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Abstract. Turning the current Web into a Semantic Web requires automatic ap-
proaches for annotation of existing data since manual approaches will not scale in
general. We here present an approach for automatic generation of frames out of
tables which subsequently supports the automatic population of ontologies from
table-like structures. The approach consists of a methodology, an accompanying
implementation and a thorough evaluation. It is based on a grounded cognitive
table model which is stepwise instantiated by our methodology.

1 Introduction

Turning the current Web into a Semantic Web requires automatic approaches for anno-
tation of existing data since manual annotation approaches such as presented in [9] will
not scale in general. More scalable (semi-)automatic approaches known from ontology
learning (cf. [14]) deal with extraction of ontologies from natural language texts. How-
ever, a large amount of data is stored in tables which require additional efforts.
We here present an approach for automatic generation of frames out of tables which
subsequently supports the automatic population of ontologies from table-like structures.
The approach consists of a methodology, an accompanying implementation and a thor-
ough evaluation. It is based on a grounded cognitive table model which is stepwise
instantiated by our methodology. In practice it is hard to cover every existing type of a
table. We identified a couple of most relevant table types which were used in the exper-
imental setting during the evaluation of our approach.
The paper is structured as follows. In the next Section 2 we first introduce the grounding
table model which forms the base for our stepwise approach to generate frames out of
tables. Subsequently we explain each step in detail and show relevant substeps. In Sec-
tion 3 we present a thorough evaluation of the accompanying implementation. Before
concluding and giving future directions, we present related work.

2 Methodological Approach

Linguistic models traditionally describe natural language in terms of syntax and se-
mantics. There also exist models to describe tables in similar ways (cf. [11, 10]) where
tables are analyzed along the following dimensions: (i) Graphical – the image level



description of the pixels, lines and text or other content areas, (ii) Physical – the de-
scription of inter-cell relative location, (iii) Structural – the organization of cells as an
indicator of their navigational relationship, (iv) Functional – the purpose of areas of
the tables in terms of data access, and (v) Semantic – the meaning of text in the table
and the relationship between the interpretation of cell content, the meaning of structure
in the table and the meaning of its reading.
Our approach builds on the model described above. However, we will not consider the
graphical dimension as no image processing will be necessary. Regarding the physical
dimension, we process the tables encoded in HTML format in order to get a physical
model of the table. In principle it can be seen as a graph describing the cells being
connected together. In order to capture the structural dimension of the table, further
processing is necessary (i) to determine the orientation of the table, i.e. top to down or
left to right, and, (ii) to discover groups of cells building logical units. When talking
about the function of a table, Hurst ([11]) distinguishes between two functional cell
types access and data. Cells of type data are the ones we are interested when reading
a table and which contain the actual information, while cells of type access determine
the path to follow in the table in order to find the data cell of interest. Further, he distin-
guishes local (looking for one specific data cell) from global (comparing the value of
different data cells) search in a table. In our approach we describe the functional dimen-
sion of a table in order to support local search. Such a functional description requires
(i) finding all the data cells in a table as well as (ii) all the access cells to reach a given
data cell of interest. In terms of database terminology, we need to find the keys for a
certain field in the table. In our approach we distinguish between two functional types
of cells: A(ttribute)-cells and I(nstance)-cells. A-cells describe the conceptual nature
of the instances in a column or row. I-cells represent instances of the concepts repre-
sented by a certain A-cell. I-cells can have the two functional roles described by Hurst,
i.e. they can play the role of data or access cells. Regarding the semantic description

Tour Code DP9LAX01AB
Valid 01.05. - 30.09.04

Class/Extension Economic Extended
Single Room 35,450 2,510

Adult P Double Room 32,500 1,430
R Extra Bed 30,550 720
I Occupation 25,800 1,430

Child C No occupation 23,850 720
E Extra Bed 22,900 360

Table 1. Example of a possible table, found in [4]

we follow a completely different paradigm as Hurst. Instead of adopting the relational
model ([5]), we describe the semantics of a table in terms of F-Logic frames ([12]). F-
Logic combines the intuitiveness of modeling with frames with the expressive power of
logic. Furthermore, existing F-Logic inference engines such as Ontobroker ([7]) allow
later on e.g. for processing and query answering. Therefore it was our primary choice
as representation language.
We briefly introduce our running example. As input we use Table 1 which is taken from
the tourism domain and is (roughly speaking) about room prices. The ideal description



in terms of an F-Logic frame of this table, i.e. the output after applying our approach,
could look as follows:

Tour[TourCode �
� ALPHANUMERIC

Validity �
� DATE

EconomicPrice(PersonType,RoomType) �
� LARGE NUMBER

ExtendedPrice(PersonType,RoomType) �
� LARGE NUMBER]

By resorting to F-Logic we are thus able to describe the semantics of tables in a model-
theoretic way. Furthermore, as required by Hurst, the frame makes explicit (i) the mean-
ing of cell contents (ii) the functional dimension of the table, and (iii) the meaning of
the table abstracting from its particular structure. In this line, different tables with dif-
ferent structures but identical meaning would be described by one and the same frame.
In what follows we describe how we process the table in order to yield intermediate
descriptions of a table along the dimensions described above as well as how at a last
step the table is translated into a F-Logic frame.
As depicted in Figure 1 our methodology consists of four main steps. For each building
block of the table model there exists a corresponding methodological step to create this
part of the table model. In the following subsections we will describe all steps in detail.

Fig. 1. Building blocks of the methodology

2.1 Cleaning and Normalization

First, we assume that documents are represented with the Document Object Model
(DOM)1. A DOM tree is an ordered tree, where each node is either an element or a
text node. An element node includes an ordered list of zero to many child nodes, and
contains a string-valued tag (such as table, h1 or title) and zero to many string-
valued attributes (such as href or src). A text node normally contains a single text
string and has no child nodes.
In the Cleaning and Normalization step we want to construct an initial table model out
of a DOM tree. This model cannot be simply generated by applying the algorithm rec-
ommended by W3C

�
on a table element, but some additional steps of processing and

refinement are needed.
HTML documents are often very noisy in a sense that their syntactic structure is incor-
rect. In order to clean the code and make it syntactically correct, we employ the Tidy

�
utility . The outcome is a cleaned and corrected DOM tree.
The normalization of the rendered table is necessary, when an explicit rowspan or
colspan attribute indicates multiple row or column spanning cells and the actual total
number of rows or columns is lower than the attribute value. In this step our system
updates the corresponding DOM subtrees accordingly.

1 http://www.w3.org
�
/DOM/, /TR/html4/, /People/Raggett/tidy/ �



Table 2 shows the final reformulation of the example in Table 1, where cleaning has
been performed and copies of cells with rowspan and rowspan attributes have been
properly inserted into matrix structure.

2.2 Structure Detection

Assignment of functional types and probabilities to cells. In the first walk over the
table element (of the DOM tree), we convert a sub-tree into a matrix structure, which
is populated by cells according to its layout information. During this step the text of
each cell is tokenized, and each token is assigned a token type (see Figure 2). At the
same time, we assign each cell in the rendered table a functional type (A-cell or I-cell)
and a probability for this type. By default, a cell is assigned no functional type, which
is observed by a probability having value zero, unless the cell includes only/mostly
tokens, recognized as dates, currencies, or numerical values. In the latter case the cell is
assigned the type I-cell, and its probability is calculated based on the proportion of
tokens which talk in favour of this type. We also assume that the cell in the lowest right
corner is always an I-cell, and the cell in the upper-left corner is an A-cell. Therefore
we assign them the type, regardless of their content, with probability one.

Tour Code Tour Code Tour Code DP9LAX01AB DP9LAX01AB
Valid Valid Valid 01.05 - 30.09.04 01.05 - 30.09.04

Class/Ext. Class/Ext. Class/Ext. Economic Extended
Adult PRICE Single Room 35,450 2,510
Adult PRICE Double Room 32,500 1,430
Adult PRICE Extra Bed 30,550 720
Child PRICE Occupation 25,800 1,430
Child PRICE No occupation 23,850 720
Child PRICE Extra Bed 22,900 360

Table 2. Table 1 after cleaning and normalization step

Detecting table orientation. One problem related to the interpretation of a table is that
its logical orientation is a priori not clear. In fact, when performing a local search on a
table, the data of interest can be either ordered in a top-to-down (vertical orientation) or
left-to-right manner (horizontal orientation). For example, in figure 1 the relationship
“Tour Code, DP9LAX01AB” reads left-to-right, but price values of an attribute “Eco-
nomic Class” appear top-to-down. When trying to determine the table orientation we
rely on the similarity of cells. The intuition here is that, if rows are similar to each other,
then orientation is vertical and on the contrary, if columns are similar, then interpreta-
tion is horizontal.
In order to calculate the differences among rows and columns of the table, we need first
to define how to calculate the difference between two cells. For this we represent a cell
as a vector � of token types of all the tokens in the cell. Henceforth, ��� will denote the
i-th component of the vector � , corresponding to the token type of the i-th token in the
cell. Furthermore,

�
�
�
will denote the size of the vector. The token types we consider are

given in Figure 2. They are ordered hierarchically thus allowing to measure the distance�
between two different types as the edges between them. This representation is flexible

and can be extended to include domain specific information. For example, the numeric



type is divided into categories that include range information about the number, i.e.
LARGE NUM ( ������� ����� ), MED NUM ( �����
	���
������ ����� ), SMALL NUM ( 
������ ), and
CURRENCY, which can be treated as a domain specific information.
Now when comparing the vectors of two cells, we compare the token types with same
indices in case the vectors have equal length; otherwise, we calculate the distance for
the left-side tokens (tokens are aligned at the head) and for the right-side tokens (tokens
are aligned at the tail). The distance is in the latter case also averaged.
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��� � � � ��� � ! , D ��@FEHG � � � � � � � � � � ! and I �+DKJL?M0N� . Now given a table
with O rows and P columns, the total distance ( Q ��RS���

) between columns is calculated by
summing up the distance between the last column and each of the preceding @TJ��
columns, where @ �+@CB�� � O��UPV! , i.e.
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where ��c � d is the cell in row G and column e .
The total distance ( Qgf R 3 � ) between rows is by analogy calculated by summing up the
distance between the last row and each of the @hJi� preceding rows:

Qjf R 3 � � WYX
�Z

�=, �
� f R 3 ��� O�[VIkf X �U�lOV[VI�fV! (4)

� f R 3 �V� OV[VI"_��lOV[VIm`]! �

fZ
�=, W

�������������
�n_ � �l� ��` � ��! (5)

Here we only compare equal number of rows and columns thus optimizing the compar-
ison. Finally, to determine the orientation of the table, we compare both results. If the
distance between columns is greater than among rows ( Q ��RS��� � Qjf R 3 � ), orientation
is set to vertical (top-to-down). On the other hand, if the distance between columns is
lower than among rows ( Q ��RS��� 
oQjf R 3 � ), then orientation is set to horizontal (left-
to-right). In the last case, where the two results are equal, orientation is assigned the
default, i.e. vertical.

Discovery of regions.

Definition 1 (Logical unit). A logical unit is a part of a table produced by a horizontal
split in case of vertical orientation or by a vertical split in case of horizontal orientation.



Fig. 2. Hierarchy of token types

Definition 2 (Region). A region is a rectangular area of a table consisting of cells with
the same functional type. Regions cannot extend over multiple logical units and can
therefore only appear within one logical unit.

1. Initialize logical units and regions
2. Learn string patterns of regions
for all logical units

do while (logical unit is not uniform)
3. Choose the best coherent region
4. Normalize logical unit

Table 3. Algorithm for discovery of regions

Here we will present a step-by-step algorithm for discovery of regions in tables.
Pseudocode of the algorithm is given in Table 3.

1. Initialize logical units and regions. First, the system splits a table into logical units.
In particular, when table orientation is column-wise (vertical), the horizontal split
is done at every row containing cells spanning multiple columns, or when dealing
with row-wise (horizontal) orientation, vertical split is done at every column con-
taining cells spanning multiple rows. Consecutive logical units may then be merged
if their layout structure is equal. Over-spanning cells of type I-cell also represent a
sign for a split. Note that a table itself is by definition one logical unit.
For example, Table 1 has three logical units. The first logical unit is extending over
the first two rows, the second one over the third row, and the third one over the
rest of the table. The first two rows have an over-spanning cell with functional type
I-cell and are grouped into one logical unit because their layout structure is equal.
A third row has a cell spanning multiple columns, and the rest is grouped into one
logical unit.
Once splitting is over, the region initialization step begins. The system starts at a
lower-right corner and moves according to its orientation towards upper-left corner
over all logical units, thus generating all distinct initial regions. The cell ��� is added
to a region O if the following conditions apply (otherwise a new region is created):
(a) it is within the same logical unit as other cells
(b) its size is equal to the size of cells already in the region, and
(c) it keeps the distance among cells in O within a pre-defined value:

� �����b��� �
���
� � ��� f�� !$	�� (6)



2. Learn string patterns for regions. For each region O we learn a set � f of significant
patterns, which are sequences of token types and tokens, describing the content
of a significant number of cells. The patterns are of two types: the first represents
the content of cells from left-to-right (forward) and the second from right-to-left
(backward). The pattern ’FIRST UPPER Room’ for example covers the cells ’Sin-
gle Room’ and ’Double Room’. For the purpose of pattern construction we have
implemented the DATAPROG algorithm, which is described in [13] together with
a detailed pattern learning process.

Before entering the loop (compare table 3), the system checks the uniformity of
every logical unit. In our case, a logical unit is uniform when it consists of logical
sub-units and each sub-unit includes only regions of the same size and orientation.
Only the units that are not uniform are further processed within the following steps
of the loop.

3. Choose the best coherent region. If a logical unit is not uniform, the system chooses
its best region, which is used to normalize neighboring regions and consequently
the logical unit itself. The best region O W � c is chosen according to the formula� f������ ��@FE�G9f in

�
	 f � � , which is calculated by the following equation:

	 f � � # �

%( : f :: � : 0 �: f :
) �

in f � �
��!/0 ���� : f : � : ��
 :

) _���� 
 � [VD���O P ��� �SO ! 57 (7)

where l denotes a logical unit, r denotes a region in the unit, c denotes cells in the
region, and �6f is the set of significant string (forward and backward) patterns for
the region as described above. The function � [VD���O P ��� �SO ! returns a number of cells
covered by pattern

�
in region O . According to the above formula, the selected re-

gion maximizes the sum of averaged region size (1st operand of the sum), averaged
cell probabilities (2nd operand) and averaged pattern coverage over a particular
region (3rd operand).

4. Normalize neighboring regions of the best region. The intuition here is to use
the best region as a propagator for other regions in their normalization process.
First, the system selects (based on the orientation) all neighboring regions, i.e.
those that appear in the same rows (left/right) for column-wise orientation, or in
same columns (up/down) for row-wise orientation. Now, two possibilities exist: (a)
neighboring regions within a common column/row (orientation dependent) do not
extend over the boundaries of the best region. In this case, the solution is straight-
forward, because the ’new’ region is extended in a way to cover all common col-
umn/row regions. (b) neighboring regions within a common column/row do extend
over the boundaries of the best region. In this case, the best region is extended
accordingly, and this step repeated.

The logical unit is being processed within the loop as long as the system is not
able to divide it into logical sub-units, where each sub-unit includes only regions
of the same size and orientation (uniformity condition). Note that string patterns,
probabilities and functional types of normalized regions are also updated in every
iteration. Finally, in this way all logical units are being normalized and prepared
for further processing.



2.3 Building of a Functional Table Model

The key step of translating a table into a frame is building a model of the functional
dimension of the table. This model is called Functional Table Model (FTM) and essen-
tially arranges regions of the table in a tree, whereby the leaves of the tree are all the
regions consisting exclusively of I-cells. Most importantly, in the FTM these leaves are
assigned their functional role, i.e. access or data, and semantic labels as described in
Section 2.4.
The construction of the FTM proceeds bottom up: we start with the lowest logical unit
in the table and proceed with further logical units towards the top. For each logical unit
in question we first determine its type. There are three possibilities: (a) the logical unit
consists only of A-cells, in which case all its regions will be turned into inner nodes
of the tree and thus connected to some other nodes in the tree, (b) it consists only of
I-cells, in which case they will constitute leaves and will be connected to appropriate
inner nodes, and (c) it consists of I-cells and A-cells, in which case we determine the
logical separation between them by taking the uniformity condition into account.
In some cases a special connection node (see Figure 3) needs to be inserted into the
tree. This occurs when we encounter a logical unit that reflects a split in the table, in
particular when a previous logical unit contained only A-cells, but the present logical
unit again contains I-cells. In such cases, we check (described later in this paragraph)
if reading orientation of the present logical unit is different from the previous one and
needs to be changed. If this is true, the logical unit needs to be recalculated, as described
in Section 2.2. For example, the first logical unit (first two rows) in Table 1 has four re-
gions (each ’logical’ cell) and there is no logical unit on top of it. So, if the orientation
was vertical (i.e. like in lower logical unit), there would be no inner node (consisting
of A-cells) to connect the I-cells to. Thus orientation has to be changed from vertical to
horizontal for this logical unit.
As already mentioned above, each region in a leaf position is assigned its correspond-
ing functional role. The role access is assigned to all consecutive regions (starting at the
left subnodes of a subtree) together forming a unique identifier or key in the database
terminology. The rest of the leaf nodes in the subtree get assigned the role data.
When all logical units have been processed, we connect the remaining unconnected
nodes to a root node. For example, the FTM constructed out of our running example
is depicted in Figure 3. After the FTM is constructed, we examine if there are any
multi-level (at least two levels of inner A-cell nodes) subtrees that might be merged.
The candidate subtrees for merging must have the same tree structure (same number of
levels and nodes on each level) and at least one level of matching A-cells. If there are
any candidates that fulfill the requirements, we perform a process called recapitulation,
where we merge the nodes at same positions in both subtrees. An example of recapitu-
lation is depicted in Figure 4. As we only require one level of matching A-cells, there
might be some A-cells that do not match. For every such case, the following steps are
taken: (a) find a semantic label of a ’merged’ A-cell node (described in Section 2.4),
(b) connect the ’merged’ A-cell to a new leaf node, which is populated by the A-cell
contents of merged nodes, and (c) assign the functional role of the new leaf node to
access. In this way we check and merge all possible multi-level subtrees of a FTM and
finalize the construction process.



Fig. 3. A functional table model (FTM) of the running example (Table 1) with square components
representing I-cells and rounded components representing A-cells.

Fig. 4. An example of recapitulation process.

2.4 Semantic Enriching of the Functional Table Model

Discovery of semantic labels. In order to find semantic labels for each table region
(node), we resort to the WordNet lexical ontology [8] to find an appropriate hypernym
covering all tokens in the cells contained in the region. Furthermore, we also make use
of the GoogleSets2 service to find synonyms for certain tokens. For example, the first
region in Table 2 consists of the tokens adult and child, for which WordNet suggests the
hypernym person. However, the tokens are not always so ’pure’, therefore we stepwise
remove words in the cells by the following transformations and consult WordNet after
each step to yield a suitable hypernym:

1. punctuation removal
2. stopword removal
3. compute the TFIDF measure (where the documents are cells in our case) for each

word and filter those for which the value is lower than 1/3
4. select words that appear at the end of the cells as they are more significant3

5. query GoogleSets with the remaining words in order to filter words which are not
mutually similar

Map Functional Table Models into Frames. In order to define how to transform a
FTM into a frame, we first give a formal definition of a method and a frame:

2 http://labs.google.com/sets
3 The intuition here is that for nominal compounds the nominal head is at the end.



Definition 3 (Method). A method is a tuple � # �
� �4EH@ ��� �SO�EH������� �����F! , where (i)�4E�@ ��� is the name of the method, (ii) O�EH��� ��� is a string describing the range of the

method and (iii) ��� is a set of strings describing the parameters of the method.

The method � OVB � � � � �]O P][V���me � �H�
	 [�[V@��me � ��!
������������	 would for example be
formally represented as the tuple (Price,NUMBER, � PersonType,RoomType � ). Further,
a frame is defined as follows:

Definition 4 (Frame). A Frame F is a pair F:=( �4EH@ ���$����� ) where �4EH@ ��� is the
name of the frame and ��� is a set of methods as described above.

Now when generating a frame, we create one method @ for every region with func-
tional role data with all the regions of type access as parameters of this method. This
parameters must either be located on the same level within the same subtree or on a
parent path to the root node. Here it is crucial to find appropriate names for the method
( �4EH@ ��� ) and parameter identifiers

��� ��� � The semantic label for each identifier is
a combination of a region label (described in procedure above) and parent A-cell node
labels. For better understanding, compare the FTM tree depicted in Figure 3 and the
example of the generated frame given below. Further, we also set the range O�E���� � �
of the method @ to the syntactic token type of the region with functional role data for
which the method was generated. Finally, the frame for the running example, generated
by the system, looks as follows:

Tour [Code �
� ALPHANUMERIC

DateValid �
� DATE

EconomicExtension (PersonClass, RoomClass) �
� LARGE NUMBER

ExtendedExtension (PersonClass, RoomClass) �
� LARGE NUMBER]

3 Evaluation

In order to evaluate our approach, we compare the automatically generated frames
with frames manually created by two different subjects in terms of Precision, Recall
and F-Measure. In particular, we considered 21 different tables in our experiment and
asked 14 subjects to manually create a frame for three different tables such that each
table in our dataset was annotated by two different subjects with the appropriate frame
( �! #"%$ � �-�&" � �' � ). In what follows we first describe the dataset used in the ex-
periments. Then we describe the evaluation methodology and present the actual results
of the experiment. The definition of the task as well as the instructions for the an-
notators can be found at http://www.aifb.uni-karlsruhe.de/WBS/pci/
FromTables2Frames.ps

Table Classes. We have identified three major table classes according to their layout
that appear frequently on the web: 1-Dimensional (1D), 2-Dimensional (2D), and Com-
plex tables. The first two classes are more simple and also appear more often compared
to the last class. A similar classification into classes has also been introduced in [15].



1-Dimensional tables: this class of tables has at least one row of A-cells above the
rows of I-cells. If there are more than one row of A-cells then we assume that they are
hierarchically connected. The content of the I-cells in different columns represent in-
stances of the A-cells above. An example of this type is given in Figure 5 (a).

Fig. 5. Examples of Tables

2-Dimensional tables: this class has a rectangular area of I-cells appearing within
columns. This class has at least one row of A-cells above the rectangular area, and
at least one column of A-cells on the left side of the rectangular area. Discovering and
handling of this class is hard as it is difficult for a system (without any other knowl-
edge) to decide if the first column consists of A-cells or I-cells. Our solution here is to
interpret the leading column as A-cells only if its first row cell is a non-spanning cell
with an empty label or a label containing a character ’/’. An example for this type of
table is given in Figure 5 (b).

Complex tables: this class of tables shows a great variety in layout structure. Therefore
a table might have the following features:

– Partition data labels: Special over-spanning data labels between the data and/or
attribute labels can make several partitions of the table. Each partition shares the
same attributes, such as in Figure 5 (c). In this case the relation among attribute and
data value cannot be obtained directly.

– Over-expanded labels: some entries might expand over multiple cells. There are
two options: (a) data values span over multiple rows in the same column or (b) an
attribute label spans over multiple columns. An example of this class is the part of
Table 1 consisting in the lower seven rows.

– Combination: large tables might consist of several smaller, simpler ones. For ex-
ample, Table 1 consists of two structurally ’independent’ tables.

In our experiment, we have gathered 21 tables, each belonging to at least one class.
Since the first two classes are a bit less interesting, we used only three different tables
for each class, but for each complex subclass we used five different tables. All tables
were gathered from two distinctive sources: one from tourist domain and another from
a source dealing with food research. Domains were quite different, and also tables were
selected from different sources in a way that their distribution over classes is uniform.



Evaluation Methodology. We evaluated our approach by considering the well-known
information retrieval measures Precision, Recall and F-Measure. In particular, for each
table we evaluated the frame automatically generated for it by the system with respect
to the two frames manually created by two different subjects along the following lines:
Syntactic Correctness, Strict Comparison, Soft Comparison, Conceptual Comparison.
In order to assess how similar two strings are, we will introduce a string comparison
operator � # ��� OVB ��� " ��� OVB�������� ���=�=�	� .
In particular, in our evaluation we use a string comparison operator based on a combina-
tion of a TFIDF weighting scheme with the Jaro-Winkler string-distance scheme ([6]).
The Syntactic Correctness measures how well the frame captures the syntactic structure
of the table, i.e. to what extent the number of arguments matches the number of param-
eters as specified by the human annotator for a given method. In what follows we define
three functions Syntactic giving the syntactic correctness between two methods as well
as a method and a frame, respectively.
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%&' &(
: � �
� :: � ��� : if

� � W �
� � �� if

� � W �
�

�
� � W �

�
�+�� [ ��� �]OVImB^P �

� e � � E � � B � ��
 � � @ ��� ! �
� e � � E � � B � ��
 � � @ �S@��=! �

where @ � is that method in � � which maximizes � � � @ �S@ � !�� � e � � E � � B � ��
 � � @ �S@ � ! .
Note that the above measures are directed; they will be used in one direction to obtain
the Precision and in the other direction to obtain the recall of the system.
Strict Evaluation then checks if the identifier for the method name, the range and the
parameters are identical. We also define a corresponding functions Strict again defined
on two methods and a method and a frame, respectively:

��� OVB � � ��
 � � @ � �l@ � !$# �

� � if �4EH@ � W � ���4EH@ � W �� otherwise

��� OVB � � ��
 � � @ ��� ! �A@NEHG W�� � ���
��� OVB � � ��
 � � @ �S@ � !

The Soft Evaluation also measures in how far the identifiers for the method name, the
range and the parameters match, but makes use of the string comparison operator de-
fined above: � [�� � ��
 � � @ � �S@ � ! ��� � �4EH@ � W � �l�4EH@ � W � !� [�� � ��
 � � @ ��� ! �A@NEHG W�� � ���

� [�� � ��
 � � @ �S@ � !
Further, we have a modified string comparison � which returns � if the string to compare
are equivalent from a conceptual point of view and � otherwise, i.e.

� � � P � �UP � !$# �

� � if P � a �� P � are conceptually equivalent� � P � �nP � ! otherwise

The Conceptual measure was introduced to check in how far the system was able to
learn the frame for a table from a conceptual point of view. In order to assess this,
two of the authors compared the frames produced by the system and the ones given by



the human subjects and determined which identifiers can be regarded as conceptually
equivalent. In this line RegionType, Region and Location can be regarded as conceptual
equivalent. Here are the formal definitions of the corresponding functions:

� [V� � � � � ? EH\ ��
 � � @ � �S@ � ! � � � � �4EH@ � W � �S�4EH@ � W � !� [V� � � � � ? E \ ��
 � � @ ��� ! �A@NEHG W � � � �
� [V� � � � � ? E \ ��
 � � @ �l@ � !

For all the above measures we compare two frames as follows:

� � 
 � � �9��� � ! �

)
W ����� � � 
 � � @ ��� � !

� ��� � �
where X stands either for Syntactic, Strict, Soft or Conceptual.
In our evaluation study, we give results for Precision, Recall and F-Measure between the
frame ��� produced by the system and the frames � � �����=� �
	 (in our case � � � ) produced
by the human annotators. In particular, we will consider the above evaluation functions
Syntactic, Strict, Soft and Conceptual in order to calculate the Precision, Recall and F-
Measure of the system. Thus, in the following formulas, X stands either for Syntactic,
Strict, Soft or Conceptual:

� O�� ��� 1�
 � � � � � � ��� � ���=��� � 	 �V! �

)
��� � � 	 � � � � ��� � !�

And Recall is defined inversely, i.e.

	 � � � 1�
 � � � ���>� ��� � ���=��� �
	��V! �

)
��� � � 	 � � � � ��� � !�

Obviously, according to the definitions of the measures, the following equations hold:

� O�� �����af � � �M	 � O������ R ���$	 � O������ R 	 ��� _�� * � � � 	 �������af � � �M	 	 ����� R ��� 	 	 � ��� R 	 ��� _�� * � �
Furthermore, we also give the value of the precision and recall for the frame which
maximizes these measures, i.e.

� O���� W � c � � � � � � ��� � ���=��� � 	 �V! �+@NEHG � � � � � ��� � !
And Recall is defined inversely, i.e.

	 ��� W � c � � � ���>� ��� � ���=��� �
	��V! ��@FEHG � � � � �S�����9!
Obviously, here the following equations hold: � O���� � 	 � O���� W � c � � �
	 ��� � 	 W � c � � .
The reason for calculating precision and recall against the frame given by both annota-
tors which maximizes the measures is that some frames given by the annotators were
not modelled correctly according to the intuitions of the authors. Thus, by this we avoid
to penalize the system for an answer which is actually correct. As a byproduct of calcu-
lating 	 ��� E \ \ � and 	 � ��EH\ \ W � c � � we can also indirectly judge how good the agreement
between human subjects is.
Finally, as is usual we balance Recall and Precision against each other by the F-Measure
given by the formula: � � � � � �
	 � ! �

� �������� ��� � �
The system is now evaluated by calculating the above measures for each automatically
generated frames and the corresponding frames given by the human annotator.



Discussion of Results. Table 4 gives the results for the Precision, Recall and F-Measure
as described above. The first interesting observation is that the values for the maximum
evaluation are quite higher than the ones of the average evaluation, which clearly shows
that there was a considerable disagreement between annotators and thus that the task
we are considering is far from being trivial.
The results of the Syntactic comparison are an F-Measure of � � 1�
 � � d 	 � � � � � � �  � � �����
for the average evaluation and � W � c � � d 	 � � � � � � ������������� . The values show that the
system is interpreting the table to a satisfactory extent from a syntactic point of view,
i.e. it is determining the number of parameters correctly in most of the cases. Regarding
the naming of the methods, their range and their parameters the results vary consider-
able depending on the measure in question. For the average evaluation the results are:
� � 1�
 � ���af � � � � $
	 ��	�	�� , � � 1�
 � � R ��� �  ���� �
	�� and � � 1�
 � � R 	 ��� _�� * � � �
��	 � � �
� . These re-
sults show that the system has indeed problems to find the appropriate name for meth-
ods, their ranges and their parameters. However, as the conceptual evaluation shows,
most of the names given by the system are from a conceptual point of view equiva-
lent to the ones given by the human annotator. For the maximum evaluation we have:
� W � c � ���af � � � ������� � � � , � W � c � � R ��� ������� ���
� and � W � c � � R 	 ��� _�� * � � ��	� �����
� . Thus,
we can conclude that from a conceptual point of view the system is getting an appro-
priate name in almost 75% of the cases and it is getting the totally identical name in
more than 50% of the cases. Actually, our system only failed in processing two of the
21 tables, such that in general we conclude that our results are certainly very promising.

Average Maximum
Syntactic Strict Soft Conceptual Syntactic Strict Soft Conceptual

Precision 48.71% 36.78% 44.88% 56.01% 62.85% 48.84% 58.26% 71.02%
Recall 50.53% 38.81% 47.75% 58.50% 67.54% 51.83% 61.95% 77.65%
F-Measure 49.60% 37.77% 46.27% 57.22% 65.11% 50.29% 60.05% 74.18%

Table 4. Results of the different evaluation measures

4 Related Work

A very recent systematic overview of related work on table recognition can be found in
[17]. Several conclusions can be drawn from this survey. Firstly, only few table mod-
els have been described explicitly. Apart from the table model of Hurst which we have
used as a baseline [10, 11] the most prominent other model is from Wang [16]. How-
ever, the model of Hurst is better suited for our purpose since it is targeted towards
table recognition whereas Wang is targeted towards table generation. Secondly, it be-
comes clear that research so far in table recognition focused on recovering tables from
encoded documents. In contrast, we assume that tables are already harvested. Further-
more, we provide a methodology and implementation which completely instantiates a
table model and additionally closes the gap to formal semantics provided by ontologies.
Our approach allows subsequently for using the full potential ontologies offer e.g. for
query answering or knowledge retrieval over a set of tables.

5 Conclusion

We have shown how our methodology stepwise instantiates the underlying table model
which consists of Physical, Structural, Functional and Semantic components. The core



steps of the methodology are (i) Cleaning and Normalization, (ii) Structure Detection,
(iii) Building of the Functional Table Model (FTM) and (iv) Semantic Enriching of the
FTM. We demonstrated and evaluated the successful automatic generation of frames
from HTML tables. Additionally, our experimental results show that from a conceptual
point of view the system is getting appropriate names for frames in almost 75% of the
cases and it is getting the totally identical name in more than 50% of the cases. These
results are certainly very promising.
Future research is aiming into two main directions. Firstly, generating one frame per ta-
ble might not always be the preferred solution. E.g. tables might have different structural
components, but still represent the same data. Or, they might even represent different
data, but one most common frame covering all table data instead of a number of dif-
ferent frames seems desirable to reduce complexity. Thus, our aim is to generalize the
approach to be able to generate out of multiple tables one (most general) frame.
Secondly, after having generated frames an intuitive next step is to use these frames
to automatically populate ontologies with instances. The core idea is that the approach
allows for automatic population of ontologies from arbitrary table-like structures. We
expect that our approach potentially will be used to semantically enrich a variety of
legacy data and will support the conversion of the existing Web into a Semantic Web.
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