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ABSTRACT
The goal of giving a well-defined meaning to information is
currently shared by endeavors such as the Semantic Web as
well as by current trends within Knowledge Management.
They all depend on the large-scale formalization of knowl-
edge and on the availability of formal metadata about infor-
mation resources. However, the question how to provide the
necessary formal metadata in an effective and efficient way is
still not solved to a satisfactory extent. Certainly, the most
effective way to provide such metadata as well as formalized
knowledge is to let humans encode them directly into the
system, but this is neither efficient nor feasible. Further-
more, as current social studies show, individual knowledge
is often less powerful than the collective knowledge of a cer-
tain community.
As a potential way out of the knowledge acquisition bottle-
neck, we present a novel methodology that acquires collec-
tive knowledge from the World Wide Web using the GoogleTM

API. In particular, we present PANKOW, a concrete in-
stantiation of this methodology which is evaluated in two
experiments: one with the aim of classifying novel instances
with regard to an existing ontology and one with the aim of
learning sub-/superconcept relations.

1. INTRODUCTION
The goal of giving a well-defined meaning to information
is currently shared by different research communities. This
goal is based on the assumption that, once information has
a well-defined meaning, it can be (i) searched and retrieved
more effectively, (ii) shared between different parties and
(iii) used to derive implicit or new knowledge via certain in-
ference mechanisms. This vision is shared in particular by
the Semantic Web [5], by current trends within Knowledge
Management [22] as well as by knowledge-based information
systems in general. As has been argued in almost every work
dealing with knowledge acquisition, any information system
relying on background knowledge suffers from the so called
knowledge acquisition bottleneck, i.e. the difficulty of encod-
ing knowledge into a system in a declarative fashion. So far,
it seems that the most effective – though certainly not most
efficient – way of dealing with this problem is to let a group
of knowledge engineers model the required world knowledge
from scratch.
Inspired by current social studies as [43], in which it is ar-
gued that collective knowledge is much more powerful than

individual knowledge, we present in this paper a new par-
adigm of dealing with the above mentioned bottleneck. In
very general terms our paradigm is based on the idea that
collective knowledge is gathered as a first step and then as a
second step presented to a knowledge engineer who can thus
effectively and efficiently customize this collective knowledge
with regard to the specific context of interest. In this model,
the purpose of general knowledge is to compensate the po-
tential lack of knowledge of an individual with respect to a
certain topic, while the role of the individual is to filter the
collective knowledge with regard to a specific context.
This abstract model with the purpose of overcoming the
knowledge acquisition bottleneck is for example instanti-
ated by our PANKOW (Pattern-based Annotation through
Knowledge on the Web) methodology [13]. PANKOW was
originally conceived to support a web-page annotator in the
task of assigning the instances appearing in the page to the
appropriate concept in a given ontology in line with the
CREAM framework [28]. In particular, PANKOW generates
instances of lexico-syntactic patterns indicating a certain se-
mantic or ontological relation and counts their occurrences
in the World Wide Web using the GoogleTMAPI. The sta-
tistical distribution of instances of these patterns then con-
stitutes the collective knowledge which is taken into account
by the annotator to decide with which concept to annotate
the instance in the particular context. Figure 1 for example
shows a dialog in which the user is presented with the top 5
suggestions from the collective knowledge about how to an-
notate the instance Niger, i.e. as a river, as a country, etc.
The advantage of such an approach combining collective and
individual knowledge to overcome the knowledge-acquisition
bottleneck seems thus obvious: even if the individual has
never heard about the instance in question, together with
the collective knowledge and the local context in which the
instance appears, he might get a fairly accurate idea of the
concept it belongs to.
The remainder of this article is further structured as fol-
lows: in Section 2 we describe PANKOW in more detail and
present our lexico-syntactic pattern library. We also discuss
the application of PANKOW in the annotation scenario de-
scribed above as well as to learning sub-/superconcept re-
lations. In section 3 we present results of an evaluation of
PANKOW with respect to both tasks. Finally, before con-
cluding, we discuss some related work.
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Figure 1: PANKOW within an annotation scenario (inter-
active mode)

2. PANKOW
PANKOW is based on the idea that certain lexico-syntactic
patterns matched in texts convey a specific semantic re-
lation. Pioneering research in this line was conducted by
Hearst [29] who defined a collection of patterns indicating
sub-/superconcept relations. An example of such a pattern
used by Hearst is the following:

such NP0 as NP1,...,NPn−1 (or|and) other NPn

where NP stands for a noun phrase. If such a pattern is
matched in a text, according to Hearst we could derive that
for all 0 < i ≤ n hyponym(lemma(NPi),lemma(NP0))

1,
where lemma(NP) represents the lemma2 of the concatena-
tion of each open-class3 word in NP.4 For example, from
the sentence ’Such injuries as bruises, wounds and broken
bones...’ we could derive the relations: hyponym(bruise,injury),
hyponym(wound,injury) and hyponym(broken bone,injury).
Moreover, PANKOW also builds upon the idea that such
patterns as described above can not only be matched in a
corpus, but also in the World Wide Web as in [13], [17], [18]
or [36].
For this purpose, PANKOW generates pattern instances out
of pattern schemes and counts the hits of these pattern in-
stances on the web. For each instance or concept of interest,
we thus yield the number of times it is related to other en-
tities in the specific way indicated by the pattern schema,
thus yielding a statistical ’fingerprint’ for this object with
respect to a given semantic relation. In what follows, we first
describe the process from a general point of view. Then, in
Section 2.2 we describe the patterns we use and finally we
formally define what a statistical fingerprint is and how it
can be used.

1From a linguistic point of view, a term t1 is a hyponym of
a term t2 if we can say ’a t1 is a t2’. Correspondingly, t2 is
then a hypernym of t1.
2The lemma of a word is its base or normal form, i.e. cats -
cat, drove - drive, etc.
3In contrast to closed-class words which belong to a class of
words with a constant extension (examples are prepositions,
determiners, ...), open-classes are evolving classes whose ex-
tension constantly changes.
4Hearst doesn’t explicitly talk about lemmatization, but it
is clear from her examples that lemmatization should be
performed.

Figure 2: PANKOW within an annotation scenario (auto-
matic mode)

2.1 The Process of PANKOW
In this paper we slightly abstract from the process of PANKOW
as described in [13]. In fact, the general process consists of
three steps:

Input: a set of entities (instances or concepts) to be classi-
fied with regard to an ontology

Step 1: The system iterates through the set of entities to
be classified and generates instances of patterns, one
for each concept in the ontology. For example, the
instance ‘South Africa’ and the concepts Country and
Hotel are composed using a pattern schema of our pat-
tern library (see 2.2) and resulting in pattern instances
like ‘South Africa is a country ’ and ‘South Africa is a
hotel ’ or ‘countries such as South Africa’ and ‘hotels
such as South Africa’

Result 1: Set of pattern instances

Step 2: Then, GoogleTM is queried for the pattern instances
through its Web service API. The API delivers as its
results

Result 2: the counts for each pattern instance

Step 3: The system sums up the query results to a total
for each concept.

Result: The statistical fingerprint for each entity, i.e. the
results of aggregating for each entity the number of
Google counts for all pattern instances conveying the
relation of interest

The statistical fingerprint then represents the collective knowl-
edge about the potential concepts an instance could belong
to or about the potential superconcepts of a certain concept.
Given the tasks of (i) classifying instances with regard to an
ontology or (ii) finding an appropriate superconcept for a
new concept, a knowledge engineer could be presented with
the most relevant view of a statistical fingerprint in order to
take a final decision.
Figure 2 depicts an example of how PANKOW can be em-
ployed in an annotation scenario. An important question
here is how to find potential new instances in web pages.
Though this is not directly the topic of this paper, a few
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words on this issue seem appropriate. In order to find can-
didate new instances or concepts in a web page to be anno-
tated, we first extract the textual content of the web pages
and then run a part-of-speech tagger5 over the page to as-
sign each token its corresponding syntactic category. Then
certain regular expressions defined over these tags and the
corresponding tokens allow to find candidate instances or
concepts. The main heuristic in finding instances consists
of finding sequences of capitalized words tagged as proper
nouns. Thus, in the abstract of this paper our method would
find Semantic Web, Knowledge Management, World Wide
Web, Google API and PANKOW as potential instances to
be annotated. In order to find concepts in web pages, we in-
terpret each sequence of lower case words tagged as common
nouns as potential concepts. Of course, the patterns we use
exploit other heuristics, but a detailed description of these
is out of the scope of this paper and in general the issue of
how to find candidate instances or concepts is orthogonal to
the aim of the approach described in this paper.
Now given an unknown instance or concept on a certain
web page, patterns respectively indicating an instance-of or
subconcept relation are instantiated for the new instance or
concept and each concept in the target ontology. Finally,
given the statistical fingerprint of the instance or concept,
we follow a principle of disambiguation by maximal evidence
thus assigning the instance or concept to that concept in
the target ontology with the highest number of hits in the
statistical fingerprint. Figure 2 illustrates the principle of
disambiguation by maximal evidence within an annotation
scenario. Instead, a user can also be involved in the process
and for example asked to select a concept out of the top 5
elements of the statistical fingerprint. Figure 1 depicts an
annotation scenario in which the user is asked to choose one
concept out of the top-5 view of the statistical fingerprint.

2.2 The Pattern Library
In the following we describe the patterns we exploit and give
a corresponding example.

2.2.1 Hearst Patterns
The first four patterns have been used by Hearst to iden-
tify isa-relationships between the concepts referred by two
words in the text. However, they can also be used to spot
instance-of-relations. In fact, in PANKOW they are used as
indicating subclass as well as instance-of relations, depend-
ing on whether the entity to be classified is an instance or a
concept. Correspondingly, we formulate our patterns using
the variable ‘<I>’ to refer to the name of an instance and
the variable ‘<C>’ to refer to the name of a concept from
the given ontology.

The patterns reused from Hearst are:

HEARST1: < C >s such as < I|C′ >

HEARST2: such < C >s as < I|C′ >

HEARST3: < C >s, (especially|including) < I|C′ >

HEARST4: < I|C′ > (and|or) other < C >s

5A part-of-speech tagger assigns syntactic cate-
gories to words. We use the QTag tagger in
http://web.bham.ac.uk/o.mason/software/tagger/.

Depending on whether we are attempting to classify an in-
stance or a concept, we would then either derive: instance-
of(I,C) or subconcept(C’,C). The above patterns would match
the following expressions:

continents such as Asia (HEARST1)
vehicles such as cars (HEARST1)
such continents as Africa (HEARST2)
such cars as cabriolets (HEARST2)
presidents, especially George Washington (HEARST3)
vehicles, especially motor-bikes (HEARST3)
the Eiffel Tower and other sights in Paris (HEARST4)
motor-bikes and other two-wheeled vehicles (HEARST4)

2.2.2 Definites
The next patterns are about definites, i.e. noun phrases in-
troduced by the definite determiner ‘the’. Frequently, defi-
nites actually refer to some entity previously mentioned in
the text. In this sense, a phrase like ‘the hotel ’ does not
stand for itself, but it points as a so-called anaphora to a
unique hotel occurring in the preceding text. Nevertheless,
it has also been shown that in common texts more than 50%
of all definite expressions are non-referring [38], i.e. they
exhibit sufficient descriptive content to enable the reader to
uniquely determine the entity referred to from the global
context. For example, the definite description ‘the Hilton
hotel ’ has sufficient descriptive power to uniquely pick-out
the corresponding real-world entity for most readers. One
may deduce that ‘Hilton’ is the name of the real-world entity
of type Hotel to which the above expression refers.

Consequently, we apply the following two patterns to cate-
gorize an instance by definite expressions:

DEFINITE1: the < I > < C >

DEFINITE2: the < C > < I >

The first and the second pattern would for example match
the expressions ‘the Hilton hotel ’ and ‘the hotel Hilton’, re-
spectively. It is important to mention that these patterns
are in our approach only used to categorize instances into
the ontology, but not concepts.

2.2.3 Apposition and Copula
The following pattern makes use of the fact that certain en-
tities appearing in a text are further described in terms of an
apposition as in ‘Excelsior, a hotel in the centre of Nancy ’.
The pattern capturing this intuition looks as follows:

APPOSITION: < I|C′ >, a < C >

The probably most explicit way of expressing that a certain
entity is an instance or a subconcept of a certain concept is
by the verb ‘to be’ in a copula6 construction as for example
in ‘The Excelsior is a nice hotel in the center of Nancy ’.
Here’s the general pattern:

COPULA: < I|C′ > is a < C >

6A copula is an intransitive verb which links a subject to an
object, an adjective or a constituent denoting a property of
the subject.
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2.3 Statistical Fingerprints
Having defined these patterns, one could match these pat-
terns in a corpus and propose the corresponding relations.
However, it is well known that the above patterns are rare
and thus one will need a sufficiently big corpus to find a
significant number of matches.

Thus, PANKOW resorts to the biggest corpus available: the
World Wide Web. In fact, several researchers have shown
that using the Web as a corpus is an effective way of ad-
dressing the typical data sparseness problem one encoun-
ters when working with corpora (compare [26], [32], [36],
[40]). Actually, we subscribe to the principal idea by Mark-
ert et al. [36] of exploiting the GoogleTM API. As in their
approach, rather than actually downloading web pages for
further processing, we just take the number of web pages
in which a certain pattern appears as an indicator for the
strength of the pattern.

Given a candidate entity we want to classify with regard
to an existing ontology, we instantiate the above patterns
with each concept from the given ontology. For each pattern
instance, we query the GoogleTM API for the number of
documents that contain it. The function ’count’ models this
query.

count : E × C × P → N

Thereby, E, C and P stand for the set of all entities to be
classified, for the concepts from a given ontology and for
a set of pattern schema, respectively. Thus, count(e, c, p)
returns the number of hits of pattern the pattern schema p
instantiated with the entity e and the concept c. Further
we define the sum over all the patterns conveying a certain
relation r:

countr(e, c) =
X

p∈Pr

count(e, c, p)

where Pr is the set of pattern schemes denoting a certain
relation r.

Now we formally define the statistical fingerprint of an entity
e with respect to a relation r and a set of concepts C:

SF (e, r, C) := {(c, n)| c ∈ C ∧ n = countr(e, c)}
Further, instead of considering the complete statistical fin-
gerprints, we consider views of these such as defined by the
following formulas. The first formula defines a view of the
statistical fingerprint which only contains the concept with
maximal number of hits.7

SFmax(e, r, C) := {(c, n)| c := argmaxc′∈Ccountr(e, c
′)∧

n = countr(e, c)}
Further, we extend this to consider the top-m concepts with
maximal count:

SFm(e, r, C) := {(c, n)| C = {c1, c2, ..., c|C|}∧
countr(e, c1) ≤ ... ≤ countr(e, c|C|)∧
c ∈ {c1, ..., cm} ∧ n = countr(e, c)}

if m ≤ |C|.
Finally, we also consider a view only taking into account
those concepts having hits over a certain threshold θ:
7We assume that argmax breaks ties randomly in this con-
text.

Figure 3: View of Niger’s Fingerprint

SFθ(e, r, C) := {(c, n)| countr(e, c) ≥ θ ∧ n = countr(e, c)}
We can now combine these views by set operations. For
example, we yield the set of the m top concepts having hits
over a threshold θ as follows:

SFm,θ(e, r, C) = SFm(e, r, C) ∩ SFθ(e, r, C)

As an example of such a view, consider the visualization of
the SF6 view of the statistical fingerprint for Niger with re-
gard to the instance-of relation in Figure 3. It is interesting
to observe that the most prominent concept for Niger seems
to be river, directly followed by country and further by state,
coast, region and area.

3. EVALUATION
We have evaluated PANKOW with respect to two tasks:
the task of finding the appropriate ontological concept for
a given instance, and the task of finding sub/superconcept
relations.

3.1 Instance Classification Experiment
For our instance classification experiment, we asked 2 sub-
jects to annotate 30 texts with destination descriptions from
http://www.lonelyplanet.com/destinations. They used a pruned
version of the tourism ontology developed within the GET-
ESS project [42]. We manually pruned this ontology by
removing concepts which did not appear in the above pages
in order to facilitate the annotation process. The original
ontology consisted of 1043 concepts, while the pruned one
consisted of 682. The subjects were told to annotate in-
stances in the web page with the appropriate concept from
the ontology. In what follows, we will refer to these subjects
as A and B. Subject A actually produced 436 categoriza-
tions and subject B produced 392. There were 277 proper
nouns (referred to by I in the following; |I| = 277) that were
annotated by both subjects. For these 277 proper nouns,
they used 59 different concepts (henceforth constituting our
set of concepts C). The categorial agreement on these 277
proper nouns as measured by the Kappa statistic (cf. [11])
was 63.48%, which allows to conclude that the classifica-
tion task is overall well defined. In the following, we only
consider the common instances in I for our evaluation.

3.1.1 Evaluation Measures
To evaluate our approach, we compare the answers of our
system with the following reference standards:

SIGKDD Explorations. Volume 6,Issue 2 - Page 27 



• StandardA := {(i, c)| for each i ∈ I the categorization
c ∈ C produced by subject A}

• StandardB := {(i, c)| for each i ∈ I the categorization
c ∈ C produced by subject B}

Now as answers Smax,θ of the system we consider the fol-
lowing set:

Smax,θ := {(i, c)|i ∈ I∧{(c, n)} = SFmax,θ(i, instance−of, C)}
As evaluation measures, we use the well-known P(recision),
R(ecall) and F1-Measures to evaluate our system against
StandardA and StandardB . P, R and F1 are defined as
follows (for y ∈ {A, B}, the two standards):

Py =
|correct answers|
|total answers| =

|Smax,θ ∩ Standardy|
|Smax,θ|

Ry =
|correct answers|

|answers in reference standard| =
|Smax,θ ∩ Standardy|

|I|

F1,y =
2 ∗ Py ∗Ry

Py + Ry

Furthermore, in our experiments we will always average the
results for both annotators as given by the following formu-
las:

Pavg =
PA + PB

2

Ravg =
RA + RB

2

F1,avg =
F1,A + F1,B

2

To get an upper bound for the task we are looking at, we also
calculated the F1-Measure of StandardA measured against
StandardB and the other way round and got F1=62.09% as
average. This value thus represents an upper bound for any
system attempting to find the correct class for an unknown
instance.

3.1.2 Results of Instance Classification Experiment
Table 1 shows the top 60 SFmax(i,instance-of, C) values for
different instances i. While some classifications are defi-
nitely spurious, it can be seen in general that the results
are quite reasonable. Figure 4 shows the precision, recall
and F1-Measure values for different thresholds θ within the
interval [0..1000], averaged over both reference standards:
StandardA and StandardB . Obviously, the precision in-
creases roughly proportionally to the threshold θ, while the
recall and F1-Measure values decrease. It can be observed
that P=R=F at θ = 0. The best F1,avg-Measure was 28.24%
at a threshold of θ = 60 and the best Recall (Ravg) was
24.9% at a threshold of θ = 0.

In a second version of the experiment, instead of merely
choosing the concept with maximal count with respect to
the statistical fingerprint, we considered the top 5 concepts,
i.e. the view SF5,θ = SF5 ∩ SFθ and considered the answer

Instance Concept # GoogleTM Matches
Atlantic city 1520837
Bahamas island 649166
USA country 582275
Connecticut state 302814
Caribbean sea 227279
Mediterranean sea 212284
South Africa town 178146
Canada country 176783
Guatemala city 174439
Africa region 131063
Australia country 128607
France country 125863
Germany country 124421
Easter island 96585
St Lawrence river 65095
Commonwealth state 49692
New Zealand island 40711
Adriatic sea 39726
Netherlands country 37926
St John church 34021
Belgium country 33847
San Juan island 31994
Mayotte island 31540
EU country 28035
UNESCO organization 27739
Austria group 24266
Greece island 23021
Malawi lake 21081
Israel country 19732
Perth street 17880
Luxembourg city 16393
Nigeria state 15650
St Croix river 14952
Nakuru lake 14840
Kenya country 14382
Benin city 14126
Cape Town city 13768
St Thomas church 13554
Niger river 13091
Christmas Day day 12088
Ghana country 10398
Crete island 9902
Antarctic continent 9270
Zimbabwe country 9224
Central America region 8863
Reykjavik island 8381
Greenland sea 8043
Cow town 7964
Expo area 7481
Ibiza island 6788
Albania country 6327
Honduras country 6143
Iceland country 6135
Nicaragua country 5801
Yugoslavia country 5677
El Salvador country 5154
Senegal river 5139
Mallorca island 4859
Nairobi city 4725
Cameroon country 4611
Rust park 4541

Table 1: Top 60 Instance-Concept Relations
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Figure 4: Precision, Recall and F1-Measure for Smax,θ over
threshold θ (instance classification)
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Figure 5: Precision, Recall and F1-Measure and Recall for
S5,θ over threshold θ (instance classification)

as correct if the annotator’s answer was in this view. The
results in terms of the same measures are given in figure
5. The qualitative behaviour of the three measures is simi-
lar as in the first experiment, but obviously the results are
much better. The best F1-Measure of 51.64% was reached
at a threshold of θ = 50, corresponding to a Precision of
66.01% and a recall of 42.42%. Concluding, these results
mean that in 66% of the cases the correct concept for an in-
stance is among the top 5 suggestions and on the other hand
for more than 40% of the relevant instances the system is
able to suggest 5 concepts, one of which is the correct one.
This is certainly a very satisfactory result and a good proof
that using our PANKOW methodology to gather collective
knowledge in form of statistical fingerprints and presenting
certain views of these to a user would drastically help to
reduce the time taken to annotate a given web page.

3.2 Sub-/Superconcepts Extraction
As a second experiment, we attempted to reproduce the
sub-/superconcept relations of a given ontology. In partic-
ular, we considered the tourism ontology which was man-
ually constructed by an ontology engineer in the context
of the comparison study described in [35]. Furthermore,
as this ontology was specified in German, we translated
it into English. The ontology consisted of 289 concepts,
from which we removed a few abstract concepts such as par-
tially material thing, or geometric concept thus yielding 272
concepts with 225 direct is-a relations and 636 transitive
(direct + non-direct) is-a relations between them. For our

evaluation we take into account the set of transitive rela-
tions.

3.2.1 Evaluation Measures
As in the first experiment, we evaluated PANKOW in terms
of Precision, Recall and F1-Measure. In contrast to the
above experiment, we merely compared to one reference
standard, i.e. the ontology described above. The answers of
the system are now defined as follows:

Smax,θ := {(c′, c)| {(c, n)} = (SFmax,θ(c
′, subconcept, C)}

The reference standard is given by the following set O:

O := {(c′, c)| c′ ≤C c}
where ≤C is the partial order representing the concept hier-
archy of the reference ontology.

Now, Precision, Recall and F1-Measure are defined as fol-
lows:

P =
|Smax,θ ∩O|
|Smax,θ|

R =
|Smax,θ ∩O|

|O|

F1 =
2 ∗ P ∗R

P + R

3.2.2 Results of Sub-/Superconcept Extraction
Figure 6 shows the results of the sub-/superconcept extrac-
tion in terms of Precision, Recall and F1-Measure. In this
case the best F1-Measure was F1=18.25% and was reached
at threshold θ = 0, corresponding to a precision of P=21.74%
and a recall of R=15.73%. This was also the overall best re-
call. Thus, the results seem to be not as good as in the
above experiment. This is probably due to the fact that
concept labels are much more ambiguous than instance la-
bels. When considering again the top 5 best suggestions of
the system, the results increase as shown in figure 7. The
best F1-Measure in this second version of the experiment was
F=52.33% at θ = 0; the precision was P=62.32% and the re-
call R=45.10%. These results are also impressive and again
corroborate the claim that our approach is a very promising
step towards overcoming the knowledge acquisition bottle-
neck.

3.3 Discussion
Our experiments have shown that the results of our system
are within a range in which they can not be used automat-
ically without any human interaction. However, we have
also shown that when operating in an interactive mode in
which a user is presented with the top 5 suggestions, our sys-
tem performs very well obtaining F-Measures over 50% on
such non-trivial classification tasks. However, we compare
our approach from a quantitative point of view with systems
performing the task of assigning instances to the correspond-
ing concept automatically. In the computational linguistics
community this task is known as ’Named Entity Recogni-
tion and Classification’ (NERC). This task received special
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Figure 6: Precision, Recall and F1-Measure for Smax,θ over
threshold θ (sub-/superconcept extraction)
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Figure 7: Precision, Recall and F1-Measure for S5,θ over
threshold θ (sub-/superconcept extraction)

attention as a subtask within the framework of the Mes-
sage Understanding Conferences (MUC) ([30]) which aimed
at evaluating information extraction systems on a shared
task. The named entity recognition task comprised three
categories: PERSON, LOCATION and ORGANIZATION
and systems typically achieved F-Measures well above 90%.
However, this task is certainly much simpler than the ones in
[3] where 1200 WordNet synsets are considered, [27] which
consider 325 concepts, [23] taking into account 8 and [20]
considering from 2-8 depending on the document in ques-
tion. These systems are described in detail in the following
section 4. Table 2 gives an overview of these systems, in par-
ticular showing the number of classes considered, the type
of text preprocessing needed as well as the recall or accu-
racy on the task. It is important to mention here that as
in our case the set of instances annotated by the system
is equal to the instances annotated by the human subject,
the recall corresponds to the accuracy results reported by
the other systems. It can be concluded from the table that
the performance of our system, given the number of classes
considered and the fact that no text processing methods are
needed, seems indeed reasonable compared to systems per-
forming a related task. It is however important to emphasize
that as the number of classes considered is not the same, the
systems are not directly comparable.

4. RELATED WORK
Traditionally, supervised information extraction techniques
have been applied to facilitate the creation of metadata on

the basis of textual input. Several learning techniques have
been applied to induce extraction rules from a labeled set
of training examples. Kushmerick et al. for example de-
veloped a technique called Boosted Wrapper Induction [24].
Califf and Mooney [9] use ILP-based bottom-up rule induc-
tion techniques, while Soderland [41] uses a top-down rule
induction algorithm applying a hill-climbing approach. Re-
cently, Ciravegna [15] developed a novel algorithm called
LP 2. However, due to the fact that all these systems ex-
ploit regularities in the induction of extraction rules, their
application for information extraction from the Web seems
limited. Furthermore, the cost for using such systems re-
mains extremely high as one needs to provide a considerable
amount of training examples.
Concerning the task of learning the correct class or on-
tological concept for an unknown entity, there was quite
a lot of related work within the framework of the above
mentioned Message Understanding Conferences. However,
the challenge of categorizing into 3 classes is quite modest
when compared against the challenge of categorizing into 59
classes as in our approach. We thus focus on the discussion
of approaches tackling a classification into a larger number
of concepts such as [3], [20], [23] and [27].
Hahn and Schnattinger [27] create a hypothesis space when
encountering an unknown word in a text for each concept
that the word could belong to. These initial hypothesis
spaces are then iteratively refined on the basis of evidence
extracted from the linguistic context the unknown word ap-
pears in. In their approach, evidence is formalized in the
form of quality labels attached to each hypothesis space. At
the end the hypothesis space with maximal evidence with
regard to the qualification calculus used is chosen as the
correct ontological concept for the word in question. The re-
sults of the different version of Hahn et al’s system (compare
[27]) in terms of accuracy can be found in Table 2. Their
approach is very related to ours and in fact they use sim-
ilar patterns to identify instances from the text. However,
the approaches cannot be directly compared. On the one
hand they tackle categorization into an even larger number
of concepts than we do and hence our task would be eas-
ier. On the other hand they evaluate their approach under
clean room conditions as they assume accurately identified
syntactic and semantic relationships and an elaborate ontol-
ogy structure, while our evaluation is based on very noisy
real-world input — rendering our task harder than theirs.

Alfonseca and Manandhar [3] have also addressed the prob-
lem of assigning the correct ontological class to unknown
words. Their system is based on the distributional hypoth-
esis, i.e. that words are similar to the extent to which they
share linguistic contexts. In this line, they adopt a vector-
space model and exploit certain syntactic dependencies as
features of the vector representing a certain word. The un-
known word is then assigned to the category correspond-
ing to the most similar vector. The best result measured
against a reference standard (strict evaluation mode as they
call it) was achieved using only verb/object dependencies as
features (compare Table 2). Their results seem thus lower
compared to our system, but they are also considering a
much larger number of concepts, i.e. 1200.

Fleischmann and Hovy [23] address the classification of named
entities into fine-grained categories. In particular, they cat-
egorize named entities denoting persons into the following
8 categories: athlete, politician/government, clergy, busi-
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System No. Concepts Preprocessing Accuracy/Recall
MUC 3 various >90%
Fleischman et al. 8 N-gram frequency extraction 70.4%
Evans 2-8 typology derivation (clustering) 41.41%
PANKOW 59 none 24.9%
Hahn et al. (Baseline) 325 perfect syntactic and semantic analysis 21%
Hahn et al. (TH) 325 perfect syntactic and semantic analysis 26%
Hahn et al. (CB) 325 perfect syntactic and semantic analysis 31%
Alfonseca et al. (Object) 1200 syntactic analysis 17.39%

Table 2: Comparison of results

nessperson, entertainer/ artist, lawyer, doctor/scientist, po-
lice. Given this categorization task, they present an exper-
iment in which they examine 5 different Machine Learning
algorithms: C4.5, a feed-forward neural network, k-nearest
Neighbors, a Support Vector Machine and a Naive Bayes
classifier. As features for the classifiers they make use of
the frequencies of certain N-grams preceding and following
the instance in question as well as topic signature features
which are complemented with synonymy and hypernym in-
formation from WordNet. They report a best result of an
accuracy of 70.4% when using the C4.5 decision tree clas-
sifer. Fleischman and Hovy’s results are certainly very high
in comparison to ours – and also to the ones of Hahn et
al. [27] and Alfonseca et al. [3] – but on the other hand
though they address a harder task than the MUC Named
Entity Task, they are still quite away from the number of
categories we consider here.
Evans [20] derives similar statistical fingerprints as consid-
ered in our approach by querying GoogleTM and then clus-
ters named entities on the basis of these fingerprints as fea-
tures in order to derive a class topology from the document
in question. He uses a bottom-up hierarchical clustering
algorithm for this purpose. His approach differs from the
others discussed here in that it is totally unsupervised with-
out even the set of categories being given. Thus, the entities
are classified with respect to different sets of categories de-
pending on the document considered. Overall, he reports
41.41% of correctly classified entities, considering from 2 to
8 classes.
In the field of ontology learning, researchers have been us-
ing on the one hand unsupervised context-based approaches.
Maedche et al. [34] for example use a k-nearest neighbours
approach to classify an unknown concept into an existing
ontology. Caraballo [10], Faure et al. [21] as well as Bisson
et al. [6] use bottom-up hierarchical clustering techniques
to learn concept hierarchies. Cimiano et al. [14] present an
approach based on Formal Concept Analysis and compare
it to hierarchical agglomerative clustering and Bi-Section-
KMeans as an instance of a partitional algorithm. The prob-
lem of these approaches seems certainly that the quality of
the automatically acquired ontologies seems low.
On the other hand, there is quite a lot of work related to the
use of linguistic patterns to discover certain ontological re-
lations from text. Hearst’s [29] seminal work had the aim of
discovering taxonomic relations from electronic dictionaries.
The precision of the isa-relations learned is 61/106 (57.55%)
when measured against WordNet as gold standard. Hearst’s
idea has been reapplied by different researchers with either
slight variations in the patterns used [31], in very specific

domains [2], to acquire knowledge for anaphora resolution
[37], or to discover other kinds of semantic relations such as
part-of relations [12] or causation relations [25].
Instead of matching these patterns in a large text collection,
some researchers have recently turned to the Web to match
these patterns such as in [13], [17], [36]. Some researchers
have also used the World Wide Web for question answering
purposes such as in [4], [33] or [39], for discovering synonyms
[44] or to avoid data sparseness problems [1; 26; 32].
Especially interesting in our context is the work in [17],
which aim is to acquire instances for a given concept. In
particular, Etzioni et al. present results on the task of ac-
quiring instances of cities, countries, US states, films and
actors. In contrast to our approach, they actually down-
load the pages and match the patterns locally instead of
generating patterns and counting their hits, thus creating
less network traffic than with our approach. Interestingly,
they also make use of a Bayesian classifier in order to decide
weather an instance belongs to a certain concept or not. Re-
cently, they have also considered learning new patterns by
a rule induction process [19]. Though our approaches are
definitely related, the aims are to some extent orthogonal.
While we aim at classifying a given concept or instance, Et-
zioni et al. aim at learning the extension of certain concepts
for use within a search engine which ’knows it all’.
Brin [8] presents a bootstrapping approach in which the sys-
tem starts with a few patterns, and then tries to induce new
patterns using the results of the application of the seed pat-
terns as training dataset. This is also the general idea under-
lying the Armadillo system [16], which exploits redundancy
in the World Wide Web to induce such extraction rules.
Before concluding this section on related work it seems im-
portant to mention that any approach exploiting the Web
to discover redundancies or overcome data sparseness faces
inherent limits. Brewster et al. [7] for example have argued
that in the Web a lot of information remains implicit in the
head of web page creators, forming part of their background
knowledge and never expressed in an explicit way. This in-
herent problem of a non-technical nature seems difficult to
overcome and gets certainly more important the more tech-
nical the domain of consideration becomes.

5. CONCLUSION
We have proposed a new methodology to overcome the knowl-
edge acquisition bottleneck. The core of this methodology is
a two-stage process in which first collective knowledge about
certain items is collected and then presented to a knowledge
engineer to be applied in a specific application context. We
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have also presented a concrete instantiation of this method-
ology, PANKOW, in which collective knowledge is acquired
by matching specific lexico-syntactic patterns in the World
Wide Web, leading to the creation of so called statistical
fingerprints. These are presented to the knowledge engineer
in the form of certain snapshots or views to support him
in the creation of metadata and knowledge. Further, we
have presented an evaluation of PANKOW with respect to
two tasks, one consisting in the classification of instances
with regard to an existing ontology and one with the aim
of finding the appropriate superconcept for a given concept.
In both tasks the results are very promising, especially the
ones for the interaction mode in which the knowledge engi-
neer gets presented the top-5 best predictions of the system,
which clearly corroborates the practical usefulness of our
two-stage methodology.
In our methodology, collective knowledge may be however
dominated by a context different from the one in which the
given entity to be classified appears. By always classifying
entities with respect to the concept with maximal number of
hits in the statistical fingerprint, we are thus actually cre-
ating a bias towards senses which are predominant in the
Web. In future work we will address this issue by attempt-
ing to provide more context-based classifications by taking
into account the similarity between the page to be anno-
tated and the page in which the pattern was matched, thus
hopefully increasing the accuracy of our approach. More-
over, ambiguity is handled only implicitly through the fact
that the statistical fingerprint contains all the concepts the
entity could possibly be classified with. However, a more
explicit and systematic treatment of ambiguity also taking
into account the fact that the relation between words and
concepts is not one-to-one is certainly desirable. Further,
we will also tackle the issue of scalability. Finally, instead
of issuing such a large amount of queries to theGoogleTM

API, we will examine the possibility of actually download-
ing the abstracts of the pages and processing them offline,
thus considerably reducing network traffic.

Acknowledegments
This work started as a cooperation with Siegfried Handschuh; we

acknowledge his support, feedback and help with the initial ex-

periments and the evaluation of the system. We would also like to

thank GoogleTM for support with their Web service API. Thanks
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