
From Tables to Frames

A. Pivk a,b,∗, P. Cimiano b, Y. Sure b,

aJozef Stefan Institute, Department of Intelligent Systems, Ljubljana, Slovenia
bInstitute AIFB, University of Karlsruhe, Karlsruhe, Germany

Abstract

Turning the current Web into a Semantic Web requires automatic approaches for
annotation of existing data since manual approaches will not scale in general. We
here present an approach for automatic generation of F-Logic frames out of tables
which subsequently supports the automatic population of ontologies from table-like
structures. The approach consists of a methodology, an accompanying implemen-
tation and a thorough evaluation. It is based on a grounded cognitive table model
which is stepwise instantiated by our methodology.

Key words: Table Structure, Table Modeling, Knowledge Frame, Ontology
Generation, Web Mining

1 Introduction

Turning the current Web into a Semantic Web requires automatic approaches
for annotation of existing data since manual annotation approaches such as
presented in [9] will not scale in general. More scalable (semi-)automatic ap-
proaches known from ontology learning (cf. [16]) deal with extraction of on-
tologies from natural language texts. However, a large amount of data is stored
in tables which require additional efforts.

We here present an approach for automatic generation of F-Logic frames [14]
out of tables which subsequently supports the automatic population of on-
tologies from table-like structures. Even successful search engines on the Web

∗ Corresponding author.
Email addresses: aleksander.pivk@ijs.si (A. Pivk),

cimiano@aifb.uni-karlsruhe.de (P. Cimiano), sure@aifb.uni-karlsruhe.de
(Y. Sure).

URL: http://dis.ijs.si/sandi (A. Pivk).

Preprint submitted to Elsevier Science 4 February 2005

currently do not make the content of tables searchable to users. Applying
our approach e.g. allows for querying over a heterogeneous set of table-like
structures.

Our approach consists of a methodology, an accompanying implementation
and a thorough evaluation. It is based on a grounded cognitive table model
which is stepwise instantiated by our methodology. In practice it is hard to
cover every existing type of a table. We identified a couple of most relevant
table types which were used in the experimental setting during the evaluation
of our approach.

In this paper we use HTML tables as examples. We would like to point out
that the methodology can be applied to any kind of table-like structure. The
implementation is almost as generic as the methodology. To apply it for other
formats than HTML one would only need to adapt the implementation for
the first methodological step (cf. Figure 1).

The paper is structured as follows. In the next Section 2 we first introduce
the grounding table model which forms the base for our stepwise approach to
generate frames out of tables. Subsequently we explain each step in detail and
show relevant substeps. In Section 3 we present a thorough evaluation of the
accompanying implementation. Before concluding and giving future directions,
we present related work.

2 Methodological Approach

Linguistic models traditionally describe natural language in terms of syntax,
semantics and pragmatics. There also exist models to describe tables in similar
ways (cf. [10,11]) where tables are analyzed along the following dimensions: (i)
Graphical – the image level description of the pixels, lines and text or other
content areas, (ii) Physical – the description of inter-cell relative location, (iii)
Structural – the organization of cells as an indicator of their navigational
relationship, (iv) Functional – the purpose of areas of the tables in terms
of data access, and (v) Semantic – the meaning of text in the table and
the relationship between the interpretation of cell content, the meaning of
structure in the table and the meaning of its reading.

Our approach builds on the model described above. However, we will not
consider the graphical dimension as no image processing will be necessary.
Regarding the physical dimension, we process the tables encoded in HTML
format in order to get a physical model of the table. In principle it can be seen
as a graph describing the cells being connected together. In order to capture
the structural dimension of the table, further processing is necessary (i) to

2

determine the orientation of the table, i.e. top to down or left to right, and,
(ii) to discover groups of cells building logical units. When talking about the
function of a table, Hurst [11] distinguishes between two functional cell types
access and data. Cells of type data are the ones we are interested when reading
a table and which contain the actual information, while cells of type access
determine the path to follow in the table in order to find the data cell of in-
terest. Further, he distinguishes local (looking for one specific data cell) from
global (comparing the value of different data cells) search in a table. In our
approach we describe the functional dimension of a table in order to support
local search. Such a functional description requires (i) finding all the data cells
in a table as well as (ii) all the access cells to reach a given data cell of inter-
est. In terms of database terminology, we need to find the keys for a certain
field in the table. In our approach we distinguish between two functional types
of cells: A(ttribute)-cells and I(nstance)-cells. A-cells describe the conceptual
nature of the instances in a column or row. I-cells represent instances of the
concepts represented by a certain A-cell. I-cells can have the two functional
roles described by Hurst, i.e. they can play the role of data or access cells.

Table 1
Example of a possible table, found in [1].

Tour Code DP9LAX01AB

Valid 01.05. - 30.09.04

Class/Extension Economic Extended

Single Room 35,450 2,510

Adult P Double Room 32,500 1,430

R Extra Bed 30,550 720

I Occupation 25,800 1,430

Child C No occupation 23,850 720

E Extra Bed 22,900 360

Regarding the semantic description we follow a different paradigm as Hurst.
Instead of adopting the relational model [2], we describe the semantics of
a table in terms of F-Logic frames [14]. F-Logic combines the intuitiveness
of modeling with frames with the expressive power of logic. Furthermore,
existing F-Logic inference engines such as Ontobroker [5] allow later on e.g.
for processing and query answering. Therefore it was our primary choice as
representation language.

We briefly introduce our running example. As input we use Table 1 which is
taken from the tourism domain and is (roughly speaking) about room prices.
The ideal description in terms of an F-Logic frame of this table, i.e. the output

3

after applying our approach, could look as follows:

Tour[TourCode => ALPHANUMERIC;
Validity => DATE;
EconomicPrice(PersonType,RoomType) => LARGE NUMBER;
ExtendedPrice(PersonType,RoomType) => LARGE NUMBER].

By resorting to F-Logic we are thus able to describe the semantics of ta-
bles in a model-theoretic way. Furthermore, as required by Hurst, the frame
makes explicit (i) the meaning of cell contents (ii) the functional dimension
of the table, and (iii) the meaning of the table abstracting from its particular
structure. In this line, different tables with different structures but identical
meaning would be described by one and the same frame. In what follows we
describe how we process the table in order to yield intermediate descriptions
of a table along the dimensions described above as well as how as a last step
the table is translated into a F-Logic frame.

As depicted in Figure 1 our methodology consists of four main steps. For each
building block of the table model there exists a corresponding methodological
step to create this part of the table model. In the following subsections we will
describe all steps in detail.

Fig. 1. Building blocks of the methodology.

2.1 Cleaning and Normalization

Web documents are often very noisy in a sense that their syntactic structure
is incorrect. Web browsers (i.e. Opera) are capable of dealing with such poorly
structured, inconsistent, and incomplete documents. In order to remove this
noise we perform the following two steps: a) syntactic correction/cleaning, and
b) normalization.

First, we assume that documents are represented with the DOM 1 (Document
Object Model). A DOM tree is an ordered tree, where each node is either an
element or a text node. An element node includes an ordered list of zero to
many child nodes, and contains a string-valued tag (such as table, h1 or title)

1 http://www.w3.org/DOM/

4

and zero to many string-valued attributes (such as href or src). A text node
normally contains a single text string and has no child nodes.

In the two substeps we construct an initial table model out of an updated
DOM tree. In order to clean the code and make it syntactically correct, we
employ the CyberNeko HTML Parser 2 . The normalization step of the ren-
dered ’table’ element node in the DOM tree is only necessary, when an explicit
child node’s attribute, such as rowspan or colspan, indicates multiple row or
column spanning cells, where the actual total number of rows or columns is
lower than the attribute value. In both steps our system updates the corre-
sponding DOM subtrees accordingly.

Table 2 shows the final reformulation of the example in Table 1, where cleaning
has been performed and copies of cells with rowspan and rowspan attributes
have been properly inserted into the matrix structure.

2.2 Structure Detection

2.2.1 Assignment of functional types and probabilities to cells.

In the initial pass over the table element node (of the DOM tree), we convert
a sub-tree into a matrix structure, which is populated by cells according to
its layout information. During this step the text of each cell is tokenized, and
each token is assigned a token type according to the tree (leaves) presented
in Figure 2. At the same time, we assign each cell in the rendered table a
functional type and a probability of the type. By default, a cell is assigned
no functional type (probability value equals zero), or I-cell type in case the
cell includes only/mostly tokens, recognized as dates, currencies, or numerical
values. According to this ratio, a probability is calculated. Finally, we assume
that the cell in the lower-right corner is always an I-cell, and the cell in the
upper-left corner is an A-cell. Therefore we assign those two cells the types,
regardless of their content, with probability one.

2.2.2 Detecting table orientation.

One problem related to the interpretation of a table is that its logical orien-
tation is a priori not clear. In fact, when performing a local search on a table,
the data of interest can be either ordered in a top-to-down (vertical orienta-
tion) or left-to-right manner (horizontal orientation). For example, in figure
1 the relationship “Tour Code, DP9LAX01AB” reads left-to-right, but price
values of an attribute “Economic Class” appear top-to-down. When trying to

2 http://www.apache.org/andyc/neko/doc/html

5

Table 2
Table 1 after cleaning and normalization step.

Tour Code Tour Code Tour Code DP9LAX01AB DP9LAX01AB

Valid Valid Valid 01.05 - 30.09.04 01.05 - 30.09.04

Class/Ext. Class/Ext. Class/Ext. Economic Extended

Adult PRICE Single Room 35,450 2,510

Adult PRICE Double Room 32,500 1,430

Adult PRICE Extra Bed 30,550 720

Child PRICE Occupation 25,800 1,430

Child PRICE No occupation 23,850 720

Child PRICE Extra Bed 22,900 360

determine the table orientation we rely on the similarity of cells. The intuition
here is that, if rows are similar to each other, then orientation is vertical and
on the contrary, if columns are similar, then interpretation is horizontal.

In order to calculate the differences among rows and columns of the table, we
need first to define how to calculate the difference between two cells. For this
we represent a cell as a vector c of token types of all the tokens in the cell.
Henceforth, ci will denote the i-th component of the vector c, corresponding
to the token type of the i-th token in the cell. Furthermore, |c| will denote the
size of the vector. The token types we consider are given in Figure 2. They
are ordered hierarchically thus allowing to measure the distance δ between two
different types as the number of edges between them. For example, the numeric
type is hierarchically divided into categories that include range information
about numbers, i.e. large num (≥ 10.000), med num (100 ≤ n < 10.000),
small num (< 100). This representation is very flexible and can be extended
to include domain specific information. In particular, the ’composed’ node
includes two nodes containing such information.

In our example, we determine m to be five (m = 5). The orientation is cal-
culated by comparing first m − 1 columns to the column m and last m − 1
rows to the last row. The difference among columns is greater than among the
rows, hence the orientation is set to vertical.

Fig. 2. Hierarchy of token types

Now when comparing the vectors of two cells, we compare the token types with
same indices in case the vectors have equal length; otherwise, we calculate the

6

distance for the left-side tokens (tokens aligned at the head) and for the right-
side tokens (tokens aligned at the tail). The distance is in both cases also
normalized.

δcells(cP , cQ) :=

v
2∗u

 ∑u

i=1 δ(cPi
, cQi

) +
∑v

i=w δ(cPi
, cQi

)

 if u 6= v

1
u

∑u
i=1 δ(cPi

, cQi
) if u = v

(1)

where u = min(|cP |, |cQ|), v = max(|cP |, |cQ|) and w = v−u+1. Now given a
table with r rows and s columns, the total distance (∆cols) between columns
is calculated by summing up the distance between the last column and each
of the preceding m− 1 columns, where m = min(r, s), i.e.

∆cols =
m−1∑

i=1

δcols(cols−i, cols) (2)

δcols(colp, colq) =
s∑

i=m

δcells(ci,p, ci,q) (3)

where cx,y is the cell in row x and column y.

The total distance (∆rows) between rows is by analogy calculated by summing
up the distance between the last row and each of the m− 1 preceding rows:

∆rows =
m−1∑

i=1

δrows(rowr−i, rowr) (4)

δrows(rowp, rowq) =
r∑

i=m

δcells(cp,i, cq,i) (5)

Here we only compare equal number of rows and columns, starting at the
lower-right corner, thus optimizing the number of comparisons (not all the
rows and columns to the top of the table need to be compared). Finally, to
determine the orientation of the table, we compare both results. If the distance
between columns is greater than among rows (∆cols > ∆rows), orientation is set
to vertical (top-to-down). On the other hand, if the distance between columns
is lower than among rows (∆cols < ∆rows), then orientation is set to horizontal
(left-to-right). In the last case, where the two results are equal, orientation is
assigned the default, i.e. vertical.

7

1. Initialize logical units and regions
2. Learn string patterns of regions
for all logical units
do while (logical unit is not uniform)
3. Choose the best coherent region
4. Normalize logical unit

Fig. 3. Algorithm for discovery of regions.

2.2.3 Discovery of regions.

Definition 1 (Logical unit) A logical unit is a part of a table produced by
a horizontal split in case of vertical orientation or by a vertical split in case
of horizontal orientation.

Definition 2 (Region) A region is a rectangular area of a table consisting
of cells with the same functional type. Regions cannot extend over multiple
logical units and can therefore only appear within one logical unit.

Here we will present a step-by-step algorithm for discovery of regions in tables.
Pseudocode of the algorithm is given in Figure 2.2.3.

(1) Initialize logical units and regions. Note that a table is by definition one
logical unit. First, the system tries to split a table into several logical
units. In particular, when table orientation is column-wise (vertical), the
horizontal split is done at every row containing cells spanning multiple
columns, or when dealing with row-wise (horizontal) orientation, vertical
split is done at every column containing cells spanning multiple rows.
Consecutive logical units may then be merged if their layout structure is
equal. Over-spanning cells of type I-cell also represent a sign for a split.

For example, Table 1 has three logical units. The first logical unit is
extending over the first two rows, the second one over the third row,
and the third one over the rest of the table. The first two rows have an
over-spanning cell with functional type I-cell and are grouped into one
logical unit because their layout structure is equal. A third row has a cell
spanning multiple columns, and the rest is grouped into one logical unit.

Once splitting is over, the region initialization step begins. The sys-
tem starts at a lower-right corner and moves according to its orientation
towards upper-left corner over all logical units, thus generating all dis-
tinct initial regions. The cell cN is added to a region r if the following
conditions apply (otherwise a new region is created):
(a) the cell cN is within the same logical unit as other cells,
(b) its size is equal to the size of cells already in the region, and

8

(c) it keeps the distance among cells in r within a treshold value:

δcells(cN , c1(r)) ≤ 2 (6)

where the value of 2 reflects a significant token type change according
to the hierarchy in figure 2.

(2) Learn string patterns for regions. For each region r we learn a set Pr of
significant patterns, which are sequences of token types and tokens, de-
scribing the content of a significant number of cells. The positive property
of a pattern is that it generalizes over data strings within regions, which,
at the end of table transformation, reflects a generalization of possible
concept instance values.

The patterns are of two types: the first represents the content of cells
from left-to-right (forward) and the second from right-to-left (backward).
The pattern ’FIRST UPPER Room’ for example covers the cells ’Single
Room’ and ’Double Room’. In our example, the coverage of this pattern
is 1/3 for the region extending over the last six rows of the third column.
For the purpose of pattern construction we have implemented the DAT-
APROG algorithm, which is described in [15] together with a detailed
pattern learning process. In case there are not enough examples (less
than 20) to statistically choose the most significant patterns, only the
most specific (having their coverage over the treshold value) are chosen.

Before entering the loop (see algorithm in Figure 2.2.3), the system checks the
uniformity of every logical unit. In our case, a logical unit is uniform when
it consists of logical sub-units and each sub-unit includes only regions of
the same size and orientation. Only the units that are not uniform are
further processed within the following steps of the loop.

(3) Choose the best coherent region. The best region is used to propagate
and normalize neighboring (non-uniform) regions and consequently the
logical unit itself. The best region rmax is selected according to the formula
Φrmax = maxr in lφr,l, which is calculated by the following equation:

φr,l :=

 |r|

|l| + 1
|r|

∑
c in r Prob(c) + 1

|r|∗|Pr|
∑

p∈Pr
covers(p, r)

 (7)

where l denotes a logical unit, r denotes a region in the unit, c de-
notes cells in the region, and Pr is the set of significant string (forward
and backward) patterns for the region as described above. The function
covers(p, r) returns a number of cells covered by pattern p in region r.
According to the above formula, the selected region maximizes the sum of
averaged region size (1st operand of the sum), averaged cell probabilities
(2nd operand) and averaged pattern coverage over a particular region
(3rd operand).

9

(4) Normalize neighboring regions of the best region. The intuition here is
to use the best region as a propagator for other regions in their normal-
ization process. First, the system selects (based on the orientation) all
neighboring regions, i.e. those that appear in the same rows (left/right)
for column-wise orientation, or in same columns (up/down) for row-wise
orientation. Now, two possibilities exist: (a) neighboring regions within
a common column/row (orientation dependent) do not extend over the
boundaries of the best region. In this case, the solution is straightforward,
because the ’new’ region is extended in a way to cover all common col-
umn/row regions. (b) neighboring regions within a common column/row
do extend over the boundaries of the best region. In this case, the best
region is extended accordingly, and this step repeated.

The logical unit is being processed within the loop as long as the system
is not able to divide it into logical sub-units, where each sub-unit includes
only regions of the same size and orientation (uniformity condition). Note
that string patterns, probabilities and functional types of normalized re-
gions are also updated in every iteration. Finally, in this way all logical
units are being normalized and prepared for further processing.

2.3 Building of a Functional Table Model

The key step of translating a table into a frame is building a model of the
functional dimension of the table. This model is called Functional Table Model
(FTM) and essentially arranges regions of the table in a tree, whereby the
leaves of the tree are all the regions consisting exclusively of I-cells. Most
importantly, in the FTM these leaves are assigned their functional role, i.e.
access or data, and semantic labels as described in Section 2.4.1.

The construction of the FTM proceeds bottom up: we start with the lowest
logical unit in the table and proceed with further logical units towards the
top. For each logical unit in question we first determine its type. There are
three possibilities: (a) the logical unit consists only of A-cells, in which case
all its regions will be turned into inner nodes of the tree and thus connected
to some other nodes in the tree, (b) it consists only of I-cells, in which case
they will constitute leaves and will be connected to appropriate inner nodes,
and (c) it consists of I-cells and A-cells, in which case we determine the logical
separation between them by taking the uniformity condition into account.

In some cases a special connection node (see Figure 4) needs to be inserted
into the tree. This occurs when we encounter a logical unit that reflects a
split in the table, in particular when a previous logical unit contained only
A-cells, but the present logical unit again contains I-cells. In such cases, we

10

check (described later in this paragraph) if reading orientation of the present
logical unit is different from the previous one and needs to be changed. If
this is true, the logical unit needs to be recalculated, as described in Section
2.2.3. For example, the first logical unit (first two rows) in Table 1 has four
regions (each ’logical’ cell) and there is no logical unit on top of it. So, if the
orientation was vertical (i.e. like in lower logical unit), there would be no inner
node (consisting of A-cells) to connect the I-cells to. Thus orientation has to
be changed from vertical to horizontal for this logical unit.

As already mentioned above, each region in a leaf position is assigned its
corresponding functional role. The role access is assigned to all consecutive
regions (starting at the left subnodes of a subtree) together forming a unique
identifier or key in the database terminology. The rest of the leaf nodes in the
subtree get assigned the role data.

When all logical units have been processed, we connect the remaining uncon-
nected nodes to a root node. For example, the FTM constructed out of our
running example is depicted in Figure 4.

Fig. 4. A functional table model (FTM) of the running example (Table 1)
with square components representing I-cells and rounded components representing
A-cells.

After the FTM is constructed, we examine if there are any multi-level (at least
two levels of inner A-cell nodes) subtrees that might be merged. The candidate
subtrees for merging must have the same tree structure (same number of levels
and nodes on each level) and at least one level of matching A-cells. If there
are any candidates that fulfill the requirements, we perform a process called
recapitulation, where we merge the nodes at same positions in both subtrees.
As we only require one level of matching A-cells, there might be some A-cells
that do not match. For every such case, the following steps are taken: (a) find
a semantic label of a ’merged’ A-cell node (described in Section 2.4.1), (b)

11

connect the ’merged’ A-cell to a new leaf node, which is populated by the
A-cell contents of merged nodes, and (c) assign the functional role of the new
leaf node to access. In this way we check and merge all possible multi-level
subtrees of a FTM and finalize the construction process.

2.4 Semantic Enriching of the Functional Table Model

2.4.1 Discovery of semantic labels.

In order to find semantic labels for each table region (node), we resort to the
WordNet lexical ontology [8] to find an appropriate hypernym covering all
tokens in the cells contained in the region. Furthermore, we also make use of
the GoogleSets 3 service to find synonyms for certain tokens. For example, the
first region in Table 2 consists of the tokens adult and child, for which WordNet
suggests the hypernym person. However, the tokens are not always so ’pure’,
therefore we stepwise remove words in the cells by the following transforma-
tions and consult WordNet after each step to yield a suitable hypernym:

(1) punctuation removal
(2) stopword removal
(3) compute the IDF measure (where the documents are cells in our case)

for each word and filter out the ones with value lower than the threshold
(4) select words that appear at the end of the cells as they are more signifi-

cant 4

(5) query GoogleSets with the remaining words in order to filter words which
are not mutually similar

2.4.2 Map Functional Table Models into Frames.

In order to define how to transform a FTM into a frame, we first give a formal
definition of a method and a frame:

Definition 3 (Method) A method is a tuple M := (nameM , rangeM , PM),
where (i) nameM is the name of the method, (ii) rangeM is a string describ-
ing the range of the method and (iii) PM is a set of strings describing the
parameters of the method.

The method Price(PersonType,RoomType) ⇒ NUMBER would for exam-
ple be formally represented as the tuple (Price,NUMBER,{PersonType,RoomType}).
Further, a frame is defined as follows:

3 http://labs.google.com/sets
4 The intuition here is that for nominal compounds the nominal head is at the end.

12

Definition 4 (Frame) A Frame F is a pair F:=(nameF ,MF) where nameF

is the name of the frame and MF is a set of methods as described above.

Now when generating a frame, we create one method m for every region with
functional role data with all the regions of type access as parameters of this
method. This parameters must either be located on the same level within
the same subtree or on a parent path to the root node. Here it is crucial to
find appropriate names for the method (nameM) and parameter identifiers
p ∈ PM . The semantic label for each identifier is a combination of a region
label (described in procedure above) and parent A-cell node labels. For better
understanding, compare the FTM tree depicted in Figure 4 and the example
of the generated frame given below. Further, we also set the range rangeM of
the method m to the syntactic token type of the region with functional role
data for which the method was generated. Finally, the frame for the running
example, generated by the system, looks as follows:

Tour [Code => ALPHANUMERIC;
DateValid => DATE;
EconomicExtension (PersonClass, RoomClass) => LARGE NUMBER;
ExtendedExtension (PersonClass, RoomClass) => LARGE NUMBER].

3 Evaluation

In order to evaluate our approach, we compare the automatically generated
frames with frames manually created by two different subjects in terms of
Precision, Recall and F-Measure. In particular, we considered 21 different
tables in our experiment and asked 14 subjects to manually create a frame
for three different tables such that each table in our dataset was annotated
by two different subjects with the appropriate frame (14 × 3 = 21 × 2 =
42). In what follows we first describe the dataset used in the experiments.
Then we describe the evaluation methodology and present the actual results
of the experiment. The definition of the task as well as the instructions for the
annotators can be found at http://www.aifb.uni-karlsruhe.de/WBS/pci/
FromTables2Frames.ps

3.1 Table Classes.

We have identified three major table classes according to their layout that
appear frequently on the web: 1-Dimensional (1D), 2-Dimensional (2D), and
Complex tables. The first two classes are more simple and also appear more

13

Fig. 5. Examples of Tables.

often compared to the last class. A similar classification into classes has also
been introduced in [24].

1-Dimensional tables: this class of tables has at least one row of A-cells
above the rows of I-cells. If there are more than one row of A-cells then we
assume that they are hierarchically connected. The content of the I-cells in
different columns represent instances of the A-cells above. An example of this
type is given in Figure 5 (a).

2-Dimensional tables: this class has a rectangular area of I-cells appearing
within columns. This class has at least one row of A-cells above the rectangular
area, and at least one column of A-cells on the left side of the rectangular area.
Discovering and handling of this class is hard as it is difficult for a system
(without any other knowledge) to decide if the first column consists of A-
cells or I-cells. Our solution here is to interpret the leading column as A-cells
only if its first row cell is a non-spanning cell with an empty label or a label
containing a character ’/’. An example for this type of table is given in Figure
5 (b).

Complex tables: this class of tables shows a great variety in layout structure.
Therefore a table might have the following features:

• Partition data labels: Special over-spanning data labels between the data
and/or attribute labels can make several partitions of the table. Each par-
tition shares the same attributes, such as in Figure 5 (c). In this case the
relation among attribute and data value cannot be obtained directly.

• Over-expanded labels: some entries might expand over multiple cells.
There are two options: (a) data values span over multiple rows in the same
column or (b) an attribute label spans over multiple columns. An example
of this class is the part of Table 1 consisting in the lower seven rows.

• Combination: large tables might consist of several smaller, simpler ones.
For example, Table 1 consists of two structurally ’independent’ tables.

14

In our experiment, we have gathered 21 tables, each belonging to at least
one class. Since the first two classes are a bit less interesting, we used only
three different tables for each class, but for each complex subclass we used five
different tables. All tables were gathered from two distinctive sources: one from
tourist domain and another from a source dealing with food research. Domains
were quite different, and also tables were selected from different sources in a
way that their distribution over classes is uniform.

3.2 Evaluation Methodology.

We evaluated our approach by considering the well-known information re-
trieval measures Precision, Recall and F-Measure. In particular, for each table
we evaluated the frame automatically generated for it by the system with re-
spect to the two frames manually created by two different subjects along the
following lines: Syntactic Correctness, Strict Comparison, Soft Comparison,
Conceptual Comparison.

In order to assess how similar two strings are, we will introduce a string com-
parison operator σ : String×String → [0..1]. In particular, in our evaluation
we use a string comparison operator based on a combination of a TFIDF
weighting scheme with the Jaro-Winkler string-distance scheme. Cohen et
al. [4] showed that the operator produces good results in such tasks.

The Syntactic Correctness measures how well the frame captures the syntactic
structure of the table, i.e. to what extent the number of arguments matches
the number of parameters as specified by the human annotator for a given
method. In what follows we define three functions Syntactic giving the syn-
tactic correctness between two methods as well as a method and a frame,
respectively.

SyntacticM×M(m1,m2) :=

|Pm1 |
|Pm2 |

if |Pm2| > 0

1 if |Pm1| = |Pm2| = 0

0 otherwise

(8)

SyntacticM×F (m, f) = SyntacticM×M(m,m′), (9)

where m′ ∈ fM which maximizes σ′(m,m′) ∗ SyntacticM×M(m,m′).

Note that the above measures are directed; they will be used in one direction
to obtain the Precision and in the other direction to obtain the recall of the
system.

15

Strict Evaluation then checks if the identifier for the method name, the range
and the parameters are identical. We also define a corresponding functions
Strict again defined on two methods and a method and a frame, respectively:

StrictM×M(m1,m2) :=

1 if namem1 = namem2

0 otherwise
(10)

StrictM×F (m, f) = maxm′∈Mf
StrictM×M(m,m′) (11)

The Soft Evaluation also measures in how far the identifiers for the method
name, the range and the parameters match, but makes use of the string com-
parison operator defined above:

SoftM×M(m1, m2) = σ(namem1 , namem2) (12)

SoftM×F (m, f) = maxm′∈Mf
SoftM×M(m,m′) (13)

Further, we have a modified string comparison σ which returns 1 if the string
to compare are equivalent from a conceptual point of view and σ otherwise,
i.e.

σ′(s1, s2) :=

1 if s1 and s2 are conceptually equivalent

σ(s1, s2) otherwise
(14)

The Conceptual measure was introduced to check in how far the system was
able to learn the frame for a table from a conceptual point of view. In order to
assess this, two of the authors compared the frames produced by the system
and the ones given by the human subjects and determined which identifiers
can be regarded as conceptually equivalent. In this line RegionType, Region
and Location can be regarded as conceptual equivalent. Here are the formal
definitions of the corresponding functions:

ConceptualM×M(m1,m2) = σ′(namem1 , namem2) (15)

ConceptualM×F (m, f) = maxm′∈Mf
ConceptualM×M(m,m′) (16)

For all the above measures we compare two frames as follows:

XF×F (f, f ′) =

∑
m∈fM

XF×F (m, f ′)
|fM | , (17)

where X stands either for Syntactic, Strict, Soft or Conceptual.

16

In our evaluation study, we give results for Precision, Recall and F-Measure
between the frame FS produced by the system and the frames F1, ...Fn (in our
case n = 2) produced by the human annotators. In particular, we will consider
the above evaluation functions Syntactic, Strict, Soft and Conceptual in order
to calculate the Precision, Recall and F-Measure of the system. Thus, in the
following formulas, X stands either for Syntactic, Strict, Soft or Conceptual:

PrecAvg,X(FS, {F1, ...Fn}) =

∑
1≤i≤n X(FS, Fi)

n
(18)

And Recall is defined inversely, i.e.

RecAvg,X(FS, {F1, ...Fn}) =

∑
1≤i≤n X(Fi, FS)

n
(19)

Obviously, according to the definitions of the measures, the following equations
hold:

PrecStrict ≤ PrecSoft ≤ PrecConceptual and

RecStrict ≤ RecSoft ≤ RecConceptual

(20)

Furthermore, we also give the value of the precision and recall for the frame
which maximizes these measures, i.e.

Precmax,X(FS, {F1, ...Fn}) = maxi X(FS, Fi) (21)

And Recall is defined inversely, i.e.

Recmax,X(FS, {F1, ...Fn}) = maxi X(Fi, FS) (22)

Obviously, here the following equations hold:

PrecX ≤ Precmax,X and RecX ≤ Recmax,X (23)

The reason for calculating precision and recall against the frame given by
both annotators which maximizes the measures is that some frames given by
the annotators were not modelled correctly according to the intuitions of the
authors. Thus, by this we avoid to penalize the system for an answer which is
actually correct. As a byproduct of calculating RecallX and Recallmax,X we
can also indirectly judge how good the agreement between human subjects is.

17

Table 3
Results of the different evaluation measures (in percent).

Average Maximum

Syntactic Strict Soft Conceptual Syntactic Strict Soft Conceptual

Precision 48.71 36.78 44.88 56.01 62.85 48.84 58.26 71.02

Recall 50.53 38.81 47.75 58.50 67.54 51.83 61.95 77.65

F-Measure 49.60 37.77 46.27 57.22 65.11 50.29 60.05 74.18

Finally, as is usual we balance Recall and Precision against each other by the
F-Measure given by the formula:

FX(PX , RX) =
2PX RX

PX + RX

(24)

The system is now evaluated by calculating the above measures for each auto-
matically generated frames and the corresponding frames given by the human
annotator.

3.2.1 Discussion of Results.

Table 3 gives the results for the Precision, Recall and F-Measure as described
above. The first interesting observation is that the values for the maximum
evaluation are quite higher than the ones of the average evaluation, which
clearly shows that there was a considerable disagreement between annotators
and thus that the task we are considering is far from being trivial.

The results of the Syntactic comparison are an F-Measure of Favg,Syntactic =
49.60% for the average evaluation and Fmax,Syntactic = 65.11%. The values
show that the system is interpreting the table to a satisfactory extent from a
syntactic point of view, i.e. it is determining the number of parameters cor-
rectly in most of the cases. Regarding the naming of the methods, their range
and their parameters, the results vary considerable depending on the measure
in question. For the average evaluation the results are: Favg,Strict = 37.77%,
Favg,Soft = 46.27% and Favg,Conceptual = 57.22%. These results show that
the system has indeed problems to find the appropriate name for methods,
their ranges and their parameters. However, as the conceptual evaluation
shows, most of the names given by the system are from a conceptual point of
view equivalent to the ones given by the human annotator. For the max-
imum evaluation we have: Fmax,Strict = 50.29%, Fmax,Soft = 60.05% and
Fmax,Conceptual = 74.18%. Thus, we can conclude that from a conceptual point
of view the system is getting an appropriate name in almost 75% of the cases
and it is getting the totally identical name in more than 50% of the cases.
Actually, our system only failed in processing two of the 21 tables, such that
in general we conclude that our results are certainly very promising.

18

4 Related Work

A very recent systematic overview of related work on table recognition, trans-
formation, and inferences can be found in [32]. Several conclusions can be
drawn from this survey. Firstly, only few table models have been described
explicitly. Apart from the table model of Hurst which we applied in our ap-
proach [10,11] the most prominent other model is Wang’s [25]. However, the
model of Hurst is better suited for our purpose since it is targeted towards
table recognition and transformation whereas Wang is targeted towards table
generation. A table model for recognition must support two tasks: the detec-
tion of tables, and the decomposition of table regions into logical structure
representation. This models tend to be more complex than generative mod-
els, since they must define and relate additional structure for recovering the
components of generative models [32].

Secondly, research in table recognition, transformation, and inferences so far
addressed several types of document encodings. The most work was done on
plain text files, images, OCR and HTML documents [32]. Work performed
on textual tables, OCR documents and images was mainly oriented towards
table recognition [6,13,18,26,29], row labeling [13,17,20], and cell classifica-
tion [13,17,20], where the work on web tables was extended to indexing re-
lation detection [1,22,31] and cell/row/table merging or splitting [30]. Other
approaches aim at the deep understanding of table structure, applying dif-
ferent techniques such as cell cohesion measures [12,27], deriving regular ex-
pressions [18], edit distance [18], graphs [13,21] as well shallow parsing of
the content. Knowledge engineering techniques employing certain heuristics
based on the formatting cues and machine learning techniques like decision
trees [18,26], Expectation Maximization [30], Hidden Markov Models [17,26],
and conditional random fields [20] have been previously explored. Table ex-
traction methods have also been applied in the context of question answer-
ing [19,24], and ontology learning [7,23].

The work done on the task of table detection was performed by [1,13,27,28].
As evident from this work, heuristics and machine learning based approaches
have been generally used to perform this task. The documents containing
both real tables and tables used for layout formatting serve as an input to
a table detection system. The table detection task involves separating tables
that contain logical and relational information from those that are used only
for layout purposes. As the output the system returns tables classified in two
categories: real table and non-real table. Usually this is a pre-step in table
extraction process but it could also be combined with the extraction algorithm.
In contrast, we assume that tables are already harvested, and we provide a
methodology and implementation which completely instantiates a table model
and additionally closes the gap to formal semantics provided by ontologies.

19

Chen et al. [1] present work on table detection and extraction on HTML
tables. The table detection algorithm uses string, named entity and number
category similarity to decide if it is a real or non-real table. Based on cell
similarity the table extraction algorithm identifies whether the table is to be
read row wise or column wise. They split the cells which span over multiple
cells into individual cells. The table extraction algorithm presented in this
work is simple and works only if spanning cells are used for nested labels. The
paper did not provide evaluation results for their table extraction algorithm.

The problem of merging different tables which are about the same type of
information has been addressed in [30]. The merging task as defined in this
paper considers combining different tables into one large table. They define
different structures for tables based on the arrangement of the labels and
use Expectation Maximization to classify the tables to one of the defined
structures. The structure recognition task is similar to the classification task.
However structure recognition or merging does not solve the table extraction
problem.

Table extraction by wrapper learning has been explored in [3]. Wrappers learn
rules based on examples. The rules are composed of tokens made of HTML
tags or the content itself. The rules tend to be specific and can be applied only
to those documents whose structure is similar to the training documents. The
use of tokens to compose rules makes it difficult to generalize across distributed
websites. Hence wrappers learned for one website cannot be used on another
website. No clear evaluation for table extraction has been described in this
work.

Conditional random fields for table extraction from text tables were described
in [20]. However the system described does not perform a complete table
extraction task; it only classifies the rows of the table into a type such as
’datarow’, ’sectionheader’ or ’superheader’. They used a set of 12 table types
(classes) and achieve a precision of 93.5% for the classification task. Work
presented in [13,17] also focused on the task of classifying table rows.

Tijerino et al. [23] presented a vision for a system that would be able to
generate ontologies from arbitrary tables or table-equivalents. Their approach
consists of a four step methodology which includes table recognition and de-
composition, construction of mini ontologies, discovery of inter-ontology map-
pings, and merging of mini-ontologies. For the purpose of semantics discovery
the approach is multifaceted, meaning they use all evidence at their disposal
(i.e. Wordnet, data frames, named entities, etc.). Since the paper presents only
a vision, no evaluation is provided.

We conclude thus in this section that our approach is indeed novel in the sense
that it is the first approach addressing the whole process of transforming a

20

table into a form reflecting its inherent meaning at a structural, functional
and semantic level. Further, as far as we know our method is also original in
being the first complete instantiation of a formal table model such as the one
described by [10,11].

5 Conclusion

We have presented an approach which stepwise instantiates a formal table
model consisting of Physical, Structural, Functional and Semantic compo-
nents. The core steps of the methodology are (i) Cleaning and Normalization,
(ii) Structure Detection, (iii) Building of the Functional Table Model (FTM)
and (iv) Semantic Enriching of the FTM. We have further demonstrated and
evaluated the successful automatic generation of frames from HTML tables.
Additionally, our experimental results show that from a conceptual point of
view the system is getting appropriate names for frames in almost 75% of the
cases and it is getting the totally identical name in more than 50% of the
cases. These results are certainly very promising.

In general, an approach such as presented in this paper is crucial for the
Semantic Web to become feasible. Actually it is a generally accepted fact
that without the help of tools reliably harvesting information from databases,
images, tables or texts the Semantic Web as an extension of the current World
Wide Web is doomed to failure. Though our work can still be improved in
many ways, we regard it as a first and important step towards extracting
knowledge from table structures available in the web which brings us a a little
bit closer to the vision of a semantic one.

Acknowledgments This work has been supported by the IST-projects Dot.Kom
(Designing adaptive infOrmation exTraction from text for KnOwledge Management,
IST-2001-34038) and SEKT (Semantically Enabled Knowledge Technologies, IST-
2004-506826), sponsored by the EC as part of the frameworks V and VI, respectively.
During his stay at the AIFB, Aleksander Pivk has been supported by a Marie Curie
Fellowship of the European Community program ’Host Training Sites’ and by the
Slovenian Ministry of Education, Science and Sport. Thanks to all our colleagues
for participating in the evaluation of the system as well as to the reviewers for useful
comments on the paper.

References

[1] H. Chen, S. Tsai, and J. Tsai. Mining tables from large scale HTML texts. In
Proceedings of the 18th International Conference on Computational Linguistics

21

(COLING), pages 166–172, 2000.

[2] E.A. Codd. A relational model for large shared databanks. Communications of
the ACM, 13(6):377–387, 1970.

[3] W.W. Cohen, M. Hurst, and L.S. Jensen. A flexible learning system for
wrapping tables and lists in html documents. In Proceedings of the 11th World
Wide Web Conference, pages 232–241, Honolulu, Hawaii, May 2002.

[4] W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of string distance
metrics for name-matching tasks. In Proceedings of the IIWeb Workshop at the
IJCAI 2003 conference, 2003.

[5] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based
Access to Distributed and Semi-Structured Information. In R. Meersman et al.,
editors, Database Semantics: Semantic Issues in Multimedia Systems, pages
351–369. Kluwer, 1999.

[6] S. Douglas and M. Hurst. Layout and language: List and tables in technical
documents. In Proceedings of ACL SIGPARSE Workshop on Punctuation in
Computational Linguistics, pages 19–24, 1996.

[7] D.W. Embley, C. Tao, and S.W. Liddle. Automatically extracting ontologically
specified data from html tables with unknown structure. In Proceedings of
the 21th International Conference on Conceptual Modeling, pages 322–337,
Tampere, Finland, October 2002.

[8] C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.

[9] S. Handschuh and S. Staab, editors. Annotation in the Semantic Web. IOS
Press, 2003.

[10] M. Hurst. Layout and language: Beyond simple text for information interaction
- modelling the table. In Proceedings of the 2nd International Conference on
Multimodal Interfaces, Hong Kong, 1999.

[11] M. Hurst. The Interpretation of Tables in Texts. PhD thesis, University of
Edinburgh, 2000.

[12] M. Hurst. Layout and language: Challenges for table understanding on the web.
In Proceedings of the International Workshop on Web Document Analysis, pages
27–30, 2001.

[13] J. Hu, R.S. Kashi, D. Lopresti, and G.T. Wilfong. Evaluating the performance
of table processing algorithms. International Journal on Document Analysis
and Recognition, 4(3):140–153, March 2002.

[14] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. Journal of the ACM, 42:741–843, 1995.

[15] K. Lerman, S. Minton, and C. Knoblock. Wrapper maintenance: A machine
learning approach. J. of Artificial Intelligence Research, 18:149–181, 2003.

22

[16] A. Maedche. Ontology Learning for the Semantic Web. Kluwer Academic
Publishers, 2002.

[17] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy markov models
for information extraction and segmentation. In Proceedings of the ICML 2000,
pages 591–598, 2000.

[18] H. T. Ng, C. Y. Kim, and J. L. T. Koo. Learning to recognize tables in free text.
In Proceedings of the 37th Annual Meeting of the Association for Computational
Linguistics, pages 443–450, Maryland, USA, 1999.

[19] D. Pinto, W. Croft, M. Branstein, R. Coleman, M. King, W. Li, and X. Wei.
Quasm: A system for question answering using semi-structured data. In
Proceedings of the Joint Conference on Digital Libraries (JCDL) 2002, pages
46–55, 2002.

[20] D. Pinto, A. McCallum, X. Wei, and W.B. Croft. Table extraction using
conditional random fields. In Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Informaion Retrieval, pages
235–242. ACM Press, 2003.

[21] P. Pyreddy and W.B. Croft. Tintin: A system for retrieval in text tables. In
Proceedings of the Second ACM International Conference on Digital Libraries,
pages 193–200. ACM Press, 1997.

[22] A. Tengli, Y. Yang, and N. Li Ma. Learning table extraction from examples. In
Proceedings of the 20th International Conference on Computational Linguistics
(COLING), pages –, Geneva, Switzerland, May 23–27 2004.

[23] Y.A. Tijerino, D.W. Embley, D.W. Lonsdale, and G. Nagy. Ontology generation
from tables. In Proceedings of 4th International Conference on Web Information
Systems Engineering (WISE’03), pages 242–249, Rome, Italy, December 2003.

[24] H. L. Wang, S. H. Wu, I. C. Wang, C. L. Sung, W. L. Hsu, and W. K. Shih.
Semantic Search on Internet Tabular Information Extraction for Answering
Queries. In Proceedings of the 9th International Conference on Information
and Knowledge Management, pages 243–249, Washington DC, 2000.

[25] X. Wang. Tabular Abstraction, Editing and Formatting. PhD thesis, U. of
Waterloo, 1996.

[26] Y. Wang, R. Haralick, and I. Phillips. Zone content classification and its
performance evaluation. In Proceedings of the 6th International Conference
on Document Analysis and Recognition (ICDAR01), pages 540–544, Seattle,
Washington, September 2001.

[27] Y. Wang and J. Hu. Detecting tables in HTML documents. In Document
Analysis Systems, pages 249–260. Springer-Verlag, 2002.

[28] Y. Wang and J. Hu. A machine learning based approach for table detection on
the web. In Proceedings of the 11th International Conference on World Wide
Web, pages 242–250. ACM Press, 2002.

23

[29] Y. Wang, I.T. Phillips, R.M.Robert, and M. Haralick. Table structure
understanding and its performance evaluation. Pattern Recognition, 37(7):1479–
1497, July 2004.

[30] M. Yoshida, K. Torisawa, and J. Tsujii. A method to integrate tables of
the world wide web. In Proceedings of the International Workshop on Web
Document Analysis (WDA 2001), pages 31–34, 2001.

[31] M. Yoshida, K. Torisawa, and J. Tsujii. Extracting attributes and their values
from web pages. In A. Antonacopoulos and J. Hu, editors, Web Document
Analysis: Challenges and Opportunities, Series in Machine Perception and
Artificial Intelligence, pages 179–200. World Scientific, 2003.

[32] R. Zanibbi, D. Blostein, and J.R. Cordy. A survey of table recognition:
Models, observations, transformations, and inferences. International Journal
of Document Analysis and Recognition, 7(1):1–16, March 2004.

24

