
Learning Patterns from the Web
- Evaluating the Evaluation Functions -

Extended Abstract

Sebastian Blohm, Philipp Cimiano

Institute AIFB, University of Karlsruhe
D-76128 Karlsruhe, Germany

{blohm, cimiano}@aifb.uni-karlsruhe.de

1 Introduction
For many applications it is important to provide a large amount of instances of
domain-specific relations. This is the case, for example, for question answering
systems. Answering a question like “Which European capitals have more than
a million inhabitants?” requires that we know the capital of each country, the
continent of each city as well as the number of inhabitants of every city. It
is clear that manually acquiring the extension of each relation of interest is
unfeasible. Thus, some sort of automatic support is indeed not only desirable
but crucial. In the last years, several systems have been developed with the aim
of automatically extracting relation tuples by matching certain lexico-syntactic
patterns indicating the relation of interest in text data. The approach builds on
the seminal work of Hearst [1] who manually defined lexico-syntactic patterns
to extract isa-relations. Domain-specific relations can however certainly not be
captured by a rigid set of a few lexico-syntactic patterns. Besides defining a few
lexico-syntactic patterns for extraction of hypernym-relations, Marti Hearst also
defined a basic procedure to find appropriate patterns indicating these relations:

1. Decide on a lexical relation R of interest, e.g. hyponymy/hypernymy.
2. Gather a list of terms for which this relation is known to hold, e.g. hyponym(car,

vehicle). This list can be found automatically using the patterns already learned
or by bootstrapping from an existing lexicon or knowledge base.

3. Find expressions in the corpus where these terms occur syntactically near one
another.

4. Find the commonalities and generalize the expressions in 3 to yield patterns that
indicate the relation of interest.

5. Once a new pattern has been identified, gather more instances of the target relation
and go to step 3.

Our long term goal is to build on this general approach and develop a system
that automatically generates patterns and extracts relation instances. In order
to enable large flexibility and to allow covering a large amount of relations, it
is important to keep human intervention at a minimum. This however requires
that many design choices are taken in advance and parameters are specified. The
large amount of possible design choices is reflected in the number of systems that
are currently being developed following Hearst’s general algorithm (compare [2,
3]). Important design choices are:

– How many examples for which the relation of interest is known to hold do we need
to specify? (We will refer to these as the seed examples.)

– What does it mean for two terms to occur syntactically near one another?

– How are expressions from step 3 and their generalizations represented? In partic-
ular one can take into account output from different levels of linguistic analysis.

– How are the generalizations in step 4 derived and selected from the enormous space
of possible generalizations.

The task at hand can be considered a Machine Learning task that is based on
minimal supervision. In the course of the above procedure, the system constantly
takes decisions on which extracted relation instances and which generated pat-
terns to accept. These decisions can only be guided by the knowledge the system
has at that stage. It is therefore far from straightforward to come up with an
objective function to guide the decisions. This is particularly so as ground truth
knowledge for these judgments, namely the extension of the relation, is inher-
ently unknown during extraction.

All the available research systems have done some implicit choice on the
above questions, but rarely made all their choices explicit. We have implemented
a pattern learner and thus relation extractor inspired by Hearst’s approach as
well. The contribution of our paper is on the one hand to present the concrete
algorithm we use and explicitly mentioning our design choices with respect to
the above issues. In particular, in this paper we focus on the objective evaluation
functions to evaluate the patterns. We present different evaluation measures and
provide preliminary results based on human inspection comparing the different
measures. The research reported in this paper is in a preliminary stage but
nevertheless interesting in our view in that it first of all systematizes the design
choices of any pattern-based learner and second provides first insight into which
evaluation function might work best.

2 Algorithm and Implementation

In this section the extraction algorithm (Figure 1) and key functional units in
an iterative pattern induction system are identified and described. The learned
relation instances are considered tuples t = (t1, t2) ∈ T . In addition to the set of
accepted tuples S ⊂ T the algorithm maintains a set P of accepted extraction
patterns. An initial set of tuples S′ and of patterns P ′ can serve as input to the
algorithm, although either of both suffice in principle.

Our implementation of the algorithm, the PRONTO system uses the World
Wide Web as a corpus, relying the Google search engine for matching. Matching
is done by issuing queries to Google via its API and processing the short text
fractions (snippets) returned. The seeds are regarded as occurring near each
other if there are at most 4 tokens separating them. The overall algorithm is
shown in Figure 1. Match-Tuples constructs queries from individual relation
instances t ∈ S, an additional matching mechanism then identifies occurrences
of the relation instance within the snippets. Patterns consist of generalizations of
these occurrences, and generalization is done by replacing individual text tokens
by ∗ wildcards and restricting the pattern to a window of a few tokens around the
occurrence. Queries for Match-Patterns are then constructed by surrounding
the patterns by quotes in order to match the exact sequence. During processing,
text is treated as a sequence of tokens.

Iterative Pattern Induction(PatternsP ′, TuplesS′)
1 S ← S′

2 P ← P ′

3 while not Done
4 do Occt ← Match-Tuples(S)
5 P ← P + Learn-Patterns(Occt)
6 Evaluate− Patterns(P)
7 P ′ ← {p ∈ P | Pattern-Filter-Condition(p)}
8 Occp ← Match-Patterns(P ′)
9 S ← S + Extract-Tuples(Occp)

10 Evaluate− Tuples(S)
11 S ← {t ∈ S | Tuple-Filter-Condition(t)}

Fig. 1. Iterative pattern induction algorithm starting with inital patterns P ′ and tuples
S′

Learn-Patterns identifies occurrences in which the same tokens appear
in the same positions (relative to the relations arguments). It then generates
abstractions through a merging of occurrences. Thereby tokens shared by all
merged occurrences are kept while others are replaced by wildcards. All pat-
terns that have not been generated by a merger of occurrences of at least two
different relation instances, are discarded, which ensures at the same time a cer-
tain minimum generality and some degree of appropriateness for the relation.
The evaluation process and the diverse evaluation functions are discussed in fur-
ther detail in section 3. In every iteration, only the top 100 patterns and the
top 50% of the tuples are kept. The Extract-Tuples step can be considered
part of the matching procedure at the level of abstraction of this description.
A typical run of the PRONTO system currently generates around 3000 facts
in approximately three hours starting with a list of 10 facts as seed examples,
iterating 5 times the extraction procedure. Precision strongly depends on the
type of relation that is to be learned as well as on the evaluation strategy used.
(cf. section 4)

3 Evaluation Functions
In general, tuples can be evaluated by estimating the confidence that they belong
to the target relation. For the purpose of our experiments we do so by averaging
over the confidence the system puts into the patterns that extracted that tuple.
There are various ways to compute pattern confidence. In this work we present
three approaches taken from the literature that we compare against our own
approach and against a baseline condition randomly assigning confidence values.

The most direct measures of pattern performance are precision and recall.
However, those are impossible to assess due to lack of information on the exten-
sion of the relation at hand. In this work, we heuristically define precision by
assuming that among the matches of a pattern m(p) only those are true positives
which have been previously accepted in S. This is similar to what is done by [3].

cprec(p) =
|m(p) ∩ S|

|S|

This measure may heavily underestimate the actual performance of a pattern
if that pattern is able to generate many previously unseen relation instances. The
following strategies have been adopted to overcome this limitation. They rely on
counts of matches of patterns with or without filling their argument slots with
particular relation instances.

The corpus frequencies derived in this manner are used to assess the coher-
ence of patterns and the their extraction results via pointwise mutual information
(PMI). PMI measures the strength of association between two random events A
and B and is defined as:

pmi(A,B) = log
P (A,B)

P (A)P (B)

The KnowItAll[4] information extraction system uses PMI in the following
way1 to assess coherence of a pattern-tuple pair (p, t) in:

pmi1(p, t) =
|t1, p, t2|
|t1, ∗, t2|

Following [5] we write |t1, p, t2| to denote the number of search engine matches
of a query generated by filling the components of tuple t = (t1, t2) into the
argument slots of pattern p. While ∗ means allowing arbitrary values for the
pattern or the argument replaced.

In [4] this measure is used to generate a feature vector for classification of
patterns. In our work, we use an average of pmi1 values over a subset of S to
quantify the patterns performance.

In the Espresso system [5], PMI is used in a different way aiming at relating
the event of the pattern occurring in the corpus and the event of the tuple
occurring in the corpus. The intuition behind this is that a pattern is good if it
occurs preferably in association with tuples from S and conversely tuples from
S have a strong association with the pattern.

pmi2(p, t) = log
|t1, p, t2|

|∗, p, ∗| |t1, ∗, t2|

We propose a third PMI-based confidence measure which relates the event
of the first argument of a tuple t within the pattern and that of the second
argument occurring in t in its respective position. The idea of this measure is
to punish too general patterns (large denominator), too specific patterns (small
|∗, p, ∗|) and bogus tuples (low association) at the same time. It is based on the
following approximation:

pmi3(t) = log
P (t1, p, ∗ ∧ ∗, p, t2|∗, p, ∗)

P (t1, p, ∗|∗, p, ∗)P (∗, p, t2|∗, p, ∗) ' log
|t1, p, t2||∗, p, ∗|
|t1, p, ∗||∗, p, t2|

1 Although called PMI, the applications in [4] and [5] deviate from the original defini-
tion in that the logarithm is omitted (Etzioni only) and that absolute match counts
replace probabilities. These deviations however do not affect the ranking derived.

Fig. 2. Yield and precision of the extraction experiments. Results for the same relation
share the same line style those derived with the same evaluation strategy share one
marking point style.

A pattern confidence value is computed for the PMI strategies by averaging
the PMI values over a random subset of the currently accepted tuples S′.

As a baseline condition, a pattern evaluator has been implemented that as-
signs random confidence values crandom(p) to all patterns.

4 Experiments and Results

We present in figure 2 yield counts (cumulative number of extracted tuples)
and precision values of the output of the PRONTO system during 5 iterations.
The located-in (city in country) and product-of (car model, car maker) relations
have been chosen for evaluation. Precision has been assessed by taking a random
sample of size 20 from of the results at each iteration and inspection of each
individual tuple by one of the authors.

All precision values decay between the first and the second iteration and show
no clear trend afterwards. Precision values of the located-in relation range around
0.8 those of the product-of relation around 0.5. For located-in the precision-
based evaluation performs slightly stronger, for product-of pmi2 performs best.
The yield-count shows that the increase of extracted information is linear and
equally large for all strategies mostly bounded by the constant number of Google
queries run in each iteration.

While being far from perfect, these preliminary results indicate several im-
portant points:

– The system is able to extract relation instance with relatively high quality.
– The random filtering of patterns is slightly outperformed by other evaluation

strategies.
– The precision level reached depends more on the type of relation that is to be

extracted than on the evaluation strategy applied.
– No strong performance difference can currently be observed among the informed

pattern evaluation strategies.
– There is no strong inherent degradation of results from one iteration to the next

even though imperfect output is added to the seeds.

The relatively strong performance of the “random” strategy may be explained
by the learning algorithm excluding patterns that have not been derived by a
merger of occurrences of at least two different relation instances. This criterion
which is similar to the only filtering done in [2] is necessary to keep further
processing computationally feasible.

5 Related Work and Conclusion
An early rather generic implementation of the approach outlined by Hearst [1]
is DIPRE[2] which has been extended by Snowball[3] mostly by adding explicit
pattern and tuple evaluation strategies, which however assume that the relation
that is to be learned is functional. PMI-based evaluation of patterns and tuples
was done in KnowItAll[4] and Espresso [5]. Recent work in the field includes [6]
in which the focus lies on inducing patterns reflecting syntactic dependencies.

In this paper we introduced our implementation of a pattern induction sys-
tem that is like many others on iterative extension of a set of seed examples.
Focusing on pattern evaluation we demonstrated the impact of different evalua-
tion strategies on extraction quality.

At the workshop we will be able to present evaluation results that have higher
statistical validity and cover a larger number of relations as a fully automatic
evaluation system is currently under development. The results will probably
allow to identify features of evaluation functions that are crucial for the success
of the extraction.

References

1. M. A. Hearst, “Automatic acquisition of hyponyms from large text corpora,” in
Proceedings of the 14th conference on Computational linguistics. Morristown, NJ,
USA: Association for Computational Linguistics, 1992, pp. 539–545.

2. S. Brin, “Extracting patterns and relations from the world wide web,” in WebDB
Workshop at 6th International Conference on Extending Database Technology,
EDBT’98, 1998. [Online]. Available: citeseer.csail.mit.edu/brin98extracting.html

3. E. Agichtein and L. Gravano, “Snowball: extracting relations from large plain-text
collections,” in DL ’00: Proceedings of the fifth ACM conference on Digital libraries.
New York, NY, USA: ACM Press, 2000, pp. 85–94.

4. O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland,
D. S. Weld, and A. Yates, “Unsupervised named-entity extraction from the web: an
experimental study,” Artif. Intell., vol. 165, no. 1, pp. 91–134, 2005.

5. M. Pennacchiotti and P. Pantel, “A bootstrapping algorithm for automatically har-
vesting semantic relations,” in Proceedings of Inference in Computational Semantics
(ICoS-06), Buxton, England.

6. F. M. Suchanek, G. Ifrim, and G. Weikum, “Leila: Learning to extract information
by linguistic analysis,” in Proceedings of the 2nd Workshop on Ontology Learning
and Population: Bridging the Gap between Text and Knowledge. Sydney, Australia:
Association for Computational Linguistics, July 2006, pp. 18–25.

Acknowledgements

The authors would like to thank Egon Stemle for assistance in developing the PRONTO
system including many valuable suggestions. This work was funded by the X-Media
project (www.x-media-project.org) sponsored by the European Commission as part of
the Information Society Technologies (IST) program under EC grant number IST-FP6-
026978. Thanks also to Google for technical support.

