Porting Natural Language Interfaces between Domains
— An Experimental User Study with the ORAKEL System —

Philipp Cimiano, Peter Haase, Jorg Heizmann
Institute AIFB
University of Karlsruhe
{cimiano,haase,johi} @aifb.uni-karlsruhe.de

ABSTRACT

We present a user-centered model for porting natu-
ral language interfaces (NLIs) between domains effi-
ciently. The model assumes that domain experts with-
out any background knowledge about computational
linguistics will perform the customization of the NLI
to a specific domain. In fact, it merely requires famil-
iarity with the underlying knowledge base as well as
with a few basic subcategorization types. Our model is
iterative in the sense that the adaption of the NLI is per-
formed in several cycles on the basis of the questions
which the NLI failed to answer, thus iteratively increas-
ing the coverage of the system. We provide experimen-
tal evidence in form of a user study as well as a case
study involving a real-world application corroborating
that our model is indeed a feasible way of customizing
the interface to a certain domain.

ACM Classification: HS5.2 [Information interfaces and
presentation], H3.3. [Information Search and Retrieval]

Keywords: Natural Language Interfaces, Portability,

Evaluation

General terms: Experimentation, Human Factors

Introduction

Due to the steady growth of the amount of information
and services available on the Web or within intranets
as well as to the proliferation of ubiquitous and mobile
devices such as cell phones or PDAs, the need for in-
tuitive and effective user interfaces becomes more and
more crucial. Because of the limited input/output func-
tionality of mobile devices, natural language interfaces
(NLIs) have recently received renewed interest [21] for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1UI’07, January 28-31, 2007, Honolulu, Hawaii, USA..

Copyright 2007 ACM 1-59593-481-2/07/0001 ..$5.00.

querying information. Natural language interfaces es-
sentially take as input a question formulated in natural
language and return an answer to this question from a
given knowledge base. Besides, their potential for be-
ing used for querying information, they have also fur-
ther important applications within dialog and tutoring
systems, which users typically communicate with in
plain English.

However, it is well-known that robust natural language
interfaces are very difficult to realize as they have to
handle difficult problems inherent in the task of au-
tomatically interpreting natural language (compare [1]
and [9]). A further obstacle for the applicability of nat-
ural language interfaces is the fact that they are typi-
cally difficult to port to other domains. In this paper,
we present a user-centered model for porting NLIs be-
tween domains, also showing that our system is reason-
ably precise and robust.

Our user-centered model for porting the NLI merely
requires very basic knowledge about subcategorization
frames, but no background in computational linguis-
tics. Subcategorization frames are essentially linguistic
argument structures, e.g. verbs with their arguments,
nouns with their arguments, etc. As in the TEAM nat-
ural language interface [12], we also assume that a user
with general expertise about computer systems will per-
form the customization. In our view, this is a crucial
requirement which many NLIs fail to meet. The main
task of the person in charge of customizing the system
is to create a domain-specific lexicon mapping subcat-
egorization frames to relations as specified in the do-
main ontology. We present experimental evidence in
form of a user study as well as in the form of a case
study involving a real-world application to corroborate
the claim that our model indeed allows non-NLP (natu-
ral language processing) experts to create an appropri-
ate domain-lexicon efficiently and effectively. In par-
ticular, we show that the results obtained with lexica
customized by non-NLP experts do not substantially
differ from the ones created by an NLP expert. As

the coverage of the lexicon has a direct impact on the
overall linguistic coverage of the system, we propose
a model in which the lexicon engineer can create the
lexicon in an iterative process until a reasonable cover-
age is achieved. We also provide experimental evidence
for the fact that such an iterative lexicon construction
model is indeed promising. Furthermore, we also as-
sess the coverage of our system, showing that with a
few subcategorization frame types we can indeed ob-
tain a reasonable linguistic coverage.

The paper is structured as follows: in the next section,
we briefly describe the natural language interface. In
section Domain Adaption we present our model of do-
main adaption and the graphical user interface used in
the experiments is introduced in section Graphical User
Interface. The results of our user study as well as the
conclusions drawn from applying our model to a case
study involving a real-world application are presented
in section Experiments. Before concluding, we discuss
related work.

The Natural Language Interface

Our natural language interface implements a compo-
sitional semantics approach (see [18, 4]) to construct
the logical formula corresponding to the input ques-
tion. Compositional means here that the query to the
database or knowledge base - i.e. its meaning - is recur-
sively computed on the basis of the meaning of every
single word in the input sentence. Such an approach
requires some sort of syntactic processing grouping
words to larger syntactic units and ordering them as
trees to guide the recursive computation. Thus, the
logical query representing a question is constructed en
par with the syntactic analysis of the question. We
use in particular the lambda calculus in our composi-
tional approach and reuse the implementation described
in [4]. Such a compositional approach to interpretation
requires relatively rich lexical resources specifying the
logical meaning of each word. This is exactly where our
user-centered model for NLI adaption fills a gap as the
rich semantic lexicon is generated in the background as
a byproduct of the interaction of the user with the sys-
tem’s lexicon acquisition frontend, called FrameMap-
per (see section Graphical User Interface). Details
about the semantics of each word remain completely
hidden to the user. Indirectly, the user is thus generat-
ing a grammar as well as associating logical meanings
to words without even being aware of it. We will dis-
cuss this process in detail below.

As a short illustrating example, imagine a user asking
the question: Which river passes through Berlin? to a
knowledge base containing facts about German geog-

raphy. Roughly, the meaning of the diverse syntactic
units in the input can be expressed as follows in func-
tional lambda notation:

Which river AP ?x (river(z) A P(x))
passes through Az Ay flow_through(z,y)
Berlin AQ Q(Berlin)

So the semantic representation of ‘passes through’ ex-
pects two arguments to be inserted into the appropriate
relation flow_through, the expression ‘which river’ ex-
pects some property P which z, a river, needs to fulfill
and ‘Berlin’ expects some predicate () into which it can
be inserted as an argument.

Given the simplified syntactic structure together with
instructions how the semantic expressions are applied
to each other in Figure 1 and evaluating the tree in a
standard bottom-up fashion, we would first carry out
the functional application:

Au (AQ Q(Berlin))((Ax Ay flow_through(z,y))(u)),
yielding as semantic representation of the vp node:
Au flow_through(u, Berlin), in which the argument
Berlin has been correctly inserted. To yield the final
semantic representation of the top sentence node s, we
would carry out the functional application:

(AP ?z (river(z)AP(x))) (A flow_through(u, Berlin)),
resulting in the final logical query:

?z (river(z) A flow_through(x, Berlin)).

The underlying syntactic theory of our system is an
LTAG-inspired' lexicalized formalism called Logical
Description Grammars (LDGs) (compare [19]). In our
approach, we reuse a version of LDG augmented with
selectional restrictions specified with respect to an on-
tology as described in [5]. This ontological informa-
tion is used to impose restrictions on the arguments of
a predicate and thus for disambiguation.

The structures used in the formalism are essentially
trees with nodes labeled with syntactic information as
depicted in Figure 1. In this formalism parsing boils
down to identifying positively and negatively marked
nodes, respecting category information and surface or-
der of words. In essence, negatively marked nodes cor-
respond to arguments which need to be inserted, while
positively marked nodes denote variables to be inserted
as an argument. For more details about the formalism
the user is referred to [6].

The ORAKEL system implements a procedural version

"Lexicalized Tree Adjoining Grammars (LTAGs) are essentially
tree-rewriting systems with two operations: substitution and adjoin-
ing which exceed the computational power of context-free gram-
mars and have been successfully used to model certain (syntactic)
natural language phenomena (compare [14]).

N

Owh (va)

/’/\

wh
AP (river(z) A P(z))

‘ -

Which river
\

passes through

v
Az, y (flow-through(z,y)

vp
A aap(00(u))

dp
AQ Q(Berlin)
!

Berlin

Figure 1: Syntactic analysis with semantic representations for each word specified according to the A-calculus and
instructions how to combine the different representations with each other.

of LDG in which parsing proceeds as in typical LTAG
parsers in two stages. In fact, we implemented an Early-
type bottom-up parser as described in [22]. Firstly, ap-
propriate elementary trees for each word in the input
are selected from the lexicon. Secondly, these elemen-
tary trees are combined to yield a parse of the sentence
(compare [22]). As it is not the focus of this paper, we
refrain from a more detailed description of our imple-
mentation of LDG and refer the interested reader to [6].

In order to increase its flexibility, the system has been
designed to be domain-independent on the one hand
and independent of the specific knowledge representa-
tion and query languages used in the background on the
other. Domain-independence is achieved by separating
the general and domain lexica as is typically done for
portable NLIs (compare [12]). The latter one needs to
be handcrafted by a domain expert. The independence
of the target logical language is achieved by introducing
a First-Order-Logic (FOL) language enriched with ad-
ditional predicates for quantifiers as well as query and
numerical operators, which is produced by our seman-
tic analysis component. Queries in this FOL-like lan-
guage can then be translated to any logical language
by a translation component. Hereby, the translation is
specified declaratively and is thus exchangeable. Cur-
rently, our system supports two formalisms used in the
Semantic Web, the Web Ontology Language (OWL)?
with the query language SPARQL? as well as F-Logic
as ontology language together with its corresponding
query language [15]. The ontologies essentially provide
the schema for the knowledge base and thus the con-
cepts and relations relevant for the domain in question.
This system design allows to port our system to any do-
main and any (reasonably expressive) logical formalism
with a query language. The only requirement on the
language is that it provides extra-logical predicates for
counting and for numerical comparisons.*

“http://www.w3.org/TR/owl-ref/
3http://www.w3.org/TR/rdf-sparql-query/
“This is currently not met by SPARQL, thus leading to a reduced

q Domain Lexicon |

General Lexicon |

FrameMapper
Query
Interpreter

Query
Converter

,i_q

-»

,'_

Answer
Generation

Figure 2: Overview of the ORAKEL system

Figure 2 gives an overview of the system. It shows that
there are two lexicons: a domain-specific and a general
one. The domain-specific lexicon is generated by a do-
main expert with the help of the FrameMapper lexicon
creation frontend, which is described in detail in section
Graphical User Interface. The domain lexicon is par-
tially generated from the knowledge base. The query
of an end user is interpreted by the query interpreter,
which transforms it into an FOL-like query as described
above. The query converter is a Prolog program which
then transforms the FOL formula into a query specified
in the target query language.

The input to ORAKEL are factoid questions starting
with so-called wh-pronouns such as who, what, where,
which etc., but also the expressions ‘How many’ for
counting and ‘How’ followed by an adjective to ask
for specific values of an attribute. Factoid in this con-
text means that answers are ground facts as typically
found in knowledge or data bases, but not complex an-
swers to Why- or how-questions asking for explanations,
the manner in which something happens or the cause
of some event. From a syntactic point of view, the

expressivity in the target language.

system allows relative clauses, coordination of deter-
miner phrases (DPs) and noun phrases (NPs), (numeri-
cal) quantification and negation.

After having given an overview of our natural language
interface as well as explained how it applies the princi-
ple of compositional semantic construction to interpret
users’ questions, in the next section we describe in de-
tail the crucial process by which a domain lexicon is
constructed in interaction with the user.

Domain Adaption

In our system we pursue an approach in which the do-
main lexicon is constructed in interaction with the user,
whose task is to map relations in the knowledge base
to appropriate subcategorization frames for verbs and
nouns, as well as adjectives. Before explaining in detail
the underlying model which allows a user to create a
domain-specific lexicon and thus customize the system
to a certain domain, it is important to mention that the
overall lexicon of the system has a tripartite structure
consisting of:

e a domain-independent lexicon, containing the seman-
tic representations for determiners (a, the, every,
most, ...), wh-pronouns (who, what, which, where) as
well as certain spatio-temporal prepositions (on, in,
at, before, ...),

e a domain-specific lexicon, defining the meaning of
verbs, (relational) nouns and adjectives occurring in
the domain and

e an ontological lexicon, containing lexical entries and
the semantics of instances and concepts which are
typically represented linguistically as proper nouns
and nouns, respectively.

The only lexicon component which has to be gener-
ated by the user is the domain-specific lexicon in which
verbs, adjectives and relational nouns are mapped to
corresponding relations specified in the domain ontol-
ogy. The domain-independent lexicon is, as the name
suggests, independent of any domain as it specifies the
meaning of words occurring in several domains and
with a constant meaning across these. This is the case
for determiners, wh-pronouns and prepositions. The
semantic representation of the words in this domain-
independent lexicon thus makes reference to domain-
independent categories as given for example by a foun-
dational ontology such as DOLCE [17]. This obviously
assumes that the domain ontology is somehow aligned
to the foundational categories provided by the founda-
tional ontology. The obvious benefit of such a modular
design of the lexicon is that the meaning of closed-class
words such as prepositions, wh-pronouns or determin-
ers are available independently of any domain ontology

and need not to be specified for every different domain
the system is applied to. A more detailed description
of the benefits of such a modularized approach can be
found in [8]. The ontological lexicon is derived fully
automatically from the domain ontology loaded into the
system. In fact, the system reads in all the concepts and
instances of the ontology and relies on their labels to
generate appropriate grammar trees representing these.
Obviously, this relies on the availability of labels for
each concept and instance in the ontology. However,
in general, it is regarded as good practice to include
such labels into the ontology to enable human inspec-
tion. For concepts, we use a lexicon with morphological
information to generate the appropriate plural form.

The user is thus only involved in the creation of the
domain-specific lexicon, which is actually the most im-
portant lexicon as it is the one containing the mapping
of linguistic expressions to domain-specific predicates.
It is important to emphasize that our natural language
interface does not require any sort of pre-encoded gram-
mar as input of the system. In fact, the domain-specific
part of the grammar is generated for every domain.
The overall grammar consists exactly of the trees in
the domain-independent lexicon, the ontological lexi-
con and the domain-specific lexicon. Thus, the task of
the user is to actually provide a domain-specific gram-
mar to the system. As this is a difficult task, in our
natural language interface we implement an approach
in which the user simply instantiates subcategorization
frames and maps these to domain-specific relations in
the ontology. Actually, the linguistic subcategorization
frames are organized in a type hierarchy, such that only
structures of compatible arity are mapped onto each
other. As shown in Figure 3, in our type system we
distinguish between binary, ternary and quaternary sub-
categorization frames which can be mapped to binary,
ternary and quaternary relations, respectively.

Examples for binary subcategorization frames are tran-
sitive verbs, intransitive verbs with a prepositional com-
plement as well as relational nouns with prepositional
complement:

e transitive, e.g. X borders Y
e intransitive + PP-complement, e.g. X flows through Y
e noun + pp, e.g. X is capital of Y

For example, the user could create the mappings:

location(of: pcomp(city)) — location(city,loc) (1)

inhabitants(of: pcomp(city)) — inhabitants(city,integer) (2)
capital(of: pcomp(state)) — capital_of(city,state) (3)

length(of: pcomp(river)) — length(river,integer) (4)

flows(subj: river,through: pobj(river)) — flow_through(river,city) (5)
pass(subj: river,through: pobj(river)) — flow_through(river,city) (6)

height(of: pcomp(mountain)) — height(mountain,integer) (7)
border(subj: loc, obj:loc) — borders(loc,loc) (8)

Though these mappings may seem trivial, they are
indeed crucial as a full domain-specific grammar
mapping linguistic expressions to appropriate semantic
representations will be generated on their basis. It
is important to mention that it is not always the case
that the domain of a relation is mapped to the subject
and the range to the object in the corresponding
subcategorization frame. Therefore, it is necessary that
the user also specifies the order in which the relation’s
arguments map to the ones of the subcategorization
frame. For example, if the method authorOf is mapped
to the transitive verb write, the order of arguments is
reversed i.e. x writes y <> y authorOf x. For the
noun subcategorization frames, the argument of the
relation which has not been mapped to the pcomp posi-
tion is stored separately from the actual frame as it will
normally be expressed in form of a copula® construct
such as “What is the length of the Rhein?”’. Further, in
case the preposition is “0f’, the system also generates
trees allowing to ask for the corresponding relation
using the verb ’have’ (see the examples below). On
the basis of the above example mappings, the system
then generates elementary trees, such that it is able to
interpret the following questions:

What is the length of the Rhein? (4)

What is the capital of Baden Wiirttemberg? (3)

Which river flows through the capital of Baden
Wiirttemberg? (3+5)

Which rivers flow through a capital? (3+5)

Which river flows through the most cities? (5)

Which river flows through a state which borders Baden
Wiirttemberg? (5+8)

What is the height of the Zugspitze? (7)

Which countries does Baden Wiirttemberg border? (8)
Which countries are bordered by Baden Wiirttemberg? (8)
Which countries border Baden Wiirttemberg? (8)

Which country borders the most states? (8)

How many inhabitants does Baden Wiirttemberg have? (2)

In particular, for methods such as capital _of, which do
not have a datatype such as a string or an integer as
range, and which have been mapped to a noun+pp, the
lexicon generation algorithm does not only create ele-
mentary trees for relational noun phrases such that one
can ask: What is the capital of Baden Wirttemberg?
using a copula construct, but also a form in which the
argument mapped to the pcomp position is existentially
quantified over. This allows to ask a question like
Which rivers flow through a capital? For verbs, it gen-

5A copula is an expression involving the verb ‘be’ and linking the
subject to some property or object.

erates the active, passive and verb-last forms, but also
relative clauses complementing a noun phrase.

Binary relations with an integer as range are special
types of relations which can also be mapped to adjec-
tives by specifying (i) the base, (ii) the comparative and
(iii) the superlative form of the adjective, additionally
indicating whether it denotes a positive or negative scale
(this is similar to the approach in TEAM [12]). The
positive/negative distinction is thus necessary to gener-
ate the correct semantics for comparative and superla-
tive adjectives. In fact, big, long and high are positive
adjectives in our sense, while small is an example of a
negative adjective.

For details about the process generating grammar trees
out of subcategorization frames, the interested reader is
referred to [6]. The important aspect here is actually the
fact that the domain-specific grammar necessary for un-
derstanding domain-specific expressions is generated in
the background as a byproduct of a user interacting with
the system and mapping subcategorization frames onto
appropriate relations in the knowledge base. Thus, no
pre-encoded grammar is actually needed in the system.

Overall, the mapping model is not only restricted to bi-
nary relations as suggested in the type hierarchy shown
in Figure 3. Subcategorization frames can also be
mapped to joins of several relations, e.g. a subcate-
gorization frame of arity 2 can also be mapped to two
binary relations joined at a given position (2 x 2-Join
in the Figure), a subcategorization frame of arity 3 can
be mapped either to a simple ternary relation, a join of
two binary relations in which the joined position is also
mapped to an argument in the frame (2 x 2-Join’ in the
Figure) or to a join of 3 binary methods (3 X 2-Join in
the Figure), etc. The reason for introducing such a more
or less elaborated type system is the fact that linguistic
expressions in many cases do not correspond directly to
one relation in the knowledge base, but express a com-
bination of different relations in the knowledge base,
which can be expressed through joins.

In order to map relations defined in the ontology to
appropriate subcategorization frames, users are sup-
posed to use the FrameMapper lexicon creation fron-
tend, which allows to select a relation and to create cor-
responding subcategorization frames. The ontological
restrictions on the concepts which can be used at the
different argument positions of the relation will then be
used as selectional restrictions in the subcategorization
frames and exploited for disambiguation. After the user
has assigned all the relations to corresponding subcate-
gorization frames or adjectives, he can export the lexi-
con. It can then be used by the natural language inter-

face to answer users’ questions against the knowledge
base. In our model, we do not expect a domain expert to
model the lexicon in one turn from scratch, but assume
that the lexicon is created in several iterations. After
the lexicon engineer has created a first version of the
lexicon, the system is deployed. The lexicon engineer
gets presented the questions which the system failed to
answer and the process is iterated. Our hypothesis in
fact is that with such an iterative method the quality of
the lexicon can be improved constantly. We will present
experimental evidence for this hypothesis in section EXx-
periments. An obvious alternative would consist in al-
lowing the engineer to test his lexicon after each session
without involving other users. However, during our ex-
periments we found that a single user has often trou-
ble in thinking of different variations for asking for the
same fact, such that this approach can not be expected
to achieve a high coverage. Nevertheless, this would be
an interesting hypothesis to verify in future work.

Graphical User Interface

Figure 4 shows a screenshot of FrameMapper’s graph-
ical user interface. It shows how a lexicon engineer
is mapping the flow_through relation to the intransitive
verb ‘flow’ featuring a prepositional complement intro-
duced by the preposition ‘through’. The figure shows
the three main panes of FrameMapper. In the top pane,
the user sees the relations specified in the ontology. In
the second pane, he can see the different subcategoriza-
tion frames assigned to the active relation. In the third
pane, he sees a visualization of the subcategorization
frame and the selected relations as a graph. He can then
graphically map the arguments of the frame to the ones
of the selected relation(s). In the example, the lexicon
engineer has mapped the subject position of the verb
‘flow* to the domain of the flow_through relation and
the prepositional complement to the range position of
the same relation. Further, in the screenshot he has al-
ready entered the appropriate preposition ‘through’ in
the graph representing the subcategorization frame and
is currently editing the verb, specifying that its base
form is actually “flow’. With this information, the sys-
tem can generate all the grammatical variations of the
intransitive verb ‘flow’ in the background, thus allow-
ing to ask for the flow_through relation in a variety of
ways. In order to add a further verb, e.g. ‘pass’, the
user has to instantiate a new subcategorization frame
and perform the mapping again. The newly created sub-
categorization frame would then be added to the list of
those subcategorization frames already created for the
active relation(s) in the middle pane. Note that the user
can also select various relations and carry out joins be-
tween these to specify more complex mappings involv-
ing more than one relation. In general, the user can

v FrameMapper
File

- Domain Range Farameters
lncation city Iocation
city integer
capital_af ity state

state integer
length river integer
rigin river Iocation
ows _through river city

ight mouniain integer
jncated_al_highway city highway
orders state Iocation

intransitive+ pp@flows_through , at)

Fivert
flow] [cougl oniER]

Figure 4: GUI of FrameMapper

export the lexicon which can then be loaded into the
ORAKEL natural language interface, but he can also
import an already created mapping lexicon to add more
subcategorization frames, thus creating the lexicon in
several iterations.

Experiments

In this section, we first present the settings and results
of our experiments, which have been carried out on two
different domains showing that the system can be ported
between domains without major efforts. First of all, we
present a user study carried out with a knowledge base
and corresponding ontology containing facts about Ger-
man geography. The aim of this study was to demon-
strate that computer scientists without any NLP exper-
tise can indeed generate domain-specific lexica for the
ORAKEL system without major difficulties. Second,
we provide some figures demonstrating that the sys-
tem potentially has a reasonable linguistic coverage. Fi-
nally, we discuss a case study carried out at British Tele-
com in which the ORAKEL natural language interface
was successfully applied to offer enhanced search over
a digital library.

User study

The aim of the user study was to show that computer
scientists without any NLP expertise can indeed gener-
ate reasonable domain-specific lexica for the ORAKEL
natural language interface. The study also provides first
evidence that our iterative approach is indeed feasible.

The knowledge base used for the experiments contains

Subcategorization Frames

Arity2

Transitive Intransitive+PP Noun+PP

Relation

Arity3

Transitive+PP

Arity4

Noun+PP+PP (...)

- T

Arity2

Binary Relation 2 x 2 Join

Ternary Relation

Arity3 Arity4

2 x 2Join’ 3 x 2 Join (...)

Figure 3: Type hierarchies of linguistic templates and relations

geographical facts about Germany. In particular, it
contains states, cities, rivers and highways in Germany
as well as the names of neighboring countries. It is a
small knowledge base handcrafted by students at our
department. The knowledge base contains the number
of inhabitants of each state and city as well as the cap-
ital of each state. For rivers and highways, it contains
information about the cities they pass. For rivers, it
additionally contains their origin as well as length. It
also contains mountains and their heights. Overall, the
knowledge base comprises 260 entities: 108 highways,
106 cities, 18 rivers, 16 states, 9 (bordering) countries
and 2 (bordering) seas as well as one mountain peak.
The relations defined in the ontology are the following:

city[location => location].
city[inhabitants =>> integer].
state[inhabitants => integer].
state[borders =>>> location].
city[located_at_highway =>> highway].
river[length => integer].

river[origin => location].
river[flows_through => city].
mountain[height => integer].
city[capital _of => state].

Here, => denotes that the relation can have at most one
instance as range and =>> denotes that there can be
more than one instance as range of the relation.

The user study involved one of the authors of this pa-
per, as well as 26 additional test persons from 4 differ-
ent institutions, both academic and industrial. Of these,
25 were computer scientists and 1 a graphic designer,
all without any background in computational linguis-
tics and thus suitable for our experiments. The role of
the author as well as two of the other participants was
to construct a lexicon each, while the rest played the
role of end users of the system. We will refer to the au-

thor as A and the other two participants constructing a
lexicon as B and C. While A was very familiar with
the lexicon acquisition tool, B and C' were not and re-
ceived 10 minutes of training on the FrameMapper tool
as well as 10 minutes explanation about the different
subcategorization types, illustrated with general exam-
ples. Whereas A constructed a lexicon in one turn, B
and C constructed their lexicon in two rounds of each
30 minutes. In the first round, they were asked to model
their lexicon from scratch, while in the second round
they were presented those questions which the system
had failed to answer after the first round consisting of 4
sessions with different users. They were asked to com-
plete the lexicon on the basis of the failed questions.
Overall, they thus had one hour to construct the lex-
ica. The 24 persons playing the role of the end users
also received instructions for the experiment. They re-
ceived a document describing the experiment, requiring
them to ask at least 10 questions to the system. Fur-
ther, the scope of the knowledge base was explained
to them. They were explicitly told that they could ask
any question, also involving negation and quantifica-
tion, with the only restriction that it should begin with a
wh-pronoun such as which, what, who, where as well as
how many or how + adjective. For each answer of the
system, they were asked to specify if the answer was
correct or not. The results are thus reported in the fol-
lowing as recall, i.e. the number of questions answered
correctly by the system divided by the total number of
questions for each user. Excluded from this were only
questions with spelling errors or which were obviously
ungrammatical, as well as questions which were clearly
out of the scope of the knowledge base. We also give
the precision of our system as the number of questions
for which the system returned a correct answer divided
by the number of questions for which it returned an an-
swer at all®. Table 1 shows these results for each of the

®It is important to emphasize that we are using precision and re-

Lexicon Users | Rec. (avg.) | Prec. (avg.)
A 8 53.67% 84.23%
B (first lexicon) 4 44.39% 74.53%
B (second lexicon) 4 45.15% 80.95%
C (first lexicon) 4 35.41% 82.25%
C (second lexicon) 4 47.66% 80.60%

Table 1: Results for the different lexica

lexicon constructors and the two iterations.

The first interesting conclusion is that, for both B and
C, there is an increase in recall after the first round. The
results show that our iterative methodology to lexicon
customization is indeed promising. The involved users
also confirmed that it was easier to extend the lexicon
given the failed questions than creating it from scratch.
The second interesting result is that the lexicons created
by B and C show a comparable recall and precision to
the lexicon developed by A. This shows that our lexical
acquisition model is in fact successful. In general, the
results have increased after the second iteration, with
the exception of a slight drop in precision for user C' at
the second round. We expect that further iterations will
constantly improve the lexica. However, this is subject
to further analysis in future work.

Question Analysis

Having shown that domain experts are able to map re-
lations in a knowledge base to subcategorization frames
used to express them, an important question is to deter-
mine how big the coverage of the different subcatego-
rization frames is with respect to the questions asked by
the end users. Overall, the end users asked 454 ques-
tions in our experiments. A detailed manual analysis
of the questions showed that with our basic subcatego-
rization frames transitive, intransitive+pp, np and adj
as well the constructions automatically generated from
these, we get a linguistic coverage of more than 90%,
i.e. more than 90% of the sentences could be handled
from a grammatical and lexical point of view. This
shows that it is indeed feasible to focus on a few subcat-
egorization types. The intelligence lies anyway in the
generation of the corresponding elementary trees from
the subcategorization frames. The generation, however,
remains totally opaque to the user. A more detailed pre-
sentation of this question analysis can be found in [6].

Real-world application

As a further experiment, our approach has been applied
within the British Telecom (BT) case study in the con-
text of the SEKT project’. In this case study the aim
is to enhance the access to BT’s digital library, which

call here in line with Popescu et al. [21] and not in the standard
information retrieval sense.
"http://www.sekt-project.com/

mainly contains metadata and full-text documents of
scientific publications, by a natural language interface.
The knowledge base considered within this case study
is several orders of magnitude larger than the one con-
sidered in the context of the experiments carried out
on the geographical domain. The ontology used to de-
scribe the metadata is the PROTON ontology®, which
consists of 252 classes and 54 relations. While the
PROTON ontology (the schema of the data) is stored
in an OWL ontology in this scenario, all the publica-
tion metadata are stored in a database. The schema of
the database, however, has been mapped to the PRO-
TON ontology, such that queries to the ontology are
also evaluated by taking into account the metadata in
the database. The knowledge base contains metadata
about 67015 persons, 17174 topics and 33501 docu-
ments (journal articles, conference papers, conference
proceedings, periodicals and books). Further, there are
66870 instances of the AuthorOf relation and 165089
instances of the iSAboutTopic relation. As the data size
is indeed several orders of magnitude bigger compared
to our geography domain, in the context of this use case
it was totally unfeasible to generate a grammar entry for
each instance in the database. Therefore, we performed
a slight change to the ORAKEL system to allow to dy-
namically create grammar trees at query time for names
of instances. This was achieved by considering every
sequence of upper-case words as a potential candidate
for an instance, generating appropriate syntax trees at
runtime. The ontological lexicon is thus generated only
for concepts in the ontology in this scenario, while the
part of the lexicon containing the instances is generated
dynamically. This move was important to ensure effi-
ciency in this setting.

A graduate student and a PhD student spent overall ap-
prox. 6 hours creating a lexicon for a subset of PRO-
TON relevant for the digital library using FrameMap-
per with the result that queries about authors, topics
etc. about documents could be answered successfully
against the BT ontology and database. Though we have
not carried out an extensive evaluation involving vari-
ous users in this setting, the application to the BT dig-
ital library showed on the one hand that, given certain
straightforward modifications, our approach can actu-
ally scale to much larger knowledge and data bases. On
the other hand, the additional use case confirms that
the system can indeed be ported between domains in
a more or less straightforward way. We refer the in-
terested reader to [7] for further details about the case
study at British Telecom.

8http://proton.semanticweb.org/

Related Work

There is a vast amount of work related to the customiza-
tion of NLIs to a certain domain. Discussing all the dif-
ferent approaches is out of the scope of this paper. For
a detailed review of natural language interfaces, the in-
terested reader is referred to the overviews in [9] and
[1] as well as to the evaluation survey in [20]. Due to
space limitations, we will only briefly discuss four well-
known older and seminal systems (LADDER, TEAM,
PARLANCE and ASK) as well as a few more recent
approaches.

To overcome the difficulty in porting systems based
on semantic grammars such as LADDER [13], sys-
tems such as TEAM, PARLANCE and ASK focused
on supporting the portability of NLIs across domains
by database experts. TEAM’s [12] approach consisted
in asking questions to a user to acquire linguistic knowl-
edge about certain words, i.e. verbs, nouns, etc. as
well as their relation to database fields. ASK [23]
and PARLANCE [2] allowed users to teach new words
and concepts even during execution time. However, to
our knowledge, the only system of the above which
has been evaluated in terms of the time taken to be
customized is PARLANCE. According to [2], port-
ing PARLANCE takes between 6-8 person weeks for
databases with between 32 and 75 fields. Such an ef-
fort is enormous compared to the one presented in this

paper.

More recently, the PRECISE system [21] has focused
on the reliability of NLIs and presented a system which
is formally proved to be 100% precise, given an appro-
priate domain-specific lexicon. In fact, PRECISE re-
quires no additional customization nor domain-specific
knowledge other than an appropriate lexicon. The pre-
cision of PRECISE of almost 100% on real data is
certainly impressive, but in contrast to our approach
it only produces conjunctive (SQL) queries. Further-
more, ORAKEL handles arbitrary quantification as well
as negation and has also been demonstrated to be very
reliable as the precision ranges between 74% and 85%.
The aims of PRECISE and our system are thus comple-
mentary, as we have focused on developing an approach
by which domain experts can quickly create an appro-
priate domain-specific lexicon for a NLI.

Customization to a domain in the system of Thomp-
son et al. [24] is achieved by training a parser using
ILP techniques on the domain in question. Such an ap-
proach obviously needs training data and Thompson et
al. do not discuss if such an approach relying on train-
ing data is actually feasible from a usage point of view.
The system is evaluated on two domains (jobs and ge-

ography), and achieves very decent accuracy levels be-
tween 25 - 70% for the geography domain and between
80 - 90% accuracy for the job domain, depending on the
amount of training data used.

The approach in the QETAL system [10] implements
the mapping from a question to a query via three in-
termediary stages: i) construction of a Robust Mini-
mal Recursion Semantics (RMRS) representation, ii)
mapping to FrameNet types and roles as well as iii)
construction of so-called proto-queries. The approach
implements a hybrid technique to interleave shallow
and deep processing. An evaluation of the system
shows that it achieves similar precision rates as our sys-
tem, i.e. 74.1%. Customization is achieved through
hand-written rewriting rules transforming FrameNet-
like structures to domain-specific structures as provided
by the domain ontology.

The recently presented Aqualog system [16] essen-
tially transforms the natural language question into a
triple-representation and then relies on similarity com-
putations to map the triples to appropriate relations de-
fined in the ontology. Some basic support for disam-
biguation is provided in this way. An obvious benefit is
that AqualLog does not rely on any sort of customiza-
tion.

Finally, the system presented by Bernstein et al. [3]
builds on a controlled language approach as imple-
mented by the ACE (Attempto Controlled English)
framework (see [11]). It requires a transformation from
the parser output structures — DRSs actually — as pro-
duced by the Attempto Parsing Engine (APE) to PQL
queries formulated with respect to the relations and
concepts of underlying ontology. This transformation
needs to be specified by hand by a system engineer. It
is thus not clear if the system can indeed be adapted by
end users.

Conclusion

We have presented a new model for user-centered adap-
tion of natural language interfaces to a certain domain.
In line with TEAM [12], no knowledge about compu-
tational linguistics or NLP is required to customize the
NLI in our model. Our experiments have shown that
the very rudimentary knowledge about subcategoriza-
tion frames needed can be quickly acquired by domain
experts. Our extensive experiments clearly corroborate
the hypothesis that our model represents a feasible ap-
proach for domain adaption. On the one hand, our re-
sults have shown that the domain lexica created by the
two users in charge of the lexicon creation do not sub-
stantially differ from the one created by one of the au-
thors, a computational linguist, with respect to the ac-

curacy of the system. Further, according to our lexicon
developers, an iterative model is actually useful, but we
plan to further test the effect of several iterations on the
quality of the created lexica.

Acknowledgments This research has been supported by the
following projects: the BMBF project SmartWeb, financed by the
German Ministry of Education and Research as well as the projects
Dot.Kom, SEKT and X-Media, funded by the European Union un-
der FP6. Special credit goes to Matthias Mantel for help in imple-
menting the system. Thanks to our students Johanna Wenderoth and
Laura Goebes for creating the German geography knowledge base.
Thanks to all our colleagues from the AIFB, the FZI and ontoprise
as well as to Ursula Cimiano and Sofia Pinto for taking part in the
experiment as end users.

REFERENCES
1. I. Androutsopoulos, G.D. Ritchie, and P. Thanisch.
Natural language interfaces to databases—an introduc-
tion. Journal of Language Engineering, 1(1):29-81,
1995.

2. M. Bates. Rapid porting of the parlance natural lan-
guage interface. In Proceedings of the Workshop on
Speech and Natural Language, pages 83-88, 1989.

3. A.Bernstein, E. Kaufmann, A. Gohring, and C. Kiefer.
Querying ontologies: A controlled english interface for
end-users. In Proceedings of the 4th International Se-
mantic Web Conference, pages 112-126, 2005.

4. P. Blackburn and J. Bos. Representation and Inference
for Natural Language - A First Course in Computa-
tional Semantics. CSLI Publications, 2005.

5. P. Cimiano. ORAKEL: A Natural Language Interface
to an F-Logic Knowledge Base. In Proceedings of the
9th International Conference on Applications of Nat-
ural Language to Information Systems (NLDB), pages
401-406, 2004.

6. P. Cimiano, P. Haase, J. Heizmann, and M. Mantel.
Orakel: A portable natural language interface to knowl-
edge bases. Technical report, Institute AIFB, Univer-
sity of Karlsruhe, 2007. to appear.

7. P. Cimiano, P. Haase, Y. Sure, J. Volker, and Y. Wang.
Question answering on top of the BT digital library.
In Proceedings of the World Wide Web conference

(WMW), pages 861-862, 2006.

8. P.Cimiano and U. Reyle. Towards foundational seman-
tics - ontological semantics revisited -. In Proceedings
of the International Conference on Formal Ontology in
Information Systems FOIS). IOS Press, 2006.

9. A. Copestake and K. Sparck Jones. Natural language
interfaces to databases. Knowledge Engineering Re-
view, 1989. Special Issue on the Applications of Natu-
ral Language Processing Techniques.

10. A. Frank, H.-U. Krieger, F. Xu, H. Uszkoreit, B. Crys-
mann, B. Jorg, and U. Schifer. Question answering
from structured knowledge sources. Journal of Applied

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Logic, Special Issue on Questions and Answers: Theo-
retical and Applied Perspectives, 2006. to appear.

N.E. Fuchs, K. Kaljurand, and G. Schneider. Attempto
controlled english meets the challenges of knowledge
representation, reasoning, interoperability and user in-
terfaces. In Proceedings of FLAIRS 06, 2006.

B.J. Grosz, D.E. Appelt, PA. Martin, and F.C.N.
Pereira. Team: An experiment in the design of trans-
portable natural language interfaces. Avrtifi cial Intelli-
gence, 32:173-243, 1987.

G. Hendrix, E. Sacerdoti, D. Sagalowicz, and
J. Slocum. Developing a natural language interface
to complex data. ACM Transactions on Database Sys-
tems, 3(2):105-147, 1978.

A K. Joshi and Y. Schabes. Tree-adjoining grammars.
In Handbook of Formal Languages, volume 3, pages
69-124. Springer, 1997.

M. Kifer, G. Lausen, and J. Wu. Logical foundations
of object-oriented and frame-based languages. Journal
of the ACM, 42:741-843, 1995.

V. Lopez and E. Motta. Aqualog: An ontology-portable
question answering system for the semantic web. In
Proceedings of the International Conference on Natu-
ral Language for Information Systems (NLDB), pages
89-102, 2004.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and
A. Oltramari. Ontology library (final). WonderWeb
deliverable D18.

R. Montague. On the proper treatment of quantifica-
tion in ordinary english. In R. H. Thomason, editor,
Formal Philosophy: Selected Papers of Richard Mon-
tague, pages 247-270. 1974.

Reinhard Muskens. Talking about trees and truth-
conditions. Journal of Logic, Language and Informa-
tion, 10(4):417-455,2001.

W.C. Ogden and P. Bernick. Using natural language in-
terfaces. In M. Helander, editor, Handbook of Human-
Computer Interaction. Elsevier, 1996.

A. Popescu, O. Etzioni, and H. Kautz. Towards a theory
of natural language interfaces to databases. In Proceed-
ings of IUI’ 03, pages 149-157, 2003.

Y. Schabes, A. Abeille, and A K. Joshi. Parsing strate-
gies with ‘lexicalized’ grammars: application to tree
adjoining grammars. In Proceedings of COLING' 88,
pages 578-583, 1988.

B.H. Thompson and FB. Thompson. ASK is trans-
portable in half a dozen ways. ACM Transactions on
Offi ce Information Systems, 3(2):185-203, 1985.

C. Thompson, R. Mooney, and L. Tang. Learning
to parse natural language database queries into logical
form. In Proceedings of the Workshop on Automata In-
duction, Grammatical Inference and Language Acqui-
sition, 1997.

