L earning Concept Hierarchiesfrom Text with a Guided Hierarchical
Clustering Algorithm

Philipp Cimiano

CIMIANO@AIFB.UNI-KARLSRUHE.DE

Institute for Applied Computer Science and Formal Methods, University of Karlsruhe

Steffen Staab

Institute for Computer Science, University of Koblenz-Landau

Abstract

We present an approach for the automatic induc-
tion of concept hierarchies from text collections.
We propose a novel guided agglomerative hier-
archical clustering algorithm exploiting a hyper-
nym oracle to drive the clustering process. By
inherently integrating the hypernym oracle into
the clustering algorithm, we overcome two main
problems of unsupervised clustering approaches
relying on the distributional similarity of terms
to induce concept hierarchies. First, by only clus-
tering two terms if they have a hypernymin com-
mon we make sure that the cluster produced in
this way is actually reasonable. Second, by la-
beling the clusters with the corresponding hyper-
nym we overcome the labeling problem shared
by all unsupervised approaches. We present re-
sults of a comparison of our approach with Cara-
ballo’s method, assessing the quality of the auto-
matically learned ontologies by comparing them
to a handcrafted taxonomy for the tourism do-
main using the similarity measures of Maedche
et al. Further, we also present a human evalu-
ation of the concept hierarchy produced by our
guided algorithm.

1. Introduction

Most approaches aiming at learning concept hierarchies
are based on unsupervised learning paradigms. These ap-
proaches rely on the possibility of assessing the semantic
similarity between words on the basis of the amount of lin-
guistic context they share in a given corpus (compare [9]).
In order to induce a hierarchy between concepts, many ap-
proaches exploit clustering algorithms such as the approach
in [13] using a soft clustering method relying on deter-
ministic annealing to find lowest distortion sets of clusters.
Others use agglomerative clustering [1, 2, 7] as well as divi-

STAAB@UNI-KOBLENZ.DE

sive algorithms such as Bi-Section-KMeans [3] or concep-
tual clustering algorithms such as Formal Concept Analy-
sis [3]. However, there are two major problems shared by
these approaches. On the one hand, there is the problem
of data sparseness leading to the fact that certain syntac-
tic similarities with respect to the corpus are accidental and
due to missing data (cf. [18]), thus not corresponding to
real-world or semantic similarities. On the other hand all
the approaches share the problem of not being able to ap-
propriately label the produced clusters. In this paper we
present a new algorithm addressing both issues. The algo-
rithm is a novel guided hierarchical agglomerative cluster-
ing algorithm exploiting a hypernym oracle automatically
extracted from different resources in a first step. Though
our approach also makes use of hypernyms extracted by
other means for labeling the concepts as in [2], the principle
difference is that instead of merely postprocessing the hier-
archy, in our approach the hypernyms are directly used to
guide the clustering algorithm. In fact, in our guided algo-
rithm two terms are only clustered if there is a correspond-
ing common hypernym according to the oracle, thus mak-
ing the clustering less error-prone. We demonstrate this
claim by presenting results comparing our approach with
Caraballo’s algorithm on a tourism-related dataset. Fur-
ther, we also present a human evaluation of the concept
hierarchy produced by our guided algorithm. The paper
is structured as follows: the following Section 2 describes
the guided agglomerative clustering algorithm. Section 3
presents the evaluation of the approach and Section 4 dis-
cusses some related work. Section 5 concludes.

2. Oracle-Guided Agglomerative Clustering

In this section we present the guided agglomerative clus-
tering approach for learning concept hierarchies. The ap-
proach relies on the distributional similarity of terms with
respect to an underlying corpus. Furthermore, it is guided
in the sense that it exploits hypernyms acquired by other
means to drive the clustering process. In particular, the

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

Google

Corpus

Hypernym . Similarity
Oracle ‘ Clustering _ Computation
o.. *
e Qe

® O
Taxonomy

Figure 1. System Overview

approach exploits hypernyms extracted from WordNet as
well as an approach matching lexico-syntactic patterns in-
dicating a hypernyme-relationship as suggested in [10]. The
clustering algorithm is then driven by these extracted hy-
pernyms in the sense that given two terms which are similar
according to their corpus behavior, it will either order them
as subconcepts, in case one is a hypernym of the other, or —
in case they have a common hypernym — add them as sis-
ters under a concept labeled with that hypernym. Figure 1
gives an overview of the system. In what follows we first
describe how the similarity between terms is calculated in
Section 2.1. Then we describe our method for extracting
hypernyms from different resources in Section 2.2. After
presenting the actual algorithm in Section 2.3 we discuss
an example for illustration purposes in Section 2.4.

2.1. Calculating Term Similarities

In order to calculate the similarity between terms, we rely
on Harris’ distributional hypothesis [9] claiming that terms
are semantically similar to the extent to which they share
similar syntactic contexts. For this purpose, for each term
in question we extract syntactic surface dependencies from
the corpus. These surface dependencies are extracted by
matching regular expressions over part-of-speech tags. In
what follows we list the syntactic expressions we use and
give a brief example of how the features, represented as
predicates, are extracted from these expressions:

e adjective modifiers, i.e. a nice city — nice(city)

e prepositional phrase modifiers, i.e. a city near the
river — near_river(city) and city_near(river), respec-
tively

e possessive modifiers, i.e.
has_center(city)

the city’s center —

e noun phrases in subject or object position. i.e. the
city offers an exciting nightlife — offer_subj (city) and
offer_obj(nightlife)

e prepositional phrases following a verb, i.e. the river
flows through the city — flows_through(city)

e copula constructs i.e.
is_bird(flamingo)

a flamingo is a bird —

e verb phrases with the verb to have, i.e. every country
has a capital — has_capital(country)

Consider for example the following discourse:

Mopti is the biggest city along the Niger with one of
the most vibrant ports and a large bustling market. Mopti
has a traditional ambience that other towns seem to have
lost. It is also the center of the local tourist industry and
suffers from hard-sell overload. The nearby junction towns
of Gao and San offer nice views over the Niger’s delta.

Here we would extract the following concept vectors
for each object, where the number in paranthesis gives the
absolute frequency for each feature:

city: biggest(1)

ambience: traditional(1)

center: of tourist_industry(1)
junction towns: nearby(1)

market: bustling(1)

port: vibrant(1)
overload:suffer_from(1)

tourist industry: center_of(1), local(1)
town: seem_subj(1)

view: nice(1), offer_obj(1)

On the basis of these vectors we calculate the simi-
larity between two terms ¢; and ¢, as the cosine between
their corresponding vectors:

b -
& -2

—

cos(<1(t1 ,12)) =

According the the above cosine measure, the following ten
pairs of terms are the ten most similar terms of the reference
taxonomy with respect to our corpus (compare the dataset
description in Section 3):

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

(tl ,tz) Sim
(autumn,summer) 0.93
(autumn,night) 0.83
(summer,spring) 0.72
(person,living_thing) | 0.69
(trip,visit) 0.68
(winter,summer) 0.66
(badminton,tennis) 0.65
(day,morning) 0.64
(tennis,golf) 0.64
(farm,town) 0.62

2.2. The Hypernym Oracle

The guided agglomerative clustering algorithm relies on
an oracle returning possible hypernyms for a given term.
Thus, before applying the actual algorithm, the oracle
needs to be constructed. In this section we describe an
automatic approach to construct such an oracle which in
essence is a function

H : String — 25tringxN

which for a term ¢ returns a set of tuples (h, f), where h is
ahypernymand f is the number of times the algorithm has
found evidence for it. We also define the first projection
H (t) returning the set of hypernyms of ¢:

Hy(t) :=={h | In(h,n) € H(t)}

In order to find these hypernyms we make use of three
sources: (i) WordNet, (ii) Hearst patterns matched in a
corpus and (iii) Hearst patterns matched in the World Wide
Web (compare [4]). WordNet [8] is a lexical database in
which terms are organized in so-called synsets consisting
of synonyms and thus representing a specific meaning
of a given term. For each term ¢ we thus collect all the
hypernyms in the synsets which dominate any synset in
which ¢ appears. We add these hypernyms to H (¢) together
with the number of times that the corresponding hypernym
appears in a dominating synset.

Furthermore, we also apply the lexico-syntactic patterns
described in [10] to find hypernyms in the underlying
corpus. The following patterns we use are taken from
[10]%:

(1) NPy such as NP, NP,
NP,

(2)suchNPyas NP, NP,, .. NP,_; (andjor) NP,
(3) NPy, NPy, ..., NP, (and|or) other NP,
(4) NPy, (including|especially) NP, NPs,
(andjor) NP,

.., NP, 1 (and|or)

. NP,_,

According to Hearst, from the above patterns we

1N P; stands for anoun phrase.

can derive that for all NP, 1 < i <
a(head(NP;), head(N P)).
the following patterns:

n, is-
In addition, we also use

(5) NP is NP,
(6) N Py, another NP,

Now given two terms #; and t» we record how many
times a Hearst-pattern indicating an isa-relation between
t; and to is matched in the corpus. In order to match the
above patterns we create regular expressions over part-of-
speech tags to match NP’s. In particular, we use the tagger
described in [16] and match non-recursive NP’s consisting
of a determiner, an optional sequence of modifying
adjectives and a sequence of common nouns constituting
the head of the NP. Additionally, we also follow an
approach in which web pages are actually downloaded
and Hearst patterns are matched offline. For this purpose,
we assign one or more functions f; : string — string
— which we will refer to as clues — to each of the Hearst
patterns 7 to be matched. Given a concept of interest ¢,
we instantiate each of the clues and download a number
of pages matching the query f;(c) using the Google API.
For example, given the clue f(z) = ”such as @ =(z)
and the concept conference we would download the first
100 Google abstracts matching the query f(conference),
i.e. “such as conferences”.? For each concept of interest
and for each of the correspondingly instantiated clues,
we then process the downloaded documents by matching
the corresponding pattern, thus yielding its potential
superconcepts. The following table gives the clues used as
well as the corresponding Hearst patterns:

Clue Hearst pattern
f(x) =7 such as” & w(x) @)
f(z) = w(z) ® ”and other” | (3)
f(z) =w(z) ® ”or other” (3)
f(z) ="including” & w(zx) | (4)
f(z) =7especially” ® w(z) | (4)
fly=z& "is” (5)

The following table for example shows the results of the
above described hypernym extraction process for the term
summer. In particular, for each resource it gives the hyper-
nyms found as well as the number of times such an evi-
dence was found in the corresponding resource:

Here, @ denotes the concatenation operator defi ned on two
strings and 7 (t) is a function returning the correct plural form of
t.

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

Hearst Corpus
is-a(summer,heat)
is-a(summer,performer)
is-a(summer,time)
is-a(summer,mind)
is-a(summer,tubing)

Hearst WWW
is-a(summer,time)
is-a(summer,vacation)
is-a(summer,period)
is-a(summer,season)
is-a(summer,skill)

WordNet
is-a(summer,period) | 1

PR R R

e N L)

In this example, the results of the different resources would
add up to 4 for the hypernym time, 2 for the hypernym va-
cation and 2 for the hypernym period as well as 1 for the
rest of the candidate hypernyms in the table.

2.3. Algorithm

In this section we describe the guided agglomerative clus-
tering algorithm for inducing concept hierarchies. The al-
gorithm is given by the following pseudocode:

1. Input: a list T of n terms to be ordered hierarchically

2. calculate the similarity between each pair of terms
(O(n?)) and sort them from highest to lowest
(O(n logn))
initialize the set of clustered terms C, i.e. C:={}

3. FOREACH pair (t1,t2) in the ordered list represent-
ing a potential pair to be clustered, if either ¢, or ¢ has
not been NOT classified as subconcept of some other
concept:

@ IF (tl,m) S H(tg)
i. IF (t2,n) € H(t1) and n > m, then
isa(tl,tg)
ii. ELSE isa(tQ,tl)
(b) ELSE IF (t3,m) € H(t1)
i. isa(tQ,tl)

(c) ELSE IF (h,n) € H(t1) and (h,m) € H(t2)
and there is no A’ such that (k',p) € H(t1) and
(h',q) € H(tz) andp+ ¢ >m+n

i. IFisa(ty,t'), i.e t; is already classified as ¢’

A. IFt" ==h, then isa(ts,t")

B. ELSE IF (h,n) € H(t') and ((¢,m) €

H(h) > m < n)
IF t2 has not yet been classified, then
isa(t2,t')
IF ¢ has not yet been classified, then
isa(t', h)

C. ELSE
IF ¢t has not yet been classified then
isa(tz,h)
IF h has not yet been classified, then
isa(h,t")

ii. ELSE IFisa(to,t"), i.e. to is already classified

as t’ (analogous case to 3c i)

A. IFt" ==h, then isa(ty,t")

B. ELSE IF (h,n) € H(t') and ((t',m) €

H(h) > m < n)

as t; has not yet been classified, then
isa(ty,t')

IF ¢ has not yet been classified, then
isa(t’, h)

C. ELSE

as t; has not yet been classified, then
isa(t1,h)

IF h has not yet been classified, then
isa(h,t")

iii. ELSE, as neither ¢; nor t, have been classi-
fied, isa(t1,h), isa(ts,h) .
(d) ELSE, as there are no common hypernyms, mark
t; and ¢, as clustered, i.e. C: = C U (¢1,t2)

4. FOREACH term t € T which has not been processed
(because no similar terms were found in the corpus),
if there is some other term ¢’ in C such that sub-
stringOf(t’,t), then isa(t,t")

5. FOREACH (t1,t2) € C

(@) IFthereisat’ suchthatisa(t;,t') THEN isa(ts,t')

(b) ELSE IF there is a t' such that isa(ts,t') then
isa(tq,t')

(c) ELSE select the pair (t',m) € H(t1)UH (t) for
which there is no (t",n) € H(t;) U H(ty) such
that » > m and create the following structures:
isa(ty,t') and isa(ts,t')

6. FOREACH term ¢t € T which has not been classified,
put it directly under the top concept, i.e. isa(t,top)

7. Output: a labeled concept hierarchy for the words in
T

For each pair (t1,t2) the algorithm thus first consults the
hypernym oracle to find out if ¢, is a hypernym of ¢, or the
other way round, creating the appropriate subconcept rela-
tion (3a and 3b). If this is not the case (3c), it consults the
oracle for common hypernyms of both terms, selecting the
most frequent hypernym h and distinguishes three cases. In
the case none of the terms has been already classified (3¢
iii), it creates a new concept labeled with h together with
two subconcepts labeled as #; and ¢2. In case one of the
two terms, say t1, has been already classified as isa(t1,t'),

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

there are three more cases to distinguish. In the first case
(3ci.A), if hand ¢’ are identical, the algorithm simply puts
a concept t, under ¢’ (compare Figure 2 (left)). In the sec-
ond case (3ci.B), if according to the oracle A is a hypernym
of ¢/, it creates the structure in Figure 2 (middle). In case it
is not an hypernym (3c i.C), it creates the structure in Fig-
ure 2 (right). The algorithm proceeds analogously in case
to has been already classified. In case there are no com-
mon hypernyms ¢; and ¢ are simply marked as clustered
for further processing (3d). This is done for all the simi-
larity pairs provided that one of the two terms has not been
classified yet.

After this process, the algorithm exploits the vertical-
relations heuristic in [17] adding ¢; as subconcept of ¢ if
to is a substring ¢, in the way credit card is a substring
of international credit card (4). Then, all the pairs (¢1,t=2)
which have been clustered and kept for later processing are
considered (5), and if either ¢; or ¢2 has been already clas-
sified (5a and 5b), the other term is added under the corre-
sponding superconcept. If this is not the case, both terms
are added as subconcepts of the most frequent hypernym
in H(t1) U H(t2) according to the oracle (5c). At the end,
every unclassified term is added directly under the top con-
cept (6).

In general, each time an isa-relation is added, the algorithm
has to check that no cycles are created by introducing the
relation in question. The overall time complexity of the al-
gorithm is thus O(n?) as steps 2, 3, 4 and 5 have complex-
ity O(n?) and step 6 is even linear in the number of terms
n = |T'|. The algorithm is thus as efficient as agglomera-
tive clustering with single-linkage and more efficient than
agglomerative clustering with complete and average link-
age (compare [5])3.

As already mentioned in the introduction this algorithm can
be considered as guided as it depends on an external hyper-
nym oracle. The obvious benefit is that by only clustering
terms in case they have a common hypernym according to
the oracle, the clustering process is more controlled and
less error-prone. This claim is demonstrated experimen-
tally in Section 3. Furthermore, the approach also allows to
label abstract concepts in an appropriate way.

It is important to emphasize that the outcome of the algo-
rithm does not simply mirror the WordNet hierarchy, but is
in fact implicitly performing sense disambiguation. In fact,
due to the fact that we look up the common hypernym of
two terms which are similar with respect to the underlying
corpus, we are more likely to find a hypernym (of the many
contained in WordNet for both terms separately) which cor-
responds to the common sense of both terms in the domain
in question thus finding more appropriate labels than when
processing each term separately.

3See also http://www-csli.stanford.edu/~schuetze/ com-
pletelink.html on thisissue

(t1,t2) Sim | Hypernym Count
(autumn,summer) 0.93

period 3
(autumn,night) 0.83

period 5
(summer,spring) 0.72

period 3
(person,living_thing) | 0.69
(trip,visit) 0.68

activity 23

event 10

travel 3

outing 2
(winter,summer) 0.66

Season 3
(badminton,tennis) 0.65

human_activity | 2

sport 2
(day,morning) 0.64

time 10

period 9

day 4

work 4

others 2
(tennis,goalf) 0.64

sport 2
(farm,town) 0.62

area 15

place 9

entity 6

landscape 6

unit 5

country 2

structure 2

Table 1. Common Hypernyms with occurrences for the top ten
most similar pairs of terms

2.4. An Example

In order to illustrate the above algorithm, consider again
the top ten most similar pairs according to a collection of
tourism-related texts (see section 3 for details about the
dataset) together with their common hypernyms as well as
the corresponding occurrences in Table 1.

After the first three steps of the algorithm, autumn, summer,
night and spring will have been added as subconcepts of a
concept labeled with period according to steps 3c iii, 3¢ i.A
and 3c i.A, respectively. In the fourth step, as living_thing
is a hypernym of person according to our hypernym oracle,
person is added as a subconcept of living_thing according
to case 3a of our algorithm. In the 5th step, trip and visit
are added as subconcepts of a concept labeled with activ-
ity according to step 3c iii. Interesting is the 6th step, in
which, as season is a hypernym of period following the or-
acle, according to case 3c ii.B a new concept labeled with
season is created with period and winter as subconcepts.
Then, badminton and tennis are added as subconcepts of
human_activity according to case 3c iii. In the 8th step, ac-
cording again to case 3c iii., a new concept time is created

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

t

AN

t1 to t1

t

AN

t2 tl t2

Figure 2. Structures constructed in algorithm steps 3c i.A and 3ci.B and 3ci.C, respectively

with day and morning as subconcepts. Finally, as sport is
a human_activity, golf is added as a subconcept of sport
according to step 3c i.B; farm and town are added as sub-
concepts of a new concept area according to 3c iii.

As all pairs have been processed, then as activity is a sub-
string human_activity, the latter, following step 4, is added
as a subconcept of the former thus yielding at the end the
concept hierarchy depicted in Figure 2.4. This hierarchy is
certainly far from perfect but also shows that the results of
our algorithm are quite reasonable.

3. Evaluation

In order to evaluate the automatically produced concept hi-
erarchies, we compare them to a handcrafted reference con-
cept hierarchy but also present the hierarchy to a human
subject in order to assess its quality more directly. In or-
der to compare the automatically learned hierarchies with a
reference hierarchy, we build on the work of [12] in which
ontologies are compared along different levels: semiotic,
syntactic and pragmatic. In particular, the authors present
measures to compare the lexical and taxonomic overlap be-
tween two ontologies. In order to formally define our eval-
uation measures, we introduce a core ontology in line with
[6] as follows:

Definition 1 (Core Ontology)

A core ontology is a structure O := (C, <) consisting of
(i) aset C of concept identifiers and (ii) partial order <¢
on C called concept hierarchy or taxonomy.

For the sake of notational simplicity we adopt the follow-
ing convention: given an ontology O;, the corresponding
set of concepts will be denoted by C; and the partial order
representing the concept hierarchy by <¢,.

It is important to mention that in the approach presented
here, terms are directly identified with concepts, i.e. we
neglect the fact that terms can be polysemous. In order
to compare the taxonomy of two ontologies, we use the
semantic cotopy (SC) presented in [12]. The semantic
cotopy of a concept is defined as the set of all its super-
and subconcepts:

SC(Ci,Oi) = {Cj e C; | ¢; <¢ ¢ ore; <¢ Ci},

Now, according to Maedche et al. the taxonomic
overlap (T'O) of two ontologies O; and O- is computed as
follows:

TO(01,09) = |C | Z TO(c,01,00)
ceCy
where
[TO'(c,01,0,) fifce Cy
TO(c,01,0) := { TO"(¢,01,0,) ife g Ch

and TO” and TO” are defined as follows:

‘SC(C,Ol ,02)050(6702,01) ‘
[SC(c,01,02)USC(c,02,01)]

TO’(C, 01, 02) =

1" ‘SC(C 01,02)050(6 02,01)|
TO"(c,01,02) := mazeec, [SC(c,01,02)USC(c,02,01)]

So, TO' gives the similarity between concepts which
are in both ontologies by comparing their respective
semantic cotopies. In contrast, TO" gives the similarity
between a concept ¢ € C and that concept ¢’ in Cs which
maximizes the overlap of the respective semantic cotopies,
i.e. it makes an optimistic estimation assuming an overlap
that just does not happen to show up at the immediate
lexical surface. The taxonomic overlap TO(O1,05)
between the two ontologies is then calculated by averaging
over all the taxonomic overlaps of the concepts in C;. To
evaluate the automatically clustered concept hierarchies,
we compare them with our gold standard by the taxonomic
overlap measures described above. Given an automatically
learned ontology O,uto and a reference ontology Oy,
calculating ﬁ(oauto,omf) amounts to calculating the
precision of Ogyt, With respect to O,y as we calculate
the taxonomic overlap for each concept in Ogy0. In Order
to assess how satisfactory the coverage of the automat-
ically learned ontology is with respect to the reference
ontology, we need to compute also the inverse precision
or recall, i.e. Rec(Oquto; Oref) = Prec(Oref, Oauto) =
TO(Oref,Oquto). As we want to maximize both recall
and precision, we evaluate our approach in terms of the
following F-Measure:

2 m(Oautm)
TO(Oautm Oref) +

_O(refs Oauto)
TO

FTO(OautoaOTCf) (0 I 0)
refs Yauto

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

human
activity
CCD

Ce= Cim >
COREPICD

Figure 3. Example for an automatically learned concept hierarchy

To support our claim that our algorithm produces better
groupings or clustering of terms, we also introduce the no-
tion of sibling overlap (SO). For this purpose we define first
what the siblings of a concept are, i.e. all its children:

Sib(c,0;) :={c | ¢ <¢; ¢}

where <, the immediate predecessor relation is defined as
follows:

Definition 2 (<¢)
cd <¢c ciffc <o candthereisnoc" suchthatc' <c "
andc” <cec.

Finally, the average sibling overlap is defined as follows:

rara) . |Sib(cl,01)ﬁsib(62702)|
S0(01,02) := 3, cc, MaTeyeCs [Sib(c1,01)USib(ca,02)]|

Here we also calculate the F-Measure as follows:

FSO(OautO; Oref) =

2 @(Oautm Oref) m(Oref7 Oauto)

3.1. Results

As text collection we use texts acquired from
http:/mww.lonelyplanet.com as well as from
http:/mwww.all-in-all.de. Furthermore, we also use a
general corpus, the British National Corpus. Altogether
the corpus size was over 118 Million tokens. The ref-
erence ontology is the one of the comparison study in
[12], which was modeled by an experienced ontology
engineer. The tourism domain ontology consists of 293
concepts and can be downloaded at http://www.aifb.uni-
karlsruhe.de/WBS/pci/TourismGoldStandard.isa.

3.2. Comparison with a Reference Taxonomy

Table 2 shows the results of comparing the concept hierar-
chies produced by our method with the reference concept

B %(Oauto; Oref) + @(0T6f7 Oauto)

hierarchy in terms of the taxonomic overlap measures. In
particular, the table shows results for different combina-
tions of the resources used for the construction of the ora-
cle. The best results of F7o=23.11% were achieved on the
one hand using a combination of WordNet and Hearst Pat-
terns as well as a combination of Hearst patterns matched in
the corpus and on the WWW on the other hand. Of all the
resources considered, WordNet and the patterns matched
in the WWW yield the worst results when used alone or in
combination. Table 3 shows the results in terms of sibling
overlap. The best result of Fso=14.18% is achieved when
using all the three resources for the hypernym extraction. It
is interesting to observe that with respect to sibling overlap,
the most reliable source for the hypernym extraction are the
patterns matched on the WWW.

3.3. Comparison with Caraballo’s Method

In order to evaluate our approach we implemented the
method described in [2] in which first a hierarchy is pro-
duced by standard agglomerative clustering and then hy-
pernyms derived from Hearst patterns are attached to each
cluster. The most frequent hypernym is then taken as a
label for the cluster provided that it is a valid hypernym
for at least two elements in the cluster. Finally, the hierar-
chy is compressed by removing all clusters without a label.
In our implementation of this method we used complete
linkage as strategy to calculate the similarity between clus-
ters (compare [3]) and used our hypernym oracle instead
of merely the hypernyms derived from Hearst patterns. Ta-
ble 4 shows the results of Caraballo’s method in terms of
taxonomic overlap with the reference standard. The best
result of Frr0=22.48% is achieved using only WordNet as
resource for the hypernym extraction. The results are how-
ever worse compared to our guided agglomerative cluster-
ing algorithm. Even more decisive are the results in terms
of sibling overlap reported in Table 5, showing that our
method clearly outperforms Caraballo’s approach in terms

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

TO(auto,ref) | TO(ref,auto) | Fro(auto,ref)
WordNet + Hearst + WWW 18.62% 18.63% 18.62%
WordNet + Hearst 23.05% 23.16% 23.11%
WordNet + WWW 18.27% 18.04% 18.15%
Hearst + WWW 23.05% 23.16% 23.11%
WordNet 19.18% 19.18% 19.18%
Hearst 22.15% 22.09% 22.12%
WWW 19.17% 19.06% 19.12%

Table 2. Results for Guided Agglomerative Clustering in terms of TO

SO(auto,ref) | SO(ref,auto) | Fso(auto,ref)
WordNet + Hearst + WWW 12.99% 15.61% 14.18%
WordNet + Hearst 13.03% 12.20% 12.60%
WordNet + WWW 13.31% 14.90% 14.06%
Hearst + WWW 13.21% 15.02% 14.06%
WordNet 13.27% 11.64% 12.40%
Hearst 12.78% 12.30% 12.54%
WWW 12.75% 13.94% 13.32%

Table 3. Results for Guided Agglomerative Clustering in terms of SO

of cluster coherence. In fact, the best result (Fso=14.18%)
of the guided agglomerative algorithm is more than 5 points
above the best result achieved with Caraballo’s method, i.e.
Fso = 8.96%.

3.4. Human Assessment

As Sabou et al. [15] have shown, using a gold standard for
the evaluation of automatically constructed ontologies is
sometimes problematic and may lead to wrong conclusions
about the quality of the learned ontology. This is due to the
fact that if the learned ontology does not mirror the gold
standard, it does not necessarily mean that it is wrong. In
order to assess the quality of the automatically learned con-
cept hierarchies more directly, we thus asked a student at
our institute to validate the learned isa-relations by assign-
ing credits from 3 (correct), over 2 (almost correct) and 1
(not completely wrong) to 0 (wrong). Actually, we did not
consider those isa-relations classifying a concept directly
under root as it seems very difficult to assess what should
be directly under root and what not. Then we calculated the
precision of the system counting an isa-relation as correct
if it received three credits (P3), at least two credits (P) and
at least one credit (Py), respectively. The precision for the
versions of our approach using different combinations of
the hypernym resources are given in Table 6, showing also
the number of isa-relations evaluated. The results show
on the one hand that the concept hierarchies produced by
our method are quite reasonable according to human intu-
itions. Actually, the fact that 65.66% of the learned rela-
tions are considered as totally correct by our evaluator is a

very impressive result. A second interesting conclusion is
that the version of our algorithm combining all the differ-
ent resources for the oracle construction performed better
compared the ones using any subset of them.

4. Comparison and Related Work

Many approaches to learning conceptual hierarchies ex-
ploit Harris’ distributional hypothesis and cluster terms on
the basis of their contextual similarity with respect to a
given corpus. Most work based on this hypothesis relies
on agglomerative hierarchical clustering algorithms such
as [7], [2] and [1]. Others use soft clustering algorithms
such as the one presented in [13] which uses deterministic
annealing to find lowest distortion sets of clusters. A parti-
tional algorithm, viz. Bi-Section-KMeans, as well as a set-
theoretic approach, i.e. Formal Concept Analysis, are for
example used in [3]. Two applications of non-hierarchical
clustering algorithms to learning clusters of terms are de-
scribed in [14] and [11], respectively. Common to these
clustering approaches is the problem that high degrees of
similarity can in fact be accidental and actually due to the
corpus used, which typically represents only a biased and
very small portion of the actual world or of a certain do-
main. By guiding the clustering process by an external hy-
pernym oracle, the approach presented in this paper is able
to reduce such accidental clusterings and thus increase the
quality of the learned concept hierarchies.

Another drawback common to the above mentioned clus-
tering approaches is the lack of appropriate labels for clus-
ters. Though appropriate labels are strictly not necessary,

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

TO(auto,ref) | TO(ref,auto) | Fro(auto,ref)
WordNet + Hearst + WWW 14.88% 16.13% 15.48%
WordNet + Hearst 20.09% 20.82% 20.45%
WordNet + WWW 15.06% 16.32% 15.67%
Hearst + WWW 14.87% 16.00% 15.42%
WordNet 22.22% 22.77% 22.48%
Hearst 19.86% 20.58% 20.21%
WWW 15.05% 16.19% 15.60%

Table 4. Results for Caraballo’s method in terms of TO

SO(auto,ref) | SO(ref,auto) | Fso(auto,ref)
WordNet + Hearst + WWW 7.67% 10.72% 8.94%
WordNet + Hearst 9.36% 6.09% 7.38%
WordNet + WWW 7.75% 10.70% 8.90%
Hearst + WWW 7.68% 10.64% 8.92%
WordNet 7.68% 1.26% 2.16%
Hearst 9.33% 5.90% 7.23%
WWw 7.7% 10.62% 8.96%

Table 5. Results for Caraballo’s method in terms of SO

they allow a better readability of the learned hierarchies for
humans. On the other hand the lack of labels makes also
the evaluation of the learned structures more difficult when
comparing to a certain gold standard, requiring a notion of
similarity such as proposed in [12]. Caraballo [2] addresses
the labeling problem and after producing an unlabeled clus-
ter tree, she also labels the abstract concepts of the hierar-
chy by considering the Hearst patterns in which the chil-
dren of the concept in question appear as hyponyms. The
most frequent hypernym is then chosen in order to label
the concept. Though our approach is similar, it also cru-
cially differs in the fact that in Caraballo’s approach the
clustering process is independent of the labeling, while in
our approach they are integrated with each other, producing
overall better hierarchies. In the approach of [3] using For-
mal Concept Analysis, the labeling problem is tackled by
naming a concept with the intent of the corresponding for-
mal concept, containing verb-derived attributes automati-
cally extracted from the corpus. However, the quality of
this labeling procedure is not evaluated. On the other hand,
intents in Formal Concept Analysis can get very large so
that in many cases such an approach will produce too large
labels.

5. Conclusion

We have presented a novel guided agglomerative clustering
algorithm with the aim of automatically inducing concept
hierarchies from a text corpus. The algorithm exploits an
external hypernym oracle to drive the clustering process.
Further, we have also described an automatic method to

derive such a hypernym oracle from WordNet, a corpus as
well as the WWW. The approach has been evaluated by
comparing the resulting concept hierarchies with a refer-
ence concept hierarchy for the tourism domain. In fact,
we have shown that the results of our algorithm are bet-
ter when compared to Caraballo’s approach. The human
assessment of the automatically produced concept hierar-
chy has also shown that the learned relations are reasonably
precise. Besides overcoming two main problems of unsu-
pervised approaches, i.e. accidental clusterings as well as
lack of labels, our approach also is original in that it suc-
cessfully combines two main paradigms to ontology learn-
ing: the approaches relying on contextual similarity as well
as approaches matching lexico-syntactic patterns denoting
a certain relation such as in [10].

Acknowledgments The work reported in this paper has
been partially supported by the SmartWeb project*, funded
by the German Ministry of Research. Thanks also to Laura
Goebes for assisting in the evaluation of the system.

References

[1] G. Bisson, C. Nedellec, and L. Canamero, ‘Design-
ing clustering methods for ontology building - The
Mo’K workbench’, in Proceedings of the ECAI On-
tology Learning Workshop, pp. 13-19, (2000).

[2] S.A. Caraballo, ‘Automatic construction of a
hypernym-labeled noun hierarchy from text’, in

“http://www.smartweb-projekt.de/

Learning Concept Hierarchiesfrom Text with a Guided Hierarchical Clustering Algorithm

P, P P
WordNet + Hearst + WWW | 265 | 67.17% | 66.04% | 65.66%
WordNet + Hearst 233 | 65.24% | 62.23% | 62.23%
WordNet + WWW 262 | 68.32% | 65.65% | 65.65%
Hearst + WWW 268 | 69.03% | 63.43% | 63.43%
WordNet 236 | 58.90% | 55.51% | 55.08%
Hearst 203 | 66.50% | 64.04% | 64.04%
WWw 261 | 73.18% | 64.37% | 62.07%

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Table 6. Results of the human evaluation of the hierarchies produced by our guided clustering algorithm

Proceedings of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 120-126,
(1999).

P. Cimiano, A. Hotho, and S. Staab, ‘Comparing
conceptual, divisive and agglomerative clustering for
learning taxonomies from text’, in Proceedings of the
European Conference on Artificial Intelligence, pp.
435-439, (2004).

P. Cimiano, L. Schmidt-Thieme, A. Pivk, and
S. Staab, ‘Learning taxonomic relations from hetero-
geneous evidence’, in Ontology Learning from Text:
Methods, Applications and Evaluation, eds., P. Buite-
laar, P. Cimiano, and B. Magnini, 10S Press, (2005).
to appear.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Clas-
sification, John Wiley & Sons, Inc., 2001.

G. Stumme et al., “The karlsruhe view on ontologies’,
Technical report, University of Karlsruhe, Institute
AIFB, (2003).

D. Faure and C. Nedellec, ‘A corpus-based concep-
tual clustering method for verb frames and ontology”’,
in Proceedings of the LREC Workshop on Adapting
lexical and corpus resources to sublanguages and ap-
plications, ed., P. Velardi, pp. 5-12, (1998).

C. Fellbaum, WordNet, an electronic lexical database,
MIT Press, 1998.

Z. Harris, Mathematical Structures of Language, Wi-
ley, 1968.

M.A. Hearst, ‘Automatic acquisition of hyponyms
from large text corpora’, in Proceedings of the 14th
International Conference on Computational Linguis-
tics, pp. 539-545, (1992).

D. Hindle, ‘Noun classification from predicate-
argument structures’, in Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pp. 268-275, (1990).

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Maedche and S. Staab, ‘Measuring similarity be-
tween ontologies’, in Proceedings of the European
Conference on Knowledge Acquisition and Manage-
ment (EKAW), pp. 251-263. Springer Verlag, (2002).

F. Pereira, N. Tishby, and L. Lee, ‘Distributional clus-
tering of english words’, in Proceedings of the 31st
Annual Meeting of the Association for Computational
Linguistics, pp. 183-190, (1993).

M-L Reinberger and W. Daelemans, ‘Unsupervised
text mining for ontology extraction: an evaluation of
statistical measures’, in Proceedings of the Interna-
tional Conference on Lexical Resources and Evalua-
tion (LREC), pp. 491-494, (2004).

Marta Sabou, ‘Learning web service ontologies: an
automatic extraction method and its evaluation’, in
Ontology Learning from Text: Methods, Applications
and Evaluation, eds., P. Buitelaar, P. Cimiano, and
B. Magnini. 10S Press, (2005). to appear.

H. Schmid, ‘Probabilistic part-of-speech tagging us-
ing decision trees’, in Proceedings of the Interna-
tional Conference on New Methods in Language Pro-
cessing, (1994).

P. Velardi, P. Fabriani, and M. Missikoff, ‘Using text
processing techniques to automatically enrich a do-
main ontology’, in Proceedings of the ACM Interna-
tional Conference on Formal Ontology in Information
Systems, (2001).

G. Zipf, Selective Studies and the Principle of Rela-
tive Frequency in Language, Cambridge, 1932.

