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Abstract
We present a novel approach to the automatic acquisition of taxonomies or concept hierarchies from a text

corpus. The approach is based on Formal Concept Analysis (FCA), a method mainly used for the analysis
of data, i.e. for investigating and processing explicitly given information. We follow Harris’ distributional
hypothesis and model the context of a certain term as a vector representing syntactic dependencies which are
automatically acquired from the text corpus with a linguistic parser. On the basis of this context information,
FCA produces a lattice that we convert into a special kind of partial order constituting a concept hierarchy.
The approach is evaluated by comparing the resulting concept hierarchies with hand-crafted taxonomies for
two domains: tourism and finance. We also directly compare our approach with hierarchical agglomerative
clustering as well as with Bi-Section-KMeans as an instance of a divisive clustering algorithm. Furthermore,
we investigate the impact of using different measures weighting the contribution of each attribute as well as of
applying a particular smoothing technique to cope with data sparseness.

1. Introduction

Taxonomies or concept hierarchies are crucial for any knowledge-based system, i.e. a system equipped with
declarative knowledge about the domain it deals with and capable of reasoning on the basis of this knowledge.
The reason why concept hierarchies are so important is that they allow to formulate rules in an abstract and
concise way and thus facilitate the development, refinement and reuse of a knowledge-base. However, it is
also well known that any knowledge-based system suffers from the so-called knowledge acquisition bottle-
neck, i.e. the difficulty to actually model the domain in question. In order to partially overcome this problem
we present a novel approach to automatically learning a concept hierarchy from a text corpus.
Making the knowledge implicitly contained in texts explicit is a great challenge. (Brewster et al., 2003) for
example have argued that text writing and reading is in fact a process of background knowledge maintenance
in the sense that basic domain knowledge is assumed, and only the relevant part of knowledge which is the is-
sue of the text or article is mentioned in a more or less explicit way. Actually, knowledge can be found in texts
at different levels of explicitness depending on the sort of text considered. Handbooks, textbooks or dictionar-
ies for example contain explicit knowledge in form of definitions such as “a tiger is a mammal” or “mammals
such as tigers, lions or elephants”. In fact, some researchers have exploited such regular patterns to dis-
cover taxonomic or part-of relations in texts (Hearst, 1992; Charniak & Berland, 1999; Iwanska et al., 2000;
Ahmad et al., 2003). However, it seems that the more technical and specialized the texts get, the less basic
knowledge we find in them stated in an explicit way. Thus, an interesting alternative is to derive knowledge
from texts by analyzing how certain terms are used rather than to look for their explicit definition. In these
lines the distributional hypothesis (Harris, 1968) assumes that terms are similar to the extent to which they
share similar linguistic contexts.
In fact, different methods have been proposed in the literature to address the problem of (semi-) automati-
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cally deriving a concept hierarchy from text based on the distributional hypothesis. Basically, these methods
can be grouped in two classes: the similarity-based methods on the one hand and the set-theoretical ap-
proaches on the other hand. Both methods adopt a vector-space model and represent a word or term as
a vector containing features or attributes derived from a certain corpus. There is certainly a great diver-
gence in which attributes are used for this purpose, but typically some sort of syntactic dependencies are
used such as conjunctions, appositions (Caraballo, 1999) or verb-argument dependencies (Hindle, 1990;
Pereira et al., 1993; Grefenstette, 1994; Faure & Nedellec, 1998). The first type of methods is charac-
terized by the use of a similarity/distance measure in order to compute the pairwise similarity/distance
between vectors corresponding to two words or terms in order to decide if they can be clustered or not.
Some prominent examples for this type of method can be found in (Hindle, 1990; Pereira et al., 1993;
Grefenstette, 1994; Faure & Nedellec, 1998; Caraballo, 1999; Bisson et al., 2000). Set-theoretical approaches
partially order the objects according to the inclusion relations between their attribute sets (Petersen, 2002;
Sporleder, 2002).
In this paper, we present a set-theoretical approach based on Formal Concept Analysis, a method mainly used
for the analysis of data (Ganter & Wille, 1999). In order to derive attributes from a certain corpus, we parse
it and extract verb/prepositional phrase (PP)-complement, verb/object and verb/subject dependencies. For
each noun appearing as head of these argument positions we then use the corresponding verbs as attributes
for building the formal context and then calculating the formal concept lattice on its basis.
Moreover, though different methods have been explored in the literature, there is actually a lack of com-
parative work concerning the task of automatically learning concept hierarchies with clustering techniques.
However, as argued in (Cimiano et al., 2004c) ontology engineers need guidelines about the effectiveness,
efficiency and trade-offs of different methods in order to decide which techniques to apply in which settings.
Thus, we present a comparison along these lines between our FCA-based approach, hierarchical bottom-up
(agglomerative) clustering and Bi-Section-KMeans as an instance of a divisive algorithm. In particular, we
compare the learned concept hierarchies in terms of similarity with handcrafted reference taxonomies for
two domains: tourism and finance. In addition, we examine the impact of using different information mea-
sures to weight the significance of a given object/attribute pair. Furthermore, we also investigate the use of a
smoothing technique to cope with data sparseness.

The remainder of this paper is organized as follows: Section 2 briefly introduces Formal Concept Analysis
and describes the nature of the concept hierarchies we automatically acquire. Section 3 describes the text
processing methods we apply to automatically derive context attributes. In Section 4 we discuss in detail our
evaluation methodology and present the actual results in Section 5. In particular, we present the comparison
of the different approaches as well as the evaluation of the impact of different information measures as well as
of our smoothing technique. Before concluding, we mention some open issues for further research in Section
6 and discuss some related work in Section 7.

2. Formal Concept Analysis

Formal Concept Analysis (FCA) is a method mainly used for the analysis of data, i.e. for investigating implicit
intensional information derived from explicit extensional data. The data are structured into units which are
formal abstractions of concepts of human thought allowing meaningful comprehensible interpretation (Ganter
& Wille, 1999). Thus, FCA can be seen as a conceptual clustering technique as it also provides intensional
descriptions for the abstract concepts or data units it produces. Central to FCA is the notion of a formal
context:

Definition 1 (Formal Context)
A triple (

�
, � , � ) is called a formal context if

�
and � are sets and ��� ��� � is a binary relation between�

and � . The elements of
�

are called objects, those of � attributes and I the incidence of the context.

For ��� �
, we define: �
	���
������������������������ �!��"#�$�&%

and dually for '(�)� : '*	���
������ � �+�,�-�.'(����� �!��"#�$�&%
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Intuitively speaking, �
	 is the set of all attributes common to the objects of � , while ' 	 is respectively
the set of all objects that have all attributes in ' . Furthermore, we define what a formal concept is:

Definition 2 (Formal Concept)
A pair ( � , ' ) is a formal concept of (

�
, � , � ) if and only if ��� � � '(� � � � 	 
�' and � 
 '*	

In other words, ( � , ' ) is a formal concept if the set of all attributes shared by the objects of A is identical
with B and on the other hand A is also the set of all objects that have all attributes in B. � is then called the
extent and ' the intent of the formal concept ( � , ' ). The formal concepts of a given context are naturally
ordered by the subconcept-superconcept relation as defined by:

� � � � ' � " � � ��� � '���"�� � � � ��� ��� '�� � ' � "
Thus, formal concepts are partially ordered with regard to inclusion of their extents or (which is equivalent)
to inverse inclusion of their intent.
We now give some examples to illustrate our definitions. In the context of the tourism domain we all have
for example the knowledge that things like a hotel, an apartment, a car, a bike, a trip or an excursion can
be booked. Furthermore, we know that we can rent a car, a bike or an apartment. Moreover, we can drive
a car or a bike, but only ride a bike1. In addition, we know that we can join an excursion or a trip. We
can now represent the formal context corresponding to this knowledge as a matrix (see Table 1). The lattice
produced by FCA is depicted in Figure 1 (left)2. It can be transformed into a special type of concept hierarchy
as shown in Figure 1 (right) by removing the bottom element, introducing an ontological concept for each
formal concept (named with the intent) and introducing a subconcept for each element in the extent of the
formal concept in question. Finally, as FCA typically produces a high number of concepts, we compress the
resulting hierarchy of ontological concepts by removing any inner node whose extension in terms of leave
nodes subsumed is the same as the one of its child. In particular for the hierarchy in figure 1 (right) we would
remove the rideable concept.

bookable rentable driveable rideable joinable
hotel x
apartment x x
car x x x
bike x x x x
excursion x x
trip x x

Table 1: Tourism domain knowledge as formal context

At a first glance, it could be thought that the hierarchy depicted in Figure 1 (right) is not a concept hierar-
chy in the traditional sense as it also contains concepts with identifiers derived from verbs. However, from a
formal point of view, concept identifiers have no meaning at all so that we could have just named the concepts
with some other arbitrary symbols. The reason why it is handy to introduce ’meaningful’ concept identifiers is
for the purpose of easier human readability. In fact, if we adopt an extensional interpretation of our hierarchy,
we have no problems asserting that the extension of the concept denoted by bike is a subset of the extension of
the concept of the rideable objects in our world. This view is totally compatible with interpreting the concept
hierarchy in terms of formal subsumption as given by the logical formula: �
	 ����
����+��	 "�����
������������+��	 "!" . We
thus conclude that from an extensional point of view the ’verb-like’ concept identifiers have the same status

1. According to the Longman Dictionary, in American English it is also possible to ride vehicles in general. However, for the purposes
of our example we gloss over this fact.

2. The Concept Explorer software was used to produce this lattice (see http://sourceforge.net/projects/conexp).
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Figure 1: The lattice of formal concepts (left) and the corresponding hierarchy of ontological concepts (right)
for the tourism example

     
Trees
Parse Syntactic

Dependencies
Object/Feature

Pairs
Parser tgrep Lemmatizer   Text

Collection
FCA

Concept Hierarchy
Lattice/

Figure 2: System Architecture

as any concept identifier in the standard sense. From an intensional point of view, there may even not exist a
hypernym with the adequate intension to label a certain abstract concept, such that using a verb-like identifier
may even be the most appropriate choice. For example, we could easily replace the identifiers joinable, ride-
able and driveable by activity, two-wheeled vehicle and vehicle, respectively. However, it is certainly difficult
to substitute rentable by some ’meaningful’ term denoting the same extension, i.e. all the things that can be
rented.
It is also important to mention that we will only yield a valid concept hierarchy if our knowledge is sound
and complete in the sense that every object-attribute pair is correct and we know all the attributes for a given
object. In practice this assumption will certainly never be fulfilled such that all the learned concept hierar-
chies have to be merely regarded as approximations of concept hierarchies learned from sound and complete
knowledge.
The task we are now focusing on is: given a certain number of terms referring to concepts relevant for the
domain in question, can we derive a concept hierarchy between them? In terms of FCA, the objects are thus
given and we need to find the corresponding attributes in order to build an incidence matrix, a lattice and then
transform it into a corresponding concept hierarchy. In the following section, we describe how we acquire
these attributes automatically from the underlying text collection.

3. Text Processing

As already mentioned in the introduction, in order to derive context attributes describing the terms we are
interested in, we make use of syntactic dependencies between the verbs appearing in the text collection and
the heads of the subject, object and PP (prepositional phrase)-complements they subcategorize. In fact, in
previous experiments (Cimiano et al., 2004b) we found that using all these dependencies in general leads to
better results than any subsets of them. In order to extract these dependencies automatically, we parse the text
with LoPar, a trainable, statistical left-corner parser (Schmid, 2000). From the parse trees we then extract the
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syntactic dependencies between a verb and its subject, object and PP-complement by using tgrep3. Finally,
we also lemmatize the verbs as well as the head of the subject, object and PP-complement by looking up
the lemma in the lexicon provided with LoPar. Lemmatization maps a word to its base form and is in this
context used as a sort of normalization of the text. Figure 2 illustrates this process. Let’s take for instance the
following two sentences:

The museum houses an impressive collection of medieval and modern art. The building combines geometric
abstraction with classical references that allude to the Roman influence on the region.

After parsing these sentences, we would extract the following syntactic dependencies:

houses subj(museum)
houses obj(collection)
combines subj(building)
combines obj(abstraction)
combine with(references)
allude to(influence)

By the lemmatization step, references is mapped to its base form reference and combines and houses to
combine and house, respectively, such that we yield as a result:

house subj(museum)
house obj(collection)
combine subj(building)
combine obj(abstraction)
combine with(reference)
allude to(influence)

In addition, there are three further important issues to consider:

1. the output of the parser can be erroneous, i.e. not all derived verb/object dependencies are correct,

2. not all the derived dependencies are ’interesting’ in the sense that they will help to discriminate between
the different objects,

3. the assumption of completeness of information will never be fulfilled, i.e. the text collection will never
be big enough to find all the possible occurrences (compare (Zipf, 1932)).

To deal with the first two problems, we weight the object/attribute pairs with regard to a certain information
measure and consider only those verb/argument relations for which this measure is above some threshold�
. In particular, we explore the following three information measures (compare (Cimiano et al., 2003a) and

(Cimiano et al., 2004b)):

�����
� 
 � 
 ��� � �!� � ��� " 
	��� � � ��

��� " 
 ������� �������������� ����� �

 

�
�����+� � ����

��� " 
!��� � � ��
"��� "�� � � # ���%$ ���������# ���&�

' �)( � 
���� � ��� 

��� " 
+*-, �.� 
"��� "  

�
�����+� � ��� 

��� "

where */, �.� 

��� " 
+0 �&1 ��� � 	 � � 

��� " � � � # ���
1 $ � ����� �# �2�&1�� .

3. see http://mccawley.cogsci.uiuc.edu/corpora/treebank3.html
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Furthermore, � � � ��� 

��� " is the number of occurrences of a term
�

as argument arg of a verb � , � � � 

��� "
is the number of occurrences of verb � with such an argument and ��� � " is the relative frequency of a term

�
compared to all other terms. The first information measure is simply the conditional probability of the term�

given the argument ��� � of a verb � . The second measure
 
 � � � � � � ��� " is based on the mutual informa-

tion measure and was used by (Hindle, 1990) for discovering groups of similar terms. The third measure
is inspired by the work of (Resnik, 1997) and introduces an additional factor * , � � ��� 
"��� " which takes into
account all the terms appearing in the argument position � � � of the verb � in question. In particular, the factor
measures the relative entropy of the prior and posterior (considering the verb it appears with) distributions of�

and thus the ’selectional strength’ of the verb at a given argument position. It is important to mention that
in our approach the values of all the above measures are normalized into the interval [0,1].
The third problem requires smoothing of input data. In fact, when working with text corpora, data sparse-
ness is always an issue (Zipf, 1932). A typical method to overcome data sparseness is smoothing (Manning
& Schuetze, 1999) which in essence consists in assigning non-zero probabilities to unseen events. For this
purpose we apply the technique in (Cimiano et al., 2003b) in which mutually similar terms are clustered with
the result that an occurrence of an attribute with the one term is also counted as an occurrence of that attribute
with the other term. As similarity measures we examine the Jaccard, Cosine, L1 norm, Jensen-Shannon
divergence and Skew Divergence measures analyzed and described in (Lee, 1999). We cluster all the terms
which are mutually similar with regard to the similarity measure in question, thus artificially creating more
attribute/object pairs and obtaining non-zero frequencies for events not found in the corpus, the overall result
being a ’smoothing’ of the relative frequency landscape by assigning some non-zero relative frequencies to
combinations of verbs and objects which were actually not found in the corpus. Here follows the formal
definition of mutual similarity:

Definition 3 (Mutual Similarity)
Two terms

� � and
� � are mutually similar iff

� � 
 ��� �+� ��	 � 1 ( 
 � � � � � � 	 " and
� � 
 �����+� � 	 � 1 ( 
 � � � � � � 	 " .

According to this definition, two terms
� � and

�
� are mutually similar if

� � is the most similar term to
�
� with

regard to the similarity measure in question and the other way round. Figure 3 (left) shows an example of a
lattice which was automatically derived from a set of texts acquired from http://www.lonelyplanet.com as well
as http://www.all-in-all.de, a web page containing information about the history, accommodation facilities as
well as activities of Mecklenburg Vorpommern, a region in northeast Germany. We only extracted verb/object
pairs for the terms in Table 1 and used the conditional probability to weight the significance of the pairs. For
excursion, no dependencies were extracted and therefore it was not considered when computing the lattice.
The corpus size was about a million words and the threshold used was

� 
���� ����� . Assuming that car and bike
are mutually similar, they would be clustered, i.e. car would get the attribute startable and bike the attribute
needable. The result here is thus the lattice in Figure 3 (right), where car and bike are in the extension of one
and the same concept.

4. Evaluation

In order to evaluate our approach we need to assess how good the automatically learned ontologies reflect
a given domain. One possibility would be to compute how many of the sub-/superconcept relations in the
automatically learned ontology are correct. This is for example done in (Hearst, 1992) or (Caraballo, 1999).
However, as our as well as many other approaches (compare (Hindle, 1990; Pereira et al., 1993; Grefenstette,
1994)) do not produce appropriate names for the abstract concepts produced by FCA and the other clustering
algorithms, it seems difficult to assess the validity of a given sub-/superconcept relation. Another possibility
is to compute how ’similar’ the automatically learned concept hierarchy is with respect to a given hierarchy
for the domain in question. Here the crucial question is how to define similarity between concept hierarchies.
Though there is a great amount of work in the AI community on how to compute the similarity between trees
(Zhang et al., 1992; Goddard & Swart, 1996), concept lattices (Belohlavek, 2000), conceptual graphs (Maher,
1993; Myaeng & Lopez-Lopez, 1992) and (plain) graphs (Chartrand et al., 1998; Zhang et al., 1996), it is
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Figure 3: Examples of lattices automatically derived from tourism-related texts without smoothing (left) and
with smoothing (right)

not clear how these similarity measures also translate to concept hierarchies. An interesting work in these
lines is the one presented in (Maedche & Staab, 2002) in which ontologies are compared along different
levels: semiotic, syntactic and pragmatic. In particular, the authors present measures to compare the lexical
and taxonomic overlap between two ontologies. Furthermore, they also present an interesting study in which
different subjects were asked to model a tourism ontology. The resulting ontologies are compared in terms of
the defined similarity measures thus yielding the agreement of different subjects on the task of modeling an
ontology.
In order to formally define our evaluation measures, we introduce a core ontology model in line with the
ontological model presented in (Stumme et al., 2003):

Definition 4 (Core Ontology)
A core ontology is a structure � ��
 � � � � �)� � � ��� " consisting of (i) a set

�
of concept identifiers,(ii) a

designated root element representing the top element of the (iii) partial order
���

on
��� � � �)� � % called

concept hierarchy or taxonomy.

For the sake of notational simplicity we adopt the following convention: given an ontology ��� , the corre-
sponding set of concepts will be denoted by

� � and the partial order representing the concept hierarchy by���
	
.

It is important to mention that in the approach presented here, terms are directly identified with concepts, i.e.
we neglect the fact that terms can be polysemous.4 Now, the Lexical Recall (LR) of two ontologies � � and
� � is measured as follows:5

� ' ��� � �
� � " 
 � � ��� �
� �

� � �+�
Take for example the concept hierarchies ��
������ and � �
� � depicted in Figure 4. In this example,� ' ��� 
������ �
� �
� � " 
��� � 
������ � ��� .

In order to compare the taxonomy of two ontologies, we use the semantic cotopy (SC) presented in
(Maedche & Staab, 2002). The semantic cotopy of a concept is defined as the set of all its super- and
subconcepts:

* � � � � �!� � " ��
 ���!" �#�
" � � �%$ � � ��� �
" or �
" ��� � � % �
In what follows we illustrate these and other definitions on the basis of several example concept hierar-

chies. Take for instance the concept hierarchies in Figure 5. We assume that the left concept hierarchy has

4. In principle, FCA is able to account for polysemy of terms; see the discussion of open issues in Section 6.
5. As the terms to be ordered hierarchically are given there is no need to measure the lexical precision.
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runable

offerable

root

apartment bike car trip

hotel

needablestartable ...

activity

car

trip apartment

hotel

bike

excursion

root

two−wheeled
vehicle

vehicle

object_to_rent

Figure 4: Example for an automatically acquired concept hierarchy � 
������ (left) compared to the reference
concept hierarchy � �
� � (right)

joinable

car

trip apartment

hotel

bike

excursion

rentable

driveable

rideable

bookable

activity

car

trip apartment

hotel

bike

excursion

root

two−wheeled
vehicle

vehicle

object_to_rent

Figure 5: Example for a perfectly learned concept hierarchy ��� ��� � ����� (left) compared to the reference con-
cept hierarchy � �!� � (right)
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hoteltripexcursion apartment car bike

root

activity

car

trip apartment

hotel

bike

excursion

root

two−wheeled
vehicle

vehicle

object_to_rent

Figure 6: Example for a trivial concept hierarchy � �.�
� � � 
�� (left) compared to the reference concept hierarchy
� �!� � (right)

been automatically learned with our FCA approach and that the concept hierarchy on the right is a handcrafted
one. Further, it is important to point out that the left ontology is, in terms of the arrangement of the leave
nodes and abstracting from the labels of the inner nodes, a perfectly learned concept hierarchy. This should
thus be reflected by a maximum similarity between both ontologies. The semantic cotopy of the concept
vehicle in the right ontology in Figure 5 is for example � car,bike,two-wheeled vehicle,vehicle,object to rent %
and the semantic cotopy of driveable in the left ontology is � bike,car,rideable,driveable,rentable,bookable % .
It becomes thus already clear that comparing the common cotopies of both concepts will not yield the de-
sired results, i.e. a maximum similarity between both concepts. Thus we use a modified version SC’ of the
semantic cotopy in which we only consider the concepts common to both concept hierarchies in the semantic
cotopy * � 	 (compare (Cimiano et al., 2004b; 2004c)), i.e.

* � 	 ��� � �!� � �
� ��" ��
 � �
" � �
" � � ��� � � $ ���
" ����� � ��� � � ����� �
" " %
By using the common semantic cotopy we thus exclude from the comparison concepts such as runable,
offerable, needable, activity, vehicle etc. which are only in one ontology. So, the common cotopy * � 	 of the
concepts vehicle and driveable is identical in both ontologies in Figure 5, i.e. � bike,car % thus representing
a perfect overlap between both concepts, which certainly corresponds to our intuitions about the similarity
of both concepts. However, let’s now consider the concept hierarchy in Figure 6. The common cotopy
of the concept bike is � bike % in both concept hierarchies. In fact, every leave concept in the left concept
hierarchy has a maximum overlap with the corresponding concept in the right ontology. This is certainly
undesirable and in fact leads to very high baselines when comparing such trivial concept hierarchies with a
reference standard (compare our earlier results in (Cimiano et al., 2004b) and (Cimiano et al., 2004c)). Thus,
we introduce a further modification of the semantic cotopy by excluding the concept itself from its common
semantic cotopy, i.e:

* � 	 	 ��� � �!� � �
� � "#��
�� �
" � �!" � � ��� � � $ � �
"	� ��� � �
� � � � ��� �
" " %
This maintains the perfect overlap between vehicle and driveable in the concept hierarchies in Figure 5, while
yielding empty common cotopies for all the leave concepts in the left ontology of Figure 6. Now, according
to Maedche et al. the taxonomic overlap ( ��� ) of two ontologies � � and � � is computed as follows:

��� ��� � �
� � " 

�
� � � �



��� ��� ��� ��� �
� � �!��� "
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where

��� ��� �!� � �
� � "#��
�� ��� 	 ��� �
� � �
� � " if �
� �
�

��� 	 	 ��� �!� � �
� ��" if ���� � �
and TO’ and TO” are defined as follows:

��� 	 � � �
� � �
� � "#��
 � * � � � �
� � �!��� " � * � ��� �!��� �
� � "��
� * � � � �
� � �!� � " � * � ��� �!� � �
� � "��

��� 	 	 � � �
� � �!��� "#��
 � ��	 � 1 � ��� ��� 	 ��� 	 �
� � �!��� "
So, ��� 	 gives the similarity between concepts which are in both ontologies by comparing their respective
semantic cotopies. In contrast, ��� 	 	 gives the similarity between a concept �.� � � and that concept � 	 in� � which maximizes the overlap of the respective semantic cotopies, i.e. it makes an optimistic estimation
assuming an overlap that just does not happen to show up at the immediate lexical surface (compare (Maedche
& Staab, 2002)). The taxonomic overlap ��� � � � �!� � " between the two ontologies is then calculated by
averaging over all the taxonomic overlaps of the concepts in

� � . In our case it doesn’t make sense to calculate
the semantic cotopy for concepts which are in both ontologies as they will be leave nodes and thus their
common semantic cotopies * � 	 	 empty. Thus, we calculate the taxonomic overlap between two ontologies
as follows:

��� 	 � � � �
� ��" 

�

� � ��� � � � 

��� � �	� � � � � 	 � 1 � ����

� �!� � ��� � * � 	 	 � � �
� � �!��� " � * � 	 	 � � �
� � �!� � " �

� * � 	 	 � � �
� � �!� � " � * � 	 	 � � �
� � �!� � " �
Finally, as we do not only want to compute the taxonomic overlap in one direction, we introduce the

precision, recall and an F-Measure calculating the harmonic mean of both:

����� � �
� � " 
 ��� 	 � � � �!� � "' � � � �
� � " 
 ��� 	 ��� � �
� � "� ��� � �
� � " 
���� ����� � �
� � " � ' ��� � �
� � "��� � � �!��� "�� ' ��� � �
� ��"
The importance of balancing recall and precision against each other will be clear in the discussion of a few

examples below. Let’s consider for example the concept hierarchy ������� � ����� in Figure 5. For the five concepts
bookable, joinable, rentable, driveable and rideable we find a corresponding concept in � �!� � with a maxi-
mum taxonomic overlap ��� 	 and the other way round for the concepts activity, object to rent, vehicle and
two-wheeled-vehicle in � �
� � , such that ��� � ����� � ����� �
� �
� � " 
 ' ��� ����� � ����� �
� �!� � " 
 � � � � ��� � ����� �!� �!� � " 
� � � � .

In the concept hierarchy ����� (compare Figure 7) the precision is still 100% for the same reasons as
above, but due to the fact that the rideable concept has been removed there is no corresponding concept
for two-wheeled-vehicle. The concept maximizing the taxonomic similarity in � �!� � for two-wheeled-vehicle
is driveable with a taxonomic overlap of 0.5. The recall is thus

' � ����� �
� �
� � " 
 ��� 	 � � �
� � �!����� " 
��� � � � � ��! 
#"%$ � ��� and the F-Measure decreases to
� � �&��� �!� �!� � " 
#')(�� (*( � .

In the concept hierarchy of �&��+ in Figure 8, an additional concept planable has been introduced, which re-

duces the precision to ��� � � + �!� �!� � " 
 � � ��� ��� ��� ��
� 
,'�� � , while the recall stays obviously the same at' � �&-/. + �!� �!� � " 
 � ��� � and thus the F-Measure is

� ��� � + �
� �
� � " 
0' � �1$ �#� . It becomes thus clear why it
is important to measure the precision and recall of the automatically learned concept hierarchies and balance
them against each other by the harmonic mean or F-Measure.
For the automatically learned concept hierarchy � 
������ in Figure 4 the Precision is ����� 
������ �
� �
� � " 
�2 � �2 � � � �� � ��

� 
 � � � , the Recall
' � ��
������ �!� �!� � " 


�� ��34�� �45� �! 
76 � � ��� and thus the F-Measure
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Figure 7: Example for a concept hierarchy with lower recall ( ����� ) compared to the reference concept hier-
archy � �!� �
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Figure 8: Example for a concept hierarchy with lower precision ( � � + ) compared to reference concept hier-
archy � �!� �
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� � � 
������ �
� �
� � " 
 ��� � � 6 � .
As a comparison, for the trivial concept hierarchy � �.�
� � �2
�� in Figure 6 we get

��� � 
��������
� �
� � " 
 � � � � (per definition),
' � ��
������ �!� �!� � "#


� 2 ��32 � �2 � �2! 
 (*( � ()( � and
� ��� 
��������
� �!� � " 


� � � . It is imporant to mention that though in our toy examples the difference with respect to these measures
between the automatically learned concept hierarchy � 
������ and the trivial concept hierarchy � �.� � � �2
 � is not
so big, when considering real-world concept hierarchies with a much higher number of concepts it is clear
that the F-Measures for trivial concept hierarchies will be very low (see the results in Section 5).
Finally, we also calculate the harmonic mean of the lexical recall and the F-Measure as follows:� 	 ��� � �
� � " 
 ��� � ' ��� � �
� � " � � � � � �!��� "� ' ��� � �
� ��" � � � � � �!��� "
For the automatically learned concept hierarchy � 
������ , we get for example� 	 � � � �!� � " 
 � � ! � � ! � � � �
� � � � �! � � ! � � � �
� � � � � 
 � � � �

5. Results

As already mentioned above, we evaluate our approach on two domains: tourism and finance. The ontology
for the tourism domain is the reference ontology of the comparison study in (Maedche & Staab, 2002), which
was modeled by an experienced ontology engineer. The finance ontology is basically the one developed
within the GETESS project (Staab et al., 1999); it was designed for the purpose of analyzing German texts
on the Web, but also English labels are available for many of the concepts. Moreover, we manually added the
English labels for those concepts whose German label has an English counterpart with the result that most
of the concepts ( � 95%) finally yielded also an English label.6 The tourism domain ontology consists of 289
concepts, while the finance domain ontology is bigger with a total of 1178 concepts.
As domain-specific text collection for the tourism domain we use texts acquired from the above mentioned
web sites, i.e. from http://www.lonelyplanet.com as well as from http://www.all-in-all.de. Furthermore, we
also used a general corpus, the British National Corpus7. Altogether the corpus size was over 118 Million
tokens. For the finance domain we considered Reuters news from 1987 with over 185 Million tokens8.

5.1 Formal Concept Analysis

Figures 9 and 10 show the results of our FCA-based approach in terms of the measures described in Section
4 on the tourism and finance datasets. Obviously, the precision increases proportionally to the threshold

�
, i.e.

the more irrelevant information we cut off. In contrast, the recall decreases for the same reason, being close
to 0 from threshold 0.7 on. The reason is that from this threshold on, our approach is producing only trivial
hierarchies, i.e. as the objects have no attributes in common, a formal concept is created for each object or
term. All these formal concepts then are put directly between the top and bottom formal concepts such that
after our compacting step we yield a trivial concept hierarchy as shown in Figure 6 (left). As there are no
non-common concepts in such a trivial concept hierarchy, the precision is by definition 100%.
The best F-Measure for the tourism dataset is

��� �	� � ��� � �
��

� 
 � � � '���� (
� 
 � � � � � ), corresponding to a

precision of � � �	� � ��� � �
��

� 
 ( � � ")6 � and a recall of
'�� �	� � ��� ��� ��

� 
 6�� � "*' � . For the finance dataset, the

corresponding values are
��� ��� � � � � 
 � � � 
0(*" � ��� � , � � ��� � � � � 
 � � � 
#()(�� �)" � and

'�� �	� � � � � 
 � � � 
 � � � � � � .
The Lexical Recall obviously also decreases with increasing threshold

�
such that overall the F-Measure

� 	
also decreases inverse proportionally to

�
(compare Figure 10). The best results are

� 	� ��� � ��� ���
��
�� 
 � (�� " � �
for the tourism dataset and

� 	� �	� � � � � 
 � � � 
�� � � �*( � for the finance dataset. The reason that the results on
the finance dataset are slightly lower is probably due to the more technical nature of the domain (compared
to the tourism domain) and also to the fact that the concept hierarchy to be learned is bigger.

6. Certainly, there were some concepts which did not have a direct counterpart in the other language.
7. http://www.natcorp.ox.ac.uk/
8. http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Figure 9: Precision, Recall and F-Measure for the FCA-based approach on the tourism (left) and finance
(right) domains
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(right) domains
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5.2 Comparison

In order to evaluate our FCA-based approach, we compare it with hierarchical agglomerative clustering and
Bi-Section-KMeans. Hierarchical agglomerative clustering (compare (Duda et al., 2001)) is a similarity-
based bottom-up clustering technique in which at the beginning every term forms a cluster of its own. Then
the algorithm iterates over the step that merges the two most similar clusters still available, until one arrives
at a universal cluster that contains all the terms.
In our experiments, we use three different strategies to calculate the similarity between clusters: complete,
average and single-linkage. The three strategies may be based on the same similarity measure between terms,
i.e. the cosine measure in our experiments, but they measure the similarity between two non-trivial clusters
in different ways.
Single linkage defines the similarity between two clusters � and � as ����� � � # � � ��� ( 
 � �
	 ��� " , considering
the closest pair between the two clusters. Complete linkage considers the two most dissimilar terms, i.e.
��
�� � � # � � ��� ( 
 � ��	 ��� " . Finally, average-linkage computes the average similarity of the terms of the two
clusters, i.e.

�$ # $ $ � $ 0 � � # � � ��� ( 
 � �
	 ��� " . The reader should note that we prohibit the merging of clusters
with similarity 0 and rather order them under a fictive universal cluster ‘root’. This corresponds exactly
to the way FCA creates and orders objects with no attributes in common. The time complexity of a naive
implementation of agglomerative clustering is � � ��� " , while efficient implementations have a worst-time
complexity of � � � � � � � � " for complete and average linkage and O(

� � ) for single linkage (compare (Day &
Edelsbrunner, 1984)).9

Bi-Section-KMeans is defined as an outer loop around standard KMeans (Steinbach et al., 2000). In order to
generate � clusters, Bi-Section-KMeans repeatedly applies KMeans. Bi-Section-KMeans is initiated with the
universal cluster containing all terms. Then it loops: It selects the cluster with the largest variance10 and it
calls KMeans in order to split this cluster into exactly two subclusters. The loop is repeated ��� �

times such
that � non-overlapping subclusters are generated. As similarity measure we also use the cosine measure. The
complexity of Bi-Section-KMeans is � � � � � " . As we want to generate a complete cluster tree with

�
clusters

the complexity is thus O(
� � ). Furthermore, as Bi-Section-KMeans is a randomized algorithm, we produce

ten runs and average the obtained results.
We compare the different approaches along the lines of the measures described in Section 4. Figure 11 shows
the results in terms of F-Measure

� 	 for both domains and all the clustering approaches. First of all it seems
important to discuss the baselines for our approach. The baselines for our approach are the trivial concept
hiearchies which are generated when no objects have attributes in common. Such trivial concept hierarchies
are generated from threshold 0.7 on our datasets (compare Figure 11). While the baselines for FCA and the
agglomerative clustering algorithm are the same, Bi-Section-KMeans is producing a hierarchy by random
binary splits which results in higher F’ values. These trivial hierarchies represent an absolute baseline in the
sense that no algorithm could perform worse. The results on Figure 11 however show that all the approaches
considered are well above the baseline for a threshold lower than 0.5. It can also be seen in Figure 11 that our
FCA-based approach performs better than the other approaches on both domains. On the tourism domain, the
second best result is achieved by the agglomerative algorithm with the single-linkage strategy, followed by
the ones with average-linkage and complete-linkage (in this order), while the worst results are obtained when
using Bi-Section-KMeans (compare Table 2). On the finance domain, the second best results are achieved by
the agglomerative algorithm with the complete-linkage strategy followed by the one with the average-linkage
strategy, Bi-Section-KMeans and the one with the single-linkage strategy (in this order). Overall, it is valid
to claim that FCA outperforms the other clustering algorithms on both datasets. When having a closer look at
Table 2 the reason for this also becomes clear, i.e. FCA has a much higher recall than the other approaches,
while the precision is more or less comparable. This is due to the fact that FCA generates a higher number
of concepts than the other clustering algorithms thus increasing the recall. Interestingly, at the same time the
precision of these concepts remains reasonably high thus also yielding higher F-Measures

�
and

� 	 .
9. See also http://www-csli.stanford.edu/ � schuetze/completelink.html on this topic.

10. Though we don’t make use of it in our experiments, it is also possible to select the largest cluster for splitting.
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Tourism Finance
P R F F’ P R F F’

FCA 31.86% 65.89% 42.95% 43.81% 33.48% 45.12% 38.44% 41.03%
Complete Linkage 34.67% 31.98% 33.27% 36.85% 24.56% 25.65% 25.09% 33.35%
Average Linkage 35.21% 31.46% 33.23% 36.55% 29.51% 24.65% 26.86% 32.92%
Single Linkage 34.78% 28.71% 31.46% 38.57% 25.23% 22.44% 23.57% 32.15%
Bi-Section-KMeans 32.85% 28.71% 30.57% 36.42% 32.85% 21.77% 26.66% 32.77%

Table 2: Results of the comparison of different clustering approaches
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Figure 11: Comparison of different clustering approaches in terms of F’: Results for the tourism (left) and
finance (right) domain
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Figure 12: Sizes of concept hierarchies for the different approaches on the tourism (left) and finance (right)
domains: number of concepts over threshold

�

An interesting question is thus how big the produced concept hierarchies are. Figure 12 shows the size
of the concept hierarchies in terms of number of concepts over the threshold parameter

�
for the different

approaches on the tourism domain. First of all it is important to explain why the number of concepts is
different for the different agglomerative algorithms as well as Bi-Section-KMeans as in principle the size
should always be � � � , where

�
is the number of objects to be clustered. However, as objects with no similarity

to other objects are added directly under the fictive root element, the size of the concept hierarchies varies
depending on the way the similarities are calculated. In general, the sizes of the agglomerative and divisive
approaches are similar, while at lower thresholds FCA yields concept hierarchies with much higher number
of concepts. From threshold ��� ( on, the sizes of the hierarchies produced by all the different approaches are
quite similar.

5.3 Information Measures

As already anticipated in Section 3, the different information measures are also subject of our analysis. Table
3 gives the best results for the different clustering approaches and information measures. It can be concluded
from these results that using the Hindle or Resnik measures in general produces worse results. In particular,
the Resnik measures yield the worst results for almost all combinations except for the FCA-based approach
where it even beats the Conditional measure on the finance dataset. Overall, the use of the Conditional
information measure seems reasonable.

5.4 Smoothing

We applied our smoothing method described in section 3 to both datasets in order to find out in how far the
clustering of terms improves the results of the FCA-based approach. As information measure we use in this
experiment the conditional probability as it performs reasonably well as shown in Section 5.3. In particular
we used the following similarity measures: the cosine measure, the Jaccard coefficient, the L1 norm as well
as the Jensen-Shannon and the Skewed divergences (compare (Lee, 1999)). Table 4 shows the results for the
different similarity measures. The Skew Divergence is excluded because it did not yield any mutually similar
terms. The tables in appendix A list the mutually similar terms for the different domains and similarity
measures. The results are unfortunately negative in this respect as compared to the baseline only clustering
terms with the cosine measure slightly improved the results on the tourism domain. Actually, in general
clustering makes the results even worse than without clustering.
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Conditional Hindle Resnik
FCA

Tourism 43.81% 43.16% 41.00%
Finance 41.03% 40.60% 41.18 %

Complete Linkage
Tourism 36.85% 27.56% 23.52%
Finance 33.35% 22.29% 22.96%

Average Linkage
Tourism 36.55% 26.90% 23.93%
Finance 32.92% 23.78% 23.26%

Single Linkage
Tourism 38.57% 30.73% 28.63%
Finance 32.15% 25.47% 23.46%

Bi-Section-KMeans
Tourism 36.42% 27.32% 29.33%
Finance 32.77% 26.52% 24.00%

Table 3: Comparison of results for different information measures in terms of F’

Baseline Jaccard Cosine L1 JS
Tourism 43.81% 39.06% 43.90% 41.97% 42.57%
Finance 41.03% 40.42% 38.37% 39.78% 39.95%

Table 4: Results of Smoothing

5.5 Discussion

We have shown that our FCA-based approach is a reasonable alternative to similarity-based clustering ap-
proaches, even yielding better results on our datasets with regard to the

� 	 measure defined in Section 4. The
main reason for this is that the concept hierarchies produced by FCA yield a higher recall due to the higher
number of concepts, while maintaining the precision at the same time. Furthermore, we have shown that the
conditional probability performs reasonably well as information measure compared to other more elaborate
measures such as the ones used by (Hindle, 1990) or (Resnik, 1997). Unfortunately, applying a smoothing
method based on clustering mutually similar terms does not improve the quality of the automatically learned
concept hierarchies. Table 5 highlights the fact that every approach has its own benefits and drawbacks.
The main benefit of using FCA is on the one hand that on our datasets it peformed better than the other
algorithms thus producing better concept hierarchies On the other hand, it does not only generate clusters -
formal concepts to be more specific - but it also provides an intensional description for these clusters thus
contributing to better understanding by the ontology engineer (compare Figure 1 (left)). This is in contrast to
the similarity-based methods, which do not provide the same level of traceability due to the fact that it is the
numerical value of the similarity between two high-dimensional vectors which drives the clustering process
and which thus remains opaque to the engineer. The agglomerative and divisive approach are different in this
respect as the agglomerative paradigm the initial merges of small-size clusters correspond to high degrees of
similarity and are thus more understandable, while in the divisive paradigm the splitting of clusters aims at
minimizing the overall cluster variance thus being harder to trace.
A clear disadvantage of FCA is that the size of the lattice can get exponential in the size of the context in
the worst case thus resulting in an exponential time complexity — compared to � � � ������� � " and � � � � " for
agglomerative clustering and Bi-Section-KMeans, respectively. Figure 13 shows the number of seconds over
the number of attribute/object pairs it took FCA to compute the lattice of formal concepts compared to the
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Figure 13: Comparison of the time complexities for FCA and agglomerative clustering for the tourism (left)
and finance (right) domains
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Figure 14: Distribution of Features: number of (non-zero) features over word rank

time needed by a naive � � � � " implementation of the agglomerative algorithm with complete linkage. It can
be seen that FCA performs quite efficiently compared to the agglomerative clustering algorithm. This is due
to the fact that the object/attribute matrix is sparsely populated. Figure 14 shows the number of attributes
over the terms’ rank, where the rank is a natural number indicating the position of the word in a list ordered
by decreasing term frequencies. It can be appreciated that the amount of (non-zero) attributes is distributed
in a Zipfian way (compare (Zipf, 1932)), i.e. a small number of objects have a lot of attributes, while a
large number of them have just a few. In particular, for the tourism domain, the term with most attributes
is person with 3077 attributes, while on average a term has approx. 178 attributes. The total number of
attributes considered is 9738, so that we conclude that the object/attribute matrix contains almost 98% zero
values. For the finance domain the term with highest rank is percent with 2870 attributes, the average being
ca. 202 attributes. The total number of attributes is 21542, so that we can state that in this case more than
99% of the matrix is populated with zero-values. These figures explain why FCA performs efficiently in our
experiments. Concluding, though the worst-time complexity is exponential, FCA is much more efficient than
the agglomerative clustering algorithm in our setting.

6. Open Issues

It is quite clear that Formal Concept Analysis can account for polysemy by multiple inheritance. We would
like to motivate this fact with an example. According to WordNet, literature, architecture, theology, law and
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Effectiveness (F’) Efficiency Traceability Size of
Tourism/Finance Hierarchies

FCA 43.81%/41.03% � � � � " Good Large
Agglomerative Clustering:

Complete Linkage 36.85%/33.35% � � � � ����� � " Fair Small
Average Linkage 36.55%/32.92% � � � � ����� � "
Single Linkage 38.57%/32.15% � � � � "

Bi-Section-KMeans 36.42%/32.77% � � � � " Weak Small

Table 5: Trade-offs between different taxonomy construction methods

Figure 15: Example for Polysemy: professions

politics are regular polysemous denoting two different concepts, one in the sense of (scientific) discipline and
one in the sense of profession (compare (Peters, 2002)). Our aim is to account for these two senses within
our approach. For this purpose, we automatically constructed a lattice with FCA using the British National
Corpus (BNC) for the following terms: profession, discipline, politics, law, theology, literature and architec-
ture. The lattice in Figure 15 is the outcome. As there are too many, we omit the attributes in the intention
of the formal concepts. We now briefly discuss the encircled formal concepts (from left to right). The first
formal concept has in its extent: theology, politics and law. The second encircled formal concept contains:
discipline, literature, architecture, politics and law and thus seems to represent the discipline sense. The last
circle comprises two formal concepts with politics, literature, profession and law, literature, profession in
their extents, respectively. They both together seem to represent the profession sense. Though the automati-
cally acquired model is far from perfect it shows that it is in fact possible to account for polysemy with our
approach. However, further research and experiments are needed to assess the adequacy and usefulness of
our approach with respect to accounting for polysemy. Another direction of research would be to reduce the
number of attributes used for Formal Concept Analysis thus yielding more concise concept hierarchies. One
interesting option would be here to map the verbs appearing in the text collections to groups of semantically
related verbs as found for example in (Levin, 1993). Another option would be to cluster verbs as in (Schulte
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im Walde, 2000) and use these clusters as attributes. Finally, a third option we see is directly taking abstract
classes of verbs as found in lexical ontologies such as WordNet (Fellbaum, 1998).

7. Related Work

In this section, we discuss some work related to the automatic acquisition of taxonomies. The main paradigms
for learning taxonomic relations exploited in the literature are on the one hand clustering approaches based
on the distributional hypothesis (Harris, 1968) and on the other hand approaches based on matching lexico-
syntactic patterns which convey a certain relation in a corpus.
One of the first works on clustering nouns was the one by (Hindle, 1990), in which nouns are grouped into
classes according to the extent to which they appear in similar verb frames. In particular, he takes into
account nouns appearing as subjects and objects of verbs, but does not distinguish between these syntactic
positions in his similarity measure. (Pereira et al., 1993) also present a top-down clustering approach to
build an unlabeled hierarchy of nouns. They present an entropy-based evaluation of their approach, but also
show results on a linguistic decision task: i.e. which of two verbs � and �&	 is more likely to take a given
noun

�
as object. The work of (Faure & Nedellec, 1998) is also based on the distributional hypothesis; they

present an iterative bottom-up clustering approach of nouns appearing in similar contexts. In each step, they
cluster the two most similar extents of some argument position of two verbs. Interestingly, this way they not
only yield a concept hierarchy, but also ontologically generalized subcategorization frames for verbs. Their
method is semi-automatic in that it involves users in the validation of the clusters at each step. The authors
present the results of their system in terms of cluster accuracy in dependency of percentage of the corpus used.
(Caraballo, 1999) also uses clustering methods to derive an unlabeled hierarchy of nouns by using data about
conjunctions of nouns and appositions collected from the Wall Street Journal corpus. Interestingly, at a second
step she also labels the abstract concepts of the hierarchy by considering the Hearst patterns (see below) in
which the children of the concept in question appear as hyponyms. The most frequent hypernym is then
chosen in order to label the concept. At a further step she also compresses the produced ontological tree by
eliminating internal nodes without a label. The final ontological tree is then evaluated by presenting a random
choice of clusters and the corresponding hypernym to three human judges for validation. (Bisson et al.,
2000) present an interesting framework and a corresponding workbench - Mo’K - allowing users to design
conceptual clustering methods to assist them in an ontology building task. In particular they use bottom-up
clustering and compare different similarity/distance metrics as well as different pruning parameters.
Furthermore, there is quite a lot of work related to the use of linguistic patterns to discover certain ontological
relations from text. Hearst’s seminal work had the aim of discovering taxonomic relations from electronic
dictionaries (Hearst, 1992). The precision of the isa-relations learned is 61/106 (57.55%) when measured
against WordNet as gold standard. Hearst’s idea has been reapplied by different researchers with either slight
variations in the patterns used (Iwanska et al., 2000), in very specific domains (Ahmad et al., 2003), to acquire
knowledge for anaphora resolution (Poesio et al., 2002), or to discover other kinds of semantic relations such
as part-of relations (Charniak & Berland, 1999) or causation relations (Girju & Moldovan, 2002).
The approaches of Hearst and others are characterized by a (relatively) high precision in the sense that the
quality of the learned relations is very high. However, these approaches suffer from a very low recall which
is due to the fact that the patterns are very rare. As a possible solution to this problem, in (Cimiano et al.,
2004d) Hearst patterns matched in a corpus and on the Web as well as explicit information derived from
other resources and heuristics are combined yielding better results compared to considering only one source
of evidence on the task of learning sub-/superconcept relations. In general, to overcome such data sparseness
problems, researchers are more and more resorting to the WWW as for example in (Markert et al., 2003),
where Hearst patterns are also searched in the WWW by using the Google API in order to acquire background
knowledge for anaphora resolution, as well as in (Agirre et al., 2000), where related texts are crawled from
the Web to enrich a given ontology. In (Cimiano et al., 2004a) a similar approach has been employed to find
the best concept for an unknown instance in a given ontology.
(Velardi et al., 2001) present the OntoLearn system which discovers i) the domain concepts relevant for a
certain domain, i.e. the relevant terminology, ii) named entities, iii) ’vertical’ (is-a or taxonomic) relations
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as well iv) as certain relations between concepts based on specific syntactic relations. In their approach a
’vertical’ relation is established between a term

� � and a term
� � , i.e. is-a(

� � , � � ), if the head of
� � matches the

head of
� � and additionally the former is additionally modified in

� � . Thus, a ’vertical’ relation is for example
established between the term ’international credit card’ and the term ’credit card’, i.e. is-a(international credit
card,credit card). This approach is certainly very simple and could be complemented by the one presented in
this paper.
(Sanderson & Croft, 1999) describe an interesting approach to automatically derive a hierarchy by considering
the document a certain term appears in as context. In particular, they present a document-based definition of
subsumption according to which a certain term

� � is more special than a term
� � if

� � also appears in all the
documents in which

� � appears.
Formal Concept Analysis can be applied for many tasks within Natural Language Processing. In (Priss,
2004) for example, several possible applications of FCA in analyzing linguistic structures, lexical semantics
and lexical tuning are mentioned. (Sporleder, 2002) and (Petersen, 2002) apply FCA to yield more concise
lexical inheritance hierarchies with regard to morphological features such as numerus, gender etc. In (Basili
et al., 1997), FCA was also applied to the task of learning subcategorization frames from corpora. However,
to our knowledge it has not been applied before to the acquisition of domain concept hierarchies such as in
the approach presented in this paper.

8. Conclusion

We have presented a novel approach to automatically acquire concept hierarchies from domain-specific texts.
In addition, we have compared our approach with a hierarchical agglomerative clustering algorithm as well as
with Bi-Section-KMeans and found that our approach produces better results on the two datasets considered.
We have further examined different information measures to weight the significance of an attribute/object
pair and concluded that the conditional probability works well compared to other more elaborate information
measures. We have also analyzed the impact of a smoothing technique in order to cope with data sparseness
and found that it doesn’t improve the results of the FCA-based approach. Further, we have highlighted ad-
vantages and disadvantages of the three approaches.
Though our approach is fully automatic, it is important to mention that we do not believe in fully automatic
ontology construction without any user involvement. In this sense, in the future we will explore how users
can be involved in the process by presenting him/her ontological relations for validation in such way that the
user feedback is kept at a minimum. On the other hand, before involving users in a semi-automatic way it is
necessary to clarify how good a certain approach works per se. The research presented in this paper has had
this aim. Furthermore, we have also proposed a systematic way of evaluating ontologies by comparing them
to a certain human-modeled ontology. In this sense our aim has also been to establish a baseline for further
research.
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Appendix A. Mutually Similar Terms

Jaccard Cosine L1 norm Jensen-Shannon divergence
(art exhibition,thing) (agreement,contract) (day,time) (group,person)
(autumn,spring) (animal,plant) (golf course,promenade)
(balcony,menu) (art exhibition,washing machine) (group,person)
(ballroom,theatre) (basilica,hair dryer)
(banquet,ship) (boat,ship)
(bar,pub) (cabaret,email)
(basilica,hair dryer) (cheque,pension)
(beach,swimming pool) (city,town)
(billiard,sauna) (conference room,volleyball field)
(bus,car) (golf course,promenade)
(caravan,tree) (group,party)
(casino,date) (inn,yacht)
(cinema,fitness studio) (journey,meal)
(city,town) (kiosk,tennis court)
(conference,seminar) (law,view)
(conference room,volleyball field) (library,museum)
(cure,washing machine) (money,thing)
(day tour,place) (motel,port)
(distance,radio) (pilgrimage,whirlpool)
(exhibition,price list) (sauna,swimming)
(ferry,telephone)
(gallery,shop)
(golf course,promenade)
(holiday,service)
(journey,terrace)
(kiosk,time interval)
(law,presentation)
(lounge,park)
(motel,port)
(nature reserve,parking lot)
(night,tourist)
(region,situation)

Table 6: Mutually Similar Terms for the tourism domain
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Jaccard Cosine L1 norm Jensen-Shannon divergence
(action,average) (access,advantage) (archives,futures) (cent,point)
(activity,downturn) (acquisition,merger) (assurance,telephone number) (government,person)
(addition,liquidity) (action,measure) (balancing,countenance) (month,year)
(afternoon,key) (administration costs,treasury stock) (cent,point)
(agency,purchase) (advice,assurance) (creation,experience)
(agreement,push) (allocation,length) (government,person)
(alliance,project team) (amount,total) (loss,profit)
(allocation,success) (analysis,component) (month,year)
(analysis,negotiation) (area,region)
(animal,basis) (arrangement,regime)
(anomaly,regression) (assembly,chamber)
(archives,futures) (assessment,receipt)
(area,profitability) (backer,gamble)
(argument,dismantling) (balancing,matrix)
(arrangement,capital market) (bank,company)
(arranger,update) (barometer,market price)
(assembly,price decline) (bid,offer)
(assurance,telephone number) (bond,stock)
(automobile,oil) (bonus share,cassette)
(backer,trade partner) (boom,turnaround)
(balance sheet,person) (bull market,tool)
(balancing,countenance) (business deal,graph)
(behaviour,business partnership) (buy,stop)
(bike,moment) (capital stock,profit distribution)
(billing,grade) (caravan,software company)
(board,spectrum) (cent,point)
(board chairman,statement) (change,increase)
(bonus,nationality) (commission,committee)
(bonus share,cassette) (company profile,intangible)
(branch office,size) (complaint,request)
(broker,competition) (controller,designer)
(budget,regulation) (copper,share index)
(builder,devices) (copy,push)
(building,vehicle) (credit,loan)
(business volume,outlook) (credit agreement,credit line)
(business year,quota) (currency,dollar)
(capital,material costs) (decision,plan)
(capital increase,stock split) (detail,test)
(capital stock,profit distribution) (diagram,support)
(caravan,seminar) (dimension,surcharge)
(cent,point) (discussion,negotiation)
(chance,hope) (diversification,milestone)
(change,subsidiary) (do,email)
(charge,suspicion) (document,letter)
(chip,woman) (effect,impact)
(circle,direction) (equity fund,origin)
(clock,ratio) (evaluation,examination)
(code,insurance company) (example,hint)
(comment,foundation) (first,meter)
(commission,expansion) (forecast,stock market activity)
(communication,radio) (function,profile)
(community,radius) (gesture,input)
(company profile,intangible) (guarantee,solution)
(compensation,participation) (half,quarter)
(complaint,petition) (increment,rearrangement)
(computer,cooperation) (information,trading company)
(conference,height) (insurance,percentage)
(confidentiality,dollar) (interest rate,tariff)
(consultant,survey) (man,woman)
(contact,hint) (maximum,supervision)
(contract,copyright) (meeting,talk)
(control,data center) (merchant,perspective)
(conversation,output) (month,week)
(copper,replacement) (press conference,seminar)
(corporation,liabilities) (price,rate)
(cost,equity capital) (productivity,traffic)
(course,step) (profit,volume)
(court,district court) (share price,stock market)
(credit,disbursement) (stock broker,theory)
(credit agreement,overview)
(currency,faith)
(curve,graph)
(decision,maximum)
(deficit,negative)
(diagram,support)
(difference,elimination)

Table 7: Mutually Similar Terms for the finance domain
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Jaccard Cosine L1 norm Jensen-Shannon divergence
(disability insurance,pension)
(discrimination,union)
(diversification,request)
(do,email)
(effect,help)
(employer,insurance)
(energy,test)
(equity fund,origin)
(evening,purpose)
(event,manager)
(examination,registration)
(example,source)
(exchange,volume)
(exchange risk,interest rate)
(experience,questionnaire)
(expertise,period)
(faculty,sales contract)
(fair,product)
(flop,type)
(forecast,stock market activity)
(fusion,profit zone)
(gamble,thing)
(good,service)
(government bond,life insurance)
(happiness,question)
(hold,shareholder)
(hour,pay)
(house,model)
(idea,solution)
(impact,matter)
(improvement,situation)
(index,wholesale)
(information,trading company)
(initiation,middle)
(input,traffic)
(institute,organization)
(investment,productivity)
(knowledge,tradition)
(label,title)
(letter,reception)
(level,video)
(license,reward)
(loan,project)
(location,process)
(loss,profit)
(man,trainee)
(margin,software company)
(market,warranty)
(market access,name)
(matrix,newspaper)
(meeting,oscillation)
(meter,share)
(method,technology)
(milestone,state)
(month,year)
(mouse,option)
(multiplication,transfer)
(noon,press conference)
(occasion,talk)
(opinion,rivalry)
(personnel,resource)
(picture,surcharge)
(plane,tool)
(police,punishment)
(profession,writer)
(property,qualification)
(provision,revenue)
(requirement,rule)
(risk,trust)
(sales revenue,validity)
(savings bank,time)
(segment,series)
(show,team)
(speech,winter)
(stock broker,theory)
(supplier,train)
(tariff,treasury stock)
(weekend,wisdom)

Table 8: Mutually Similar Terms for the finance domain (Cont’d)
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