it is
indeed feasible to focus on a few subcategorization types. The intelligence lies anyway in the generation of the
corresponding elementary trees from the subcategorization frames. The generation, however, remains totally
transparent to the user. For the constructs marked with ‘+’, we additionally need to specify the semantics of
prepositions with respect to domain-independent relations. For example, ‘in’ maps to the relation locatedIn in
our system. This is assumed to be a relation which is available in any domain. For other domains however, ‘in’
might also have a temporal interpretation which can be formalized with respect to the DOLCE foundational
ontology [16]. Constructions which were added after the experimental evaluation are the ones marked with a
‘�’, i.e. the be+np (possessive), be+np (inverse) and be+participle constructions, which account for around
3.75% of the cases. Considering the first two is merely a question of generation of the appropriate elementary
trees and was accomplished in a straightforward way. For the third construct, the subcategorization types had
to be extended to participles subcategorizing a prepositional phrase, e.g. such as located in.

6.3. Real-world application

As a further experiment, our approach has been applied within the British Telecom (BT) case study in the
context of the SEKT project.15 In this case study the aim was to enhance the access to BT’s digital library by a
natural language interface. BT’s digital library contains metadata and fulltext documents of scientific publi-
cations. The knowledge base considered within this case study is several orders of magnitude larger than
the one considered in the context of the experiments carried out on the geographical domain. The ontology
used to describe the metadata is the PROTON ontology,16 which consists of 252 classes and 54 relations.
While the PROTON ontology (the schema of the data) is stored in an OWL ontology in this scenario, all
the publication metadata are stored in a database. The schema of the database, however, has been mapped
to the PROTON ontology, such that queries to the ontology are evaluated by taking into account the meta-
14 The constructions marked with a ‘�’ were added after the user study described before.
15 http://www.sekt-project.com/.
16 http://proton.semanticweb.org/.

http://www.sekt-project.com/
http://proton.semanticweb.org/

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 345
data in the database. The knowledge base contains metadata about 67.015 authors, 17.174 topics and 33.501
documents (journal articles, conference articles, conference proceedings, periodicals and books). Further,
there are 66.870 instances of the AuthorOf relation and 165.089 instances of the isAboutTopic relation. As
the data size is indeed several orders of magnitude larger compared to our geography domain, in the context
of this use case it was not feasible to generate a grammar entry for each value in the database. Therefore, we
performed a slight change to the ORAKEL system to allow for the dynamic creation of elementary trees at
query time for names of instances. This was achieved by considering every sequence of upper-case words as a
potential candidate for an instance, generating appropriate elementary trees at runtime. The domain-specific
lexicon is thus generated only for concepts in the ontology in this scenario, while the part of the lexicon con-
taining the instances is generated dynamically. This move was important to ensure efficiency in this setting.

A graduate student and a Ph.D. student spent overall approximately six hours creating a lexicon for a sub-
set of PROTON relevant for the digital library using FrameMapper with the result that queries about authors,
topics etc. about documents could be answered successfully against the BT ontology and database. Examples
of such questions are:

� What conference articles did John Davies write?
� Which conference articles do you know?
� Who wrote which document?
� Who wrote ‘‘The future of web services”?
� Who wrote about ‘‘Knowledge Management”?
� What article deals with Photography?
� Which journal articles were written by whom?
� What are the topics of ”The future of web services”?
� Which conference articles were classified as religion?
� Which articles are about ‘‘Intellectual Capital”?
� What articles were written by Lent and Swami?
� Who is the author of a document that talks about which concept?
� Who wrote which articles about what?
� Which documents are about F-Logic and Insurance?

As in our case study with the small geographical knowledge base described above, we also carried out an
evaluation of the ORAKEL system on the BT digital library. As in the experiments described above, the end
users received written instructions describing the conceptual range of the knowledge base, requiring them to
ask at least 10 questions to the system. In each of three iterations, four end users asked questions to the ORA-
KEL system and the graduate student updated the lexicon on the basis of the failed questions after the first
and second round for about 30 min., respectively. The end users were also asked to indicate whether the
answer was correct or not, which allows for the evaluation of the system’s performance in terms of precision
and recall. The results of the evaluation are presented in Table 3, which clearly shows that the second iteration
performed much better than the first one, both in terms of precision and recall. In the third iteration, there was
a further gain in recall with respect to the second iteration. Overall, this indeed shows that our iterative lexicon
model is reasonable and in fact leads to incremental improvement of the system’s lexicon. Fig. 8 shows the user
web browser interface deployed at BT. In essence, it consists of a plain text field into which the user enters his/
her query and a result view showing the results of the evaluation of the query.

Overall, the application of ORAKEL to enhance the access to BT’s digital library showed on the one hand
that, given certain straightforward modifications, our approach can actually scale to much larger knowledge
Table 3
Results for the different iterations

Iteration Rec. (avg.) (%) Prec. (avg.) (%)

1 42 52
2 49 71
3 61 73

Fig. 8. User interface.

346 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
and data bases. Further, the additional use case confirms that the system can indeed be ported between
domains in a more or less straightforward way. We refer the interested reader to [15,9,53] for further details
about the case study at British Telecom.

7. Related work

Discussing all the different NLI approaches presented in the literature is certainly out of the scope of this
article. For a detailed review of natural language interfaces, the interested reader is referred to the overviews
in [21,1], as well as to the evaluation survey in [42]. The latter shows that there have been already many
laboratory and field studies of natural language interfaces. However, most of the results reported are neither
conclusive nor address the issue of how easy it is for non-NLP experts to adapt the systems to a given
domain.

In this discussion we focus on the different methods which have been proposed in the literature to adapt a
natural language interface to a certain domain. On the one hand, we briefly discuss data-driven approaches,
which learn the syntax-semantics interface in a supervised fashion on the basis of training examples provided
to the system. In the case of a natural language interface, training examples consist of pairs of natural lan-
guage questions and corresponding knowledge or database queries. Second, we discuss approaches based on
lexical matching. Approaches which fall under this category are PRECISE [44] and AquaLog [35]. These
approaches rely on heuristics for matching the words in the input to elements in the ontology (in the case
of AquaLog) or to the database schema (in the case of PRECISE). For this purpose, these systems rely
on lexical knowledge as contained in lexical resources such as WordNet. Finally, we also discuss systems
which rely on deep linguistic processing and require a manually engineered explicit mapping between more
complex linguistic and ontological structures beyond mere lexical correspondences. This is for example the
case of the TEAM system [29], the Quetal [27] system, the system by Bernstein et al. based on ACE [7] as
well as ORAKEL.

7.1. Data-driven approaches

Customization to a domain in the system of Thompson et al. [52] is achieved by training a parser using
Inductive Logic Programming (ILP) techniques on the domain in question. In particular, a standard

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 347
shift-reduce parser is assumed and ILP is used to learn parsing control strategies. Such an approach obviously
needs training data and Thompson et al. do not discuss if such an approach relying on training data is actually
feasible from a user’s point of view. The system has been evaluated on two domains (jobs and geography), and
achieves very decent accuracy levels between 25% and 70% for the geography domain and between 80% and
90% accuracy for the job domain, depending on the amount of training data used. In fact, while such an
approach in which the syntax-semantics interface can be learned is certainly appealing, it is unclear in how
far it is feasible to require users to provide training examples for the system. In particular, it would be inter-
esting to compare the efforts involved in providing a sufficient number of training examples and engineering a
lexicon for the ORAKEL system. This is certainly an interesting issue for future work.

7.2. Approaches based on lexical matches

In this section we discuss two systems, PRECISE and AquaLog, which essentially rely on simple lexical
matches between words in the input question and elements in the database or ontology schema. We compare
these systems quantitatively and qualitatively to our own system.

The PRECISE system [44] focuses on the reliability of NLIs and is formally proved to be 100% precise,
given an appropriate domain-specific lexicon. PRECISE implements an approach based on graph matching
in which, essentially, the words in the input question are mapped to database relations, columns and values.
For this purpose, so-called syntactic markers are removed from the input sentence with the result that only
content words remain, which are mapped to tokens representing database relations, columns or values.
Hereby a token is a set of words matching a certain database element. PRECISE introduces the notion
of semantically tractable questions, i.e. questions which have a complete tokenization such that each word
is mapped to a distinct token corresponding exactly to one database element and such that every value
has been mapped to one attribute and at least one of the value tokens matches a ‘‘wh-value”. The problem
is thus reduced to finding a mapping between words and tokens such that attributes are connected to their
values. Popescu et al. formulate this task in terms of determining the maximal flow through a graph and
apply the max-flow algorithm to compute a maximal flow which satisfies the above constraints. It is inter-
esting to emphasize that PRECISE also allows ellipsis, that means, attributes to be left out, as in ‘‘Which
Chinese restaurants are downtown?”, where only the relation restaurants and two values – ‘Chinese’ and
‘downtown’ – are specified. The precision of PRECISE of almost 100% on real data is certainly impressive,
but in contrast to our approach it only focuses on conjunctive SQL queries. In fact, the questions that it can
handle are only a subset of the questions that ORAKEL can handle, which supports arbitrary quantifica-
tion, Further, our system has also been demonstrated to be very reliable as the precision ranges between
74% and 85%. Strictly speaking, PRECISE does not need any customization, but on the contrary it is
not able to handle all the range of questions that ORAKEL can handle. Though PRECISE is claimed to
handle also quantification and counting, it is not clear in how far questions like ‘‘Which river flows through
every country?”, ‘‘What is the largest city in the state with the smallest population?” and ‘‘What river does not

traverse the state with the smallest population?” can be handled. In fact, such questions are strictly speaking
not semantically tractable as ‘every’ and ‘not’ would either be treated as syntactic markers and therefore
removed or would not map to any values, columns or relations. For the superlatives ‘smallest’ and ‘largest’,
similar remarks apply. The aims of PRECISE and our system are thus complementary, as we have focused
on developing an approach by which domain experts can quickly create an appropriate domain-specific lex-
icon such as needed by any NLI.

The recently presented AquaLog system [35] essentially transforms the natural language question into a
triple-representation and then relies on similarity measures to map the triples to appropriate relations defined
in the ontology. AquaLog relies on GATE [22] to transform natural language questions into linguistic triples
which need then to be mapped to the ontology. For this purpose, AquaLog relies on a so-called Relation
Similarity Service (RSS) to calculate similarities between the word in the question and relations and concepts
in the ontology. Some basic support for lexical and structural disambiguation is provided. Further, AquaLog
also features a learning mechanism which stores unknown words together with a representation of the con-
text and the decision taken by the user in order to apply this knowledge for future disambiguation of similar
examples (see [36]).

348 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
PRECISE and AquaLog are examples of systems relying on lexical matches to map a natural language
expression to appropriate knowledge base or database relations. However, such approaches face principled
limits. For example, given that the relation between an author and his publications is termed authorOf, a
question like ‘‘Who wrote which publication?” could not be analyzed correctly unless we have other knowl-
edge available linking writing to an author. While AquaLog is for example able to account for such exam-
ples by exploiting lexical knowledge from WordNet, it is clear that such approaches face principled limits in
the sense that they strongly depend on the availability of the appropriate lexical relations in the resource
used. An approach similar to ours, where a lexicon engineer can directly provide mappings between linguis-
tic and ontological structures, does not face these principled limits and is directly controllable. The draw-
back is certainly that a lexicon engineer needs to make the effort of creating a lexicon. However, our
experiments have shown that the effort can be significantly reduced by an intuitive user interface and an
appropriate adaptation model. A further difference between ORAKEL on the one hand as well as PRE-
CISE and AquaLog on the other is that our system produces full fledged logical queries, while PRECISE
only generates SQL-like queries and AquaLog produces triples. The expressivity of such approaches is thus
restricted in comparison to ORAKEL. In particular, ORAKEL can in principle deal with arbitrary quan-
tification by translating questions into appropriate queries. It is not clear in how far PRECISE or AquaLog
could be extended to handle quantification in questions without the need for adhoc procedural extensions.
Further, ORAKEL supports joins between different relations as a result of the process of interpreting the
question compositionally, while AquaLog and PRECISE perform joins as a post-processing step after inter-
pretation when a SQL query is constructed (in the case of PRECISE) or certain elements in the triples are
unified (in the case of AquaLog).

7.3. Approaches relying on engineered lexica

TEAM’s [29] approach to customization consists in asking questions to a user to acquire linguistic knowl-
edge about certain words, i.e. verbs, nouns, adjectives, etc. as well as their relation to database fields. For a
verb, TEAM would for example ask a user for its arguments and whether they are optional or mandatory,
for prepositional phrases, for particles and whether they are separable from the verb as well as for different
possible types of realization, e.g. passive, unaccusative or dative constructions, etc. TEAM also acquires infor-
mation about adjectives in a similar way as ORAKEL by asking for the predicate in the knowledge base
expressing the corresponding attribute as well as for the direction of the scale measured (e.g. positive for
‘big’, negative for ‘small’). Further, TEAM also handles closed-class words by assigning them a domain-inde-
pendent meaning. In general, TEAM and ORAKEL share three very important aspects:

� the assumption that the knowledge base is independent of the system and should not be changed for the
purposes of the natural language interface,
� the requirement that users with knowledge about the domain or underlying database but without any

knowledge about formal linguistics or natural language processing should be able to adapt of the system,
as well as
� a system design which cleanly separates domain-independent from domain-specific components thus sup-

porting the adaptation in a principled way.

Concerning the last point, in TEAM questions are parsed and translated into a general logical form includ-
ing quantifiers (but also intensional operators and high-order operators, query operators, etc.), which is then
translated in a second step to the structure of the underlying database. Further commonalities are the fact that
both systems support joins of relations in the database or knowledge base and distinguish between object and
datatype properties, which are called symbolic and arithmetic fields in TEAM, respectively. Further, TEAM
offers some support for type coercion and disambiguating quantifier scope. Concerning the interpretation
of light verbs such as ‘have’ or nominal compounds, TEAM applies a different strategy than in our approach.
While we rely on a generation approach in which ‘have’ has as many elementary trees as possible domain-spe-
cific interpretations, TEAM tries to map ‘have’ to an appropriate database relation while analyzing the sen-
tence. In our approach, the possible meanings of ‘have’ are actually determined by the noun+of structures

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 349
instantiated by the lexicon engineer, for example capital (of), inhabitants (of), etc. This allows then to cor-
rectly interpret questions such as ‘‘Which capital does Baden Württemberg have?” or ‘‘How many inhabitants

does Karlsruhe have?”. Analogous is the treatment of the vague preposition ‘with’ in our approach, allowing
to ask questions like ‘‘Which is the city with the most inhabitants?”. Overall, it has never been shown that a
user-centered customization approach such as used by TEAM is indeed feasible. Our work has aimed at
addressing exactly this gap.

The approach in the Quetal system [27] implements the mapping from a question to a query via three
intermediary stages: (i) construction of Robust Minimal Recursion Semantics (RMRS) representation, (ii)
mapping to domain-independent frame-like structures relying on SUMO [43], FrameNet [4] and WordNet
[26], as well as (iii) construction of so-called proto-queries. The use of RMRS17 (Robust Minimal Recursion
Semantics) supports underspecification of scope ambiguities. Further, the approach implements a hybrid
technique to interleave shallow and deep processing for the purpose of robustness and to yield a rich seman-
tic analysis of the questions to which several components can contribute, e.g. a HPSG parser, a shallow
finite-state parser, a named entity recognizer etc. The proto-queries are abstract database-like queries com-
parable to our logical forms, but lacking any sort of quantification, negation or counting operators. Count-
ing is for example performed after the answers have been returned by the inference engine. As in our
approach, these proto-queries are translated to different query languages, i.e. SQL or SeRQL, the query lan-
guage implemented in Sesame [11]. Domain independence is achieved by mapping RMRS structures to
domain-independent resources. While in our approach certain closed-class words are mapped to DOLCE,
in the Quetal system, RMRSs are mapped to conceptual frames from FrameNet and domain-independent
concepts from SUMO. The mapping to the specific knowledge base is achieved by special rules which need
to be written for every different knowledge base. These transformation rules thus constitute the adaptation
mechanism behind the Quetal system. These rules are defined on SUMO and FrameNet structures and thus
map domain-independent structures to domain-specific ones. Thus, the domain of these rules is defined in a
principled way and remains constant across domains. However, also in the case of the Quetal system, the
question needs to be raised if such transformation rules can be created by an average user. At least, the
specification of these rules requires familiarity with SUMO, FrameNet and WordNet. Such a requirement
might impose too large of a burden on a naive user and/or domain expert. The system has been successfully
implemented on the one hand for a database containing information about Nobel Prize winners as well as
an RDF knowledge base containing information about language technologies, patents, researchers, etc. The
system has been evaluated on 100 questions from the Nobel Prize domain. Given an appropriate filtering
and voting mechanism of the three best parse trees, a correct proto query is generated in 58% of the cases.
Of the cases for which a correct proto query is generated, 74.1% yield a correct answer. The performance of
the Quetal system is thus comparable to the one of our ORAKEL system.

The system presented by Bernstein et al. [7] builds on a controlled language approach as implemented by
the ACE (Attempto Controlled English) framework (see [28]). It requires a transformation from the parser
output structures – DRSs18 (Discourse Representation Structures) – as produced by the Attempto Parsing
Engine (APE) to PQL queries formulated with respect to the relations and concepts of an underlying ontol-
ogy. This transformation needs to be specified by hand by a system engineer. It is thus not clear if the system
can indeed be adapted by end users.

In a strict sense, every natural language interface only supports a restricted language which is determined by
the underlying grammar as well as the other capabilities of the system. Approaches based on controlled lan-
guage, however, besides supporting only a restricted language, also give guidelines about how to (syntacti-
cally) express meaning in order to avoid ambiguities. This is the approach followed by ACE (Attempto
Controlled English). The English sentence ‘‘Every airline owns an aircraft.” is for example semantically ambig-
uous between two readings in which either the universal quantifier outscopes the existential quantifier or the
other way round. In ACE, a user would be requested to write ‘‘Every airline owns an aircraft.” in the first case,
while writing ‘‘There is an aircraft that every airline owns.” in the second.
17 See [20].
18 See [32].

350 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
7.4. Summary and discussion

We have seen that there are at least three different main paradigms how customization of NLIs
can be approached. Certainly, as for many other challenging problems, there is no free lunch here! While
systems exploiting lexical resources in the background and relying on lexical matches seem not to require
customization at first sight, they are inherently dependent on the coverage of a certain lexical resource. The
more technical the target domain gets, the less we can expect general lexical resources to provide the necessary
lexical variations. Thus, customization will never come for free in principle and extending and refining lexica
for the application in question will ultimately be necessary. In this line, intuitive models for lexical acquisition
as presented in this paper will be definitely necessary under the assumption that systems will not be completely
used off-the-shelf. The three paradigms: data-driven learning, lexical matching and manually engineered lexica
should thus complement rather than compete with each other. Thus, the strengths, limits, effort required as
well as assumptions of different approaches need to be investigated more closely in the future. For sure, we
should give up the dream of a free lunch and not expect systems which can simply be taken off-the-shelf
and applied without any sort of customization and tuning.

8. Conclusion and future work

We have presented the design choices, architecture, implementation and evaluation of our adaptable nat-
ural language interface ORAKEL. ORAKEL is based on the explicit representation of a lexicon which maps
natural language constructions to ontological structures. The fact that the lexicon is explicitly represented
allows to directly control the lexicon, a clear advantage with respect to approaches which essentially exploit
lexical knowledge to establish matches between words in the query and ontological structures and thus fully
rely on the availability of the necessary lexical knowledge in the resource used. This assumption is especially
critical in the light of highly technical domains.

On the downside, for approaches similar to ORAKEL, which rely on an explicitly represented mapping
between language and ontology, the lexicon needs to be created and constantly updated. However, we have
shown in our experiments that the time needed to engineer a lexicon for a medium size ontology is in the range
of hours, not of days or months as for older NLIs. According to Bates [5], porting PARLANCE takes between
6 and 8 person weeks for databases with between 32 and 75 fields. Such an effort is enormous compared to the
one presented in this article. Our model for acquiring lexical knowledge is not inherently novel. In fact, a sim-
ilar model was explored already in the TEAM interface, which has clearly inspired the design, architecture and
implementation of ORAKEL. Nevertheless, we are not aware of any other work in the literature which has
proven that a lexical acquisition model as integrated in TEAM is actually feasible. We have closed this gap
and provided evidence that such a lexicon acquisition model is indeed feasible from the perspective of a naive
user. In particular, our experiments have shown that subcategorization frames, which are central in our system
design, represent a level of linguistic representation which can be understood by people without any back-
ground in computational or formal linguistics. In particular, our experiments have shown that the very rudi-
mentary knowledge about subcategorization frames needed can be quickly acquired by domain experts. We
have conducted extensive experiments with 26 users, mostly computer-scientists with no background in com-
putational linguistics. Our extensive experiments with the ORAKEL system clearly corroborate the hypothesis
that our model represents a feasible approach for domain adaptation. On the one hand, our results have
shown that the domain lexica created by the two users in charge of the lexicon creation do not substantially
differ from the one created by one of the authors, a computational linguist, with respect to the coverage of the
system. In a further real-world case study at British Telecom, we have further shown that ORAKEL can
indeed scale to knowledge bases with thousands of instances. The additional use case has also provided addi-
tional proof that our iterative lexicon development methodology is indeed successful. On the other hand, we
have demonstrated that, given a suitable mechanism to generate grammatical structures out of the subcatego-
rization frames, by sticking to the few types defined in our system we achieve more than 90% of linguistic cov-
erage with respect to the questions asked, assuming that the lexicon is complete.

Further, it is also important to mention that ORAKEL builds on a clear separation between the two
roles of end user and lexicon engineer. The lexicon engineer is assumed to be a person with computer sci-

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 351
ence background which can be trained to understand the adaptation model underlying ORAKEL. Such a
lexicon engineer could for example work for a company which distributes natural language interfaces. The
lexicon engineer’s role would be one of constantly monitoring the suitability of the lexicon in the different
applications and updating it appropriately. The adaptation model will of course remain completely trans-
parent to the end user, whose role is only to ask questions and receive answers. Most of the recent
approaches discussed in the related work section have focused on end users. However, assuming that NLIs
will work completely off-the-shelf seems quite unrealistic given the current state-of-the-art. In fact, it seems
reasonable to assume that some basic tuning will be necessary. A developer will thus be needed in any case.
In our model, this developer will then be in charge of creating and maintaining a suitable lexicon for the
application in question.

On a final note, it is important to emphasize that given the current state-of-the-art concerning natural lan-
guage interfaces, a systematic analysis of the strengths and limits of approaches based on lexical matching in
comparison to approaches based on an engineered lexicon has not yet been provided. At first sight,
approaches based on lexical matching are certainly appealing as they require no manual adaptation. How-
ever, this is only true at the surface as there will always be cases which can not be covered with the current
state of the lexical resources used in the background. On the other side, the standard drawback of approaches
such as implemented in ORAKEL is the fact that the lexicon has to be partially engineered by hand. For
sure, we will need to find a compromise between using existing resources, handcrafting new ones from scratch
and techniques which can adapt the lexicon on the fly. With the work described in this article, we have con-
tributed a model and a clear analysis thereof in terms of the efforts and skills needed by a lexicon engineer to
handcraft a lexicon for a certain domain. Thus, our research contributes towards understanding and clarify-
ing the principles underlying the challenging issue of adapting natural language interfaces to a certain
domain.

Future work will also aim at decoupling our approach from our own parser, thus allowing to use any parser
and syntactic theory. This will also allow for the usage of languages other than English. A major bottleneck of
ORAKEL is that it is not robust in the sense that it fails when the input is not grammatical or when the input
contains unknown words. Currently, it simply reports the unknown word to the user. Concerning ungrammat-
ical input, our system can be in principle extended to use the subcategorization frames to generate a feedback
question to the user asking for an alternative and grammatical paraphrase. For example, if the user asks Who

published?, the system could then use the subcategorization information to return the feedback question: ‘‘How

published what?” A further issue is the problem of what to do in the case there are no answers which satisfy the
query (or one part of it) in the knowledge base (compare [33]). In this case an explanation why there is no
answer should be given to the user. This issue is currently not addressed by the ORAKEL system and thus
remains for future work.

On a more general note, given that the application barrier for natural language technologies is still very
high for end users, future work should indeed take up the challenge of developing models by which this barrier
can be effectively lowered, thus enabling a wider application and possibly commercialization of natural lan-
guage processing technologies. The customization model underlying ORAKEL can be certainly regarded as
a first step in this direction. Finally, an interesting question for future research is whether the mappings
between linguistic expressions and relations defined in the knowledge base can be learned automatically from
a corpus. This idea was already preliminary explored in [14,19], but further research is needed to clarify its full
potential as well as weaknesses.

Acknowledgements

This research has been supported by the following projects: the BMBF project SmartWeb,19 financed by the
German Ministry of Education and Research as well as the EU projects Dot.Kom,20 SEKT21 and X-Media.22
19 http://www.smartweb-project.de/.
20 http://nlp.shef.ac.uk/dot.kom/.
21 http://www.sekt-project.com/.
22 http://www.x-media-project.org/.

http://www.smartweb-project.de/
http://nlp.shef.ac.uk/dot.kom/
http://www.sekt-project.com/
http://www.x-media-project.org/

352 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
Thanks to our students Johanna Wenderoth and Laura Goebes for creating the German geography knowl-
edge base. Thanks to all our colleagues from the AIFB, the FZI and ontoprise as well as to Ursula Cimiano,
Sofia Pinto and the people from British Telecom for taking part in our experiments.

References

[1] I. Androutsopoulos, G. Ritchie, P. Thanisch, Natural language interfaces to databases – an introduction, Journal of Language
Engineering 1 (1) (1995) 29–81.

[2] A. Ankolekar, P. Buitelaar, P. Cimiano, P. Hitzler, M. Kiesel, M. Krötzsch, H. Lewen, G. Neumann, M. Sintek, T. Tserendorj, R.
Studer, Smartweb: mobile access to the semantic web, in: Proceedings of the ISWC 2006 Poster and Demo Session, 2006.

[3] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley, 1999.
[4] C. Baker, C. Fillmore, J. Lowe, The Berkeley FrameNet project, in: Proceedings of the International Conference on Computational

Linguistics and the Annual Meeting of the Association for Computational Linguistics (COLING-ACL), 1998.
[5] M. Bates, Rapid porting of the parlance natural language interface, in: Proceedings of the Workshop on Speech and Natural

Language, 1989, pp. 83–88.
[6] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinees, P. Patel-Schneider, L. Stein, OWL Web Ontology Language

Reference. <http://www.w3.org/TR/owl-ref>, 2004.
[7] A. Bernstein, E. Kaufmann, A. Göhring, C. Kiefer, Querying ontologies: a controlled english interface for end-users, in: Proceedings

of the 4th International Semantic Web Conference (ISWC), 2005, pp. 112–126.
[8] P. Blackburn, J. Bos, Representation and Inference for Natural Language – A First Course in Computational Semantics, CSLI

Publications, 2005.
[9] S. Bloehdorn, P. Cimiano, A. Duke, P. Haase, J. Heizmann, I. Thurlow, I. Völker, Ontology-based question answering for digital

libraries, in: Proceedings of the 11th European Conference on Research and Advaced Technologies for Digital Libraries (ECDL),
2007, pp. 14–25.

[11] J. Broekstra, A. Kampman, F. van Harmelen, Sesame: a generic architecture for storing and querying rdf and rdf schema, in:
Proceedings of the International Semantic Web Conference (IWSC), 2002, pp. 54–68.

[12] P. Cimiano, Translating wh-questions into F-Logic queries, in:R. Bernardi, M. Moortgat (Eds.), Proceedings of the CoLogNET-
ElsNET Workshop on Questions and Answers: Theoretical and Applied Perspectives, 2003, pp. 130–137.

[14] P. Cimiano, ORAKEL: a natural language interface to an F-Logic knowledge base, in: Proceedings of the 9th International
Conference on Applications of Natural Language to Information Systems (NLDB), 2004, pp. 401–406.

[15] P. Cimiano, P. Haase, Y. Sure, J. Völker, Y. Wang, Question answering on top of the BT digital library, in: Proceedings of the World
Wide Web conference (WWW), 2006, pp. 861–862.

[16] P. Cimiano, U. Reyle, Towards foundational semantics – ontological semantics revisited, in: Proceedings of the International
Conference on Formal Ontology in Information Systems (FOIS), vol. 150, IOS Press, 2006, pp. 51–62.

[17] P. Cimiano, P. Haase, J. Heizmann, Porting natural language interfaces between domains – a case study with the ORAKEL system,
in: Proceedings of the International Conference on Intelligent User Interfaces (IUI), 2007, pp. 180–189.

[18] P. Cimiano, P. Haase, J. Heizmann, M. Mantel, Orakel: a portable natural language interface to knowledge bases, Technical report,
Institut AIFB, Universität Karlsruhe. <http://www.aifb.uni-karlsruhe.de/WBS/pci/Publications/orakel_tech.pdf>, 2007.

[19] P. Cimiano, M. Erdmann, G. Ladwig, Corpus-based pattern induction for a knowledge-based question answering approach, in:
Proceedings of the 1st IEEE International Conference on Semantic Computing (ICSC), 2007, pp. 671–678.

[20] A. Copestake, Robust Minimal Recursion Semantics (working draft). <http://www.cl.cam.ac.uk/aac10/papers/rmrsdraft.pdf>, 2006.
[21] A. Copestake, K.S. Jones, Natural language interfaces to databases, Knowledge Engineering Review 5 (4) (1989) 225–249 (Special

issue on the Applications of natural language processing techniques).
[22] H. Cunningham, K. Humphreys, R. Gaizauskas, Y. Wilks, GATE – a General Architecture for Text Engineering, in: Proceedings of

Applied Natural Language Processing (ANLP), 1997, pp. 29–30.
[23] S. Decker, M. Erdmann, D. Fensel, R. Studer, Ontobroker: ontology based access to distributed and semi-structured information, in:

Database Semantics: Semantic Issues in Multimedia Systems, Kluwer, 1999, pp. 351–369.
[24] P. Dekker, Existencial disclosure, Linguistics and Philosophy (16) (1993) 561–587.
[25] E. Bozsak et al., KAON – towards a large scale semantic web, in: Proceedings of the Third International Conference on E-Commerce

and Web Technologies (EC-Web), Springer Lecture Notes in Computer Science, 2002.
[26] C. Fellbaum, WordNet, an Electronic Lexical Database, MIT Press, 1998.
[27] A. Frank, H.U. Krieger, F. Xu, H. Uszkoreit, B. Crysmann, B. Jörg, U. Schäfer, Question answering from structured knowledge

sources, Journal of Applied Logic 5 (1) (2007) 20–48 (Special issue on Questions and answers: theoretical and applied perspectives).
[28] N. Fuchs, K. Kaljurand, G. Schneider, Attempto controlled english meets the challenges of knowledge representation, reasoning,

interoperability and user interfaces, in: Proceedings of the International Conference of the Florida Artificial Intelligence Research
Society (FLAIRS), 2006.

[29] B. Grosz, D. Appelt, P. Martin, F. Pereira, Team: An experiment in the design of transportable natural language interfaces, Artificial
Intelligence 32 (1987) 173–243.

[30] P. Haase, J. Broekstra, A. Eberhart, R. Volz, A comparison of RDF query languages, in: Proceedings of the 3rd International
Semantic Web Conference (ISWC), 2004.

[31] A. Joshi, Y. Schabes, Tree-adjoining grammars, Handbook of Formal Languages, vol. 3, Springer, 1997, pp. 69–124.

http://www.w3.org/TR/owl-ref
http://www.aifb.uni-karlsruhe.de/WBS/pci/Publications/orakel_tech.pdf
http://www.cl.cam.ac.uk/aac10/papers/rmrsdraft.pdf

P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354 353
[32] H. Kamp, U. Reyle, From Discourse to Logic, Kluwer, 1993.
[33] M. Kao, N. Cercone, W.S. Luk, Providing quality responses with natural language interfaces: the null value problem, IEEE

Transactions on Software Engineering 14 (7) (1988) 959–984.
[34] M. Kifer, G. Lausen, J. Wu, Logical foundations of object-oriented and frame-based languages, Journal of the ACM 42 (1995) 741–

843.
[35] V. Lopez, M. Pasin, E. Motta, Aqualog: an ontology-portable question answering system for the semantic web, in: Proceedings of the

European Semantic Web Conference (ESWC), 2005, pp. 546–562.
[36] V. Lopez, E. Motta, V. Uren, Poweraqua: fishing the semantic web, in: Proceedings of the European Semantic Web Conference

(ESWC), 2006, pp. 393–410.
[37] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, Ontology library (final), WonderWeb deliverable D18, 2003.
[38] D. McGuiness, F. van Harmelen OWL Web Ontology Language Overview. W3C Recommendation. <http://www.w3.org/TR/owl-

features/>, 2004.
[39] R. Montague, On the proper treatment of quantification in ordinary english, in: R.H. Thomason (Ed.), Formal Philosophy: Selected

Papers of Richard Montague, 1974, pp. 247–270.
[40] R. Muskens, Talking about trees and truth-conditions, Journal of Logic, Language and Information 10 (4) (2001) 417–455.
[42] W. Ogden, P. Bernick, Using natural language interfaces, in: M. Helander (Ed.), Handbook of Human–Computer Interaction,

Elsevier, 1996.
[43] A. Pease, I. Niles, J. Li, The suggested upper merged ontology: a large ontology for the semantic web and its applications, Working

Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, 2002.
[44] A. Popescu, O. Etzioni, H. Kautz, Towards a theory of natural language interfaces to databases, in: Proceedings of the International

Conference on Intelligent User Interfaces (IUI’03), 2003, pp. 149–157.
[45] E. Prud’hommeaux, A. Seaborne, Sparql query language for rdf, W3C Working Draft 4. <http://www.w3.org/TR/rdf-sparql-query/>,

2006.
[46] C. Rosé, C. Pai, J. Arguello, Enabling non-linguists to author advanced conversational interfaces easily, in: Proceedings of the

International Conference of the Florida Artificial Intelligence Research Society (FLAIRS), 2005, pp. 572–577.
[47] Y. Schabes, A. Abeille, A. Joshi, Parsing strategies with ‘lexicalized’ grammars: application to tree adjoining grammars, in:

Proceedings of the International Conference on Computational Linguistics (COLING’88), 1988, pp. 578–583.
[48] Y. Schabes, A. Joshi, An earley-type parsing algorithm for tree adjoining grammars, Technical Report MS-CIS-88-36/LINC LAB

113, University of Pennsylvania, 1988.
[49] H. Schmid, Probabilistic part-of-speech tagging using decision trees, in: Proceedings of the International Conference on New Methods

in Language Processing, 1994.
[50] B. Shneiderman, C. Plaisant, Designing the User Interface, Pearson/Addison-Wesley, 2005.
[52] C. Thompson, R. Mooney, L. Tang, Learning to parse natural language database queries into logical form, in: Proceedings of the

Workshop on Automata Induction, Grammatical Inference and Language Acquisition, 1997.
[53] P. Warren, D. Alsmeyer, Applying semantic technology to a digital library: a case study, Library Management 26 (4/5) (2005) 190–

195 (Special issue: Semantic web).
[54] L. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information Sciences (1975) 8–9.

Philipp Cimiano is a senior researcher and project leader at the Institute of Applied Informatics and Formal
Description Methods (AIFB) at the University of Karlsruhe. He obtained his Ph.D. in the field of ontology
learning from text in 2006 from the University of Karlsruhe. His major research interests include: natural
language interfaces, information extraction, ontology learning, knowledge acquisition from text, natural language
processing, computational semantics and ontologies. Currently, he is local project leader of the EU IST project X-
Media and the DFG-funded project MULTIPLA, both concerned with information extraction, information
retrieval and question answering. Philipp has co-authored over 50 publications in the fields of natural language
processing, text mining, ontologies and Semantic Web.

Peter Haase is a senior researcher at the Institute of Applied Informatics and Formal Description Methods
(AIFB) at the University of Karlsruhe, where he obtained his Ph.D. in 2006. Before joining the AIFB, he worked

in the Silicon Valley Labs of IBM in the development of DB2 until 2003. His research interests include ontology
management and evolution, decentralized information systems and Semantic Web.
At the AIFB, he previously worked in the EU IST projects SWAP (Semantic Web and Peer-to-Peer) and SEKT
(Semantically Enabled Knowledge Technologies) and is now working as a project leader for the EU IST project
NeOn (Lifeycle Support for Networked Ontologies).

http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-sparql-query/

354 P. Cimiano et al. / Data & Knowledge Engineering 65 (2008) 325–354
Jörg Heizmann graduated in computer science (diploma, M.Sc.) at University of Karlsruhe in 2007. His student
research project was on the topic ‘‘Conjunctive Queries in Semantic Peer-to-Peer Networks based on Adaptive
Overlays”. His graduation project was carried out in cooperation with British Telecom in the SEKT project on the
topic: ‘‘Semantic-Based Digital Libraries - architecture, implementation and evaluation”. Currently, he is working
at ontoprise GmbH, a leading software provider of ontology-based solutions. There, he is involved in the halo
project which is an effort by Vulcan Inc. towards the development of a ‘‘Digital Aristotle”.

Matthias Mantel is a computer science student at the University of Karlsruhe since 2001. He has been working for
the Institute AIFB as a student assistant at the group of Prof. Studer since 2003 as developer of the ORAKEL

project. In particular, he has been in charge of the development of FrameMapper and of ORAKEL’s lexicon
model. Recently, he has finished a student research project on the topic of representing ORAKEL’s lexica as
OWL ontologies.
Rudi Studer is Full Professor in Applied Informatics at the University of Karlsruhe, Institute AIFB. His research
interests include knowledge management, Semantic Web technologies and applications, ontology management,

text mining and semantic web services. He is also member of the board of the FZI Research Center for Infor-
mation Technologies at the University of Karlsruhe and one of the directors of the Research Group ‘‘Information
Process Engineering” at the FZI; he is also a co-founder of the spin-off company ontoprise GmbH that develops
semantic applications. He has been an associate editor of ACM TOIT (Transaction on Internet Technology) since
2002 and became a member of the advisory board of ‘‘IEEE Intelligent Systems” in 2005. From 2003 to 2007 he
was Editor in Chief of the ‘‘Journal of Web Semantics: Science, Services and Agents on the World Wide Web”. He

is currently also technical director of the EU funded Integrated Project NeOn (Lifecycle Support for Networked
Ontologies) and president of the Semantic Web Science Association.

	Towards portable natural language interfaces to knowledge bases - The case of the ORAKEL system
	Introduction
	Overview of ORAKEL
	Query construction
	Syntactic theory and parsing
	Semantics construction
	Query conversion

	Domain adaption
	Graphical user interface
	Experiments
	User study
	Question analysis
	Real-world application

	Related work
	Data-driven approaches
	Approaches based on lexical matches
	Approaches relying on engineered lexica
	Summary and discussion

	Conclusion and future work
	Acknowledgements
	References

