ORAKEL: A Portable Natural Language
Interface to Knowledge Bases

Philipp Cimiano, Peter Haase, Jorg Heizmann, Matthias Mantel

March 1, 2007

Chapter 1

Introduction

As the amount of information available globally on the Web and locally in
intranets or databases keeps steadily growing, the necessity of mechanisms
for effectively querying this information gains importance at the same pace.
In fact, it seems crucial to provide end users with intuitive means of query-
ing knowledge as they can not be expected to learn and use formal query
languages such as SQL which are typically used by programmers. Differ-
ent paradigms have been proposed in the past for querying information col-
lections, among them form fillin, query-by-example or menu-based approaches
(see [Shneiderman and Plaisant, 2005]), as well as natural language interfaces
(NLIs), either relying on controlled language [Fuchs et al., 2006] or on more or
less free language input [Popescu et al., 2003]. While the querying paradigm
based on natural language is generally deemed to be the most intuitive from a
usage point of view, it has also been shown to be the most difficult to realize
effectively. The main reasons for this difficulty are that:

1. natural language understanding is indeed a very difficult task due to
ambiguities arising at all levels of analysis: morphological, lexical, syn-
tactic, semantic, and pragmatic (compare [Androutsopoulos et al., 1995,
Copestake and Jones, 1989]),

2. a reasonably large grammar is required for the system to have an accept-
able coverage,

3. the natural language interface needs to be accurate, and

4. the system should be adaptable to various domains without a significant
effort.

With the wide availability of cell phones and PDAs,; the importance of intu-
itive ways of interacting with electronic devices has grown even more. Natural
language interfaces are an interesting option to interact with mobile devices
due to their limited input and output functionality. Clearly, automatic speech

recognition is a crucial component towards leveraging the use of natural lan-
guage interfaces. In this paper we are not concerned with speech recognition,
but with the process of transforming a user’s question into a formal query which
can be answered with respect to an underlying knowledge or database. Nev-
ertheless, it is worth emphasizing that speech recognition systems have nowa-
days reached a degree of maturity which makes it possible to apply them for
interacting with phones or other mobile devices (see for example the recent
SmartWeb project, which provides natural language access to the Semantic
Web [Ankolekar et al., 2006]).

In the context of this paper, we define as natural language interface (NLI)
any system accepting as input questions formulated in natural language and
returning answers on the basis of a given knowledge base. It is important to
emphasize that in our view a natural language interface goes strictly beyond
the capabilities of keyword-based retrieval systems known from information re-
trieval research [Baeza-Yates and Ribeiro-Neto, 1999], which are not able to re-
turn precise answers to questions but only to return a set of relevant documents
given a keyword-based query.

The ORAKEL natural language interface presented in this paper addresses
all the above challenges, focusing particularly on minimizing the effort of adapt-
ing the system to a given domain. ORAKEL is an ontology-based natural lan-
guage system in two senses. First, the ontology for a certain knowledge base is
used to guide the lexicon construction process. On the one hand, parts of the
lexicon are automatically generated from the underlying ontology. But most
importantly, on the other hand, the ontology is at the core of the whole lexicon
acquisition process in ORAKEL, which is performed by the user to adapt the
system to some domain and particular knowledge base. Second, ORAKEL is
ontology-based in the sense that it is a natural language interface which relies
on deduction to answer a user’s query. The ontology as a logical theory together
with the facts stored in the knowledge base are thus exploited by the under-
lying inference engine to provide answer, even if it is not explicitly contained
in the knowledge base but can be inferred from it. As ORAKEL relies on a
well-defined deduction process to answer a query, an important requirement is
that the user’s question is translated into logical form, in particular into a query
which can be evaluated by the underlying inference engine.

In general, the ontology model required by the system for the purposes of
lexicon acquisition is rather simple, consisting of concepts, ordered hierarchi-
cally in terms of subsumption, as well as (binary) relations together with their
corresponding restrictions on their domain and range (compare the ontology
model described in [E. Bozsak et al., 2002] for a corresponding more formal def-
inition). In practice, we will however rely on standard ontology models such as
the ones provided by languages such as OWL [Bechhofer et al., 2004] or F-Logic
[Kifer et al., 1995]. In fact, for the process of query answering, we will rely on
the full expressive power of the logical languages used in the background.

The input to ORAKEL are factoid questions starting with so called wh-
pronouns such as who, what, where, which etc., but also the expressions ‘How
many’ for counting and ‘How’ followed by an adjective to ask for specific values

of an attribute as in “How long is the Rhein?”. Factoid in this context means
that ORAKEL only provides ground facts as typically found in knowledge or
data bases as answers, but no answers to why- or how-questions asking for
explanations, the manner in which something happens or causes for some event.

The challenge for natural language interfaces is thus the domain-specific
interpretation of the user’s question in terms of relations and concepts defined
in the schema or ontology of the knowledge base. Thus, parsers which create
a generic logical form for a given input sentence will clearly not suffice for this
purpose. The challenge is to construct a logical query consisting of domain-
specific predicates which can be evaluated with respect to the knowledge base,
returning the correct answer as a deduction process. Therefore, it is crucial that
a natural language interface is adapted to every different knowledge base it is
applied to.

In general, the problem of adapting natural language applications to some
specific domain still remains largely unsolved. Different models for customiza-
tion have been proposed in the natural language processing (NLP) literature.
However, the feasibility of different customization approaches from a user point
of view has been rarely investigated. While letting users engineer a complete
grammar by hand might be a potential solution, it is for sure not feasible as
it can neither be expected that general users have grammar engineering expe-
rience nor that they would be willing to make such an effort. Some systems
support the user in defining linguistic rules, especially in the context of infor-
mation extraction systems (compare [Cunningham et al., 1997]). In contrast,
some researchers have examined supervised approaches in which training data
is provided and the system learns domain-specific rules using inductive learn-
ing techniques [Thompson et al., 1997]. However, it seems still unclear whether
providing training data, i.e. questions with their corresponding queries, is, from
an end user point of view, a feasible way of customizing a natural language
interface to a specific knowledge base. In general, the feasibility of different
approaches from an end user point of view has been rarely investigated.

Finally, there are systems which support the user in lexicon acquisition by
hiding the linguistic details behind some frontend. The well-known natural lan-
guage interface TEAM [Grosz et al., 1987], for example, achieves the customiza-
tion by asking domain experts questions and deriving the necessary linguistic
knowledge from their answers. Rose et al. [Rose et al., 2005] have recently
also presented an approach in which a NLP system is customized by users as
a byproduct of annotating text segments. However, with the only exception of
Rose et al. [Rose et al., 2005], none of the above work has examined the ques-
tion whether typical users of the system are indeed able to successfully perform
the customization.

In this paper, we explore a model of user-centered lexicon customization
which merely requires very basic knowledge about subcategorization frames,
but no background in computational or formal linguistics. Subcategorization
frames are essentially linguistic argument structures, e.g. verbs with their
arguments, nouns with their arguments, etc. As in TEAM, we also assume that
a user with general expertise about computer systems will perform the cus-

tomization, i.e. we subscribe to the hypothesis mentioned in [Grosz et al., 1987]:

A magor hypothesis underlying TEAM is that, if an NLI is constructed
n a sufficiently well-principled manner, the information needed to adapt it to
a new database and its corresponding domain can be acquired from users who
have general expertise about computer systems and the particular database, but
who do not possess any special knowledge about natural-language processing or
the particular NLI

In the ORAKEL system, the main task of the person in charge of customizing
the system is to create a domain-specific lexicon mapping subcategorization
frames to relations specified in the domain ontology. We present experimental
evidence in form of a user study as well as in the form of a case study involving
a real-world application to corroborate the claim that our model indeed
allows non-NLP experts to create an appropriate domain lexicon efficiently
and effectively. We show in particular that the results obtained with lexica
customized by non-NLP experts do not substantially differ from the ones
created by NLP experts. As the coverage of the lexicon has a direct impact
on the overall linguistic coverage of the system, we propose a model in which
the lexicon engineer can create the lexicon in an iterative process until a
reasonable coverage is achieved. We also provide experimental evidence for
the fact that such an iterative lexicon construction model is indeed promising.
Furthermore, we also assess the coverage of our system, showing that with a
few subcategorization frame types we can indeed yield a reasonable linguistic
coverage. Before describing the details of ORAKEL, we first present an
overview of the system in the next chapter.

Chapter 2

Overview of ORAKEL

In the ORAKEL system, we assume two underlying roles that users can play. On
the one hand, we have end users of the system which interact with the system
in query mode. On the other hand, domain experts or knowledge engineers
which are familiar with the underlying knowledge base play the role of lexicon
engineers which interact with the system in lezicon acquisition mode, creating
domain-specific lexicons to adapt the system to a specific domain.

The end users ask questions which are semantically interpreted by the Query
Interpreter (compare Figure 2.1). The Query Interpreter takes the question of
the user, parses it and constructs a query in logical form (LF), formulated with
respect to domain-specific predicates. This logical form is essentially a first
order logic (FOL) representation enriched with query, count and arithmetic
operators. The Query Interpreter component is discussed in detail in Chap-
ter 3. The query in logical form is then translated by the Query Converter
component into the target knowledge representation language of the knowledge
base, in particular to its corresponding query language. The overall approach
is thus independent from the specific target knowledge language and can ac-
commodate any reasonably expressive knowledge representation language with
a corresponding query language. Our system has been so far tested with the
knowledge representation languages F-Logic [Kifer et al., 1995] with its query
language as implemented by the Ontobroker system [Decker et al., 1999] and
OWL [McGuiness and van Harmelen, 2004] with the query language SPARQL
[Prud’hommeaux and Seaborne, 2006] as implemented by the KAON2 inference
engine’.

The conversion from the logical form to the target knowledge language is
described declaratively by a Prolog program. The Query Converter component
reads in this description and performs the appropriate transformation to the
target query language. So far, we have provided the two implementations for F-
Logic as well as OWL/SPARQL. However, our system architecture would indeed
allow to port the system to any query language, in particular the RDF query

Thttp://kaon2.semanticweb.org/

Domain-specific
) - -
> Lexicon

Domain-independent
Lexicon

“_7 Query Interpreter
! =
Y Domain Ontology
Query Converter ' Ej
T — Knowledge Base
Y
Answer Generation
M —

Figure 2.1: Overview of the ORAKEL system

languages described in [Haase et al., 2004] or plain SQL to access conventional
relational databases. In fact, changing the target language requires a declarative
description of the transformation as a Prolog program, but no further change
to the underlying system. We describe the process of query translation in more
detail in Section 3.4.

The answer generation component then evaluates the query with respect to
the knowledge base and presents the answer to the user. Answering the query is
thus a deduction process, i.e. the answer to a user’s question are the bindings of
the variables in the resulting query. Currently, the answer generation component
only presents the extension of the query as returned by the inference engine.
However, more sophisticated techniques for presenting the answer to the user
by describing the answer intensionally or presenting the results graphically are
possible. The way of displaying the results in general depends heavily on the
application in question and will thus not be discussed further in this paper.

We have mentioned already in the introduction that a crucial question for
natural language interfaces is how they can be adapted to a specific domain in
order to interpret the user’s question with respect to domain-specific predicates.
In the model underlying ORAKEL, the lexicon engineer is in charge of creating
a domain-specific lexicon thereby adapting ORAKEL to the domain in question.
The lexicon engineer is essentially responsible for specifying how certain natural
language expressions map to predicates in the knowledge base. For this purpose,
we have designed an interface FrameMapper with access to the knowledge base,
which supports the user in specifying by graphical means the mapping from
language to relational predicates defined in the knowledge base. The result of
the interaction of the knowledge engineer is a domain lexicon specific for the

application in question. The process of domain adaption is described in detail
in Chapter 4, while the graphical user interface of FrameMapper is described in
Chapter 5.

Besides the domain-specific lexicon, ORAKEL also relies on a general lexicon
which specifies the semantics of closed-class words such as prepositions, deter-
miners, question pronouns, numbers, etc. The semantics of these closed-class
words are actually domain-independent and specified with respect to elementary
or foundational categories as given by foundational ontologies. In our ORAKEL
system, we rely on the foundational ontology DOLCE [Masolo et al., 2003],
which provides fundamental categories such as physical object, agentive phys-
ical object, etc. as well as predicates and relations related to time and space.
The latter ones are crucial for representing the semantics of spatial or temporal
prepositions.

The general lexicon and the domain-specific lexicon created by the domain
expert provide the only sources that ORAKEL needs to answer questions. Both
type of lexica are in fact a lexicalized grammar which is used by ORAKEL
for parsing but also for constructing the semantics of input questions. Thus,
ORAKEL does not need any external grammar or other lexical resources?. As
the general lexicon is given, the crucial bottleneck is thus the creation of the
domain-specific lexicon. An appropriate domain-specific lexicon is crucial for in-
terpreting the user’s question with respect to domain-specific predicates. In this
paper, our focus lies in particular on the adaption model and adaption mecha-
nism of ORAKEL. Our aim is to show that, given very rudimentary knowledge
about grammar and language, domain experts can indeed successfully adapt
ORAKEL to different domains. We also show that an iterative approach in
which the lexicon engineers modify the lexicon on the basis of failed questions
until a reasonable coverage is achieved seems indeed reasonable.

We have carried out experiments on two different domains to corroborate
our claim. On the one hand, we have carried out a user study with a small
knowledge base containing facts about Germany. On the other hand, we have
used a database containing metadata about research publications from British
Telecom’s — henceforth BT — digital library, which is orders of magnitude larger
than the geography knowledge base. Our studies show that ORAKEL can
indeed be successfully adapted to different domains in a reasonable amount of
time, typically a few hours. The British Telecom case study was especially
challenging as ORAKEL had to be modified to scale up to tens of thousands of
facts contained in the BT database.

Further, we also address a few key issues mentioned already in the intro-
duction. We also show that the precision of ORAKEL can compete with state-
of-the-art systems as well as that the lexicon coverage is reasonably high. We
also discuss additional features of the ORAKEL system, in particular its dis-

2The only two exceptions are lists of base forms for nouns and verbs with their correspond-
ing inflected forms which are used by ORAKEL to generate tree families. This is discussed in
more detail in Section 4. Further, WordNet is used to provide synonyms for verbs and nouns
(compare Section 5). However, this possibility was not exploited in the experiments described
in Chapter 6.

ambiguation and inferencing capabilities.

Chapter 3

Query Construction

In this chapter, we describe how the logical query to the knowledge base is
constructed on the basis of a user’s question formulated in natural language. In
the next section 3.1, we first describe the syntactic formalism underlying our
system. In Section 3.2, we describe the parser of the system, which produces
a syntactic analysis of the input sentence. Then, in Section 3.3 we describe
how a query in our enriched first-order logic (FOL) language is constructed.
Section 3.4 discusses how the FOL query can be translated into an appropriate
target query language, e.g. into a F-Logic or SPARQL query in our case. In
Section 3.5, we illustrate in detail all the different process steps on the basis
of one example question. Finally, Section 3.6 describes how disambiguation is
performed in our system, and Section 3.7 describes how inferencing capabilities
are exploited in ORAKEL.

3.1 Logical Description Grammars (LDGs)

The underlying syntactic theory of our system is a formalism called Logical
Description Grammars (LDG) (compare [Muskens, 2001]). LDG is inspired
by Lexicalized Tree Adjoining Grammars (LTAGs) [Joshi and Schabes, 1997],
which essentially are tree rewriting systems consisting of a finite set of trees
associated with lexical items, so-called elementary trees (etrees). The two main
operations in LTAG are substitution and adjoining. Substitution can be re-
garded as a local operation for the insertion of arguments. Adjoining typically
folds one tree into another, thereby introducing modifiers or recursively embed-
ding structures, such as clausal arguments. In general, Lexical Tree Adjoining
Grammars exceed the computational power of context-free grammars and have
been successfully used to model certain (syntactic) natural language phenomena
(compare [Joshi and Schabes, 1997]).

The structures used in LDG are essentially (descriptions of) trees consisting
of nodes labeled with syntactic information as depicted below. An important
characteristic of these trees is that they encapsulate all syntactic/semantic ar-

guments of a word. The following tree for wrote for example explicitly indicates
that it requires a subject (the author) at the DP; position as well as a direct ob-
ject (the written document) at the DP5 position. The fact that the line between
VP, and VP is dashed denotes that this dominance relation is not immediate,
i.e. some other tree could slip in'. Typical trees which could slip in into this
position are adverbs, e.g. often, or negation particles, e.g. not.

/S\
DP; VPT
VP
V/\DP;
Wr‘ote

In essence, negatively marked nodes correspond to arguments which need to
be inserted, while positively marked nodes denote variables to be inserted as an
argument.

In the LDG formalism used in ORAKEL, there is only one operation, which
consists in identifying positively with negatively marked nodes with each other
within one or across trees. Hereby, two nodes can only be identified with each
other if (i) they have complementary marks (negative/positive), (ii) they have
the same syntactic category, (iii) their feature structures are compatible as well
as (iv) syntactic dominance and surface order of words is respected. Feature
structures in ORAKEL are in essence flat lists of attribute-value pairs. Two
nodes can then only be made identical if they have the same value for a common
attribute (see below the discussion of the features used in ORAKEL).

Substitution in LTAG corresponds in LDG to identifying the positively
marked root node of some tree with the negatively marked leave node of some
other tree, while effects as produced by the adjoining operation are achieved
by the non-immediate dominance links as in the above tree for wrote. As men-
tioned above, these non-immediate dominance relations allow additional trees
to slip in, which leads to comparable effects as those yielded by the adjoining
operation in LTAG. In fact, both formalisms allow additional trees to be folded
in, a mechanism used for instance for the insertion of modifiers, e.g. nominal,
adjectival or adverbial modifiers.

As noted above, the verb write requires a subject and an object. We say
that write subcategorizes a subject and an object. It is therefore a transitive
verb. However, there are not only transitive verbs, but also other types such
as intransitive verbs, which subcategorize only a subject, intransitive verbs with
a prepositional complement, transitive verbs with a prepositional complement as
well as ditransitive verbs subcategorizing two objects. We call a verb together

1Here, DP standard for a determiner phrase, VP for a verb phrase, V for a verb and S for
sentence.

10

with a specification of which arguments it subcategorizes a subcategorization
frame. Subcategorization frames are central in ORAKEL as they provide the
basic structures which a lexicon engineer is supposed to map to domain-specific
relations. Subcategorization frames give raise to another central notion: the
one of tree families. Tree families encapsulate all the different ways in which a
subcategorization frame can be expressed and thus capture generalizations of a
given subcategorization frame type across words. For example, the tree family
of a transitive verb such as ‘write’ consists (at least) of the following trees:

e active:
s
DP; vp-
[num — sg] 1
1 L+
VP}
\% DP;
\
writes
S S
f//\ — T
DP; VP; DP; VP,
[num — pl] ‘ :
2 3 :
(2) VP; (3) Vp2+
/\ /\ p—
\Y% DP; Y DP,
Wr‘ite wrote
e auxiliary construction/object extraction:
S1
S1 —_— T
—_— DP; S
DPy So —
—— AUX™ VP
AUX~ VPy —
) | (5) M VE
VPS |
— VP$
\% DP; |
\ A%
write \
write

® passive:

11

/\
DPy So
-
BE~ VP
®) |
VPS
/\
\‘/ PP
. P:’/\ _
written [head — ‘by’] DP,
e relative clauses:
NP+
/\
NP~ S
/\
RELPRO™ V]‘?*
(7) !
VPt
/\
\% DP~
writes
NP+
/\
NP~ S
/\
RELPRO™ VP~
(8) !
VPt
/\
\% DP~
wrote
NP+

RELPRO™
/\
DP~ VP~
9) !
wﬁ
\%
writes

12

NP+

v s
RELPEO*//\SQ
(10) fo/\wf’7
VPt
\\/
wr‘oto
NP+
pr/\s
RELPM/\S
s e
(11) :
v#;
v Pp
— T
written [headP—> by’] DP,

In the following, we give examples of the usage of the above trees, giving the
number of the corresponding tree in parenthesis:

e Who writes/wrote a book? (143)

e Which authors write/wrote a book? (2+3)

e Who did not write a book? (4)

e Which book did Tolkien write? (5)

e Which book was written by Tolkien? (6)

e Who is the author who writes/wrote “The Lord of the Rings”? (7+8)
e Which is the book which Tolkien writes/wrote? (9+10)

e Which is the book which was written by Tolkien? (11)

For the sake of completeness, we also give the corresponding elementary trees
for wh-pronouns such as ‘who’, common nouns, such as ‘book’, named entities
such as ‘Tolkien’, auxiliaries such as ‘did’ as well as prepositions such as ‘by”

P+
+ + + +
W? N‘ DI‘D AU‘X (head — by’
who book Tolkien did \
by

13

Modifiers such as adverbs, e.g. ‘often’, or adjectives, e.g. ‘big’, as well as
‘not” have all a similar syntactic structure as they are always optional and slip
in between nodes connected by non-immediate dominance relations:

VPt NP* VPt

often VP~ big NP~ not VP~

Currently, ORAKEL does not handle adverbial modification. The reason
is that in the domains we have worked with so far it did not occur frequently
enough to deserve consideration?. Further, allowing adverbial modification pre-
supposes a rather complex modeling of temporal or spatial relations. On the
contrary, adjective modification turned out to be very important and is thus
handled by ORAKEL. The difficult issue certainly is to define the semantics of
adjectives such as ‘big’, ‘long’, ‘expensive’, etc. in a reasonable way. Section 4
discusses in more detail the treatment of adjective modification.

Some nodes in the elementary trees shown so far contain feature-value pairs.
As already mentioned, the feature-value pairs of different nodes need to be
compatible in order to be identified with each other. In the ORAKEL system,
we mainly rely on four features, i.e. head, genus, function and type. The head
feature specifies the lexical head of some node. This is important in cases in
which a verb subcategorizes a specific preposition. In this case we need to make
sure that only the appropriate preposition is inserted at the P~ position (see for
example the passive tree for write in (6) above). Further, the genus feature can
be specified to be plural (pl) or singular (sg) and is crucial for establishing verb-
subject agreement. The function feature can take the values select or modify.
Taking the example of the adjective ‘big’, it has one elementary tree typed
with select, which is used to select an appropriate attribute, i.e. the attribute
inhabitants in a question like ”How big is Stuttgart?”, as well as one elementary
tree typed with modify, which is used as a modifier as in ”Which rivers flow
through big cities?”.

A further very important feature is type, which can be set either to datatype
property or object property. This distinction is crucial when determining the
semantics of expressions involving counting or numerical comparisons. To illus-
trate the importance of this distinction, consider two relations inhabitants and
flow_through. When modeling the inhabitants of a city, region or country, we
are normally not interested in the concrete individuals, but only in the total
number of people living there. When modeling the rivers that flow through
each city, we are normally not only interested in the number of rivers, but also
in each of them as individuals. The relation inhabitants is thus typically mod-
eled as a so called datatype property, i.e. as inhabitants(city,integer), while the
relation flow_through is normally modeled as a so called object property, i.e. as
flow_through(river,city). In spite of this essential difference in modeling, we can
ask for numbers in similar ways regardless of the fact if they are modeled as

2This only holds with respect to our experience with natural language interfaces, but
obviously not for natural language understanding in general.

14

datataype or object properties. We can ask questions related to the number of
inhabitants of a city as follows:

e How many people live in Karlsruhe? (1a)

e In which city do the most people live? (1b)

e Which is the biggest city? (1c)

e Which city has more inhabitants than Karlsruhe? (1d)

Using similar constructs we can also ask for the number of rivers which flow
through a city:

e How many rivers flow through Karlsruhe? (2a)

e Which city do the most rivers flow through? (2b)

e Which river flows through more cities than the Rhein? (2c)
e Which river flows through the most cities? (2d)

The crucial point is that language does not distinguish whether relations we
talk about are modeled as datatype or object properties. The queries sent to
a knowledge base, however, differ crucially depending on the fact whether a
relation is modeled as a datatype or object property as the first type can be
handled by standard numerical comparisons, while the second type involves
counting operations. For illustration purposes, we show below the corresponding
queries to a geographical knowledge base for the above example questions. In
the remainder of this paper we will further make use of a generic query language
exploiting standard first-order logic notation enriched with an additional query
quantifier ’?’ binding the variables to be returned as answer. In what follows,
lower case one-letter symbols denote variables while the other lower-case symbols
denote constants:

e ?n inhabitants(karlsruhe,n) (1a)

e ?c3dny inhabitants(c,ni)Acity(c) AVc, ng (city(c') Ninhabitants(c',ng) —
no S nl) (1b)

e 7c3dny inhabitants(c,ni)Acity(c) AVc', ng (city(c') Ninhabitants(c',ng) —
) S nl) (1(3)

e 7cdny inhabitants(c,n1) A city(c) A Ing(inhabitants(karlsruhe, ng) A
ny Z ng) (1d)

e ?n Ir flow_through(r, karlsruhe) A count(_,r,n) (2a)

e 7c Ir,ny city(c) A flow_through(r,c) A count(c,r,ni)A
Ve 1 na(flow_through(r’,c') A count(c,7’,n2) — n1 > ng) (2b)

15

—~

T, Canl)/\
— ny1 > ng) (20)

o ?7r Je,my river(r) A flow_through(r,c) A count
Ve, na(flow_through(rhein,c') A count(_,c ,n2

~

rye,ny)A
— N1 Z ng) (2d)

e 71 Je,ny river(r) A flow_through(r,c) A count
vr', ¢, na(flow_through(r’,c) A count(r’, ¢, ny

~—

In the above queries, the count operator should be interpreted as follows:
count(a,b,n) is true if n is the number of elements b that a is related to in the
way specified by the body of the query. In essence, the count operator thus
groups all the b’s according to the a’s they stand in relation with and then
counts the number of b’s for each a. In case a is not specified, e.g. count(_,b,n),
the b’s are simply not grouped, thus yielding the absolute number of b’s fulfilling
the query.

The above example questions and corresponding queries illustrate two very
important aspects. First of all, they show that the distinction between datatype
and object properties is crucial to get the semantics right. In the case of a
datatype property, we need to perform numerical comparisons, while in the case
of an object property, we indeed need to count objects before performing a nu-
merical comparison. As a consequence, we have in the general lexicon two dif-
ferent entries for the quantifiers more, most, the most, more than, how many as
well as for numbers: one entry corresponding to an object property interpreta-
tion and one corresponding to a datatype property interpretation. Besides their
different semantics, they differ in the value of the feature type, which is used to
select the appropriate entry while parsing. This shows indeed that making sure
that feature structures of identified nodes are compatible is also crucial for com-
puting the correct semantic representation and not only to establish syntactic
agreement, e.g. between the verb and its subject. We give the elementary trees
for the above mentioned quantifiers and other standard quantifiers such as ‘a’
and ‘every’ in the Appendix.

Second, the above examples also show that the way people ask for infor-
mation rarely corresponds straightforwardly to the way information is modeled
in an ontology. In particular, the examples show, on the one hand, that very
different lexical and syntactic variants can be used to ask for the very same
information. For example, to ask for the city with the most inhabitants we can
either ask “Which is the biggest city?” - thus using a superlative, or “Which
city do the most people live in?” - using the intransitive verb ‘live’ with a prepo-
sitional complement introduced by the preposition ‘“n’; or “Which is the city
with the most inhabitants?” - using the preposition ‘with’ followed by a noun
phrase with head ‘inhabitants’, or “Which city has the most inhabitants?” using
a similar construction involving the verb ‘have’.

On the other hand, similar constructions can be used to ask for information
which is modeled differently in the ontology. For example, to ask for the number
of inhabitants of a city, which is modeled as a datatype property, we can ask
“How many people live in Karlsruhe?”, while when asking for the number of
rivers which flow through a city, which is modeled through an object property,
we can ask in the same way — modulo lexical differences due to the different
relations involved — “How many rivers flow through Karlsruhe?”.

16

This exemplifies in fact that the correspondences between the way we talk
about things and the way they are modeled in an ontology are far from straight-
forward. This shows why the problem of adapting a natural language interface is
indeed a non-trivial task. As already mentioned, we support the customization
of ORAKEL through a graphical user interface by which users can graphically
specify how certain subcategorization frames map to relations (or joins of these)
in the ontology. In the background, the system generates all the different syntac-
tic variants as specified in the tree family of the corresponding subcategorization
frame. The advantage of such an approach is that the semantics of each word
needs to be specified exactly once by associating it with the corresponding sub-
categorization frames. Thus, all the generated trees from the corresponding tree
family feature already the appropriate semantic representation.

We have illustrated above how the tree family for transitive verbs looks like.
It is easy to imagine how the tree families for intransitive verbs with a preposi-
tional complement, transitive verbs with a prepositional complement etc. look
like. In ORAKEL, we also have tree families for adjectives as well as relational
nouns. Relational nouns are those which subcategorize a prepositional comple-
ment, such as mother (of), brother (of), capital (of). Typically, relational nouns
can be used in a form in which the prepositional complement is existentially
quantified, as in “Which rivers flow through a capital?”. Thus, for relational
nouns, ORAKEL also generates variants in which the prepositional complement
is not realized syntactically but existentially quantified (compare [Dekker, 1993]
for a more deep and formal discussion of this issue). A description of the tree
family of relational nouns featuring one prepositional complement is given in
the Appendix.

In ORAKEL, we reuse a version of LDG augmented with selec-
tional restrictions specified with respect to an ontology as described in
[Cimiano and Reyle, 2003]. This ontological information is used to impose re-
strictions on the arguments of a predicate and thus for disambiguation. The
tree for wrote would for example look as follows:

S
/\
DP] < person VP,
VP;
\‘/ DP; < publication
wrote

We will see later in Section 3.6 how these ontological restrictions are used
for disambiguation.

In LDG, parsing boils down to identifying positively and negatively marked
nodes with each other, respecting category information, feature values and
surface order of words. The ORAKEL system implements a procedural ver-
sion of LDG in which parsing proceeds as in typical LTAG parsers in two

17

stages. In fact, we implemented an Early-type bottom-up parser as described
in [Schabes et al., 1988]. First, appropriate elementary trees for each word in
the input are selected from the lexicon, and, second, these elementary trees are
combined to yield a parse of the sentence (compare [Schabes et al., 1988]). In
particular, ORAKEL relies on full parsing and does not make any use of partial
parsing techniques. The parser used in the ORAKEL system is described in
more detail in the next section.

3.2 Parsing

In ORAKEL, we have implemented a procedural version of the parsing mech-
anism inherent in the LDG approach. The parser basically identifies positively
and negatively marked nodes respecting;:

e the syntactic category of nodes,

feature values,

ontological constraints,
e surface word order, and
e syntactic dominance relations.

The parser is an Early-type bottom-up parser using top-down information
as described in [Schabes et al., 1988] and [Schabes and Joshi, 1988]. It scans
and reduces the input string from left to right, traversing the corresponding
elementary trees in a top-down fashion. However, the parser can be called a
bottom-up parser as it uses the words in the input string to guide the whole
process.

The first component called is the so called tree selector, which gets as input
the sentence and chooses appropriate elementary trees from the lexicon for each
of the tokens in the input sentence. Assuming that there are at most m elemen-
tary trees for each token, the selector selects up to m"™ forests with which the
actual parser is called, where n is the length (in tokens) of the input sentence
and m is the maximum number of different elementary trees for a token. This
is a standard procedure for LTAG-like parsers (compare [Schabes et al., 1988]).
In fact, this complexity can not be reduced in principle, but only by apply-
ing some sort of preprocessing to select the most promising trees, e.g. as done
in supertagging [Bangalore and Joshi, 1999], and then only parsing the most
promising forest.

Thus, the actual parser takes a forest of trees as input and first of all deter-
mines the elementary tree with its top node marked with r for root” and starts
parsing this elementary tree in a top-down fashion, recursively calling the parser
for each child node. Algorithm 1 describes the parser in OO-style pseudocode.
Before discussing the algorithm in detail, a few general comments are necessary.
First of all, let us discuss the input to the algorithm. The parser gets as input
the following parameters:

18

e forest: contains the input forest, i.e. a set of elementary trees correspond-
ing to tokens from the input sentence,

e ontology: contains the background knowledge used by the parser, in our
case only a hierarchy of concepts,

e parseList: contains all the valid parse trees for the current input sentence,

e treeNum: contains the number of the elementary tree in the forest which
is currently being processed,

e current node: contains the node which is currently being parsed,
e stack: is a stack containing the next nodes to be processed, and

e surface: contains the part of the input string which still has to be pro-
cessed; the surface will be iteratively reduced by removing tokens from
the left corresponding to the parts of the input which have already been
parsed.

The parser thus reads the input from left to right and constructs the parse
tree in a top-down fashion, starting with the elementary tree marked as r for
'root’. The parser is called at the beginning with surface set to the input
sentence, treeNum set to the elementary tree marked with r, and node to its
root. The stack is also initially empty. Now we will discuss Algorithm 1 step
by step.

The first if-condition contains the end condition for the recursion, i.e. the
parser stops if the surface string and the stack are empty, that means, all the in-
put has been processed, and there are no further nodes to process. The parse tree
is added to the parselist after a final check that all the node identification oper-
ations indeed respect ontological constraints as well as that no cycles have been
introduced. This is accomplished by the procedure tree.consistent(ontology),
which traverses the tree in a top-down fashion, verifying that the ontological
constraints are compliant with the ontology as well as that there are no cycles.

If the end condition is not met, the parser checks if node is marked negatively.
If this is the case, it will look for a corresponding positive node which is:

e dominated by the negative node in the same elementary tree (case 1), or

e non-immediately dominated by the (negative) node which has been al-
ready identified with the (positive) root of the current tree - the one with
the number treeNum (case 2), or

e the root of an elementary tree to the left in case the current node is left
from the path (or on the same path) from the root node to the lexical
element of tree (this is verified by tree.Left.contains(node)) (case 3), or

e the root of an elementary tree to the right in case the current node is right
from the path (or on the same path) from the root to the lexical element
in tree (this is verified by tree.Right.contains(node)) (case 4)

19

Algorithm 1 Parsing Algorithm

parse(forest, ontology, parselist, treeNum, node, stack, surface)
{
if (surface.length == 0 && stack.isEmpty()) {
// forest has been parsed succesfully
for (int i = 0; i < forest.ElementaryTrees.size(); i++) {
tree = (ElementaryTree) forest.ElementaryTrees.get(i);

if (tree.getRoot().getMark().equals("r") && tree.consistent(ontology))
parselist.add(forest) ;

}
}
else {
tree = (ElementaryTree) forest.ElementaryTrees.get(treeNum);
if (negative(node)) {
// case 1
foreach child in node.Dominated() {
tmpStack = stack.cloneStack();
if (child.match(node)) {
newForest = forest.cloneAndIdentify(node,child,next,tmpStack);
parse(newForest,ontology,parselist,treeNum,next,tmpStack,surface) ;
}
}
if (tree.getRoot().Reverse) {
// case 2
foreach child in tree.Root.Reverse.Dominated() {
tmpStack = stack.cloneStack();
if (child.match(node)) {
newForest = forest.cloneAndIdentify(node,plusNode,next,tmpStack) ;
parse(newForest,ontology,parselist,treeNum,next,tmpStack,surface) ;

}
}
}
if (tree.Left.contains(node) || tree.Path.contains(node)) {
// case 3
for (int j = treeNum-1; j >= 0; j=j-1) {
tmpStack = stack.cloneStack();
tmpTree = (ElementaryTree) forest.ElementaryTrees.get(j);
if (candidate.getRoot().match(node)) {
newForest = forest.cloneAndIdentify(node,candidate.getRoot () ,next,tmpStack;
parse(newForest,ontology,parselist, j,next,tmpStack, surface);

}
}
}
if (tree.Right.contains(node) || tree.Path.contains(node)) {
// case 4
for (int j = treeNum+l; j < forest.ElementaryTrees.size(); j=j+1) {
tmpStack = stack.cloneStack();
candidate = (ElementaryTree) forest.ElementaryTrees.get(j);
if (candidate.getRoot().match(node)) {
newForest = forest.cloneAndIdentify(node,candidate.getRoot () ,next,tmpStack);
parse(newForest,ontology,parselist, j,next,tmpStack, surface);
}
}
}
}

20

Algorithm 2 Parsing Algorithm (Cont’d)

else
// node is not negative
{
if (hasChildren(node)) {
tmpStack = stack.cloneStack();
newForest = forest.clone(tmpStack,node,next);
foreach child in next.Dominated()
{
tmpStack.push(next,treeNum) ;
}
stackObject = tmpStack.pop();
parse(ontology,newForest,parselist,stackObject.getPosition(),
stackObject.getNode() ,tmpStack,surface) ;
}
else {
// node is a leaf
newSurface = surface - node.getLexem();
if (newSurface == null) return;
else {
if ('stack.isEmpty()) {
tmpStack = stack.cloneStack()
newForest = forest.clone(tmpStack);
stackObject = tmpStack.pop();
parse(ontology,newForest,parselist,stackObject.getPosition(),
stackObject.getNode () ,tmpStack,newSurface) ;

21

Hereby, for some elementary tree ¢, t.Le ft contains the nodes to the left from
the path from the root to the lexical elements, t.Right contains the elements
to the right and ¢.Path contains the nodes from the root node to the lexical
element.

Case 1 corresponds to the situation in which a positively marked node and
a negatively marked node non-immediately dominating it are identified, e.g. as
in:

/S\
DPy VP
VP";)
V/\DPg
Wr‘ote

Thus, in this case no modifiers can slip in between the two VP nodes. Of
course, once the parser backtracks other identifications are possible as for ex-
ample in case 2, which accounts for the situation in which a modifier tree slips
in:

/\
. ppp———vp;
VF’Ir !
/ B I VPI
not VP, _—
Y DP5
write

It is interesting to note that in the above configuration, we first process the
elementary tree for ‘not’ and no identification is performed for V P, as none of
the cases 1-4 holds. When processing the tree for ‘write’, we would identify the
negatively marked VP3-node with the positively marked VP root node of the
elementary tree for ‘not’. The next node would then be set to the V P; node of
the ‘not’ elementary tree. The root.getReverse() pointer of the ‘not’ elementary
tree would then have been set to the negatively marked VP35 node in the ‘write’
tree. Thus, according to case 2 of our algorithm, the negatively marked VP,
node in the elementary tree for ‘not” would be identified with the positively
marked VP4 node dominated by the reverse pointer of the V P; root node of the
‘not’ elementary tree, i.e. the V P; node. In general, it is important to mention
that every time two nodes are identified, a reverse pointer is maintained from
the positively marked to the negatively marked node.

Cases 3 and 4 are relatively straightforward; a negatively marked node to
the left (right) of the path from the root node to the lexical element is identified
with the positive root node of an elementary tree to the left (right) of the tree
being processed. This accounts for standard substitution of arguments.

In all cases, the algorithm checks if the nodes match, i.e. if the syntactic cat-
egory, feature values and ontological constraints are respected by the procedure

22

match. If this is the case, a new forest and a new stack are created. The new
forest newForest is basically a copy of the old forest in which both nodes have
been identified. The new stack newStack is a copy of the old stack in which all el-
ements have been replaced by their copies. The parser is then recursively called
with the newForest and newStack as well as with the new node to be processed,
i.e. next. The procedure forest.cloneAndIdentify(node,candidate,next,tmpStack)
creates a copy of the current forest in which the nodes candidate and node have
been identified. Further, neztis set to the copy of the formerly positively marked
node candidate, which is then processed next. The nodes in the temporal stack
tmpStack are updated accordingly so that they refer correctly to the nodes in
the cloned forest. The reason for creating copies of the stack and the forest
is to allow backtracking and thus a depth-first search in the space of possible
parse trees. Creating local copies of the data structures could also be avoided
by undoing identifications after the recursion has finished. However, from an
implementation point of view it is definitely easier to create local copies instead
of undoing the effects after the recursion.

In case the node to be processed is not negative, there are two further cases
to consider:

e the node has children
e the node has no children, i.e. it is a lexical element.

In case it has children, the forest and the stack are cloned and each child
is added to the new stack. The parser is then recursively called with the new
forest and stack as well as with the oldest element added to the stack as node
to be processed. In case it has no children?, the node is a lexical element
which is used to reduce the surface from the left-hand side (this is done by the
— operator). In case the lexical element can not be left-substracted from the
surface, then newSur face will be undefined and the parser will stop as the parse
tree currently in process of construction can not be extended to a full parse tree
anymore due the fact that it will not correctly cover the input sentence. In case
the newSur face string is well-defined, the parser retrieves the next node to be
processed from the stack and enters a new recursion with this new node.

It is important to emphasize that only the negative nodes are processed and
identified with appropriate positive nodes. This is indeed sufficient as the result
of the parsing is essentially a bijection between negative and positive nodes, such
that it makes no difference if we only process the negative or the positive nodes.
However, it makes the formulation and implementation of the algorithm much
easier. The fact that at the end negatively and positively marked nodes need to
be bijectively identified also allows to implement a simple heuristic which allows
to dramatically reduce the parser’s runtime. This heuristic consists in counting
the number of positively and negatively marked nodes for each category before
calling the parser. In case the numbers differ, no bijection is possible and thus
no parse will be found.

3Note that positive nodes are assumed not to be leaves and thus never considered at this
stage.

23

A further interesting aspect to emphasize are the ontology-based consistency
checks. Indeed, while some ontology checks can be performed locally by the
node.match(candidate) procedure, other checks have to be performed globally
by the tree.consistent(onto) procedure. We illustrate the distinction between
local and global consistency checks with two examples.

Example 1 (local consistency check):

S

’//\
DP] < person VP
DP*:person 3) DP*:book
! +
VP
Who 2 Moby Dick
A% DP, < publicatjon
\
wrote

The fulfillment of the ontological restrictions on the subject (< person) and
object (< publication) positions of write can indeed be verified locally in the
above configuration as the positively marked DP-nodes are typed. Hereby, <
denotes the conceptual subsumption operator which mirrors the class hierarchy
of the underlying ontology. In this particular example, the restrictions are ful-
filled assuming that person < person and book < publication. This differs from
the configuration in the following example:

Example 2 (global consistency check):

S
’//\
DP; < person VP
DPY :person 3)
| +
Who VP,
A\ DP, < document
| 2
wrote

DP+:X NP+:book
= g |
NP—:X book

a

In this configuration, the DP root node of the elementary tree for ‘a’is not typed
and only gets its type after the NP~ node has been identified with the root of
the elementary tree for ‘book’. Thus, the verification of ontological restrictions
can not be performed locally, which shows the necessity of applying a consistency
check after the elementary trees have been assembled to a complete parse tree.
This is exactly what is achieved by the tree.consistency(onto) procedure.

This concludes the description of the parsing algorithm. The process of
semantic construction is described in the next section, whereas section 3.5 gives
a complete example for the parser and the semantic construction component.

24

3.3 Semantics Construction

ORAKEL implements a compositional semantics approach to construct the log-
ical formula corresponding to the input question. Compositional means here
that the query to the database or knowledge base - i.e. the formal semantics of
the input sentence - is recursively computed on the basis of the meaning of every
single word in the input sentence as well as the way the words are connected.
Thus, the logical query representing a question is constructed en par with the
syntactic analysis of the question. Such an approach requires some sort of syn-
tactic processing grouping words to larger syntactic units and ordering them as
trees to guide the recursive computation. This is accomplished by the parser
described in the previous section.

The semantics of a sentence is then the semantics of the top node of the
elementary tree marked as root and is specified by a FOL-like formula which is
translated in a subsequent step to a formula in the target query language via a
Prolog conversion program.

The semantic construction proceeds en par with the syntactic construction
in a traditional compositional manner (compare [Montague, 1974]). Thereby,
each node specifies how its meaning is constructed on the basis of the meaning
of its children using the lambda calculus. In ORAKEL we use an extended
version of the lambda calculus implemented in Prolog by Blackburn and Bos
([Blackburn and Bos, 2005]). The main extensions are:

e the addition of a new non-standard compositional operator &

e the introduction of marked referents to be substituted by &

We will argue below why the introduction of this operator is necessary. Our
extension of the lambda calculus implementation of Blackburn and Bos as well
as the Prolog program for translating the FOL output into F-Logic or SPARQL
can be downloaded at http://www.cimiano.de/orakel.

A compositional semantics construction approach as implemented by
ORAKEL requires relatively rich lexical resources specifying the logical mean-
ing of each word. This is exactly where our user-centered model for lexicon
customization fills a gap as the rich semantic lexicon is generated in the back-
ground as a byproduct of the interaction of the user with the system’s lexicon
acquisition frontend, called FrameMapper (see Section 5). Details about the
semantics of each word remain completely hidden to the user. Indirectly, the
user is thus generating a grammar as well as associating logical meanings to
words without even being aware of it. We will discuss this process in detail in
Sections 4 and 5. Each lambda expression in our approach is typed. We only
consider the two primitive types e for entities/individuals and ¢ for truth value.
While e thus denotes all the individuals in the domain of discourse, ¢ denotes
the truth values true and false. Types are recursively defined as follows:

Definition 1 (Types)
o t1 is a type if t1 € {e, t},

25

e < ty,ty > is a type if t; and ty are types, and
e nothing else is a type.

Hereby, < t1,t2 > stands for the type of a function taking an expression of
type t1 as argument and returning an expression of type ts.

As a short illustrating example, imagine a user asking the question: ”Which
river passes through Berlin?” to a knowledge base containing facts about
German geography. The meaning of the diverse lexico-syntactic units in the
input can be expressed in functional lambda notation together with their
corresponding type after the slash as follows:

Which river AP 7z (river(z) A P(x)) | << e,t>,t>
passes through Az Ay flow_through(x,y) / <e,<e,t >>
Berlin AQ Q(Berlin) /| << e, t >,t>

So the semantic representation of ‘passes through’is of type / < e, < e, t >>
and thus expects two arguments of type e, i.e. individuals, to be inserted into
the appropriate relation flow_through. The expression ‘which river’is of type
<< e,t >,t > and thus expects some property P of type < e,t >, i.e. a
function from individuals to truth values, which z, a river, needs to fulfill.
‘Berlin’ is also of type << e,t >,t > and thus also expects some predicate Q)
into which it can be inserted as an argument.

Given the simplified syntactic structure together with instructions how the
semantic expressions are applied to each other in Figure 3.1, and evaluating the
tree in a standard bottom-up fashion, we would first carry out the functional
application

A (AQ Q(Berlin))(Ax Ay flow_through(z,y))(u)),
yielding as semantic representation of the V' P node
Au flow_through(u, Berlin)/ < e,t >

in which the argument Berlin has been correctly inserted. To yield the final
semantic representation of the top sentence node S, we would carry out the
functional application

(AP ?x (river(z) A P(2)))(Au flow_through(u, Berlin)),
resulting in the final logical query:
7z (river(z) A flow_through(x, Berlin))/t

In some cases, we will however omit the type information for the sake of pre-
sentation. In our approach to compositional semantics, we rely on the following
three operations:

e [-conversion/reduction for functional application,

26

own(ovp)
’/\
WH VP
AP (river(xz) A P(x)) Au opp(oy(u))
‘ -
. . \% Dp
Which river Az, y (flow_through(z,y) AQ Q(Berlin)
\ \
passes through Berlin

Figure 3.1: Syntactic analysis with semantic representations for each word spec-
ified according to the A-calculus and instructions how to combine the different
representations with each other.

e a-conversion for renaming bound variables, and
e substitution of marked variables by the @ operator.
Here follow the formal definitions:

Definition 2 (8-conversion/reduction (functional application))

Let s1 be an expression of the form Az s}, where x occurs somewhere in s} and
s1 has the type < to,t1 >. Let furthermore sy be an expression of type ts, then
the result of applying se to s1 is $1(s2) := s}[x/s2], where s}[x/s2] means that
x is substituted in s} by sa. Further, s1(s2) has the type t;.

As an illustrating example, imagine s1 = AQ Q(Berlin) /| << e, t >
,t > and so = Az ?w flow_through(w,z) / < e,t >, then s1(s2) =
?w flow_through(w, Berlin) / t.

For the (-conversion to be well-defined s; has to be free for the variables in
s2. This means that no variable occurring in ss should be bound by an operator
in s1, whereby operator refers to any quantifier. Thus, -reduction may make it
necessary to rename bound variables in ¢;. This is achieved with a-conversion:

Definition 3 (a-conversion)

Given a term s where the variable x occurs bound by some operator, i.e. some
quantifier, then we call a(s) := s[x/y], where y is some variable not occurring
in s, an a-variant of s. The process of renaming a bound variable is called
«a-conversion.

As an example for a-conversion, imagine we have s; = AP Vw (river(w) A
P(w)) / << e,t >,t > and s2 = Az ?w flow(w,z) / < e,t >, then before
performing S-conversion we should rename s; to AP Vz(river(z) A P(z)) / <<
e,t >,t >, thus yielding (a(s1))(s2) = Vo (river(z)ATw flow(w,x)) / t. Now
we come to marked substitution:

27

Definition 4 (Marked substitution)
If 51 is an expression with an occurrence of a marked variable x, i.e. x’' occurs
in s1, the result of marked substitution is s1 @ s2 := (Ax’ s1)(s2).

As an example of the marked substitution operator, imagine the expression
s1 = flow_through(z’,y) where the variable x is marked, and the expression
s2 = Rhein. As a result of s; @ so we would get flow_through(Rhein,y). We
will see below in Section 3.5 when discussing an illustrating example why this
operation is useful.

3.4 Query Conversion

In order to increase its flexibility, ORAKEL has been designed to be, on the
one hand, domain independent and, on the other hand, independent of the
specific knowledge representation and query language used in the background.
Domain independence is achieved by separating the general and domain lexica
as is typically done for transportable NLIs (compare [Grosz et al., 1987]). The
latter one needs to be handcrafted by a domain expert. The independence
of the target logical language is achieved by introducing a First-Order-Logic
(FOL) language enriched with additional predicates for quantifiers as well as
query and numerical operators, which is produced by our semantic analysis
component. The question ”Which city do the most rivers flow through?” is for
example represented as follows in our FOL-like query language:

?¢ Ir,ny city(c) A flow_through(r,c) A count(c,r,ni)A
Ve r' ng (flow_through(r',c) A count(d',r',na) — ny > na)

Queries in this FOL-like language can then be translated to any logical
language by a translation component. Hereby, the translation is specified
declaratively in Prolog and is thus exchangeable?. The Prolog conversion pro-
grams essentially specify recursively how the operators of the query language
(?, 3, A, —, count(...)). The above query is for example translated into F-Logic
as follows:

VC «— 3R,N; C : City N R[flow_through — C] A count(C,N,Ny) A
VC', R, Ny (R'[flow_through — C'] A count(C’, R', N3) — geq(N1, N3))

While all the queries specified in our FOL-like query language can be
translated into F-Logic, this is not the case for the SPARQL language.
Currently, the SPARQL language essentially supports only conjunctive queries
such that the above query would not be translatable to SPARQL.

A direct translation to some target formalism as performed in
[Cimiano, 2003] is also possible, but clearly such an approach is not as flexi-

4The Prolog code for the conversion into F-Logic and SPARQL can be found at http:
//www.cimiano.de/orakel.

28

ble as the one pursued within ORAKEL. Currently, our system supports two
formalisms used in the Semantic Web, the Web Ontology Language (OWL)®
with the query language SPARQLS as well as F-Logic as ontology language
together with its corresponding query language [Kifer et al., 1995]. The ontolo-
gies essentially provide the schema for the knowledge base and thus the concepts
and relations relevant for the domain in question. This system design allows
to port our system to any domain and any (reasonably expressive) logical for-
malism with a query language. The only requirement on the language is that it
provides extra-logical predicates for counting and for numerical comparisons.”

3.5 An illustrating example

In what follows, we discuss in detail the parse tree and semantic construction
for the question: ”Which rivers flow through more cities than the Rhein?”.
The elementary trees for this question are given in Figure 3.5. We will assume
that the tree selector has selected already these elementary trees and calls the
parser with the 8th elementary tree corresponding to the question mark, which
is marked with an r, as well as the S3 node as first node to process. In what
follows, we discuss the construction of the parse tree for the above example
step by step:

1st call:

treeNum = 9

node = S3
stack = [J;
identified = []

surface = Which rivers flow through more cities than the Rhein ?

As S3 is not positively marked, the parser simply adds the children of
Ss, i.e. Sy and ‘7’ to the stack, popping again S, and recursively calling the
parser to process this node.

2nd call:

treeNum = 9

node = S
stack = [7]
identified = []

surface = Which rivers flow through more cities than the Rhein 7

Shttp://www.w3.org/TR/owl-ref/

Shttp://www.w3.org/TR,/rdf-sparql-query/

"This is currently not met by SPARQL, thus leading to a reduced expressivity in the target
language.

29

As 54 is negatively marked, the parser then attempts to find a corre-
spondingly positively marked node. As Sy is to the left of the path from the
root node to the lexical element ‘?’, the parser searches for an appropriate root
node of an elementary tree to the left. The only possible candidate is S;. So,
both nodes are identified and the parser is recursively called with S;:

3rd call:

treeNum = 3

node = S

stack = [7]

identified = [(84,81”

surface = Which rivers flow through more cities than the Rhein 7

As Sy is now not marked anymore, the algorithm simply adds its chil-
dren - DP, and Ss - to the stack, processing first the negatively marked D P,
ie.

4th call:

treeNum = 3

node = DP,

stack = [S2,7]

identified = [(S4,51)]

surface = Which rivers flow through more cities than the Rhein 7

The only candidate to be identified with DP, is DP;, and the parser is
called recursively with DP; in the

5th call:

treeNum = 1

node = DP;

stack = [S2,7]

identified = [(54751),(DP2,DP1)]

surface = Which rivers flow through more cities than the Rhein 7

As DP; is not negatively marked, both children WH and NP, are put
on the stack and the parser recursively called with the W H node:

6th call:
treeNum = 1

node = WH
stack = [NP[,S52,7]

30

identified = [(S4,Sl>,(DP2,DP1)]
surface = Which rivers flow through more cities than the Rhein ?

Node WH has one child, which is further processed and, as it is a lexi-
cal node, the surface string is left-reduced by ‘which’in the

7th call:

treeNum = 1

node = which

stack = [N P ,52,7]

identified = [(84781),(DP2,DP1)]

surface = rivers flow through more cities than the Rhein ?

The parser then returns to process the first element of the stack, i.e.
npy:

8th call:

treeNum = 1

node = NP|

stack = [Sa2,7]

identified = [(84781),(DP2,DP1)]

surface = rivers flow through more cities than the Rhein ?

As NP; is on the right of the path from the root to the lexical element
of the elementary tree 1, the parser searches for a corresponding root of an
elementary tree on the right, thus identifying NP, with NP, and calling the
parser recursively for NP,. Here we abbreviate a little bit as it is clear what
happens, i.e. the surface string is left-reduced with ‘rivers’in the 9th call, thus
leading to a recursive call in which the element Ss of the stack is processed, i.e.

10th call:

treeNum = 3

node = Sy

stack = [7]

identified = [(84781),(DP2,DP1),(NP1,NPQ)]
surface = flow through more cities than the Rhein ?

Then the parser is recursively called with the child VP, :
11th call:

treeNum = 3
node = VP~

31

stack = [7]
identified = [(84781),(DP2,DP1),(NP1,NPQ)]
surface = flow through more cities than the Rhein ?

As VP, is negatively marked and the parser finds one dominated node
which matches it, i.e. V P, both nodes are identified and the parser continues
processing V Ps:

12th call:

treeNum = 3

node = VP,

stack = [7]

identified = [(54751),(DP2,DP1),(NP1,NPQ),(VPl,VPQ)]
surface = flow through more cities than the Rhein ?

The rest of the parsing proceeds analogously, so we abbreviate it:
e 14th call: the surface string is left reduced by ‘flow’
e 16th call: P; is identified with P
e 18th call: the surface string is left reduced by ‘through’
e 19th call: DP; is identified with D Py
e 21st call: the surface string is left reduced by ‘more’
e 22nd call: N P; is identified with N Py
e 24th call: the surface string is left reduced by ‘cities’
e 25th call: P; is identified with Py
e 27th call: the surface string is reduced by ‘than’
e 28th call: DP;s is identified with DPg
e 30th call: the surface string is left reduced by ‘the Rhein’
The 31st call then finally processes the question mark:

31st call:

treeNum = 8

node = 7

stack = ||

identified = [(54,51),(DP2,DP1),(NP1 ,NPQ),(VPl ,VPQ),(Pl ,Pg),(DP3,DP4),(NP3,NP4),
(P3,P1),(DP5,DFs)]

surface = 7

32

In this 31st call, the surface string becomes thus empty. Finally, in the
32nd call, as the surface string and the stack are empty, the forest is added to
the parselist. As a result, the parser yields the node identifications as depicted
in Figure 3.5. Concerning the semantics, we get the following:

Odpy = wh (Onpy) = Twh (Tnps)

(AP AQ ?w (P(w) A Q(w)))(Az river(z))

= AQ Tw (river(w) A Q(w))

(Tmore(0aps))(Tnps) = (Tmore(Tape)) (Tnps)

(AR AT AS vy Fvz Fvg Fug (T'(v1) A R(AR(S(v1) @ h)) A (S(v2) D) A

T(v2) A count(c,vz2,v3) A count(_,vi,va) A v1 > v4))(AP P(rhein)))(Az city(x))

= (AT AS Fvy Fvz Fuz Fug (T'(v1) A AP P(rhein)(Ah (S(vi) @ h)) A (S(v2) ®c) A
T(v2) A count(c,va2,v3) A count(_,v1,vs) A vz > va))(Azx city(z))

= AS Fui Fvg Jug Jua (city(vi) A (S(v1) @ rhein) A (S(v2) B c) A

city(v2) A count(c,v2,v3) A count(_,v1,v4) A v3 > va)

Odpy

Ovpy = AU Opp, (00 (1)) = Mt Oapy (00(u) = Au oap, (00 (u))
= Au (AS Fuy g Fus oy (city(vi) A (S(v1) @ rhein) A (S(v2) Bc) A
city(v2) A count(c,v2,v3) A count(-,vi,va) A vz > va))(Ay (flow(u,y))
= Au Fv1 Jug Fus oy (city(vi) A flow(rhein, vi) A
flow(u, v2) A city(v2) A count(u,v2,v3) A count(-,vi,va) A v3 > v4)
Os1 = 0s5(0dpy) = Ovp, (Tdp,) = Oupy (Tap,)
= ?w (river(w) A Jvi Jug Jvg Jva (city(vi) A flow(rhein,vi) A flow(w,v2) A

city(v2) A count(w,vz,v3) A count(-,vi,vs) A v3 > v4))

The final semantics of the sentence is thus in FOL:

?w (river(w) A Juy Jug Jug Jug (city(v1) A flowthrough(rhein,vi) A
flow_through(w,vy) A city(ve) A count(w, v, vs) A count(-,v1,v4) A v1 > vy)

Notice that the above first-order query is not a generic logical form but
one which makes already use of domain-specific predicates defined in the
underlying ontology. Our F-Logic translator then finally translates this into
the F-Logic query:

YW — W : river A V1 3IV2 IV3 IV4 (V1 : city A rhein[flow_through —
V1] N W]flowthrough — V2] A Vo : city A count(W,V2,V3) A
count(_, V1,V4) A greater(V3,V4)).

The above example also illustrates the function of the @ operator. In
fact, when comparing entities involved in certain relations using operators such
as ‘more than’, ‘most’, etc., we need to compare the extensions of the rela-
tion for one particular entity compared to all the other entities. For exam-
ple, when asking ”Which river flows through more cities than the Rhein?”
we need to compare the number of cities n the Rhein flows through, i.e.

33

flow_through(rhein, c1) A count(_, c1,n) to the number of cities f(r) that other
rivers r flow through, i.e. flow_through(r,cs) A count(r,cq, f(r)) and return
those rivers r for which f(r) > n. To accomplish this, we need to know the ¢1’s
which stand in the relation flow_through(rhein,c;) as well as the co’s which
stand in the relation flow_through(r,cz) with any r. A standard composi-
tional semantics interpretation would merely insert the subject ‘which river’
into the domain position of the flow_through relation. However, when com-
posing the semantics of ‘more than’, we have no access to the domain of the
relation flow_through, which is filled only when the subject of the sentence is
processed according to a standard compositional process. However, we need to
fill the domain position with ‘rhein’. The solution here is thus our & operator
which is able to unify the domain of the flow_through relation with ‘rhein’, thus
providing the information necessary for the above described comparisons. This
relies thus on the assumption that the domain position of the flow_through re-
lation is marked for substitution. In fact, in our approach, we always assume
that the position of the relation associated with the subject is marked for sub-
stitution. However, note that our use of the & operator does unfortunately not
provide a general solution as it relies on the fact that the subject will never be a
comparative expression. A comparative expression at subject position could be
found in an assertion such as ”Most rivers flow through Karlsruhe.” However,
if we restrict ourselves to questions, it seems hard to imagine a question with a
comparative quantifier at the subject position, so that our solution seems satis-
factory for a natural language interface, but not for the task of natural language
understanding in general.

So far, we have discussed step-by-step the parsing, semantic construction
as well the conversion for the example in question. This concludes thus our
detailed description of ORAKEL’s core components. In what follows, we briefly
describe two further features of our natural interface, i.e. its disambiguation
and inferencing capabilities.

3.6 Disambiguation

Concerning disambiguation, imagine a question like: ”Which river passes
through Berlin?”. In this case, the verb ‘passes through’ is ambiguous
with respect to a geographical knowledge base as it can denote the relation
flow_through relating rivers to locations they flow through as well as a relation
located_at_highway relating highways to cities they pass by. The way disam-
biguation is achieved in ORAKEL is by ensuring that arguments match the
appropriate selectional restrictions of a predicate. Thus, while ‘pass’is lexically
ambiguous with respect to these different relations, after verifying the selec-
tional restrictions, only the interpretation in the sense of rivers flowing through
a city remains available as ‘rivers’ fulfills the ontological restriction of the re-
lation flow_through, but not the one of the located_at_highway relation. This
disambiguation is achieved already at parsing time as only components which
fulfill each other’s ontological restrictions are combined. In general, this disam-

34

biguation strategy is similar to the one implemented in the ontological semantics
framework of Nirenburg and Raskin [?]. For illustration, consider the following
elementary trees for ‘flow through’ and ‘passes through’, which illustrate how

selectional restrictions are specified:

S
/\
DP; < river VPT
VPS
I
v PP
e o T
pass [head — ‘through’] o < location
S
/\
DP; < highway VPT
+
VP}
I
v PP
e ey o
pass [head — ‘through’] 5 < location

As another example, consider the question: ”What is the capital of Berlin?” In
fact, in our lexicon ‘Berlin’ is ambiguous between the state of Berlin and the
city of Berlin. In particular, the lexicon contains the following entries:

DPT :state

DPT ity
AP.P(berlin_state)

AP.P(berlin_city)

Berlin Berlin

The elementary tree for ‘capital’ looks as follows and clearly selects for a
state at the DP~ position:

N+
Az opp(on(z))

]
Az Ay capital(z,y) /PP\

. P _
capital [head — ‘of’] DP~ < state

Thus, the above elementary tree clearly selects for the state interpreta-
tion of ‘Berlin’, thus disambiguating its meaning correctly.

35

3.7 Inferencing

Concerning inferencing, rules or other axioms can be added to the ontology in
order to infer further implicit relationships. We could have a rule stating that
the location relation is transitive, i.e.

Yz, z location(zx, z) «— Jy location(z,y) A location(y, z).

Further, we could have a rule stating that a river « flows through a location
z if x flows through y and y is located in z:

YV, z flow_through(z,z) «— Jy flow_through(z,y) A location(y, z).

Now assuming that in the knowledge base we have specified for all rivers
the cities they flow through as well as the location of cities to states and states
to countries, a question like ”Which countries does the Donau flow through?”,
translated into ?w country(w) A flow_through(donau,w)), would return the
appropriate answer relying on the above rules.

Another rule currently available in the system is one which defines borders
as a symmetric relation, i.e.

Va,y borders(z,y) « borders(y,).

By modeling the above rule, we only need to specify the bordering relation
in one direction, while the other will be inferred. By this move, we halve the
size of the border-relation in the knowledge base.

In general, as ORAKEL relies on an inference engine and an axiomatized
ontology in the background, it can exploit the full inferencing capabilities of the
logical language and the inference engine used in the background. In general,
the inference capabilities of ORAKEL thus highly depend on the expressiveness
and inferences supported by the logical language used. In our settings, while
OWL provides us essentially with subsumption reasoning, F-Logic allows us to
use the expressive power of Horn rules to express relationships as the above.

36

+ 0
(o) © NEy
LT owH(ONP / 2
/1\ Az river(x)
WH NP- [num — plural]
AP AQ Tw(P(w)&Q(w)) R \
| [rivers
which o7
a +
y 59 -
' 05,(oDP;) .
B
.~ DP; < river N Sa
[num — plural] “\ ovp
' I
| ve
',‘ OV Py ;—‘\‘\\\
‘: VP

Au opp (ov(u))

v 1 PPy
Az Ay flow(z’,y) | opPy
\ L
flow [head — ’through’] DPy ‘S city
A L L -
P‘2 -
through 1

more
AR AT \S Fvy Jvg Jug vy
(T(v1) & R(AR S .

(v1) B h)&

| _ P. _
| 3
S(v2) @ c&T(v2) & ! N‘P3 [head — ‘than’] D]‘35
count(c,va,v3) & count(-,v1,v4) & - ! !
v1 > va) L
B LSt S
NP} | Lo
Az city(z) Py DFg N S3
[num — plural] ‘ ‘ . A
than the Rhein - Sy ?
cities

Figure 3.2: Elementary trees for ”Which rivers flow through more cities than
the Rhein?”

37

Chapter 4

Domain Adaption

In our system, we pursue an approach in which the domain lexicon is constructed
in interaction with the user, whose task is to map relations in the knowledge
base to appropriate verb and noun subcategorization frames, adjectives, etc.
Before explaining in detail the underlying model which allows a user to create
a domain-specific lexicon and thus customize the system to a certain knowledge
base, it is important to mention that the overall lexicon of the system has a
bipartite structure consisting of:

e a domain-independent lexicon, containing the semantic representations for
determiners (a, the, every, most, ...), wh-pronouns (who, what, which,
where) as well as certain spatio-temporal prepositions (on, in, at, before,

),

e a domain-specific lexicon, defining the meaning of verbs, (relational) nouns
and adjectives occurring in the domain, and containing lexical entries and
the semantics of instances and concepts, which are typically represented
linguistically as proper nouns and nouns, respectively.

The domain-independent lexicon is, as the name suggests, independent of
any domain as it specifies the meaning of words occurring in several domains
and with a constant meaning across these. This is the case for determiners,
wh-pronouns and prepositions. The semantic representations of the words in
this domain-independent lexicon thus make reference to domain-independent
categories as given for example by a foundational ontology such as DOLCE
[Masolo et al., 2003]. This assumes obviously that the domain ontology is some-
how aligned to the foundational categories provided by the foundational ontol-
ogy. The obvious benefit of such a modular design of the lexicon is that the
meaning of closed-class words such as prepositions, wh-pronouns or determiners
are available independently of any domain ontology and need not to be specified
for every different domain the system is applied to. A more detailed description
of the general benefits and rationale of such a modularized approach can be
found in [Cimiano and Reyle, 2006].

38

DPT :country DPT :country

DP* ity Az.country(x) Az.country(x)
AP.P(saarbruecken) [num — sing] [num — plural]
Saarbriicken country countries

Figure 4.1: Elementary trees automatically generated from the KB

The domain-specific lexicon is partially derived fully automatically from the
domain ontology loaded into the system without any manual intervention. In
fact, the system reads in all the concepts and instances of the ontology and
relies on their labels to generate appropriate grammar trees representing these.
Obviously this assumes the availability of labels for each concept and instance
in the ontology. However, in general it is regarded as good practice to include
such labels into the ontology to enable human inspection. For the generation
of nominal trees on the basis of concepts, we use a lexicon with morphological
information to generate the appropriate plural form. This lexicon was generated
on the basis of Tree Tagger’s tagger lexicon [Schmid, 1994].

For illustration, Figure 4.1 shows the elementary trees which are automati-
cally generated from the instance Saarbriicken as well as the concept country.

The other part of the domain-specific lexicon component has to be gener-
ated by the user is the domain-specific lexicon, in which verbs, adjectives and
relational nouns are mapped to corresponding relations specified in the domain
ontology. The domain-specific lexicon is actually the most important one as it is
the one specifying the mapping of linguistic expressions to domain-specific pred-
icates. It is important to emphasize that our natural language interface does not
require any sort of pre-encoded grammar as input of the system. The grammar
underlying the ORAKEL system consists exactly of the union of the trees in the
domain-independent lexicon, the ontological lexicon and the domain-specific lex-
icon. Thus, the task of the user is to actually provide a domain-specific grammar
to the system. As this is a difficult task - compare the discussion of syntactic
variants in Section 3.1 - in our natural language interface we implement an
approach in which the user simply instantiates subcategorization frames and
maps these to domain-specific relations in the ontology. Actually, the linguistic
subcategorization frames as well as the relation types are organized in a type
hierarchy, such that only structures of compatible arity are mapped onto each
other. As shown in Figure 4.2, in our type system we distinguish between bi-
nary, ternary and quaternary subcategorization frames which can be mapped
to binary, ternary and quaternary relations, respectively®.

INote that there is no principled limit to the arity of relation. However, according to our
experience considering relations of up to 4 suffices to cover most examples in practice.

39

Subcategorization Frames

T

Arity2 Arity3 Arity4
e T
Transitive Intransitive+PP Noun+PP Transitive+PP Noun+PP+PP (‘)
Relation
- T
Arity2 Arity3 Arity4
T _— T

Binary Relation 2 X 2 Join Ternary Relation 2 X 2 Join’ 3 X 2 Join (‘)

Figure 4.2: Type hierarchies of linguistic templates and relations

Examples for binary subcategorization frames are transitive verbs, intransi-
tive verbs with a prepositional complement, relational nouns with one preposi-
tional complement as well as participles with prepositional complements:

e transitive: verb(subject,object), e.g. border

e intransitive + prepositional complement: verb(subject, prep:pobject), e.g.
flow through

e noun + pp: noun(prep: pcomp), e.g. capital of
e participle+pp: participle(prep: pcomp), e.g. located in

For example, the user could create the following mappings for a geography
knowledge base:

locatedIn(x: location, y: location) (1)
inhabitants(x: location, y: integer) (2)
inhabitants(y: state/city, x: integer) (3)
capital(x: city, y: state) (4)

length(x: river, y: integer) (5)
flow_through(x: river, y: city) (6)
flow_through(x: river, y: city) (7)
located_at_highway(y: city, x: highway) (8)
height(x: mountain, y: integer) (9)
borders(x: location, y: location) (10)
locatedIn(y: location, x: location) (11)

location(pcomp(of): x)
inhabitants(pcomp(of): x)
live(subj: x,pobj(in): y)
capital(pcomp(of): x)
length(pcomp(of): x)
flow(subj: x, pobj(through): y)
pass(subj: x, pobj(through): y)
pass(subj: x, pobj(through): y)
height(pcomp(of): x)
border(subj: x, obj: y)

located (pcomp(in): x)

L A A

First of all, note that though these mappings may seem straightforward,
they are indeed crucial for ORAKEL to generate a full domain-specific gram-
mar mapping linguistic expressions to appropriate semantic representations.
How should ORAKEL in fact know that the relation border is best expressed
with a transitive verb with the same name? How should it know that the
capital relation should best be expressed by the noun ‘capital (of)? Though

40

simple heuristics based on matches between relation names and verbs or nouns
might be applied, they will in general not suffice to cover all the possible lexical
variations one can use to ask for a specific relation. Language is to variable
to be captured by such easy heuristics. Further, it is crucial to determine
the order in which the arguments of the relation map to arguments of the
linguistic predicate, e.g. the verb or noun in question. Instead of building
on an automatic, heuristic, and therefore error-prone process, in ORAKEL
we build on a more controlled approach in which users can specify lexical
variants (with some support though) as well as the correct order in which
the arguments map onto each other. Examples of mappings which are not
as straightforward are (3) and (7). The 3rd mapping is interesting in that it
provides a non-straightforward lexical variant for asking for the inhabitants of
a city. The 7th mapping introduces a further non-obvious lexical variant to ask
for the flow_through relation between rivers and cities. By this, we introduce
a lexical ambiguity into the lexicon, as ‘pass through’ can denote either the
flow_through relation between rivers and cities as well as the located_at_highway
relation between highways and cities. Actually, it is not always the case
that the domain of a relation is mapped to the subject and the range to the
object in the corresponding verb subcategorization frame. Such an example
is provided by mapping (8) where the subject and object of ‘pass through’
are mapped to the range and domain of located_at_highway, respectively. It is
therefore necessary that the user also specifies the order in which the relation’s
arguments map to the ones of the subcategorization frame. For the noun
subcategorization frames, the argument of the relation which has not been
mapped to the pcomp position — the y-argument in the above examples — is
stored separately from the actual frame as it will be normally expressed in form
of a copula? construct such as “What is the length of the Rhein?”. Note that
this holds also for participles which are also typically used in copula constructs,
e.g. “Where is Karlsruhe located in?”.

Further, for nouns complemented by the preposition ‘of’, the system also
generates trees allowing to ask for the corresponding relation using the verb
‘have’ (see the examples below). For methods such as capital_of, which do not
have a datatype such as a string or an integer as range, and which have been
mapped to a noun+pp, the generator does not only generate relational noun
phrases such that one can ask: “What is the capital of Baden Wiirttemberg?”
using a copula construct, but also a form in which the argument mapped to the
pcomp position is existentially quantified over. This allows to ask a question
like “Which rivers flow through a capital?” For verbs, it generates the active,
passive and verb-last forms, but also relative clauses complementing a noun
phrase (see the tree family for a transitive verb described in Section 3.1). On
the basis of the above example mappings, the system then generates elementary
trees, such that it is able to interpret the following questions:

2A copula is an expression involving the verb ‘be’ and linking the subject to some property
or object.

41

What is the location of Stuttgart? (1)

How many inhabitants does Baden Wiirttemberg have? (2)

How many people live in Karlsruhe? (3)

What is the length of the Rhein? (5)

What is the capital of Baden Wiirttemberg? (4)

Which river flows through the capital of Baden Wiirttemberg? (4+6)
Which rivers flow through a capital? (4+6)

What is the length of the Rhein? (5)

Which river flows through the most cities? (6)

Which river flows through a state which borders Baden Wiirttemberg? (6410)
Which river passes through Miinchen? (7)

Which highways pass through Berlin? (8)

What is the height of the Zugspitze? (9)

Which countries does Baden Wiirttemberg border? (10)

Which countries are bordered by Baden Wiirttemberg? (10)

Which countries border Baden Wiirttemberg? (10)

Which state borders the most countries? (10)

Where is Karlsruhe located in? (11)

Binary relations with an integer as range are special types of relations which
can also be mapped to adjectives by specifying (i) the base, (ii) the comparative,
and (iii) the superlative form of the adjective, additionally indicating whether
it denotes a positive or negative scale (this is similar to the approach in TEAM
[Grosz et al., 1987]). For example, the adjectives ‘big’, ‘long’ and ‘high’ are
mapped to the the relations inhabitants, length and height, respectively:

adj(big,bigger,biggest,positive) — inhabitants(city,integer) (Adj1)
adj(long, longer, longest,positive) — length(river,integer) (Adj2)
adj(high,higher highest,positive) — height(mountain,integer) (Adj3)

This then allows to ask the following questions:

How long is the Rhein? (Adj2)

How high is the Zugsitze? (Adj3)

How big is Karlsruhe? (Adjl)

Which is the longest river? (Adj2)

Which river is longer than the Rhein? (Adj2)
Which is the highest mountain? (Adj3)

Which cities are bigger than Karlsruhe? (Adjl)

The positive/negative distinction is thus necessary to generate the cor-
rect semantics for comparative and superlative adjectives. In fact, ‘big’, ‘long’
and ‘high’ are positive adjectives in our sense, while ‘small’ is an example of
a negative adjective. In general, specifying the semantics of adjectives in base
form is a quite delicate issue as an adjective such as ‘big’ actually denotes a
fuzzy set in the sense of Zadeh [Zadeh, 1975]. However, we need to specify
the semantics of adjectives in order to answer queries such as “Which rivers
flow through big cities?”. The solution adopted in ORAKEL is to expect a

42

definition of the semantics of an adjective in terms of a rule, e.g.

YV big(x) « city(z) Ainhabitants(x,y) Ay > 500.000

It is important to emphasize that currently ORAKEL can only handle scalar
adjectives such as ‘big’, ‘high’, ‘long’, etc. In particular, it can not deal with non-
scalar adjectives such as ‘German’, which would need to be translated into a cor-
responding relation in which a specific value is inserted. The adjective ‘German’,
for example, could be translated into the expression Az locatedIn(z, Germany).

In order to allow a user for specifying the above described mappings, we
have created a tool called FrameMapper which supports the user graphically
in performing the mappings. Currently, there is no graphical support within
the FrameMapper system to describe the semantics of adjectives in this way.
Thus, the specification of the semantics of adjectives needs to be specified by
hand, which is currently a bottleneck in our system. However, we are currently
devising methods to also support the user in specifying the semantics of adjec-
tives with the FrameMapper tool in an intuitive way without having to define a
logical rule. Note that the specification of the semantics of the comparative and
superlative version of an adjective does not face this problem as only relative
comparisons between elements along the underlying scale need to be conducted.
Thus, specifying the attribute the adjective maps to as well as whether the scale
is positive or negative is sufficient.

As shown in the type hierarchy depicted in Figure 4.2, the mapping model
is not restricted only to binary relations. Subcategorization frames can also be
mapped to joins of several relations, e.g. a subcategorization frame of arity 2
can also be mapped to two binary relations joined at a given position (2 x 2-
Join in Figure 4.2), a subcategorization frame of arity 3 can be mapped either
to a simple ternary relation, a join of two binary relations in which the joined
position is also mapped to an argument in the frame (2 x 2-Join’ in the Figure)
or to a join of 3 binary methods (3 x 2-Join in the Figure), etc. Hereby Join’
denotes a join in which the joined position has also been mapped to an argument
in the subcategorization frame while for Join this is not the case. This explains
why n x 2 Join’ joins have an arity of n + 1 while n x 2 Join joins have an arity
of n.

The reason for introducing such an elaborated type system is the fact that
linguistic expressions in many cases do not correspond directly to one relation
in the knowledge base, but express a combination of different relations in the
knowledge base, which can be expressed through joins.

As a more complex example, assume the following relations given in the
knowledge base: author(paper,author), title(paper,title), year(paper,string). If
we create a 3 X 2 Join by joining the paper position of the three relations, we
can map this ternary relation to a transitive verb ‘publish’ with a prepositional
complement introduced by the preposition ‘“%n’such that we can ask a question
like “Who published which paper in 2002¢” (see also the discussion of this join
in Chapter 5).

43

Summarizing, the crucial aspect here is actually the fact that the domain-
specific grammar necessary for understanding domain-specific expressions is gen-
erated in the background as a byproduct of a user interacting with the system
and mapping subcategorization frames onto appropriate relations in the knowl-
edge base. Thus, no pre-encoded grammar is actually needed in the system.
In order to map relations defined in the ontology to appropriate subcatego-
rization frames, users are supposed to use the FrameMapper lexicon creation
frontend, which allows to select a relation and to create corresponding subcat-
egorization frames. The ontological restrictions on the concepts which can be
used at the different argument positions of the relation will then be used as
selectional restrictions in the subcategorization frames and exploited for disam-
biguation (compare Section 3.6). After the user has assigned all the relations
to corresponding subcategorization frames or adjectives, he can export the lex-
icon, which can then be used by the natural language interface to answer users’
questions against the knowledge base. In our model, we do not expect a lexicon
engineer to model the lexicon in one turn from scratch, but assume that the
lexicon is created in several iterations. After the domain expert has created
a first version of the lexicon, the system is deployed. The domain expert gets
presented the questions which the system failed to answer and the process is
iterated. Our hypothesis in fact is that with such an iterative method, the qual-
ity of the lexicon can be constantly improved. We will present experimental
evidence for this hypothesis in Chapter 6. Before presenting the results of our
experiments in Section 6, in the following chapter we describe FrameMapper’s
graphical user interface.

44

Chapter 5

Graphical User Interface

Figure 5.1 shows a screenshot of FrameMapper’s graphical user interface. It
shows how a user is mapping the flow_through relation to the intransitive
verb ‘flow’ featuring a prepositional complement introduced by the preposi-
tion ‘through’. The figure shows the three main panes of FrameMapper. In the
top pane, the user sees the relations specified in the ontology. In the second
pane, s/he can see the different subcategorization frames assigned to the active
relation. In the third pane, he sees a graph visualization of the current subcate-
gorization frame and of the selected relations. He can then graphically map the
arguments of the frame to the ones of the selected relation(s). In the GUI screen-
shot in Figure 5.1, the user has already mapped the intransitive verb ‘pass’ with
a prepositional complement introduced by ‘through’to the flow_through relation
(this can be seen in the middle pane). Currently, he is also mapping the intran-
sitive verb ‘flow’ with a prepositional complement introduced by the preposition
‘through’to the same relation. In particular, he has already mapped the subject
position of the verb ‘flow‘ to the domain of the flow_through relation and the
prepositional complement to the range position of the same relation. Further,
in the screenshot he has already entered the appropriate preposition ‘through’
in the graph representing the subcategorization frame and is currently editing
the verb, specifying that its base form is actually ‘flow’. With this information,
the system can in the background generate all the grammatical variations of
the intransitive verb ‘flow’, thus allowing to ask for the flow_though relation in
a variety of ways. In order to add a further verb, the user simply has to in-
stantiate a new subcategorization frame and perform the mapping again. The
newly created subcategorization frame would then be added to the list of those
subcategorization frames already created for the active relation(s) in the mid-
dle pane. In order to ease the process of adding lexical variants, we have also
integrated the WordNet lexical database [Fellbaum, 1998] with the purpose of
automatically suggesting synonyms for the verb or noun currently edited. For
this purpose, we only consider the first sense of each word, suggesting each of the
words contained in the corresponding synset to the user as lexical variants on
demand in the form of a check-box. Each selected synonym is then used to gen-

45

erate subcategorization frames only differing in the lexical element. However,
this functionality was added recently and not used in the experiments described
in Chapter 6.

It is important to mention that the type hierarchy described in the previous
section is used to constrain the subcategorization frames offered to the user. For
example, if he selects one binary relation, he will only be able to instantiate a
transitive, intransitive+PP or noun+PP subcategorization frames. Adjectives
can only be created for relations with an integer as range.

Note that the user can also select various relations and carry out joins be-
tween them to specify more complex mappings involving more than one rela-
tion. Figure 5.2 shows a screenshot of the GUI in which the user has cho-
sen the three relations author(publication,person), title(publication,string) and
year(publication,string), all joined through their domains, i.e. through the pub-
lication. The user has further instantiated a subcategorization frame for the
transitive verb ‘publish’ featuring a direct object as well as a prepositional com-
plement introduced by the preposition ‘“n’. Further, he has mapped the range
of the author (publication,person) relation to the subject position, the range of
the title(publication,string) relation to the object position as well as the range
of the year(publication,string) to the prepositional complement. This mapping
would then allow to ask a question like “Who published which paper in 20022 .

In general, the user can export the lexicon, which can then be loaded into
the ORAKEL natural language interface, but s/he can also import an already
created mapping lexicon to add more subcategorization frames, thus supporting
our iterative lexicon generation model.

46

FrameMapper
File

“Standard-View | Adjective-View |

Methodname Domain Range Parameters

|Iocation city Iocatian
Jlinhabitants city integer
{lcapital_of city state
Vinhabitants state integer
Vienath tiver integer
M origin river Iocatian
| Mows_through tiver city
M height mountain integer
Viocated_at_highway ity highwray
| borders state location

Iimransilive+pp(pass L through)
intransitive+pp(flow , through)

piver] Rows_thray kit

Figure 5.1: GUI of FrameMapper showing a simple mapping for the geographical
domain.

47

rameMapper

ile

" Standard-View | Adjective-View

(Wethodnarne Dormnain Range Parameters

|auth0r publication PErson -
llpublisher publication person il
editor publication person L
volurmne publication person

numhber publication person

month publication person

series publication person

address publication person

cite publication publication

note publication string
Ime puhblication string
|labstract publication string
I|keywmds publication string

|year icati string i}
name person stting >

transitive+pp(author , at)

< 1] [»

Figure 5.2: GUI of FrameMapper showing a more complex mapping involving
joins for the academic domain.

48

Chapter 6

Experiments

In this chapter, we first present the settings and results of our experiments,
which have been carried out on two different domains showing that the
ORAKEL system can be adapted to different domains without major efforts.
First, we present a user study carried out with a knowledge base and corre-
sponding ontology containing facts about German geography. The aim of this
study was to demonstrate that computer scientists without any NLP expertise
can indeed generate domain-specific lexica for the ORAKEL system without
major difficulties. Second, we provide some statistics demonstrating that the
system has potentially a reasonable linguistic coverage. The results of the first
study have been partially presented also in [Cimiano et al., 2007] but presented
here in more detail. In this paper, we additionally discuss a case study carried
out at British Telecom in which the ORAKEL natural language interface was
successfully applied to offer enhanced search over a digital library.

6.1 User study

The aim of the user study was to show that computer scientists without any
NLP expertise can indeed generate reasonable domain-specific lexicons for the
ORAKEL natural language interface. The study also provides first evidence
that our iterative approach is indeed feasible.

The knowledge base used for the experiments contains geographical facts
about Germany. In particular, it contains states, cities, rivers and highways
in Germany, as well as the name of the neighboring countries. It is a small
knowledge base handcrafted by students at our department independently of
the experiments described here. The knowledge base contains the number of
inhabitants of each state and city as well as the capital of each state. For
rivers and highways, it contains information about the cities they pass. For
rivers, it additionally contains their origin as well as length. It also contains
mountains and their heights. Overall, the knowledge base comprises 260
entities: 108 highways, 106 cities, 18 rivers, 16 states, 9 (bordering) countries

49

and 2 (bordering) seas as well as one mountain peak, i.e. the Zugspitze. The
relations defined in the ontology are the following ones (given in F-Logic style
notation):

city[locatedIn => location)].
city[inhabitants => integer].
state[inhabitants => integer].
state[borders =>> location].
city[located_at_highway =>> highway].
river[length => integer].

riverforigin => location].
river[flows_through => city].
mountain[height => integer].
city[capital_of => state].

Here, => denotes that the relation is functional, i.e. it can have at
most one instance as range, and =>> denotes that there can be more than one
instance as range of the relation.

The user study involved one of the authors of this paper, as well as 26 addi-
tional test persons from 4 different institutions, both academic and industrial.
Of these 26 test persons, 25 were computer scientists and 1 a graphic designer,
most of them without any background in computational linguistics. The role
of the author as well as two of the other participants was to construct a lex-
icon each, while the rest played the role of end users of the system. We will
refer to the author as A and the other two participants constructing a lexi-
con as B and C'. While A was very familiar with the lexicon acquisition tool,
B and C' were not and received 10 minutes of training on the tool as well as
10 minutes explanation about the different subcategorization types, illustrated
with general examples. Whereas A constructed a lexicon in one turn, B and C'
constructed their lexicon in two rounds of each 30 minutes. In the first round,
they were asked to model their lexicon from scratch, while in the second round
they were presented those questions which the system had failed to answer after
the first round consisting of 4 sessions with different users. They were asked
to complete the lexicon on the basis of the failed questions. Overall, they thus
had one hour to construct the lexica. The 24 persons playing the role of the
end users also received instructions for the experiment. They received a docu-
ment describing the experiment, requiring them to ask at least 10 questions to
the system. Further, the scope of the knowledge base was explained to them.
They were explicitly told that they could ask any question, also involving nega-
tion and quantification, with the only restriction that it should begin with a
wh-pronoun such as which, what, who, where as well as how many or how +
adjective. For each answer of the system, they were asked to specify if the an-
swer was correct or not. The results are thus reported in the following as recall,
i.e. the number of questions answered correctly by the system divided by the
total number of questions asked to the system. Excluded from this were only
questions with spelling errors or which were obviously ungrammatical, as well
as questions which were clearly out of the scope of the knowledge base. We

50

Lexicon Users | Rec. (avg.) | Prec. (avg.)
A 8 53.67% 84.23%
B (1st lexicon) 4 44.39% 74.53%
B (2nd lexicon) 4 45.15% 80.95%
C' (1st lexicon) 4 35.41% 82.25%
C' (2nd lexicon) 4 47.66% 80.60%

Table 6.1: Results for the different lexica

also give the precision of our system as the number of questions for which the
system returned a correct answer divided by the number of questions for which
it returned an answer at all. Note that precision and recall are defined here
in line with [Popescu et al., 2003] and not in the standard information retrieval
sense (cf. [Baeza-Yates and Ribeiro-Neto, 1999]).

Table 6.1 shows these results for each of the lexicon constructors and the
two iterations.

The first interesting conclusion is that, for both B and C, there is an in-
crease in recall after the first round. Thus, the results show that our iterative
methodology to lexicon customization is indeed promising. The involved users
also confirmed that it was easier to extend the lexicon given the failed questions
than creating it from scratch. The second interesting result is that the lexicons
created by B and C show a comparable recall to the lexicon developed by A.
In fact, we found no significant difference (according to a Student’s t-test at an
a-level of 0.05) between the results of B’s lexicon (p = 0.32) and C’s lexicon (p
= 0.15) compared to A’s lexicon. This shows that our lexicon acquisition model
is in fact successful. In general, the results have increased after the second iter-
ation, with the exception of a slight drop in precision for user C' at the second
round. We expect that further iterations will continuously improve the lexica.
This is, however, subject to further analysis in future work.

6.2 Question Analysis

Having shown that domain experts are able to map relations in a knowledge
base to subcategorization frames used to express them, an important question
is to determine how big the coverage of the different subcategorization frames
is with respect to the questions asked by the end users. Overall, the end users
asked 454 questions in our experiments (actually much more than the number
of questions requested). Table 6.2 summarizes the constructions used together
with illustrating examples, giving their percentage with respect to the total num-
ber of questions. The results show that in principle, assuming that the lexicon
is complete, with our basic subcategorization frames transitive, intransitive+pp,
np and adj as well the constructions automatically generated from these (marked
with a “*’ in the table), we get a linguistic coverage of over 93%?!. This shows

IThe constructions marked with a — were added after the user study described before.

o1

construction # % Example

intransitive+pp (*) 169 | 37.22% | How many cities does the A1l pass through ?
transitive (*) 56 12.33% | How many states does Baden Wiirttemberg border ?
be+np (*) 102 | 22.47% | What is the capital of Bayern ?

be+adj (*) 22 4.85% How long is the Donau ?

be+pp (+) 22 4.65% Which cities are in Bayern 7

be+dp (*) 18 3.96% Where is Diisseldorf ?

be+np (poss) (-) 1 0.22% What is Bayern’s capital ?

be+participle (-) 12 2.64% Which cities are located in Bayern ?

be+np (inv) (-) 4 0.88% Which state is Miinchen capital of ?

be+np (superlative) (*) 2 0.44% What is the capital of Bayern ?

be+comp (*) 7 1.54% Which cities are bigger than Frankfurt 7

passive (*) 1 0.22% Which states are bordered by at least 2 countries 7
have (*) 32 7.04% Which states have more inhabitants than Hessen 7
Number of queries: 454 100%

Table 6.2: Usage of constructions in main clause (in percent with respect to the
total number of questions)

that it is indeed feasible to focus on a few subcategorization types. The in-
telligence lies anyway in the generation of the corresponding elementary trees
from the subcategorization frames. The generation, however, remains totally
opaque to the user. For the constructs marked with '4’, we additionally need
to specify the semantics of prepositions with respect to domain-independent re-
lations. For example, ‘n’ maps to the relation locatedIn in our system. This is
assumed to be a relation which is available in any domain. For other domains
however, ‘n’might also have a temporal interpretation which can be formalized
with respect to the DOLCE foundational ontology ([Cimiano and Reyle, 2006]).
Constructions which were added after the experimental evaluation are the ones
marked with a ‘-, i.e. the be+np (possessive), be+np (inverse) and be+participle
constructions, which account for around 3.75% of the cases. Considering the
first two is merely a question of generation of the appropriate elementary trees
and was accomplished in a straightforward way. For the third construct, the
subcategorization types had to be extended to participles subcategorizing a
prepositional phrase, e.g. such as located in.

6.2.1 Runtime evaluation

In addition to the above experiments, we also performed a runtime analysis
of the system?. Figure 6.1 shows the average number of seconds needed by
ORAKEL to process the question, the number of seconds taken by the Onto-
Broker inference engine (see [Decker et al., 1999]) to answer the logical query as
well as the sum of both. These values are shown grouped and averaged over the
sentences up to a certain length (in the number of words). Four observations
are straightforward. First, we can observe that all questions are processed and
answered within 0.6 seconds at most. Second, we observe that the time taken to
process an input question increases proportionally to the number of words in the
sentence. Third, it is also interesting to see that the time OntoBroker needs to

2This analysis was performed on a personal computer with a 2GHz processor.

52

0,600
0,550 __
0,500 M
0,450 L
0,400 H T
0,350 L

[orakel
0,300 17 I OntoBroker
0,250 M [] Orakel & Ontobroker

0,200
0,150
0,100
0,050 -
0,000 —ﬂﬂwﬂm

3 4 5 6 7 8 9 10 11 12 13

Seconds

Number of words

Figure 6.1: Average runtime for ORAKEL and OntoBroker over number of
words

answer the queries also increases with the number of words in the input sentence
(with the exception of the last value), which shows that the longer questions are
not only hard to process but also to answer from an inferencing point of view.
Finally, it is also interesting to observe that the time taken by OntoBroker to
answer a query can be more or less neglected with respect to the time taken by
ORAKEL to translate the question. With respect to all questions, the average
time taken by ORAKEL to process a question is 0.13s, for OntoBroker it is
0.02s and for both together it is 0.15s. This shows that the performance of the
system is indeed good enough to answer questions in real time.

6.2.2 Real-world application

As a further experiment, our approach has been applied within the British Tele-
com (BT) case study in the context of the SEKT project®. In this case study
the aim was to enhance the access to BT’s digital library by a natural language
interface. BT’s digital library contains metadata and fulltext documents of
scientific publications. The knowledge base considered within this case study
is several orders of magnitude larger than the one considered in the context of
the experiments carried out on the geographical domain. The ontology used to
describe the metadata is the PROTON ontology?, which consists of 252 classes
and 54 relations. While the PROTON ontology (the schema of the data) is
stored in an OWL ontology in this scenario, all the publication metadata are

Shttp:/ /www.sekt-project.com/
4http://proton.semanticweb.org/

53

stored in a database. The schema of the database, however, has been mapped
to the PROTON ontology, such that queries to the ontology are evaluated
by taking into account the metadata in the database. The knowledge base
contains metadata about 67015 authors, 17174 topics and 33501 documents
(journal articles, conference papers, conference proceedings, periodicals and
books). Further, there are 66870 instances of the AuthorOf relation and 165089
instances of the isAboutTopic relation. As the data size is indeed several orders
of magnitude larger compared to our geography domain, in the context of this
use case it was totally unfeasible to generate a grammar entry for each value in
the database. Therefore, we performed a slight change to the ORAKEL system
to allow to dynamically create grammar trees at query time for names of
instances. This was achieved by considering every sequence of upper-case words
as a potential candidate for an instance, generating appropriate elementary
trees at runtime. For example, for an unknown sequence of words such as
”John Davies”, the following elementary tree would be generated at runtime:

DP+
AP3x P(x) Alabel(x,” JohnDavies”)
|

John Dayvies

The ontological lexicon is thus generated only for concepts in the ontology in
this scenario, while the part of the lexicon containing the instances is generated
dynamically. This move was important to ensure efficiency in this setting.

A graduate student and a PhD student spent overall approx. 6 hours cre-
ating a lexicon for a subset of PROTON relevant for the digital library using
FrameMapper with the result that queries about authors, topics etc. about doc-
uments could be answered successfully against the BT ontology and database.
Examples of such questions are:

e What conference papers did John Davies write?

e Which conference papers do you know?

e Who wrote which document?

e Who wrote “The future of web services”?

e Who wrote about “Knowledge Management”?

e What article deals with Photography?

e Which journal articles were written by whom?

e What are the topics of ”The future of web services”?
e Which conference papers were classified as religion?

e Which articles are about “Intellectual Capital”?

54

Iteration | Rec. (avg.) | Prec. (avg.)
1 42% 52%
2 49% 1%
3 61% 73%

Table 6.3: Results for the different iterations

e What articles were written by Lent and Swami?

Who is the author of a document that talks about which concept?

Who wrote which articles about what?

e Which documents are about F-Logic and Insurance?

Further, ORAKEL was also modified to process quoted text by matching it
against a text index of the metadata in the database using a special purpose
predicate match. The question ” What articles are about “Intellectual Capital”?”
is translated into the following SPARQL query:

SELECT ?wl16 WHERE {
?wl6 rdf:type <http://proton.semanticweb.org/2005/04/protonut#Article> .
?wl6 <http://proton.semanticweb.org/2005/04/protont#hasSubject> 7x17
?x17 rdfs:label x18 .
match(x18,"Intellectual Capital")

Furthermore, an evaluation of the ORAKEL system over several iterations
was carried out with the BT digital library. As in the experiments described
above, the end users received written instructions describing the conceptual
range of the knowlege base, asking them to ask at least 10 questions to the
system. In each of three iterations, 4 end users asked questions to the ORAKEL
system and the graduate student updated the lexicon on the basis of the failed
questions after the first and second round for about 30 min., respectively. The
end users were also asked to indicate whether the answer was correct or not,
which allows for the evaluation of the system’s performance in terms of precision
and recall. The results of the evaluation are presented in Table 6.3, which clearly
shows that the second iteration performed much better than the first one, both
in terms of precision and recall. In the third iteration, there was a further
gain in recall with respect to the second iteration. Overall, this indeed shows
that our iterative lexicon model is reasonable and in fact leads to incremental
improvement of the system’s lexicon.

Overall, the application of ORAKEL to enhance the access to BT’s digi-
tal library showed on the one hand that, given certain straightforward modi-
fications, our approach can actually scale to much larger knowledge and data
bases. Further, the additional use case confirms that the system can indeed be
ported between domains in a more or less straightforward way. We refer the

95

interested reader to [Cimiano et al., 2006] and [Warren and Alsmeyer, 2005] for
further details about the case study at British Telecom.

56

Chapter 7

Related Work

In the 70’s and 80’s, natural language interfaces were a fashionable research topic
(compare [Androutsopoulos et al., 1995] and [Copestake and Jones, 1989]).
First companies selling natural language interfaces as products were launched,
e.g. Intellect from Trinzic, Parlance from BBN, Languageaccess from IBM,
Natural Language from Natural Language Inc., English Wizard from the Lin-
guistic Technology Corporation!. However, it seems that these early systems
were not robust or mature enough for application and researchers drifted away
from the topic at some stage. In fact, in the 90’s there was a significant de-
crease in the number of publications on the topic. However, as the amount of
information, services etc. keeps steadily growing and the electronic devices to
access these get smaller and smaller, the necessity for natural language inter-
faces gains in importance again. Since the new millennium, a new generation
of researchers have in fact started again to tackle the task of building natural
language interfaces (compare [Popescu et al., 2003], [Lopez and Motta, 2004],
[Bernstein et al., 2005], [Minock, 2005] and [Frank et al., 2007]). So we should
ask: what has changed since the research in the 70’s and 80’s? What makes
this new generation of researchers confident that the task of building natu-
ral language interfaces is feasible? The answer is far too complex to be an-
swered within this overview of related work, but for sure the current wide
availability of various resources plays a key role. On the one hand, a plethora
of lexical resources (WordNet [Fellbaum, 1998], FrameNet [Baker et al., 1998]),
general or upper-level ontologies (Cyc?, SUMO [Pease et al., 2002], DOLCE
[Masolo et al., 2003]), grammars and parsers are available to be used off-the-
shelf nowadays, which eases the work considerably. On the other hand, decades
of research in databases and knowledge representation have lead to the estab-
lishment of de facto standards such as the relational model, SQL as query lan-
guage in the field of databases, OWL [McGuiness and van Harmelen, 2004] and

IMore recently, other commercial NLIs have appeared, such as English Query from Mi-
crosoft and ELF Access from ELF Software. See http://www.elfsoft.com/ns/Face0ff.htm
for a qualitative comparison of ELF Access, English Query and English Wizard.

2http://www.opencyc.org/

o7

RDF [Brickley and Guha, 2004] as knowledge representation languages as well
as SPARQL [Prud’hommeaux and Seaborne, 2006] and other query languages
in the fields of Knowledge Representation and the Semantic Web. Thus, re-
searchers nowadays have off-the-shelf data management frameworks as well as
well-defined query languages and interfaces at hand to work with. In the 70s,
for example, researchers still had to put considerable effort into accessing data
distributed in diverse text files (compare [Thompson and Thompson, 1985]). In
addition, research in other computer science areas such as graph algorithms has
also lead to new ways of tackling the task (compare [Popescu et al., 2003]). Fi-
nally, advances in computer infrastructure and platform-independent languages
such as Java have lead to the development of high-performance computers as well
as eased the portability of programs across platforms (compare the techniques
described in [Thompson and Thompson, 1985] to port the system to different
languages and computer architectures). It seems that the state-of-the-art in
other areas is thus advanced enough to allow tackling the task of building natural
language interfaces again from other perspectives. Researchers nowadays are in-
deed mainly working on robustness, building on — from the natural language un-
derstanding point of view — shallow techniques (compare [Popescu et al., 2003]
and [Lopez and Motta, 2004]) as well as building hybrid approaches combining
deep and shallow analysis (compare [Frank et al., 2007]).

Discussing all the different approaches is out of the scope of this pa-
per. For a detailed review of natural language interfaces, the inter-
ested reader is referred to the overviews in [Copestake and Jones, 1989]
and [Androutsopoulos et al., 1995], as well as to the evaluation survey in
[Ogden and Bernick, 1996]. The latter shows that there have been already many
laboratory and field studies of natural language interfaces. However, most of
the results reported are neither conclusive nor address the issue of how easy it
is for non-NLP experts to adapt the systems to a given domain.

Due to space limitations, we will only discuss three well-known older
systems focusing on transportability, i.e. TEAM [Grosz et al., 1987], PAR-
LANCE |[Bates, 1989] and ASK [Thompson and Thompson, 1985], as well
as six more recent systems: PRECISE [Popescu et al., 2003], Thompson
et al.’s system [Thompson et al., 1997], Quetal [Frank et al., 2007], Aqualog
[Lopez and Motta, 2004], STEP [Minock, 2005] as well as the system described
in [Bernstein et al., 2005].

Early natural language interfaces such as LADDER [Hendrix et al., 1978]
were based on so called semantic grammars, which interleaved syntactic and
semantic information into one grammar used for parsing and query construc-
tion. The non-terminals of the grammar where actually semantic rather than
syntactic categories. The underlying grammar was therefore completely tailored
to a specific domain and could not be used in a straightforward way for other
domains. To overcome the difficulty in porting systems based on semantic gram-
mars such as LADDER, systems such as TEAM, PARLANCE and ASK aimed
at supporting the portability of NLIs across domains by database experts.

TEAM’s [Grosz et al., 1987] approach to customization consisted in asking
questions to a user to acquire linguistic knowledge about certain words, i.e.

58

verbs, nouns, adjectives etc. as well as their relation to database fields. For
a verb, TEAM would for example ask a user for its arguments and whether
they are optional or mandatory, for prepositional phrases, for particles and
whether they are separable from the verb as well as for different possible types of
realization, e.g. passive, unaccusative or dative constructions, etc. TEAM also
acquires information about adjectives in a similar way as ORAKEL by asking
for the predicate in the knowledge base expressing the corresponding attribute
as well for the direction of the scale measured (e.g. positive for ‘big’, negative
for ‘small’). Further, TEAM also handles closed-class words by assigning them
a domain-independent meaning. In general, TEAM and ORAKEL share three
very important aspects:

e the assumption that the knowledge base is independent of the system and
should not be changed for the purposes of the natural language interface,

e the requirement that users with knowledge about the domain or underlying
database but without any knowledge about formal linguistics or natural
language processing should be able to adapt of the system, as well as

e a system design which cleanly separates domain-independent from
domain-specific components thus supporting the adaption in a principled
way.

Concerning the last point, in TEAM questions are parsed and translated into
a general logical form including quantifiers (but also intentional operators and
high-order operators, query operators etc.), which is then translated in a second
step to the structure of the underlying database. Further commonalities are the
fact that both systems support joins of relations in the database or knowledge
base and do the crucial distinction between object and datatype properties, which
are called symbolic and arithmetic fields in TEAM, respectively. Further, TEAM
offers some support for type coercion and disambiguating quantifier scope. Con-
cerning the interpretation of light verbs such as ‘have’ or nominal compounds,
TEAM applies a different strategy than in our approach. While we rely on a
generation approach in which ‘have’ has as many elementary trees as possible
domain-specific interpretations, TEAM tries to map ‘have’ to an appropriate
database relation while analyzing the sentence. In our approach, the possible
meanings of ‘have” are actually determined by the noun+of structures instan-
tiated by the lexicon engineer, for example capital (of), inhabitants (of), etc.
This allows then to correctly interpret questions such as ”Which capital does
Baden Wiirttemberg have?” or ”How many inhabitants does Karlsruhe have?”.
Analogous is the treatment of the vague preposition ‘with’ in our approach,
allowing to ask questions like ”Which is the city with the most inhabitants?”.

ASK [Thompson and Thompson, 1985] and PARLANCE [Bates, 1989] al-
lowed users to teach new words and concepts even during execution time. How-
ever, to our knowledge, the only system of the above which has been evalu-
ated in terms of the time taken to be customized is PARLANCE. According to
Bates [Bates, 1989], porting PARLANCE takes between 6-8 person weeks for

59

databases with between 32 and 75 fields. Such an effort is enormous compared
to the one presented in this paper.

Customization to a domain in the system of Thompson et al.
[Thompson et al., 1997] is achieved by training a parser using ILP techniques on
the domain in question. In particular, a standard shift-reduce parser is assumed
and ILP is used to learn parsing control strategies. Such an approach obviously
needs training data and Thompson et al. do not discuss if such an approach
relying on training data is actually feasible from a usage point of view. The
system has been evaluated on two domains (jobs and geography), and achieves
very decent accuracy levels between 25 - 70% for the geography domain and
between 80 - 90% accuracy for the job domain, depending on the amount of
training data used.

The PRECISE system [Popescu et al., 2003] focuses on the reliability of
NLIs and is formally proved to be 100% precise, given an appropriate domain-
specific lexicon. PRECISE implements an approach based on graph matching
in which, essentially, the words in the input question are mapped to database
relations, columns and values. For this purpose, so called syntactic markers
are removed from the input sentence with the result that only content words
remain, which are mapped to tokens representing database relations, columns
or values. Hereby a token is a set of words matching a certain database ele-
ment. PRECISE introduces the notion of semantically tractable questions, i.e.
questions which have a complete tokenization such that each word is mapped to
a distinct token corresponding exactly to one database element and such that
every value has been mapped to one attribute and at least one of the value
tokens matches a wh-value. The problem is thus reduced to finding a mapping
between words and tokens such that attributes are connected to their values.
This problem can in fact be formulated in terms of a graph problem and the
max-flow algorithm applied to compute a maximal flow with satisfies the above
constraints. It is interesting to emphasize that PRECISE also allows ellipsis,
that means, attributes to be left out, as in “Which Chinese restaurants are
downtown?”, where only the relation restaurants and two values - ‘Chinese’ and
‘downtown’ - are specified. The precision of PRECISE of almost 100% on real
data is certainly impressive, but in contrast to our approach it only focuses on
conjunctive SQL queries. In fact, the questions that it can handle are only a
subset of the questions that ORAKEL can handle, which supports arbitrary
quantification, Further, our system has also been demonstrated to be very reli-
able as the precision ranges between 74% and 85%. Strictly speaking, PRECISE
does not need any customization, but on the contrary it is not able to handle
all the range of questions that ORAKEL can handle. Though they claim to
handle also quantification and counting, it is not clear in how far questions
like ”Which river flows through every country?”, ”What is the largest city in
the state with the smallest population?” and ”What river does not traverse the
state with the smallest population?” can be handled. In fact, such questions are
strictly speaking not semantically tractable as ‘every’and ‘not’ would either be
treated as syntactic markers and therefore removed or would not map to any
values, columns or relations. For the superlatives ‘smallest’ and ‘largest’, similar

60

remarks apply. The aims of PRECISE and our system are thus complementary,
as we have focused on developing an approach by which domain experts can
quickly create an appropriate domain-specific lexicon such as needed by any
NLI.

The recently presented AquaLog system [Lopez and Motta, 2004] essentially
transforms the natural language question into a triple-representation and then
relies on similarity measures to map the triples to appropriate relations defined
in the ontology. Some basic support for disambiguation is provided in this way.
An obvious benefit is that AquaLog does not rely on any sort of customization.

PRECISE and Aqualog are examples of systems relying on lexical matches to
map a natural language expression to appropriate knowledge base or database
relations. However, such approaches face principled limits. For example, given
that the relation between an author and his publications is termed authorOf, a
question like ”Who wrote which publication?” could not be analyzed correctly
unless we have other knowledge available linking writing to an author. Though
we could imagine that some sort of background knowledge, coming from Word-
Net for example, is available in the system, there will always be cases in which
some piece of knowledge is missing. An approach like ours, where a lexicon en-
gineer specifies the mapping between natural language and the relations defined
in the knowledge base, does not face these principled limits as any mapping can
be created and the mappings can be directly controlled by the lexicon engineer.
On the downside, a lexicon engineer needs to make the effort of creating the
mappings.

The STEP system by Michael Minock [Minock, 2005] implements an ap-
proach similar to the semantic grammars used within LADDER. Thus, the
portability of the system is also restricted. However, the focus of the STEP sys-
tem is not on portability but on giving a user feedback in form of paraphrases of
his question to make sure that the intended meaning of the question has indeed
been captured.

The system presented by Bernstein et al. [Bernstein et al., 2005] builds on a
controlled language approach as implemented by the ACE (Attempto Controlled
English) framework (see [Fuchs et al., 2006]). It requires a transformation from
the parser output structures — DRSs 3 (Discourse Representation Structures) —
as produced by the Attempto Parsing Engine (APE) to PQL queries formulated
with respect to the relations and concepts of an underlying ontology. This
transformation needs to be specified by hand by a system engineer. It is thus
not clear if the system can indeed be adapted by end users.

In a strict sense, every natural language interface only supports a restricted
language which is determined by the underlying grammar as well as the other
capabilities of the system. Approaches based on controlled language, however,
besides supporting only a restricted language, also give guidelines about how
to (syntactically) express meaning in order to avoid ambiguities. This is the
approach followed by ACE (Attempto Controlled English). The English sen-
tence ”"Fvery airline owns an aircraft.” is for example semantically ambiguous

3See [Kamp and Reyle, 1993].

61

between two readings in which either the universal quantifier outscopes the ex-
istential quantifier or the other way round. In ACE, a user would be requested
to write ”Every airline owns an aircraft.” in the first case, while writing ”There
s an aircraft that every airline owns.” in the second.

Finally, the approach in the QUETAL system [Frank et al., 2007] imple-
ments the mapping from a question to a query via three intermediary stages:
i) construction of Robust Minimal Recursion Semantics (RMRS) representa-
tion, ii) mapping to domain-independent frame-like structures relying on SUMO,
FrameNet and WordNet, as well as iii) construction of so-called proto-queries.
The use of RMRS* (Robust Minimal Recursion Semantics) supports under-
specification of scope ambiguities. Further, the approach implements a hybrid
technique to interleave shallow and deep processing for the purpose of robust-
ness and to yield a rich semantic analysis of the questions to which several
components can contribute, e.g. a HPSG parser, a shallow finite-state parser,
a named entity recognizer etc. The proto-queries are abstract database-like
queries comparable to our logical forms, but lacking any sort of quantification,
negation or counting operators. Counting is for example performed after the
answers have been returned by the inference engine. As in our approach, these
proto-queries are translated to different query languages, i.e. SQL or SeRQL,
the query language implemented in Sesame [Broekstra et al., 2002]. Domain
independence is achieved by mapping RMRS structures to domain-independent
resources. While in our approach certain closed-class words are mapped to
DOLCE, in the Quetal system, RMRSs are mapped to conceptual frames from
FrameNet and domain-independent concepts from SUMO. The mapping to the
specific knowledge base is achieved by special rules which need to be written
for every different knowledge base. These transformation rules thus constitute
the adaption mechanism behind the Quetal system. These rules are defined on
SUMO and FrameNet structures and thus map domain-independent structures
to domain-specific ones. Thus, the domain of these rules is defined in a prin-
cipled way and remains constant across domains. However, also in the case of
the QUETAL system, the question needs to be raised if such transformation
rules can be created by an average user. At least, the specification of these rules
requires familiarity with SUMO, FrameNet and WordNet. Such a requirement
might impose too large of a burden on a naive user and/or domain expert. The
system has been successfully implemented on the one hand for a database con-
taining information about Nobel price winners as well as an RDF knowledge
base containing information about language technologies, patents, researchers
etc. The system has been evaluated on 100 questions from the nobel prize do-
main. Given an appropriate filtering and voting mechanism of the three best
parse trees, a correct proto query is generated in 58% of the cases. Of the
cases for which a correct proto query is generated, 74.1% yield a correct answer.
The performance of the QUETAL system is thus comparable to the one of our
ORAKEL system.

4See [Copestake et al., 2006].

62

Chapter 8

Conclusion and Future
Work

We have presented a new model for customizing a natural language interface to
a certain domain. In our model, no knowledge about computational linguistics
is required to customize the NLI. Our experiments have shown that the very
rudimentary knowledge about subcategorization frames needed can be quickly
acquired by domain experts. We have conducted extensive experiments with 26
users, mostly computer-scientists with no background in computational linguis-
tics. Two of these were in charge of customizing the NLI, while the remaining
played the role of end users. Our extensive experiments with the ORAKEL
system clearly corroborate the hypothesis that our model represents a feasible
approach for domain adaption. On the one hand, our results have shown that
the domain lexica created by the two users in charge of the lexicon creation do
not substantially differ from the one created by one of the authors, a compu-
tational linguist, with respect to the coverage of the system. In a further real
world case study at British Telecom we have further shown that ORAKEL can
indeed scale to knowledge bases with thousands of instances. The additional use
case has also provided additional proof that our iterative lexicon development
methodology is indeed successful. On the other hand, we have demonstrated
that, given a suitable mechanism to generate grammatical structures out of the
subcategorization frames, by sticking to the few types defined in our system, we
achieve more than 90% of linguistic coverage with respect to the questions asked,
assuming that the lexicon is complete. Future work will also aim at decoupling
our approach from our own parser, thus allowing to use any parser and syn-
tactic theory. This will also allow the possibility of using languages other than
English. In addition, we intend to further investigate the possibility of easying
adaption across domains relying on the domain-independent meaning specified
in foundational ontologies and which can thus be reused across domains. First
steps in this direction have been already presented in this paper, but further
research is needed to clarify the full potential of this possibility. On a more gen-

63

eral note, given that the application barrier for natural language technologies
is still very high for end users, future work should indeed take up the challenge
of developing models by which this barrier can be effectively lowered, thus en-
abling a wider application and possibly commercialization of natural language
processing technologies. The customization model underlying ORAKEL can be
certainly regarded as a first step in this direction. Finally, an interesting ques-
tion for future research is whether the mappings between linguistic expressions
and relations defined in the knowledge base can be learned automatically from
a corpus. This idea was already preliminary explored in [Cimiano, 2004], but
further research is needed to clarify its full potential as well as weaknesses.

Acknowledgements This research has been supported by the following
projects: the BMBF project SmartWeb!, financed by the German Ministry
of Education and Research as well as the EU projects Dot.Kom?, SEKT? and
X-Media*. Thanks to our students Johanna Wenderoth and Laura Goebes for
creating the German geography knowledge base. Thanks to all our colleagues
from the AIFB, the FZI and ontoprise as well as to Ursula Cimiano, Sofia Pinto
and the people from British Telecom for taking part in our experiments.

Thttp://www.smartweb-project.de/
2http://nlp.shef.ac.uk/dot.kom/
Shttp://www.sekt-project.com/
dwww.x-media-proj ect.org/

64

Chapter 9

Appendix

9.1 Determiners

This section gives the elementary trees for common determiners such as how
many, every, no, the most, most, a, the, the only, more than and at least.
Also other determiners are specified in the system’s lexicon (e.g. many, all,
some, etc.), but essentially they are similar to the determiners presented here,
such that they are omitted. Many determiners come in two forms for object
properties (op) and datatype properties (dp). Other F-Logic operators used
in the semantic representations given below are maz, div and counter. The
operator maz(x,n,m) is evaluated such that m is the maximum of the values
n grouped after z. As the count operator, if the x is omitted, we yield the
absolute maximum of the n’s. The div(x,y, z) operator is evaluated to return
the result (z) of dividing « by y. The operator counter(S(x)) counts the number
of individuals fulfilling the monadic predicate S and binds this number to x.

DP+
opr(oNP)
’/\
DT NP~ .

APAQ 7w (P(w) A Q(w)) e

\

how many
DP*
opr(onNPp)
//\
DT NP~

AP AQ ?w Fvr (P(v1) A Q(v1) A count (-, v1,w)) [type — op]

| [num — pl|

how many

65

DP+
opr(onp)

— N
type —
AS AT Yo (S(v2) — T(v2)) [[nipri - Zz;]]
|
every
DP+
opr(onp)

—
o [type — op]
AS AT Vs (S(v3) — —T(v3)) [num — sg]
o
DP+
opr(onp)
’/\
DT NP~
AS AT Jvg Fvr (S(ve) A (T'(ve) B c)A [type — op]
count(c,ve, v7) A max(-,vr,v7)) [num — pl]
\
the most
DP+
opr(onp)
//\
DT NP~

AS AT Fub5 (S(v5) AT (v5)A [type — dp]
Vo6 Yo7 (T'(v6) & v7) — v5 > v6) [num — pl]
!
the most
DP+
opr(onNP)
/\
DT NP~
AS AT Fvb Ju7 Jv8 Fv9 (counter(S(v7)) A (T'(v5) B c)A [type — op]
S(v5) A count(c, v5,v9) A div(v7, 2,v8) Av9 > v8) [num — pl|
I
most
DP+
opr(oNP)

—_
t —
ARAO Jug (R(vs) A Q(v6)) [[n?ipni - zl;]]
|
pP+
opr(onp)
//\
DT NP-

AR AO vz (R(vr) A O(vr)A [type — op]
Vug(R(vg) — v7 = vg)) [num — sg]

the

66

Dp+

opr(onp)
//\
DT NP~
AR AO vz (R(v7) A O(vr)A [type — op]
Vug(R(vg) — v7 = vg)) [num — sg]
!
the only
DP+
(epT(opp))(onp)
DT
AR NT \S Jvs Jvg Jvr Jug NP-
(T'(vs) A R(ARS(vs) & h)A _ P~ _
(S(ve) B c) ANT(ve)A\ [type OIZ] [head — ‘than’] bP
count(c, ve, v7)A [rum = pl]
count (-, vs,v9) A vy > vg)
m(‘)rc
DP+
(epr(opp))(onp)
DT NP-
AR AT AS3vs Jvg Jvr Jvg [t — dp] P~ DP-
(T(vs) A R(Ah S(vs) ® h)A [nﬁf’; _ 1’;} [head — ‘than’]
S(ve) AT(v6) Avg > vs5) P
m(‘)rc
DP+
opr(onp)
’/\
DT NP~
AS AT Fv3 Fvr (S(v1) AT (v1) & v2A [type — op]
count(va, vi,v3) Avz > X) [num — pl]
\
at least X
DP+
opr(onp)
o7 [typlil: dp
AS AT Jvg (S(va) ‘/\ T(va) N vg > X) [num _ p”
at least X
DP+
opr(onp)
///\
DT NP~
AS AT Fv3 Fuy (S(vi) AT (v1) © vaA [type — op]
count(va, vi,v3) Avz > X) [num — pl|

more than X

67

DP+

opr(oNP)
—_
AS AT Fv6 (S(ve) AT(ve) Ave > X) &yﬂi:%

more than X

9.2 Copula

In this section we give the elementary trees for the copula verbs ‘s’ ‘are’ and
the past forms ‘were’ and ‘was’.

St g+
0D Py (Au UDPQ(UBE(U))) opp(capy)
. T
C BE - DP- BE ADJ*
DP; e Ay o=y DP; |
is/was/are/were is/was/are/were
S+

opp, (opp)

PP

Au opp, (0(P)(u))
,/\

P- DP;

DPy is/was/are/were

NP+
Az (onp(x) Aos(z))

/\

S
NP~
A opp(opr(u))

/\

_ BE _
REL Ay T =7y DP
[
is/are/was/were

9.3 Noun phrase tree family

Here we give the tree family for a relational noun on the basis of the example
for capital:

68

NP+
Az opp(on(z))
.

N PP
Az Ay capital(z,y) opp
‘. Pj/\
capital lhead — ‘of] DP~ < state
NP+
Az opp(on(z))
,/\
N PP
Az Ay capital (z,y) opp
| =
capitals [head — "of’] DP~ < state
NP+ NP+
Az Jy capital(z,y) Az Jy capital(z,y)
\ \
capital capitals
S+
opp,(ovp)
DP; < city BE~ VP

Au opp, (0N (1))

— T

DP;, < state POSS— Az \y capital(z,y)
\
capital
S+
opp,(ovp)
DPy < city BE™)

Au opp, (0N (1))

e e ——
DP; < state POSS Az \y capital(z,y)

capitals

69

S

opp,(ovp)
T
DP] < state BE M opp, (onp (W)
DPy < city Ay Az capital(z,y) [head — ‘of’
\
capital
S
opPy (05,)
s
DP; < cit
1 < cty os,
‘ Au opp,(ovp, (u))
/\
capital DP; < state VP
VPS
Az Ay capital(z,y)
|
HAVE~
S

opp, (ovp,)
,/\
DP; < state VPl+
VP,
Au opp, (Ax Ay capital(y, x))(u))
/\
HAVE™ DP, < city

NP+
Az city(x)
\

capital

70

NP}
Az onp,(z) Aos(T)

NP, < state S
VP,
,/\
RELPRO™ VP

VPS
Au opp((Ax Ay capital(y, x))(u))
,/\
HAVE~ DP-

NP+
Az city(x)
\
capital
NP+
Az onp, (z) Aopp(x)

/\

_ PP
NPy < state M opp((Ae hy capital(z, y)) (u)

P’//2 .

[head — ‘with’] bP § city
NP+
Az city(z)
\
capitals

9.4 Adjective Tree family

Tree family for adjectives with ‘big’ as an example.

NP}
ADJ* Az oapg(z) NoNp, ()
[function — select] e
Az Ay length(z,y) ADJ —n.l;I—P*
| Az big(x) 2
big \
big

ADJ*t
Az opp(oapy(z))

AM\

Az Ay Jvs Jug length(z, vs)A . , DP—
length(y, ve) A vs > ve [head — “than’]

bigger

71

DP+
opr(onp)

T

AP AQ Jus Jug (Q(vg) A P(vs) A length(vs, vs)A NP~
Vg, v7 (P(ve) Alength(ve,vr) — vr < vs))

the biggest

72

Bibliography

[Androutsopoulos et al., 1995] Androutsopoulos, I., Ritchie, G., and Thanisch,
P. (1995). Natural language interfaces to databases—an introduction. Journal
of Language Engineering, 1(1):29-81.

[Ankolekar et al., 2006] Ankolekar, A., Buitelaar, P., Cimiano, P., Hitzler, P.,
Kiesel, M., Krotzsch, M., Lewen, H., Neumann, G., Sintek, M., Tserendorj,
T., and Studer, R. (2006). Smartweb: Mobile access to the semantic web. In
Proceedings of the ISWC 2006 Poster and Demo Session.

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. and Ribeiro-Neto, B.
(1999). Modern Information Retrieval. Addison-Wesley.

[Baker et al., 1998] Baker, C., Fillmore, C., and Lowe, J. (1998). The Berke-
ley FrameNet project. In Proceedings of the International Conference on
Computational Linguistics and the Annual Meeting of the Association for
Computational Linguistics (COLING-ACL).

[Bangalore and Joshi, 1999] Bangalore, S. and Joshi, A. (1999). Supertagging:
An approach to almost parsing. Computational Linguistics, 25(2):237-265.

[Bates, 1989] Bates, M. (1989). Rapid porting of the parlance natural language
interface. In Proceedings of the Workshop on Speech and Natural Language,
pages 83-88.

[Bechhofer et al., 2004] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks,
I., McGuinees, D., Patel-Schneider, P., and Stein, L. (2004). OWL Web
Ontology Language Reference. http://www.w3.org/TR/owl-ref.

[Bernstein et al., 2005] Bernstein, A., Kaufmann, E., Gohring, A., and Kiefer,
C. (2005). Querying ontologies: A controlled english interface for end-users.
In Proceedings of the 4th International Semantic Web Conference (ISWC),
pages 112-126.

[Blackburn and Bos, 2005] Blackburn, P. and Bos, J. (2005). Representation
and Inference for Natural Language - A First Course in Computational Se-
mantics. CSLI Publications.

73

[Brickley and Guha, 2004] Brickley, D. and Guha, R. (2004). RDF Vocabulary
Description Language 1.0: RDF Schema. W3C Recommendation. available
at http://www.w3.org/TR/rdf-schema/.

[Broekstra et al., 2002] Broekstra, J., Kampman, A., and van Harmelen, F.
(2002). Sesame: A generic architecture for storing and querying rdf and
rdf schema. In Proceedings of the International Semantic Web Conference

(IWSC), pages 54-68.

[Cimiano, 2003] Cimiano, P. (2003). Translating wh-questions into F-Logic
queries. In Bernardi, R. and Moortgat, M., editors, Proceedings of the
CoLogNET-EIsNET Workshop on Questions and Answers: Theoretical and
Applied Perspectives, pages 130-137.

[Cimiano, 2004] Cimiano, P. (2004). ORAKEL: A Natural Language Interface
to an F-Logic Knowledge Base. In Proceedings of the 9th International Con-

ference on Applications of Natural Language to Information Systems (NLDB),
pages 401-406.

[Cimiano et al., 2007] Cimiano, P., Haase, P., and Heizmann, J. (2007). Port-
ing natural language interfaces between domains — a case study with the
ORAKEL system —. In Proceedings of the International Conference on Intel-
ligent User Interfaces (IUI), pages 180-189.

[Cimiano et al., 2006] Cimiano, P., Haase, P., Sure, Y., Volker, J., and Wang,
Y. (2006). Question answering on top of the BT digital library. In Proceedings
of the World Wide Web conference (WWW), pages 861-862.

[Cimiano and Reyle, 2003] Cimiano, P. and Reyle, U. (2003). Ontology-based
semantic construction, underspecification and disambiguation. In Proceedings
of the Prospects and Advances in the Syntaz-Semantic Interface Workshop,
pages 33-38.

[Cimiano and Reyle, 2006] Cimiano, P. and Reyle, U. (2006). Towards founda-
tional semantics - ontological semantics revisited -. In Proceedings of the In-
ternational Conference on Formal Ontology in Information Systems (FOIS),
volume 150, pages 51-62. IOS Press.

[Copestake et al., 2006] Copestake, A., Flickinger, D., Pollard, C., and Sag, 1.
(2006). Minimal recursion semantics: An introduction. Research on Language
and Computation, (3):281-332.

[Copestake and Jones, 1989] Copestake, A. and Jones, K. S. (1989). Natural
language interfaces to databases. Knowledge Engineering Review, 5(4):225—
249. Special Issue on the Applications of Natural Language Processing Tech-
niques.

[Cunningham et al., 1997] Cunningham, H., Humphreys, K., Gaizauskas, R.,
and Wilks, Y. (1997). GATE - a General Architecture for Text Engineering.
In Proceedings of Applied Natural Language Processing (ANLP), pages 29-30.

74

[Decker et al., 1999] Decker, S., Erdmann, M., Fensel, D., and Studer, R.
(1999). Ontobroker: Ontology Based Access to Distributed and Semi-
Structured Information. In Database Semantics: Semantic Issues in Mul-
timedia Systems, pages 351-369. Kluwer.

[Dekker, 1993] Dekker, P. (1993). Existencial disclosure. Linguistics and Phi-
losophy, (16):561-587.

[E. Bozsak et al., 2002] E. Bozsak et al. (2002). KAON - Towards a large scale
Semantic Web. In Proceedings of the Third International Conference on E-
Commerce and Web Technologies (EC-Web). Springer Lecture Notes in Com-
puter Science.

[Fellbaum, 1998] Fellbaum, C. (1998). WordNet, an electronic lexical database.
MIT Press.

[Frank et al., 2007] Frank, A., Krieger, H.-U., Xu, F., Uszkoreit, H., Crysmann,
B., Jorg, B., and Schifer, U. (2007). Question answering from structured
knowledge sources. Journal of Applied Logic, Special Issue on Questions and
Answers: Theoretical and Applied Perspectives, 5(1):20-48.

[Fuchs et al., 2006] Fuchs, N., Kaljurand, K., and Schneider, G. (2006). At-
tempto controlled english meets the challenges of knowledge representation,
reasoning, interoperability and user interfaces. In Proceedings of the Inter-

national Conference of the Florida Artificial Intelligence Research Society
(FLAIRS).

[Grosz et al., 1987] Grosz, B., Appelt, D., Martin, P., and Pereira, F. (1987).
Team: An experiment in the design of transportable natural language inter-
faces. Artificial Intelligence, 32:173-243.

[Haase et al., 2004] Haase, P., Broekstra, J., Eberhart, A., and Volz, R. (2004).
A comparison of RDF query languages. In Proceedings of the 3rd International
Semantic Web Conference (ISWC).

[Hendrix et al., 1978] Hendrix, G., Sacerdoti, E., Sagalowicz, D., and Slocum,
J. (1978). Developing a natural language interface to complex data. ACM
Transactions on Database Systems, 3(2):105-147.

[Joshi and Schabes, 1997] Joshi, A. and Schabes, Y. (1997). Tree-adjoining
grammars. In Handbook of Formal Languages, volume 3, pages 69-124.
Springer.

[Kamp and Reyle, 1993] Kamp, H. and Reyle, U. (1993). From Discourse to
Logic. Kluwer.

[Kifer et al., 1995] Kifer, M., Lausen, G., and Wu, J. (1995). Logical founda-
tions of object-oriented and frame-based languages. Journal of the ACM,
42:741-843.

75

[Lopez and Motta, 2004] Lopez, V. and Motta, E. (2004). Aqualog: An
ontology-portable question answering system for the semantic web. In Pro-
ceedings of the International Conference on Natural Language for Information
Systems (NLDB), pages 89-102.

[Masolo et al., 2003] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and
Oltramari, A. (2003). Ontology library (final). WonderWeb deliverable D18.

[McGuiness and van Harmelen, 2004] McGuiness, D. and van Harmelen, F.
(2004). OWL Web Ontology Language Overview. W3C Recommendation.
available at http://www.w3.org/TR/owl-features/.

[Minock, 2005] Minock, M. (2005). A phrasal approach to natural language
interfaces over databases. Technical Report UMINF-05.09, University of
UMEA, Department of Computer Science.

[Montague, 1974] Montague, R. (1974). On the proper treatment of quantifi-
cation in ordinary english. In Thomason, R. H., editor, Formal Philosophy:
Selected Papers of Richard Montague, pages 247-270.

[Muskens, 2001] Muskens, R. (2001). Talking about trees and truth-conditions.
Journal of Logic, Language and Information, 10(4):417-455.

[Nirenburg and Raskin, 2004] Nirenburg, S. and Raskin, V. (2004). Ontological
Semantics. MIT Press.

[Ogden and Bernick, 1996] Ogden, W. and Bernick, P. (1996). Using natural
language interfaces. In Helander, M., editor, Handbook of Human-Computer
Interaction. Elsevier.

[Pease et al., 2002] Pease, A., I.Niles, and Li, J. (2002). The suggested upper
merged ontology: A large ontology for the semantic web and its applica-
tions. In Working Notes of the AAAI-2002 Workshop on Ontologies and the
Semantic Web.

[Popescu et al., 2003] Popescu, A., Etzioni, O., and Kautz, H. (2003). Towards
a theory of natural language interfaces to databases. In Proceedings of the
International Conference on Intelligent User Interfaces (IUI'03), pages 149—
157.

[Prud’hommeaux and Seaborne, 2006] Prud’hommeaux, E. and Seaborne, A.
(2006). Spargl query language for rdf. W3C Working Draft 4. available at
http://www.w3.org/TR/rdf-sparql-query/.

[Rose et al., 2005] Rose, C., Pai, C., and Arguello, J. (2005). Enabling non-
linguists to author advanced conversational interfaces easily. In Proceedings
of the International Conference of the Florida Artificial Intelligence Research
Society (FLAIRS), pages 572-577.

76

[Schabes et al., 1988] Schabes, Y., Abeille, A., and Joshi, A. (1988). Parsing
strategies with ‘lexicalized’ grammars: application to tree adjoining gram-
mars. In Proceedings of the International Conference on Computational Lin-
guistics (COLING’88), pages 578-583.

[Schabes and Joshi, 1988] Schabes, Y. and Joshi, A. (1988). An earley-type
parsing algorithm for tree adjoining grammars. Technical Report MS-CIS-
88-36 / LINC LAB 113, University of Pennsylvania.

[Schmid, 1994] Schmid, H. (1994). Probabilistic part-of-speech tagging using
decision trees. In Proceedings of the International Conference on New Methods
in Language Processing.

[Shneiderman and Plaisant, 2005] Shneiderman, B. and Plaisant, C. (2005).
Designing the User Interface. Pearson/Addison-Wesley.

[Thompson and Thompson, 1985] Thompson, B. and Thompson, F. (1985).
ASK is transportable in half a dozen ways. ACM Transactions on Office
Information Systems, 3(2):185-203.

[Thompson et al., 1997] Thompson, C., Mooney, R., and Tang, L. (1997).
Learning to parse natural language database queries into logical form. In
Proceedings of the Workshop on Automata Induction, Grammatical Inference
and Language Acquisition.

[Warren and Alsmeyer, 2005] Warren, P. and Alsmeyer, D. (2005). Applying
semantic technology to a digital library: a case study. Library Management,
26(4/5):190-195. Special Issue: Semantic Web.

[Zadeh, 1975] Zadeh, L. (1975). The concept of a linguistic variable and its
application to approximate reasoning. Information Sciences, 8-9.

7

