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Abstract

We present a novel approach to the
automatic acquisition of taxonomies or
concept hierarchies from domain-specific
texts based on Formal Concept Analy-
sis (FCA). Our approach is based on the
assumption that verbs pose more or less
strong selectional restrictions on their ar-
guments. The conceptual hierarchy is then
built on the basis of the inclusion rela-
tions between the extensions of the selec-
tional restrictions of all the verbs, while
the verbs themselves provide intensional
descriptions for each concept. We formal-
ize this idea in terms of FCA and show
how our approach can be used to acquire a
concept hierarchy for the tourism domain
out of texts. We then evaluate our method
by considering an already existing ontol-
ogy for this domain.

1 Introduction

Taxonomies or conceptual hierarchies are crucial for
any knowledge-based system, i.e. any system mak-
ing use of declarative knowledge about the domain
it deals with. Within natural language processing
(NLP), information extraction or retrieval systems
for example can profit from a taxonomy to provide
information at different levels of detail. Machine-
learning based IE systems such as described in
(Ciravegna, 2001) could for example identify con-
cepts at different levels of abstraction with regard to
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a given concept hierarchy. Furthermore, the integra-
tion of a concept hierarchy would also enable such
systems to generalize semantically over words and
thus produce more compact and concise extraction
rules. In information retrieval (IR), the availability
of an ontology for a certain domain allows to replace
traditional keyword-based approaches by more so-
phisticated ontology-based search mechanisms such
as the one proposed in (Guarino et al., 1999). In
general it is clear that any form of syntax-semantics
interface will become more transparent and concise
if a conceptual hierarchy is available.

However, it is also well known that every
knowledge-based system suffers from the so called
knowledge acquisition bottleneck, i.e. the difficulty
to actually model the knowledge relevant for the do-
main in question. In particular ontology develop-
ment is known to be a hard and time-consuming
task.

In this paper we present a novel method to auto-
matically acquire taxonomies from domain-specific
texts based on Formal Concept Analysis (FCA), a
method mainly used for the analysis of data (Ganter
and Wille, 1999). The main benefits of our method
are its adaptivity as it can be applied to arbitrary cor-
pora and domains, its speed (compared to the pro-
cess of hand-coding an ontology) as well as its ro-
bustness in the sense that it will not fail due to social
aspects as present in traditional ontology develop-
ment projects. Furthermore, if the corpora are up-
dated regularly, it is also possible to let the ontology
evolve according to the changes in the corpus. This
is in line with the corpus and domain-specific form
of lexicon as envisioned in (Buitelaar, 2000).



2 TheUnderlying Idea

An ontology is a formal specification of a conceptu-
alization (Gruber, 1993). A conceptualization can be
understood as an abstract representation of the world
or domain we want to model for a certain purpose.
The ontological model underlying this work is based
on the one in (Bozsak et al., 2002):

Definition 1 (Ontology)

An ontology is a structure O := (C,<¢, R,0,<R)
consisting of (i) two digoint sets C and R called
concept identifiers and relation identifiers respec-
tively, (ii) a partial order < on C called concept
hierarchy or taxonomy, (iii) afunctiono : R — C+
called signature and (iv) a partial order <g on R
called relation hierarchy, wherer; <g ro implies
lo(r1)| = |o(r2)| and mi(a(r1)) <¢ mi(o(ra)) for
eachl < i < |o(r1)].

Furthermore, for each ontology O we will define a
lexicon Lo as well as a mapping Fp : C — 2Lo
by which each concept is mapped to its possible lex-
ical realizations. In addition, we will also consider
the inverse function F(;l : Lo — 2¢. Thus in our
model a concept can be expressed through different
expressions (synonyms) and one expression can refer
to different concepts, i.e. expressions can be polyse-
mous.

The aim of the approach presented in this paper is
now to automatically acquire the partial order <¢
between a given set of concepts C. The general idea
underlying our approach can be best illustrated with
an example. In the context of the tourism domain,
we all have for example the knowledge that things
like a hotel, a car, a bike, a trip or an excursion can
be booked. Furthermore, we know that we can rent
a car, a bike or an apartment and that we can drive
a car or a bike, but only ride a bike. Moreover, we
know that we can join an excursion or a trip. We
can now represent this knowledge in form of a ma-
trix as depicted in table 1.  On the basis of this
knowledge, we could intuitively build a conceptual
hierarchy as depicted in figure 1. If we furthermore

bookable
X

rentable driveable rideable
X
X

X

joinable

apartment
car
motor-bike

X
X X
excursion

trip

X
X

X X X X

Table 1: Tourism domain knowledge as matrix
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Figure 1: Hierarchy for the tourism example

reflect about the intuitive method we have used to
construct this conceptual hierarchy, we would come
to the conclusion that we have basically mapped the
inclusion relations between the sets of the verbs’ ar-
guments to a partial order and furthermore have used
the verbs itself to provide an intensional description
of the abstract or non-lexical concepts we have cre-
ated to group together certain ’lexicalized’ concepts.
In the next section we introduce Formal Concept
Analysis and show how it can be used to formalize
the intuitive method described above.

3 Formal Concept Analysis

Formal Concept Analysis (FCA) is a method mainly
used for the analysis of data, i.e. for investigating
and processing explicitly given information. Such
data are structured into units which are formal ab-
stractions of concepts® of human thought allowing
meaningful comprehensible interpretation (Ganter
and Wille, 1999). Central to FCA is the notion of
a formal context:

Definition 2 (Formal Context)

A triple (G,M 1) is called a formal context if G
and M aresetsand I C G x M isabinary relation
between G and M. The elements in G are called
objects, those in M attributes and I the incidence
of the context.

For A C G and dually for B C M, we define :

A':={m € M|(g,m) € I Vg € A}

B':={g € G|(g,m) € I Vm € B}

Throughout this paper we will use the notion concept in
the sense of formal concept as used in FCA (see below) as well
in the ontological sense as defined in section 2. The meaning
should in any case be clear from the context.
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Figure 2: The tourism lattice

Intuitively speaking, A’ is the set of all the attributes
common to the objects in A, while B’ is respectively
the set of all the objects which have in common with
each other the attributes in B. Furthermore, we de-
fine what a formal concept is:

Definition 3 (Formal Concept)
A pair (A,B) isaformal concept of (G,M 1) if and
only if

ACGBCM,A=BANA=DF

In other words, (A4,B) is a formal concept if and
only if the set of all attributes shared by the objects
in A is identical with B and on the other hand
A is also the set of all the objects which have in
common with each other the attributes in B. A
is then called the extent and B the intent of the
concept (A4,B). The concepts of a given context are
naturally ordered by the subconcept-superconcept
relation as defined by:

(A1, By) < (A2,B) & A; C Ay(& B, C By)

Thus, formal concepts are partially ordered
with regard to inclusion of their extents or (which is
equivalent) to inverse inclusion of their intent.

Thus, table 1 represents the incidence I of the for-
mal context in form of a matrix. The corresponding
sub-/superconcept partial order computed by FCA
is depicted in figure 2 in form of a lattice. The
representation makes use of reduced labeling as
described in (Ganter and Wille, 1999) such that
each object and each attribute is entered only once
in the diagram. Finally, it is just left to clarify how
we obtain a concept hierarchy, i.e. our partial order
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< out of a lattice such as depicted in figure 2. We
accomplish this by creating for each node in the
lattice a concept labeled with the intent of the node
as well as a subconcept of this concept for each
element in the extent of that node. Furthermore, we
also remove the bottom element of the lattice and
preserve the other nodes and edges. Thus, in general
we yield a partial order which can be represented as
a DAG. In particular, for the lattice in figure 2 we
yield the partial order in figure 1.

4 FCA meetsNLP

The decisive question is now where to get from the
objects as well as the corresponding attributes in or-
der to create a taxonomy by using Formal Concept
Analysis. A straightforward idea is to extract verb-
object dependencies from texts and turn the objects’
head into FCA objects and the corresponding verbs
together with the postfix ’able’ into attributes.

As already mentioned before, we concentrated on
texts related to the tourism domain. In partic-
ular, we used two rather small corpora. The
first corpus was acquired from http://www.all-in-
all.de/english/, a web-page containing informa-
tion about the history, cultural events, accom-
modation facilities, etc. of Mecklenburg Vor-
pommern, a region in north-east Germany. The
second corpus is a collection of texts from
http://www.lonelyplanet.com/destinations/. The to-
tal size of both corpora together was roughly about
a million words.

In order to acquire the verb-object dependencies
from these corpora, we used LoPar 2,a trainable and
statistical left-corner parser. LoPar was trained on
the corpora before actually parsing them. LoPar’s
output was then post-processed with tgrep to actu-
ally yield the desired dependencies, i.e. the verbs
and the heads of the objects they subcategorize. It
is important to mention that with our method we
are also able to get multi-word terms. Furthermore,
we use a simple method to lemmatize the extracted
terms and verbs by looking up the lemma of each
word in the lexicon provided with LoPar.

Regarding the output of the parser, it has to be taken
into account that on the one hand it can be erroneous

2http://www.ims.uni-stuttgart.de/projekte/gramotron/
SOFTWARE/LoPar-en.html



and on the other hand not all the verb-object depen-
dencies produced are significant from a statistical
point of view. Thus an important issue is actually
to reduce the 'noise’ produced by the parser before
feeding the output into FCA. For this purpose, we
calculate the overall probability P(n) that a certain
(multi-word) term n appears as direct object of a
verb, the overall probability P(v) for a certain verb
v, the probability P(n,v) that n occurs as the head of
v’s object as well as the probability P(n|v) that given
a certain verb v, n appears in object position. Here
are the corresponding formulas:

PO =5
P = 1 B0
P(nfy) = 2 }’(L;;’)

where N and V are respectively the set of all terms
appearing as direct objects of a verb and the set of all
verbs with a direct object, f(n) and f(v) are respec-
tively the number of occurrences of atermn € N
as direct object and a verb v € V and f(v,n) is the
number of times that » occurs in the object position
of v.

Now in order to weigh the significance of a certain
verb-object pair (v, n), we used three different mea-
sures: a standard measure based on the conditional
probability, the mutual information measure used
in (Hindle, 1990), as well as a measure based on
Resnik’s selectional preference strength of a pred-
icate (Resnik, 1997). Here are the formulas:

Standard: P(n|v)

Hindle: log %
Resnik:  P(n|v) * Sr(v)
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where the selectional preference strength of a verb
is defined according to (Resnik, 1997):

Sr(v) = Lnen Plnlv) log 3!

Thus, the selectional preference of a verb is
stronger the less frequent the nouns are that appear
as its direct objects. In our approach, we then only
consider those verb-term pairs as attribute-object
pairs for which the values of the above measures are
above some threshold ¢. For the Formal Concept
Analysis we use the Concepts tool downloadable
from http://www.fcahome.org.uk/. The processing
time for building the lattice was for all thresholds
and measures in the worst case 12 seconds. Thus,
the FCA processing time can certainly be neglected
in comparison to the parsing time.

5 Evaluation

Before actually presenting the results of our eval-
uation, we first have to describe the task we are
evaluating against.  Basically, the task can be
described as follows: given a set of m concepts
relevant for a certain domain, order these concepts
hierarchically in form of a taxonomy. Certainly, this
is not a trivial task and as shown in (Maedche and
Staab, 2002) human agreement on such a task has
also its limits.

In order to evaluate our automatically generated
taxonomies, we compare them with the tourism
domain ontology developed within the GETESS
project®>.  This ontology was primarily designed
for the analysis of german texts, but also english
labels are available for many of the concepts.
Moreover, we manually added the english labels for
those concepts whose german label has an english
counterpart. As a result we yielded an ontology
consisting of 1026 concepts with most of them
(>95%) having an english label.

Certainly, it is not clear how two ontologies (as a
whole) can be compared to each other in terms of
similarity. In fact, the only work in this direction
the authors are aware of is the one in (Maedche
and Staab, 2002). There, ontologies are seen as a
semiotic sign system and compared at a syntactic,
i.e. lexical, as well as semantic level. In this line,

3http://www.getess.de/index_en.html



we present a comparison based on lexical overlap as
well as taxonomic similarity between ontologies.
Lexical overlap (LO) of two ontologies O; and O-
will be measured as the recall of the lexicon Lo,
compared to the lexicon Lo,, i.e.

— |L01 ﬂ L02|
|L02‘

LO(04,02)

In order to compare the taxonomy of the on-
tologies, we use the semantic cotopy (SC) presented
in (Maedche and Staab, 2002). The semantic cotopy
of a concept is defined as the set of all its super- and
subconcepts:

SO(CZ', Sc) = {Cj|Ci <cc¢i Ve <c Ci},

where cj,¢; € C. Now, we also extend the
definition to operate on sets of concepts:

SC(C',<c) = | SC(,<c)
cdeC’
On the basis of this definition we introduce the
common lexical cotopy (CLC) of a lexical entry
l € Lo,, = Lo, N Lo, with regard to O and Oy
as follows:

CLC(l,01,02) = UcESC(Fgll(l)) Fo,(c) N Loy,
Taxonomic overlap T'O is now defined as follows*:

TO(0O1,02) = @ ZlELOm TO(l,01,029),
CLC(1,01,02) N CLC(1,02,0
TO(,0,,0) = ICchl,oi,ozg U Cchl,oz,oigI °

In order to compare the performance of our
approach with the human performance on the task,
we will interpret our results with regard to the study
presented in (Maedche and Staab, 2002). In this
study, five subjects were asked to model a taxonomy
on the basis of 310 lexical entries relevant for the
tourism domain. The taxonomic overlap (T'O) be-
tween the manually engineered ontologies reached
from 47% to 87% with an average of 56.35%. Thus,
it is clear that any automatic approach to derive a
conceptual hierarchy between a set of concepts has
definitely its limits.

“Here we assume that | Lo, ,| > 0; otherwise T'O will be 0.

5The reader is referred to (Maedche and Staab, 2002) for
some concrete examples for these measures.
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Figure 3: LO and T'O values over threshold ¢

5.1 Results

We generated different taxonomies with the ap-
proach described in section 4 by using the measures
Standard, Resnik and Hindle as well as different val-
ues for the threshold ¢. In particular, we used the val-
ues t € {0.005,0.01,0.05,0.1,0.3,0.5,0.7,0.9}.
The size of these ontologies ranged from 0 to 7874
concepts. We then compared these 24 (=3x8) auto-
matically generated taxonomies against the taxon-
omy of the GETESS ontology in terms of lexical
overlap (LO) and taxonomic overlap TO. The re-
sults of this comparison are depicted in figure 3. The
best results in terms of T'O are certainly achieved by
the Resnik measure having always the highest TO
with a small LO between 22.02% (¢ = 0.005) and
0.8% (¢ = 0.9). Interestingly, the Standard mea-
sure shows a worse T'O than the Resnik measure,
but a more stable LO between 24.71% (¢ = 0.005)
and 7.65% (¢ = 0.9) The performance of the Hin-
dle measure in terms of LO and TO is certainly
the worst due to the fact that LO falls down to O at
t = 0.7. Though these results don’t allow much con-
clusions to be drawn, three interesting observations
can be made. First, the lexical overlap seems to be
very low in general, a problem which seems defi-
nitely necessary to overcome in order to yield also
higher TO values. The second observation is that
the higher the threshold ¢, the lower the lexical over-
lap and the higher the taxonomic overlap get. This is
on the one hand clearly due to the fact that the higher
the threshold ¢ is, the less pairs (n,v) we feed into
FCA and thus the amount of lexical categories in the
taxonomy decreases. On the other hand it seems
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Figure 4: F-Measure (LoPar)

intuitive that it is easier to organize hierarchically
fewer classes, which would explain the increasing
TO values. This leads us to the third observation,
i.e. that it is important to balance 7O and LO against
each other. In line with the information extraction
(IE) task, in which precision and recall have to be
balanced against each other, we compute also the F-
Measure balancing LO and TO, i.e. F = %.
The results of the F-Measures for the three measures
and the different threshold values are depicted in
figure 4. The three measures achieve more or less
the same top results. However, the Standard mea-
sure definitely shows the most stable behavior. It
achieves a TO of 18.39% and a LO of 22.54% and
thus a F-Measure of F=20.25% at ¢ = 0.01. The
best result of the Resnik measure (F=20.18%) cor-
responds to a TO 18.62% of and a LO of 22.02%
at t = 0.005. The Hindle measure achieves an F-
Measure of F=20.22% with a TO of 18.40% and a
LO of 22.44% at t = 0.005. Certainly, the major
bottleneck of the approach seems to be the low lexi-
cal overlap between the ontologies.

5.2 Adding Prepositional Phrases (PPs)

The results in the previous section lead us to in-
vestigate if we could increase the lexical over-
lap of the automatically generated taxonomies by
extracting additionally verb-PP pairs and feeding
them into FCA in the same way as the verb-object
pairs with the only exception that instead of adding
to the verb the postfix “able” we add the post-
fix “_<PREPOSITION>" The results in terms of
F-Measures over the different thresholds in fact
show that there was a slight increase in overall
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Figure 5: F-Measure (LoPar with PPs)

performance (compare figure 5). The best result
(F=20.74%) is again achieved by the Standard mea-
sure with a TO of 16.57% and a LO of 27.71% at
a threshold of ¢ = 0.01. The second best result
was reached by the Resnik measure with a TO of
16.61% and a LO of 27.20% (and thus F=20.63%)
at a threshold of ¢ = 0.005. The Hindle measure
reached a F-Measure of F=20.56% corresponding to
aTO of 17.07% and a LO of 25.85% at ¢ = 0.05.
It seems that we have in fact increased the lexical
overlap at the cost of a decrease in taxonomic over-
lap. However, the overall results as indicated by the
F-Measures have definitely increased.

5.3 Chunking

As final experiment we substituted LoPar by Steven
Abney’s chunker CASS (Abney, 1996) in the hope
that due to its robustness the lexical overlap would
increase even more. For this purpose we used a
straightforward heuristic and interpreted every NP
and PP following a verb respectively as its direct ob-
ject and PP-complement. The resulting F-measures
are depicted in figure 6. Interestingly, the Standard
and Resnik measures seem to perform more or less
the same. The best result (F=20.21%) is achieved
by the Resnik measure with a TO 14.08% of and
a LO of 34.33% at a threshold ¢ = 0.05. The
Standard measure achieves the second best result
of F=20.17% at ¢t = 0.1 corresponding to a TO of
14.89% and an LO of 31.13%. The best result of the
Hindle measure is F=20.16% with a TO of 14.93%
and an LO of 31.02% at ¢ = 0.5. So the results are
more or less comparable to those produced by LoPar
without taking into account PPs with the difference
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that the lexical overlap has increased at the cost of
a lower taxonomic overlap. This is certainly due to
erroneous verb-object or verb-PP pairs yielded by
postproceesing the chunker’s output with the above
mentioned heuristic.

5.4 Discussion of Results

The experiments have shown that the best results are
achieved by using a parser such as LoPar to extract
verb-object and verb-PP pairs as well as the Stan-
dard or Resnik measures to select the most signifi-
cant pairs. However, is has also become clear that a
chunker like CASS is an attractive alternative to us-
ing a parser as it leads to only slightly worse results
but is actually much faster. Overall, the best result
achieved is a F-Measure of 20.74% corresponding
to a 70 of 16.57% and an LO of 27.71%. In order
to compare these results against human performance
on the task, we first have to assess human perfor-
mance in terms of the F-Measure. The assumption
will be that if humans have to order hierarchically
m terms they will always succeed in ordering all
of them. In this sense, assuming for humans a LO
of 100% and considering the average human agree-
ment of 56.35% in terms of T'O as given above, we
yield a human average performance on the task of
F=72.08% which we are still quite far away from.
On the other hand, when comparing the manually
engineered ontologies in (Maedche and Staab, 2002)
with the GETESS ontology, we get F-measure val-
ues between F = 32.03% and F= 34.07%. In the
light of these numbers, our results seem definitely
more promising. Furthermore, the assumption of a
human LO of 100% as well as the above average
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agreement may hold for relatively trivial domains
such as tourism, but are certainly too optimistic for
more technical domains such as for example bio-
medicine. Thus, we believe that the more specific
and technical the underlying corpus is, the closer our
approach will get to human performance. In the fu-
ture, we hope to support this claim with further ex-
periments on more technical domains.

6 Discussion of Related Work

In this section, we discuss some work related to
the automatic acquisition of taxonomies out of
texts. The early work of (Hindle, 1990) on noun
classification from predicate-argument structures
is very related to the approach presented here.
Hindle’s work is based on the distributional hy-
pothesis, i.e. that nouns are similar to the extent
that they share contexts. The central idea of his
approach is that nouns may be grouped according
to the extent to which they appear in similar verb
frames. In particular, he takes into account nouns
appearing as subjects and objects of verbs, but
does not distinguish between them in his similarity
measure. Our approach goes one step further in the
sense that we do not only group nouns together, but
also derive a hierarchical order between them.

Also very related to the work presented here is
the approach of (Faure and Nedellec, 1998). Their
work is also based on the distributional hypothesis
and they present an iterative bottom-up clustering
approach of nouns appearing in similar contexts. At
each step, they cluster together the two most similar
extents of some argument position of two verbs.
However, their approach requires manual validation
after each clustering step so that in our view it can
not be called unsupervised or automatic anymore.
(Hahn and Schnattinger, 1998) aim at learning
the correct ontological class for unknown words.
For this purpose, when encountering an unknown
word in a text they initially create one ’hypothesis
space’ for each concept the unknown word could
actually belong to. These initial hypothesis spaces
are then iteratively refined on the basis of evidence
extracted from the linguistic context the unknown
word appears in. In their approach, evidence is
formalized in the form of quality labels attached to
each hypothesis space. At the end the hypothesis



space with maximal evidence with regard to the
qualification calculus used is chosen as the correct
ontological concept for the word in question.
Finally, (Hearst, 1992) aims at the acquisition
of hyponym relations from Grolier’s American
Academic Encyclopedia. In order to identify these
relations, she makes use of lexico-syntactic patterns
manually acquired from her corpus.  Hearst’s
approach is characterized by a high precision in the
sense that the quality of the learned relations is very
high. However, her approach suffers from a very
low recall which is due to the fact that the patterns
are very rare.

7 Conclusion and Further Work

We have presented a method for the automatic ac-
quisition of taxonomies out of domain-specific text
which is in line with the idea of a dynamic as well as
corpus- and domain-specific lexicon as presented in
(Buitelaar, 2000). The method presented is certainly
adaptive as it only relies on generic NLP tools. Our
approach would definitely profit from some form of
smoothing. We are currently experimenting with an
approach to cluster the verbs into classes before ac-
tually feeding the verb-object or verb-PP pairs into
FCA. Moreover, we would like to apply our ap-
proach to larger corpora, other domains as well as
other languages, in particular german. In order to
overcome the low lexical recall of our approach, we
think that crawling texts containing the appropriate
words from the WWW as presented in (Agirre etal.,
2000) is a promising option. Finally, we also aim
at learning other relations than taxonomic ones. For
this purpose we envision an approach as described
in (Resnik, 1997) in order to learn relations at the
right level of abstraction with regard to our automati-
cally acquired taxonomy. In general, we believe that
a combination approach of different methodologies
is the key towards automatically generating accept-
able and reasonable taxonomies which can be used
as a starting point for applications and then be re-
fined during their life-cycle.
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